Merge branch 'milestone_5' of github.com:medios-porosos-fiuba/simulacion-permeabilidad into milestone_5

milestone_5
chortas 3 years ago
commit 68321584e4

1
.gitignore vendored

@ -21,3 +21,4 @@ fftma_module/gen/log_*
fftma_module/gen/out*.npy
.ipynb_checkpoints/analysis-checkpoint.ipynb
fftma_module/gen/.ipynb_checkpoints/
__pycache__/

@ -11,9 +11,12 @@ fftma:
binaries:
./script_fortran.sh
test: binaries
test: binaries fftma
cd tests/integration && python3 -m unittest test.py
perf: binaries
cd tests/performance && python3 generation.py
cd tests/performance && python3 connectivity.py
cd tests/performance && python3 connectivity.py
test-gen: fftma
cd tests/stages/generation && python3 -m unittest test.py

File diff suppressed because one or more lines are too long

@ -1,6 +1,5 @@
from FFTMA import gen
import numpy as np
import gc
import sys
N=int(sys.argv[1])
@ -28,9 +27,5 @@ mean=15.3245987
variance=3.5682389
typ=3
k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ, 8)
np.save(f"out_{N}.npy",k)
del k
gc.collect()
k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ)
np.save(f"out_{N}.npy",k)

@ -11,5 +11,5 @@
#include <stdlib.h>
#include <string.h>
int Py_getvalues(PyObject*, long*, struct grid_mod*, struct vario_mod*, struct statistic_mod*, int*);
void Py_kgeneration(long, struct grid_mod, struct statistic_mod, struct vario_mod, struct realization_mod*, struct realization_mod*, int[3], int);
int Py_getvalues(PyObject*, long*, struct grid_mod*, struct vario_mod*, struct statistic_mod*);
void Py_kgeneration(long, struct grid_mod, struct statistic_mod, struct vario_mod, struct realization_mod*, struct realization_mod*, int[3]);

@ -1,36 +0,0 @@
#ifndef _CHUNKARRAY_H
#define _CHUNKARRAY_H
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
#define MAX_CHUNK_SIZE 1500
typedef struct chunk_array {
size_t init_pos;
size_t chunk_size;
size_t total_size;
FILE* fp;
double* data;
}chunk_array_t;
chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size);
void chunk_array_read(chunk_array_t* chunk_array);
//void chunk_array_write(chunk_array_t* chunk_array, char* filename);
void chunk_array_free(chunk_array_t* chunk_array);
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *value_ptr);
bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor);
void chunk_array_flush(chunk_array_t* chunk_array);
size_t chunk_array_size(chunk_array_t* chunk_array);
#endif

@ -102,7 +102,7 @@ void FFTMA_gradient(struct vario_mod variogram, struct grid_mod grid, int n[3],
/* n: number of components in the vector */
/*output: */
/* realization: structure defining the realization*/
void generate(long* seed, int n, struct realization_mod* realization, int cores);
void generate(long* seed, int n, struct realization_mod* realization);
void ikrig(int option, struct statfacies_mod facies, int kk, struct welldata_mod data, struct variotable_mod variogram, struct grid_mod grid, float* krigout);

@ -0,0 +1,30 @@
#ifndef _CHUNKARRAY_H
#define _CHUNKARRAY_H
#include <stdarg.h>
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include <stdbool.h>
typedef struct file_array {
size_t init_pos;
size_t total_size;
FILE* fp;
}file_array_t;
file_array_t* file_array_create(char* filename, size_t total_size);
void file_array_read(file_array_t* file_array);
void file_array_free(file_array_t* file_array);
bool file_array_get(file_array_t* file_array, size_t pos, double *value_ptr);
bool file_array_save(file_array_t* file_array, size_t pos, double valor);
void file_array_flush(file_array_t* file_array);
size_t file_array_size(file_array_t* file_array);
#endif

@ -2,7 +2,7 @@
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "chunk_array.h"
#include "file_array.h"
#ifndef _GEOSTAT_H
#define _GEOSTAT_H
@ -284,7 +284,7 @@ struct realization_mod {
int n;
int code;
double* vector;
chunk_array_t* vector_2;
file_array_t* vector_2;
};
/*=====================================================*/
@ -299,7 +299,7 @@ struct realization_mod {
void axes(double* ap, double* scf, int N);
/*cardsin covariance value for lag h*/
double cardsin(double h, int cores);
double cardsin(double h);
/*Cholesky decomposition of matrix C */
/* C : symetric positive-definite matrix recorded */
@ -327,7 +327,7 @@ void coordinates(int maille, int i[3], struct grid_mod grid);
/*variogram: structure defined above */
/*grid: structure defined above */
/*n: number of gridblocks along X,Y and Z*/
void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
void covariance(file_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3]);
/*computation of the covariance matrix for the well data*/
/*well coordinates are given as a number of cells */
@ -357,10 +357,10 @@ void cov_matrix(double* C, struct vario_mod variogram, struct welldata_mod well,
/*dj: distance along the Y axis */
/*dk: distance along the Z axis */
/* The returned value is the computed covariance value */
double cov_value(struct vario_mod variogram, double di, double dj, double dk, int cores);
double cov_value(struct vario_mod variogram, double di, double dj, double dk);
/*cubic covariance value for lag h*/
double cubic(double h, int cores);
double cubic(double h);
/*truncation of the power spectrum to remove */
/*high frequencies - isotropic case */
@ -403,7 +403,7 @@ double exponential(double h);
/*workr: utility real part vector for storage */
/*worki: utility imaginary part vector for storage */
/*The transformed data are returned in datar and datai*/
void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores);
void fourt(file_array_t* datar, file_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki);
/*calculates F(x) = (1/a)*exp(-x*x/2)*/
double funtrun1(double x);
@ -412,7 +412,7 @@ double funtrun1(double x);
float G(float x);
/*gamma covariance value for lag h and exponent alpha*/
double gammf(double h, double alpha, int cores);
double gammf(double h, double alpha);
/*returns the value ln(G(x))*/
float gammln(float xx);
@ -424,7 +424,7 @@ float gammp(float a, float x);
/*and unit variance, using ran1(idum) as the source */
/*of uniform deviates */
/*idum: seed */
double gasdev(long* idum, long* idum2, long* iy, long* iv, int cores);
double gasdev(long* idum, long* idum2, long* iy, long* iv);
/*gaussian covariance value for lag h*/
double gaussian(double h);
@ -479,7 +479,7 @@ void gradual(struct grad_mod grad, float* Zo, float* Z, float* Zfinal, int n, st
/*n: vector with the number of cells along the */
/* X, Y and Z axes for the underlying grid */
/* i = [0 1 2] */
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3]);
/*incomplete gamma function evaluated by its series*/
/*representation as gamser, also returns ln(G(a)) */
@ -504,7 +504,7 @@ void krig_stat(float* b, int n, struct vario_mod variogram, struct welldata_mod
/*i: considered direction */
/*scf: correlation length */
/*ap: normalized anisotropy axes */
int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores);
int length(int N, int i, double* scf, double* ap, double D, int Nvari);
/*calculates L.Z/
/* L : lower triangular matrix recorded */
@ -518,7 +518,7 @@ int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores
void LtimeZ(double* L, float* Z, float* b, int n);
/*determines the greatest prime factor of an integer*/
int maxfactor(int n, int cores);
int maxfactor(int n);
/*metrop returns a boolean varible that issues a */
/*verdict on whether to accept a reconfiguration */
@ -544,7 +544,7 @@ double power(double h, double alpha);
/*generates uniform deviates between 0 and 1*/
/*idum: seed */
double ran2(long* idum, long* idum2, long* iy, long* iv, int cores);
double ran2(long* idum, long* idum2, long* iy, long* iv);
/*calculates bt.b */
/* b : vector, bi, i = [0...n-1] */

@ -1,6 +1,6 @@
#include "genlib.h"
#include "geostat.h"
#include "chunk_array.h"
#include "file_array.h"
#include <stdlib.h>
#include <string.h>
@ -37,7 +37,7 @@
/*realout4: structure defining a yvelocity field */
/*realout5: structure defining a zvelocity field */
void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, int cores, long* seed);
void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, long* seed);
/* prebuild_gwn */
/* Produce a first construction in real space of the Gaussian white noise */
@ -52,7 +52,7 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
/* must be a Gaussian white noise */
/*realization: structure defining a realization*/
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, chunk_array_t* realization, int solver, int cores, long* seed);
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, file_array_t* realization, int solver, long* seed);
/* build_real */
/* build a realization in the spectral domain */
@ -66,8 +66,8 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
/*realization: vector defining the real part */
/*ireal: vector defining the i-part */
void build_real(int n[3], int NTOT, chunk_array_t* covar, chunk_array_t* realization, chunk_array_t* ireal, int cores);
void build_real(int n[3], int NTOT, file_array_t* covar, file_array_t* realization, file_array_t* ireal);
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, chunk_array_t* vectorresult, struct realization_mod* realout, int cores);
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, file_array_t* vectorresult, struct realization_mod* realout);
#endif // define _TOOLSFFTMA_H

@ -41,7 +41,7 @@
#endif
#endif
int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario_mod* variogram, struct statistic_mod* stat, int* cores) {
int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario_mod* variogram, struct statistic_mod* stat) {
clock_t t = clock();
int i, varioNargs = 12, j = 0;
PyObject* listvario;
@ -59,7 +59,7 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
return 0;
}
if (!PyArg_ParseTuple(args, "iiidddlO!ddii", /*"iiidddslO!ddi",*/
if (!PyArg_ParseTuple(args, "iiidddlO!ddi", /*"iiidddslO!ddi",*/
&(grid->NX),
&(grid->NY),
&(grid->NZ),
@ -72,8 +72,7 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
&listvario,
stat->mean + 0,
stat->variance + 0,
&(stat->type),
cores)) {
&(stat->type))) {
free(stat->mean);
free(stat->variance);
return 0;

@ -17,7 +17,7 @@
/* Z is the GWN with 0-mean and 1-variance */
/* Y is the realization with mean and variance wanted */
void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat, struct vario_mod variogram, struct realization_mod* Z, struct realization_mod* Y, int n[3], int cores) {
void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat, struct vario_mod variogram, struct realization_mod* Z, struct realization_mod* Y, int n[3]) {
int i, N;
int typelog;
@ -27,10 +27,10 @@ void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat,
n[1] = 0;
n[2] = 0;
generate(&seed, N, Z, cores);
generate(&seed, N, Z);
/*FFTMA*/
FFTMA2(variogram, grid, n, Z, Y, cores, &seed);
FFTMA2(variogram, grid, n, Z, Y, &seed);
/* make a log normal realization */
if (stat.type == 1 || stat.type == 2) {

@ -6,7 +6,7 @@
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include "chunk_array.h"
#include "file_array.h"
/* build_real */
/* build a realization in the spectral domain */
@ -20,20 +20,20 @@
/*realization: vector defining the real part */
/*ireal: vector defining the i-part */
void build_real(int n[3], int NTOT, chunk_array_t* covar, chunk_array_t* realization, chunk_array_t* ireal, int cores) {
void build_real(int n[3], int NTOT, file_array_t* covar, file_array_t* realization, file_array_t* ireal) {
int i, j, k, maille1;
double temp;
chunk_array_read(realization);
chunk_array_read(ireal);
chunk_array_read(covar);
file_array_read(realization);
file_array_read(ireal);
file_array_read(covar);
/*decomposition and multiplication in the spectral domain*/
for (k = 1; k <= n[2]; k++) {
for (j = 1; j <= n[1]; j++) {
for (i = 1; i <= n[0]; i++) {
maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0];
chunk_array_get(covar, maille1, &temp);
file_array_get(covar, maille1, &temp);
if (temp > 0.) {
temp = sqrt(temp) / (double)NTOT;
} else if (temp < 0.) {
@ -41,11 +41,11 @@ void build_real(int n[3], int NTOT, chunk_array_t* covar, chunk_array_t* realiza
}
double valuerealizationmaille1, valueirealmaille1;
chunk_array_get(realization, maille1, &valuerealizationmaille1);
chunk_array_get(ireal, maille1, &valueirealmaille1);
file_array_get(realization, maille1, &valuerealizationmaille1);
file_array_get(ireal, maille1, &valueirealmaille1);
chunk_array_save(realization, maille1, temp * valuerealizationmaille1);
chunk_array_save(ireal, maille1, temp * valueirealmaille1);
file_array_save(realization, maille1, temp * valuerealizationmaille1);
file_array_save(ireal, maille1, temp * valueirealmaille1);
}
}
}

@ -4,7 +4,7 @@
#include <time.h>
/*cardsin covariance function*/
double cardsin(double h, int cores) {
double cardsin(double h) {
float delta = 20.371;
double z;

@ -10,7 +10,7 @@
/*n: vector with the number of cells along the */
/* X, Y and Z axes for the underlying grid */
/* i = [0 1 2] */
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores) {
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3]) {
int i, N;
double D;
@ -30,7 +30,7 @@ void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores
D = grid.DZ;
break;
}
n[i] = length(N, i, variogram.scf, variogram.ap, D, variogram.Nvario, cores);
n[i] = length(N, i, variogram.scf, variogram.ap, D, variogram.Nvario);
}
} else {
if ((n[0] < grid.NX) || (n[1] < grid.NY) || (n[2] < grid.NZ)) {

@ -1,92 +0,0 @@
#include "chunk_array.h"
#include "stdbool.h"
void chunk_array_free(chunk_array_t* chunk_array) {
fclose(chunk_array->fp);
free(chunk_array->data);
free(chunk_array);
}
bool chunk_array_update_read(chunk_array_t* chunk_array, size_t pos) {
int init_pos = pos/chunk_array->chunk_size;
fseek(chunk_array->fp, init_pos * chunk_array->chunk_size * sizeof(double), SEEK_SET);
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen;
}
/*
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) {
chunk_array_update_read(chunk_array, pos);
}
*valor=chunk_array->data[pos%chunk_array->chunk_size];
return true;
}
bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) {
chunk_array_flush(chunk_array);
}
chunk_array->data[pos%chunk_array->chunk_size]=valor;
return true;
}
*/
chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size) {
chunk_array_t* chunk_array = (chunk_array_t*)malloc(sizeof(chunk_array_t));
chunk_array->fp = fopen(filename, "w+");
if (chunk_array == NULL || chunk_array->fp == NULL) {
return NULL;
}
chunk_array->data = malloc(chunk_size * sizeof(double));
if (chunk_size > 0 && chunk_array->data == NULL) {
free(chunk_array);
return NULL;
}
chunk_array->init_pos = 0;
chunk_array->chunk_size = chunk_size;
chunk_array->total_size = total_size;
return chunk_array;
}
void chunk_array_read(chunk_array_t* chunk_array) {
rewind(chunk_array->fp);
chunk_array->init_pos = 0;
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
}
/*
void chunk_array_write(chunk_array_t* chunk_array, char* filename) {
chunk_array->fp = fopen(filename, "w");
if (chunk_array->fp == NULL) {
fclose(chunk_array->fp);
chunk_array->fp = fopen(filename, "w");
}
chunk_array->init_pos = 0;
}*/
void chunk_array_flush(chunk_array_t* chunk_array) {
size_t newLen = fwrite(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen;
}
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fread(valor, sizeof(double), 1, chunk_array->fp);
return true;
}
bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fwrite(&valor, sizeof(double), 1, chunk_array->fp);
return true;
}

@ -1,5 +1,5 @@
#include "geostat.h"
#include "chunk_array.h"
#include "file_array.h"
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
@ -8,7 +8,7 @@
#include <string.h>
#include <time.h>
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, chunk_array_t* vectorresult, struct realization_mod* realout, int cores) {
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, file_array_t* vectorresult, struct realization_mod* realout) {
int i, j, k, maille0, maille1;
double NTOT;
@ -16,7 +16,7 @@ void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid,
/*is the output realization already allocated?*/
/*if not, memory allocation*/
chunk_array_read(vectorresult);
file_array_read(vectorresult);
if (realout->vector == NULL || realout->n != realin->n) {
realout->vector = (double*)malloc(realin->n * sizeof(double));
@ -35,7 +35,7 @@ void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid,
/* Modif du 18 juin 2003 */
/*realout->vector[maille0] = vectorresult[maille1]/(double) NTOT;*/
double valuemaille1;
chunk_array_get(vectorresult, maille1, &valuemaille1);
file_array_get(vectorresult, maille1, &valuemaille1);
realout->vector[maille0] = valuemaille1;
}
}

@ -4,7 +4,7 @@
#include <time.h>
/*selection of model covariance*/
double cov_value(struct vario_mod variogram, double di, double dj, double dk, int cores) {
double cov_value(struct vario_mod variogram, double di, double dj, double dk) {
double hx, hy, hz, h;
double cov;
int k;
@ -29,16 +29,16 @@ double cov_value(struct vario_mod variogram, double di, double dj, double dk, in
cov += variogram.var[k] * spherical(h);
break;
case 4:
cov += variogram.var[k] * cardsin(h, cores);
cov += variogram.var[k] * cardsin(h);
break;
case 5:
cov += variogram.var[k] * stable(h, variogram.alpha[k]);
break;
case 6:
cov += variogram.var[k] * gammf(h, variogram.alpha[k], cores);
cov += variogram.var[k] * gammf(h, variogram.alpha[k]);
break;
case 7:
cov += variogram.var[k] * cubic(h, cores);
cov += variogram.var[k] * cubic(h);
break;
case 8:
cov += variogram.var[k] * nugget(h);

@ -1,17 +1,17 @@
#include "geostat.h"
#include "chunk_array.h"
#include "file_array.h"
#include <time.h>
/*builds the sampled covariance function*/
/*dimensions are even*/
void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod mesh, int n[3], int cores) {
void covariance(file_array_t* covar, struct vario_mod variogram, struct grid_mod mesh, int n[3]) {
int i, j, k, maille, n2[3], symmetric;
double di, dj, dk;
for (i = 0; i < 3; i++)
n2[i] = n[i] / 2;
chunk_array_read(covar);
file_array_read(covar);
for (i = 0; i <= n2[0]; i++) {
for (j = 0; j <= n2[1]; j++) {
@ -22,14 +22,14 @@ void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mo
di = (double)i * mesh.DX;
dj = (double)j * mesh.DY;
dk = (double)k * mesh.DZ;
chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
file_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk));
if (k > 0 && k < n2[2] && j > 0 && j < n2[1] && i > 0 && i < n2[0]) {
/*area 2*/
symmetric = 1 + n[0] - i + n[0] * (n[1] - j + n[1] * (n[2] - k));
double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
file_array_get(covar, maille, &value);
file_array_save(covar, symmetric, value);
}
if (i > 0 && i < n2[0]) {
@ -38,15 +38,15 @@ void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mo
dj = (double)j * mesh.DY;
dk = (double)k * mesh.DZ;
maille = 1 + (n[0] - i) + n[0] * (j + n[1] * k);
chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
file_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk));
}
if (k > 0 && k < n2[2] && j > 0 && j < n2[1]) {
/*area 8*/
symmetric = 1 + i + n[0] * (n[1] - j + n[1] * (n[2] - k));
double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
file_array_get(covar, maille, &value);
file_array_save(covar, symmetric, value);
}
if (i > 0 && i < n2[0] && j > 0 && j < n2[1]) {
@ -55,15 +55,15 @@ void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mo
dj = -(double)j * mesh.DY;
dk = (double)k * mesh.DZ;
maille = 1 + (n[0] - i) + n[0] * (n[1] - j + n[1] * k);
chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
file_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk));
}
if (k > 0 && k < n2[2]) {
/*area 6*/
symmetric = 1 + i + n[0] * (j + n[1] * (n[2] - k));
double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
file_array_get(covar, maille, &value);
file_array_save(covar, symmetric, value);
}
if (j > 0 && j < n2[1]) {
@ -72,15 +72,15 @@ void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mo
dj = -(double)j * mesh.DY;
dk = (double)k * mesh.DZ;
maille = 1 + i + n[0] * (n[1] - j + n[1] * k);
chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
file_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk));
}
if (k > 0 && k < n2[2] && i > 0 && i < n2[0]) {
/*area 7*/
symmetric = 1 + n[0] - i + n[0] * (j + n[1] * (n[2] - k));
double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
file_array_get(covar, maille, &value);
file_array_save(covar, symmetric, value);
}
}
}

@ -4,7 +4,7 @@
#include <time.h>
/*cubic covariance function*/
double cubic(double h, int cores) {
double cubic(double h) {
double z;
if (h >= 1.) {

@ -1,5 +1,5 @@
#include "geostat.h"
#include "chunk_array.h"
#include "file_array.h"
#include <math.h>
#include <stdlib.h>
#include <string.h>
@ -23,18 +23,18 @@
/*output: */
/*realout: structure defining a realization - */
void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, int cores, long* seed) {
void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, long* seed) {
int NTOT, i, j, k, NMAX, NDIM, ntot, nmax, NXYZ, nxyz;
int solver;
double temp;
chunk_array_t *covar, *ireal, *realization;
file_array_t *covar, *ireal, *realization;
double *workr, *worki;
/*covariance axis normalization*/
axes(variogram.ap, variogram.scf, variogram.Nvario);
/*pseudo-grid definition*/
cgrid(variogram, grid, n, cores);
cgrid(variogram, grid, n);
/*constant definition*/
NTOT = n[0] * n[1] * n[2];
@ -52,9 +52,9 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
nxyz = NXYZ + 1;
/*array initialization*/
covar = chunk_array_create("covar.txt", ntot, 1500);
ireal = chunk_array_create("ireal.txt", ntot, 1500);
realization = chunk_array_create("realization.txt", ntot, 1500);
covar = file_array_create("covar.txt", ntot);
ireal = file_array_create("ireal.txt", ntot);
realization = file_array_create("realization.txt", ntot);
workr = (double*)malloc(nmax * sizeof(double));
testmemory(workr);
@ -63,33 +63,33 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
testmemory(worki);
/*covariance function creation*/
covariance(covar, variogram, grid, n, cores);
covariance(covar, variogram, grid, n);
/*power spectrum*/
fourt(covar, ireal, n, NDIM, 1, 0, workr, worki, cores);
fourt(covar, ireal, n, NDIM, 1, 0, workr, worki);
/*organization of the input Gaussian white noise*/
solver = 0;
prebuild_gwn(grid, n, realin, realization, solver, cores, seed);
prebuild_gwn(grid, n, realin, realization, solver, seed);
/*forward fourier transform of the GWN*/
fourt(realization, ireal, n, NDIM, 1, 0, workr, worki, cores);
fourt(realization, ireal, n, NDIM, 1, 0, workr, worki);
/* build realization in spectral domain */
build_real(n, NTOT, covar, realization, ireal, cores);
build_real(n, NTOT, covar, realization, ireal);
chunk_array_free(covar);
file_array_free(covar);
remove("covar.txt");
/*backward fourier transform*/
fourt(realization, ireal, n, NDIM, 0, 1, workr, worki, cores);
fourt(realization, ireal, n, NDIM, 0, 1, workr, worki);
chunk_array_free(ireal);
file_array_free(ireal);
remove("ireal.txt");
free(workr);
free(worki);
/*output realization*/
clean_real(realin, n, grid, realization, realout, cores);
clean_real(realin, n, grid, realization, realout);
}

@ -0,0 +1,38 @@
#include "file_array.h"
#include "stdbool.h"
void file_array_free(file_array_t* file_array) {
fclose(file_array->fp);
free(file_array);
}
file_array_t* file_array_create(char* filename, size_t total_size) {
file_array_t* file_array = (file_array_t*)malloc(sizeof(file_array_t));
file_array->fp = fopen(filename, "w+");
if (file_array == NULL || file_array->fp == NULL) {
return NULL;
}
file_array->init_pos = 0;
file_array->total_size = total_size;
return file_array;
}
void file_array_read(file_array_t* file_array) {
rewind(file_array->fp);
file_array->init_pos = 0;
}
bool file_array_get(file_array_t* file_array, size_t pos, double *valor) {
fseek(file_array->fp, pos * sizeof(double), SEEK_SET);
fread(valor, sizeof(double), 1, file_array->fp);
return true;
}
bool file_array_save(file_array_t* file_array, size_t pos, double valor) {
fseek(file_array->fp, pos * sizeof(double), SEEK_SET);
fwrite(&valor, sizeof(double), 1, file_array->fp);
return true;
}

@ -1,7 +1,7 @@
#include <math.h>
#include <stdio.h>
#include <time.h>
#include "chunk_array.h"
#include "file_array.h"
/*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
@ -91,7 +91,7 @@
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */
void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) {
void fourt(file_array_t* datar, file_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki) {
int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf;
double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559;
double valueri, valueri1, valueri3, valueii3, valuerj3, valueij3, valuerj, valueij, valueii, valuerimin, valueiimin, valuei1, valuer1;
@ -101,8 +101,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
ntot *= nn[idim];
}
chunk_array_read(datar);
chunk_array_read(datai);
file_array_read(datar);
file_array_read(datai);
/*main loop for each dimension*/
np1 = 1;
@ -189,14 +189,10 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
ntot /= 2;
i = 1;
for (j = 1; j <= ntot; j++) {
chunk_array_get(datar, i, &valueri);
////printf("[1] datar[%d] = %f\n", i, valueri);
chunk_array_get(datar, i+1, &valueri1);
////printf("[2] datar[%d] = %f\n", i+1, valueri1);
////printf("[48] Saving in datar the value %f in pos %d\n", valueri, j);
////printf("[49] Saving in datai the value %f in pos %d\n", valueri1, j);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueri1);
file_array_get(datar, i, &valueri);
file_array_get(datar, i+1, &valueri1);
file_array_save(datar, j, valueri);
file_array_save(datai, j, valueri1);
i += 2;
}
@ -214,28 +210,18 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2;
chunk_array_get(datar, i3, &valueri3);
chunk_array_get(datai, i3, &valueii3);
chunk_array_get(datar, j3, &valuerj3);
chunk_array_get(datai, j3, &valueij3);
//printf("[3] datar[%d] = %f\n", i3, valueri3);
//printf("[4] datai[%d] = %f\n", i3, valueii3);
//printf("[5] datar[%d] = %f\n", j3, valuerj3);
//printf("[6] datai[%d] = %f\n", j3, valueij3);
file_array_get(datar, i3, &valueri3);
file_array_get(datai, i3, &valueii3);
file_array_get(datar, j3, &valuerj3);
file_array_get(datai, j3, &valueij3);
tempr = valueri3;
tempi = valueii3;
//printf("[50] Saving in datar the value %f in pos %d\n", valuerj3, i3);
//printf("[51] Saving in datai the value %f in pos %d\n", valueij3, i3);
//printf("[52] Saving in datar the value %f in pos %d\n", tempr, j3);
//printf("[53] Saving in datai the value %f in pos %d\n", tempi, j3);
chunk_array_save(datar, i3, valuerj3);
chunk_array_save(datai, i3, valueij3);
chunk_array_save(datar, j3, tempr);
chunk_array_save(datai, j3, tempi);
file_array_save(datar, i3, valuerj3);
file_array_save(datai, i3, valueij3);
file_array_save(datar, j3, tempr);
file_array_save(datai, j3, tempi);
}
}
@ -260,11 +246,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3;
for (i = 1; i <= n; i++) {
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[7] datar[%d] = %f\n", j, valuerj);
//printf("[8] datai[%d] = %f\n", j, valueij);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
if (icase != 3) {
workr[i] = valuerj;
@ -289,11 +272,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
i2max = i3 + np2 - np1;
i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
//printf("[54] Saving in datar the value %f in pos %d\n", workr[i], i2);
//printf("[55] Saving in datai the value %f in pos %d\n", worki[i], i2);
chunk_array_save(datar, i2, workr[i]);
chunk_array_save(datai, i2, worki[i]);
file_array_save(datar, i2, workr[i]);
file_array_save(datai, i2, worki[i]);
i++;
}
}
@ -314,25 +294,15 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L310:
j = i1;
for (i = imin; i <= ntot; i += istep) {
chunk_array_get(datar, i, &tempr);
chunk_array_get(datai, i, &tempi);
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[9] tempr = %f\n", i, tempr);
//printf("[10] tempi = %f\n", i, tempi);
//printf("[11] datar[%d] = %f\n", j, valuerj);
//printf("[12] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
//printf("[56] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[57] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[58] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[59] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
file_array_get(datar, i, &tempr);
file_array_get(datai, i, &tempi);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
file_array_save(datar, i, valuerj - tempr);
file_array_save(datai, i, valueij - tempi);
file_array_save(datar, j, valuerj + tempr);
file_array_save(datai, j, valueij + tempi);
j += istep;
}
@ -352,44 +322,26 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) {
chunk_array_get(datai, i, &tempr);
chunk_array_get(datar, i, &tempi);
//printf("[13] datai[%d] = %f\n", i, tempr);
//printf("[14] datar[%d] = %f\n", i, tempi);
file_array_get(datai, i, &tempr);
file_array_get(datar, i, &tempi);
tempi = -tempi;
} else {
chunk_array_get(datai, i, &tempr);
//printf("[15] datai[%d] = %f\n", i, tempr);
file_array_get(datai, i, &tempr);
tempr = -tempr;
chunk_array_get(datar, i, &tempi);
//printf("[16] datar[%d] = %f\n", i, tempi);
file_array_get(datar, i, &tempi);
}
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[17] datar[%d] = %f\n", j, valuerj);
//printf("[18] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
//printf("[60] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[61] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
file_array_save(datar, i, valuerj - tempr);
file_array_save(datai, i, valueij - tempi);
//printf("[19] datar[%d] = %f\n", j, valuerj);
//printf("[20] datai[%d] = %f\n", j, valueij);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
file_array_save(datar, j, valuerj + tempr);
file_array_save(datai, j, valueij + tempi);
//printf("[62] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[63] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep;
}
@ -426,29 +378,18 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L510:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
chunk_array_get(datar, i, &valueri);
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, i, &valueii);
chunk_array_get(datai, j, &valueij);
//printf("[21] datar[%d] = %f\n", i, valueri);
//printf("[22] datar[%d] = %f\n", j, valuerj);
//printf("[23] datai[%d] = %f\n", i, valueii);
//printf("[24] datai[%d] = %f\n", j, valueij);
file_array_get(datar, i, &valueri);
file_array_get(datar, j, &valuerj);
file_array_get(datai, i, &valueii);
file_array_get(datai, j, &valueij);
tempr = valueri * wr - valueii * wi;
tempi = valueri * wi + valueii * wr;
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
//printf("[64] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[65] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[66] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[67] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
file_array_save(datar, i, valuerj - tempr);
file_array_save(datai, i, valueij - tempi);
file_array_save(datar, j, valuerj + tempr);
file_array_save(datai, j, valueij + tempi);
j += istep;
}
imin = 2 * imin - i1;
@ -501,11 +442,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1;
chunk_array_get(datar, j, &sr);
chunk_array_get(datai, j, &si);
//printf("[25] datar[%d] = %f\n", j, sr);
//printf("[26] datai[%d] = %f\n", j, si);
file_array_get(datar, j, &sr);
file_array_get(datai, j, &si);
oldsr = 0.;
oldsi = 0.;
@ -514,11 +452,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
stmpr = sr;
stmpi = si;
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[27] datar[%d] = %f\n", j, valuerj);
//printf("[28] datai[%d] = %f\n", j, valueij);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
sr = twowr * sr - oldsr + valuerj;
si = twowr * si - oldsi + valueij;
@ -528,18 +463,12 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
if (j > jmin)
goto L620;
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
workr[i] = wr * sr - wi * si - oldsr + valuerj;
worki[i] = wi * sr + wr * si - oldsi + valueij;
//printf("[85] wr = %f, sr = %f, wi = %f, si = %f, oldsr = %f, datar[j] = %f\n", wr, sr, wi, si, oldsr, valuerj);
//printf("[86] wi = %f, sr = %f, wr = %f, si = %f, oldsi = %f, datai[j] = %f\n", wi, sr, wr, si, oldsi, valueij);
//printf("[83] Saving in workr the value %f in pos %d\n", wr * sr - wi * si - oldsr + valuerj, i);
//printf("[84] Saving in worki the value %f in pos %d\n", wi * sr + wr * si - oldsi + valueij, i);
jmin += ifp2;
i++;
}
@ -551,11 +480,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
//printf("[68] Saving in datar the value %f in pos %d, i = %d\n", workr[i], j3, i);
//printf("[69] Saving in datai the value %f in pos %d, i = %d\n", worki[i], j3, i);
chunk_array_save(datar, j3, workr[i]);
chunk_array_save(datai, j3, worki[i]);
file_array_save(datar, j3, workr[i]);
file_array_save(datai, j3, worki[i]);
i++;
}
}
@ -599,15 +525,10 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L710:
j = jmin;
for (i = imin; i <= ntot; i += np2) {
chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii);
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[29] datar[%d] = %f\n", i, valueri);
//printf("[30] datai[%d] = %f\n", i, valueii);
//printf("[31] datar[%d] = %f\n", j, valuerj);
//printf("[32] datai[%d] = %f\n", j, valueij);
file_array_get(datar, i, &valueri);
file_array_get(datai, i, &valueii);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
sumr = (valueri + valuerj) / 2.;
sumi = (valueii + valueij) / 2.;
@ -616,15 +537,10 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr;
chunk_array_save(datar, i, sumr + tempr);
chunk_array_save(datai, i, difi + tempi);
chunk_array_save(datar, j, sumr - tempr);
chunk_array_save(datai, j, tempi - difi);
//printf("[70] Saving in datar the value %f in pos %d\n", sumr + tempr, i);
//printf("[71] Saving in datai the value %f in pos %d\n", difi + tempi, i);
//printf("[72] Saving in datar the value %f in pos %d\n", sumr - tempr, j);
//printf("[73] Saving in datai the value %f in pos %d\n", tempi - difi, j);
file_array_save(datar, i, sumr + tempr);
file_array_save(datai, i, difi + tempi);
file_array_save(datar, j, sumr - tempr);
file_array_save(datai, j, tempi - difi);
j += np2;
}
@ -642,10 +558,8 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
if (ifrwd == 0)
goto L740;
for (i = imin; i <= ntot; i += np2) {
chunk_array_get(datai, i, &valueii);
//printf("[33] datai[%d] = %f\n", i, valueii);
chunk_array_save(datai, i, -valueii);
//printf("[73] Saving in datai the value %f in pos %d\n", -valueii, i);
file_array_get(datai, i, &valueii);
file_array_save(datai, i, -valueii);
}
L740:
np2 *= 2;
@ -657,86 +571,52 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
i = imin;
goto L755;
L750: ;
chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii);
//printf("[34] datar[%d] = %f\n", i, valueri);
//printf("[35] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, -valueii);
//printf("[74] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[75] Saving in datai the value %f in pos %d\n", -valueii, j);
file_array_get(datar, i, &valueri);
file_array_get(datai, i, &valueii);
file_array_save(datar, j, valueri);
file_array_save(datai, j, -valueii);
L755:
i++;
j--;
if (i < imax)
goto L750;
chunk_array_get(datar, imin, &valuerimin);
chunk_array_get(datai, imin, &valueiimin);
file_array_get(datar, imin, &valuerimin);
file_array_get(datai, imin, &valueiimin);
//printf("[36] datar[%d] = %f\n", imin, valuerimin);
//printf("[37] datai[%d] = %f\n", imin, valueiimin);
file_array_save(datar, j, valuerimin - valueiimin);
file_array_save(datai, j, 0.);
chunk_array_save(datar, j, valuerimin - valueiimin);
chunk_array_save(datai, j, 0.);
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin - valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
if (i >= j) {
goto L780;
} else {
goto L770;
}
L765:
chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii);
file_array_get(datar, i, &valueri);
file_array_get(datai, i, &valueii);
//printf("[38] datar[%d] = %f\n", i, valueri);
//printf("[39] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueii);
//printf("[77] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[78] Saving in datai the value %f in pos %d\n", valueii, j);
file_array_save(datar, j, valueri);
file_array_save(datai, j, valueii);
L770:
i--;
j--;
if (i > imin)
goto L765;
chunk_array_get(datar, imin, &valuerimin);
chunk_array_get(datai, imin, &valueiimin);
//printf("[40] datar[%d] = %f\n", imin, valuerimin);
//printf("[41] datai[%d] = %f\n", imin, valueiimin);
chunk_array_save(datar, j, valuerimin + valueiimin);
chunk_array_save(datai, j, 0.);
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin + valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
file_array_get(datar, imin, &valuerimin);
file_array_get(datai, imin, &valueiimin);
file_array_save(datar, j, valuerimin + valueiimin);
file_array_save(datai, j, 0.);
imax = imin;
goto L745;
L780: ;
chunk_array_get(datai, 1, &valuei1);
chunk_array_get(datar, 1, &valuer1);
//printf("[42] datai[1] = %f\n", valuei1);
//printf("[43] datar[1] = %f\n", valuer1);
chunk_array_save(datar, 1, valuei1 + valuer1);
chunk_array_save(datai, 1, 0.);
//printf("[77] Saving in datar the value %f in pos %d\n", valuei1 + valuer1, 1);
//printf("[78] Saving in datai the value %f in pos %d\n", 0., 1);
file_array_get(datai, 1, &valuei1);
file_array_get(datar, 1, &valuer1);
file_array_save(datar, 1, valuei1 + valuer1);
file_array_save(datai, 1, 0.);
goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
@ -754,35 +634,21 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
if (idim > 2) {
j = jmax + np0;
for (i = imin; i <= imax; i++) {
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[44] datar[%d] = %f\n", j, valuerj);
//printf("[45] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij);
//printf("[79] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[80] Saving in datai the value %f in pos %d\n", -valueij, i);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
file_array_save(datar, i, valuerj);
file_array_save(datai, i, -valueij);
j--;
}
}
j = jmax;
for (i = imin; i <= imax; i += np0) {
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[46] datar[%d] = %f\n", j, valuerj);
//printf("[47] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij);
//printf("[81] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[82] Saving in datai the value %f in pos %d\n", -valueij, i);
file_array_get(datar, j, &valuerj);
file_array_get(datai, j, &valueij);
file_array_save(datar, i, valuerj);
file_array_save(datai, i, -valueij);
j -= np0;
}
}

@ -1,645 +0,0 @@
#include <math.h>
#include <stdio.h>
#include <time.h>
#include "chunk_array.h"
/*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
/* EVALUATES COMPLEX FOURIER SERIES FOR COMPLEX OR REAL FUNCTIONS. */
/* THAT IS, IT COMPUTES */
/* FTRAN(J1,J2,...)=SUM(DATA(I1,I2,...)*W1**(I1-1)*(J1-1) */
/* *W2**(I2-1)*(J2-1)*...), */
/* WHERE W1=EXP(-2*PI*SQRT(-1)/NN(1)), W2=EXP(-2*PI*SQRT(-1)/NN(2)), */
/* ETC. AND I1 AND J1 RUN FROM 1 TO NN(1), I2 AND J2 RUN FROM 1 TO */
/* NN(2), ETC. THERE IS NO LIMIT ON THE DIMENSIONALITY (NUMBER OF */
/* SUBSCRIPTS) OF THE ARRAY OF DATA. THE PROGRAM WILL PERFORM */
/* A THREE-DIMENSIONAL FOURIER TRANSFORM AS EASILY AS A ONE-DIMEN- */
/* SIONAL ONE, THO IN A PROPORTIONATELY GREATER TIME. AN INVERSE */
/* TRANSFORM CAN BE PERFORMED, IN WHICH THE SIGN IN THE EXPONENTIALS */
/* IS +, INSTEAD OF -. IF AN INVERSE TRANSFORM IS PERFORMED UPON */
/* AN ARRAY OF TRANSFORMED DATA, THE ORIGINAL DATA WILL REAPPEAR, */
/* MULTIPLIED BY NN(1)*NN(2)*... THE ARRAY OF INPUT DATA MAY BE */
/* REAL OR COMPLEX, AT THE PROGRAMMERS OPTION, WITH A SAVING OF */
/* ABOUT THIRTY PER CENT IN RUNNING TIME FOR REAL OVER COMPLEX. */
/* (FOR FASTEST TRANSFORM OF REAL DATA, NN(1) SHOULD BE EVEN.) */
/* THE TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE RETURNED IN THE */
/* ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA. THE LENGTH */
/* OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER. THE */
/* PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND IS */
/* PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO. */
/* TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA. LET NTOT BE THE */
/* TOTAL NUMBER OF POINTS (REAL OR COMPLEX) IN THE DATA ARRAY, THAT */
/* IS, NTOT=NN(1)*NN(2)*... DECOMPOSE NTOT INTO ITS PRIME FACTORS, */
/* SUCH AS 2**K2 * 3**K3 * 5**K5 * ... LET SUM2 BE THE SUM OF ALL */
/* THE FACTORS OF TWO IN NTOT, THAT IS, SUM2 = 2*K2. LET SUMF BE */
/* THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS, SUMF = 3*K3+5*K5+.. */
/* THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA */
/* IS T = T0 + T1*NTOT + T2*NTOT*SUM2 + T3*NTOT*SUMF. FOR THE PAR- */
/* TICULAR IMPLEMENTATION FORTRAN 32 ON THE CDC 3300 (FLOATING POINT */
/* ADD TIME = SIX MICROSECONDS), */
/* T = 3000 + 600*NTOT + 50*NTOT*SUM2 + 175*NTOT*SUMF MICROSECONDS */
/* ON COMPLEX DATA. */
/* IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN IN A TIME */
/* PROPORTIONAL TO NTOT**2. FOR HIGHLY COMPOSITE NTOT, THE SAVINGS */
/* OFFERED BY COOLEY-TUKEY CAN BE DRAMATIC. A MATRIX 100 BY 100 WILL */
/* BE TRANSFORMED IN TIME PROPORTIONAL TO 10000*(2+2+2+2+5+5+5+5) = */
/* 280,000 (ASSUMING T2 AND T3 TO BE ROUGHLY COMPARABLE) VERSUS */
/* 10000**2 = 100,000,000 FOR THE STRAIGHTFORWARD TECHNIQUE. */
/* THE COOLEY-TUKEY ALGORITHM PLACES TWO RESTRICTIONS UPON THE */
/* NATURE OF THE DATA BEYOND THE USUAL RESTRICTION THAT */
/* THE DATA FROM ONE CYCLE OF A PERIODIC FUNCTION. THEY ARE-- */
/* 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES */
/* MUST BE THE SAME. */
/* 2. CONSIDERING THE DATA TO BE IN THE TIME DOMAIN, */
/* THEY MUST BE EQUI-SPACED AT INTERVALS OF DT. FURTHER, THE TRANS- */
/* FORM VALUES, CONSIDERED TO BE IN FREQUENCY SPACE, WILL BE EQUI- */
/* SPACED FROM 0 TO 2*PI*(NN(I)-1)/(NN(I)*DT) AT INTERVALS OF */
/* 2*PI/(NN(I)*DT) FOR EACH DIMENSION OF LENGTH NN(I). OF COURSE, */
/* DT NEED NOT BE THE SAME FOR EVERY DIMENSION. */
/* THE CALLING SEQUENCE IS-- */
/* CALL FOURT(DATAR,DATAI,NN,NDIM,IFRWD,ICPLX,WORKR,WORKI) */
/* DATAR AND DATAI ARE THE ARRAYS USED TO HOLD THE REAL AND IMAGINARY */
/* PARTS OF THE INPUT DATA ON INPUT AND THE TRANSFORM VALUES ON */
/* OUTPUT. THEY ARE FLOATING POINT ARRAYS, MULTIDIMENSIONAL WITH */
/* IDENTICAL DIMENSIONALITY AND EXTENT. THE EXTENT OF EACH DIMENSION */
/* IS GIVEN IN THE INTEGER ARRAY NN, OF LENGTH NDIM. THAT IS, */
/* NDIM IS THE DIMENSIONALITY OF THE ARRAYS DATAR AND DATAI. */
/* IFRWD IS AN INTEGER USED TO INDICATE THE DIRECTION OF THE FOURIER */
/* TRANSFORM. IT IS NON-ZERO TO INDICATE A FORWARD TRANSFORM */
/* (EXPONENTIAL SIGN IS -) AND ZERO TO INDICATE AN INVERSE TRANSFORM */
/* (SIGN IS +). ICPLX IS AN INTEGER TO INDICATE WHETHER THE DATA */
/* ARE REAL OR COMPLEX. IT IS NON-ZERO FOR COMPLEX, ZERO FOR REAL. */
/* IF IT IS ZERO (REAL) THE CONTENTS OF ARRAY DATAI WILL BE ASSUMED */
/* TO BE ZERO, AND NEED NOT BE EXPLICITLY SET TO ZERO. AS EXPLAINED */
/* ABOVE, THE TRANSFORM RESULTS ARE ALWAYS COMPLEX AND ARE STORED */
/* IN DATAR AND DATAI ON RETURN. WORKR AND WORKI ARE ARRAYS USED */
/* FOR WORKING STORAGE. THEY ARE NOT NECESSARY IF ALL THE DIMENSIONS */
/* OF THE DATA ARE POWERS OF TWO. IN THIS CASE, THE ARRAYS MAY BE */
/* REPLACED BY THE NUMBER 0 IN THE CALLING SEQUENCE. THUS, USE OF */
/* POWERS OF TWO CAN FREE A GOOD DEAL OF STORAGE. IF ANY DIMENSION */
/* IS NOT A POWER OF TWO, THESE ARRAYS MUST BE SUPPLIED. THEY ARE */
/* FLOATING POINT, ONE DIMENSIONAL OF LENGTH EQUAL TO THE LARGEST */
/* ARRAY DIMENSION, THAT IS, TO THE LARGEST VALUE OF NN(I). */
/* WORKR AND WORKI, IF SUPPLIED, MUST NOT BE THE SAME ARRAYS AS DATAR */
/* OR DATAI. ALL SUBSCRIPTS OF ALL ARRAYS BEGIN AT 1. */
/* THERE ARE NO ERROR MESSAGES OR ERROR HALTS IN THIS PROGRAM. THE */
/* PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(I) IS LESS THAN ONE. */
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */
void fourt_covar(chunk_array_t* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) {
int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf;
double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559;
double value1, valuei, valuej, valuei1, valueimin, valuei3, valuej3;
ntot = 1;
for (idim = 0; idim < ndim; idim++) {
ntot *= nn[idim];
}
chunk_array_read(datar);
/*main loop for each dimension*/
np1 = 1;
for (idim = 1; idim <= ndim; idim++) {
n = nn[idim - 1];
np2 = np1 * n;
if (n < 1) {
goto L920;
} else if (n == 1) {
goto L900;
}
/*is n a power of 2 and if not, what are its factors*/
m = n;
ntwo = np1;
iff = 1;
idiv = 2;
L10:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L50;
if (irem == 0) {
ntwo *= 2;
ifact[iff] = idiv;
iff++;
m = iquot;
goto L10;
}
idiv = 3;
inon2 = iff;
L30:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L60;
if (irem == 0) {
ifact[iff] = idiv;
iff++;
m = iquot;
goto L30;
}
idiv += 2;
goto L30;
L50:
inon2 = iff;
if (irem != 0)
goto L60;
ntwo *= 2;
goto L70;
L60:
ifact[iff] = m;
L70:
non2p = np2 / ntwo;
/*SEPARATE FOUR CASES--
1. COMPLEX TRANSFORM
2. REAL TRANSFORM FOR THE 2ND, 3RD, ETC. DIMENSION. METHOD: TRANSFORM HALF THE DATA, SUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY.
3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD. METHOD: SET THE IMAGINARY PARTS TO ZERO.
4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN. METHOD: TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD-NUMBERED REAL VALUES. UNSCRAMBLE AND SUPPLY THE SECOND HALF BY CONJUGATE SYMMETRY. */
icase = 1;
ifmin = 1;
if (icplx != 0)
goto L100;
icase = 2;
if (idim > 1)
goto L100;
icase = 3;
if (ntwo <= np1)
goto L100;
icase = 4;
ifmin = 2;
ntwo /= 2;
n /= 2;
np2 /= 2;
ntot /= 2;
i = 1;
for (j = 1; j <= ntot; j++) {
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, i, &valuei1);
chunk_array_save(datar, j, valuei);
//datar[j] = datar[i];
datai[j] = valuei1;
i += 2;
}
/*shuffle data by bit reversal, since n = 2^k. As the shuffling can be done by simple interchange, no working array is needed*/
L100:
if (non2p > 1)
goto L200;
np2hf = np2 / 2;
j = 1;
for (i2 = 1; i2 <= np2; i2 += np1) {
if (j >= i2)
goto L130;
i1max = i2 + np1 - 1;
for (i1 = i2; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2;
//tempr = datar[i3];
tempi = datai[i3];
//datar[i3] = datar[j3];
datai[i3] = datai[j3];
//datar[j3] = tempr;
datai[j3] = tempi;
chunk_array_get(datar, i3, &valuei3);
chunk_array_get(datar, j3, &valuej3);
chunk_array_save(datar, i3, valuej3);
chunk_array_save(datar, j3, valuei3);
}
}
L130:
m = np2hf;
L140:
if (j <= m) {
j += m;
} else {
j -= m;
m /= 2;
if (m >= np1)
goto L140;
}
}
goto L300;
/*shuffle data by digit reversal for general n*/
L200:
for (i1 = 1; i1 <= np1; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3;
for (i = 1; i <= n; i++) {
if (icase != 3) {
//workr[i] = datar[j];
chunk_array_get(datar, j, &workr[i]);
worki[i] = datai[j];
} else {
chunk_array_get(datar, j, &workr[i]);
//workr[i] = datar[j];
worki[i] = 0.;
}
ifp2 = np2;
iff = ifmin;
L250:
ifp1 = ifp2 / ifact[iff];
j += ifp1;
if (j >= i3 + ifp2) {
j -= ifp2;
ifp2 = ifp1;
iff += 1;
if (ifp2 > np1)
goto L250;
}
}
i2max = i3 + np2 - np1;
i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
chunk_array_save(datar, i2, workr[i]);
//datar[i2] = workr[i];
datai[i2] = worki[i];
i++;
}
}
}
/*special case-- W=1*/
L300:
i1rng = np1;
if (icase == 2)
i1rng = np0 * (1 + nprev / 2);
if (ntwo <= np1)
goto L600;
for (i1 = 1; i1 <= i1rng; i1++) {
imin = np1 + i1;
istep = 2 * np1;
goto L330;
L310:
j = i1;
for (i = imin; i <= ntot; i += istep) {
//tempr = datar[i];
tempi = datai[i];
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] = datar[j] + tempr;
datai[j] = datai[j] + tempi;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - valuei);
chunk_array_save(datar, j, valuej + valuei);
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L330:
if (istep <= ntwo)
goto L310;
/*special case-- W = -sqrt(-1)*/
imin = 3 * np1 + i1;
istep = 4 * np1;
goto L420;
L400:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) {
tempr = datai[i];
//tempi = -datar[i];
chunk_array_get(datar, i, &tempi);
tempi = -tempi;
} else {
tempr = -datai[i];
//tempi = datar[i];
chunk_array_get(datar, i, &tempi);
}
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - tempr);
chunk_array_save(datar, j, valuej - tempr);
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L420:
if (istep <= ntwo)
goto L400;
}
/*main loop for factors of 2. W=EXP(-2*PI*SQRT(-1)*m/mmax) */
theta = -TWOPI / 8.;
wstpr = 0.;
wstpi = -1.;
if (ifrwd == 0) {
theta = -theta;
wstpi = 1.;
}
mmax = 8 * np1;
goto L540;
L500:
wminr = cos(theta);
wmini = sin(theta);
wr = wminr;
wi = wmini;
mmin = mmax / 2 + np1;
mstep = np1 * 2;
for (m = mmin; m <= mmax; m += mstep) {
for (i1 = 1; i1 <= i1rng; i1++) {
istep = mmax;
imin = m + i1;
L510:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
tempr = valuei * wr - datai[i] * wi;
tempi = valuei * wi + datai[i] * wr;
chunk_array_save(datar, i, valuej - tempr);
//datar[i] = valuej - tempr;
datai[i] = datai[j] - tempi;
chunk_array_save(datar, i, valuej + tempr);
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
if (istep <= ntwo)
goto L510;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
wstpr = wminr;
wstpi = wmini;
theta /= 2.;
mmax += mmax;
L540:
if (mmax <= ntwo)
goto L500;
/*main loop for factors not equal to 2-- W=EXP(-2*PI*SQRT(-1)*(j2-i3)/ifp2)*/
L600:
if (non2p <= 1)
goto L700;
ifp1 = ntwo;
iff = inon2;
L610:
ifp2 = ifact[iff] * ifp1;
theta = -TWOPI / (double)ifact[iff];
if (ifrwd == 0)
theta = -theta;
thetm = theta / (double)(ifp1 / np1);
wstpr = cos(theta);
wstpi = sin(theta);
wmstr = cos(thetm);
wmsti = sin(thetm);
wminr = 1.;
wmini = 0.;
for (j1 = 1; j1 <= ifp1; j1 += np1) {
i1max = j1 + i1rng - 1;
for (i1 = j1; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
i = 1;
wr = wminr;
wi = wmini;
j2max = i3 + ifp2 - ifp1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
twowr = 2. * wr;
jmin = i3;
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1;
//sr = datar[j];
chunk_array_get(datar, j, &sr);
si = datai[j];
oldsr = 0.;
oldsi = 0.;
j -= ifp1;
L620:
stmpr = sr;
stmpi = si;
chunk_array_get(datar, j, &valuej);
sr = twowr * sr - oldsr + valuej;
si = twowr * si - oldsi + datai[j];
oldsr = stmpr;
oldsi = stmpi;
j -= ifp1;
if (j > jmin)
goto L620;
workr[i] = wr * sr - wi * si - oldsr + valuej;
worki[i] = wi * sr + wr * si - oldsi + datai[j];
jmin += ifp2;
i++;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
i = 1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
//datar[j3] = workr[i];
chunk_array_save(datar, j3, workr[i]);
datai[j3] = worki[i];
i++;
}
}
}
}
wtemp = wminr * wmsti;
wminr = wminr * wmstr - wmini * wmsti;
wmini = wmini * wmstr + wtemp;
}
iff++;
ifp1 = ifp2;
if (ifp1 < np2)
goto L610;
/*complete a real transform in the 1st dimension, n even, by conjugate symmetries*/
L700:
switch (icase) {
case 1:
goto L900;
break;
case 2:
goto L800;
break;
case 3:
goto L900;
break;
}
nhalf = n;
n += n;
theta = -TWOPI / (double)n;
if (ifrwd == 0)
theta = -theta;
wstpr = cos(theta);
wstpi = sin(theta);
wr = wstpr;
wi = wstpi;
imin = 2;
jmin = nhalf;
goto L725;
L710:
j = jmin;
for (i = imin; i <= ntot; i += np2) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
sumr = (valuei + valuej) / 2.;
sumi = (datai[i] + datai[j]) / 2.;
difr = (valuei - valuej) / 2.;
difi = (datai[i] - datai[j]) / 2.;
tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr;
chunk_array_save(datar, i, sumr + tempr);
//datar[i] = sumr + tempr;
datai[i] = difi + tempi;
chunk_array_save(datar, j, sumr - tempr);
//datar[j] = sumr - tempr;
datai[j] = tempi - difi;
j += np2;
}
imin++;
jmin--;
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
L725:
if (imin < jmin) {
goto L710;
} else if (imin > jmin) {
goto L740;
}
if (ifrwd == 0)
goto L740;
for (i = imin; i <= ntot; i += np2) {
datai[i] = -datai[i];
}
L740:
np2 *= 2;
ntot *= 2;
j = ntot + 1;
imax = ntot / 2 + 1;
L745:
imin = imax - nhalf;
i = imin;
goto L755;
L750:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = -datai[i];
L755:
i++;
j--;
if (i < imax)
goto L750;
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
//datar[j] = datar[imin] - datai[imin];
datai[j] = 0.;
if (i >= j) {
goto L780;
} else {
goto L770;
}
L765:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = datai[i];
L770:
i--;
j--;
if (i > imin)
goto L765;
//datar[j] = datar[imin] + datai[imin];
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
datai[j] = 0.;
imax = imin;
goto L745;
L780:
chunk_array_get(datar, 1, &value1);
chunk_array_save(datar, 1, value1 + datai[1]);
//datar[1] += datai[1];
datai[1] = 0.;
goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
L800:
if (nprev <= 2)
goto L900;
for (i3 = 1; i3 <= ntot; i3 += np2) {
i2max = i3 + np2 - np1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
imax = i2 + np1 - 1;
imin = i2 + i1rng;
jmax = 2 * i3 + np1 - imin;
if (i2 > i3)
jmax += np2;
if (idim > 2) {
j = jmax + np0;
for (i = imin; i <= imax; i++) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j--;
}
}
j = jmax;
for (i = imin; i <= imax; i += np0) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j -= np0;
}
}
}
/*end of loop on each dimension*/
L900:
np0 = np1;
np1 = np2;
nprev = n;
}
L920: return;
}

@ -4,7 +4,7 @@
#include <time.h>
/*gamma covariance function*/
double gammf(double h, double alpha, int cores) {
double gammf(double h, double alpha) {
float delta;
double z;

@ -4,19 +4,19 @@
#define NTAB 32
double gasdev(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
double gasdev(long* idum, long* idum2, long* iy, long iv[NTAB]) {
/*returns a normally distributed deviate with 0 mean*/
/*and unit variance, using ran2(idum) as the source */
/*of uniform deviates */
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores);
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB]);
static int iset = 0;
static double gset;
double fac, rsq, v1, v2;
if (iset == 0) {
do {
v1 = 2.0 * ran2(idum, idum2, iy, iv, cores) - 1.0;
v2 = 2.0 * ran2(idum, idum2, iy, iv, cores) - 1.0;
v1 = 2.0 * ran2(idum, idum2, iy, iv) - 1.0;
v2 = 2.0 * ran2(idum, idum2, iy, iv) - 1.0;
rsq = v1 * v1 + v2 * v2;
} while (rsq >= 1.0 || rsq == 0.0);

@ -10,7 +10,7 @@
/*output: */
/* realization: structure defining the realization*/
void generate(long* seed, int n, struct realization_mod* realization, int cores) {
void generate(long* seed, int n, struct realization_mod* realization) {
int i;
long idum2 = 123456789, iy = 0;
long* iv;
@ -25,19 +25,6 @@ void generate(long* seed, int n, struct realization_mod* realization, int cores)
/*realization definition*/
(*realization).n = n;
(*realization).code = 0;
/*(*realization).vector_2 = chunk_array_create("realization1.txt", n, 512);
if ((*realization).vector_2 == NULL) {
log_error("RESULT = failed - No memory available in generate");
exit(1);
}*/
/*Gaussian white noise generation*/
/*for (i = 0; i < n; i++) {
double value = gasdev(seed, &idum2, &iy, iv, cores);
chunk_array_save((*realization).vector_2, i, value);
}
chunk_array_flush((*realization).vector_2);*/
free(iv);
}

@ -2,7 +2,7 @@
#include <stddef.h>
#include <stdio.h>
#include <string.h>
#include "chunk_array.h"
#include "file_array.h"
#ifndef _GEOSTAT_H
#define _GEOSTAT_H
@ -285,7 +285,7 @@ struct realization_mod {
int n;
int code;
double* vector;
chunk_array_t* vector_2;
file_array_t* vector_2;
};
/*=====================================================*/
@ -300,7 +300,7 @@ struct realization_mod {
void axes(double* ap, double* scf, int N);
/*cardsin covariance value for lag h*/
double cardsin(double h, int cores);
double cardsin(double h);
/*Cholesky decomposition of matrix C */
/* C : symetric positive-definite matrix recorded */
@ -328,7 +328,7 @@ void coordinates(int maille, int i[3], struct grid_mod grid);
/*variogram: structure defined above */
/*grid: structure defined above */
/*n: number of gridblocks along X,Y and Z*/
void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
void covariance(file_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3]);
/*computation of the covariance matrix for the well data*/
/*well coordinates are given as a number of cells */
@ -358,10 +358,10 @@ void cov_matrix(double* C, struct vario_mod variogram, struct welldata_mod well,
/*dj: distance along the Y axis */
/*dk: distance along the Z axis */
/* The returned value is the computed covariance value */
double cov_value(struct vario_mod variogram, double di, double dj, double dk, int cores);
double cov_value(struct vario_mod variogram, double di, double dj, double dk);
/*cubic covariance value for lag h*/
double cubic(double h, int cores);
double cubic(double h);
/*truncation of the power spectrum to remove */
/*high frequencies - isotropic case */
@ -404,7 +404,7 @@ double exponential(double h);
/*workr: utility real part vector for storage */
/*worki: utility imaginary part vector for storage */
/*The transformed data are returned in datar and datai*/
void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores);
void fourt(file_array_t* datar, file_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki);
/*calculates F(x) = (1/a)*exp(-x*x/2)*/
double funtrun1(double x);
@ -413,7 +413,7 @@ double funtrun1(double x);
float G(float x);
/*gamma covariance value for lag h and exponent alpha*/
double gammf(double h, double alpha, int cores);
double gammf(double h, double alpha);
/*returns the value ln(G(x))*/
float gammln(float xx);
@ -425,7 +425,7 @@ float gammp(float a, float x);
/*and unit variance, using ran1(idum) as the source */
/*of uniform deviates */
/*idum: seed */
double gasdev(long* idum, long* idum2, long* iy, long* iv, int cores);
double gasdev(long* idum, long* idum2, long* iy, long* iv);
/*gaussian covariance value for lag h*/
double gaussian(double h);
@ -480,7 +480,7 @@ void gradual(struct grad_mod grad, float* Zo, float* Z, float* Zfinal, int n, st
/*n: vector with the number of cells along the */
/* X, Y and Z axes for the underlying grid */
/* i = [0 1 2] */
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3]);
/*incomplete gamma function evaluated by its series*/
/*representation as gamser, also returns ln(G(a)) */
@ -505,7 +505,7 @@ void krig_stat(float* b, int n, struct vario_mod variogram, struct welldata_mod
/*i: considered direction */
/*scf: correlation length */
/*ap: normalized anisotropy axes */
int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores);
int length(int N, int i, double* scf, double* ap, double D, int Nvari);
/*calculates L.Z/
/* L : lower triangular matrix recorded */
@ -519,7 +519,7 @@ int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores
void LtimeZ(double* L, float* Z, float* b, int n);
/*determines the greatest prime factor of an integer*/
int maxfactor(int n, int cores);
int maxfactor(int n);
/*metrop returns a boolean varible that issues a */
/*verdict on whether to accept a reconfiguration */
@ -545,7 +545,7 @@ double power(double h, double alpha);
/*generates uniform deviates between 0 and 1*/
/*idum: seed */
double ran2(long* idum, long* idum2, long* iy, long* iv, int cores);
double ran2(long* idum, long* idum2, long* iy, long* iv);
/*calculates bt.b */
/* b : vector, bi, i = [0...n-1] */

@ -2,8 +2,8 @@
#include <time.h>
/* compute the length for one dimension*/
int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores) {
int maxfactor(int n, int cores);
int length(int N, int i, double* scf, double* ap, double D, int Nvari) {
int maxfactor(int n);
double temp1, temp2;
int n, j, k, nmax;
int nlimit = 13;
@ -29,10 +29,10 @@ int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores
}
if ((n % 2) != 0)
n = n + 1;
nmax = maxfactor(n, cores);
nmax = maxfactor(n);
while (nmax > nlimit) {
n += 2;
nmax = maxfactor(n, cores);
nmax = maxfactor(n);
}
}

@ -1,7 +1,7 @@
#include "genlib.h"
/*determines the greatest prime factor of an integer*/
int maxfactor(int n, int cores) {
int maxfactor(int n) {
int test_fact(int* pnum, int fact, int* pmaxfac);
int lnum, fact;
int maxfac;

@ -1,5 +1,5 @@
#include "geostat.h"
#include "chunk_array.h"
#include "file_array.h"
#include <math.h>
#include <stdarg.h>
#include <stddef.h>
@ -21,7 +21,7 @@
/* must be a Gaussian white noise */
/*realization: structure defining a realization*/
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, chunk_array_t* realization, int solver, int cores, long* seed) {
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, file_array_t* realization, int solver, long* seed) {
int i, j, k, maille0, maille1;
int ntot;
@ -33,11 +33,11 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
*seed = -(*seed);
ntot = n[0] * n[1] * n[2];
chunk_array_save(realization, 0, 0.);
file_array_save(realization, 0, 0.);
if (solver == 1) {
for (i = 0; i < ntot; i++) {
double value = gasdev(seed, &idum2, &iy, iv, cores);
chunk_array_save(realization, i+1, value);
double value = gasdev(seed, &idum2, &iy, iv);
file_array_save(realization, i+1, value);
}
} else {
for (k = 1; k <= n[2]; k++) {
@ -45,10 +45,10 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
for (i = 1; i <= n[0]; i++) {
maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0];
if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) {
double value = gasdev(seed, &idum2, &iy, iv, cores);
chunk_array_save(realization, maille1, value);
double value = gasdev(seed, &idum2, &iy, iv);
file_array_save(realization, maille1, value);
} else {
chunk_array_save(realization, maille1, 0.);
file_array_save(realization, maille1, 0.);
}
}
}

@ -16,7 +16,7 @@
#define EPS 1.2e-7
#define RNMX (1.0 - EPS)
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB]) {
int j;
long k;
double temp;

@ -7,7 +7,7 @@
#include "toolsFFTMA.h"
#include "toolsFFTPSIM.h"
#include "toolsIO.h"
#include "chunk_array.h"
#include "file_array.h"
#include <Python.h>
#include <math.h>
#include <numpy/arrayobject.h>
@ -31,12 +31,11 @@ static PyObject* genFunc(PyObject* self, PyObject* args) {
struct statistic_mod stat;
PyObject* out_array;
npy_intp out_dims[NPY_MAXDIMS];
int cores;
if (!Py_getvalues(args, &seed, &grid, &variogram, &stat, &cores))
if (!Py_getvalues(args, &seed, &grid, &variogram, &stat))
return NULL;
Py_kgeneration(seed, grid, stat, variogram, &Z, &Y, n, cores);
Py_kgeneration(seed, grid, stat, variogram, &Z, &Y, n);
out_dims[0] = grid.NZ;
out_dims[1] = grid.NY;
@ -56,8 +55,7 @@ static PyObject* genFunc(PyObject* self, PyObject* args) {
free(variogram.ap);
free(variogram.vario);
/*chunk_array_free(Z.vector_2);
remove("realization1.txt");*/
remove("realization.txt");
return out_array;
}

@ -1,2 +0,0 @@
python3 setup.py install --user
ENV=analysis python3 test.py $1 2>&1 | split -l 5000000 - log_$1_generate_improve-

@ -42,7 +42,7 @@ module_FFTMA = Extension(
"./lib_src/clean_real.c",
"./lib_src/testmemory.c",
"./lib_src/genlib.c",
"./lib_src/chunk_array.c"
"./lib_src/file_array.c"
],
)

Binary file not shown.

@ -0,0 +1,54 @@
from FFTMA import gen
import numpy as np
import unittest
import time
def generate(N):
start_time = time.time()
nx, ny, nz = N,N,N
dx, dy, dz = 1.0, 1.0, 1.0
seed= 1548762 #rdi(10000,99999)
var=1
vario=2
alpha=1
lcx=2
lcy=4
lcz=16
ap1x=1
ap1y=0
ap1z=0
ap2x=0
ap2y=1
ap2z=0
v1 = (var, vario, alpha, lcx, lcy, lcz, ap1x, ap1y, ap1z, ap2x, ap2y, ap2z)
variograms = [v1]
mean=15.3245987
variance=3.5682389
typ=3
k = gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ)
print(f"Generation with N = {N} time = {time.time() - start_time}s")
return k
def test(N):
k = generate(N)
k_correct = np.load(f"out_{N}.npy")
comparison = k == k_correct
return comparison.all()
class TestGeneration(unittest.TestCase):
def test_8(self):
self.assertTrue(test(8))
def test_16(self):
self.assertTrue(test(16))
def test_32(self):
self.assertTrue(test(32))
def test_64(self):
self.assertTrue(test(64))
Loading…
Cancel
Save