You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.4 KiB
Python
83 lines
2.4 KiB
Python
from py_wake.wind_turbines import WindTurbine
|
|
from py_wake.wind_turbines.power_ct_functions import PowerCtTabular
|
|
from py_wake.site._site import UniformSite
|
|
from py_wake.wind_farm_models import PropagateDownwind
|
|
from py_wake.deficit_models.gaussian import TurboGaussianDeficit
|
|
from py_wake.flow_map import XYGrid
|
|
|
|
import numpy as np
|
|
|
|
D = 126 #Diametro del wT
|
|
h = 90 #Altura del WT
|
|
U_ref = 8
|
|
|
|
|
|
initial_position = np.array([[ 1 , 1],
|
|
[ 2. , 2],
|
|
[ 4 , 4],
|
|
[ 1 , 4],
|
|
[ 2 , 4],
|
|
[ 3 , 4],
|
|
[ 1 , 5],
|
|
[ 2 , 5],
|
|
[ 5 , 5]])
|
|
|
|
|
|
def py_wake_Initial_Cong(D,name,h,U_ref,initial_position=initial_position):
|
|
|
|
#Curvas del WT
|
|
power_curve = np.array([
|
|
[ 0.1, 1.000],
|
|
[ 4.5, 267.7],
|
|
[ 5.0, 387.6],
|
|
[ 5.5, 534.0],
|
|
[ 6.0, 707.4],
|
|
[ 6.5, 910.0],
|
|
[ 7.0, 1142.7],
|
|
[ 7.5, 1407.5],
|
|
[ 8.0, 1707.1],
|
|
[ 8.5, 2047.3],
|
|
[ 9.0, 2430.6]]) * [1, 1000]
|
|
|
|
|
|
ct_curve = np.array([
|
|
[ 0.1, 0.100],
|
|
[ 4.5, 0.928],
|
|
[ 5.0, 0.892],
|
|
[ 5.5, 0.861],
|
|
[ 6.0, 0.835],
|
|
[ 6.5, 0.812],
|
|
[ 7.0, 0.792],
|
|
[ 7.5, 0.776],
|
|
[ 8.0, 0.7702530978349217],
|
|
[ 8.5, 0.762],
|
|
[ 9.0, 0.763]])
|
|
|
|
|
|
return WindTurbine(name=name,
|
|
diameter=D,
|
|
hub_height=h,
|
|
powerCtFunction=PowerCtTabular(power_curve[:, 0],
|
|
power_curve[:, 1],
|
|
'w',ct_curve[:, 1],
|
|
method='linear'))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
windTurbines = py_wake_Initial_Cong(D, 'NREL_5MW', h, U_ref)
|
|
|
|
def run(initial_position=initial_position, U_ref=U_ref):
|
|
initial_position = np.array(initial_position);
|
|
site = UniformSite(p_wd=[1],
|
|
ws=U_ref,
|
|
initial_position=initial_position*D)
|
|
wt_x, wt_y = site.initial_position.T/D
|
|
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=TurboGaussianDeficit())
|
|
grid = XYGrid(x=np.arange(0, 10.01, 0.1)*126, y=np.arange(0, 10.01, 0.1)*126)
|
|
xa = wfm(x=wt_x*126, y=wt_y*126, wd=0, yaw=0).flow_map(grid)
|
|
ws = xa.WS_eff
|
|
return ws[:,:,0,0].values[:,:,0].tolist()
|