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Abstract

The Lomb–Scargle periodogram is a well-known algorithm for detecting and characterizing periodic signals in
unevenly sampled data. This paper presents a conceptual introduction to the Lomb–Scargle periodogram and
important practical considerations for its use. Rather than a rigorous mathematical treatment, the goal of this paper
is to build intuition about what assumptions are implicit in the use of the Lomb–Scargle periodogram and related
estimators of periodicity, so as to motivate important practical considerations required in its proper application and
interpretation.
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1. Introduction

The Lomb–Scargle periodogram (Lomb 1976; Scargle 1982) is
a well-known algorithm for detecting and characterizing periodi-
city in unevenly sampled time-series and has seen particularly wide
use within the astronomy community. As an example of a typical
application of this method, consider the data shown in Figure 1:
this is an irregularly sampled time-series showing a single object
from the LINEAR survey (Sesar et al. 2011; Palaversa et al. 2013),
with unfiltered magnitude measured 280 times over the course of
5.5 yr. By eye, it is clear that the brightness of the object varies in
time with a range spanning approximately 0.8 mag, but what is not
immediately clear is that this variation is periodic in time. The
Lomb–Scargle periodogram is a method that allows efficient
computation of a Fourier-like power spectrum estimator from such
unevenly sampled data, resulting in an intuitive means of
determining the period of oscillation.

The Lomb–Scargle periodogram computed from these data
is shown in the left panel of Figure 2. The Lomb–Scargle
periodogram here yields an estimate of the Fourier power as a
function of period of oscillation, from which we can read off
the period of oscillation of approximately 2.58 hr. The right
panel of Figure 2 shows a folded visualization of the same data
as Figure 1—i.e., plotted as a function of phase rather
than time.

Often this is exactly how the Lomb–Scargle periodogram is
presented: as a clean, well-defined procedure to generate a
power spectrum and to detect the periodic component in an
unevenly sampled data set. In practice, however, there are a
number of subtle issues that must be considered when applying
a Lomb–Scargle analysis to real-world data sets. Here are a few
questions in particular that we might wish to ask about the
results in Figure 2:

1. How does the Lomb–Scargle periodogram relate to the
classical Fourier power spectrum?

2. What is the source of the pattern of multiple peaks
revealed by the Lomb–Scargle periodogram?

3. What is the largest frequency (i.e., Nyquist-like limit) that
such an analysis is sensitive to?

4. How should we choose the spacing of the frequency grid
for our periodogram?

5. What assumptions, if any, does the Lomb–Scargle
approach make regarding the form of the unknown
signal?

6. How should we understand and report the uncertainty of
the determined frequency?

Quantitative treatments of these sorts of questions are presented
in various textbooks and review papers, but I have not come
across any single concise reference that gives a good intuition
for how to think about such questions. This paper seeks to fill
that gap and provide a practical, just-technical-enough guide to
the effective use of the Lomb–Scargle method for detection and
characterization of periodic signals. This paper does not seek a
complete or rigorous treatment of the mathematics involved,
but rather seeks to develop the intuition of how to think about
these questions, with references to relevant technical
treatments.

1.1. Why Lomb–Scargle?

Before we begin exploring the Lomb–Scargle periodogram
in more depth, it is worth briefly considering the broader
context of methods for detecting and characterizing periodicity
in time-series. First, it is important to note that there are many
different modes of time-series observation. Point observation
like that shown in Figure 1 is typical of optical astronomy:
values (often with uncertainties) are measured at discrete points
in time, which may be equally or unequally spaced. Other
modes of observation—e.g., time-tag events, binned event data,
time-to-spill events, etc.—are common in high-energy astron-
omy and other areas. We will not consider such event-driven
data modes here, but note that there have been some interesting
explorations of unified statistical treatments of all of the above
modes of observation (e.g., Scargle 1998, 2002).
Even limiting our focus to point observations, there are a

large number of complementary techniques for periodic
analysis, which generally can be categorized into a few broad
categories:

Fourier methods are based on the Fourier transform, power
spectra, and closely related correlation functions. These
methods include the classical or Schuster periodogram
(Schuster 1898), the Lomb–Scargle periodogram (Lomb
1976; Scargle 1982), the correlation-based method of
Edelson & Krolik (1988), and related approaches (see also
Foster 1996, for a discussion of wavelet transforms in this
context).
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Phase-folding methods depend on folding observations as a
function of phase, computing a cost function across the
phased data (often within bins constructed across phase
space) and optimizing this cost function across candidate
frequencies. Some examples are String Length (Dworetsky
1983), Analysis of Variance (Schwarzenberg-Czerny 1989),
Phase Dispersion Minimization (Stellingwerf 1978), the
Gregory–Laredo method (Gregory & Loredo 1992), and the
conditional entropy method (Graham et al. 2013b). Methods
based on correntropy are similar in spirit but do not always
require explicit phase folding (Huijse et al. 2011, 2012).

Least-squares methods involve fitting a model to the data at
each candidate frequency and selecting the frequency that
maximizes the likelihood. The Lomb–Scargle periodogram
also falls in this category (see Section 5), as does the
Supersmoother approach (Reimann 1994). Other studies
recommend statistics other than least-squares residuals;
see, e.g., the orthogonal polynomial fits of Schwarzenberg-
Czerny (1996).

Bayesian approaches apply Bayesian probability theory to the
problem, often in a similar manner to the phase-folding
and/or least-squares approaches. Examples are the gen-
eralized Lomb–Scargle models of Bretthorst (1988), the
phase-binning model of Gregory & Loredo (1992),
Gaussian process models (e.g., Wang et al. 2012), and
models based on stochastic processes (e.g., Kelly
et al. 2014).

Various reviews have been undertaken to compare the efficiency
and effectiveness of the available methods; for example,
Schwarzenberg-Czerny (1999) focuses on the statistical properties
of methods and recommends those based on smooth model fits
over methods based on phase binning, while Graham et al.
(2013a) instead take an empirical approach and find that when
considering detection efficiency in real data sets, no suitably
efficient algorithm universally outperforms the others.

In light of this breadth of available methods, why limit our
focus here to the Lomb–Scargle periodogram? One reason is
cultural: the Lomb–Scargle periodogram is perhaps the best-
known technique to compute periodicity of unequally spaced
data in astronomy and other fields, and so it is the first tool
many will reach for when searching for periodic content in a
signal. But there is a deeper reason as well; it turns out that
Lomb–Scargle occupies a unique niche: it is motivated by

Fourier analysis (see Section 5), but it can also be viewed as a
least-squares method (see Section 6). It can be derived from the
principles of Bayesian probability theory (see Section 6.5) and
has been shown to be closely related to bin-based phase-folding
techniques under some circumstances (see Swingler 1989).
Thus, the Lomb–Scargle periodogram occupies a unique point
of correspondence between many classes of methods and so
provides a focus for discussion that has bearing on considera-
tions involved in all of these methods.

1.2. Outline

The remainder of this paper is organized as follows:

Section 2 presents a review of the continuous Fourier transform
and some of its useful properties, including defining the
notion of a power spectrum (i.e., classical/Schuster
periodogram) for detecting periodic content in a signal.

Section 3 builds on these properties to explore how different
observation patterns (i.e., window functions) affect the
periodogram and discusses a conceptual understanding of
the Nyquist limiting frequency.

Section 4 considers nonuniformly sampled signals as a special
case of an observational window and shows that the
Nyquist-like limit for this case is quite different than what
many practitioners in the field often assume.

Section 5 introduces the Lomb–Scargle periodogram, a
modified version of the classical periodogram for unevenly
sampled data, as well as the motivation behind these
modifications.

Section 6 discusses a complementary view of the Lomb–
Scargle periodogram as the result of least-squares model
fitting, as well as some extensions enabled by that
viewpoint.

Section 7 builds on the concepts introduced in earlier sections
to discuss important practical considerations for the use of
the Lomb–Scargle periodogram, including the choice of
frequency grid, uncertainties and false-alarm probabilities
(FAPs), and modes of failure that should be accounted for
when working with real-world data.

Section 8 concludes and summarizes the key recommendations
for practical use of the Lomb–Scargle periodogram.

Figure 1. Observed light curve from LINEAR object ID 11375941. Uncertainties are indicated by the gray error bars on each point. The Python code to reproduce this
figure, as well as all other figures in this manuscript, is available at http://github.com/jakevdp/PracticalLombScargle/.
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2. Background: The Continuous Fourier Transform

In order to understand how we should interpret the Lomb–
Scargle periodogram, we will first briefly step back and review
the subject of Fourier analysis of continuous signals. Consider
a continuous signal g(t). Its Fourier transform is given by the
following integral, where º -i 1 denotes the imaginary unit:

òº p

-¥

¥
-ˆ ( ) ( ) ( )g f g t e dt. 1ift2

The inverse relationship is given by

òº p

-¥

¥
+( ) ˆ ( ) ( )g t g f e df . 2ift2

For convenience we will also define the Fourier transform
operator  , such that

 ={ } ˆ ( )g g, 3

 =- { ˆ} ( )g g. 41

The functions g and ĝ are known as a Fourier pair, which we
will sometimes denote as ⟺ ˆg g.

2.1. Properties of the Fourier Transform

The continuous Fourier transform has a number of useful
properties that we will make use of in our discussion.

The Fourier transform is a linear operation. That is, for any
constant A and any functions f (t) and g(t), we can write

  

 

+ = +
=

{ ( ) ( )} { ( )} { ( )}
{ ( )} { ( )} ( )

f t g t f t g t
Af t A f t . 5

Both identities follow from the linearity of the Fourier
integral.

The Fourier transform of a sinusoid with frequency f0 is a sum
of delta functions at ±f0. From the integral definition of the
Dirac delta function,1 we can write

 d= -p{ } ( ) ( )e f f . 6f t2
0

0

Using Euler’s formula2 for the complex exponential along
with the linearity of the Fourier transform leads to the
following identities:





p d d

p d d

= - + +

= - - +

{ ( )} [ ( ) ( )]

{ ( )} [ ( ) ( )] ( )

f t f f f f

f t
i

f f f f

cos 2
1

2

sin 2
1

2
. 7

0 0 0

0 0 0

In other words, a sinusoidal signal with frequency f0 has a
Fourier transform consisting of a weighted sum of delta
functions at ±f0.

A time shift imparts a phase in the Fourier transform. Given a
well-behaved function g(t), we can use a transformation of
variables to derive the following identity:

 - = p-{ ( )} { ( )} ( )g t t g t e . 8ift
0

2 0

Notice that the time shift does not change the amplitude of
the resulting transform, but only the phase.

These properties taken together make the Fourier transform
quite useful for the study of periodic signals. The linearity of
the transform means that any signal made up of a sum of
sinusoidal components will have a Fourier transform consisting
of a sum of delta functions marking the frequencies of those
sinusoids—that is, the Fourier transform directly measures
additive periodic content in a continuous function.
Further, if we compute the squared amplitude of the

resulting transform, we can both do away with complex
components and remove the phase imparted by the choice of
temporal baseline; this squared amplitude is usually known as
the power spectral density (PSD) or simply the power
spectrum:

 º ∣ { }∣ ( )g . 9g
2

The power spectrum of a function is a positive real-valued
function of the frequency f that quantifies the contribution of
each frequency f to the total signal. Note that if g is real-valued,
it follows that Pg is an even function, i.e.,  = -( ) ( )f fg g .

Figure 2. Left panel: Lomb–Scargle periodogram computed from the data shown in Figure 1, with an inset detailing the region near the peak. Right panel: input data
in Figure 1, folded over the detected 2.58 hr period to show the coherent periodic variability. For more discussion of this particular object, see Palaversa et al. (2013).

1 òd º p
-¥

¥ -( )f e dfixf2 . 2 = +e x i xcos sinix .
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2.2. Some Useful Fourier Pairs

We have already discussed that the Fourier transform of a
complex exponential is a single delta function. This is just one
of many Fourier pairs to keep in mind as we progress to
understanding the Lomb–Scargle periodogram. We list a few
more important pairs here (see Figure 3 for a visual
representation of the following pairs):

The Fourier transform of a sinusoid is a pair of Delta functions
(see Figure 3(a)):

 p d d= - + +{ ( )} [ ( ) ( )] ( )f t f f f fcos 2
1

2
. 100 0 0

We saw this above, but we repeat it here for completeness.
The Fourier transform of a Gaussian is a Gaussian (see

Figure 3(b)):

 s
ps ps

= ⎜ ⎟⎛
⎝

⎞
⎠{ ( )} ( )N t N f;

1

2
;

1

2
. 11

2

The Gaussian function N(t, σ) is given by

s
ps

º s-( ) ( )( )N t e;
1

2
. 12t

2

22 2

The Fourier transform of a rectangular function is a sinc
function (see Figure 3(c)):

  P ={ ( )} ( ) ( )t f Tsinc . 13T

The rectangular function, Π(t), is a normalized symmetric
function that is uniform within a range given by T and zero
elsewhere:


P º

>

⎧⎨⎩( ) ∣ ∣
∣ ∣

( )t
T t T

t T
1 , 2
0, 2.

14T

The sinc function is given by the standard definition:

p
p

º( ) ( ) ( )x
x

x
sinc

sin
. 15

The Fourier transform of a Dirac comb is a Dirac comb (see
Figure 3(d)):

 ={ ( )} ( ) ( )t
T

fIII
1

III . 16T T1

The Dirac comb, ( )tIIIT , is an infinite sequence of Dirac
delta functions placed at even intervals of size T:

å dº -
=-¥

¥

( ) ( ) ( )t t nTIII . 17T
n

Notice in each of these Fourier pairs the reciprocity of scales
between a function and its Fourier transform: a narrow function
will have a broad transform, and vice versa. More quantita-
tively, a function with a characteristic scale T will in general
have a Fourier transform with a characteristic scale of 1/T.
Such reciprocity is central to many diverse applications of
Fourier analysis, from electrodynamics to music theory to
quantum mechanics. For our purposes, this property will turn
out to be quite important as we push further in understanding
the Lomb–Scargle periodogram.

2.3. The Convolution Theorem

A final property of the Fourier transform that we will discuss
here is its ability to convert convolutions into pointwise
products. A convolution of two functions, usually denoted by

Figure 3. Visualization of important Fourier pairs.
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the ∗ symbol, is defined as follows:

ò t t t* º -
-¥

¥
[ ]( ) ( ) ( ) ( )f g t f g t d . 18

The convolution can be thought of as an operation that “slides”
one function past the other, integrating the product at each step.
Such an operation is commonly used, for example, in
smoothing a function, as visualized in Figure 4 for a
rectangular smoothing window.

Given this definition of a convolution, it can be shown that
the Fourier transform of a convolution is the pointwise product

of the individual Fourier transforms:

  * ={ } { } · { } ( )f g f g . 19

In practice, this can be a much more efficient means of
numerically computing a convolution than to directly solve at
each time t the integral over τ that appears in Equation (18). The
identity in Equation (19) is known as the convolution theorem and
is illustrated in Figure 5. An important corollary is that the Fourier
transform of a product is a convolution of the two transforms:

  = *{ · } { } { } ( )f g f g . 20

Figure 4. Visualization of a convolution between a continuous signal and a rectangular smoothing kernel. The normalized rectangular window function slides across
the domain (top panel), such that at each point the mean of the values within the window is used to compute the smoothed function (bottom panel).

Figure 5. Visualization of the convolution theorem (Equation (19)). Recall that the Fourier transform of a convolution is the pointwise product of the two Fourier
transforms. In the right panels, the black and gray lines represent the real and imaginary parts of the transform, respectively.
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We will see that these properties of the Fourier transform
become essential when thinking about frequency components
of time-domain measurements.

3. Window Functions: From Idealized to Real-world
Signals

Until now we have been discussing Fourier transforms of
continuous signals that are well defined for all times
-¥ < < ¥t . Real-world temporal measurements of a signal,
however, only involve some finite span of time, at some finite
rate of sampling. In either case, the resulting data can be
described by a pointwise product of the true underlying
continuous signal with a window function describing the
observation. For example, a continuous signal measured over a
finite duration is described by a rectangular window function
spanning the duration of the observation, and a signal measured
at regular intervals is described by a Dirac comb window
function marking those measurement times.

The Fourier transform of measured data in these cases, then,
is not the transform of the continuous underlying function, but
rather the transform of the pointwise product of the signal and
the observing window. Symbolically, if the signal is g(t) and
the window is W(t), the observed function is

=( ) ( ) ( ) ( )g t g t W t , 21obs

and by the convolution theorem, its transform is a convolution
of the signal transform and the window transform:

  = *{ } { } { } ( )g g W . 22obs

This has some interesting consequences for the use and
interpretation of periodograms, as we shell see.

3.1. Effect of a Rectangular Window

First, let us consider the case of observing a continuous
periodic signal over a limited span of time: Figure 6 shows a
continuous periodic function observed only within the window
−3<t<3. The observed signal in this case can be understood
as the pointwise product of the underlying infinite periodic signal
with a rectangular window function. By the convolution
theorem, the Fourier transform will be given by the convolution
of the transform of the underlying function (here a set of delta
functions at the component frequencies) and the transform of the
window function (here a sinc function). For a purely periodic
signal like the one seen in Figure 6, this convolution has the
effect of replacing each delta function with a sinc function.
Because of the inverse relationship between the width of the
window and the width of its transform (see Figure 3), it follows
that a wider observing window leads to proportionally less
spread in each peak of the observed Fourier transform.

3.2. The Dirac Comb and the Discrete Fourier Transform

Another window function that commonly arises is when a
continuous signal is sampled (nearly) instantaneously at regular
intervals. Such an observation can be thought of as a pointwise
product between the true underlying signal and a Dirac comb
with the T parameter matching the spacing of the observations;
this is illustrated in Figure 7. Interestingly, because the Fourier
transform of a Dirac comb is another Dirac comb, the effect of
such an observing window is to create a long sequence of

Figure 6. Visualization of the effect on the Fourier transform of a rectangular observing window (i.e., a continuous signal observed in its entirety within a finite range
of time). The function used here is g(t)=1.2sin (2πt)+0.8sin (4πt)+0.4sin (6πt)+0.1sin (8πt). The observed Fourier transform is a convolution of the true
transform (here a series of Delta functions indicating the component frequencies) and the window transform (here a narrow sinc function).
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aliases of the underlying transform with a spacing of 1/T. With
this in mind, we can be assured in this case that evaluating the
observed transform in the range 0�f<1/T is sufficient to

capture all the available frequency information: the signal
outside that range is a sequence of identical aliases of what lies
within that range.

Figure 7. Visualization of the effect on the Fourier transform of a Dirac Comb observing window (i.e., a long string of evenly spaced discrete observations). The
observed Fourier transform is a convolution of the true transform (here a localized Gaussian) and the window transform (here another Dirac comb).

Figure 8. Repeating the visualization from Figure 7, but here with a lower sampling rate. The result is that the Fourier transform of the window function (middle right)
has spacing narrower than the Fourier transform of the signal (top right), meaning that the observed Fourier transform (bottom right) has aliasing of signals, such that
not all frequency information can be recovered. This is the reason for the famous Nyquist sampling theorem, which conceptually says that only a function whose
Fourier transform can fit entirely between the “teeth” of the comb is able to be fully recovered for regularly spaced observations.
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3.2.1. The Nyquist Limit

The example in Figure 7 is somewhat of a best-case scenario,
because the true Fourier transform values are nonzero only
within a range of width 1/T. If we increase the time between
observations, decreasing the spacing of the frequency comb,
the true transform no longer “fits” inside the window transform,
and we will have a situation similar to that in Figure 8. The
result is a mixing of different portions of the signal, such that
the true Fourier transform cannot be recovered from the
transform of the observed data!

This implies that if we have a regularly sampled function
with a sampling rate of f0=1/T, we can only fully recover the
frequency information if the signal is band limited between
frequencies ±f0/2. This is one way to motivate the famous
Nyquist sampling limit, which approaches the question from
the other direction and states that to fully represent the
frequency content of a “band-limited signal” whose Fourier
transform is zero outside the range ±B, we must sample the
data with a rate of at least fNy=2B.

3.2.2. The Discrete Fourier Transform

When a continuous function is sampled at regular intervals,
the delta functions in the Dirac comb window serve to collapse
the Fourier integral into a Fourier sum, and in this manner we
can arrive at the common form of the discrete Fourier
transform. Suppose we have a true (infinitely long and
continuous) signal g(t), but we observe it only at a regular
grid with spacing Δt. In this case, our observed signal is

= D( ) ( )g g t tIII tobs and its Fourier transform is

å= D p

=-¥

¥
- Dˆ ( ) ( ) ( )g f g n t e , 23

n

ifn t
obs

2

which follows directly from Equations (1) and (17).
In the real world, however, we will not have an infinite

number of observations, but rather a finite number of samples
N. We can choose the coordinate system appropriately and
define º D( )g g n tn to write

å= p

=

- Dˆ ( ) ( )g f g e . 24
n

N

n
ifn t

obs
0

2

From the arguments around Nyquist aliasing, we know that the
only relevant frequency range is 0�f�1/Δt, and so we can
define N evenly spaced frequencies with Δf=1/(NΔt)
covering this range. Denoting the sampled transform as

º Dˆ ˆ ( )g g k fk obs , we can write

å= p

=

-ˆ ( )g g e , 25k
n

N

n
ikn N

0

2

which you might recognize as the standard form of the discrete
Fourier transform.

Notice, though, that we glossed over one important thing: the
effect of switching from an infinite number of samples to a
finite number of samples. In moving from Equation (23) to
Equation (24), we have effectively applied to our data a
rectangular window function of width NΔt. From the
discussion accompanying Figure 6, we know the result: it
yields a Fourier transform convolved with a sinc function of
width 1/(NΔt), resulting in the “smearing” of the Fourier
transform signal with this width. Roughly speaking, then, any
two Fourier transform values at frequencies within 1/(NΔt) of

each other will not be independent, and so we should space our
evaluations of the frequency with Δf�1/(NΔt). Comparing
to above, we see that this is exactly the frequency spacing we
arrived at from Nyquist-frequency arguments.
What this indicates is that the frequency spacing of the

discrete Fourier transform is optimal in terms of both the
Nyquist sampling limit and the effect of the finite observing
window! Now, this argument has admittedly been a bit hand-
wavy, but there do exist mathematically rigorous approaches to
proving that the discrete Fourier transform in Equation (25)
captures all of the available frequency information for a
uniformly sampled function gn (see, e.g., Vetterli et al. 2014).
Despite our lack of rigor here, I find this to be a helpful
approach in developing intuition regarding the relationship
between the continuous and discrete Fourier transforms.

3.3. The Classical Periodogram

With the discrete Fourier transform defined in
Equations (24)–(25), we can apply the definition of the Fourier
power spectrum from Equation (9) to compute the classical
periodogram, sometimes called the Schuster periodogram after
Schuster (1898), who first proposed it:

å= p

=

-( ) ( )P f
N

g e
1

. 26S
n

N

n
ift

1

2
2

n

Apart from the 1/N proportionality, this sum is precisely the
Fourier power spectrum in Equation (9), computed for a
continuous signal observed with uniform sampling defined by a
Dirac comb. It follows that, in the uniform sampling case, the
Schuster periodogram captures all of the relevant frequency
information present in the data. This definition readily
generalizes to the nonuniform case, which we will explore in
the following section.
One point that should be emphasized is that the periodogram

in Equation (26) and the power spectrum in Equation (9) are
conceptually different things. As noted in Scargle (1982), the
astronomy community tends to use these terms interchange-
ably, but to be precise, the periodogram (i.e., the statistic we
compute from our data) is an estimator of the power spectrum
(i.e., the underlying continuous function of interest). In fact, the
classical periodogram and its extensions (including the Lomb–
Scargle periodogram that we will discuss momentarily) are not
consistent estimators of the power spectrum—that is, the
periodogram has unavoidable intrinsic variance, even in the
limit of an infinite number of observations (for a detailed
discussion, see Chapter8.4 of Anderson 1971).

4. Nonuniform Sampling

In the real world, particularly in fields like astronomy where
observations are subject to influences of weather and diurnal,
lunar, or seasonal cycles, the sampling rate is generally far from
uniform. Using the same approach as we used to explore
uniform sampling in the previous section, we can now explore
nonuniform sampling here.
In the general nonuniform case, we measure some signal at a

set of N times that we will denote {tn}, which leads to the
following observing window:

å d= -
=

( ) ( ) ( ){ }W t t t . 27t
n

N

n
1

n
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Applying this window to our true underlying signal g(t), we
find an observed signal of the form

å d

=

= -
=

( ) ( ) ( )

( ) ( ) ( )

{ }g t g t W t

g t t t . 28

t

n

N

n n

obs

1

n

Just as in the evenly sampled case, the Fourier transform of
the observed signal is a convolution of the transforms of the
true signal and the window:

  = *{ } { } { } ( ){ }g g W . 29tobs n

Unlike in the uniform case, the window transform { }{ }W tn will
generally not be a straightforward sequence of delta functions;
the symmetry present in the Dirac comb is broken by the
uneven sampling, leading the transform to be much more
“noisy.” This can be seen in Figure 9, which shows the Fourier
transform of a nonuniform observing window with an average
sampling rate identical to that in Figure 7, along with its impact
on the observed Fourier transform.

A few things stand out in this figure. In particular, the
Fourier transform of the nonuniformly spaced delta functions
looks like random noise, and in some sense it is: the locations
and heights of the Fourier peaks are related to the intervals
between observations, and so randomization of observation
times leads to a randomization of Fourier peak locations and
heights. In other words, nonstructured spacing of observations
leads directly to nonstructured frequency peaks in the window
transform. This nonstructured window transform, when con-
volved with the Fourier transform of the true signal, results in
an observed Fourier transform reflecting the same random

noise. Comparing to the uniformly spaced observations in
Figure 7, we see that the unstructured nature of the window
transform means that there is no exact aliasing of the true signal
and thus no way to exactly recover any portion of the true
Fourier transform for the underlying function.
One might hope that sampling the signal more densely might

alleviate these problems, and it does, but only to a degree. In
Figure 10 we increase the density of observations by a factor of
10, such that there are 200 total observations over the length-10
observing window. The observed Fourier transform in this case
is much more reflective of the underlying signal, but it still
contains a degree of “noise” rooted in the randomized
frequency peaks owing to randomized spacing between
observations.

4.1. A Nonuniform Nyquist Limit?

We saw in Section 3.2.1 that the Nyquist limit is a direct
consequence of the symmetry in the Dirac comb window
function that describes evenly sampled data, and uneven
sampling destroys the symmetry that underlies its definition.
Nevertheless, the idea of the “Nyquist frequency” seems to
have taken hold in the scientific psyche to the extent that the
idea is often misapplied in areas where it is mathematically
irrelevant. For unevenly sampled data, the truth is that the
“Nyquist limit” might or might not exist, and even in cases
where it does exist, it tends to be far larger (and thus far less
relevant) than in the evenly sampled case.

4.1.1. Incorrect Limits in the Literature

In the scientific literature it is quite common to come across
various proposals for a Nyquist-like limit applied in the case of

Figure 9. Effect of nonuniform sampling on the observed Fourier transform. These samples have the same average spacing as those in Figure 7, but the irregular
spacing within the observing window translates to irregular frequency peaks in its transform, causing the observed transform to be “noisy.” Here black and gray lines
represent the real and imaginary parts of the transform, respectively.
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irregular sampling. A few typical approaches include using the
mean of the sampling intervals (e.g., Scargle 1982; Horne &
Baliunas 1986; Press et al. 2007), the harmonic mean of the
sampling intervals (e.g., Debosscher et al. 2007), the median of
the sampling intervals (e.g., Graham et al. 2013a), or the
minimum sample spacing (e.g., Percy 1986; Roberts
et al. 1987; Press & Rybicki 1989; Hilditch 2001). All of
these “pseudo-Nyquist” limits are tempting criteria in that they
are easy to compute and reduce to the classical Nyquist
frequency in the limit of evenly spaced data. Unfortunately,
none of these approaches are correct: in general, unevenly
sampled data can probe frequencies far larger than any of these
supposed limits (a fact that several of these citations do hint at
parenthetically).

As a simple example of where such logic can fail
spectacularly, consider the data from Figure 1: though the
mean sample spacing is one observation every 7 days, in
Figure 2 we were nevertheless able to quite clearly identify a
period of 2.58 hr—an order of magnitude shorter than the
average-based pseudo-Nyquist limit would indicate as possible.
For the data in Figure 1, the minimum sample spacing is just
under 10 s, but it would be irresponsible to claim that this
single pair of observations by itself defines some limit beyond
which frequency information is unattainable.

As a more extreme example, consider the data shown in
Figure 11. This consists of noisy samples from a sinusoid with
a period of 0.01 units, with sample spacings ranging between 2
and 18 units: needless to say, any pseudo-Nyquist definition
based on an average or minimum sample spacings will be far
below the true frequency of 100; still, the the Lomb–Scargle
periodogram in the bottom right panel quite cleanly recovers
the true frequency.

4.1.2. The Nonuniform Nyquist Limit

While pseudo-Nyquist arguments based on average or
minimum sampling fail spectacularly, there is a sense in which
the Nyquist limit can be applied to unevenly spaced data. Eyer
& Bartholdi (1999) explore this issue in some detail, and in
particular they prove the following:

Let p be the largest value such that each ti can
be written ti=t0+ni p, for integers ni. The
Nyquist frequency then is fNy=1/(2p).

In other words, computing the Nyquist limit for unevenly
spaced data requires finding the largest factor p, such that each
spacing Δti is exactly an integer multiple of this factor. Eyer &
Bartholdi (1999) prove this formally, but the result can be
understood by thinking of such data as a windowed version of
uniformly sampled data with spacing p, where the window is
zero at all points except the location of the observations. Such
uniform data have a classical Nyquist limit of 1/(2p), and a
window function applied on top of that sampling does not
change that fact.
Figure 12 shows an example of such a Nyquist frequency.

The data are nonuniformly sampled at times = ·t n pi i , with
p=0.01 and ni drawn randomly from positive integers less
than 10,000. According to the Eyer & Bartholdi (1999)
definition, this results in a Nyquist frequency fNy=50, and we
see the expected behavior beyond this frequency: the signal at
f>fNy consists of a series of exact aliases of the signal
at <∣ ∣f fNy.
We should keep in mind one consequence of this Nyquist

definition: if you have any pair of observation spacings whose
ratio is irrational, the Nyquist limit does not exist! To realize
this situation in practice, however, would require infinitely

Figure 10. Effect of nonuniform sampling on the observed Fourier transform, with a factor of 10 more samples than Figure 9. Even with very dense sampling of the
function, the Fourier transform cannot be exactly recovered owing to the imperfect aliasing present in the window transform.
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precise measurements of the times ti; finite precision of time
measurements means that the Nyquist frequency can be large,
but not infinite. For example, if your observation times are
recorded to D decimal places, the Nyquist frequency will be at
most

 ( )f
1

2
10 , 30D

Ny

with the inequality being due to the fact that larger common
factors may exist. In other words, absent other relevant patterns
in the observations, the Nyquist frequency for irregularly
sampled data is most typically set by the precision of the time
measurements (see also Bretthorst 2003; Koen 2006, for more
rigorous treatments of this result).

4.1.3. Frequency Limit due to Windowing

In contexts where observations are not instantaneous, but
rather consist of short-duration integrations of a continuous
signal, a qualitatively different kind of frequency limit exists.
This is typical in, e.g., optical astronomy, where a single
observation typically consists of an integration of observed
photons over a finite duration δt. As noted by Ivezić et al.
(2014), this timescale of integration represents another kind of
limiting frequency for irregularly sampled data. Such a
situation means that the observation is effectively a convolution
of the underlying signal with a rectangular window function of
width δt, in a manner analogous to Figure 5. By the

convolution theorem, the observed transform will be a
pointwise product between the true transform and the transform
of the window, which will generally have a width proportional
to 1/δt. This means that—absent other more constraining
window effects—the frequency limit is fmax∝1/(2δt), with the
constant of proportionality dependent on the shape of the
effective window describing individual observations.
Keep in mind that the windowing limit 1/(2δt) is quite

different from a Nyquist limit: the Nyquist limit is the
frequency beyond which all signal is aliased into the Nyquist
range; the windowing limit is the frequency beyond which all
signal is attenuated to zero. In practice, the limit implied by
either the temporal resolution or windowing of individual
observations may be too large to be computationally feasible;
for discussion of frequency limits in practice, see Section 7.1.

4.2. Semistructured Observing Windows

We have seen that for uniform data the perfect aliasing
beyond the Nyquist frequency is a direct consequence of the
symmetry of the Dirac-comb window function. For nonuniform
observations, such symmetry does not exist, but structure in the
observing window can lead to partial aliasing of signals in the
data (see, e.g., Deeming 1975). In this section, we will examine
two typical window functions derived from real-world
observations: one ground-based (LINEAR) and one space-
based (Kepler). For details on how window power spectra can
be estimated in practice, see Section 7.3.

Figure 11. Example of data for which the various poorly motivated “pseudo-Nyquist” approaches outlined in Section 4.1 fail spectacularly. The top panels show the
data, a noisy sinusoid with a frequency of 100 (i.e., a period of 0.01). The bottom left panel shows a histogram of spacings between observations: the minimum
spacing is 2.55, meaning that the signal has over 250 full cyclesbetween the closest pair of observations. Nevertheless, the periodogram (bottom right) clearly
identifies the correct period, though it is orders of magnitude larger than pseudo-Nyquist estimates based on an average or minimum sampling rate.
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4.2.1. A Ground-based Observing Window: LINEAR

Let us again consider the data shown in Figure 1. The
window power spectrum for this in Figure 13 shows some quite
distinct features, and these features have an intuitive inter-
pretation. Namely, if the window power shows a spike at a
period of p days, this means that an observation at time t0 is
likely to be followed by another observation near a time
t0+np for integer n.

With this in mind, the strong spike at a period of 1 day
indicates that observations are taken near the same time of day:
this is typical of a ground-based survey with observations
recorded only during the nighttime hours. The additional spikes
at periods of 1/n days (for integer n) are aliases of this same
feature. Figure 13 also shows a wide spike at a period of 1 yr,
indicating a detectable annual pattern in the observations.
Finally, there is a noticeable spike at approximately 14 days
that is likely related to patterns of scheduling within the survey.

Recall that a Fourier spectrum observed through a particular
window will reflect a convolution of the true spectrum and the
window spectrum (see Figure 9), and so we would expect the
structure in the window to be imprinted on the power spectrum
measured from the data.

This imprint of the window power is illustrated in Figure 14.
The top panel shows the window power spectrum as a function
of frequency (rather than period, as in Figure 13), while the

bottom panel shows the observed signal power spectrum as a
function of frequency (rather than period, as in Figure 2). The
top panel and its inset show clearly the 1 day and 1 yr features
we noted previously. The bottom panel shows the observed
power spectrum of the data: these diurnal and annual peaks in
the window function are quite clearly imprinted on the
observed power spectrum at relevant scales. This approximate
aliasing is similar to the exact aliasing seen in regularly
sampled data at the Nyquist frequency; however, in this case
the magnitude of the aliased signal fades further from the
frequency driving the signal.

4.2.2. A Space-based Observing Window: Kepler

Space-based surveys will generally have quite different
observing windows. For example, the top left panel of
Figure 15 shows observations of an RR Lyrae variable star
from the Kepler survey, measured 4083 times over a period of
3 months, with an irregular observing cadence of around
30 minutes (for a deeper discussion of these observations, see
Kolenberg et al. 2010). The Kepler observations are very
nearly uniformly spaced, and this is reflected in the window
power spectrum, shown in the top right panel of Figure 15. The
window function is a series of very narrow evenly spaced
spikes, reminiscent of the Dirac comb shown in Figures 7–8.
By analogy we can treat fNy=0.5/29.4 minute−1 as the

Figure 12. Visualization of the Eyer & Bartholdi (1999) definition of the Nyquist frequency. Data are nonuniformly sampled at times ti=ni p, for integer ni and
p=0.01. This results in a Nyquist frequency of = =-( )f p2 50Ny

1 : the periodogram outside the range 0�f<fNy is a series of perfect aliases of the signal within
that range.

Figure 13. Power spectrum of the observing window for the data shown in Figure 1. Notice the strong spike in power at a period of 1 day and related aliases at 1/n
days for integer n. There is also a strong spike at 365 days and a noticeable spike at ∼14 days. Each of these indicates time intervals that appear often in the data.
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effective Nyquist limit for the data, keeping in mind that
aliasing beyond this “limit” will be imperfect owing to the
uneven spacing of the samples (see the bottom left panels of
Figure 15). The bottom right panel of Figure 15 shows the
power spectrum of the observations, with gray shading
indicating the (nearly) aliased region of the spectrum. The
period of 13.6 hr is quite strongly apparent, along with smaller
spikes at integer multiples of this frequency that indicate
higher-order periodic components in the signal.

The window functions for ground-based and space-based
observations, reflected by LINEAR data in Figure 14 and
Kepler data in Figure 15, are quite different, but in both cases
essential features of the observed power spectra can be
understood by recognizing that the periodogram measures not
the power spectrum of the underlying signal but a power
spectrum from the convolution of the true signal transform and
the Fourier transform of the window function.

5. From Classical to Lomb–Scargle Periodograms

Up until now, we have been mainly discussing the direct
extension of the classical periodogram in Equation (26) to
nonuniform data. Returning to this definition, we can rewrite
the expression in a more suggestive way:

å

å åp p

=

= +

p

=

-

⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

( )

( ) ( )

( )

P f
N

g e

N
g ft g ft

1

1
cos 2 sin 2 .

31

n

N

n
ift

n
n n

n
n n

1

2
2

2 2

n

Although this form of the nonuniform periodogram can be
useful for identifying periodic signals, its statistical properties
are not as straightforward as in the uniform case. When the
classical periodogram is applied to uniformly sampled
Gaussian white noise, the values of the resulting periodogram
are chi-square distributed. This property becomes quite useful
in practice when the periodogram is used in the context of a
classical hypothesis test to distinguish between periodic and
nonperiodic objects—see Section 7.4.2. Unfortunately, when
the sampling becomes nonuniform, these properties no longer
hold and the periodogram distribution cannot in general be
analytically expressed.
Scargle (1982) addressed this by considering a generalized

form of the periodogram,
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where A, B, and τ are arbitrary functions of the frequency f and
observing times {ti} (but not the values {gn}), and showed that
you can choose a unique form of A, B, and τ such that

1. the periodogram reduces to the classical form in the case
of equally spaced observations;

2. the periodogram’s distribution is analytically computa-
ble; and

3. the periodogram is insensitive to global time shifts in
the data.

Figure 14. Effect of the window function in Figure 13 on the power spectrum in Figure 2. The top panel shows the window power spectrum, and the bottom panel
shows the observed signal power spectrum. Both are plotted as a function of frequency (we earlier saw both of these as a function of period; see Figures 13 and 2,
respectively). Viewing these as a function of frequency makes it clear that the structure in the window function is imprinted on the observed spectrum: both the diurnal
structure in the main panel and the annual structure in the inset are apparent in the observed spectrum.
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The values of A and B leading to these properties result in the
following form of the generalized periodogram:
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where τ is specified for each f to ensure time-shift invariance:
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This modified periodogram differs from the classical period-
ogram only to the extent that the denominators på ( )ftsin 2n n

2

and på ( )ftcos 2n n
2 differ from N/2, which is the expected

value of each of these quantities in the limit of complete phase
sampling at each frequency. Thus, in many cases of interest the
Lomb–Scargle periodogram only differs slightly from the
classical/Schuster periodogram; an example of this is seen in
Figure 16.
A remarkable feature of Scargle’s modified periodogram is

that it is identical to the result obtained by fitting a model
consisting of a simple sinusoid to the data at each frequency f
and constructing a “periodogram” from the χ2 goodness of fit
at each frequency—an estimator that was considered in some
depth by Lomb (1976). From this perspective, the τ shift
defined in Equation (34) serves to orthogonalize the normal

Figure 15. RR Lyrae variable observed by the Kepler project (see Kolenberg et al. 2010). Top left: 4083 observed fluxes over roughly 3 months. Top right: window
power spectrum, which is quite close to that of regularly spaced data with a cadence of 29.4 minutes. Bottom left: time between observations. Missing measurements
aside, the spacing between observations is nearly uniform. The lower panel gives a closer look at the majority of the spacings, which are not exactly the same but
rather span a range of ±50 ms around the 29.4-minute period observed in the window function. Bottom right: data power spectrum, showing approximate aliasing and
clearly indicating a peak near a period of 13.6 hr, along with higher-order components at multiples of this value.

Figure 16. Top panel: comparison of the classical periodogram (Equation (31)) and the Lomb–Scargle periodogram (Equation (33)) for 30 noisy points drawn from a
sinusoid. Though the two periodogram estimates differ quantitatively, the essential qualitative features—namely, the position of significant peaks—typically remain
the same. Bottom panel: values of the denominators in Equation (33). The difference between the Lomb–Scargle periodogram and the classical periodogram stems
from the difference between these quantities and N/2=15 (dotted line).
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equations used in the least-squares analysis. Partly due to this
deep connection between Fourier analysis and least-squares
analysis, the modified periodogram in Equation (33) has since
become commonly referred to as the Lomb–Scargle period-
ogram, although versions of this approach had been employed
even earlier (see, e.g., Gottlieb et al. 1975).

Because of the close similarity between the classical and
Lomb–Scargle periodograms, the bulk of our previous
discussion applies—at least qualitatively—to periodograms
computed with the Lomb–Scargle method. In particular,
reasoning about the effect of window functions on the observed
Lomb–Scargle power spectrum remains qualitatively useful
even if it is not quantitatively precise.

One important caveat of the simple Lomb–Scargle formula is
that the statistical guarantees only apply when the observations
have uncorrelated white noise; data with more complicated
noise characteristics must be treated more carefully (see, e.g.,
Vio et al. 2010, or the least-squares approach discussed in
Section 6.1).

6. The Least-squares Periodogram and Its Extensions

The equivalence of the Fourier interpretation and least-
squares interpretation of the Lomb–Scargle periodogram allows
for some interesting and useful extensions, some of which we
will explore in this section. First, let us consider the least-
squares periodogram itself.

In the least-squares interpretation of the periodogram, a
sinusoidal model is proposed at each candidate frequency f:

p f= -( ) ( ( )) ( )y t f A f t; sin 2 , 35f f

where the amplitude Af and phase ff can vary as a function of
frequency. These model parameters are fit to the data in the
standard least-squares sense, by constructing the χ2 statistic at
each frequency:

åc º -( ) ( ( )) ( )f y y t f; . 36
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n n
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We can find the “best” model ˆ ( )y t f; by minimizing χ2( f ) at
each frequency with respect to Af and ff; we will denote this
minimum value as ĉ ( )f2 . Scargle (1982) showed that with this
setup the Lomb–Scargle periodogram from Equation (33) can
be equivalently written:
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where ĉ0
2 is the nonvarying reference model. The key

realization here is that the Lomb–Scargle periodogram

essentially assumes a sinusoidal model for the data; this is
visualized in Figure 17 for the data we had seen in Figure 1.
This immediately begs the question, can we compute a
“periodogram” based on more general forms of the above
model to more effectively fit the data?

6.1. Measurement Uncertainties

Perhaps the most important modification to the periodogram
is to construct it such that it correctly handles uncertainties in
the observed data. This can be done through the standard
change to the χ2 expression, i.e., if there are Gaussian errors σn
on each observed yn, we can rewrite Equation (36) in the
following way:
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The periodogram constructed from this χ2 definition will more
accurately reflect the spectral power of noisy observations. The
effect of this modification on Equation (33) is the addition of a
multiplicative weight 1/σn within each of the summations.
Early versions of this sort of modification appeared in Gilliland
& Baliunas (1987) and Irwin et al. (1989), Scargle (1989)
derived this “weighted” form of the periodogram without direct
reference to the least-squares model, and Zechmeister &
Kürster (2009) showed that such a modification does not
change the statistical properties of the resulting periodogram.
This generalization of χ2( f ) also suggests a convenient way

to construct a periodogram in the presence of correlated
observational noise. If we let Σ denote the N×N noise
covariance matrix for N observations and construct the vectors
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then the χ2 expression for correlated errors can be written as

c = - S --( ) ( ) ( ) ( )y y y yf , 40T2
model

1
model

which reduces to Equation (38) if noise is uncorrelated (i.e., if
the off-diagonal terms of Σ are zero). This resulting period-
ogram is quite similar to the approach to correlated noise
developed by Vio et al. (2010) from the Fourier perspective,
and is in fact exactly equivalent in the case of the “zero-mean
colored noise” example considered therein.

Figure 17. Sinusoidal model implied by the Lomb–Scargle periodogram for the LINEAR data seen in Figure 1. Although a sinusoid does not perfectly fit the data, the
sinusoidal model is close enough that it serves to locate the correct frequency.
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6.2. Data Centering and the Floating-mean Periodogram

Another commonly applied modification of the periodogram
has variously been called the date-compensated discrete
Fourier transform (Ferraz-Mello 1981), the floating-mean
periodogram (Cumming et al. 1999; VanderPlas &
Ivezic 2015), or the generalized Lomb–Scargle method
(Zechmeister & Kürster 2009) and involves adding an offset
term to the sinusoidal model at each frequency:3

p f= + -( ) ( ) ( ( )) ( )y t f y f A f t; sin 2 . 41f fmodel 0

This turns out to be quite important in practice because the
standard Lomb–Scargle approach assumes that the data are pre-
centered around the mean value of the (unknown) signal. In
many analyses, this requirement is accomplished by pre-
centering data about the sample mean: this approach is
generally robust when the data provide full phase coverage
of the observed signal; however, due to selection effects and
survey cadence, full phase coverage cannot always be
guaranteed. Using the sample mean in such cases can
potentially lead to suppression of peaks of interest.

A simulated example of this is shown in Figure 18: the data
consist of noisy observations of a sinusoidal signal in which the
faintest observations are omitted from the data set (due to, e.g.,
a detection threshold). Applying the standard Lomb–Scargle
periodogram to pre-centered data leads to a periodogram that
suppresses the true period of 0.3 days (bottom right panel).
Using the floating-mean model of Equation (41) yields a
periodogram that identifies this true period (top right panel). A
detailed study of the floating-mean model is given by
Zechmeister & Kürster (2009), who show that the addition of
the floating-mean term does not change the useful statistical
properties outlined in Section 5.

6.3. Higher-order Fourier Models

A further generalization of the least-squares periodogram
involves multiterm Fourier models: rather than fitting just a
single sinusoid at each frequency, we might fit a partial Fourier
series, adding K−1 additional sinusoidal components at

integer multiples of the fundamental frequency:
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Bretthorst (1988) takes a comprehensive look at this type of
multiterm extension to the periodogram, as well as related
extensions to decaying signals and other more complex models.
This kind of Fourier series generalization to the periodogram

is quite tempting, because it means that the periodogram can be
tuned to fit models that are more complicated than simple sine
waves. In some cases, this can be very useful; for example,
Figure 19 shows a Lomb–Scargle analysis of an eclipsing
binary star, characterized by both a primary and secondary
eclipse. The standard Lomb–Scargle periodogram (top panels)
is maximized at twice the true rotation frequency, because the
simple sinusoidal model is unable to closely fit the primary and
secondary eclipses separately. A six-term Fourier model
(bottom panels) is sufficiently flexible that it can detect the
true 17.5 hr period, though this comes at the expense of a much
noisier periodogram.
This additional periodogram noise is easy to understand: in

the least-squares view of the periodogram, the periodogram
height at any frequency is directly related to how well the
model fits the data. For nested linear models, adding additional
terms will always provide a fit to data equal to or better than the
simpler model, and so it follows that a periodogram based on a
more complex model will be higher at all frequencies, not just
at frequencies of interest! Indeed, this effect can be readily
observed in Figure 19.
This background noise in the multiterm periodogram can

also be understood in terms of aliasing. Consider Figure 20,
which shows several multiterm fits to the Kepler data from
Figure 15. Given a standard periodogram with a peak or
subpeak at f0, a two-term periodogram will duplicate this peak
at f0/2, with the second harmonic driving the fit. Similarly, a
three-term periodogram will add additional peaks at both f0/2
and f0/3, as a result of the original peak falling in the second
and third harmonic. In general, you can expect an N-term
periodogram to contain N aliases of every feature present in the
standard periodogram; any strong peak revealed by the
multiterm periodogram is due to two or more of these aliases
coinciding.

Figure 18. Comparison of the standard and floating-mean periodograms for data with a frequency of 0.3 and a selection effect that removes faint observations. In this
case the mean estimated from the observed data is not close to the true mean, which leads to the failure of the standard periodogram to recover the correct frequency. A
floating-mean model correctly recovers the true frequency of 0.3.

3 We choose to follow Cumming et al. (1999) and VanderPlas & Ivezic
(2015) and call this a “floating-mean” model, to avoid confusion of the
different uses of the term “generalized periodogram” in, e.g., Bretthorst (2001)
and Zechmeister & Kürster (2009).
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In cases where the single-term power spectrum is itself noisy
and/or dominated by partial aliasing due to window effects,
these additional aliases can quickly wash out any gains from
the more complicated model. For example, consider the
multiterm periodograms for the LINEAR data depicted in
Figure 21: as previously discussed, the LINEAR periodogram
contains a number of aliases of the true peak owing to the
dominant 1 day signal in the window function. Adding terms to
this model only compounds this problem, increasing the
number of spurious peaks at the low-frequency end. For data
with even moderate levels of noise, chance coincidences of
these peaks can lead to spurious detections that dominate the
true peak, particularly for models with many Fourier terms.

6.4. Additional Extensions

When the periodogram is viewed from the least-squares
model-fitting perspective, there is no need to limit the analysis
to sums of sinusoids. There have been some very interesting
applications extending this type of analysis to more arbitrary
models. For example, periodogram models can be extended to
measure decaying signals, nonstationary signals, multifre-
quency signals, chirps, and other signal types (see, e.g.,
Jaynes 1987; Bretthorst 1988; Gregory 2001). In particular,
Bretthorst (1988) demonstrates the effectiveness of such
approaches in applications ranging from medical imaging to
astronomy. The challenge of such extensions is the fact that
you often need to use some prior knowledge of the system
being observed to decide whether a more complicated model
is indicated, as well as what form of model to apply. In
practice, this comes up only when searching for very specific
signals for which a more complicated model has some a priori
physical motivation.

On the astronomy side, several examples of this flavor of
extension exist. For example, the Supersmoother approach to
detecting periodicity involves fitting a flexible nonparametric
smoothing function to the data at each frequency (Reimann
1994): the flexibility of the model leads to fewer aliasing issues
when compared to the more constrained sinusoidal model.
Another approach is to use empirically derived templates as a
functional fit at each frequency; this has been employed
effectively in Sesar et al. (2010, 2013) and related work.

Finally, there has been some exploration of extensions to the
Lomb–Scargle periodogram for use with multiband observa-
tions, using various forms of regularization to control model
complexity (VanderPlas & Ivezic 2015; Long et al. 2016).
With many of these least-squares and/or Bayesian extensions,
computational complexity quickly becomes an issue, because
fast( )N Nlog approaches that can be used for sinusoidal fits
(see Section 7.6) are not available for more general functional
forms, though there is some promising work in this area: see,
for example, the Fast Template Periodogram4 (J. A. Hoffman
et al. 2017, in preparation), which can quickly construct
periodograms from Fourier approximations to templates.

6.5. A Note about “Bayesian” Periodograms

The least-squares view of the Lomb–Scargle periodogram
creates a natural bridge, via maximum likelihood, to Bayesian
periodic analysis. In fact, Jaynes (1987) showed that the
standard form of the Lomb–Scargle periodogram can be
derived directly from the axioms of Bayesian probability
theory outlined in his comprehensive treatment of the subject
(Jaynes & Bretthorst 2003).5 In the Bayesian view, the Lomb–
Scargle periodogram is in fact the optimal statistic for detecting
a stationary sinusoidal signal in the presence of Gaussian noise.
For the standard, simple-sinusoid model, the Bayesian

periodogram is given by the posterior probability of frequency
f given the data D and sinusoidal model M:

µ( ∣ ) ( )( )p f D M e, , 43P fLS

where PLS( f ) is the Lomb–Scargle power from Equation (33).
The effect of this exponentiation, as seen in Figure 22, is to
suppress sidelobes and alias peaks in relation to the largest one
of the spectrum.
The benefit of the Bayesian approach is that it allows more

flexible models, more principled treatment of nuisance
parameters related to noise in the data, and the ability to make
use of prior information in a periodic analysis. It explicitly
returns probability density as a function of frequency, and it is
tempting to think of this as the “natural” way to interpret the
periodogram.

Figure 19. One-term and six-term Lomb–Scargle models fit to LINEAR object 14752041, an eclipsing binary. Notice that the standard periodogram (top panels) finds
an alias of the true 17.5 hr frequency, because a simple sinusoidal model cannot closely fit both the primary and secondary eclipse. A six-term Fourier model, on the
other hand, does find the true period (bottom panels).

4 http://ascl.net/code/v/1559
5 Read this. Really.
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The problem, however, is that the Bayesian periodogram
does not compute the probability that the data are periodic with
a given frequency, but rather that probability conditioned on a
relatively strong assumption: that the data are drawn from a
sinusoidal model. As such, the standard Bayesian periodogram
is not a useful measure of generic periodocity! In fact, the
Baysian periodogram’s derivation under the assumption of a
sinusoidal signal is perhaps the best argument against its use for
unknown signals: the result of a Bayesian analysis is only ever
as good as the assumptions that go into it, and for a general (not
necessarily sinusoidal) signal, those assumptions are incorrect,
and the periodogram should not be trusted.

Now, the standard Lomb–Scargle periodogram can also be
viewed as derived from a sinusoidal fit and thus might appear
subject to the same criticism. But unlike the Bayesian
periodogram, the standard periodogram affords interpretation
in light of Fourier analysis and window functions: here the
incorrect sinusoidal model manifests itself in terms of
frequency aliases, which can be understood through the
analysis of window functions. In most cases of interest, such
analysis turns out to be vital to the application and
interpretation of the periodogram (see Section 7.2).

In other words, the Bayesian approach essentially goes “all-
in” on the least-squares interpretation of the periodogram,
exponentially suppressing the information that allows you to
reason about the periodogram in light of its connection to
Fourier analysis. In contrived cases with clean sinusoidal data
and unstructured window functions, exponential attenuation of
sidelobes and aliases may seem appealing (see, e.g., Mortier
et al. 2015), but that appeal extends to the real world only in the
most favorable of cases—i.e., high signal-to-noise ratio
measurements of near-sinusoidal data with a very well behaved
survey window. In short, you should be wary of placing too
much trust in a Bayesian periodogram, unless you are certain of
the precise form of the signal you are looking for.

This is not to say that all Bayesian approaches to periodic
analysis are similarly flawed; there have been many interesting
studies that go beyond the simple sinusoidal model and use
more complex and/or flexible models. Some examples are
models based on Fourier extensions with strong priors (e.g.,
Bretthorst 1988), instrument-dependent parametric models
(e.g., Angus et al. 2016), flexible nonparametric functions
(e.g., Gregory & Loredo 1992), Gaussian process models (e.g.,
Wang et al. 2012), and specially designed stochastic models

(e.g., Kelly et al. 2014). Though these are often more accurate
and powerful than the Lomb–Scargle approach, they tend to be
far more expensive computationally. Bayesian approaches
based on Markov Chain Monte Carlo (MCMC) also tend to
run into stability problems, particularly for multimodal or other
complicated posterior distributions (see, e.g., the RR Lyrae
discussion in Kelly et al. 2014).

7. Practical Considerations When Using Lomb–Scargle
Periodograms

The previous sections have given a conceptual introduction
to the Lomb–Scargle periodogram and its roots in both Fourier
and least-squares analysis. We now come to the meat of the
subject at hand: given this understanding of the Lomb–Scargle
periodogram and related approaches, how should we use it
most effectively in practice? The following sections will
identify several of the important issues and questions that are
not often addressed in the literature on the subject but are
nevertheless vital to consider when using the periodogram in
practice.

7.1. Choosing a Frequency Grid

The frequency grid used for a Lomb–Scargle analysis is an
important choice that is too often glossed over, probably
because the choice is so straightforward in the more familiar
case of uniformly sampled data. For nonuniform data, it is not
so simple, and there are two important considerations: the
frequency limits and the grid spacing.
The frequency limit on the low end is relatively easy: for a

set of observations spanning a length of time T, a signal with
frequency 1/T will complete exactly one oscillation cycle, and
so this is a suitable minimum frequency. Often, it is more
convenient just to set this minimum frequency to zero, as it
does not add much of a computational burden and is unlikely to
add any significant spurious peak to the periodogram.
The high-frequency limit is more interesting and goes back

to the discussion of Nyquist and/or limiting frequencies from
Section 4.1: in order not to miss relevant information, it is
important to compute the periodogram up to some well-
motivated limiting frequency fmax. This could be a true Nyquist
limit based on the Eyer & Bartholdi (1999) definition, a
pseudo-Nyquist limit based on careful scrutiny of the window
function (see Figure 15), a limiting frequency based on the

Figure 20. Multiterm models (left) and their corresponding periodograms (right) for the Kepler data shown in Figure 15.
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integration time of individual observations, or a limit based on
prior knowledge of the kinds of signals you expect to detect.

With the frequency range decided, we next must determine
how finely to sample the frequencies between the limits. This
choice turns out to be quite important as well: too fine a grid
can lead to unnecessarily long computation times that can add
up quickly in the case of large surveys, while too coarse a
grid risks entirely missing narrow peaks that fall between
grid points. For example, Figure 23 shows the true, well-
sampled periodogram (gray line), along with a periodogram
computed for 10,000 equally spaced periods covering the
same range (black line). Because the spacing of the 10,000-
point grid is much larger than the width of the periodogram
peaks, the analysis entirely misses the most important peaks
in the periodogram!

This shows us that it is important to choose grid spacings
smaller than the expected widths of the periodogram peaks.
From our discussion of windowing in Section 3 (particularly
Figure 6), we know that data observed through a rectangular
window of length T will have sinc-shaped peaks of width ∼1/T.
To ensure that our grid sufficiently samples each peak, it is
prudent to oversample by some factor—say, no samples per peak
—and use a grid of size D = /f n T1 o . This pushes the total
number of required periodogram evaluations to

= ( )N n Tf . 44oeval max

So what is a good choice for no? Values ranging from no=5
(Schwarzenberg-Czerny 1996; VanderPlas & Ivezic 2015) to
no=10 (Debosscher et al. 2007; Richards et al. 2012) seem to
be common in the literature; for periodograms computed in this
paper, we use no=5.

Depending on the characteristics of the data set, the size of
the resulting frequency grid can vary greatly. For example, the
Kepler data shown in Figure 15 have a pseudo-Nyquist
frequency of 48.9 day−1 and an observing window of
T=90 days. To compute five samples per peak thus requires
Neval≈22,000 evaluations of the periodogram. On the other
hand, the LINEAR data shown in Figure 1 do not have any
notable aliasing structure in their window function. In this case
the maximum detectable frequency is the Nyquist limit defined
by its temporal resolution, which is six digits beyond the
decimal point in days. From Equation (30), we can write fNy=
500,000 day−1, and given the observing window of T=1962

days, we find that five evaluations per peak across the entire
detectable frequency range would require Neval≈4.9×109

evaluations of the periodogram! Computing this large a
periodogram in most cases is computationally intractable (see
Section 7.6), and so in practice one must choose a smaller
limiting frequency based on prior information about what kind
of signals are expected in the data: for example, in Figure 2, we
chose a limiting frequency of fmax=(1 hr)−1 based on typical
oscillation periods expected for SX Phe-type stars. This leads
to a much more manageable Neval≈240,000 periodogram
evaluations.
By comparison, data from the LSST survey (Ivezić et al.

2008) will fall somewhere in between: full frequency coverage
of the 10 yr data up to a limiting frequency defined by the 30 s
integration time for each visit would require roughly 25 million
periodogram evaluations per object, which for fast implemen-
tations (see the next section) could be accomplished in several
seconds on a modern CPU.
One final note: although it can be more easily interpretable to

visualize periodograms as a function of period rather than a
function of frequency, the peak widths are not constant in
period. Regular grids in period rather than frequency tend to
oversample at large periods and undersample at small periods;
for this reason it is preferable to use a regular grid in frequency.

7.2. Failure Modes

When using the Lomb–Scargle periodogram in an observa-
tional pipeline, it is vital to keep in mind the failure modes of
the periodogram approach, which are related to the aliasing and
pseudo-aliasing effects rooted in the structure of the window
function (recall Section 3). Owing to the interaction of the
signal, the convolution due to the survey window, and noise in
the data, it is quite common for the largest peak in the
periodogram to correspond not to the true frequency but to
some alias of that frequency.
Figure 24 demonstrates this for some simulated data. The

data consist of 60 noisy observations each of 1000 simulated
light curves within a span of 180 days. The window is typical
of ground-based data, with each observation recorded within a
few hours before or after midnight each night. The left panel
shows the results: the periodogram peak coincides with the true
period in under 50% of cases, and the modes of failure lead to
noticeable patterns in the resulting plot. Though these are

Figure 21. Multiterm models (left) and their corresponding periodograms (right) for the LINEAR data shown in Figure 1.
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simulated observations, the pattern seen here is typical of real
observations: see, for example, VanderPlas & Ivezic (2015)
and Long et al. (2016), which show similar plots for RR Lyrae
candidates from the Sloan Digital Sky Survey.

These patterns can be understood in terms of the interaction
between the window function and the underlying spectral
power. As we discussed in Section 3, a nightly observation
pattern—typical of ground-based surveys—leads to a window
function with a strong diurnal component that causes each
frequency signature f0 to be partially aliased at f0+nδf, for
integers n and δf=1 cycle day–1. (Recall Figures 13–14). This
is the source of the failure modes depicted in panel (a) of
Figure 24; in terms of periods the above expression becomes

d= +
-⎛

⎝⎜
⎞
⎠⎟ ( )P

P
n f

1
, 45obs

true

1

where, to be clear, n is a positive or negative integer and δf is
the frequency of a strong feature in the window (here, 1 cycle
day–1). For the simulated data, close to 36% of the objects are
mischaracterized along these failure modes.

Another mode of failure is when the periodogram for an
object with frequency f0 isolates a higher harmonic of that
fundamental frequency, such as 2f0. This may occur for
periodic signals that are not strictly sinusoidal and so have
power at a higher harmonics. This higher harmonic peak is also
subject to the same aliasing effects as in Equation (45). Thus,
we can extend Equation (45) and describe the failure modes
depicted in panel (b) of Figure 24 with the following equation,
for positive integers m>0:

d= +
-⎛

⎝⎜
⎞
⎠⎟ ( )P

m

P
n f . 46obs

true

1

Panel (b) of Figure 24 illustrates this for m=2; this harmonic
and its aliases account for roughly 15% of the results.

Panel (c) of Figure 24 shows the final pattern of failure in
Lomb–Scargle results, which has an opposite trend with true
period. This is closely related to the effects shown in panels (a)
and (b) but comes from the even symmetry of the Lomb–
Scargle periodogram. Every periodogram peak at frequency f0
has a corresponding peak at −f0, and this is true of aliases as
well. If a peak’s aliases cross into the negative frequency
regime, they are effectively reflected into the positive-

frequency range. This reflection can be accounted for by a
further modification of Equation (46)—taking its absolute
value:

d= +
-

( )P
m

P
n f . 47obs

true

1

Panel (c) shows the 5% of objects that fall along this reflected
failure mode for m=1, n=−2. After accounting for all these
known sources of periodogram failure, only roughly 1% of points
are misclassified in an “unexplained” way, seen in panel (d).
When applying a periodogram in practice, it is vital to take

such effects into account, rather than blindly relying on the
single periodogram peak as your best estimate of the period.
Applying understanding of windowing and aliasing effects can
help in detecting failures of the periodogram, but it is no silver
bullet. For an observed peak at fpeak from a survey whose
window has strong power at δf, something like the following
should probably be employed:

1. Check for a peak at fpeak/m for at least m ä {2, 3}. If a
significant peak is found, then fpeak is probably an order-
m harmonic of the true frequency.6

2. Check for peaks at d∣ ∣f n fpeak for at least n ä {1, 2}
(where δf is determined from plotting the survey window
power and is generally (1 day)−1 for ground-based
surveys). If these aliases exist, then it is possible that you
have found a peak on the sequence of expected aliases—
though keep in mind that there is no way to know from
the periodogram alone whether or not this is the
“true” peak!

3. For each of the top few of these aliases, fit a more
complicated model (such as a multiterm Fourier series,
template-based fit, etc.) to select among them.

For noisy observations, this procedure cannot generally
guarantee that you have found the correct peak, but it is far
preferable to the simplistic approach of blindly trusting the
highest peak in the periodogram! We will come back to the
question of uncertainty in the periodogram result in
Section 7.4.

Figure 22. Comparison of the Lomb–Scargle periodogram (top right) and the Bayesian posterior periodogram (bottom right) for simulated data (left) drawn from a
simple sinusoid. The Bayesian posterior is equal to the exponentiation of the unnormalized Lomb–Scargle periodogram and thus tends to suppress all but the largest
peak. The Bayesian approach can be useful but is problematic if not used carefully (see text for discussion).

6 Notice that this step can detect aliases like those encountered in Figure 19,
without resorting to a problematic multiterm model.
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7.3. Window Functions and Deconvolution

Our discussion of window functions here and in Section 3
has highlighted the impact of structure in the survey window on
the resulting observed power spectrum and the importance of
examining that window power to understand features of the
resulting periodogram. Here we will consider the computation
of the window function, as well as the possibility of recovering
the true periodogram by deconvolving the window.

7.3.1. Computing the Window Function

The window power spectrum can be computed directly from
the delta-function representation of the window function; From
Equations (1), (9), and (27), we can write

 å= p

=

-( { }) ( )f t e; . 48W n
n

N
ift

1

2
2

n

Comparing this to Equation (26), we see that this is essentially
the classical periodogram for data gn=1 at all times tn. With
this fact in mind, one convenient way to estimate the form of
the window power is to compute a standard Lomb–Scargle
periodogram on a series of unit measurements, making sure not
to pre-center the data or to use a floating-mean model. As
Scargle (1982) notes, this computation does not give the true
window—it differs from the true window just as the Lomb–
Scargle periodogram differs from the classical periodogram—

but in practice it is accurate enough to give useful insight into
the window function’s important features. This method is how
window power spectra have been computed throughout this
paper.

7.3.2. Deconvolution and CLEANing

With this ability to compute the window function, we might
hope to be able to use it quantitatively to remove spurious
peaks from the observed power spectrum. Recall from
Equation (28) that the observed data are a pointwise product
of the underlying function and the survey window,

=( ) ( ) ( ) ( ){ }g t g t W t , 49tobs n

and the convolution theorem tells us that the observed Fourier
transform is a convolution of the true transform and the

window transform,

  = *{ } { } { } ( ){ }g g W . 50tobs n

Given this relationship, we might hope to be able to invert this
convolution to recover { }g directly. For example, we could
write
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Because of the localization of observations, ( ){ }W ttn is zero for
most values of t, and so ( ){ }W t1 tn and its Fourier transform are
not well defined. Because of this, direct deconvolution is not an
option in most cases of interest—in other words, the
deconvolution problem is ill posed and does not have a unique
solution.
There have been a few attempts in the literature to use

procedural algorithms to solve this underconstrained deconvo-
lution problem, perhaps most notably by adapting the iterative
CLEAN algorithm developed for deconvolution in the context
of radio astronomy (Roberts et al. 1987). For cleaning of
Lomb–Scargle periodograms, the CLEAN approach is hin-
dered by three main deficiencies: First and most importantly,
the CLEAN algorithm at each iteration assumes that the highest
peak is the location of the primary signal; this is not always
borne out for realistic observations of faint objects where the
cleaning is most necessary (recall the discussion in
Section 7.2). Second, the convolution takes place at the level
of the Fourier transform rather than the PSD; trying to clean a
PSD directly ignores important phase information. Third, the
CLEAN algorithm assumes a classical fast Fourier transform
analysis: while the Lomb–Scargle periodogram is equivalent to
a classical periodogram in the limit of equally spaced
observations, it is not equivalent in the relevant case of
unequal observations (see Section 5), and so any attempt to
apply CLEAN to Lomb–Scargle analysis directly would be
fundamentally flawed even if it were not ill posed to
begin with.
The latter two issues could be remedied by focusing on the

nonuniform Fourier transform and the classical periodogram
rather than the Lomb–Scargle modification, but doing so would
jettison the benefits of Lomb–Scargle—i.e., its useful statistical
properties and extensibility via least squares—and this would
still not address the far more problematic first issue. My feeling

Figure 23. Example of a poorly chosen frequency grid for the data in Figure 1. The dark curve shows a periodogram evaluated on a grid of 10,000 equally spaced
periods; the light curve shows the true periodogram (evaluated at ∼200,000 equally spaced frequencies). This demonstrates that using too coarse a grid can lead to a
periodogram that entirely misses relevant peaks.
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is that there is room for a more principled approach to the
unconstrained deconvolution problem for periodograms
derived from nonuniform fast Fourier transforms (perhaps
through some sort of L1/lasso regularization that imposes
assumptions of sparsity on the true periodogram), but to date
this does not appear to have been explored anywhere in the
literature.

7.4. Uncertainties in Periodogram Results

An important aspect of reporting results from the Lomb–
Scargle periodogram is the uncertainty of the estimated period.
In many areas of science we are used to being able to report
uncertainties in terms of error bars, e.g., “the period is
16.3±0.6 hr.” For periods derived from the Lomb–Scargle
periodogram, however, uncertainties generally cannot be
meaningfully expressed in this way: as we saw in the
discussion of failure modes in Section 7.2, the concern for
periodograms is more often a disjointed inaccuracy associated
with false peaks and aliases, rather than a more smooth
imprecision in location of a particular peak.

7.4.1. Peak Width and Frequency Precision

A periodic signal will be reflected in the periodogram by the
presence of a peak of a certain width and height. In the Fourier
view, the precision with which a peak’s frequency can be
identified is directly related to the width of this peak; often the
half-width at half-maximum f1/2≈1/T is used. This can be
formalized more precisely in the least-squares interpretation of
the periodogram, in which the inverse of the curvature of the
peak is identified with the uncertainty (Ivezić et al. 2014)—
which in the Bayesian view amounts to fitting a Gaussian curve
to the (exponentiated) peak (Jaynes 1987; Bretthorst 1988).
This introduces first-order dependence on the number of
samples N and their average signal-to-noise ratio Σ; the scaling

is approximately (see, e.g., Gregory 2001)

s »
S

( )f
N

2
. 52f 1 2 2

This dependence comes from the fact that the Bayesian
uncertainty is related to the width of the exponentiated
periodogram, which depends on Pmax, the height of the peak.7

We have motivated from the Fourier window discussions
that peak width f1/2 is the inverse of the observational baseline;
the surprising result is that to first order the peak width in the
periodogram does not depend on either the number of
observations or their signal-to-noise ratio! This can be seen
visually in Figure 25, which shows periodograms for simulated
data with a fixed four-period baseline, with varying sample
sizes and signal-to-noise ratios. In all cases, the widths of the
primary peak are essentially identical, regardless of the quality
or quantity of data! Data quality and quantity are reflected in
the height of the peak in relation to the “background noise,”
which speaks to the peak significance rather than the precision
of frequency detection.
For this reason, if you insist on reporting frequency error

bars derived from peak width, the results can be pretty silly for
observations with long baselines. For example, going by the
peak width in Figure 2, the periodogram reveals a period of
2.58014±0.00004 hr, a relative precision of about 1/1000
percent. While this is an accurate characterization of the period
precision assuming that peak is the correct one, it does not
capture the much more relevant uncertainties demonstrated in
Section 7.2, in which we might find ourselves on the wrong
peak entirely. This is why peak widths and Gaussian error bars

Figure 24. Comparison of the true period and peak Lomb–Scargle period for 1000 simulated periodic light curves. Each has 60 irregular observations over 180 nights,
with a cadence typical of ground-based surveys (i.e., showing a strong diurnal window pattern similar to Figure 13). The Lomb–Scargle peak does not always coincide
with the true period, and there is noticeable structure among these failures. Panels (a)–(d) isolate some of the specific modes of failure that should be expected for this
kind of window function; see the text for more discussion.

7 To see why, consider a periodogram with maximum value Pmax=P( fmax),
so that P( fmax±f1/2)=Pmax/2. The Bayesian uncertainty comes from
approximating the exponentiated peak as a Gaussian, i.e.,

d d s µ -[ ( )] [ ( )]P f f fexp exp 2 fmax
2 2 . From this we can write

s» - ( )P P f2 2 fmax max 1 2
2 2 or s » f Pf 1 2 max . In terms of signal-to-noise

ratio m sS = -[( ) ]yrms n n , a well-fit model gives c» » SˆP N2 2max 0
2 2 ,

which leads to the expression in Equation (52).
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should generally be avoided when reporting uncertainties in the
context of a periodogram analysis.

7.4.2. False-alarm Probability

A much more relevant quantity for expressing uncertainty of
periodogram results is the height of the peak, and in particular
the height compared to the spurious background peaks that
arise in the periodogram. Figure 25 indicates that this property
does depend on both the number of observations and their
signal-to-noise ratio: for the small-N/low signal-to-noise ratio
cases, the spurious peaks in the background become compar-
able to the size of the true peak. In fact, as we saw in Section 5,
the ability to analytically define and quantify the relationship
between peak height and significance is one of the primary
considerations that led to the standard form of the Lomb–
Scargle periodogram.

The typical approach to quantifying the significance of a
peak is the FAP, which measures the probability that a data set
with no signal would—owing to coincidental alignment among
the random errors—lead to a peak of a similar magnitude.
Scargle (1982) showed that for data consisting of pure
Gaussian noise, the values of the unnormalized periodogram in
Equation (33) follow a χ2 distribution with two degrees of
freedom, that is, at any given frequency f0, if Z=P( f0) is the
periodogram value from Equation (33), then

= - -( ) ( ) ( )P Z Z1 exp 53single

is the cumulative probability of observing a periodogram value
less than Z, in data consisting only of Gaussian noise.8

7.4.2.1. Independent Frequency Method

We are generally not interested in the distribution of one
particular randomly chosen frequency, but rather the distribu-
tion of the highest peak of the periodogram, which is a quite
different situation.

By analogy, consider rolling a standard six-sided die. The
probability, in a single roll, of rolling a number, say, r>4 is easy
to compute: it is two sides out of six, or p(r> 4)=1/3. If, on the

other hand, you roll 10 dice and choose the largest number among
them, the probability that it will be greater than 4 is far larger than
1/3; it is p(max10(r)>4)=1−(1− 1/3)10≈0.98. The case
for the periodogram is analogous: the probability of seeing a
spurious peak at any single location (Equation (53)) is relatively
small, but the probability of seeing a single spurious peak among
a large number of frequencies is much higher.
With the dice, this calculation is easy because the rolls are

independent: the result of one roll does not affect the result of
the next. With the periodogram, though, the value at one
frequency is correlated with the value at other frequencies in a
way that is quite difficult to analytically express—these
correlations come from the convolution with the survey
window. Nonetheless, one common approach to estimating
the distribution has been to assume that it can be modeled on
some “effective number” of independent frequencies Neff, so
that the FAP can be estimated as

» -( ) [ ( )] ( )FAP z P z1 . 54N
single eff

A very simple estimate for Neff is based on our arguments of
the expected peak width, δf=1/T. In this approximation, the
number of independent peaks in a range 0�f�fmax is
assumed to be Neff=fmaxT. There have been various attempts
to estimate this value more carefully, both analytically and via
simulations (see, e.g., Horne & Baliunas 1986; Schwarzenberg-
Czerny 1998; Cumming 2004; Frescura et al. 2008), but all
such approaches are necessarily only approximations.

7.4.2.2. Baluev (2008) Method

A more sophisticated treatment of the problem is that of
Baluev (2008), who derived an analytic result based on the
theory of extreme values for stochastic processes. For the
standard periodogram in Equation (33), Baluev (2008) showed
that the following formula for the FAP provides a close upper
limit even in the case of highly structured window functions:

» - t-( ) ( ) ( )( )FAP z P z e1 , 55z
single

where, for the normalized periodogram (Equation (59)),

t » - -( ) ( ) ( )( )z W z z1 56N 4 2

and p= ( )W f t4 varmax is an effective width of the observing
window in units of the maximum frequency chosen for the

Figure 25. Effect of the number of points N and the signal-to-noise ratio (S/N) on the expected width and height of the periodogram peak. Top panels show the
normalized periodogram (Equation (59)), while bottom panels show the PSD-normalized periodogram (Equation (33)) scaled by noise variance. Perhaps surprisingly,
neither the number of points nor the signal-to-noise ratio affects the peak width.

8 Be aware that for different periodogram normalizations (see Section 7.5) the
form of this distribution changes; see Cumming et al. (1999) or Baluev (2008)
for a good summary of the statistical properties of various periodogram
normalizations.
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analysis. This result is not an exact measure of the FAP, but
rather an upper limit that is valid for alias-free periodograms,
i.e., cases where the window function has very little structure,
but which holds quite well even in the case of more realistic
survey windows.

7.4.2.3. Bootstrap Method

In the absence of a true analytic solution to the FAP, we can
turn to computational methods such as the bootstrap. The
bootstrap method is a technique in which the statistic in
question is computed repeatedly on many random resamplings
of the data in order to approximate the distribution of that
statistic (see Ivezić et al. 2014, for a useful general discussion
of this technique). For the periodogram, in each resampling we
keep the temporal coordinates the same, draw observations
randomly with replacement from the observed values, and then
compute the maximum of the resulting periodogram. For
enough resamplings, the distribution of these maxima will
approximate the true distribution for the case with no periodic
signal present. The bootstrap produces the most robust estimate
of the FAP because it makes few assumptions about the form of
the periodogram distribution and fully accounts for survey
window effects.

Unfortunately, the computational costs of the bootstrap can be
quite prohibitive: to accurately measure small levels of FAP
requires constructing a large number of full periodograms. If you
are probing a false-positive rate of r among N bootstrap
resamples, you would roughly expect to find rN rN relevant
peaks in your bootstrap sample. More concretely, for 1000
bootstrap samples, you will find only∼10±3 peaks reflecting a
1% false-positive rate. The random fluctuations in that count
translate directly to an inability to accurately estimate the false-
positive rate at that level. A good rule of thumb is that to
accurately characterize a false-positive rate r requires something
like ∼10/r individual periodograms to be computed—this can

grow computationally intractable quite quickly. The bootstrap is
also not universally applicable: for example, it does not correctly
account for cases where noise in observations is correlated; for
more discussion of the bootstrap approach and its caveats, see
Ivezić et al. (2014) and references therein.
Figure 26 compares these methods of estimating the FAP,

for both an unstructured survey window and a structured
window that produces the kinds of aliasing we have discussed
above. The naive approximation in this case underestimates the
FAP at nearly all levels—so, for example, it might lead you to
think that a peak has an FAP of 10% when in fact it is closer to
30%. The Baluev method, by design, overestimates the FAP
and is quite close to the bootstrapped distribution in the case of
an unstructured window. For a highly structured window, the
Baluev method does not perform as well, but it still tends to
overestimate the FAP—so, for example, it might lead you to
think of a peak as an FAP of 10% when in fact it is closer
to 5%.
Finally, I will note that Suveges (2012) has shown the

promise of a hybrid approach of the bootstrap method and the
extreme value statistics of Baluev (2008); this has the ability to
compute accurate FAPs without the need to compute thousands
of full bootstrapped periodograms.

7.4.2.4. Detection Significance with Red Noise

It is important to recognize that the above methods of
measuring peak significance or FAP generally depend on the
assumption of white noise: that is, that the height of spurious
“background” peaks in the periodogram is independent of
frequency. In many situations of interest, however, this
assumption does not hold: for example, compact accreting
objects often display “red noise”—that is, noise that increases
in power toward lower frequencies (Vaughan et al. 2003). The
presence of red noise complicates both the detection of peaks
and the estimation of their significance or FAP; for detailed

Figure 26. Comparison of various approaches to computing the FAP for simulated observations with both structured and unstructured survey windows. Note that the
approximate Neff method in its most naive form tends to underestimate the bootstrapped FAP, while the Baluev (2008) method tends to overestimate the bootstrapped
FAP, particularly for data with a highly structured survey window.
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discussion of various approaches to periodic analysis in this
context, see Vaughan (2005, 2010).

7.4.2.5. What Does the False-alarm Probability Measure?

While the FAP can be a useful concept, you should be
careful to keep in mind that it answers a very specific question:
“What is the probability that a signal with no periodic
component would lead to a peak of this magnitude?” In
particular, it emphatically does not answer the much more
relevant question, “What is the probability that this data set is
periodic given these observations?” This boils down to a case
of ¹( ∣ ) ( ∣ )P A B P B A , but still it is common to see the FAP
treated as if it speaks to the second rather than the first question.

Similarly, the FAP tells us nothing about the false-negative
rate, i.e., the rate at which we would expect to miss a periodic
signal that is, in fact, present. It also tells us nothing about the
error rate, i.e., the rate at which we would expect to identify an
incorrect alias of a signal present in our data (as we saw in
Section 7.2). Too often users are tempted to interpret the FAP
too broadly, with the hope that it would speak to questions that
are beyond its reach.

Unfortunately, there is no single, universally applicable
answer to these broader, more relevant questions of uncertainty
of Lomb–Scargle results. Perhaps the most fruitful path toward
understanding of such effects for a particular set of observa-
tions—with particular noise characteristics and a particular
observing window—is via simulated data injected into the
detection pipeline. In fact, this type of simulation is a vital
component of most (if not all) current and future time-domain
surveys that seek to detect, characterize, and catalog periodic
objects, regardless of the particular approach used to identify
periodicity (see, e.g., Delgado et al. 2006; Ivezić et al. 2008;
Sesar et al. 2010; McQuillan et al. 2012; Oluseyi et al. 2012;
Ridgway et al. 2012; Drake et al. 2014, etc.)

7.5. Periodogram Normalization and Interpretation

Often it is useful to be able to interpret the periodogram
values themselves. Recall that there are two equally valid
perspectives of what the periodogram is measuring—the
Fourier view and the least-squares view—and each of these
lends itself to a different approach to normalization and
interpretation of the periodogram.

7.5.1. PSD Normalization

When considering the periodogram from the Fourier
perspective, it is useful to normalize the periodogram such
that in the special case of equally spaced data it recovers the
standard Fourier power spectrum. This is the normalization
used in Equation (33) and the equivalent least-squares
expression seen in Equation (37):

c c= -( ) [ ˆ ˆ ( )] ( )P f f
1

2
. 570

2 2

For equally spaced data, this periodogram is identical to the
standard definition based on the fast Fourier transform:

=( ) ∣ ( )∣ ( )P f
N

y
1

FFT ; 58n
2

in particular, this means that the units of the periodogram are
( )unit y 2 and can be interpreted as squared amplitudes of the

Fourier component at each frequency. Note, however, that the

units change if data uncertainties are incorporated into the
periodogram as in Section 6.1; the periodogram in this
normalization becomes unitless: it is essentially a measure of
periodic content in signal-to-noise ratio rather than in signal
itself.

7.5.2. Least-squares Normalization

In the least-squares view of the periodogram, the period-
ogram is interpreted as an inverse measure of the goodness of
fit for a model. When we express the periodogram as a function
of χ2 model fits as in Equation (57), it becomes clear that the
periodogram has a mathematical maximum value: if the
sinusoidal model perfectly fits the data at some frequency f0,
then c =ˆ ( )f 02

0 and the periodogram is maximized at a value
of ĉ 20

2 . On the other end, it is mathematically impossible for a
best-fit sinusoidal model at any frequency to do worse than the
simple constant, nonvarying fit reflected in ĉ0

2, and so the
minimum value of Equation (57) is exactly zero.
This suggests a different normalization of the periodogram,

where the values are dimensionless and lie between 0 and 1:

c
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ˆ
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2
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This “normalized periodogram” is unitless and is directly
proportional to the unnormalized (or PSD-normalized) period-
ogram in Equation (57).
While the normalization does not affect the shape of the

periodogram, its main practical consequence is that the
statistics of the resulting periodogram differ slightly, and this
needs to be taken into account when computing analytic
estimates of uncertainties and FAPs explored in Section 7.4.2.
Other normalizations exist as well, but they seem to be rarely
used in practice. For a concise summary of several period-
ogram normalizations and their statistical properties, refer to
the introduction of Baluev (2008).

7.6. Algorithmic Considerations

Given the size of the frequency grid required to fully
characterize the periods from a given data set, it is vital to have
an efficient algorithm for evaluating the periodogram. We will
see that the naive implementation of the standard Lomb–
Scargle formula (Equation (33)) scales poorly with the size of
the data, but that fast alternatives are available.
Suppose you have a set of N observations over a time span T

for an average cadence of d =t N T . From Equation (44) we
see that the number of frequencies we need to evaluate is

dµ =N Tf Nf tf max max . Holding constant the average survey
cadence dt and fmax, we find that the number of frequencies
required is directly proportional to the number of data points.
The computation of the Lomb–Scargle periodogram in
Equation (33) requires sums over N sinusoids at each of the
Nf frequencies, and thus we see that the naive scaling of the
algorithm with the size of the data set is ( )N 2 , when survey
properties are held constant. Due to the trigonometric functions
involved, this turns out to be a rather “expensive” ( )N 2 ,
which makes the direct implementation impractical for even
modestly sized data sets.
Fortunately, several faster implementations have been

proposed to compute the periodogram to arbitrary precision
in ( )N Nlog time. The first of these is discussed in Press &
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Rybicki (1989), which uses an inverse interpolation operation
along with a fast Fourier transform to compute the trigono-
metric components of Equation (33) very efficiently over a
large number of frequencies. Zechmeister & Kürster (2009)
showed how this approach can be straightforwardly extended
to the floating-mean periodogram discussed in Section 6.2.

A qualitatively similar approach to the Press & Rybicki
(1989) algorithm is presented by Leroy (2012): it makes use of
the non-equispaced fast Fourier transform (NFFT; see Keiner
et al. 2009) to compute the Lomb–Scargle periodogram about a
factor of 10 faster than the Press & Rybicki (1989) approach.
For the multiterm models discussed in Section 6.3, Palmer
(2009) presents an adaptation of the Press & Rybicki (1989)
method that can compute the multiterm result in( )NK Nlog ,
for N data points and K Fourier components.

8. Conclusion and Summary

This paper has been a conceptual tour of the Lomb–Scargle
periodogram, from its roots in Fourier analysis to its
equivalence with special cases of periodic analysis based on
least-squares model fitting and Bayesian analysis. From this
conceptual understanding, we considered a list of challenges
and issues to be considered when applying the method in
practice. We will finish here with a brief summary of these
practical recommendations, along with a somewhat opinionated
postscript for further thought.

8.1. Summary of Recommendations

The previous pages contain a large amount of background
and advice for working with the Lomb–Scargle periodogram.
Following is a brief summary of the considerations to keep in
mind when you apply this algorithm to a data set:

1. Choose an appropriate frequency grid: the minimum can
be set to zero, the maximum set based on the precision of
the time measurements (Section 4.1.2), and the grid
spacing set based on the temporal baseline of the data
(Section 7.1) so as not to sample too coarsely around
peaks. If this grid size is computationally intractable,
reduce the maximum frequency based on what kinds of
signals you are looking for.

2. Compute the window transform using the Lomb–Scargle
periodogram, by substituting gn=1 for each tn and
making sure not to pre-center the data or use a floating-
mean model (Section 7.3.1). Examine this window
function for dominant features, such as daily or annual
aliases (see Figure 13) or Nyquist-like limits (see
Figure 15).

3. Compute the periodogram for your data. You should
always use the floating-mean model (Section 6.2), as it
produces more robust periodograms and has few if any
disadvantages. Avoid multiterm Fourier extensions
(Section 6.3) when the signal has an unknown form,
because its main effect is to increase periodogram noise
(see Figures 20–21).

4. Plot the periodogram and identify any patterns that may
be caused by features you observed in the window
function power. Plot reference lines showing several FAP
levels to understand whether your periodogram peaks are
significant enough to be labeled detections: use the
Baluev method or the bootstrap method if it is
computationally feasible (Section 7.4.2). Keep in mind

exactly what the FAP measures and avoid the temptation
to misinterpret it (Section 7.4.2.5).

5. If the window function shows strong aliasing, locate the
expected multiple maxima and plot the phased light curve
at each. If there is indication that the sinusoidal model
underfits the data (see Figure 19), then consider refitting
with a multiterm Fourier model (Section 6.3).

6. If you have prior knowledge of the shape of light curves
you are trying to detect, consider using more complex
models, such as multiterm models or physically derived
templates, to choose between multiple peaks in the
periodogram (Section 6.5). This type of refinement can be
quite useful in building automated pipelines for period
fitting, especially in cases where the window aliasing is
strong.

7. If you are building an automated pipeline based on
Lomb–Scargle for use in a survey, consider injecting
known signals into the pipeline to measure your detection
efficiency as a function of object type, brightness, and
other relevant characteristics (Section 7.2)

This list is certainly not comprehensive for all uses of the
periodogram, but it should serve as a brief reminder of the kinds
of issues you should keep in mind when using the method to
detect periodic signals.

8.2. Postscript: Why Lomb–Scargle?

After considering all of these practical aspects of the
periodogram, I think it is worth stepping back to revisit the
question of why astronomers tend to gravitate toward the Lomb–
Scargle approach rather than the (in many ways simpler)
classical periodogram.
As discussed in Section 5, the Lomb–Scargle approach has

two distinct benefits over the classical periodogram: the noise
distribution at each individual frequency is chi-square dis-
tributed under the null hypothesis, and the result is equivalent
to a periodogram derived from a least-squares analysis. But
somehow along the way a mythology seems to have developed
surrounding the efficiency and efficacy of the Lomb–Scargle
approach. In particular, it is common to see statements or
implications along the lines of the following:

1. Myth: the Lomb–Scargle periodogram can be computed
more efficiently than the classical periodogram.Reality:
computationally, the two are quite similar, and in fact the
fastest Lomb–Scargle algorithm currently available is
based on the classical periodogram computed via the the
NFFT algorithm (see Section 7.6).

2. Myth: the Lomb–Scargle periodogram is faster than a
direct least-squares periodogram because it avoids
explicitly solving for model coefficients.Reality: model
coefficients can be determined with little extra computa-
tion (see the discussion in Ivezić et al. 2014).

3. Myth: the Lomb–Scargle periodogram allows analytic
computation of statistics for periodogram peaks.Reality:
while this is true at individual frequencies, it is not true
for the more relevant question of maximum peak heights
across multiple frequencies, which must be either
approximated or computed by bootstrap resampling (see
Section 7.4)

4. Myth: the Lomb–Scargle periodogram corrects for
aliasing due to sampling and leads to independent noise
at each frequency.Reality: for structured window
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functions common to most astronomical applications, the
Lomb–Scargle periodogram has the same window-driven
issues as the classical periodogram, including spurious
peaks due to partial aliasing and highly correlated
periodogram errors (see Section 7.2).

5. Myth: Bayesian analysis shows that Lomb–Scargle is the
optimal statistic for detecting periodic signals in
data.Reality: Bayesian analysis shows that Lomb–
Scargle is the optimal statistic for fitting a sinusoid to
data, which is not the same as saying that it is optimal for
finding the frequency of a generic, potentially nonsinu-
soidal signal (see Section 6.5).

With these misconceptions corrected, what is the practical
advantage of Lomb–Scargle over a classical periodogram? What
would we lose if we instead used the simple classical Fourier
periodogram, estimating uncertainty, significance, and FAP by
resampling and simulation, as we must for Lomb–Scargle itself?

The advantage of analytic statistics for Lomb–Scargle
evaporates in light of the need to account for multiple frequencies,
so the only advantage left is the correspondence to least-squares
and Bayesian models, and in particular the ability to generalize to
more complicated models where appropriate—but in this case you
are not really using Lomb–Scargle at all, but rather a generative
Bayesian model for your data based on some strong prior
information about the form of your signal. The equivalence of
Lomb–Scargle to a Bayesian sinusoidal model is perhaps an
interesting bit of trivia, but not itself a reason to use that model if
your data are not known a priori to be sinusoidal—it could even
be construed as an argument against Lomb–Scargle in the general
case where the assumption of a sinusoid is not well-founded.

Conversely, if you replace your Lomb–Scargle approach
with a classical periodogram, what you gain is the ability to
reason quantitatively about the effects of the survey window
function on the resulting periodogram (see Section 7.3.2).
While the deconvolution problem is ill-posed, there is no
reason to assume that this is a fatal defect: ill-posed linear
models are solved routinely in other areas of computational
research, particularly by using sparsity priors or various forms
of regularization. In any case, I would contend that there is
ample room for practitioners to question the prevailing folk
wisdom of the advantage of Lomb–Scargle over approaches
based directly on the Fourier transform and classical
periodogram.

8.3. Figures and Code

All computations and figures in this paper were produced
using Python, and in particular used the Numpy (van der Walt
et al. 2011; Oliphant 2015), Pandas (McKinney 2010), AstroPy
(Astropy Collaboration et al. 2013), andMatplotlib (Hunter 2007)
packages. Periodograms where computed using the AstroPy
implementations9 of the Press & Rybicki (1989), Zechmeister &
Kürster (2009), and Palmer (2009) algorithms, which were
adapted from the Python code originally published by Ivezić et al.
(2014) and VanderPlas & Ivezic (2015). All code behind this
paper, including code to reproduce all figures, is available in the
form of Jupyter notebooks in the paper’s GitHub repository.10
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