From b5ae9abdc628e9c57ba3c5221575229d5079a571 Mon Sep 17 00:00:00 2001 From: chortas Date: Wed, 22 Dec 2021 21:50:51 -0300 Subject: [PATCH] Add cpu analysis --- fftma_module/gen/analysis.ipynb | 5360 ++++++++++++++++++++++--------- 1 file changed, 3926 insertions(+), 1434 deletions(-) diff --git a/fftma_module/gen/analysis.ipynb b/fftma_module/gen/analysis.ipynb index 00d2f6b..c0cac47 100644 --- a/fftma_module/gen/analysis.ipynb +++ b/fftma_module/gen/analysis.ipynb @@ -45,7 +45,7 @@ }, { "cell_type": "code", - "execution_count": 22, + "execution_count": 49, "metadata": {}, "outputs": [], "source": [ @@ -55,13 +55,14 @@ " \"gasdev\": [\"ran2\"],\n", " \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n", "}\n", - "overall_time= {}\n", + "functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n", + "overall_time = {}\n", "overall_memory = {}" ] }, { "cell_type": "code", - "execution_count": 23, + "execution_count": 98, "metadata": {}, "outputs": [], "source": [ @@ -79,7 +80,7 @@ " if \"CPU\" in split_line:\n", " idx_cpu = split_line.index(\"CPU\") + 1\n", " idx_per = idx_cpu + 1\n", - " row[\"cpu\"] = row.get('CPU', [])\n", + " row[\"cpu\"] = row.get('cpu', [])\n", " row[\"cpu\"].append(float(split_line[idx_per].rsplit(\"%\")[0]))\n", " continue\n", " \n", @@ -95,6 +96,7 @@ " row[\"memory\"] = used_virtual_mem \n", " row[\"time\"] = elapsed\n", " if \"cpu\" in row:\n", + " if row[\"function\"] == \"generate\": print(row[\"cpu\"])\n", " row[\"cpu\"] = sum(row[\"cpu\"]) / len(row[\"cpu\"])\n", " data.append(row)\n", " row = {}\n", @@ -132,7 +134,6 @@ "outputs": [], "source": [ "def merge_dfs(dfs):\n", - " functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n", " df_final = pd.concat(dfs, join='inner').sort_values(by=('time', 'sum'), ascending=False) \n", "\n", " memory_min, memory_max, memory_median = [], [], []\n", @@ -242,7 +243,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 77, "metadata": {}, "outputs": [], "source": [ @@ -258,12 +259,12 @@ " \"cov_value\": \"covariance\",\n", "}\n", "\n", - "def plot_treemap(df, column, name):\n", + "def plot_treemap(df, column, name, title):\n", " df[\"parent\"] = [parents.get(item, \"\") for item in df.index]\n", " df2 = df.reset_index()\n", " df2[name] = df2[[column]]\n", " df2 = df2[[\"function\", \"parent\", name]]\n", - " fig3 = px.treemap(df2, names='function', parents='parent',values=name, color=\"parent\", title=\"Time treemap\")\n", + " fig3 = px.treemap(df2, names='function', parents='parent',values=name, color=\"parent\", title=title)\n", " fig3.show()" ] }, @@ -283,9 +284,16 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 100, "metadata": {}, "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "[32.388401, 20.1, 100.1, 5.228205, 5.363158, 5.1, 12.295122, 100.1]\n" + ] + }, { "data": { "text/html": [ @@ -350,9 +358,9 @@ " 1.2\n", " 1.2\n", " 1.2\n", - " 75.100000\n", - " 75.100000\n", - " 75.100000\n", + " 34.560105\n", + " 34.560105\n", + " 34.560105\n", " 0.633546\n", " 0.633546\n", " 0.633546\n", @@ -364,9 +372,9 @@ " 1.3\n", " 1.3\n", " 1.3\n", - " 100.100000\n", - " 100.100000\n", - " 100.100000\n", + " 35.084361\n", + " 35.084361\n", + " 35.084361\n", " 0.397899\n", " 0.397899\n", " 0.397899\n", @@ -379,8 +387,8 @@ " 0.2\n", " 0.0\n", " 0.000000\n", - " 100.100000\n", - " 5.669727\n", + " 62.562500\n", + " 2.701072\n", " 0.000106\n", " 0.007636\n", " 0.000579\n", @@ -392,9 +400,9 @@ " -0.1\n", " -0.1\n", " -0.1\n", - " 30.534783\n", - " 30.534783\n", - " 30.534783\n", + " 32.746141\n", + " 32.746141\n", + " 32.746141\n", " 0.234361\n", " 0.234361\n", " 0.234361\n", @@ -406,9 +414,9 @@ " -0.1\n", " -0.1\n", " -0.1\n", - " 31.918182\n", - " 31.918182\n", - " 31.918182\n", + " 33.296729\n", + " 33.296729\n", + " 33.296729\n", " 0.224350\n", " 0.224350\n", " 0.224350\n", @@ -421,8 +429,8 @@ " 0.2\n", " 0.0\n", " 0.000000\n", - " 100.100000\n", - " 0.859143\n", + " 37.537500\n", + " 0.925280\n", " 0.000103\n", " 0.000966\n", " 0.000134\n", @@ -435,8 +443,8 @@ " 0.2\n", " 0.0\n", " 0.000000\n", - " 100.100000\n", - " 0.998148\n", + " 25.037500\n", + " 0.699745\n", " 0.000101\n", " 0.000583\n", " 0.000133\n", @@ -449,8 +457,8 @@ " 0.0\n", " 0.0\n", " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 0.012500\n", + " 0.004167\n", " 0.000553\n", " 0.000795\n", " 0.000664\n", @@ -504,9 +512,9 @@ " 0.0\n", " 0.0\n", " 0.0\n", - " 0.000000\n", - " 0.000000\n", - " 0.000000\n", + " 25.025000\n", + " 25.025000\n", + " 25.025000\n", " 0.000454\n", " 0.000454\n", " 0.000454\n", @@ -546,44 +554,44 @@ "" ], "text/plain": [ - " memory cpu \\\n", - " min max median min max mean \n", - "function \n", - "Py_kgeneration 1.2 1.2 1.2 75.100000 75.100000 75.100000 \n", - "generate 1.3 1.3 1.3 100.100000 100.100000 100.100000 \n", - "gasdev -0.2 0.2 0.0 0.000000 100.100000 5.669727 \n", - "fftma2 -0.1 -0.1 -0.1 30.534783 30.534783 30.534783 \n", - "covariance -0.1 -0.1 -0.1 31.918182 31.918182 31.918182 \n", - "cov_value -0.2 0.2 0.0 0.000000 100.100000 0.859143 \n", - "ran2 -0.2 0.2 0.0 0.000000 100.100000 0.998148 \n", - "fourt 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "cgrid 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "length 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "prebuild_gwn 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", - "maxfactor 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n", + " memory cpu time \\\n", + " min max median min max mean min \n", + "function \n", + "Py_kgeneration 1.2 1.2 1.2 34.560105 34.560105 34.560105 0.633546 \n", + "generate 1.3 1.3 1.3 35.084361 35.084361 35.084361 0.397899 \n", + "gasdev -0.2 0.2 0.0 0.000000 62.562500 2.701072 0.000106 \n", + "fftma2 -0.1 -0.1 -0.1 32.746141 32.746141 32.746141 0.234361 \n", + "covariance -0.1 -0.1 -0.1 33.296729 33.296729 33.296729 0.224350 \n", + "cov_value -0.2 0.2 0.0 0.000000 37.537500 0.925280 0.000103 \n", + "ran2 -0.2 0.2 0.0 0.000000 25.037500 0.699745 0.000101 \n", + "fourt 0.0 0.0 0.0 0.000000 0.012500 0.004167 0.000553 \n", + "cgrid 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.001623 \n", + "length 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000355 \n", + "clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000463 \n", + "prebuild_gwn 0.0 0.0 0.0 25.025000 25.025000 25.025000 0.000454 \n", + "build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000410 \n", + "maxfactor 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000105 \n", "\n", - " time \n", - " min max mean sum count \n", - "function \n", - "Py_kgeneration 0.633546 0.633546 0.633546 0.633546 1 \n", - "generate 0.397899 0.397899 0.397899 0.397899 1 \n", - "gasdev 0.000106 0.007636 0.000579 0.296354 512 \n", - "fftma2 0.234361 0.234361 0.234361 0.234361 1 \n", - "covariance 0.224350 0.224350 0.224350 0.224350 1 \n", - "cov_value 0.000103 0.000966 0.000134 0.093502 700 \n", - "ran2 0.000101 0.000583 0.000133 0.093435 702 \n", - "fourt 0.000553 0.000795 0.000664 0.001993 3 \n", - "cgrid 0.001623 0.001623 0.001623 0.001623 1 \n", - "length 0.000355 0.000359 0.000358 0.001073 3 \n", - "clean_real 0.000463 0.000463 0.000463 0.000463 1 \n", - "prebuild_gwn 0.000454 0.000454 0.000454 0.000454 1 \n", - "build_real 0.000410 0.000410 0.000410 0.000410 1 \n", - "maxfactor 0.000105 0.000106 0.000105 0.000316 3 " + " \n", + " max mean sum count \n", + "function \n", + "Py_kgeneration 0.633546 0.633546 0.633546 1 \n", + "generate 0.397899 0.397899 0.397899 1 \n", + "gasdev 0.007636 0.000579 0.296354 512 \n", + "fftma2 0.234361 0.234361 0.234361 1 \n", + "covariance 0.224350 0.224350 0.224350 1 \n", + "cov_value 0.000966 0.000134 0.093502 700 \n", + "ran2 0.000583 0.000133 0.093435 702 \n", + "fourt 0.000795 0.000664 0.001993 3 \n", + "cgrid 0.001623 0.001623 0.001623 1 \n", + "length 0.000359 0.000358 0.001073 3 \n", + "clean_real 0.000463 0.000463 0.000463 1 \n", + "prebuild_gwn 0.000454 0.000454 0.000454 1 \n", + "build_real 0.000410 0.000410 0.000410 1 \n", + "maxfactor 0.000106 0.000105 0.000316 3 " ] }, - "execution_count": 30, + "execution_count": 100, "metadata": {}, "output_type": "execute_result" } @@ -606,7 +614,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 101, "metadata": {}, "outputs": [ { @@ -626,91 +634,9 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 102, "metadata": {}, "outputs": [ - { - "data": { - "text/html": [ - " \n", - " " - ] - }, - "metadata": {}, - "output_type": "display_data" - }, { "data": { "application/vnd.plotly.v1+json": { @@ -1616,9 +1542,9 @@ } }, "text/html": [ - "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparación de memoria" + ] + }, + { + "cell_type": "code", + "execution_count": 116, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n", + "\n", + "invalid value encountered in double_scalars\n", + "\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8VFX6x/HPk0LoQbqCELAAKiriWpBVXBWRqLv2wrqirg3LKhaiu2rs40/X3huKBXVdRTEodldRQVERLFiHKk1IqKlzfn/cGxwnhUzI5E4y3/frdV9hzpx7zzNDYJ4559xzzDmHiIiISLS0oAMQERGR5KMEQURERKpQgiAiIiJVKEEQERGRKpQgiIiISBVKEERERKQKJQgiIiJShRIEERERqUIJgoiIiFShBEFEmj0zG21mzsxygo5FpKlQgiDNQtQHgDOzodU8b2a2wH/+lSBiFBFpSpQgSHNTDJxYTfl+QE+gpHHDkSTxBNAKmBd0ICJNhRIEaW6mAMeYWUZM+YnATGBJ44e0+cysTdAxNEWV75tzrsI5V+y0O51InSlBkOZmItAJOKiywMxaAEcDT1d3gpmlmdkFZvaVmRWb2VIze8DMtoipFzazV8xsmJl9amYbzGy2mQ3znz/Sf1xsZjPNbFA1bf3JzN43s3VmVmhmL5nZgJg6+f5QyA5m9rSZrQI+MLNT/PLqrnu5mVWYWY/a3hwz62Fmj5jZYjMrMbOfzew+/z2qrNPXzP5jZivNbL2ZfWxmuTHXGebHcqyZXWVmi8xsjZk9b2bZZpZlZreb2TIzW2tm480sK+YazszuNrNRZjY36n3bN6ZebzO716+zwcx+9ePLialXOcy0n19/GbAw5rmcqPq7m9lUM1vhX/dnM3s05pptzOzf/vBUiR/DxWZmNbyWv5jZHL/uV2Y2IqZeO/99Cft1lpnZG2a2W21/byJBiP2WJdLUhYGPgBOAV/2yQ4Bs4Bng/GrOeQAYDYwH7gT6AOcCg8xsH+dcWVTdbfESjQeAJ4GLgclmdhZwA3CvX+8y4Dkz6+eciwCY2YF+TD8B+Xhd3ucB08xsN+dcOCau/wDfA5cDBjwP3AOMAj6PqTsKeNc5t6imN8bMtgJmAB2AB4FvgR54yVNroNTMugEf+o/vBH4FTgZeNrOjnXMvxlz2MmADEPLfm/OAMiACbOG/zr3w3t+fgWtizt8POM5vqwQYA7xmZns45+b4df4ADMH7+1sI5ABnA++a2Q7OufUx17wXWO63VW3Pi5l1BV7364WAQv+6R0bVMeBlYH/gEeAL4GDgZv99uzDmskP98+8F1uD9rv3XzHo5537169yP937fDXyNl8wOBQYAn1UXq0hgnHM6dDT5A+8DyAG7A+cAq4FW/nPPAW/7fw4Dr0SdN9Q/78SY6x0cW+6f64C9o8qG+2XrgV5R5Wf45cOiyj4HlgIdo8p2BiqAx6PK8v1zn67mdT4NLALSosoG+fVHb+I9etxva/dqnjP/523+tYZGPdcWL6n5ubJdYJhfbzaQGRNfBJgSc/0PgXBMmfOPwVFlvfASjheiylpVE+9e/rknVfM78D6QXsPvR47/+C+Vvy+1vF9/9uv8M6b8P/5r3CbmtZTElO3sl58bVVYI3B30vxcdOupyaIhBmqPn8L6dH2pm7YBDqWF4ATgGKALeMLPOlQfefIW1eN8eo33tnPso6vF0/+fbzrn51ZT3BTCzLYFdgceccysrKznnvgTeAEZWE9v91ZRNALaKiWsU3ofqf2t4jZhZGt6H4mTn3KexzzvnKsfmRwIznHMfRD23Fq/HIQfYITYe9/selul4vR2PxtSbDmxtVeeGfOScmxnV1nzgJeBgM0v3yzZEvY5MM+sE/ID3YVtd1/xDzrmKasqjFfo/DzWzzBrqjMRLqO6MKf833ms8JKb8Tefcj1Gv5Uu8RLVvTLt7+r05IklNCYI0O8655cCbeBMTjwTS8brnq7Md3vDDMrzu5uijLdA1pn50EoBzrsj/44KYepXllfMYevs/51YTwzdAZ6s6EfHnauq+AfyClxRUfvCfALzknFtTTf1KXYD2wJxa6lTGWVOMlc9Hmx/zuLb3Iw3vvY72fTVtfYc3xNEFwMxamdk1ZrYA71v6Cry/nw7VXA+qf99ivYeXUF0FrPDngpwSM0+iN7C4mve1ru8FwCp++x0AuBTYCVhgZjP8+SZ9qzlPJHCagyDN1dPAQ0B34FXnXGEN9dLwkoNRNTy/POZxTd9Mayq3GsrrYkNsgXOuwsyeBk43szHAPng9Ck9uRjubozHej7uAU4Db8eaXFOF13T9D9V9yqrxvsfwek6PNbC/gMLwhpUeBi8xsL7/XJF6bfM3OuefM7H3gCLzhqUuAcWZ2pHPu1RrOFwmEEgRprl7Em0i4F94kuJr8CBwITIvuyk6Ayvvv+1XzXH9ghXNuXR2vNQG4CO+D7RC8JGbqJs5ZjtfdvVMd4qwpxsrnG9J21ZRtjzenozI5OxpvjsZFlRXMrCVeD8Jmcc59DHwM/NPMTgSeAo4HHsZ7rQeaWbuYXoTNei+cc7/gTWS8158s+RnwT36bVCuSFDTEIM2S/w3wbLwJf5Nrqfoc3hDEFbFPmFmGmW32h5Afzy94s+BPjr6mme2E901yShzX+hL4Evg7cBTwjHOufBPnRIBJwGFmtnvs81G37U0B9jCzvaOea4M36TKMN/O+Ie0dfYufmW2NNznw9ah5BBVU7Xk4D+/vrV7MbIvYWxXx/n4AKocZpvhtnBtT70K8Hoy4PtDNLN3Mfjck4pxbBiyOalMkaagHQZot59zjdajznpk9AFxmZrvi3fpWhvfN9hjgH9Q8fyFel+B9qHxkZo/w222ORXiJTDwmALf4f67r8MLleMnIe2b2IN5Y+pZ4r3Mo3gS6EP4tomZ2J7AS7zbHPsBRfqLRkOYAU/22Km9zBG9uQKVXgJPMrAgvQdkbr9fnV+rvZGCMmb2I14vUDjgdr5elMlmbDLwDXO+vnzAL7/37M3B79ITEOmoHLDSz5/1rrfVfxx/weoREkooSBEl5zrmzzGwmcCbeWgbleN+WnwSmNWA7b/oL51yNd49+Gd5kuXHOubpMrIv2FHAT8KNzbkYd219kZnsC1+LNuWiPd8vkq3hd+jjnlprZEP/a5wEt8XorDnPOFcQZY128hzev4Cq8Wxy/xrtd88uoOv/A60UY5cczDe+DdVPDKptqdw+84YRueEnaDGBU5d+Fcy5iZofj/V0dhzcPIoyX6P27Hm2uxxtaGI43eTYN726MMc65+zbjtYgkROW9zyLShPi3Yv4CXOOcuzboeOrDzBxwj3MutgtfRJKA5iCINE2j8cbHnwg4DhFppjTEINKEmNmf8BYr+icwyVVdnllEpEEoQRBpWq7E25dgGt4cARGRhNAcBBEREalCcxBERESkCiUIIiIiUoUSBBEREalCCYKIiIhUoQRBREREqlCCICIiIlUoQRAREZEqlCCIiIhIFUoQREREpAolCCIiIlKFEgQRERGpQgmCiIiIVKEEQURERKpQgiAiIiJVKEEQERGRKpQgiIiISBVKEERERKQKJQgiIiJShRIEERERqUIJgohIE2JmOWbmzOzioGNJdmY2zH+vhgUdS1OkBEFEZDOZ2Wj/g6jyKDaz78zsbjPrFnR8zZ2ZjTGz0UHH0dxkBB2AiEgzciXwM9ASGAqcDYw0s52cc+sDjax5GwOsAB6LKf8f0AoobeyAmgMlCCIiDedV59yn/p8fNrNfgbHAn4GJwYXVdJiZAS2dcxs291rOuQhQvPlRpSYNMYiIJM7b/s8+/tDDhbEVzGyI/9wJ9W3EPA+aWamZHRlVvrOZvWdmG8xsoZn9y8xO8dvLibnGIWb2vpmtM7M1ZlZgZjvG1HnMzNaaWQ8zm+T/ebmZ3WJm6TF108zsAjP7yh9yWWpmD5jZFjH1wmb2ipkdbGafAhuAM/3nTjGzt81smZmVmNnXZnZ27PnAjsB+UUM87/rPVTsHwcyOMbOZ/vuywsyeNLMe9X2tzZV6EEREEmcb/+evwDRgFHBbTJ1RwBrgpfo04H9YPQocBxzhnCvwy3sA7wAOuBFYB/wdKKnmGicBjwNTgXFAa7zhkQ/MbJBzLhxVPd2vNx24GDgQuAj4Ebgvqt4DwGhgPHAn0Ac4FxhkZvs458qi6vbD62F5AHgImOuXnw18BbwMlAOHAfeaWZpz7h6/zgXAXcBa4Hq/bGkt71dlTJ8AlwHdgH8A+/ivtbAer7V5cs7p0KFDh47NOPA+CB1wANAZ6In3gb0CWA/0AM7w6/SPOi8TWA48FkdbOf51Lsb7kveM38bwmHp3AhFg16iyjnjJigNy/LK2wCrgwZjzuwGF0eV4Y/wOuCKm7mfAp1GPh/r1Toypd3BsORD2yw6u5rW2qqbsNeDHmLI5wLvV1B3mX3tY1Pu9FJiNN4xRWS/Xr3d1vK+1OR8aYhARaThv4n3gL8D74F6L961+EfAc3nj4qKj6B+MlFE/Wo60WwH+AQ4GRzrnXY54fAXzknPuissA5txJ4KqbeQUAHYKKZda48gAq8b877V9P2/TGP3wf6Rj0+BigC3oi55ky89yT2mj8756bGNuKi5iGYWbZ/jfeAvmaWXU1cm7I70BW41zm3cW6C83pdvsVLFGJt6rU2WxpiEBFpOOcA3+F1hy8F5jpvohzOuUIzmwycCFzh1x8FLOK3uQrxuAzv2/8hzrl3q3m+N/BRNeU/xDzezv9ZUwyrYx4XO+eWx5StAqLnFmwHZAPLarhm15jHP1dXycz2Aa4G9sYb9oiWjZeExKO3/3NuNc99i9fzEa0ur7XZUoIgItJwZrjf7mKozgTgGDMbgtfNfTjet9lIPdqaitdLcKmZvRv9jThOlT3JJwFLqnm+POZxRR2vuYzf95ZEi/3QrXLHgpltA7yF98E9Fq9XphQYCVxI40yyr8trbbaUIIiINJ7X8D4cR+F137cGnqjntT7G6/5+BfiPmR3hnIv+MJ8HbFvNebFlP/o/lznn3qxnLLF+xJvQN83V/3bFw4As4HDn3PzKQjOrbsjD1fGa8/yf/ajaY9Iv6nlBtzmKiDQa/wN8InAs3sTG2c65Lzfjem8Cx+P1JDxhZtH/p08F9jazXSsLzKwjVb/VT8UbRrjczDJj2zCzLvUI7Tm8OwCuiH3CzDLMrEMdrlH57d2izs0GTqmm7jq8eRSb8ilez8ZZZpYVdd1DgAFAQR2ukTLUgyAi0rgmAOfjTdQbt7kXc85NMrNT/Ouuxl9DAPg/4K94EwXv4rfbHOfj3c3g/PNX+2sLPAF8ZmbP4PVy9MKbtDcN7/bEeGJ6z8weAC7zE5TXgTK8uQnH4N1W+PwmLvM63pDCZP9abYHT8T7gt4ypOxM428z+hTfHYplzrsqcCudcmZmNw7vN8T0zm8hvtzmGqXoLakpTgiAi0oicczPN7Cu8b6yxdxTU95pPmlk7vDUCVjvnLnHOLfC74+8ELsf70L8HL1G4k6gVBp1zT5vZYiAPuASva38R3oz98fWM6Swzm4mXsNyAN5chjHfHxrQ6nD/XzI4GrgNuwZsfcZ//Oh6NqX4N3gTES4F2eHc6VDvp0jn3mJmtx3utN+G9Hy8C49zv10BIeebf1ykiIo3EzD4HVjrnDgig7dvxPrTbOudSehKe1E5zEEREGpGZ7Q7sijckkOi2WsU87oR3t8IHSg5kU9SDICLSCMxsJ2Aw3lK9nYG+0bcm+ksmb2pC4Frn3No42vwCeBf4Bm+s/TRgK+AA59z/4noBknLi7kEws33NbLKZLfY3wfhLHc4ZZmaf+Ztt/GDat1tEUs/ReOP5mcAJ1axbsDXwyyaOi+NscwreugG34U2InI+3sJKSA9mkuHsQ/NtB9sGbNfoC3jKik2qp3wdvnez7gYfx1iq/HcitbmlNEZFUZGYtqbqSX6yfnHM/NUY8Ips1xGBmjk0nCDfhJQM7RZU9A3Rwzo2od+MiIiKSMI0xSXFvvA1Mok31y0VERCQJNcY6CN2pujf3UqC9mbWqbhlOf4WrrJjijsDKxIQoklLaAYudZiiLSC2SdaGky4Crgg5CpBnribcQjohItRojQViCd3tNtG7A6lo28bgRuDXqcTtg4YIFC2jfvn0CQhRJDatXr2brrbcGWBN0LCKS3BojQfgI7zabaAdR/T7lADjnSoCSysdm3l4d7du3V4IgIiLSCOqzDkJbM9s1aoewPv7jXv7zN5pZ9Aph9wN9zez/zKy/mY3B28lMm2KIiIgkqfr0IOwOvBP1uHIo4HG87Uu3xNsFDADn3M9mlouXEPwDWAj8XWsgiKSGmTNntsVbvU9Lu0t9RIBCYMXgwYMjQQeTSprEUstm1h4oKioq0hCDyGZYvXo12dnZANnOudWJbm/mzJl7paWl3Z+WlpYNWKLbk+bJOVceiUTec85dOXjwYE2ubSRKEERSSGMmCDNnzmyblpb2QYcOHbp17dp1pb+wmjQhEeeoiLiMiohL936SXuFcusOBA8PR0dYa/iMM5yyjgrS0Ciy9grT0CiyjnLT6dx455ygtLW2xdOnS9hs2bJgfiUSGDh48uLThXqXUJFlvcxSRpm+rtLS07K5du65s06ZNTXcsSYCcc5SUR1oUl1W0Ki6LtCwpr2hVWh7JKo+4zIqIy4g4l17b+ZlGRQ9bUWsdjznSMkrJaFFCelYJGVnFZGSVkNGymIysUiyt1uSxTZs2xZmZmWU//vhjl0gk0gv4Ia4XKvWiBEFEEiUNMPUcJAfnHOtKK1qvLS5vV1xW0bqkPNKqtCKS5ZxrhLkhzoiUZVFalgXrqjxJRlYxma3Xktl6HS3ariOzVTH2+xGptLQ0hzdMpc+tRqI3WkSkGYo4Z+tKyluvLSlvt76kot2Gsoq2kUZJBuJmlJe0orykFRtWedtdW1oFGa3W0aL1Wlpmr6ZF2ypZhSSeEgQRaTQ5eQWDE3HdcCh3ZiKu25heeeWVdsXFxXb00UfXe25ISXlFZuH6si3WFJdnF0clBI/eezuTn3+GzMxMWmS1ZNzVIQYOGsyyJb9w5UXnsnjhfFq0aEGvPtvwrxtvpWOnztVe/4VnnmD8PbcTiUTYY599ueqGm6EFvPvhpxxy0nn069t7Y92PXn6MVq1aVrnGmZdex4czv6RLxw68+Mi/yW7fDuccI086j7uvG8c2OVuDi6RTtq49Zevas275Vlh6uVmrtWnlG8rbLf+yPSTk10hiJGM2KSLS7JSVldX6/Ntvv91uypQp2fFet6S8osWSouJu3y1dM2DukjU7L11dvPX60vL2lcnBt1/N5rkJj/DU5Dd5bur7HD/679x4xaUApKenc8Y/Lubl9z7h+Tem0bNXb2677spq21k4fx733nwD4/87hVc++Ixfly/juScf2zgO0K9vb75445mNR3XJwZxvf+D7n+cz+63nGDZkd574bwEADz/9IvsP2d1LDqrjKjKsdE2HjNKizlvPuetD8rPfJz/7HPKzO8b7fkndKUEQkZTx5JNPdujbt++O/fr12+Hss8/uscUWW+wyd+7cFgCzZ8/OGjZs2LY77bTTgO23336HG264oUvleWY2OC8vr/vAgQMH9OjRY+Add9zRqfK5TZ134YUXbrXTTjsNOPfcc3vOmDGj1eDBg/vtsMMOA7bZZpsdL7300i0BPvzww1YTJkzo8uKLL3bs37//DhdffPGWAP/973/bDx48uN+OO+44YODAgQMmT57cDqC8IpK+bE1xl++Xruk3d8magcvWFPcsLqtoXd1rNoPysnI2rF8PwJrVRXTbcisAOnXpym57/Lax7sBBu7N44fxq37s3p7zEfsNH0LlrN8yMY046hSkvvRDXZ0hmRgYlpWVEIhHWrd9Ai8xMflm6nImTXmPsGX+t0zUMlw4MBe4GfiE/+0Xys48gP7tFPLHIpmmIQURSwqJFizLOPffcnHfeeefbQYMGFd9xxx2dCgsLMwDKy8s54YQT+j7xxBM/Dxo0qHjNmjVpgwcP7r/PPvus22+//dYDZGVludmzZ3/z+eeftxw6dOiAMWPG/GpmmzwvPT3dzZkz5xuAVatWpX3wwQfftWrVyq1du9b+8Ic/DDj44INXH3DAAev+9re/LS8sLEx/9NFHFwB8/fXXLa699tqt3n777e86duwYmTNnTtb+++/f/8Mv5haWkN6xrvMJ+u0wkL+efjYjh+xK+w5b0KJFCx59vqBKvYqKCp557CGGDY9dGd/zy6KFbNXjt2/4W/XsxS+LF258/OO8hex28Imkp6dxyrGHM2b0sVVj2TaH/Yfszm4Hn8h2fXpx1dgzOHXs1dx8xQVkZNTr46gF8Bf/+JX87GeBB8gv+rI+F5PfU4IgIinh3XffbdOvX7/1gwYNKgY499xzf73kkkt6A8yaNavlDz/80OqEE07oW1l/3bp16V9++WWryg/600477VeAQYMGFaenp7v58+dnFhYWpm/qvLPPPntF5XPr169PO+WUU7b++uuvW5kZS5YsaTFz5szWBxxwQJVJeC+//HL2vHnzsoYMGdIfS0vH0jIsPTPt259+7ty7zzZ1ft0L58/jrVdfYfL7M+nafUsmPvYgl55zKo+/8NrGOs45rv/nRbTL7sCo086q+5vq221gfxZ++irZ7duxcPFSRv7tPDp37MCxhw+vUve6cedw3bhzAHhp6rtsvVU3cnpuxSkXXsXqtes49tCDOO7PB8cdA9AJGAOMIT/7TeAW8ou0Yu9mUIIgIinPOUf79u3Lv/32269rqtO6deuNt2ump6e78vJyq8t52dnZG5cHHjt2bI9OnTqVf/XVV19nZmYyfPjwbYqLi6tdYbIiEkkbsu+wspvvfzy9vCJSY/f5j999y2XnnQ7ArrvvyeXX3/K759+a8jLb9d+Brt23BODPx44idMU4ykpLyWzhXTZ05TiWLl7E7Q8/RVoNixpt2aMnC+b9vPHx4oXz2XKrngC0b9d2Y3nPrbpxwp9H8P6Mz6tNECqtXrOWW+6fwNSn7+HGu8az316D+etRI9nloOM5fPh+1c5hiMOBwIHkZ8/B2w7gKfKLtLhSnDQHQURSwrBhw9bNnTu39axZs7IA7rvvvk5lZWUGsMsuuxS3bdu2InpuwZw5c7KWLl1a6yJA8Z5XWFiY0bNnz9LMzExmzZqVNW3atI1Lw7Zv375i9erV6RURl/ZL0Ybuu+47YsuPpn3Q6us5X25MDmZ/XvVmjW22789zU9/nuanvV0kOAHr0zuHzT6ezft1aAP735lR69932d8nBgvBP3PbQkxvLqnPgIYfz3uuvsWLZUpxz/OeJ8Rxy+BERgF+WLicS8fKgNWvX8cqb7zNop361vXXk3XAXV154Bq1btWLd+g2YGWZGWVk5pZuY0BmHnYBHgXnkZ19MfvZmZR2pRj0IIpISevToUX7nnXeGjzjiiG1btGjh9ttvv9WtW7eOdOrUqSIzM5PJkyf/cN555219zz33dItEIrbFFluUP/fccz8BFTVdM97zrrzyysWjR4/uO3HixE69e/cu2WuvvTbe0njscccVPvvcf7rtOHDnQX865DDOuuBSQnc9xLV5YynesJ6ysjL67ziQ0N0Px/W6DxhxKF/N+owTcv9EixYtaNW6NaG7HgLg808+ZuL4B+mz7fb89fADAdhq697c/vCTAORfcj7DDhrBsOEj6dk7h7MvyuPkI0YAsPveQznupFMcLOK/U97ivgnPk5GeTnlFBccceiCnHPfnGmOa9skXbCgu5qB99wLgnNHHcsI5l3PTvY9x0lG5ZLdvF9drrIPuwM3A+eRnXwVMIL+oxr9X8WgvBpEU0sh7MfTPyMh4bbvttlvbunXr4kS2VVerVq1K22KLLSIATzzxRIerrrqqx08//fRVkDE55/h1bWmn5WtLtiqrZSghGWWaqxhg4Tostbz5issdPy9aTp9pF9Fy7YLNvdxXwOXkF73cAKE1W+pBEJGUcdNNN3V98cUXO0YiEWvbtm3FhAkTft70WYlTtKGs3S9FG3qVlkfU9d24dgReIj97GjCW/KIZQQeUjJQgiEjKCIVCS0Kh0JKg4yiriGQsKtyw9eoNZVroJ1j7AB+Rn/0gcBn5RYVBB5RMNElRRKQRrVhb0um7pWt2VHKQNNKAs4Bvyc8+LuhgkokSBBGRRlBcVpH1w7K12y8u3JBTEXHqvU0+3YBnyM+eRH72VkEHkwyUIIiIJJBzjiVFxd2+X7Z2h/Wl5Q0+PV8a3J+Br9WboARBRCRhSssjGT8tX7fdsjXFPV1ybrUs1cvG6014iPzsVkEHExR1c4lI48nPTsw+vflFSbfdc9GGsvYLV63vo+GEJu3vwN7kZx9HflGgt8MGQRmtiKSMyt0c+/fvv8OMGTNaxT4eO3bsVuvXr6926eO6cs6xuHDDlvN+XbddZXJwxdhzOGzf3Tlm+FBOPuJg5nzxWb2u/eIzT3LUgUPYLaczTz583++eu+Dvf+XYg/+48di1V0fefX1KtdeZ9s6bnDByf44+aB/+evhBzP169sbnTjvmUA4ZssvG6zzx0L3VXuOrWZ9zxPB903cYdhSPPzd5Y/nbH8zgzEuvq9frS1I7Ap+Qn3160IE0Ni2UJJJCAl8oKeAehH333Xe7UaNG/XrmmWeurO6xmQ1evnz5F507d67XKntlFZH0+b+u77uutPx3/1G9+/oUhv5pOBkZGbz35muErriUVz+Kf8PBuV/PJjOzBY/ccxsDdtqFv/797GrrfTXrc8acdDRvfvpNleWTVxcWcugfd+PR5wvYtt8APpv+IdddfhEvvPUR4CUIo047mz+NyK01lovOPJmTTj294qhdOqYPPOBYfvpoMhs2FHPwqHN4efztdMhu2OkWDbxQUn09Afw9VfZ1UNeXiKSE0aNHb/3pp5+2/fHHH1vef//9XXfZZZd10Y8HDBiwHmDIkCH90tLSeOutt747//zze7Zo0cLNmzcvy99Zcc2YMWOWjRs3buvFixe3GDFixKqHH354IcAVV+X3eHHSS93Ky8stIyOTcdeE2GXwHgC/20J5593+wLIlv1BeXh73Fsf9dhgIQJrV3vn74jNPkHvksdV/5E43AAAgAElEQVTurbBg3s9kb9GRbfsNAGC3PYewZPEivpk9iwEDd6lzLBkZGRRv2GDFxSWk+xs85d/6AP847cQGTw6SyElADvnZR5Bf9GvQwSSaEgQRSQmPPfbYgq+//rr1eeedt/Skk04qBIh9PHHixC4ffvjh3OgehG+++abVhx9+ODctLY3tt99+x8LCwvT333//u5KSEuvTp8/As846a0W/nXZJH37UXzsfc/oFBvDlZ59wxdhzeOndqgv0PfXI/Qzd/6C4k4O6Kt6wgdde/i/jn69+eKFXn74UrVrJF59OZ9fd9+Td16ewbu0aFi2cvzFBuCN0Nffccj19t+vPP/KupGfvnCrXOfOCS7ku74K0BzYUcvMVF/DFnLn8NG8RN/3zHwl5XUnkj8B08rNzyS+aG3QwiaQEQUSkFiNHjiys3Oq5X79+Gw466KDVWVlZLisry2277bYbvpjzTaesLbfr+tXsL9MevuvfFK5aSUZGBuEfv6d4wwZatvptEvwrLzzL669MYvzzBQmL940pL9Grz7ZsN2DHap9v1z6bWx54nDtD17B+/Tp23u0P9N2+Pxnp3pYK199xP9236olzjmcef4jzTjmeF9/+uMp1+m7XjydemFIxwMLpFRUVDD9hDE/ceR0TJ73G8wVv0r5tG2696iK26NAsh4W3wVuB8Sjyi94JOphE0SRFEZFatGzZMlL55/T0dBf9OC0jM7OoJNK9tKQkbewZf2Psv67lhbc+4lE/ASgt/W2o+rWXX+CB2/6PB55+gU5dulbbVujKcRsnB37/Tf0mzU965kmOOP6vtdbZY8gfefT5Ap6Z8i4XX3Edy5f+Qt/t+gPQfaueAJgZJ4w+g4XzwxSuWlnr9W5/6GmOOfQgOmS35drbH+LZ+0Lsu9du3P7wU/V6DU3EFsBU8rNPDjqQRFEPgoiIr02bNpGVK1emb2qSon+nQg+XltESoKSkmLKyUrbs4X24Thz/4O/qT538IvfcfD0PTHyRLXtsXeN18665abPin//zT3z15Rfc8ejTtdZbvnQJXbp1B+DBO25mjyH70qtPX8rLyylatXJjAvPmlJfp1LkLHbaoeVXon+cv4o33P+bVJ+9m9Zq1lJdXYGakWRpr123YrNfTBGQC48nPbkl+0QNBB9PQlCCISONJwvUKop155plLhg8fvn3Lli0jb7311nfV1XHOsWDl+t6FG8o6V5a1bdeecy/5J6MOO4AOHTsx4vAjf3fO5eefQacuXbngtFEbyx585qVaP3ir89JzT3P3zdezuqiQd14v4PEH7ubO8RMZsNPOAEx69kkOHHkYbdv9vlv/3den8O4br5F/850A3PvvG/lsxkdUlJez8+A/kH/zXQCUlpZw7snHUVpaQlpaGh06dtpksvGPK2/m9qsvxszIbt+OE48YwcADjqVtm9Y8e18ortfXRBlwH/nZGeQX3RN0MA1JtzmKpJDAb3NsBhasXL/1qvWl1Y8RpJhMcxUDLJzeGG0lyW2Om3Ih+UW3Bx1EQ9EcBBGROlq0an0PJQdSi9vIz74k6CAaihIEEZE6WFy4Yctf15V2DzoOSXr/R372hUEH0RDqlSCY2TlmFjazYjObbmZ7bKL+BWY218w2mNkCM7vNzFrWL2QRaSIi4I3ZN3VLioq7rVhboi2AA7Tx16hp/D79uznsBhl3gmBmxwG3AlcDuwGzgKlmVm23m5mdCIT8+gOA04DjgBvqGbOINA2Fzrny0tLSqsv5NSHL1hR3WbamuGfQcaS69WVARSmZxU1iAUMDHic/e7+gA9kc9bmLYSzwkHNuPICZnQXkAqfiJQKxhgDTnHOVU2HDZjYR2LMebYtI07EiEom8t3Tp0tzMzMyytLS0JvHVL9rakvI2S4qKezW5wBtJxBzFlth3xzkvOVi2spAO814lvaLJ3DqZBUwiP3toU90JMq67GMysBbAeONo5Nymq/HGgg3Puz9WccyJwLzDcOTfDzPoCBcATzrlqexHMLAvvza3UDliouxhENk9j3sUAMHPmzB5paWkvpqWldcH7VtVklEfILCyu6B5xmqtVk3SLRLbk18S/PxWldJj3Kt2/fxqjyaVrC4C9yS9aFHQg8Yq3B6EzkA4sjSlfCvSv7gTn3NNm1hn4wMzMb/P+mpID32XAVXHGJiJJZvDgwYtmzpw5NBKJ9KIJrbvy7YrSNg9+tvq58ohTclCLdqxfPynryrYJbcQ5Mot/bUo9B7G2BgrIz96b/KIm9SIS/g/WzIYBlwNjgOnAtsAdZnaFc+7aGk67EW+eQ6V2wMJExikiiTF48OBS4Ieg46irnLyCNGAy0DfoWJJde8oiLcuSdk2CZLILcB8wOuA44hJvdrwCqAC6xZR3A5bUcM61eMMJDzvnZjvnXsRLGC4zq37PUudciXNudeUBrIkzThGR+roBGLnJWiLxOZn87L8HHUQ84koQnHOlwEzggMoy/0P+AOCjGk5rjX+7U5TKdc6b1JikiDRvOXkFJwDjgo5Dmq27yM8eFHQQdVWf8bVbgdPN7GQzG4DXbdIGqLyrYYKZ3RhVfzJwtpkdb2Z9zOwgvF6Fyc65WjdEERFpLDl5BdsAzW7DHUkqLYHnyc/uEHQgdRH3HATn3LNm1gW4BugOfAGMcM5VTlzsxe97DK4DnP+zB7AcL2n452bELSLSYHLyCjKAJ/HmO4kkUl/gMeAvAcexSdqsSSSFNPZtjk1FTl7B1cCVQcfR1LRn7eovW56h/5TrZzT5RY8HHURtdAuPiKS0nLyC3VGPpjS+28jP3jLoIGqjBEFEUlZOXkEW8Dje+i4ijWkLknzOixIEEUll1wA7BB2EpKzDyM8eFXQQNVGCICIpKSevYGfgoqDjkJR3J/nZsWsLJQUlCCKSqm5HQwsSvI54v4tJRwmCiKScnLyCI4H9g45DxHc8+dl7Bx1ELCUIIpJS/ImJtwQdh0iM28jPTqrVhZUgiEiqGQv0CToIkRh7AscHHUQ0JQgikjJy8gq2xNssTiQZhcjPbhl0EJWUIIhIKrkBaBt0ECI16IXXw5UUlCCISErwN2M6Keg4RDYhj/zsjkEHAUoQRCR1jEO3NUryawf8I+ggQAmCiKSAnLyCrYCTg45DpI7OJz878E2wlCCISCq4CGgRdBAim+IcpbMjfeYcWnL9KUHHogRBRJq1nLyCjsAZQcchUhvnWDetYsf39im589fDSq8fOsf1yfPX7AhMRpCNi4g0gvPRnQuSpCKOwtcie3zxz7JTd15F+/2inuoO/BV4JKDQ1IMgIs1XTl5Ba+C8oOMQiVXhbOnT5X96b2DJIxljyi4Ytor21d25cHFOXkFgqyuqB0FEmrNj8DbDEUkKZS59/kMVufNuLz9qj1Iy99tE9f7AH4H/NUJoVShBEJHmLPCJXiIAG1yL728rP3r5wxUj94yQ1iuOU08hoARBQwwi0izl5BX0BfYNOg5Jbatd69kXl505Y0DJ+G0frDh0SIS0eNfiOCYnryCQOTTqQRCR5mo0kFS740nqWOayZ15W9vf0tyKDd93MS7XBGyob3wBhxUUJgog0Ozl5BWloYSRpZM4Rme+6zri47KzsT1z/wQ146VMIIEHQEIOINEcH4G18I5JwzlH2VaT3ByNKQ/P2K719r09c/wEN3MQfc/IKtm3ga26SehBEpDnS5ERJOOdYP90N+OTisrO2W+i6DE1wc6OBfyW4jd9RgiAizYq/+tzhQcchzZdzFL0RGfz5ZWV/3+lXsjd1q2JDOYZGThA0xCAizc0BeBO7RBpUhbPlz5Xv++7AkoftjLKLhv1KdudGbH57f8vyRqMeBBFpbtR7IA2qzKUvHF8x4qd/lx+zRwkthgUYykjgrsZqTAmCiDQ3hwYdgDQPxS7zxzvKj1zyYMWhe1aQ3jPoeFCCICJSPzl5BQOBHkHHIU3bGtfqqxvKT1w3seJPfwBr1G79TRiWk1fQKhzK3dAYjSlBEJHmZHjQAUjTtcK1/+xfZafaa5E9BgUdSw1aAn8CChqjsXpNUjSzc8wsbGbFZjbdzPbYRP0OZnaPmf1iZiVm9p2ZjaxfyCIiNTo46ACkaXEOtyDSZfpxJf/6eveS+3dL4uSgUqN9dsbdg2BmxwG3AmcB04ELgKlm1s85t6ya+i2AN4BlwNHAIqA3ULgZcYuI/E5OXkEGkOh70aWZcI7yuW7r6WPLzu7+tcvZM+h44nBQYzVUnyGGscBDzrnxAGZ2FpALnAqEqql/Kt52q0Occ2V+Wbge7YqI1GYg0CroICS5OUfxTLf9jIvKzuo7z3XfJ+h46mHbnLyCDuFQbsK/ZMc1xOD3BgwG3qwsc85F/Md713Da4cBHwD1mttTM5pjZ5WZW445WZpZlZu0rD6BdPHGKSEraPegAJHk5x+q3Kga9u2fJPWuOLs3fd57rngx3JdSH0Ui/6/H2IHQG0oGlMeVLgf41nNMXb1LFU3hjJ9sC9wKZwNU1nHMZcFWcsYlIalOCIFVEnK2YFNlnzlVlJw9aQ5thQcfTQHYn6ot6ojTGXQxpePMPznDOVQAzzawHcAk1Jwg34s1zqNQOWJjQKEWkqVOCIBuVu7RFEyqG//B/5cftUUzWsKDjaWBJ2YOwAqgAusWUdwOW1HDOL0CZnxxU+gbobmYtnHOlsSc450qAksrHZtrSXURq5u+/MDDoOCR4JS7jp3vK/7L43orD9ywno7muidEoCUJccxD8D/OZeGudA2Bmaf7jj2o4bRqwrV+v0vbAL9UlByIi9bAL3rClpKh1ruU3V5Sd8nH/ksdy7qw4cmg5Gc3596F3Tl5Bl0Q3Up8hhluBx83sU2AG3m2ObYDKuxomAIucc5f59e8DzgXuMLO7gO2Ay4E7NzN2EZFKg4MOQIKx0rX74sqy0ZFXInvvFnQsjWx34NVENhB3guCce9bMugDXAN2BL4ARzrnKiYu9gEhU/QVmdjBwG/Al3joIdwA3bWbsIiKV+gUdgDQe53CL6fTJuLIzWn0QGbhr0PEEpD/JliAAOOfuBu6u4blh1ZR9BOxVn7ZEROqgd9ABSOI5R8UPrsf0sWVnd5nt+ta6gm8KSPgeEdqLQUSag5ygA5DEcY6SL9y2M8aWndX7Z7fVkKDjSRJKEERE6kA9CM2Qc6z9X2TnmePKzui/hI5/DDqeJNM30Q0oQRCRJi0nr6AdsEXQcUjDiThb+Upkry+vKDtl1yLa7hd0PEkq4StB1ms3RxGRJKLeg2ai3KX9MqH8oPd2Knkk6/yy84YV0bZD0DElsdY5eQUdE9mAehBEpKlTgtDElbqM8H0Vhy28u/yIPcrIUI9B3fUAVibq4koQRKSpa6qb7qS89S5r7s3lx658rOLgPR1pOUHH0wRtBcxO1MWVIIhIU9c+6AAkPoWuzaz8spPLJkWGav+MzdM2kRdXgiAiTV3roAOQulnitvgkr+z0rHcju+4SdCzNRJtEXlwJgog0dUoQkphzRH52W358UdlZnT532/0h6HiamYT+7itBEJGmLqHfoqR+nKN0tusz/cKyMb1+dD20uFFiKEEQEamFehCSiHOsmxbZ6dNLy87YfjGdtbhRYmmIQUSkFkoQkkDEserVyJ6z/lV2ys6raK9bFRuHehBERGqhBCFAFc6WPFux/9zry0cNXkerYUHHk2KUIIiI1EL/jwVkDa3bDih5LKuUTPUYBCOhv/v6hyUiTV1p0AGkKkdaWilpWUHHkcLWJ/Li2otBRJo6JQiSqtYl8uJKEESkqSsJOgCRgKgHQUSkFgn9FiWSxJQgiIjUYk3QAYgEREMMIiK1UIIgqUo9CCIitSgKOgCRgKgHQUSkFkuCDkAkIEsTeXElCCLS1M0LOgCRgCT0d18Jgog0dUoQJBVtCIdylyWyASUIItLULUFrIUjqmZ/oBpQgiEiTFg7lOmBB0HGINLKE95wpQRCR5kDDDJJqlCCIiNRBOOgARBqZEgQRkTr4OegARBpZONENKEEQkebg86ADEGlkXya6gXolCGZ2jpmFzazYzKab2R51PO94M3NmNqk+7YqI1ODToAMQaUTFwDeJbiTuBMHMjgNuBa4GdgNmAVPNrOsmzssBbgHejztKEZFa+PeD604GSRVzwqHc8kQ3Up8ehLHAQ8658c65r4Gz8DaMOLWmE8wsHXgKuAr4qT6BiohswidBByDSSD5rjEbiShDMrAUwGHizssw5F/Ef713LqVcCy5xzj9SxnSwza195AO3iiVNEUpKGGSRVfNwYjcTbg9AZSKfqBhFLge7VnWBmQ4HTgNPjaOcyvB3aKo+FccYpIqlHCYKkiqRMEOJiZu2AJ4DTnXMr4jj1RiA76uiZgPBEpHlRgiCpoBD4tjEaijdBWAFUAN1iyrtR/Zar2wA5wGQzKzezcuBvwOH+422qa8Q5V+KcW115AGvijFNEUkw4lLsKmB10HCIJ9r6/vHjCxZUgOOdKgZnAAZVlZpbmP/6omlO+BQYCu0YdLwPv+H/WrGMRaUivBh2ASIJNaayGMupxzq3A42b2KTADuABoA4wHMLMJwCLn3GXOuWJgTvTJZlYI4Jz7XbmISAOYAlwadBAiCZS8CYJz7lkz6wJcgzcx8QtghHOucuJiLyDScCGKiNTZNLyJzdlBByKSAF+FQ7kJ3+a5Ur0mKTrn7nbO9XbOZTnn9nTOTY96bphzbnQt5452zv2lPu2KiNTGXzzmjaDjEEmQgsZsTHsxiEhz02hdsCKNrFF/t5UgiEhz8yrQKLO8RRpREd4QWqNRgiAizUo4lLsErYkgzc9rjbH/QjQlCCLSHD0VdAAiDezxxm5QCYKINEcTgUb9tiWSQIuB1xu7USUIItLs+Ns/Tw06DpEGMiEcyq1o7EaVIIhIc/VY0AGINJDxQTSqBEFEmquXgGVBByGymT4Mh3K/C6JhJQgi0iyFQ7llBDCxS6SBBdJ7AEoQRKR5ewitiSBN1zrguaAaV4IgIs1WOJT7Pd5Qg0hT9GA4lLs6qMaVIIhIc3dj0AGI1EMp8O8gA1CCICLNWjiUOwN4K+g4ROI0IRzKXRRkAEoQRCQVqBdBmpIK4Kagg1CCICLNXjiU+xYwI+g4ROro+XAo94egg1CCICKpQr0I0lQkxe+qEgQRSRUvAXOCDkJkEwrCodxZQQcBShBEJEWEQ7kOuCjoOERqUQHkBR1EJSUIIpIywqHc14FXgo5DpAaPhkO5SdPLpQRBRFLNWLx7zEWSyVrgiqCDiKYEQURSir+64p1BxyES47pwKHdp0EFEU4IgIqnoWrTToySPucBtQQcRSwmCiKQcf337fwYdh4jv/HAoN+mGvZQgiEiqehT4OOggJOU960+eTTpKEEQkJYVDuRHgb8D6oGORlPULMCboIGqiBEFEUpY/YfGSoOOQlHVqOJS7MuggaqIEQURSWjiUey8wNeg4JOXcHw7lvhZ0ELVRgiAiAqcCSftNTpqdH4CLgw5iU5QgiEjKC4dyFwPnBB2HpIQK4G/hUO66oAPZFCUIIiJAOJT7DPB00HFIsxcKh3I/CjqIuqhXgmBm55hZ2MyKzWy6me1RS93Tzex9M1vlH2/WVl9EJEBnoB0fJXFeA64MOoi6ijtBMLPjgFuBq4HdgFnAVDPrWsMpw4CJwP7A3sAC4HUz61GfgEVEEsXv9j0CKAw6Fml25gLH+7fXNgnmnIvvBLPpwCfOuXP9x2l4H/p3OedCdTg/HVgFnOucm1DHNtsDRUVFRbRv3z6ueEXkN6tXryY7Oxsg2zm3Ouh4klVOXsFIYDIahpWGUQTsGQ7lzg06kHjE9ctvZi2AwcCblWXOuYj/eO86XqY1kEktM4bNLMvM2lceQLt44hQR2RzhUO4UYFzQcUizEAFOaGrJAcSfHXcG0oHYHaeWAt3reI2bgMVEJRnVuAwv46o8FsYXpojI5gmHcm/BW45ZZHPkhUO5rwYdRH00aveZmeUBxwNHOOeKa6l6I5AddfRshPBERGKdBbwTdBDSZE0Ih3JvDjqI+oo3QViBdw9nt5jybsCS2k40s4uBPGC4c+7L2uo650qcc6srD2BNnHGKiGy2cCi3DDgcbeok8XsROC3oIDZHXAmCc64UmAkcUFnmT1I8AKjxvk4zuxS4AhjhnPu0fqGKiDS+cCh3LXAI8HnQsUiT8SreHQvlQQeyOeozxHArcLqZnWxmA4D7gDbAeAAzm2BmN1ZWNrNxwLV4S5mGzay7f7Td/PBFRBIvHMotBIYDXwUdiyS9t4Ejw6Hc0qAD2VxxJwjOuWfx1pC+BvgC2BWvZ6By4mIvYMuoU84GWgDP421tWXkk/TrUIiKVwqHcFcCBwPdBxyJJ60Pg8HAot7Y5dk1G3OsgBEHrIIg0DK2DsPly8gq2Bt4HegcdiySVmcAB4VBuUdCBNBQtAiIiEodwKHcB3gqxTe6+dkmYj4HhzSk5ACUIIiJxC4dyw8A+eF3Kktpexes5aHbbhStBEBGph3Ao91e8OQmTgo5FAvMk3pyD9UEHkghKEERE6ikcyt0AHAXcE3Qs0uiuA/7W1G9lrI0mKYqkEE1STJycvIJxeKvAWtCxSEKVAWeEQ7mPBR1IoqkHQUSkAYRDuTcBx6GVX5uzJXiTER8LOpDGoARBRKSBhEO5/8Hb8faLoGORBvcWsGs4lPtu0IE0FiUIIiINKBzK/R7YG3gg6FikQUSAfLyeg9idjJs1zUEQSSGag9C4cvIKTsBLFNoFHYvUyxJgVDiU+3bQgQRBPQgiIgkSDuVOBHYHZgUdi8TtbWBQqiYHoARBRCShwqHc74A98DatKws4HNm0ImAMcGA4lLsk6GCCpCEGkRSiIYZg5eQV7Aw8ijeRUZLPC8B54VDu4qADSQbqQRARaSThUO6XwJ7Aheh2yGSyEPhLOJR7lJKD3yhBEBFpROFQbkU4lHs7MAD4T9DxpLgIcDewQziU+1LQwSQbDTGIpBANMSSfnLyCffFWYBwSdCwppgD4ZziUqwmkNVCCIJJClCAkr5y8glzgemCXoGNp5t4DLg+HcrUT5yZoiEFEJAmEQ7kFwCDgBOD7gMNpjmYCI8Kh3GFKDupGCYKISJIIh3JdOJT7DLADcDrwQ8AhNQezgKOBP4RDuVODDqYp0RCDSArREEPTkpNXYMAI4HzgYLRTZF054BXgtnAo952gg2mqlCCIpBAlCE1XTl7B9sA5wGhA/xFWbyXwGHC/vyeGbAYlCCIpRAlC05eTV9AO+BtwKrBbwOEkgwgwDXgEeDYcyi0OOJ5mQwmCSApRgtC85OQVbAMc4x+plCxUJgXPAf8Nh3J/CTieZkkJgkgKUYLQfKVAslCZFPwHeF5JQeIpQRBJIUoQUkNOXkFv4AD/+BPQPdiI6sUBX+GtW/Ae8F44lLss2JBSixIEkRSiBCE15eQV9AOGAvv4x3Yk3x0RFcAcfksI/hcO5a4INqTUpgRBJIUoQRCAnLyC1kB/vPUWBkT93AbISHDzpcB3wDfA1/7xDfBdOJRbkuC2JQ5KEERSiBIEqU1OXkELoC/QFegCdPZ/dol63Jaaex8csBbvdsNV/rEMWOIfi4Cfw6Hc8sS9CmkoShBEUogSBBGpKy21LCIiIlUoQRAREZEq6pUgmNk5ZhY2s2Izm25me2yi/jFm9q1ff7aZjaxfuCIiItIY4k4QzOw44FbgarzFOGYBU82saw31hwAT8ZbBHARMAiaZ2U71DVpEREQSK+5JimY2HfjEOXeu/zgNWADc5ZwLVVP/WaCNc+7QqLKPgS+cc2fVsU1NUhRpAJqkKCJ1Fdf9rmbWAhgM3FhZ5pyLmNmbwN41nLY3Xo9DtKnAX2ppJwvIiipqB95/biJSf/o3JCJ1Fe+CGJ2BdGBpTPlSvEU3qtO9hvq1Lf15GXBVbOHWW29dtyhFZFM6AsoWRKRGiV4xq75u5Pe9Du2AhUBPYE0gEdWN4mx4TSXWphbnyqADEZHkFm+CsAJvvexuMeXd8FbJqs6SOOvjnCsBNi65abZx0a41yTxuqjgbXlOJtQnGKSJSq7juYnDOlQIz8XYIAzZOUjwA+KiG0z6Kru87qJb6IiIiErD6DDHcCjxuZp8CM4ALgDbAeAAzmwAscs5d5te/A3jPzC4CCoDjgd2BMzYzdhEREUmQuBME59yzZtYFuAZvouEXwAjnXOVExF5AJKr+h2Z2InAdcAPwPfAX59ycOJotwVt3Idl3+lKcDa+pxKo4RaRZaRKbNYmIiEjj0l4MIiIiUoUSBBEREalCCYKIiIhUoQRBREREqlCCICIiIlUkTYJgZueYWdjMis1supntsYn6x5jZt3792WY2MtniNLPTzex9M1vlH29u6nUFEWfMecebmTOzSYmO0W8v3r/3DmZ2j5n9YmYlZvZdMv7d+/UvMLO5ZrbBzBaY2W1m1jLBMe5rZpPNbLH/91jjpmhR5wwzs8/89/MHMxudyBhFpGlIigTBzI7DW4DpamA3YBYw1cy61lB/CDAReAQYBEwCJpnZTskUJzDMj3N/vF0tFwCvm1mPJIuz8rwc4Bbg/UTGF9VevH/vLYA3gBzgaKAfcDqwKAljPREI+fUHAKcBx+GtBZJIbfzYzqlLZTPrg7eA2TvArsDtwMNmdnDCIhSRpsE5F/gBTAfujnqchveffl4N9Z8FXokp+xi4P5nirOb8dLwd9P6WbHH6sU3D+yB7DJiUhH/vZwE/ApmJjq0BYr0beCum7N/AB40Ys8NblKy2OjcBc2LKngFea+z3WIcOHcl1BN6D4H8rHAy8WVnmnIv4j/eu4bS9o+v7ptZSf7PVM85YrYFMEriT3mbEeSWwzDn3SKJii1bPOA/H28PjHjNbamZzzOxyM0tPwlg/BAZXDkOYWV9gJDAlkbHWQ6P/WxKRpiEZtnvujPftdWlM+VKgfw3ndK+hfveGDe136hNnrJuAxVT9D7khxR2nmQ3F6znYNYFxxarP+9kX+Ly0eJwAACAASURBVBPwFN6H7bbAvXhJ19WJCROoR6zOuafNrDPwgXlbKGbg9XAleoghXjX9W2pvZq2ccxsCiElEkkDgPQipwszy8DaqOsI5Vxx0PJXMrB3wBHC6c25F0PFsQhqwDDjDOTfTOfcscD3e0ENSMbNhwOXAGLw5C0cCuWZ2RZBxiYjUVTL0IKwAKoBuMeXdgCU1nLMkzvoNoT5xAmBmFwN5wIHOuS8TE95G8ca5Dd6kv8neF13ATxzNrBzo55z7MQni5P/Zu+/4pqr/j+Ovkw7ogLA3GDYUUBBBRFBBllb5ogj4BQcKoigu/Al1Ydx1b8E9ABUQB1JEcTDEBVW/ilCKSADZM91txv39cdNSOigtNCfj83w88tDm3uS+E3JvPjn33HOAXYDLMAxPsfs2AE2UUtGGOR15dahK1oeA2YZhvOH7+0+lVBzwmlLqEd8pikBQ3r6UIa0HQoQ37S0IvoN6KnB+4X1KKYvv7x/LediPxdf3GXyM9U9YFXOilJoG3Ic54+Xa6sp3AjnTgG6YpxcKb4s40qt9e4DkBLMTZTvfeoU6ALuqsTioatZYis1q6lNY2CgCh9/3JSFEkNDdS9IwDDAv/8oDrsa8JOxV4BDQ2Lf8PeCxYuv3BVzAHZjngO1AAdA1wHJOx5xWdyTmud7CW3wg5Szj8e/gn6sYKvt+tsS8CuRFzMIgEfN8+T0BmNXuy3o50BrzS/dvYF4154znSKFnALf7/r+Vb/ljwHvF1m8NZANP+PalGwE3MLS631O5Vf8N6IXZYTbb93noDgwDfvd9ng2gju6ccgvMm/YARUFgCrDV94X6M3BmsWXLgXdKrD8K2Ohbfx1wYaDlBBy+HbDkzR5IOct4rF8KhMrkxDyfPwKzd/1PvoPbZt/9EYGU1fd3JHC/ryjIBbYBL1f3wRhz7I2yPnOF7+M7wPIyHvOb73VtBsb74/2UW/XeMDvvOjBbCScBVwD1MQvXHzE7Jl/hW28scJvGrBZgPGbr5XbMgmYdcC9QU/d7Ga435fvHESKgKaWygI8MwxivO4sQwUAp1Qmzj851hq8vjFJqGPAFMNgwjK+LrbsYswXWpilrPJCJWfwvxuyMfBZmi91KYKAhX1Z+FwidFEWY8Z2/jzYC6GoOIUJQ4Sifhyu4LxAUAGcbhvFDsfteV0o5MC9hPp/qvTxclEF7J0Vx4nxj6a/1zRGwWSl1vVLKrpQySqx3hVIq1Tc3wEGl1IdKqZYl1lnuG4AoQSn1nVIqRym1w9fZsuR2ayilHvCN35/vm2/gCaVUjRLrGUqpl5RS45RSf2E2ZQ/zLfs/pdQPSqkDvlypSqnLSj4ecwjhq33PZSil3im2vLlS6i3f4En5Sqm/lFLXnuDbKkTQ8u0fK3x/LvDtM8uBd333rSncj3z3JwKnFNu/HL7nOc/392il1P2+Y0GmUuojpZTVdwx4Tim1VymVpZR6u4z9/xql1Le+dfKVUuuVUpOLr2MYRkGJ4qDQJ77/dj4Z74uoHGlBCHJKqR7AUsxLAO/HHNBnBrCvxHr3YF56Nx94A2gI3AysVEr1MAyj+C+Kur7n/Ni3/mXA40qpPw3D+ML3fBbM84X9gNcwmzK7YXaK64DZX6C4gcBozCGI92OeGwW41fc8c4FozE59C5RSFxmGkeJb50pf5l982wLzXDlKqcaYzZKG77n3ARcAbyqlahuG8dxxvI1ChJpXMYcCvxt4AViD2aF3I2Z/hBnAFsz9KB6wAi0w91+ArBLPdxdmX5pkzAHKbsbsKO7FPF7YgT6Y/Qi2AA8We+xk4C/M/dwNXAy8opSyGIbxcgWvo3Dwu0AfoyU06e4EIbcTu2HudNlAs2L3tcPceQtP252CuWPeXeKxXX3r3V3svuWYX7ZXFrsvGrMA+ajYfVdgXrbXr8RzXu97fN9i9xm+dRPKyB9T4u8o4E9Kz2OQRRkdKzELh51A/RL3f4DZjBpT8jFyk1s43DjSYfWyYveN9913Rol1FwOOYzzHnxSbAwV4H7M4WFJi/R9KPk9Z+yDmD5DNx/EalgFO5EoLLTc5xRDEfHMQDMK84mBn4f2GYfyN2RGp0KWYp5PmK6UaFN4wB8nZhDnbZHFZwJxiz1eA+eu9TbF1RmG2GqSVeM5vfctLPucKwzDWl3wNRrHBeJRSdTF/yazCHH2wotevMC8h/dz3Z/EcX/qeq8LnEUJU6D3DMFzF/v4ZczyPt0qs9zPQUilV1DpdYh+3+vbPFUAbpZS1vA0qpe7GPL4lGUe3cAo/kVMMwa0REIN5KV1Jxe9rj7kzbyrneVwl/v7X8JXvxRwCTi3xnJ0pcSqjRLbitpS1klLqIsxLmboDxc9dHk+P5YZAHcwm00nHmUMIUXnbSvzt9P235EBqTswfI1bgAIBS6mzMjoZnYQ4gVpy12HMVUeb06g8DbxqGMfOEkosqkwIhPFgwv3Av4MhofsWVPN9Y1jpw9AiAFsxmx6nlrFvywFFq2F6lVH/MUyQrMQfo2YVZrFyDeV12RQpbwOZwpPNVSdU9tLUQ4aC8Y8IxjxVKqbbAN5hjMUzFPC4UYE62djtldJRXSg3GHHgshQCcZyWcSIEQ3PZiDhjUroxlxe/bjLnDbjEMI/0kbXszcBpmX4GqXp88EjP/UMMw8gvvVEpdU8a6ZW1jH+a10xFGsWu6hRCVVl1jDFyM2TI43DCMolYIpVTJU5CF95+JeeXCWmC0YRjuasoljoP0QQhihjlp0dfACKVUs8L7lVLtMFsLCn2MWenf7ztvT7F1lVKqfhU2Px9oDlxXcoFSKkaZExNVxIN5YIoo9lgbpa+AALMjZp3id/he/0JgpFKqaxk5Gh5HBiGEuX+V2x/gBJSaf8TX76DUjwClVGfMVgMHcJEhk4VpJy0Iwc8ODAFWK6VmYn7ZTsEcprQ7gGEYm5VS92KOw29TSn2K+cu7NXAJ5qWDT1Vyu7MxL1uc5fs1sNq37U6++4di/go4lhTMZselSqn3MfsL3ITZf+LUEuumAoOUUlMxr1rYYhjGz5izZA4AflZKvQ6sB+phdk4c5Pt/IcSxpQJjlFLPYF4SmWUYxucn4Xm/wjyl8LlS6lXMSyqvw2z9bFq4kjKnnf8S85LJJzGnRi/+PJsNw5AJxPxMCoQgZxhGqlLqAswv+Icwz/HNwOxA2KnYeslKqXTM8373++7ejrkDL6rCdr1KqRG+57sKs9DIAf4BngcqPJVhGMa3SqkJmF/yz2F2ZJyOOf10yQJhKmYh8zBmx8x3gZ8Nw9ijlOrte82XYvZlOIB53fX0yr4uIcLUK5g/KK7B3Ke3Yl4ddEIMw9joG/jsYcxj1G5gJubpweJXQNTHnIwNzLEWSnoXmWHU72QuhhDlayXoYhhGe91ZhBBCBB/pgxAClFIxJf5uj9lLeLmWQEIIIYKetCCEAKXULsxpfP/BHDVxMmbP4R6GYZQ39oEQQghRLumDEBqWAv/FHLc8H/Nc3d1SHAghhKgqaUEQQgghRCnSB0EIIYQQpUiBIIQQQohSpEAQQgghRClSIAghhBCiFCkQhBBCCFGKFAhCCCGEKEUKBCGEEEKU4teBklJTU+OBZkhhEu68wGFgf8+ePb26w4jqJfu9CAByzKkCvw2UlJqa2sdiscyyWCxWis0NLsKTYRhur9e7wjCMGT179tyhO4+oHrLfi0Ahx5zK80uBkJqaGm+xWL6vU6dO40aNGh1USsnwjcHG61V4XVF43ZF4XJHK8ERieC0YhqLowG8U/q+BwgAFyuIxLJFuIqLcWCLdWCJdBoqCgoLoPXv21M7Nzd3m9Xr79ezZs0DfixPVQfb70GAYBm6vEenyGpFerxFhGIYyDOXb770GEXkWwFAow6IsXt9/PRGWCE8EkR6LRf+/u2EYcsypAn+dYmhmsVisjRo1OhgXF5frp22KyjAMcOXUpCAnDnduDB5XFF73kZvhjThp21IR7jhLpCu6lvI4MjI6t/rpnmf5/M/lQCp25z8nbTtCN9nvg4DL443MKfDE5rs8NV0eI8rt9Ua5PUaU22v+v8drlPE9YX7nR0Z4XUbUgaiynjfKEp2Xl9OwpkUpb4RFuSItyh0ZYSmoEWnJqxkVkRsTZcmtGRWRp5R/Gpbi4uLyoqKiXJs3b27o9XpbAX/7ZcNBzF8FggVQ8gsiQJjFQAwF2bG4cmNx5cbhzosBwz/niA1PJB5PZITHwOLJI6rg8I3AjQDYrYeAX4HUopvdudkvucTJJvt9gClwe6NyCtyxOQWe2DyXJzbP5Y1ze71lfsGfKIuK8AJ4DcPi9Rg1XB5q4PLEZRZbR6GM6EhLXo1IS24Ns2DIjY2KyK0RFVEtv+4tFkthM6dMVHgc5E0KB4YBBVlx5B2uQ352Lb8WA5VXFzjfdzPZrYcxi4WvgEXYnWl6ogkRXHIK3DUzcl11sgs88fkuT6zba1RLMVA2S4WFoYGh8t2emHy3J4a8I/dHRVgK4qIjM+JrRmbUrhmZERlh8VRnUlE2vQWC3dqzep7XmXoiD9+4cWP0Z599Zp02bdq+wvuaN2/ebcGCBX/37dvXb02lTqfTkpiY2Pavv/6KdbvdKjMz8/fiyz/44APr3Xff3cLr9aqOHTvmfvjhh1vq1avnBfjw/ffr3HvvPa0Mr8dyaud2lnefe0DVrhVfahter5dbZzzJkm9XoxTcNnEsU665vMJlxR06nMGlE/+P/YcO0793D1557C4A9h04xKjrp7Hsg1eIijqh41IdjhQNj2O3bgI+991WYXfKwSNI2JJSqmWfdyQnntA+7w+dOnVK+PHHH9Pq1q1bbb3ovYahMvPctTJyXdasfHcdl8cbXZnHr/v9V5584C5ysrNRSnHHjEc48+xzANi6ZTMPTr+NTOdh8vPz6T9wCNPut5fZ83TlspW8+OhLMV6vBbfbzfgbbmH4qP8etc7Pq1dyw9hLuOO+h7li4uSjlrk83uh1Gzc1mH7ThAa5OdkkjhhZMP2uew7UqhmZkf7XH+4777yzxbfffiunCKpZoP6K1GrTpk013nrrrYYn+3ldLlel1o+OjjamTZu2OyUlJb3kMqfTaZkyZYrt448/3rx169Z1TZo0cd19V1ILsvY0yHT83u7WW29uu/idp6M2//BZRPMmDdVDz71e5jbmLFzC+vR/SF/1Cb8sns2TM9/jr42bK1xW3NxPljDg7DP485v5pP29hXVp5n471f40yXfdfKLFQVnaA1OB74C92K1zsFvHYLfWPtkbEuJEFe73aWlp66ujOHB5vJH7s/Lrb9mf1Xb9zozuWw9ktz+UU9CossWBYRjcft2VTJ56Fwu++p4nZr7NjKk3kpdr/iZ69uEZDBx2EfO/XMX8pSv5ceW3rPr261L1gWEYJN2YxOMvPZs7/8tVvPjOPB6663ays46cXMjMcPL8Yw/Qb+DgcvPMe/cNLr96Igu++p7PPpoXvXX3/qb/7MvqePPUOxNmPP6cOpRdUMdfV+GFq7AuEBYuXFg7ISGhc4cOHRJ69erVMTU1tSbAzTff3MrhcNTs1KlTwsCBA9sVrj9//vy63bt379S8efNu06ZNa1p4/7Zt2yIvvPDCNt26devcoUOHhFtuuaVZ4bLmzZt3mzx5cvNu3bp1HjlyZOvK5IuJiTGGDx+eWb9+/VK/kBcuXGhNSEjI6dH9tHyy99ebNnFU7OJFnzUkY+cpS7/8ytqja0c6tTM3d+PVo/ng0y/L3Ma8RV9x3bhLiYiIoF5dK2OGD+GDT5dWuKy4qMhIcnLz8Hq95Be4iI6KYul3q6lbpzZ9ep5amZdcFfWAccCHwD7s1gXYrYOxW+WSOlHK119/HdezZ8+OHTt2TOjQoUPCnDlz6gCsXLkytkePHp06dOiQ0K1bt85fffVVHMDll19+yowZMxoXPj4tLS26QYMGp+Xn56vPPvusVvfu3Tt17tw5oV27dl2effbZBoXrjRw50jZq1CjbGWec0bFDhw5dAJRSPffv3x8BMGnSpBZdu3bt3KlTp4Qzzjij4//+978ahY9VSvVMSkpq0q1bt87Nmzfv9vzzz9cvXPbrr7/W7NevX/sOHTokdOjYqdv9jz3dZcOujNP+SHfYbrjmyjqXJw60jBzUl5eeeLjS783hQwc5dHA/ffqfB4CtTTtq1bby/fKvC4ORlZEBQH5eHm63m4aNG5f5XEopMg5nWgCyszKw1qlHdHTRS+Sx+6Yx6ZY7qFOnXrl5IqMiyc3Nwe1yYXi9KIuFBbPf4qxzBqp6TVvV3n4op+36XRmn/Xsop0VOgbtmpV+wqFDYFgg7duyInDBhQpt33nnHkZ6evv7aa6/dN3r06LZer5cXX3xxm81my0tLS1tfvBnr8OHDEb///nva2rVrN8ycObPxli1bogDGjh3b+qabbtr7559/bvjrr7/W//bbb3FvvfVW3cLHHTx4MPJ///vfhkWLFm05Wfm3O/6JbdeqaRS7152Kc3vrNs3rx+3aux+32822Hbs5pXlR/YKtZVMKl5W0beduTmne5Mi6LZqxbcfuCpcVd8XIRP7esp0eQ/7LoP69ad60EY+88CaPTL/pZL3c4xUNXIbZV2Ezdus92K1NKniMCBN79uyJGDNmTLtHHnlkx8aNG9dv2LBh/eDBgzPz8vLUmDFj2t57770709PT1z/11FPbx44d287pdFomTJiw/4MPPij64n/11VcbXHLJJQdq1Khh9O3bN2ft2rVpGzZsWL969eq0J598sunmzZuLmsv++OOP2GXLlm3asmXLXyWz2O323evWrduQlpa2ftKkSXunTJnSqvjyGjVqGH/++eeGxYsXb7r77rtbuVwuXC4Xl156afuRY682Plm+Juqjb36KHpg4oibAvbffyJirJvL+4m+Yt3Qlf/3xO18t/rRS70/devVp2KgxX37+CWCebnD88zc7t28DYJr9UZalfMqgnp0ZdEZnLh45hoRup5X6Ca+U4qnXn2LKNdfVHNanG+MvvZCHn32FqGizQWNZymdYLBbOG3LhMfOMveZ6vl2awpUjhnDV9VPIyshg2ZJFR52O8HiNyIPZBY3/3pvVJX1PZue9mXkN3Z6TeMVVmAvbToorVqyI69ChQ27v3r1zASZPnnxw2rRprQq/9Mty5ZVXHgRo2rSpu0WLFgXp6ek16tev7/npp59q33HHHVF33HEHADk5OZa0tLSiivbaa689YLGchFrMMCDvsJXsfY3iyakdrTxg6D/9Hhcbw0evP1n09+33P8X0G8fzt2M7j77wFgD33jqR07p08Ges1sDDwAzs1vnA89ida/0ZQASW7777Lr5169Z5w4YNywKIiIigcePGnl9++SXGYrEwcuTIDIChQ4dm1a9f3/XTTz/FDh06NMvtdrNixYrY/v3758yfP7/+p59+uglgz549kePGjbNt2bKlZkREhHH48OHI3377LaZt27YugP/85z+HyjulsGjRotqzZs1qlJ2dHeH1enE6nUcdiydMmHAAoEePHnkRERHG+r+31P93z6GG+S539PnDR0V7vOb3ct169cnJyeaX1Ss4uH9v0eNzsrNxbK78Kfrn3pzLc48+wJsvP0vbDp3o0asPEZFmtHnvvckF/xnJhClTObB/HxPHDKdb9+6q7+BORz2H2+3m1Wde5cW33so/9Yzzaq77/VdunTCWj5atxuN28/oLT/HG/MUVZmnYuAmz5i4s+vv/bhjPHfc9zJofVjF/9ltER0dzS9IMmrUwa6s8lyd2t9PTak9GfotaNSIP14+P3lerZlRWpd8EUSRsC4SqiImJKdrZIyIiDJfLVTTQ1K+//rohNja2zBNitWrVKvNbPDU1tea4cePaAPTq1Str9uzZ28rcsOFVFoWFveu74imoAdCqeROWrfqpaBXH9l00bdSAyMjIYy4rqVWzJmzdsZuzzjjNXPffnbTytRoca1l5fvltHXsPHOKiwefQ/5Jrmf3CwxiGwfjb72fFwjeO+dhqEg1cAVyB3foj8DTwMXannLwU5Sp+bf7YsWMPvP766w0yMjIO1a1b192rV688gEmTJp0yZMgQ59KlSzdbLBYSEhI65+bmFv0SiI+PL3O/37RpU/T06dNb/fDDDxu6dOmS//PPP8cMGjSoY/F1YmNjDa/XUPuy8htGREZF7DycZ8v3lNN9wXcMmv3ZMmrUPHZL+x3XX812hznUyGsffkadukc38XdM6MbMOR8V/T1iwJm062AWAPPefZNFK9YAUL9BQ/oPGMSaH7+3lCwQ0talsW/3Pnr17Ud+AXTtfjqNmzQjbd0fuFwF7Nu7hzHD+gNw6OBBli/7gkMH9nPz9PvKzf31kkW0OMVGpy7dGDHgTOZ+/jV//fE7rzz9GA8/O7PE22FYMvJc9TLyXPVioiKyGtaqsbtObLTzmG+MKFPYnmI477zzstPT02PWrFlTE+C1116r27hxY1fr1q1dderU8WRmZh5XM5XVavX27t0749577y1q03c4HFHFmxrL07Nnz7y0tLT1aWlp68ssDgwDsvbWj87Y2kEpVGFxADBsQF9+/TONtL/NsxavvDufy/8ztMJlJY26aBCvz/0Yj8fDwUNO5i36ijHDh1S4rCwul4vpj7zAM/dPBSA7Jw+lwGJRZGXnVPR2+MNZwEfAGuzW8ntHiZB0/vnnZ23durXG0qVL4wE8Hg979uyJOPXUU/O8Xi+ffPJJbYBly5bF7d+/P6pPnz45ANddd92BlJSUurNmzWp45ZVX7i98PqfTGWGz2fItFgtffPFF/MaNG2OPJ8ehQ4ciIiMjjVatWrm8Xi/PPfdco5LrHMguqJ+2O7Pbnoy8loX32dq2p2ZMLF98euQL/NDBA8TGxdOrb3/eeuW5ovv37t7Fnl2lRxN++tV3zU6GX64qVRwA7Ntz5BTiwvffJSYmlt6+qxhatDqF1cu/ASAnJ5s1P3xPu46dSxXaTZo1Yd+efaSnbYoA2LblH7Zv3YKtbTvOOX8o3/2Wzhc//sEXP/7B4AuHc/1t045ZHGQ4ncx9cxY33DYdgLzcHJTFgkVZyMnOLvdxALkuT/y2gzntNu7OTDiYXVBXOjVWTti2IDRr1sz9xhtv/HP11Ve3drvdymq1eubNm7fZYrFw5pln5nTo0CG3ffv2XVq2bJlf0eU0CxYs2HLjjTe2bN++fRellBETE+OdNWvW1sKmxirJOWglc1eLUweMqLnvwGEyMrNp0XMYA/qewewXH6ZWfBxvPDWDEdfegdvjpmvHdrz73AMAx1wG0H3w5SyZ/SLNmjTkyssSWfO/v2jfbwRKKaZOuoJundsDHHNZWZ6c+R5XjUqkcUOzT9WD/3cDF155i7ns3tuq/FZUg57AV9it3wBJcuohPDRs2NDz4Ycfbr7zzjtb3nLLLRaLxcKMGTN2jB071jlv3rzNt956a6vp06e3qFGjhjF37tzNVqvVC2Cz2VynnXZa9jfffFPn3Xff3Vr4fA8//PCO2267rVVycnKzLl265Jx66qnH/rby6d27d+7w4cMPdurUqUvdunXdF1544WEwe/8fzC6oB7Avy9WytvXoFoPIyEief3Muj903nTdeegaLxcLoqyYw6oprePSF13jqwXu49PyzUEoRExvHfcnP0Lhp80q9Rwvff5eUTxaAYdC6XQeefWN2UWvKQ8/OJPm+O3n/rVm4XC7OHTyMxEtGemF3xHdLv+O7pd/x4HMP0qBRA+zP2Jk6aUKUxWLB6/Vy10NP0LR5ywq2XrbnHrufG6YmUTMmBoDrbvk/xiYOJCoqCvuTLx7Xc+S7PTH/HsppE2W48/I9RoZ0Ujg+/pqLoVNkZOTS9u3bZ8XGxuZV/IgwlpcRT+bO5rhySw9aEGLy3AZbduyj9eo7qJm1XVcMA1gI3IPdWepyUlF1st8fv8M5BdY9GfnN892eGN1ZKsMcanlXma2lnrzKFSf+YLgL2LvzXx5due/3LYfdUx3Jid/pzhTIwvYUQ8ApyI5h/6Z2HNzcMRyKgwCiMK98+Au79VXs1mYVPUCIkyUjzxW/aU9mp20Hc9oFW3FwLBYV2CMfFniM7sC3tqSU921JKWVfqymkQNDO67FwaGtL9qcnUJBl1R0njEUCk4BN2K23YbfKviGqjdvjjXAcyLY59md3zHV54nTnOdksKiKgC4Ri/gtssCWlTLIlpcjYKSXIQVCnvIx49m1IIPdgqU5KQptY4FlgOXZrW91hROg5lF1QJ31PZpeMXFf9itcOThYCuwWhhLrAq8D3tqSUrrrDBBIpEHQobDU4uLkjHleNih8gNOgP/IHdeouMyihOBpfHG7llf3ab7Ydy2vp30iT/UyoiGC8X6Av8aktKecyWlBIyp3tOhBQI/iatBsEkFngeaU0QJ+hAdn7d9D2ZXTLzXHUrXjv4KSzVNiFVNYsCkoB1tqSUQbrD6CYFgr94PYrD21pIq0FQOgezNeFmaU0QlVHg9kb+sy+r7Y5DuW08XiN8LisP2Nnkj1sb4EtbUsoDtqSUoH8xVaX1Axs2U78W5NTk0JZ2xQc6EkEnFngBuMScOdK5r6IHiNK6vdutWvb5P6/+M7D2eSAj1xW//VBO27AqDIqExHeqBZgB9LElpYxzJCfur+gBoSYk/hUD0Zo1a2o2b968GzkHrRzY1Lm6iwOv18vN9z5O277DaXf2cF56+8Ny1930zzb6Dh9Ph34j6HXhFUdN4XysZcUt+eZ7ug4cRdeBo/hy+Q9F97/14ac8+sKbJ++FBZ4BmCMxnqY7iAhcezPyGm49kNMhPIsDQqEFobghwG+2pJSzdAfxt5D6Vww0FmVEcHhrOwxvtb/PcxYuYX36P6Sv+oRfFs/myZnvlfvlfv30h5k07lLSv/+U6TeOZ/zt9x/XsuJmPDWTJbNfYMnsF7jn8ZcB2LPvALM/WsK0G68++S8wsJwCrMZuvVR3EKHH1KlTm1177bWlhgb0GobaeiD7lN0ZF8WpaAAAIABJREFUea0MjFKno5Z/tYQn7XcDsObH7xk9tH+Zz5+TncVpLYOnu8Kjdz3KkNOH0LVhV9L+TMMwLGWeituxfRsTRl3E2Qmtynztmzb8xYRRFzFiwJmMGHAmX3/xeZnbezDpNkYO6svEMcPJzDCnWTAMgxuvvIztjpM2aW5xLYAVtqSUW6vjyQNVWBcIc+bMqdOmTZsuHTt2TJg8eXLzunXrnrZx48ZoKH++9qysLJWYmNimbdu2XTp27Jhw9tlnF409PHXq1GannHJK1y5dEjp/NPuNNhGKohE9v1z+A/1GXEvPYWPpnXgl3602Jz0ZfPlkPlr8dVGm5T+spceQ/1b6tcxb9BXXjbuUiIgI6tW1Mmb4ED74dGmp9fbuP8jaPzZwxUhzqtWRieezfece/t6y7ZjLSoqKjCQnN4/snFyio8wO2bfbn+bxe24pc1KoEBQHfITdapd+CaHH5ar8KOkFbm/U33uzOjpzXQ3KW+e8IRdyp/3RE8oWiIZcPIT3Fr9Hs5bmOGPecgqE+Pha3HTnPTz24uulluXm5nDrxHHcdOc9fPrdzyz8+gdO7136R/umtPVs2/IPC7/+gTPO6sfij+cB8PEH79Grb39a2lqfzJdWXBTwnC0pZZ4tKaVWdW0kkIRtgbBjx47IKVOm2BYuXLh548aN6zt16pR3+PDhom+28uZr//jjj61OpzNi8+bNf23cuHH9xx9//A/Ahx9+aF20aFHd39f+vOnPbz9ix47tRZfJ/LP1X+xPv8qS2S+QuvR93n/pEcZOuYf8/AKuGTOcd+YvKsr19rxFXHv5fyr9erbt3M0pxWZatLVoxrYdu0utt33n7qNmdlRK0ap5E7bt2H3MZSU9ce+tXH3b/Yy/3c5T993O4mUradygHr17hNVlxAq4H1iA3Rpyg92EIqVUz1tuuaVZ586dE2w2W9eZM2fWK77s9ttvb9a1a9fOU6ZMaQEwY8aMxt26deuckJDQuX///u3T09OjC9ffsWNHdJ8+fTq0bt26y4CB53dck7a1c57LEzfzmWSesN9VtM0P3nmN+26/EYDP5r/PbRPGlZltwZy3ubh/T0YPO4fZr88sc53iXC4Xj9x9BxefcwZXDB/MUw/ey4RRFwGQNGUiSz5ZAMC8d9+gZ5tG5OSYU0VMHDOc1J9Ws2P7Nvp1OYVXnn6Myy88j4v6nc6qb7+q5DtqOqPvGTRpduT4Y3jLnt/eWrcup/c+i5jY0rvLF59+xKk9zigqCiIiIqhXv3StFRUVhasgH6/XS25ONlFR0ezbs5svPlvIldfdVKX8lTQa+MWWlHKKPzamU9gWCMuXL4/r2LFjTo8ePfIApkyZciAqKqro2t1FixbV7t69e6f27dt3efzxx5tt2LAhFuCMM87I2bx5c80rrrii1euvv143OjraAPj6669rXfqfi7LqevZ2tHjyY6+/YmTRtpZ+9wN/O7ZzzqUT6T74ci6bNA2LRbFtx24uGTaAn35dx649+8jKzmHx16sYO2KYn9+Nyut/5un8vPg9fl78Ht06t+PxV97h4ek38dzrcxk1aRpT7kmmoKDqc1UFmZGYpxxC/oARCpRSbNiwYf2SJUvSk5KSWhW2GoI5jfu6des2vPrqq//OmjWrXnp6es3ffvttw/r16zdcfvnlByZNmtSqcN01a9bEz58//581f6btbtTCFv/sYw9UeWyDTWnrmflMMm99lML8pSvJz8ut8DEL577DNsc/fPzNj7y9cAmb0v4qWnZmv/P46fsVAPy4ajldTu1O6k+ryc3NIX39Ok7t2RuAzIwMOnTuwodLlnPXQ0/w5AP3VPUlHMXjVZWeD2lz+kaiomswZfwYRg/tzz233cDBA6X7BdratqfXWf25/IJz2bFtK4mXjubJB+5m6j0P+rP1shPmwEqdKlwziIVtgXAshfO1z507d8umTZv+ev/99//Jz89XAAkJCQVpaWl/XXDBBc7Vq1fHd+nSpcu+ffsiopSnZix59fF6ouDo+eQNDAaf04ffl31YdNuR+iXt27QiJqYmoy4axOyFKSxYvIyBZ/eifr06pTIlv/Q23QdfTvfBlx/VKbBQq2ZN2Frsl77j3520KtaiUKhlsybs2rsft9ttZjMMtu3YTavmTY657FjuTn6Je26ZwO69+/nsyxUseO0J6te1MveTJRW/2aHjNMzOi6frDiKO7aabbtoP5r7cq1evzGXLlhU1F0+ePLnoG2nRokV1Vq1aVbtr164JnTp1Snj++eeb7Ny5s6iYGDhwoDPK2rDBzsO5tpHjxvPT98urnOmXH1Zx9nmDaNjY3NdGX3VthY/5efVKEi8ZTVRUFFFRUVx82eVFy/r0P5dfVq/A4/Hwz6aNXHndTfy0agW//vwjXbufTpTvtGCNGjU5/4KLATi1Zy/+3Xpyzt97vZZKFwgej5ufv1/OfY89y7ylK2nUpCmP3H1HmetOmXYv879cxVOz3uGnlctp0qw5zVq24r6pNzF10lUsXfTxCb+G49ACWGVLSgnZfT5sC4Tzzjsve+PGjbGFfQtmzpxZ3+VyKTj2fO2bN2+OUkoxbtw456xZs/41DIOtab83vPic060fpXytMrOyMQyD1+Yc+YAOPfcsvl71M3+sPzJZ4C+/rSv6/2vGDOfteYt4Z/7n5Z5eSJpyTVFxMfS8vqWWj7poEK/P/RiPx8PBQ07mLfqKMcOHlFqvUYN6nN6tE3MWml/eC1O+oUXTRrRr3eqYy8rzU+ofODOyGDbgbLJzcimsiywWC1nZFf8KCjENgW+wW/voDiKOn1KqqOWwcIpnMAvk22+/fVdaWtr6tLS09enp6evT09PXFy73qMjYfZn5RVMWKswPf0REJB7PkZGGC/Lyq5LphB7TtHlLoqJrsOSTBSR0O40zzz6XNT+u4ufvl3Pm2ecWrRddI7rocREREUflLu6qEUMYPbQ/4y6ueOwgAwyvUfnvlqbNWtCrb38aN22GUorES0bzx6/Hnok9KzODd199kcl33MWcN2ZyRp+zeeKVt3j1+SfJy/XL8acB8J0tKaXs3qZBTmtvMp3jFTRv3tz9wgsvOC655JJ20dHRxrnnnpsRGxvrrV+/vqdjx44FZc3XDpCamhozY8aMFoZh4PF41NjL/pN7RtsGzWnbj19+X8fpQ8dSu1YcFww4u2hb7Vq34v2XHuX66Y+Qk5tHgctFj66deP9ls7NS7x5diYiI4G/HdoacW7XvlisvS2TN//6ifb8RKKWYOukKunU2+08u+moFi75awRtPzQDg1eR7GH/7/Tz64lvUrhXH28/Yi57nWMtKcrlcTH/0BT567UkATk3oQJtTWtB14Cga1KvDJ288XaXXEuTqAF9htyZid67SHSbQBMJ4BbNmzWrwzDPP7Ny4cWP02rVra7388stlzjU+fPjwwy+++GLjK6+88lDjxo09+fn5au3atTX79u2bW2BE1F65/NuYA/v2Ur9hIz7+4D3O7G9+8ba0tWbVt1/h8XgoKMjn6y8+x9am3TEz9e7bn7defpb9e/fQoFFjFsx+u8LX0fvs/iz59CMuGHEZAJ9/NO+o5X36ncsrTz/KpFunUbtOHSIjo1iW8hnPvjH3uN6n4t779Pj7JkSYMzlW+rtlyMUj+GTeHLIyM4ivVZvvv1tGx4Qux3zM8489wPW3TSMmJpbcnByUUiilcLtcuFwF1Izxy4jJtTEHVbrMkZwYUs2mYdHdvDwXX3xxxlVXXXUYYPbs2XWWLVtmbdCggQfg7bff3g4UHTieeOKJXQCjR4/OGD16tPkrInN3QzJ3Ff28tt9xA/Y7bih6/oenH+kwM+icMxl0zpnlZln37YITei0RERG8/OhdZS4bPuRchg858quhYzsbP37+bpnrHmtZSVFRUaxY+MZR9xUWIWGuFrAUu3U4duc3usOIo3k8Hjp37pyQm5treeyxx7Z17NixoKz1Jk+efPDAgQOR55xzTkff49TYsWP3t+zco5FHRcSd3vsskm6+jr27d9GqdRseeuYVAAZdcDHLUj5jxIAzady0GZ26dKvw12z7TgnccPt0rhl5ITFxcZw/7OIKX8dl465hU9p6Lh3Yh1rWOnQ5tTv79hw5zXhm//OYP/st+vgKlz79zuXjD96jY8LJ70j8wB0PsHLZSvbv3c/EURMj4+KsLP7+VwDsd97CeYOHcd6QC8nNzWH4Ob1wFeSTmZnB4F5duGjkaG5Nup+mzVsyYcrtXDViKBaLhUZNmjLj8efK3eZva34iLy+Ps84ZAMDlV09k+pSJvD3zeS66dAy1avt1ctwY4FNbUspVjuTE8gehCTLKMKp/To3U1NROkZGRS9u3b58VGxubV+0bPE5JSUlNPvnkk3per1fFx8d7XnzxxW39+vXLOa4HZ+1pQMZO6ZR2AvLcBlt27KP16juomVXmj7hglwMMC9eWhEDc75VSPfft2/d74Q+Bytp2MKfV4ZyChic7V1VlZ2USF18Ll8vF3bdMonO307j2xtv8tv3ICK/LiNp1VOfM6IiaubnZ9QNysiPDXcDenf9i/24vOzKrZcJJL3C9IznxjQrXDAJh3YKQnJy8Ozk5ufQ1fBXJ3ldfigNxHGKBFOzWIdidP+kOI07M9oM5LQOpOACY9N9LcBXkk5+fT49efRh7zfW6IwXzRE0ngwV41ZaUkuFITpyvO8yJ8leB4AWz00/Qy95fF+e/Nt0xQkHRxyEUPhflqwV8gd16Pnbnr7rDhDvDMKrUB2LHodzmh3IK/D4D64H9+5g8rvSAnX36n8fUex9i7udfl/EovRRBOdXzyWQBZtuSUg46khMD7x+oEvxVIBw2DMNdUFAQHRcXFxBNjVWS54zHub3ahukKNzkuwFNAVN4B3VGqWx3MIuEM7M6QPJcSyvZn5tc/kJ1/7Gt9q0n9Bg2Z/2WQnaEKrXkYqioa+NiWlDIg4CYPrAR/FQj7vV7vij179iRGRUW5LBZL8FWYnoIodWhrG1XG+OqicgzDLA72HjxMna1fEOEJi8shGwGfYbf2w+48vn4uQruMPFf8LmeenE6slCA8vlePWsASW1LKmY7kRIfuMFXhlwKhZ8+e3tTU1Bm5ubndNm/e3BAIsi9ZwxKVd6CJ8rrDus/GSeUpoM7WL2iy6X3dSfypB/AO5lCtIsDluTzR2w/mtC1r0iVRvvImagpTjYDFtqSUvo7kxAzdYSrLb194PXv23JGamtrP6/W28ud2T5Tyuum4+pYXItzZpWZuE1VkGETlHQiXloOSRmG33ofd+ZDuIKJ8bo83wnEgu33YTtd8AqRAKKULsMCWlJLoSE506w5TGX798Pfs2bMA+Nuf2zxhduuDwGDdMURIeQC79U/szk91B/E7u7Vn9Tyv87jO886ZM6fOjBkzmkdHRxvvvffelt69e5eqUg3DYOuBnDYFbm/N4938mh+/pyAvj7MHVDzSYFn++G0tD02/jby8PBo3bcYjz82icdNmZa772vNP8dl8c7CjYcMv5ebp9x3XskIul4s7bxjPju1baXFKa56c+TaRkZHk5+Vxw7hLef7N96ldp/Rw78ervImawtwQ4HnAL7NJnSzyD3ksduso4F7dMUTIUcBs7NZuuoOEm9dee63h9OnTd6Wlpa0vqzgA+PdQbsvsAnft431Ot9vN2h+/Z/WKqo2J5fV6ufvmSdxpf4zPV66l/4DBPPnA3WWum/rTar5YtJAFy77nk29/4ocV37Lymy8rXFbcDyu+oXaduiz46ntq1bayernZ0f6155/k8vHXnVBxAOA1lHyvlO1GW1LKKN0hKkP+Ictjt3bHPF8szWWiOsQDi7BbS89nK6rF+PHjW65duzb+wQcfbN6jR49OAAsXLqydkJDQuUOHDgm9evXquPyHNU0P5RQ0WvPj94weemR4/U1p67ngrFMBiqZJfvbR+xlzwbl8+M7rLJjzNks+WcDoof2Z9dwTlcq1/o/fiYiMpHdfc3uXXTGeFV8vJT+v9AVfX37+CRddOprY2Diia9RgxJhxfPHZwgqXFRcZGUVertlPNi83h6ioaNI3rGPL5k0MvfiSSmUvS1Umagojr9mSUsqf3CbASIFQFru1NvAp5kA3QlQXG/A+dqsUoX7wzjvvbO/atWtOcnLy9t9++y1tx44dkRMmTGjzzjvvONLT09dffc21hyaMv6LZ8YzXkpmRQbsOnZn3xQqumDiZUVdcw4WXjGL+l6u44bZplcq1e+e/NG1+pItTXHwt4uJrHTVscqFdO/+lWbF1m7Vsxe4d/1a4rLizzhlAXHwtRg3pR3zt2vQ++xyeevBepj/wWKVyl6cqUz2HkTrAXFtSSlC8R9IBp2xPA3Jpk/CHwcD1wCzdQcLNihUr4jp06JDbu3fvXMMwGDryirp335XE3t07K3xsZFQUiZcG58UoFouF+594vujvOW/MZMDQC3G7PSRNmUhBQQFjrp7ImWefU+nnVkp5jSrM5Bhm+mGeun5Ad5CKyD9kSXbrUGCi7hgirDyJ3WrTHSKc7cnIb5zr8sQX/l1y6uOC/KOnbI6JicFynH3xMpxORg/tz+ih/blt4hWlljdp1oJdO46Mn5WdlUlWZgYNG5cem6lpsxbsLLbuzu3baNK8RYXLyrPz322s+nYZY66ayMtPPcLIceN56JmXSZ4x/bheW0kWFVEtExyEoPtsSSl9dYeoiBQIxZmnFl7XHUOEnXjgTTnV4F/nnXdednp6esz3P/1s3ZeV3/yLzxbSsEkzGjVpRotWNnbt+JeDB/YDsPjjecd8rrj4WmRmlH2Ze22rlflfrmL+l6t47o05pZYnnNodt8vFLz+YIyZ+NOcdzh00jBo1S19EMfiiESz+eD45OdkU5Ofz6by5DBt+aYXLyvPE/Xdx5/2PYLFYzOmSUSiLhbyc7GM+rjwWLFIgHJ8I4H1bUopfp5ysLDnFcLRnABnvQOgwELgBmKk7SLho1qyZ+7XXX99y3cTr2no8HlXbWoenZr6NUopGTZoy/oZbGHfx+dRv0Ih+FVy+OHDYRSz+eB6jh/Zn4AUXV6ofgsVi4dEXXuWhpNvJz8+nUeMmPPL8kTNON101ihvvuJsup/Wg11n9GHrxJVw2+GwAhl58CecOGgZwzGVlWfLJAjokdKVdx84AXHvjbTw4/VZcLhfX3XrncecvTqmIcJ6oqbJOAV4FLtcdpDx+me45KNitw4AvdMcQYS0L6Ibd6dAd5GQIxOmeS9p5OLfZ/qz8prpzBKuS0z3XiIjLzsmuE6cz07H4YbrnqhjtSE5coDtEWeQUA8ipBREo4oG35FSDf2Tlu2MPSHFwUimZh6EqnrIlpcToDlEWKRBMzwDH7s0jhH8MACbrDhHqDMNgx6Fcm3ybnWSGFAhV0AqoWq/QaiYFgt16NjBBdwwhinkcu7WR7hChbH9WQYN8tycgf7UFtwhp/aqaaYE4gJIUCPC47gBClBBPaAzx7QUMwwis2RA9XsOyLzO/7IkOxAkxvAH1T12aYQAGnsDrShkDPKU7REnh3UnRbr0YWKQ7hhBlKAA6YXdu0R2kqlJTU+MtFsv3derUadyoUaODSqmAONjsz8xveCjXJS00J0GExesyovYVdVKMMurl5BdEBeQItIbHTW7GIbYfyOLub/bjDohPYykDHMmJy3WHKBS+BYLdagH+B3TVHUWIcszF7iw9sk4QSU1N7WOxWGZZLBYrATCvidcg4kCup7lh6M8SCiIsXo8R4SwaNtjireVyeyKjjvUYXTxeL3/szuPDdZkczAu8JgSfP4EejuTEgLjEIpwLhKuAd3XHEOIYvEAP7M4/dAc5EampqfFAMwLglOa93x24PyPfG7DXnQebiCjnnpot32xc+HfBv1f/6yqoH3Advr0GZBd4ySwwCIJvvJscyYmv6A4B4Vog2K01gI3IfAsi8C3B7kzUHSIU2JJSOmH+QpMB4k4SFXVgR3y7J5sX/p2Vfu9BwxNfT2emELAfOMWRnJijO4j2il6TyUhxIILDhditlZ81R5TlcaQ4qDaGgWF4YgN66OAg0QC4VncICMcCwRwU6R7dMYSoBLnS5gTZklL6AMN15whxTrAExTTGQWBqIEwJHX4FAtyGWaEJESz6YLdepDtEkPs/3QFCX0TZs1WJqmgNXKY7RHgVCHZrNHCj7hhCVMHtugMEK1tSShvgEt05Qp43MlN3hBBTtRmzTqLwKhDMWbMaV7iWEIFnIHZrN90hgtRthN+xzu8Mb41c3RlCTE9bUsr5OgOE205zq+4AQpyAW3QHCDa2pJQ6BEiHr1BneGsW6M4QgrS2IoRPgWDOuXC67hhCnIBx2K31dYcIMlcDATv9cCgx3HEu3RlC0FBbUsqpujYePgWCzJAngl8M5heeOH436A4QLgx3rTAcVMcvtHWwDY8CwW6tC4zUHUOIk+A63QGChS0pZQDQSXeOcGG4a4fH94n/XWZLSqmtY8Ph8g96JVBTdwghToJO2K39dIcIEtJq6Eded20ZhKp6xKDpksdwKRDkV5cIJZN0Bwh0tqSUeGRgJL8y3NYaujOEsKt0bDT0CwS7tQcyY6MILSOxW2N0hwhwFwLyheVHhqt2QE7zHCLOsSWl+H16gNAvEORXhAg9scAg3SEC3KW6A4Qbr7tWLd0ZQpgCxvh7o1IgCBGc5HNdDltSSg3MFgThR4YnXktHujDi934IoV0g2K3NkbEPRGi6CLtV6Q4RoAYB8mvWjwwDF96aUiBUr162pJRW/txgaBcIcLHuAEJUkyZAL90hApScXvA75dSdIEz4tRUh1AsEaYYVoUwK4BJ8U+TKfu9vRoQUCP4xwp8bC90CwW6NAwbqjiFENZIvwtLOQaZz9z8jKlt3hDBxpi0pxW9j+oRugQBDkMucRGg7FbvVr+ckg8B/dAcIR4a3Rp7uDGEiGujjr42FcoEgv65EOJDP+dHO0R0gHBmeGJnJ0X/89hkP5QJBrhMX4WCw7gCBwpaUEgN0050jHBnueI/uDGGkv782FJoFgt3aGGihO4YQftBTd4AA0hOQ+QA0MNxyVakfnWVLSvHL5zw0CwQ5aIrw0dxXEAs4U3eAcOWVmRz9KQ4/fceF6j+qFAginMjn3SQFgiaG2xqlO0OY8Us/BCkQhAh+8nk3+a13tzia4artt0vvBOCnfghSIAgR/ML+825LSmkKtNSdI1x53TKTo5/19cdGQq9AsFsbIR0URXgJ+wIBOb2glSEzOfpbfVtSSv3q3kjoFQhysBThp4WvMA5nvXUHCGeGJ66u7gxhqF11b0AKBCFCQ7h/7tvrDhCuDINcjCjpg+B/UiBUwam6AwihwWm6A2gmQ05row7rThCmpECoAul/IMJRuH/upUDQxYjM0B0hTEmBUAVNdQcQQoOw/dzbklKiARksShPDG52rO0OYkgKhCsL2QCnCWjPdATRqASjdIcKWt6YUCHpIgVApdms9ZIpnEZ7CuTCW0wsaGZ5Yl+4MYaqBLSnFWp0bCK0CIbwPkiK8NdEdQCMZIEkjwx1v6M4QxtpU55NLgSBEaKjha0ELR9KCoJFXZnLUqU51PnmoFQjhfB5WiHD9/EsLgkaG2xqhO0MYi6vOJw+1AkFaEEQ4C9fPf7UPOSvKZ7hqR+vOEMakQKiEcD4PK0S4FggxugOEM69bZnLUSAqESojXHUAIjar1YBHApEDQyHDXluOuPtU6i2aoFQhRugMIoVGk7gCayC9YjQx3fG3dGcKYtCBUQrgeIIWA8P38S4GgjVIyk6NWUiBUQrgeIIWA8P38Sy96TQxPTBxY5P3XRwqESpAPqghn8vkX/uWtKacX9JI+CJXg0R1ACI28ugNoIvMwaKPkvQ9hoVYguHUHEEIj+fwLEV5yqvPJpUAQInSE6+e/QHcAITSRAqESwvUAKQSE7+f/gO4AQmhSrVNth1qBkK07gBAaVeuviQC2X3cAITSp1u+8UCsQdusOIIRGu3QH0EQKBBGuDlfnk4dagRCuB0ghIHw//1IgiHBVrafXpEAQInSE6+dfCgQRrg5W55OHWoGwU3cAITRxEb5flPt0BxBCEykQKiFcf0EJsRu709AdQpNwLYyEqNbvvFArEA5g/pISItyEc3EsBYIIR3scyYnO6txAaBUI5i8ouZJBhKNwLhBknxfhaGN1byC0CgST9EMQ4ShsP/eO5MQDwF7dOYTwMykQqmCH7gBCaBC2BYLPn7oDCOFnUiBUgRwoRDj6Q3cAzcL99YvwIwVCFaTqDiCEBuH+uZcfBiLcpFX3BqRAECL47cHuDPdTa9KCIMJJAbClujcSegWC3bkT6dUswosUxbAe8OgOIYSfbHYkJ1b75z30CgTTr7oDCOFHYV8gOJITc4G/decQwk/W+WMjoVoghP0BU4QV+byb5DSDCBcr/LERKRCECH7yeTf9T3cAIfzkO39sRAoEIYLbXuzOf3WHCBDf6g4ghB/scSQnrvfHhkKzQDAPmHt0xxDCD6QYPuIX4JDuEEJUs+X+2lBoFggm+TUhwsE3ugMECl+v7q915xCimvnl9AKEdoGwSHcAIfxAPudHW6o7gBDVTAqEk2ApMvWzCG0bsTs36Q4RYL7UHUCIarTTkZyY7q+NhW6BYHceBlbpjiFENZLWgxIcyYk78NM14kJo4LfWAwjlAsEkB1ARyj7XHSBASSuCCFVf+XNjoV4gyAFUhKoDwA+6QwQo6YcgQlEu8Ik/NxjaBYLd+Q/wl+4YQlSDJdidMvdA2VYBWbpDCHGSLXIkJ2b6c4OhXSCY5DSDCEXyuS6HIzkxH1ioO4cQJ9lsf29QCgQhgk8Bcp69Iu/pDiDESbQPDft8OBQIPwObdYcQ4iRahN3p16bGIPQdsE13CCFOknmO5ES3vzca+gWC3WkAb+iOIcRJ9LruAIHOkZxooKFJVohqMkfHRkO/QDC9jQyaJELDFmCZ7hBB4i3A0B1CiBO0yZGc+LPJu/SvAAALI0lEQVSODYdHgWB37kEueRSh4U1fq5iogCM58R+kmBLBb66uDYdHgWCapTuAECfIhfmrWBw/2e9FMHOjcZ8PnwLB7lwGbNAdQ4gTsAC7c5fuEEHmc2CH7hBCVNF8R3Lidl0bD58CwfSC7gBCnIDndQcINr6e3y/rziFEFT2pc+PhViC8BxzSHUKIKvgJu/MX3SGC1EuYQ1MLEUy+cSQn/q4zQHgVCHZnDvCa7hhCVMFzugMEK9/wtE/pziFEJT2uO0B4FQimp4AM3SGEqIQ/gAW6QwS5l4D9ukMIcZx+ciQnar8CJ/wKBLtzP/JrQgSXu7E7vbpDBDNHcmIWms/nClEJD+oOAOFYIJieAfboDiHEcViF3ZmiO0SIeBlzTHshAtkaR3LiF7pDQLgWCHZnNvCQ7hhCHIfpugOECkdyYjbwhO4cQlTgft0BCoVngWB6DZnESQS2z7A7f9QdIsS8grQeisC1OFBaDyCcCwS70wXcpzuGEOXwAHfrDhFqHMmJOcCjunMIUYY84FbdIYoL3wLB9CGg9TpTIcoxG7tzve4QIepl4DfdIYQo4Qnf/CEBI7wLBHPSm7t0xxCihHwC6DxkqHEkJ3qA6zBbaYQIBFuAx3SHKCm8CwQAu3MpsFB3DCGKeRC7c5vuEKHMkZyYigy9LgLHbY7kxDzdIUqSAsF0IzKIiggMawmAEdTCxH3AVt0hRNhLcSQnLtIdoixSIADYnXuBm3THEGEvHxiP3SlN337gu+xxsu4cIqzlE2AdE4uTAqGQ3Tkf+Eh3DBHWHsDu/Et3iHDiu6Rsnu4cImw94khODNjL7aVAONqNyEhrQo81yCA+utyKzPIq/G8lAX7JrRQIxdmd+5BTDcL/5NSCRo7kxD3ALbpziLCyHxjru6ImYEmBUJLduQCZOU/41/0y5oFejuTEOcCrunOIsGAAVzuSE3foDlIRKRDKdiOwV3cIERZ+RmYXDRS3Yp7qEaI6PeNITlyiO8TxkAKhLOaU0KMAl+4oIqTtAUbJqYXA4EhOzAcuAw7oziJC1s8E0eB8UiCUx+5cCUzRHUOErALgUuzO7bqDiCMcyYnbgP8CXt1ZRMhxAv91JCcGzQ9PKRCOxe58DXP2NyFOthuwO3/QHUKU5khOXIYMdS1OvomO5MQtukNUhhQIFbsV+E53CBFSnsfufFt3CHFMjwCLdYcQIcPuSE4MunF2pECoiN3pxuyPEFCzbImgtQy4Q3cIcWyO5EQDuBL4W3cWEfRedSQnPqA7RFVIgXA87M4DwHAgU3cUEdQ2AWOkU2JwcCQnHgaGAbt1ZxFB6xPMq+KCkhQIx8scAvcKzGtYhaisDGA4dqeM2BdEfMPgXoDZwUyIyliFORhS0HZ4lQKhMuzORciVDaLycoER2J1puoOIynMkJ/6O2YIYcNPxioC1DhgeiFM4V4YUCJVld76CnEMWxy8fuAS7Uzq6BjFHcuJKzDESCnRnEQFvGzDMd4oqqEmBUBV25zPAvbpjiIDnAkZjd36pO4g4cY7kxBRgDODWnUUErIOYxUHAD6N8PKRAqCq78xHgQd0xRMByA2N9p6VEiHAkJ34KjAWko6koaTdwniM5cYPuICeLMgzpc3dC7NZ7gId1xxABpQCz5eAz3UFE9bAlpYwB3gOidWcRAWErMMiRnBhSl8VKgXAy2K1Tgad1xxABIQ9zCOUvdAcR1cuWlHIe5mVsdTRHEXqlYxYHITdsuhQIJ4vdeiPwInLaJpxlAf/B7vxWdxDhH7aklM7AEsCmOYrQ4xfgIkdy4j7dQaqDFAgnk916EfA+UEt3FOF3DsxxDv7UHUT4ly0ppTHmsMxn6M4i/Opz4HJHcmKO7iDVRX7tnkx252KgD7BZdxThVyuAXlIchCdHcuIe4FxAOqSGj1nAJaFcHIC0IFQPu7UeMB84X3cUUe1mAbdgdwbNFK6ietiSUizAc8DNurOIapMP3OFITnxZdxB/kAKhutitkcAzyMEiVLkxC4OZuoOIwGJLSrkFeAqI0p1FnFSbgdGO5MRfdQfxFykQqpvdOhF4GbkcKpQcAC7D7lyuO4gITLaklJ7AXKCj7izipJgPXOdITszQHcSfpEDwB7u1H7AAaKI7ijhh/8McOnmL7iAisNmSUmKBZ4FJurOIKssHpjqSE1/RHUQHKRD8xeyX8CLmKGwi+LiBx4EHsTtlPH5x3GxJKSOAN4D6urOISvkb85TCb7qD6CIFgr/ZrZcAM4HGuqOI47YOGI/dmao7iAhOtqSUpsC7wGDdWcRxmQtMdiQnZuoOopMUCDrYrfUxWxP+qzuKOCYPZqvBA9JqIE6ULSlFAbcDjwI1NMcRZUsHpjiSE5fpDhIIpEDQyWxNmAU00h1FlPIXZqvBWt1BRGixJaW0w7zK4T+6s4giuZiF2xOO5ET5MeAjBYJuZmvCS8DluqMIwGw1eAKz1SBfdxgRumxJKYMwOzF21Z0lzC0GbnYkJzp0Bwk0UiAECrt1AJAM9NYdJYx9CtyD3bledxARHmxJKRHA9ZhTx0snRv9yALc6khNlBMxySIEQaOzWSzGbuuT6af9ZCSRhd/6oO4gIT7aklLrA/cBNQKTmOKHOiTni5ROhPlTyiZICIRDZrRHANYAdaK43TEj7H3CXTM0sAoUtKaUT8Bhm/wSlOU6o2Y95SudlR3KiU3eYYCAFQiCzW2Mwh2pOAupqThNKtgD3Ae9jd8oOIAKOLSmlCzAd80onaVE4MTswO4W+Ji0GlSMFQjCwW+tgXh41GWioOU0w24TZtPiGXLYogoEtKeUUYCpwLRCvOU6w2YJ5mfLbcmVC1UiBEEzs1hqYvyhuBbprThNMlgHPA0ukxUAEI1tSSm3MIuFmoI3mOIHuZ8z5bz5wJCe6dYcJZlIgBCu7tT9wAzASGXSlLIeA2cCrclWCCBW+KaUvBK4ELoL/b+/+WZuKwgCMP1QLbbRGQcRu0aKL4qAOChVERZBA106OfoeMd8x3EDdBHBy0RESoIiiCIOhgq4iQQazooJFCxSbqcG5J8Ih/sOakN88PDukU3iW3T27OvZdS2okGxnvgMnCpWa8+Sz1MURgIG114xsN54AJwIPE0g+AecBG4Rtb6nHoY6X+p1BpbCJEwC5wDxtJO1HcrwBxwBWg069XVxPMUjoFQJFn5EDCTr6MMxy7oVUIU3ADmyFrNtONI/VepNSYIVz7MAmcp7uPll4G7wFXgerNeXU48T6EZCEWVlScJ3y5mgNPAeNqB1tUH4CYhCm6RtYbqGe3Sr1Rqje2Ez/1JYBrYl3Sgf/MFeAjMA3eAR54p6B8DYRhk5RJwhnDQOAXsSTvQX+sAi8BtQhQ8IGu5+Uj6A5VaYxchFKaBE4QNzoN66eRX4DEhBuaB+816dSXtSMPLQBhGWXkHcBg40rOmks7U1QEWCAeJtfWUrOX1y9I6yPcuHAOOA/sJn/29wO4+jtEBXgHPCfG/mP+9MOyPWB4kBoKCcK+FtWg4SLiD42S+1vsmTd8Iu46X8vUaeEI3BvzGIPVZpdYoEUJhbU0RzjbuBCaAbfnrVmDTT96iA3wCPhJuZ/zj6zvgBSEGXnpvgsFnIOj3svIY3VjoXeOEU5WbgVFghHCQaBM2D7YJm4qWgDd0g+CtPxFIG1d+ueVoz2oDy8161X8oBWIgSJKkyEjqASRJ0uAxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJke/zezE26BMXLAAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Análisis de la CPU" + ] + }, + { + "cell_type": "code", + "execution_count": 117, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "function=%{label}
cpu_mean=%{value}
parent=%{parent}", + "labels": [ + "Py_kgeneration", + "generate", + "gasdev", + "fftma2", + "covariance", + "ran2", + "cov_value", + "fourt", + "cgrid", + "length", + "maxfactor", + "prebuild_gwn", + "build_real", + "clean_real" + ], + "marker": { + "colors": [ + "#636efa", + "#EF553B", + "#00cc96", + "#EF553B", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#ab63fa", + "#636efa", + "#636efa", + "#636efa", + "#ab63fa", + "#636efa", + "#636efa" + ] + }, + "name": "", + "parents": [ + "", + "Py_kgeneration", + "generate", + "Py_kgeneration", + "fftma2", + "gasdev", + "covariance", + "fftma2", + "", + "", + "", + "fftma2", + "", + "" + ], + "type": "treemap", + "values": [ + 36.513029874999994, + 37.119660375, + 3.952229582167898, + 34.781174625000006, + 34.788295999999995, + 1.0488777115030088, + 1.0282644304084279, + 20.899999999999995, + 29.216666625, + 12.520833333333334, + 5.007499999999999, + 0.0125, + 0.0125, + 0.0125 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "CPU treemap" + } + } + }, + "text/html": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## N = 64" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Armado del dataset" + ] + }, + { + "cell_type": "code", + "execution_count": 118, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Executing file log_64-aa\n", + "Executing file log_64-ab\n", + "[39.241055, 42.262603, 56.511493, 42.525066, 42.717744, 35.235135, 28.406878, 32.749276]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
cpumemorytime
maxmeanminmaxmedianmincountmaxmeanminsum
function
Py_kgeneration39.62339039.62339039.623390-199.3-199.3-199.31.0415.639768415.639768415.639768415.639768
generate39.95615639.95615639.956156-281.6-281.6-281.61.0329.579564329.579564329.579564329.579564
fftma238.34373738.34373738.34373785.385.385.31.086.05913286.05913286.05913286.059132
covariance38.37486238.37486238.37486280.980.980.91.085.89417085.89417085.89417085.894170
gasdev100.1000004.5858120.0000008.00.0-61.2262144.00.0112770.0009090.000193242.610944
fourt26.64761921.86151418.9857322.30.4-0.23.00.0663930.0505880.0423090.151763
cov_value62.5750001.2108900.0000003.00.0-7.1156816.00.0005750.0002210.00019334.674709
ran275.0875001.2193380.0000002.70.0-17.8333450.00.0006910.0002180.00019074.079918
build_real0.0125000.0125000.0125000.00.00.01.00.0019350.0019350.0019350.001935
prebuild_gwn0.0250000.0250000.0250002.22.22.21.00.0026180.0026180.0026180.002618
clean_real6.2875006.2875006.2875000.40.40.41.00.0015510.0015510.0015510.001551
cgrid0.0250000.0250000.0250000.00.00.01.00.0035040.0035040.0035040.003504
length0.0125000.0083330.0000000.00.00.03.00.0011410.0008270.0006680.002481
maxfactor0.0125000.0062500.0000000.00.00.04.00.0001980.0001950.0001930.000780
\n", + "
" + ], + "text/plain": [ + " cpu memory \\\n", + " max mean min max median min \n", + "function \n", + "Py_kgeneration 39.623390 39.623390 39.623390 -199.3 -199.3 -199.3 \n", + "generate 39.956156 39.956156 39.956156 -281.6 -281.6 -281.6 \n", + "fftma2 38.343737 38.343737 38.343737 85.3 85.3 85.3 \n", + "covariance 38.374862 38.374862 38.374862 80.9 80.9 80.9 \n", + "gasdev 100.100000 4.585812 0.000000 8.0 0.0 -61.2 \n", + "fourt 26.647619 21.861514 18.985732 2.3 0.4 -0.2 \n", + "cov_value 62.575000 1.210890 0.000000 3.0 0.0 -7.1 \n", + "ran2 75.087500 1.219338 0.000000 2.7 0.0 -17.8 \n", + "build_real 0.012500 0.012500 0.012500 0.0 0.0 0.0 \n", + "prebuild_gwn 0.025000 0.025000 0.025000 2.2 2.2 2.2 \n", + "clean_real 6.287500 6.287500 6.287500 0.4 0.4 0.4 \n", + "cgrid 0.025000 0.025000 0.025000 0.0 0.0 0.0 \n", + "length 0.012500 0.008333 0.000000 0.0 0.0 0.0 \n", + "maxfactor 0.012500 0.006250 0.000000 0.0 0.0 0.0 \n", + "\n", + " time \n", + " count max mean min sum \n", + "function \n", + "Py_kgeneration 1.0 415.639768 415.639768 415.639768 415.639768 \n", + "generate 1.0 329.579564 329.579564 329.579564 329.579564 \n", + "fftma2 1.0 86.059132 86.059132 86.059132 86.059132 \n", + "covariance 1.0 85.894170 85.894170 85.894170 85.894170 \n", + "gasdev 262144.0 0.011277 0.000909 0.000193 242.610944 \n", + "fourt 3.0 0.066393 0.050588 0.042309 0.151763 \n", + "cov_value 156816.0 0.000575 0.000221 0.000193 34.674709 \n", + "ran2 333450.0 0.000691 0.000218 0.000190 74.079918 \n", + "build_real 1.0 0.001935 0.001935 0.001935 0.001935 \n", + "prebuild_gwn 1.0 0.002618 0.002618 0.002618 0.002618 \n", + "clean_real 1.0 0.001551 0.001551 0.001551 0.001551 \n", + "cgrid 1.0 0.003504 0.003504 0.003504 0.003504 \n", + "length 3.0 0.001141 0.000827 0.000668 0.002481 \n", + "maxfactor 4.0 0.000198 0.000195 0.000193 0.000780 " + ] + }, + "execution_count": 118, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "df = analyze(['log_64-aa', 'log_64-ab'])\n", + "overall_time[\"64\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n", + "overall_memory[\"64\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n", + "df" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Comparación de tiempos" + ] + }, + { + "cell_type": "code", + "execution_count": 119, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FOX2wPHv2U2jLh3poYUmKoaiYEEQC7EX/NmxC4oFFeNVdNV7FctVsVdULAiooBIVbKCgXAEVQXog0jvpdXff3x+ziUtIJ8nsbs7nefaBnXpmYebMvGVeMcaglFJKqfDisDsApZRSSlU/TfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfAq7IlIrIgYERltdywKRGS+iMy3Ow6lwl2E3QEoVRUiUtF3LJ8CpNRgKEopFZRE30WvQpGIXFFs0lXACODKYtO/AXYD0UCBMcZbC+GpMohIFIAxJt/uWJQKZ5rgVVgQkReBW4wxYncsqmQiUt8Yk213HErVFVoHr8JeSXXwIvKOiGSKSEcRmeP/+zYRucU/v6+IfC8iWSLyt4hcVsJ2m4jIcyKyRUTyRGSDiNwrIhU6r0TkTBFZICIZIpIuIkuK70dELhaRZSKSIyJ7ReR9EWlXbJnDOhYRGe3/fU4SkddEZJ8/nqki0rTYsueKSJKIbPcfc7KITBQRZ7Hl5ovIShGJF5EfRSQbeCxg3vxiy48Tkb9EJFtEDojI0hLi7CciX/ljyxSR70TkuFKOZYiIPCMie/zHPUtEWhZbtr+IzPX/rjkisklEppT/L6dUaNAEr+oyJ/AVsAWYgFVX/6L/RuBrYClwL5ABTBWRzoUrikh9YAFwBTAVuA1YBDwOPFPejv37SAKa+ddJBP4Azii2zAzAC9wHvAFcACwUkSbVdSwBXgR6AW7/MV0OzBaRwFKR0UCm/xhvB5YBjwCTSthec39MfwB3AD+U8lvcADwPrPIv95B/nUEBy/QBfgKOBp4EHgU6A/NFZFDxbQIv+Jd9GHgFONt/fIXbawXMA2L9sY8DPgCOK74hpUKWMUY/+gn5D9bF25QyLxYwwOiAae/4p90XMK0JkA34gEsCpvfwL+sOmPYAVqLrXmxfjwMeoEMZsbqAdGAxEFNsXmG1WSSwC1gRuAyQ4I/l4Wo8ltH+aUuByIDp9/innxMwrV4Jx/MqkAVEB0yb71/3phKWnw/MD/g+G1hZzr/vLCAP6BIwrY3/d1xQwrF8U/hb+qc/4/93cfm/n+dfrr/d/3f1o5+a+ugTvKrr3iz8izEmFViLlaxmBExfC6QCXQLWuxjrifKAiLQo/ADfYj1Nn1TGPkcAjYBJxpjcwBnGmMJGMf2BVsDLgcsYY5KANViJvrqOpdDrxpiCgO+vYCXFkQHr5xT+XUQa+Y/5J6A+0LPY9vKAt0vYT3GpQHsRGVDSTH/x/2nAbGPMxoBYdgAfAieISOMSjiWwgdFPWP8unQL2CXCWiERWIEalQo4meFWX5Rpj9hSblgZsLZYcCqcH1kd3xypO31Ps861/fqsy9tvV/+fKMpYpTERrS5i3JmB+ocM5lkLrA78YYzKBHVglIIBVVO6vz07DenreA7zvn+0qtr1tpmIt5Z/AKg35VUTWi8hLIjIkYH5LrBuIkn6L1VjXsQ7Fpm8u9v2A/8/C414AfIJVHbBXRD4TkWtEJLoC8SoVErQfvKrLSusyV9r0wLpoB1Yx8JOlLLuuqkFV0eEcS4X46/0XYCX2B4FkIBc4FitJF39gyKECjDGrRaQHcBbWTdOFwFgRecQY81Bl4/Qr87j9Nz0X+RvpnQ2cDkwB7hKR4/w3N0qFNE3wSlVNMtDQGPNtuUuWvC7AkcCGUpb52/9nD+D7YvN6BMyvTt0JaAgnIg2x6rm/9E8aitVw7gJjzI8By5XUYK9SjDFZwHRgulj95D8F7heRx7FKCbKxjru4nljtDLZUcb+LsdpC3O9vtf8B8H8EVHcoFaq0iF6pqpkBHC8ipxef4e8+V9bN8zys1uz3iUhMsXULn6yXYr2g5+bAYmMROROrpXvSYcZfkhuL1UePwXoI+Mr/vfCpuOjp35+Mxx7OTkWkeeB3f7H+Kv9+Io31cqJ5wLkiEhuwXmvgMmChMSa9kvtsWqx3AFgt98F6KZJSIU+f4JWqmqeAc4A5IvIOVnexBkBf4CKseuu9Ja1ojEkXkTuxnhKXiMiHWHXER2PVNV9tjCkQkXuxGqktEJFpQGusrmkpwLM1cExRwHciMgPraXkssBD43D//Z3+c74rI81it0K+kCsX9xcwTkZ1Y3Qx3Yd3A3AokGWMy/Ms8gNU4caGIvIzV+O8mrGQ8oQr7vBqrGmAWVolKI+AGrOqHL8taUalQoQleqSowxmSLyMnAv7Ba1F+FlRzWYTXcSitn/bdEZDdW//eJQAFW47lnA5Z5x/+CmESsOu4srO5i9/pbyVe3W7H6vj+C1U1vGnBbYSM9Y8w+ETkL+C/wb6xk/z7wHTD3MPb7mn+/44GGwFasfvH/LlzAGPOXiJyI1Q3xPqzSx/8BVxhj/leFfS4ABmIVx7fG+vf6FbjcGLOp6oeiVPDQV9UqVcf5X4bzNjDAGLPU5nCUUtVE6+CVUkqpMKQJXimllApDmuCVUkqpMKR18EoppVQY0id4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpglflEpFYETEiMtruWJQKdQHn0912xxLsRGSo/7caancsoUgTvFKqzhOR0f5EUvjJFZF1IvKiiLS2O75wJyJj9QGi+kXYHYBSSgWRB4FNQAxwAjAGGCkiRxpjsm2NLLyNBfYC7xSb/iNQD8iv7YDCgSZ4pZT6x1fGmKX+v78pIvuA8cC5wDT7wgodIiJAjDEm53C3ZYzxAbmHH1XdpEX0Qc5fB7XUX2SYLCI3iYhbREzAMteIyPcisltE8kRklYiMKWFb/UVkrojsFZEcEdkkIlOKLdNERN4RkTQRSRWRd4EmpcTWU0Q+FpH9/viWisg5xfZnROTqEtY93T/vrMP6gZSqWd/7/+zs//96Z/EFRGSwf96lVd2JWF4XkXwRuSBg+lEissB/vm4VkQf857sRkdhi2zhTRH4SkSwRyRCRJBHpU2yZd0QkU0Taichs/9/3iMjTIuIstqxDRO4Qkb/85/cuEXlNRJoWWy5FROb4z+mlQA5wk39eudcmEUkB+gAnB1SRzPfPK7EOXkQuFpFl/t9lr4i8LyLtqnqs4Uqf4IOYiPQDvgZ2AA8BTqwixD3FFh0D/AV8DniAs4GXRcRhjHnJv61WwDz/upOAVCAWCLyYCPAZVtHkq8Bq4Hzg3RJi6wMsArb5t5cFjAJmi8iFxphZxpilIrLRP734Ni4BDgBzK/u7KFWLuvr/3If1//1y4Nliy1wOZGCdO5XmTzZTsM6J840xSf7p7YAfAAM8jnWOXQ/klbCNK7HOsbnAvUB9rOvCQhHpZ4xJCVjc6V/uf8DdwKnAXUAy8ErAcq8Bo4G3geeBzsCtQD8RGWKMKQhYtgdWCcdrwBvAWv/0cq9NwB3AC0Am8B//tF1l/F6FMS0B7gNaA7cDQ/zHmlqFYw1Pxhj9BOkH66TIAtoGTOsGFFj/dEXT6pWw7tdAcsD387AuFP3L2N+5/mXuCZjmxKoHM8DogOnfAn8C0QHTBOsiuC5g2mNY9WdNA6ZFYSX3t+z+jfWjH2MMWInMAMOBFkB7rIS7F8gG2gE3+pfpGbBeJNZN8zuV2Fesfzt3Yz1kfeTfx2nFlnse8AHHBExrhnWzYYBY/7SG/vPp9WLrt8a6kX89YNo7/nUnFlv2N2BpwPcT/MtdVmy504tPB1L8004v4VjLvTb5p60E5pew7FD/tocG/N67gBVY1QCFyyX4l3u4sscazh8tog9S/rv6U4HZxpjthdONMRuArwKXNQF1XSLiEpEWwAKgi4i4/LMK72rPEpHIUnY7Eusuu+jO1hjjxbq7DoytGTAMmAE0EpEW/n02x7pb7h5QXDYd66S8IGATp2EV+08v80dQqvZ9i5Wwt2Al3kysp+ptWP/fc7Ge2AudjnVD8H4V9hUFzATOAkYaY+YVm38G8Isx5o/CCcaY/cAHxZYbgXU+TSs8F/3noxfryfWUEvb9arHvPwFdAr5fDKQB3xTb5jKs36T4NjcZYw4pjavgtaky+gOtgJeNMUV188Yq9ViDleiLK+9Yw5YW0QevVlitRzeUMO+gaSIyBHgYOB6raC6QC+tEXQB8glXUf6e/jms28KExprDIrxOwwxiTWWwba4t974b1tP6o/1Na/NuMMctFZA3W09Bb/nmFT0bfl7KuUna5BViHdaO7C1hrrIZeGGNSReQL4DJgon/5y7Gqqaryf/k+rKfvM40x80uY3wn4pYTpxa8J3f1/lhZDerHvucaY4tV8B4DAuvXuWNeO3aVss1Wx75tKWqiC16bK6OT/s/g1CawEf0KxaRU51rClCT7EiUhX4Dus/9zjsZ488rGexu/E35DSWGVTF4nIcVj1YKdj1fvdJSLHlZDUy1JY8vM0pdehB16EpgP3++/eM4BzgGnGGE8l9qlUbfjV/NOKviRTgYtFZDBWMfE5WE+Tvirsay7WU/oEEZkf+ERaSYXn45XAzhLmFz/PvBXc5m4OLq0IVDxpHtJivqLXphpWkWMNW5rgg9durOLAbiXMC5x2NhANnGOM2Vw4UURKKpbDGLMYWIyVcC/DKu77P+BN4G9guIg0LJbwexTbzEb/nwXGmG8rcCzTsUoOLsR6KmqMVfypVKj5Giu5XY5V/F0feK+K21qMVXw8B5gpIucXu+n9m/LPf7AajAHsruD5WBHJWFWEi0zVu7tV5tpkSphWkr/9f/bg0BKLHgHzFdpNLmj5676/Bc4TkbaF00WkG3BmwKKFd6gSsIwLuCZweyLS1N9KPlBh3V60/88vsW76xgSs5wTGFYttNzAfuElE2hSPXURaFlt+NdbTziX+zw6shntKhRR/Ap6G1TNkNLDCGPPnYWzvW6wb7DOA90Qk8Jo8FzheRI4pnOBv/1L8qXouVjH8v0pqX1P8fKygGVgNbCcWnyEiESJSYtfZYip0bfLLopTuuMUsxXr4uVlECq9biMiZQC8gqQLbqDP0CT64ubEapC0SkVewTrhbsVqcFp7087CKvb4Qkdew6vRuwDoJApPv1cBYEZmFdXfeyL9cOlZiB/gCqxX8JH8f21VYjeNKagxzC7AQWCEib2A91bfGqmtrDxxdbPnpwCNYpRJvVbFIU6lgMBW4Dauh2b2HuzFjzGwRuca/3XT8fciBJ4ErsBq6vcA/3eQ2Y7WmN/710/19y98DfhORj7BKGTpiNTpbhHXdqExMC/zXk/v8NxjzsHrvdMdqgHc78HE5m6notQmsxntjROQBrOq93caYQ9oUGGMKRORerG5yC0RkGv90k0vh0C6MdZvdzfj1U/YHq7X6b1h9XzcA12HVfecELHM2sByrHmwTMAHrLjmwK00/4EOsIqxcrKLyL4D4YvtrhnWhScNqeT8V62bioG5y/mW7YPW93YF1Im/1b/PCEo6jm38bBhhi9++qH/0Efvinm1yp3UiLLb8S6wm1XRX2Fevf193Fpo/xT38qYNoxWKVduVh12IlYJWoGaF1s/aFYVQip/mvBBqxEGB+wzDtAZgkxuQnoehsw/Qasp+ZsrJuPP4EngDYBy6QAc0o51nKvTf7lWmNVVaT7580POKaibnIBy4/yXxdzsboNvl/836KyxxqOH/EfsAohIjIb6GOM6V7uwkqpaicivwP7jTHDbdj3c1hP+Q2NVZWnVIm0Dj7IiUi9Yt+7Y7VCnW9LQErVcSLSH+vJemot7Kv4+d8cq7X8Qk3uqjz6BB/kRGQHVlHTRqw+oGOwGsX1M8astzE0peoUETkSiMd61WkLoIsJ6Nrmb5BaXoO2TFOJLqki8gfWzfxqrGLs64C2wHBjjDZUVWXSRnbB72vgUuAIrHr4X4B/aXJXqtZdhDUWxFrgUnNov/UOlPLClwAPY9UBV9SX/v0Wvib3N+A6Te6qIvQJXimlqoGIFI4hX5aNxpiN5SyjVLXQBK+UUkqFIW1kp5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGKrUi26WLVvWEOstSnpjUDf4gO3x8fEVfvOWCj963qvD5MMaAGdvfHy8jiJZiyrcD37ZsmXHORyOVx0Oh4uA8X1VWDM+ny/N5/PdHB8fv9juYFTt0/NeVQdjjMfn8y0wxjwYHx+/ze546ooKJfhly5Y1dDgcC5s0adK6VatW+0VE344Tonw+Q4HPRPl8RowgGCPG4DBADAVE4LEWFMHg8O3Zn9ooNTV1p9fIYH2Sr1v0vA9tPmPw+kyEx2ucXmMifD6cHp/PaQxOgwGDRIrP14QMJ2Cw/n0NDqfPSIQHh9ODI8KLI8KDw1nlJ29jDPn5+VG7du1qnJOTs9nn850QHx+fX31HqkpT0SL6tg6Hw9WqVav9DRo0yKnRiNRh8Xh9zjyPLyrf64vO9/iiCry+qAKviSrw+qILvL4or8+U+m/eIyo1M9qT3jBwmsNpyMnb17LzwvGpfLE1FdiPNf77RqzxppP9nw240w7U4KGp2qfnfZAr8PqcuQXeerkFvpg8jzcmz+OLKfD4Yjw+E+kzpowqFaswpkmEL7ee70BMBXZl/Im+AGd0HhExOUTG5BBRL5fIerlI2YU7DRo0yI2MjCxITk5u6fP5OmJdO1QNq2iCdwCid/DBJc/jjczM9TTKyvc2ysn3Nijw+qLLPqkrr+i8tUbKau7/dAdOOmRht2sf1mAYvwJLgCW407ZXZzyqVul5H0Q8Xp8zI8/TMCvP0ygn39sg3+uLKeuGvZoJPk8kPk8knrz65KU3DZhncEblERGdQ2T9bKIbZhDVMBtxHPT/xuFwGKw7Cx3krJboDx1Ccgu8UZl5nkZZeZ5G2fnehgVeX7TdMRXTHBjh/1jcru1YCX8+8DXutLW2RKZUiMnzeKMycz0Ns/K9DbPzPY3yPb6KPGnbQfDmx+DNjyEvoymZuwDxEVk/k+gGGUQ1yiC6YbbdQdZFVU/wbld8NcZRbNtpyw5n9bVr10Z99tlnrgkTJuwpnNauXbu+M2fO3DB48OBaLWpcv3591E033dRx48aNMU6n01x77bV77r///t0AEydObP3RRx+18Pl8dOnSJXfatGkpLVq08Baum1vgjc7ILUrojTKzsiIvTTiFyMhIZsz9CYDZ0z/gwymvFu1v147tHDtoMM++8d4hsbz23FN8/cWnNGjQkCdffou27TsCMPHOsVxw2VX0GNK9Jn6CtsB5/g+4XSnAXKxhcL/DnZZREztVNSM2MalGzvuUSQmHdc4Hgzlz5jTKzc2Viy66KL0q6xtjyMzzNEjPKWiSketpku+1Evqi+d8x+XF30XL79+6leatWTP9qAQBffPIRU197Ea/XS/OWrXjkvy/Spl2HQ7b/v0U/Mvnxh8nJzgIRTho2gocm3l80/6lX3uXdmXPw+Xz06BrL28+4aeJqdMh2pnw0m6dffY/oqCje+u+DHNu3FwAPPvUKPbvFctn5ZwLGQUFWYwqyGsNuQHxCdLbTk53fcMf/mkHNpQ/1j7Ds9rJ+/froKVOmtKzu7RYUFFRqeZ/Px3nnndf1iiuu2JeSkrIyOTn5r6uuumo/wKxZsxp/+OGHLX799dfVycnJf/Xr1y/7zjvvbFfg9Tl3p+e2Wrczo9e6XRlH7kjL6ZSeW9DM4/NFPve4m2P6DzpoH+ddcjkz5v5U9GneshUJ5198SCyZGekkzZrBx/MWcslV1zHt7TcA+OXHH4ipV49+A46r6s9SWbHATcAsYB9u11zcrqtwl3AlUSqIlHf+f//9942+/PJLV2W2aYwhPaeg0eb92R1X7Ug/etPerJ77svKPKEzuAEOGDj/oHO/Z9yhGnmed45s2rOPZ/zzEy+99zKff/cK5oy7jP/+6q8R9NXY14cmX3mLW94v5KOkH/lj2KzOnf+QE+ObHxbw9/XN++fwdVs3/hPi+vbj/iRdL3M6jz73Jki/fZ/Ijd/PY81MA+GttMn+uXu9P7iUeqUM8OQ2d+enN2q5560fcru9wu27C7WpRmd9LVU5IJ/hPPvmkce/evXvFxcX1HjBgQI9ly5bFAIwbN65jSkpKTM+ePXsPGzasW+HyM2bMaHrMMcf0bNeuXd8JEya0KZy+efPmiJEjR3bp27dvr7i4uN633XZb28J57dq16ztmzJh2ffv27XXhhRd2rkx8n3/+eaOoqChz7bXXFjU+69Chgwfg999/rzdw4MDMpk2b+owxjDjzLO+s2bNbrtmRcfTO9NwOuR5v/cBtLf5pPrt37mBkCcm70J+/L2X/vr2cPOLQk8zhdOLzevEUFJCTnUVkZCQ5Odm8Pvkpbr/vococVnWKBE4D3gV24XZNx+06B7cr0q6AVHB7//33m3Tp0qVPjx49eo8ZM6Zd06ZNj167dm0UwIoVK6KHDh3a7cgjj+wVFxfX+7HHHiu6yReR+MTExCP69u3bq127dn0nT57cvHBeeevdeeedbY888shet956a/tff/21Xnx8fI/evXv36tq1a5/C68jPP/9cb+rUqS1nzZrVrGfPnr3vvvvuNmBdo+Lj43v06dOnV9++fXt98cUXjcAqndt6ILv9qh3pR6fsy4pLzc5vWZH69N07d/Drwh8568JLANiwdjXde/ahZesjADjxlNNY+MO3pB7Yf8i6vY48ivadYgGIjomhR+++bN2yWQCWr1rHCQOPoVHDBgCMHD6E9z75ssQYnE4Hubl5ZGXnEhUVic/n4073f5n8yN3lhW/9phgnMAx4FdiJ2/UNbtcNuF2VujlS5QvZOvht27ZFXHfddV3mzZu3duDAgTmvvPJKs1GjRnVdv379Xy+88MLmu+++u8OaNWtWBa6Tmprq/OOPP9bs2LEjIi4u7sgxY8bs7dy5c8Fll13W+b777tuRkJCQWVBQwLBhw7pPmTKlaWFi3r9/f8Ty5ctXOxyVux9auXJlvWbNmhWcddZZXZKTk2Pat2+fN3ny5C29e/fOHzBgQPaUt99uvXTVho4xrhZN35s2IyIrM5PUA/vF1bTpQdtJT0vj2cesu/SN60uvwp790fucdcElREYemh/r12/AlTeM5cpzR9C8ZWv+/ezLvPz041x14600bNS4UsdVQ+oBo/yf/bhd7wMv4k5bb29YKlhs27Yt4tZbb4394Ycf1vTr1y938uTJzVNTUyMAPB4Pl156aZf33ntvU79+/XIzMjIc8fHxPYcMGZJ18sknZwNER0ebFStWrP79999jTjjhhF5jx47dJyLlrud0Os3KlStXAxw4cMCxcOHCdfXq1TOZmZkyYMCAXqeffnr68OHDs6666qo9qampzilTpmwBWLVqVdSjjz7a9vvvv1/XrFkz34oVK6KHDRvea/5vq7K8ElGlk+7zmR9ywrARNG9h3YPE9T6SNSuXk7JxA7FdujFn1gyMMezYuoUmTZuVup29u3fx7ZefM+Xd97xARHzfXrz87kx27t5L65bN+eDTr8jIzGL/gTSaNT047z55/+2MuHQsjRrW57Un7ufld2eQMPwEOrVvW/LOyuYETvV/nsXtmgo8jzttTVU2pg4Wsgl+wYIFDeLi4nIGDhyYAzBmzJj9EyZM6Lhp06ZSn/6uvPLK/QBt2rTxtG/fPn/dunXRzZs39y5evLjxXXfdFXnXXVbRVnZ2tmPNmjVFRWTXXnvtvsomdwCPxyOLFy9uvGDBgtX9+/fPffLJJ1tePGpUtx9+Xrqnx8ChLa6++fbIq//v4pYOp5NhZyQA4IxwHrKdxyfew/W3jqd5i5alJvjs7Cy+/vxT3vtsXqnxXHL19Vxy9fUArPrzD3bt2MaQocN57P672b9vLyMG9om85/qLKn2cNaAZcBswDrfrS2Ay7rRvbI5J2Wz+/PkNevTokd2vX79cgFtvvXXfPffc0wlg+fLlMRs2bKh36aWXdilcPisry/nnn3/WK0zU11133T6Afv365TqdTrN58+bI1NRUZ3nrjRkzZm/hvOzsbMc111zTYdWqVfVEhJ07d0YtW7as/vDhw7OKx/v555+7/v777+jBg4f0wuGIQBxOcUbIxpS/G3fq3LXSx2+MYfb0D7j3kUlF0zp17soDjz/DA3eMwevxcOLw02jkcpV4HSmUmZHObddcyuibb+OYfv0Mvq2cMmQAd990JWddfTtOp5PzzzgFgIgStnPByOFcMHI4AFu27eSzuQv4+oMX+dfjL5D891a6xXbgP4m3Vvr4gAbAGOBm3K5vgeeBJNxp2oujikI2wVdFvXr1il7W4HQ6TUFBQdGLfn777bfV9evXL/E/UqNGjbwlTV+2bFnM5Zdf3gVgwIABme+9997mwPmdOnXK79WrV3b//v1zC7y+iPMuvSY6MTGx3pZ9GR0jIyMPSrh//raE1m3alvg0/ceSxfyxZDHP/HsieXl5pKUe4JyTB/D5giVFy3wz5zO6xvWka1zPcn8Hj8fDf/89kSdefJM5s2bQtHkL/vWfp7nl4tMiLhxxHF06tS93G7VEgAQgAbdrFdYJPxV3mvbJVgcxxtC4cWNP8VK7QIHnt9PpNB6PRyqynsvlKrpujB8/vl3z5s09f/3116rIyEhOO+20rrm5uSV2Avf4TMTgk07xTnrp7WiDKbWjePK6Ndw37gYAjuk/iH/95+kSl1u6eBF5eXkMPnn4QdNHJJzLiIRzAevJ/O1XJtMhtktJmyArM4OxV17E0NNGctWNtwD/tCsYO3oUY0ePAmDxsj9p36Y1jRs1LHE7hW5/6CmeeWg8839eyvZde5n+6hNcffuD/LBoCacMGVDmumUQ/umsFJCiAAAgAElEQVSNswG36yXgLW2QW3khWwc/dOjQrHXr1tVbsmRJDMDrr7/etHXr1gWdO3cuaNKkiTcjI6P0W9gALpfLN3DgwPQHHnigqE4+JSUlMjk5udx64Pj4+Nw1a9asWrNmzariyR3gwgsvTNu5c2fU/1as7bh2Z0bfz5OSWnfu3qOoCH3Prp0A5ORk89LTjzN6zO0l7uerX/4s+jzx0lt07d7joOQOMOuj9zj//66oyCEz9fUXGXneRbRo1Zqc7GzE39ldRMjKDtrc2Rurzi4Zt+tW3K4ouwNStWvo0KFZa9eurb98+fJogFdeeaV5QUGBABx99NG5DRs29AbWra9cuTJ6165dZV4HKrteampqRPv27fMjIyNZvnx59KJFi4ruyBs3buxNT0935hZ4o//elxXb78TT2/6y6KfotatXFCX3Fb8f2lmga1zPogZ0pSV3sM7xcy++FKfz4NAKryNer5fnHndzyVXXU69e/UPWz87KZOyVFzF46KncePuh9eU7dlmdjrJzcnjw6VeZMPbqUmMBmP7ZXHp160zfXt3JyvnnXTcOh5CZVW294roBzwIbcbvG43YFW9fgoBayT/Bt27b1vPnmmxuvvvrqzh6PR1wul3f69OnJDoeDQYMGZcfFxeV07969T4cOHfK+//77Mt+aNHPmzE1jx47t0L179z4iYurVq+d79dVX/+7atWvlms0H8Hh9znRvRJuJTz4fcfX/XdTSGEPDRo158sU3i5a5+fIL8BmDJz+fhAsv4dLRNxTNu+Wqixl717/oc3S/cveVkryetatWcvrZ55e77JaUTSz9ZSEvTZ0JwFnnj+LOG65g3pzZnNi/r69vr+4VujGyURvgBeAe3K5HgXdwp3lsjknVgnbt2nmef/75lPPPP79bVFSUOfnkk9Pr16/va968uTcyMpIvvvhiw7hx4zq89NJLrX0+nzRt2tQzY8aMjUCJJXAAlV3vwQcf3D569Ogu06ZNa96pU6e84447rqhL3AUXjcqcPvPjNsccc0zzYWeezc13TGDSC2/waOJ4cnOyKSgooGefvkwKuAZUVEZ6Gt99NYdPvll0yLyH7r6VHdu2kp+Xx4nDT+O2eycWzXPfcxtDR5zB0NNG8sFbr7Lyj9/Iyc7m+6++ACAhISHiv3dYDfZOu+wWfD4f+fkFXHlRArdec0mp8RxITeeld2cw78OXAThj6GDe/HAWR506is4d2nHGKYMrfYzlaAH8F7gDt+thrPO+1H9XZanou+h7RkREfN29e/fM+vXr59ZCXCHL5zOyOyOv1d7MvDY+Y4I9WR6kR9S+Q15Vm+sxbNq2h86L7iImc4tdoZVlPeAGpmldXfUKxvP+wIEDjqZNm/oA3nvvvSYPPfRQu40bN/5lZ0wFXl/EjtTcdmk5Bc3LKooPRk0iCnI7+rbWygt0qvlasgaYiDvt42oILWyF7BN8sDHGsC8rv/mejLy2BV6fFh/Xnu7AB8BtuF3jcKctKW8FFbqeeOKJVrNmzWrm8/mkYcOG3qlTp26yKxZjDHsy81ruTs9rF2o382GgJzATt2spcDvutJ/tDigYaYKvBjn5npgtB3I65xZ4D634UrVlEPA/3K63gHtxpx3aEViFvEmTJu2cNGnSTrvjyMzz1N+emtNJz3nb9QcW4na9CiTiTqvSWwTDVcg2sgsGxhh2pue23rAnq7ee6EFBgOuBNbhdV9kdjAo/Hq/PuXl/dseNezJ76TkfNASre90q3K5z7A4mmGiCr6LcAm/Uhj2ZPXan57Y3JrTq3eqAlsC7uF3zcLva2R2MCg/7s/Kbrt2VcWRqdn61vwZbVYt2wGe4XTNxu46wO5hgoAm+CvZk5LXYsDuzT06+t+xOospuI4A/cbuC4u09KjR5vD5nyt6szlsPZHepxeFZVdVdBKzG7brW7kDspgm+EvI9vsjkPZnddqTldKrucddVjWmG1RjnHR3QRlVWRm5Bw/W7M3un5xaU/t5XFYyaAG/5n+br7Dvuq3w3WlPDRkJwDh25LzOv2c703I5en7aWDVFXAyfhdl2hLW4PQ00NE32YQ0RXN2MMO9Ny2+zNzGurfS9D2kVAPG7XJXWxh40+hWKN+ta3b99eXbt27dOtW7c+N998c3uv13qHgtdnHJv2ZnXZlprTubzkvnXz3/zfyKGMOv1ELhh+PHffPJr01NSi+Qu+/Zpzhw7k7BPjufOGK8nMKLnB5yvPTGLo0d0YdfqJjDr9xKLXWAJ89M4bXHjq4KJ9fDDltRK3kZ6aynWjzubCUwcfNHzk/n17ue7isyo99G2Y6AwswO26ze5AVNUUjibXs2fP3r/++mu94t/Hjx/fNjs7+7DaxOR7fBHJe7Li9gQk94njb+Hsk/pz8WkncPX5p7Pyj9+qtO3nJz3CuUMHcvFpJ3DpyFNYNP+7onk+n4/HJ04gYUg/zjrhWKa983qJ20g9sL/o2jDq9BM5+6T+HBvbgrQD1qCVb77wX845eQDHdGzG918nlRrLX8t/5/ThQ6N7D72Qd2d8UTT9+4W/ctOEf1fp+IJUZ2ARbleVXpAfysImwR9OwmrevLln+vTpycnJyX/9+eefq5YsWdLgpZdeap7v8UVu2J3ZMyO3oGn5W4FWrY/gnU++Ysbcn/j0u19o2foIXnnWGhgiOysT9z238dyb7/PFT8to2foIXp/8VKnbGnn+xUWvr3z8hTeKpidcMIpPvv2ZGXN/YursuUx97QVWr/zzkPWTZs9gwOAT+eTbn9mUvJ71/ldtP/3I/dx+30MljjhXR0QAk3G73tLX3Yae119/veW99967Y82aNasGDhyYU/z7s88+2yY7O7vK17XsfE+95D2ZvbLzPQdV5ww/I4FZ3y9m5ryFXHvLndwzZnSVtn/soOOZ/tUCZs5biPvp55kw9hqys61xapI+ncHG9Wv5/MelfPDFd7z76gtsWLv6kG00adrsoPHhL7rsaoacciqFo1AOOmEoL0+dSfygst8mN+Xl53j40f8ULPnyfR5+1rqZyMnJxf3Mazxxf8mvzQ5hkcALuF1Tcbvq2R1MbQnpBF/RsZoBxo8f3zYhIaHLsGHDunXt2rXPcccdF1f4vukhQ4bk9O7dOx+sASn69OmTk7wppUHynsyeeR5vhf8zREVHE1PPWtzr9R70nveFP3xLzz5H0blbHACXXHUdX332aaWPuVHjf6qTcrKz8XhKfktrREQkuTnZ+Hw+CvLziIyKYtEP39LY1YSjjq3yIBDh5Fpgvra2DR2jR4/usHTp0oaPPPJIu379+vUs/v2yyy7rCDB48OAePXv27L1t27aICy+8MPbSSy/tNHjw4Lh27dr1vfjii2N/+OGH+gMHDuzRvn37vtdff33RyEoPPPRwp4EDBvY+/9QhUZclDGP5sl+L9j30tJFERFg1mkcdO4DdO3eUeu6V5YRTRhRdI7r37IMxcGDfPgDmfvEpF1x6FU6nE1fTppx+9vl8/dkn5W5z1vT3Of+SK4u+9+0XXzTue1kiIiLIyckhNzcPp3+0TPczr3H7dZfRJHybq1wJ/ILb1cHuQGpDyLcIrehYzQB//PFHg2XLlq064ogjvGeddVaX5557ruXjjz9+0EszNm/eHPHll181e3HqDAq8vkrXtxfk53P52cPZvm0LcT37MHnKhwDs2LaVNu3/GaWtbYeO7N29E4/HU3ThCDRvzmcs+fknXE2bcePt9zBw8IlF875J+oyXn5nElpSNjJswkV5HHnXI+gkXjGLinWO55IyTOOX0BFod0Qb33eN4aeqMyh5SODseWIrbdQHutF/LXVrZ6p133tmyatWq+uPGjdt15ZVXpgIU/z5t2rSWP//889oWLVoUvad89erV9X7++ee1DoeDuLi4Pqmpqc6ffvppXV5ennTu3LnvzTffvLdD3JGuUy+4vMWoG6wn1z9/W8LE8bfw2fxD/1t88NarnHDKiBLP28qYPeMD2nfsRNv2Vq7ZsW1r0d8B2rbvyJ+/Ly1zG38s/R/paamcdOrpld7/TXdM4LHE2yOez0njqYl38MfKtWz8e1s4Pr0XdzTwM27XGbjTbH3NcU0L+QRfmbGaTz755LQjjjjCCzBo0KDMlStXHvR0vn//fsfIhLN6XjP2Dkfvo/pVqR4vMiqKGXN/oiA/n8cfnMDHH7zDNaWMEleai6+4huvH3UVkZCS/L1nMnTdcyYdzvqNt+47AP8NDbtuymTtvuIKTTz2d2K7dD9pG/foN+O9r7xZ9f8r9L64ZezubUzbx1ovPAHDDbXfRo3ffqhxmOGmHVS9/Me60OXYHo6rfyJEjUwuHiu3Ro0fOiBEj0qOjo010dLTp1q1bzpIVazpEHdGt8ZqVf/LmC/8l9cB+IiIiSEleT25OTtETN8CcT6czb85s3v649LrtivjfwgW89uwTvPbhrKJSvqqY9dH7nH3hJVW62ejSvQcff/ZFfkff1hiv18tpl47lvef/zbTZX/Nx0rc0btiAZx66i6ZNDh3COgy0B37C7ToXd9pPdgdTU0K6iB5KH6t57dq1qwYNGpQROFZzTEzMIeNBF34/cOCAY9ipI/oMPeOc6CtvvKXEMy553Zqihi2P3X/ocIuBIqOiOG/U5cz5ZDoAbdq1Z8fWrUXzt2/ZTItWR5R4YrZo1bqojrzfgOPo2ecoVv35xyHLtevQkb794lnw7dwyY1nx+zL279vDyaeewRMP3sud9z/CHf96mCceTCxzvTokBpiF23W53YGo6hcTE1N0jXA6nabwu9dnHBIZXT8739u4ID+f8TdexfgHHuXT735hij+B5+fnF23n688/5bVnn+S1Dz+lectWJe5r0oP3Fl0j1q8u+eFw6S+LePCuW3j+7WkH3Zi3adee7Vv/GYRl+9bNtGnbvqRNAFa7nnlzZnPeJRUbJrosz73xIRefNYImroY8+twbTH9lEicddyzPvfnBYW87iDUF5uF2lT8MZ4gK+QQfqKyxmstZzzFsxGl9Bw87PaqkcZILlTdu8/atm8nJscZB9vl8zJvzGXG9+gAwZOhwVq9czqYN6wCYPvUtzjjnghL3s2vHtqK//70pmbWrVtCtZ2/AuskotH/fXn5d9FPRPkpSUFDAc4+7ufvB/wDW2PMi1pjNhY17FGCVZr2H23WL3YGoqmvQoIFv//795VateX3GsXFPZnfE4QTIy8uloCCfNu2shDrt7YNbsM/9YhYvPfUfXps2izbtSq++TXzkiaJrRPcSzstlixdx/x038dxbHx5SejYi4Tw+nTYVr9dL2oEDzP1iVplDQH/9xSzievcpatdTVZs2b+ObnxZz05UXUlDgwePxIiI4xEFmVs5hbTsExAAf43bdbHcgNaHKRfTB2Fe9rLGaS+P1GcdDjz3Va+XyPyJycnKLxkkekXAuN9xW9lN6cetW/8WLT1rdS3w+H736Hs29jzwBQIOGjXA/OZk7rr8Cr8dDtx69ePTZl4vWHXX6ibz47gxaHdGGF578N6v+/IOIiAgcTif/+vdTxHbpBsAHU17l918XExkZiTGGK667meNPOqXUmN599XnOvvD/ip44xt51H7dcbY3zPP7+hyt1fHWAAC/idjXFnRZW/YSqTZD1Vy/upptu2nnaaafFxcTE+L777rt1JS3jM0Y27smMyynwNiic1rBRY269534uP3s4TZo1P+Tm+1+33Ujzlq2447p/Cnle/+gzmjSt3Ptv3PfcRn5+Pg/d9c995H+ee5Xuvfpw1oWX8Nfy3zj7pHgE4cobbim6SZg/70vmf/M17qeeL1pv9kfvccGlVx+yj9cnP83M99/mwP69bFi7mscnTmD61wto1rxFiTHd/uBTPPfw3YgIrsaNuOz8M+g7fBQNG9Rn+iuTKnV8IcoBvILb1QZ32kN2B1Od6vR48D6fkWTrRNdXzhKy48HXlCdxp91rdxB2Csfz3uP1OTfuzeqeG5Dc67IQHg++pjyIO+1Ru4OoLmFVRF8ZxhhS9mV10eSuSjEBt2ui3UGo6uNP7nGa3FUZHsHtCptuBHU2wW85kNMxM8/TxO44VFB7BLdrnN1BqMPn8fqcG/dkxekQr6oCng2XgWoqmuB9YD31hoMdqTltdMjHiin6Jw+Tf/sqmKxjy4c2nzGSsi+rW65Hk7uqEAHewO0aZXcgh6uiCT7VGOPJz88P+Vd77snIa7EnM6+t3XGEinwf4PPgLMiwOxS7CDAFt+s8uwNRVbN5X3Zstg7trCrHAbyP2zXS7kAOR0Vb0e/1+XwLdu3alRAZGVngcDhC8nEuI7eg4a70vE4hGXwtyBWvw3j/+XV8Bvak5VJ/929E5JfbISGcOYGPcLtOwZ32i93BqIrbnprTVod6VVUUCXziP+8X2x1MVVQowcfHx/uWLVv2YE5OTt/k5OSWWE81IaXAa6JT83yt625JcwU4M5xRvsDG0gZHzn46rn0Hoc7/cNHAp7hd/XGnbSt3aWW7vZl5zfdm5rUpf0mlShWDleT7407bYXcwlVXhfvDx8fHbli1bdoLP5+tYmfWCwey1WZ1/SMn50BgTcjcmtenVmJdWdjab/hnv2+clKmc3DlP5QTXC1BHAbNyuE3GnhUW3scrq+27fGhkPfsXVKw6rf/3atWujPvvsM9eECRP2AKTlFDQ6ulf32Gff/ICefWr3dcwLvv2aZ/79ID6vl249e/PoMy/RsNGh79zy+Xw88VAiC7//BhHh8utv5tLRN5Y7L1B6aip33nglqfv3cezA47n/sf8C1kuw7rl5NK9+OKsujxxZXdpiJfmhuNPyy106iFQqUcfHx+cDG2oolhoRm5jUCpgLaIv5cjjy/s6JcQRt/9Rg0R94A2tUKhUk1q9fHz1lypSWEyZM2JOT743esj+7a3Vst7TBoEpTOCz0lJlz6NwtjsceuIfXJz/F+AcO7VodODxsZno6l5x5EgOOP5FuPXqVOe+gbfiHhb75jglcf8k5rF+ziu49e+uw0NXveOAF4Ca7A6mMsO4mF5uYJMBUoKPdsaiwcgVuV+Vec6iqxSeffNK4d+/eveLi4noPGDCgx7Jly2IAxo0b1zElJSWmZ8+evUcmJPTyGeME+O6rL7jy3NM4c/DRvD75n9dL7929i3vGXMNlZw3nwlMHF72BEuDM44/i2cce4rKzhjPxzjGViq8yw0KXNTxsRYeO1WGha9WNuF2a4IPIXUDlx1FUqnxP4HadbHcQdcm2bdsirrvuui7vvPNOyrp161Zde+21e0aNGtXV5/PxwgsvbI6Njc2du2hZ9uS3Pyp6F31GehrvfTaPD+d8z7uvPc+uHdsBeODOsVxy1fV8OOc7pn/9I3/9+Qfz5swu2lfagQN88MW3PP7CG5WKsaxhoUtatvjwsDu2by13XqCEC0axJWUTl5xxEoNOGEqrI9rwxgv/ZdyEByoVt6qw53G7BtsdREWFVF16ZcQmJg0AHrM7DhW2HFiD0xyFOy3V7mDqggULFjSIi4vLGThwYA7AmDFj9k+YMKHjpk2brHJocTjTcgqaB64z8ryLAGjarDntOsaybcvfNHK5+HXRAvbv3V20XHZWFinJ/9Q+nnPxpYc1jGtt0WGha10UVn38UbjT9tgdTHnCMsHHJiY1BqZhdXNQqqZ0AF4BLrU7kLrOY4jE4TzkPR1R0f+8Zt3pcOL1eote2vTeZ98QHVPya9jrNyi523zyujXcN+4GAI7pP+iQUSXbtGvP4p/mF30va1jowuFhj44faC0bMDxsWfNKEzgs9OgLzuQ/k1/DGMOD48cWDX+rqsURWOf9RXYHUp5wLaJ/HqiWRjZKleP/cLu0wV0tGDp0aNa6devqLVmyJAbg9ddfb9q6deuCTrGxHl904zYZGRV7V0P9Bg0ZMPhEprz8XNG03Tt3HDRMc2nKGzK6MsNClzU8bGWHjtVhoWvdhbhdQX9jH3ZP8LGJSWcDh46hqFTNeRG36yfcaSl2BxLO2rZt63nzzTc3Xn311Z09Ho+4XC7v9OnTk3dn5LeJjesd0zWuJxcMP572HWN5/u1pZW7rsedf5+lH7ueC4ccjItSr34CJk56hdZt2hxVjZYaFLmt42LLmlUSHhbbFi7hd84O5f3yFhosNFbGJSc2AlYC+3KIKkqLuW9jH8fcJdscRohYCJ+FOC5sTKhSGi83O98Qk787qbdB3XFSFDhd72JJwp51ldxClCbci+hfQ5K7scQIQFiNQhQpjDNsO5HTS5K5slIDbdY3dQZQmbBJ8bGLSecBldseh6rQncLual7+Yqg57M/Nb5BToIDLKds/hdnUof7HaFxYJPjYxKRqYbHccqs5rDjxhdxB1Qb7HF7E7PbfsZuVK1Y7GwKEtLoNAWCR4YCz6tjoVHK7F7Tre7iCqiQ8wwTiGw/bUnA5e/9vqVGjwGQADPq/dodSEUcH4ApyQb0Xv7/N+v91xKOUnwCu4XfG400L9Srbd5/Ol7d69u3WrVq32i0hQNCDMzPM0SMvM1SFgq4HHeCS3hhtaGwP5PmvoaUfOfqJydpe/Umh6FrfruGBqaBvyCR64B6toVKlgcTRwHfC63YEcjvj4+Mxly5bdnJqa+mp6erqLIBkmen+Ot63HZ3cU4SHD4XHkmQM1vyOfh/p7fqfjmrfDeXTKgVjtwD6wO5BCId1NLjYx6Qis0e0a2B1LONBuctVqO9ANd1qO3YEcrmXLljXEGjLT9iq95xannrkxteAZu+MIF8c4NyX/N+Klmn0pmDE4CzKIyE9HCN18U0FbgB7Bct6H+hP8g2hyV8GpLXA7MMnuQA5XfHx8JrDO7jhiE5OcwOxyF1QV1k6y8mOiw6ZPejDogDXI2b/LW7A22H5HXlWxiUndgBvsjkOpMkzA7WpsdxBh5Gqgh91BKFWORNyu1nYHASGc4LHukEK9BEKFt6bAnXYHEQ5iE5OigIfsjkOpCmiAVXpnu5BM8LGJSccCo+yOQ6kKuBO3q4ndQYSBm9CusCp0jMHtamR3ECGZ4LHqNYOiRa9S5XChVUmHxf/0fp/dcShVCU2AG+0OIuQSfGxi0tHACLvjUKoSbsXt0peyVN3F6BgTKvTcgdsVaWcAIZfggevtDkCpSuoIlD6YtyrPbXYHoFQVtMfm8VFCKsHHJibFAJfbHYdSVXCH3QGEotjEpIFYLxBRKhTdg9tlW3VySCV44AKslslKhZohuF3xdgcRgsbZHYBSh6EPMNKunYdagtfieRXKgqLrTKiITUxqjfaWUaHPtrwVMgk+NjGpKzDU7jiUOgwXBUPXmRByIxBldxBKHaaRuF22DI4UMgkeuBbtGqdCWz20sV2FxCYmCdq9UIWHKOD/7NhxSCR4/zuoR9sdh1LVQBuJVsxJWO/1ViocXGXHTkMiwWM1UmhrdxBKVYPhuF1H2B1ECLC1e5FS1WwQbldcbe80VBK8Nq5T4cKJTcV1oSI2MSkSuMjuOJSqZrX+FB/0CT42MaklNnYzUKoGaDF92YYBtjRKUqoGXVHbfeKDPsEDw9FR41R46Y/bpVVOpbvQ7gCUqgGdgAG1ucNQSPDD7A5AqRpwht0BBKPYxCQHcK7dcShVQxJqc2ea4JWyx5l2BxCkBgGt7A5CqRqiCb5QbGJSR6Cr3XEoVQNO1RHmSqQ39CpsGUP3Dx44v3Vt7S/Y67b1ZFfhqglwHLDI7kCCzCl2B6BUdTEGk03Mmp99vXd95D2l6QLf0b09RIy4HN6vjf1rglfKPmegCb5IbGJSFDDY7jiUOhxeI7vXm/brPvWeKJ94T+yxD1cvoFfAIsPRBA/o3bwKb0PtDiDIDMJ6na9SIcMY8vbR+K9vvcemT/MOa7vcdIuj7HYkw2srtqBN8LGJSXFAe7vjUKoGHYvb5cSd5rU7kCChN/QqJOSZiI2/+bpvme49pcFc34DeOUQfW4nVO8QmJnVJmZSwscYC9AvaBI+e7Cr81QeOBJbbHUiQ0HNeBSVjSPvbtF41x3ecZ7r3lC5bTKsuQJfD2GQ8UKcTvNa/q7pgIJrgC19Pe5zdcSgFYAzeDOqt/sl31N5p3mHNf/b16e3DcXw17uJYYGY1bq9EwZzgT7Y7AKVqwQDgDbuDCAJxQIzdQai6y2Mc21eZTskfe0+K+Mw7pFcaDY+swd1Vpki/yoIywccmJrUAaq2voFI2Gmh3AEGiJi+mSh3CGLJ30XTVXG//7I+8w9qtNp26UnujlvarjZ0EZYIHetodgFK15Ejcrijcafl2B2IzTfCqxuWYqPVLfD22f+Qd1uhb37F98onsb1MoLWMTkzqkTErYUpM7CdYE38PuAJSqJU6gM7DW7kBspgleVTufkX0bTZu1s71DfB97T+6+k2bdge52x+XXD9AEr1SY64YmeE3w6rAZQ0EqDVf94DvmwEeeU1ovMT16GBzB+vKkfsDnNbmDYE3wWkSv6pJudgdgp9jEpHocXpcjVYcVGOfff5ouf8/0nhz9hff43lnUO9rumCqoxsdZCdYErwPMqLqkTid4rNd4BvXAVyp4GEPGdpqvTvIOyv3IO6zTRtO2E9ZY66GmQ03vIFgTfEe7A1CqFtX1BB+KF2dVSwIHbJnmHdb0R99RvT1EhEPvkxrPc0GX4GMTk1xAQ7vjUKoW1fUSK+0Sqw7iNbJrnWm/YZb3REoZsCUctI9NTJKUSQmmpnYQdAmeWii2UCrI1PUEd4TdASh7lTJgS7ifF1FYg9LsqqkdaIJXyn6NcbsicKd57A7EJuF+IVclOMwBW8JFB+pYgtcR5FRd1AzYbXcQNtEn+DqgBgZsCQcdgaU1tfFgTPCN7Q5AKRtogldhpRYGbAkHZY0bf9iCMcE77Q5AKRs0szsAG2kRfZio5QFbwkG9mty4JnilgkNdTvDN7Q5AVc0/A7YMyPrIe0qH1aZTF2pvwJZwoAleqTqgkd0B2EiHiQ0hOSZq3a++njume0+xe8CWcKAJXqk6QOwOwEZRdgegSkGYkH4AACAASURBVFfCgC1xQJzdcYWJ+jW5cU3wSgWHOpngYxOTNLkHmRAbsCXU6RO8qnmRePKbSKZebFVtC8ZrUJ0TwgO2hDpN8KqmGDPUsXzFHRGfpB0lyX0dQji83zlU1ckneGWv1aZj22F5T/8dwgO2hLoabX+iCb4O6i5bU+6KmJky3PFb10jxHmV3PEope2TQwJVhGrjsjqMOK6jJjQdjgg/GmEJeM9L23RLx+cpRzvktGklOHyDW7pjUQerqE3yNDbShVAjIq8mNB2My1Sf4ahJNfu7/Ob///caIJGdb9vUT4WS7Y1KlyrY7AJvkAl70vFd1U51L8DVaZBH+jBnu+G35HRGfZBwpKUeJoK+GDA3pdgdgh5RJCSY2MSkdaGp3LErZIKcmNx6MCX673QGEol7yd/JdETO3DnX80TVCfMfYHY+qtDqZ4P0OoAle1U0ZNbnxYEzwW+0OIFS0IHXPuIjZqy5y/tiqgeT2ArraHZOqsgN2B2CjVLsDUMomNXpjrwk+xMSQl3OF89vfr4/4MrI1B7RePXzstTsAG9XlmxtVt9W5BL/N7gCCjeDzneZYuvz2iE+zesnmo0XQt0qFFy91O8npE7yqq2p0iOhgTfCGutttqEhf2bh+fMTM7Sc6VsRFiK+f3fGoGrMbd1pd7i6mCV7VVX/X5MaDLsGnTEooiE1M2k0dHSO6Nft3j4uYtfoC58Ij6kteD6C73TGpGrfR7gBsttPuAJSyyeaa3HjQJXi/rdShBF+f3KyrnPP+uDbiq5iWpB2j9ep1TrLdAdhsg90BKGWDtJRJCWk1uYNgTvDxdgdRkwSfb6Tj199vi/g0N062Hi3CELtjUrap60/wmuBVXVSjxfMQvAk+bBvaHSMb1t4VMXPnYMfKHk4xYX0Toyqsrj/Br7c7AKVsUGcTfFh1lWvL3h23R3y67hznz23rSX4PoIfdMamgUqef4FMmJeyKTUzKABrZHYtStajOJvgaP/Ca1oCczGucX/8xOmJu/eakHyNCG7tjUkFLi6it30B7iqi6ZFNN7yBYE/wSuwOoCgc+7zmOn3+/JWJ2XjfZ3k+EE+yOSQW97bjTarQvbIhYjyZ4Vbf8XtM7CMoEnzIpYb2/q1wru2OpiP6ydvX4iJm7BzlW93aK6W93PCqkLLU7gCCx1u4AlKpFBlhW0zsJygTvtwg43+4gStNBdm+7I+KT9QmOxR1ipKAX0MvumFRICsnSqhqgv4OqSzakTEqo8QGmNMFXQkOy06+P+HL5Vc5vGjUl42gR2tkdkwp5mtgsv9gdgFK1qMaf3iG4E/xCuwMAcOL1nO9c+NtY52fezrKznwgn2h2TCitaRA+kTErYG5uYtB59c6OqG+p8gv8NyAHq2bHzQbJq1fjIj/cMkLV9HGIG2hGDCnubcKftszuIIPILmuBV3VC3E7z/nfRLgJNqa5+dZOfW8REfbzjD8WunaPH0rq39qjrrR7sDCDK/AFfZHYRSNcxgPcDWuKBN8H4LqeEE35jMtJsikv683PltYxdZR4nQvib3p1SAuXYHEGS0Hl7VBctq+h30hYI9wS+qiY1G4Cm4yPnjb2Ocn5uOslvr1ZUdfMA3dgcRZFYC+kY7Fe6+rq0dBXuC/5lqHBv+BMeKlXdEfLL/WFl/pEPMoOrYplJV9BvutL12BxFMUiYleGMTk34AzrE7FqVqkCZ4gJRJCamxiUkrgKOquo0usv3v8REzN53mWNo5SrxHVmN4Sh0OLZ4v2ZdoglfhKxVYXFs7C+oE7zebSib4JmQcGBPx+YpLnT80bSzZfYFONROaUlWmCb5kX9odgFI16NuUSQne2tqZo7Z2dBimV2ShSDz5Vzi/WfxT1G3/+z36pgY3RSSd5E/uSgWbfWiDshKlTErYAiy3Ow6lashXtbmzoH+CT5mUsCo2MWklUELxujFDHctX3BHxSdpRktzXIRxX6wEqVXkzcad57A4iiM0CjrY7CKVqQK2W3AV9gvebTkCCj5Mtm8ZHzNw83PF7l0jxVrl+XimbfGh3AEHuU8BtdxBKVbP/pUxK2FabOwyZBN+MtDtuifh85Sjn/BaNJKcP0NnuoJSqgs0EyWuYg1XKpIQV+tpa9f/s3Xd8U9X7wPHPSdpCB4S9ChhklTKEH0uWgGwiyBIUAUFwgDhAgYgKwRk3jq8gKBsUZMgIIiCCiLJRQfYIG0oZ6W4z7u+P29ZSOqHlNul5v14RenNy75PKvc89457jgxbe7QN6RYK3W03HPJMNR3WCtlrHIkl36HssDkXrILzAQmQtXvIdbnI4niwvecMgOwB04u7f/UhSPpD/jnNmFupkQJLkCzbYraaIu31Qr0nwwHdAotZBSNId+BuL4x+tg/AGyaPp79qEIJKUz2ZrcVDvSfAWxzVgqdZhSNId+FzrALzMTK0DkKQ8cBV1Ppe7znsSvOpTrQOQpNsUiRw9n1trgItaByFJd2iR3WpK0uLA3pXgLY49wFatw5Ck2zATiyNB6yC8id1qcqFR06Yk5REP8D+tDu5dCV4la/GSt3EBX2kdhJf6FnXBKUnyRqvsVtMRrQ7ujQl+JXBS6yAkKReWY3Gc0zoIb2S3mk6iUf+lJOWBD7Q8uPcleIvDgxysJHmXj7QOwMu9rXUAknQbttmtJk3XnPC+BK/6BrjrzxRK0m1YjcWxS+sgvJndatqLXGVO8j6a1t7BWxO8xRELvKN1GJKUDQWYpHUQPuItrQOQpFw4BKzWOgjvTPCq6cBprYOQpCwsw+L4S+sgfIHdatoO/KJ1HJKUQx/ZrSbNB4d6b4K3OJKAKVqHIUmZ8ACTtQ7Cx8havOQNDgJztQ4CvDnBq+ahNoVIUkHzHRbHQa2D8CV2q2kLsEXrOCQpG+PtVpNb6yDA2xO8xeEG3tA6DElKJx54XesgfNRY5CI0UsH1i91qsmkdRArvTvAAFscyZN+cVLC8i8Vh1zoIX5Q8ov4breOQpAx4gJe1DiIt70/wqlHIleakguEY8KHWQfi414DrWgchSenMs1tNf2sdRFq+keAtjqMUgGcOJQl4HotD3mzmI7vVFIkcwCgVLHGoN54Fim8keNW7wHGtg5AKtWVYHD9rHUQh8RWwX+sgJCnZO3ar6YLWQaTnOwleXanrOa3DkAqtaGCM1kEUFsmjlF/QOg5JAvZQQFuQfSfBA1gc64H5WochFUpjsTjOah1EYWK3mjYDczQOQyrckoChyUsbFzi+leBVo4FTWgchFSo2LA45slsbLwHyxkrSylt2q+mA1kFkxvcSvMURBTyOuga3JOW3K8AIrYMorOxWkwMYrnUcUqG0F7BqHURWfC/BA1gcfyKntZTujiexOC5pHURhZreaNgBfah2HVKg4KcBN8yl8M8Gr3gF+1zoIyad9icWxRusgJADGAQW2qVTyORa71VTgn+Lw3QSvTmM7CDkhhpQ/tlPAZq0qzOxWUwIwEEjQOhbJ560D3tM6iJzw3QQPYHGcBvoj++OlvHUB6JO8oqFUQCTXqJ7XOg7Jp50FBhWEpWBzwrcTPIDFsRFZ05LyTiJqcr+odSDSrexW0zfI/ngpfyQB/e1W01WtA8kp30/wABbH58gFKqS8MRKLY4fWQUhZGoNcgErKe6PsVtN2rYPIjcKR4FWjgK1aByF5tS+wOGZrHYSUteSRzf2BE1rHIvmMaXar6Vutg8itwpPgLQ4n0Bc4qXUoklf6ETkVrdewW03XgJ6oUwhL0p3YBLyodRC3o/AkeACL4wrQEXWQlCTl1Cbg0eQnMyQvYbeaDqKOrPdoHYvktfYAvexWk1PrQG5H4UrwABbHKdQkH6l1KJJX2Ak8LJeA9U52q2kNMFLrOCSvdAToZreavLYVqPAleACL4xDQBXBoHYpUoB0EumNxxGgdiHT77FbTDGT3ipQ754HOdqvpitaB3InCmeABLI69gAmI0zoUqUA6BXTG4vCaR2KkzNmtpqnA61rHIXmFa6jJ/YzWgdypwpvgASyObUAPQNbQpLQOAW2wOM5rHYiUd+xW0zvAu1rHIRVoscBDyeM3vJ5QFK+YkCd/WQxNgZ+A0lqHImluL9AFi0OO0fBRRrPtU9RlZiUprRuAyW41/aF1IHlFJvgUFkMdYD1QWetQJM38DjyExSHHZvg4meSldC6jNsv/o3UgealwN9GnpQ68awUc1ToUSRM/o9bcZXIvBOxW0xhgPCBrONJpoLWvJXeQCf5mFscZoDWwW+tQpLtqFtATi0MOuCxE7FbTh8Bg1LW9pcLpENDKbjUd1zqQ/CCb6DNiMQQCs4EBWoci5Ss3MDZ5rQKpkDKabR2B5UAxrWOR7qrdqM+5++x4G5ngs2IxvAa8iWzp8EXXgAHJqw1KhZzRbGsIrAUqah2LdFd8Dwy3W00+3WonE3x2LIbuwAKgpNahSHnmIOrsdD7ZLCfdHqPZdg+wAmikdSxSvnEDZrvV9JHWgdwNsmaaHYtjLdAE+EvrUKQ8sQhoIZO7lJ7dajqNOtB2jsahSPnjKtClsCR3kDX4nLMYAoC3gZeRN0beKAoYhcWxUOtApILPaLY9DXwOFNE6FilP7AP62K0mu9aB3E0yweeWxdAWmAvco3UoUo5tAwZhcdi1DkTyHkaz7T5gCVBL61ikOzIXGGm3muK1DuRukwn+dlgMxYEvUR+xkQouF+ogyXflUq/S7TCabSHAV8hz3RtdBZ61W01LtQ5EKzLB3wmLoS9qM14lrUORbrEdeBaL42+tA5G8n9Fs64ma6EO1jkXKkZ9QR8lf1DoQLckEf6cshmKABXgB8NM2GAm4DpiBmVgc8h+3lGeMZltx4APgaUBoHI6UsevAGLvVNFfrQAoCmeDzisVQF/gf0FbrUAqxucA4LA6vXsNZKtiMZltbYCZQU+tYpJv8CIwq7LX2tGSCz2sWw+Ood/my2f7u2Q6Mx+LYqnUgUuFgNNuKApNRn6rx1zicwu4AMNZuNW3QOpCCRib4/KBOdTsStam4rMbR+LL9wOtYHKu0DkQqnIxmWw3gHeARZLP93XYFmATMtFtNchBtBmSCz08WQzDwPDAOKKVxNL7kOGrt6XssDo/WwUiS0WxrCrwPtNc6lkIgCXVw89t2q0mu/pgFmeDvBnUg3kvJL5nob98R4CNgDhaHS+tgJCk9o9nWFbAC92kdiw9yAYuByXar6YTWwXgDmeDvJrXp/nHUWn0DjaPxJluAj4E1cmS8VNAZzTYBPIbactdQ43B8QTzqks4fFbaZ6O6UTPBaUWfEewF4GNBrHE1BFA8sBL7A4vhH62Ak6XYYzbb2wFjAhOyjzy0H6pNJn9mtpgitg/FGMsFrzWKoCjwBDATCNI5GawpqbX0BsBSLQ/avST7BaLbVQu2iewII0jicgu4UMB2YbreaorQOxpvJBF+QWAwNURP9o0AVjaO5mw6gJvVFWBxntQ5GkvKL0WwrBQwHhgLh2kZToMQCS4HZwG92q0kmpjwgE3xBZDEIoDXQG+iC710IXKgLwKwDbFgc+zWOR5LuOqPZ1hgYAgwAymscjlZ+R03qS+xWU4zWwfgameC9gcVQGeiMmuw74p0j8c+hJvSfgI1YHLLpTZIAo9mmQ50BcwDQB9+eO8MD7ABWAcvsVtMxjePxaTLBexuLQYf6CE5ToAnQGKhPwZpNKxbYA+xMfVkcp7UNSZIKvuQR+I1Qb+Q7obbkFdU0qDt3DdgA/AzY5IC5u0cmeF9gMRRBfeyuMepAvZqoa1jfQ/4m/uuok84cS/PnP8C/cnlWSbpzyVPitkJN9h1Qz/MATYPKnh31xn4X8Buw2241yQmpNCATvC9Ta/sVURN9RaAkUCLNqyRQHNChjmBXUJvQUv4ej3r3fTX5lfL3SOAkFsfVu/htJKnQM5pt/qhjcu5Dfcb+vuRXaQ3CUYCLwF/8l9B32a0mudhTASETvCRJkpczmm2VUVvuQpNfldP8PRSoQO7m24gHooEY1Bt7O+rja2lfp+1WU0LefAMpP8gEL0mSVAgYzbZA1Gfwg1D79fWAX/Irkf8SerRcvMU3yAQvSZIkST5Ip3UAkiRJkiTlPZngJUmSJMkHyQQvSZIkST5IJnhJkiRJ8kEywUuSJEmSD5IJXpIkSZJ8kEzwkiRJkuSDZIKXJEmSJB8kE7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg2SClyRJkiQfJBO8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INkgpckSZIkHyQTvCRJkiT5IJngJUmSCighRFMhxB9CiFghhCKEaCiE6CqE+EsIkZC8rYTWcUoFk5/WAUiFgxBiInBQUZQftY5FkryBEMIf+AFIAMYAccBZ4DfgX+A5IBGIFUIMBMopijJVo1h1wBCgD9AIKAWcAr4HPlIUJUGLuAo7oSiK1jFIhYAQIgZYqijKUK1jkSRvIIQIAw4BTymK8k3ytq7AT0AnRVE2pim7BqinKIpRo1hDgGhgO7AGiABaAE+g3pA8qMhkc9fJGryUa8l36wHyrlyS8lW55D9vZLOtIEgCWimK8keabTOFEHZgCtAB2JjRB6X8I/vgCwAhRDshxO7kPrUTQohnhBAWIYSSrtwgIcQeIUS8EOKaEOJ7IUSVdGU2CyEOCCHChRC/CiHihBDnhRDjMzhuESHEFCHEcSFEohDirBDiAyFEkXTlFCHEl0KIx4UQ/6I2C3ZNfu+V5D7Cq8lx7RFC9Ev/eSAYeCJ5X4oQYk6a90OFELOEEJeT4/hXCPHkHf5aJclrJZ8fW5J//CH5nNkMzE3etivlPErebgLuSXN+2ZP30y755/5CiMnJ14JoIcRSIYQh+RowVQgRIYSIEULMzuD8HyaE2JRcJlEIcVAIMTJtGUVRktIl9xQrkv+skxe/Fyl3ZA1eY0KIRsA64CIwGdADk4Ar6cq9BrwFLAG+AcoCzwO/CSEaKYqS9o6+ZPI+lyeX7we8L4TYryjKT8n70wGrgNbADNSmwPqofX21gF7pQn0Q6A98CUQC9uTtLybvZyEQADyKekF6SFEUW3KZwckx70w+FsCJ5DjKozbrKcn7vgJ0A74VQhTXqk9RkjT2NXAemAh8DuwCLgNHgKdRrxGnUM+jEMAAVEY9fwFi0u3vVSAesAI1UK8dTsCDer2wAPcDQ5P3+2aaz45E7fNfBbiAHsBXQgidoij/y+Z7VEj+MzInX1rKY4qiyJeGL9STJhaolGZbDdSTL6Xb6h7UE2tius/WSy43Mc22zajJcnCabQGoNxBL02wbBLiB1un2+Uzy51um2aYklw3PIP7AdD/7A/uBX9JtjwHmZPD5b4ALQOl0279DbYYMTP8Z+ZKvwvAC2iWfe/3SbBuavK1JurJrAHsW+9gP+KfZvgg1ua9NV/6P9PvJ6BxErUCcyMF32AA4gBJa/z4L40s20WtICKEHOgI/KopyIWW7oijHUQfSpOiD2p2yRAhRJuUFXAKOAe3T7ToGWJBmf0moted705R5BLXWfjjdPjclv59+n1sURTmY/jsoihKf5vuURK1JbAX+LwffXwB9gdXJP6aN4+fkfWW7H0mSsjVPURRnmp93AAKYla7cDqCKECK1dTfdOW5IPj+3APcKIQyZHTD5yZmOgFm5uYVRuktkE722ygGBwPEM3ku7rSbqyXgsk/040/18Tkm+fU7jOtAg3T7rkK4rIF1saZ3KqJAQ4iHgdaAhkLbvLicjZssCJVCbHJ/OYRySJOXemXQ/O5L/PJvBdh3qzfVVACFEK9SBci2AoHTlDWn2lUoIMQB4G/hWUZRpdxS5dNtkgvcOOtSE2Q21qTy99P1tGZUB9SYh7T73A2MzKZv+xI9PX0AI0Qa1i+E3YBRqN4ATGAYMzGS/aaW0IC3gv8FD6f2Tg/1IkpS1zK4JWV4rhBDVgV+Aw6jXirOoI+a7o/b339IKLIToBMwDbMCzdxS1dEdkgtdWBOokFjUyeC/tthOoJ9wpRVGO5tGxTwD3ofaV3+7zqX1R4++iKEpiykYhxLAMymZ0jCuoz87qlTTP9EqSlGv59Yx5D9SWuZ6KoqS2Aggh0nfhpWxvjjpyfjfQX1EUVz7FJeWA7IPXkKIobtRnQ3sJISqlbBdC1ECtradYjnqnPTm535o0ZYUQovRtHH4JEAo8lf4NIUSgECI4B/two15Y9Gk+a+TWEfigDiS8aUrN5O+/DOgrhKiXQRxlcxCDJEnq+ZVpf/gdSKnhp153kvvdb7mJF0LUQa2124GH0vbdS9qQNXjtWYDOwDYhxDTUZDkaOIDar42iKCeEEK8D7wFGIcSPqDXfakBv1EfPPsrlceejPvY2PflufFvyscOSt3dBvQvPig212W6dEGIRan/5c6jjBxqkK7sH6CiEGIs6av6Uoig7ADPqgL4dQoiZwEHUaS7/D3WATqlcfi9JKoz2AAOEEJ+gPlIXoyjK6jzY73rUJvnVQoivUR/Jewq19bFiSiEhRDHUgbElgQ8BU7q6yAlFUf7Mg3ikXJAJXmOKouwRQnRDTdBvofZxTUIdABeWppxVCHEUtd9rcvLms6gn4KrbOK5HCNEreX9DUG8U4oCTwGdAtl0BiqJsEkIMR03SU1EH4k0AjNya4Mei3oi8jTqwcC6wQ1GUy0KIZsnfuQ9qX/5V1OduJ+T2e0lSIfUVaoVgGOo5fRr16ZQ7oijKkeSJq95GvUZdAqahdq+lHYFfGkiZdMuawa7mAjLB32VyLvoCKrmWXldRlJpaxyJJkiR5H9kHXwAIIQLT/VwTdZTqZk0CkiRJkryerMEXAEKIi8Ac1Obxe1CnhiwCNFIUJbNn3yVJkiQpU7IPvmBYBzyGOm9zImpf1USZ3CVJkqTbJWvwkiRJkuSDZB+8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INyNdHNnj17QoBKyBsD6WYe4ELjxo1jtA5EynvyvJcKAHmNuQ05nuhmz5499+t0uuk6nc5AmrWBJQlQPB6Pw+PxPNu4cePtWgcj5R153ksFhLzG3IYcJfg9e/aE6HS630uUKFG+XLly14QQcvo7H+FRFFAQCgoChA4FEAoCBQSI7K/piqKIiIiIUjdu3Ljs8Xhay7ts3yDPe+/n9niEy42/y+Pxd3kUP7dH0QFCUc95oUdRShGli8TgEUI97wUCncCj1wmXv07n9NcLp06n7f97eY25PTltoq+k0+kM5cqVuxYcHByfrxFJeSLJ5fFPcLqLJro8RZJcniIuj8fP7VH83Iri5/Yofh4Perei+CmKkprBy/gnxlVyXwhKtysFnZ8LnZ8TnV8Sen8nev8kdP5O9AHq3/UBSeXKlbsWFRVl8Hg8lcjBWvKSV5DnfQHn9ii6uCRXUFySO0g9zxV/l9vj7/Io/m6P4u9RlCy6VQSBQkkKFdcDrntKpNmupPnTA4BOCLe/XiT56XVOf50uyV8vkvz1uqQi/rqE4AC/uLtxAyCvMbmX0wSvA4S8gy94XG6PPibRFRKX5A5OdHmKJrk8RZ1uT5GsT+xcEXhc/nhc/kD65J9K5xJu/4Trzmo7LeNY/dc6YCcWx9k8ikHShjzvCxC3R9HFJrqC4p3uoPgkd3CCyx2U5PIUvdP95qSX1qMo+kSXEpjo8gSmf08glAA/XUJggD420F8fG1xEHxvor48XOWj9y43kf4cCORYkx+Rqcl5EURTiktyBcUnu4LgkV0h8kjs4yX3nJ3heEHj0wpOkD0i8OgIYAYDFcBHYBexM/dPiuKFdlJLkPVwejy4q3mWITnAa4pPcIUluT5F8OZAguYfu9igoItHlDkx0uQNvQBkAnRCeIv66uEB/fWxIEb/o4kX9o7Ru5i+MbjvBG822xnkZSFp2q2lPfu07p3bt2lW0V69eNc+fP7//bhxv8ODBVXft2hWS8vOpU6eKvvHGG+fMEydGzp67sNKH779bRqf30zudTh7sYmL0+NfJ6A5ZURSmf/o+a39cSkBAACVKlebbJasB+OaLj1m19HvOnDrBJzPm82BXU4ax7P77ICNeeZMkp5MJo4byRP8eAGz6fSeLV63n6w9ez+nXqgj0TH4BKFgMe4HlwDIsjiM53ZFUMOTXeV8QzvnshIWFhf/555+HS5Ys6cmvYyQ43QGOeGeJ6ARXifgkd4iCkqvEe+CvvXw45VXiYmMRQvDypHdo3uoBAE6fOsG7r73CtcgruNxunnlxHL0f7kVGYye3blrPlx++g+Lx4HK5GPrsC/R85DEgZ9cRj6Lodu/aHTJl/AshTqez/JMjX1QGDh7sKF7U//rWX9a5lyxeXGLRokWnb+NXJOWCrMEXEPPnzz+T8vfjp+xB9eqEhT348KMlD12IrlyvRTuxZL0JnU6HMymJJ/p0I7xBIzp0e+iW/Sya9TVHD/3L8o1/4B8QQGTE5dT3mrduR9eefZn8yugsY7F+OZvP3xpH4wbh1O/Qnyf69yA+PgHLJ1+zavbUO/maAmic/HoHi+EQarJfjsWx9052LEn5xel04u/vz+HDhw/m9b4VRSEm0RUcFe8qEZ3oLHEnTe6KojDmqcG89cn/uL9NO+wnj/PMY71YuXkXRQMDmTR2FA/3f5w+jw3h2tVIBpra06JZM2pUIqXpO3U/E194hm9/WE2tOvU4f/YMvdo3o0O3hwgOKZbj68isr6YyYYqVOg0a0q9TK9HjkcdKXLkeXeKtd99nxvzFURHRCWVLBAbcCPDTOW/3O0tZ8+q+jAULFpS4995769auXTt85MiRoSVLlrzvyJEjAQBPP/105Xr16tUJCwsLb9KkSe2///67CEBMTIwwmUz3Vq9evW7t2rXDW7VqVTNlf2PHjq10zz331Ktbt26dkPxAMQAAIABJREFU+fPnl0p7rGXLlhVv3Lhx7bp169apX79+ndWrVxcDaNmyZc3Zs2eXTCm3Zs2aYnXq1AnP7XdxexTdlejEMscuR4d9OXNOnZZtO4iQkmVCFBQRHFIMnU79X5WYmIAzKTHD2jvAnOlf8OKrk/EPCACgTLnyqe/Vb9SYyvcYs43F39+PuPgEEhIS0Scf1/LJ17w4fCAlDMVy+9WyUgd4DdiDxXAKi+ETLIZWWAzycSwpQxs3bgxu3Lhx7dq1a4fXqlUrfMGCBSUAfvvtt6BGjRqF1apVK7x+/fp11q9fHwzw6KOP3jNp0qTUk+Dw4cMBZcqUuS8xMVGsXLmyWMOGDcPq1KkTXqNGjbqffvppmZRyffv2NT7yyCPGJk2a1K5Vq1ZdACFE48jISD1kfn1JKWc2myvUr1+/TmhoaP3PPvusdMp7e/fuLdq6deuatWrXrlsrrM59k62fNjwVGRt25NSZCi8+9UTRgQ91oG/Hlnz5wdu5/t3cuH6N69ciub9NOwCM99agWHEDv2/eCMCRg//Sun0nAEqVLkOtOvWwrVyuz6gGL4Qg2uEAIDYmCkOJUgQEqF8xp9cRPz8/EuLjSUpMRK/TAzDtUyuPD38W/6BixS85EqoevhTV4Ojl6LDLUQnlXG6PPtdfWsqS19bgz58/7zd69Gjjr7/+erhRo0YJn332WekbN26kfh+LxXKpUqVK5wBmzJhRcvTo0VW3bt16bPny5QaHw6E/ceLEvwCXL1/WA3z//feGVatWldy3b9/BEiVKeHr37l0tZV8HDx4MeOuttypt2rTpaKlSpTwHDhwo0r59+9pnzpzZP2TIkKvz5s0rPWzYsOsAs2bNKj1o0KDInHwHRVGITnAVuxaXVCYmwVUiZWDcj4sXMvb1N28q+9fuHbxlHsMZ+0n6D3qS9l2637K/mOgorkVGsHn9WjbYVgEw+KlRdO3ZJ1e/20ljnuKZCe8QGxfPh2+8xF8HjnDy9Hnef+3FXO0nl4zAmOTXWSyGr4GZWBwR+XlQyXtcvnxZP2DAgBoLFy480bVr1xi3201kZKQ+ISFBDBgwoPqXX355um/fvlE///xzyMCBA2ucOHFi//DhwyNHjRplfPPNNy8DfP3112V69+59tUiRIkrLli3jdu/efdjPz4/Lly/rGzVqFN6zZ09H9erVnQD//PNP0Pbt2zNsks/s+pLyfpEiRZT9+/cf2rdvX9HWrVvXGTVq1FVFUejdp2+t58e95ur8cL+iANevXQXg9TGjGDF6LE1atMLlcvH80EdZv+ZHOj/UK8e/n5KlSlO2XHl+Xr2CLj16c+CvvdhPHufCWbVxMLz+fdhWLGHYyBc5d9rO33t2UqVyZbUPPg0hBB98NYuxTw8hMCiIKIeDT2bMS6005NQzL43nLfMY4uPjGPPamxz+dz/nz5xmzMQpN5VLcLqDE5zu4IjoxNDiRf2ulw4uciWkqF9srg4mZchrE/zmzZuDa9euHdeoUaMEgNGjR18dN27cPSnvr1q1qvj06dPLxcbG6j0eDw6Hww+gSZMmcRMmTCg6aNCgqm3bto3u16+fA2Djxo3FHn744WulSpXyAIwcOfLK8OHDQ5L3ZTh9+nSRli1bhqXsXwjB8ePHAwYNGnT91VdfrXL69Gn/EiVKuDdt2lTiq6++ynL0uMvj0UVGJ5W9HpdUzun23HTW7N3xB3ExMbR5sPNNn2nYpDnLNv7BtauRvPz0EPbu+IPG97e6qYzb5cblcpGQkMDC1Rs5f/YMT/TqQrUaNakdXj/Hv9s6Ne/lt+Xfqvt0u+n82Cjmf/423/24jqW2jRQPCeaTyS9TskTxHO8zl6oAbwOTsBh+AL7E4pCTWxRyv/76a0i1atUSunbtGgOg1+spX768e+fOnYE6nY6+fftGAXTp0iWmdOnSzu3btwd16dIlxuVysWXLlqA2bdrELVmypPSPP/54DODy5ct+jz/+uPHUqVNF9Xq9cuPGDb99+/YFpiT4hx9++Hpm/e2ZXV9SDB8+/CpAo0aNEvR6vfLX4ZOhF65cL5PkdPp1friff0q5kqVKExcXy85tW7gW+d+9bFxsLPYTx3P9O5r67UKmvjuFb//3KdVrhdGo6f3o/dTQ3vp0Gh+/9Tr9u7ShYmgVmrVqi16vB24e/OZyuZj5+Ud8MmMeje9vxYG/9vLi8IEs3bCNkqVKZ3TYDN1bszazl60F1OvIs4/34Z2p0/npx6VsWLuK4JBijJv0DsVLqI/oKYqic8Q7SzvinaWL+unjSocEXC4ZHHBdJ5/iuG1em+CzcuzYsYAJEyZU/eOPPw7VrVs3cceOHYEdO3asDRAeHp50+PDhf9esWVNsw4YNxSdPnlz577//vqVvLW0TuKIotG7dOmr16tWnMjpe9+7dr8+cObNU2bJlXS1atIiqUKGCO32ZiRMnVli+fHlpdHq/l157U9eybYcMu0dWfL+AHo88mnzi3apU6TK0frAT620rb0nwhpIlCQoO4aHe/QEIrVKVhk2b8+/f+3KV4NOaOnMRjzzUiRKGEN6aOpN/Ni5m/jIbU79ZyJRXRt7WPnMhAHgceByL4U/gQ2AlFke+DXKSfEPa83fgwIFXZ86cWSYqKup6yZIlXU2bNk0AePrpp+/p3LmzY926dSd0Oh3h4eF14uPjU8/LkJCQW85jyPr6kiIoKEiJT3IXjYhOqKD389dHxiRWcGf2PFry9vkrN1CkaNZd8C8/8wRn7ScBmPH9SkqUvKknkdrh9Zm2YGnqz73aN6dGLbVeElqlKp/MmJf63shB/aj5wAO3BHXk3/1EXL6Uen2p1/D/KF+hEocP/EOLB9pnGV9mFnwzjU6mhylmMDDj84/4Yf3vrFm2mAXfTmPUy6/eUj7B5Q46fyO+2uWoxMqlgv0jyoQUuXJbBy7kvLYPvl27drFHjhwJSun7mjZtWmmn0ykArl+/rvfz81OqVq3q9Hg8TJ06tVzK506cOOEvhODxxx93TJ8+/ZyiKJw8eTKgU6dO0atWrSp1/fp1ncfjYfr06an9cT169Ijatm1b8R07dqQ+A/rrr7+mPhM+YsSIyEWLFpVZsGBBmWHDht3SPB/vdBd59uXXivzwy44iS9Zv88ssucdER7Fh7Sp6DRh00/ZTx4/i8ag5LTYmmq2/rKdWnboZ/l66PdyXbcl9bo7r1znw1x5qhmVcNjunzpxnw9btPDO4L06nC5fLjRACndARE3vX5z1pgTog7yAWw1NYDPnzyJBUYHXo0CHm9OnTRdatWxcCaq3w8uXL+gYNGiR4PB5WrFhRHGDDhg3BkZGR/vfff38cwFNPPXXVZrOVnD59etnBgwennp8Oh0NvNBoTdTodP/30U8iRI0cynechrayuLynOOxKqHo+IruuId6ZWeY3Va1I0MIiffvwvAV+/dpWg4BCatmzDrK/+G8Aacekily+ev+XYH389lyU/b2XJz1tvSe4AVy5fSv37skVzCQwMolnyKPqrVyJSryPbNv/CyWOH6dnnEU/6GnyFSqFERlzm5DH1IZczp05y9vQpjNVr5OTXc4tzZ06zfetmHhk0DJfTicvlUq8jOh1xsVm3xLs8Hv+I6MTQw5eiG0TEJJZTvDhnacFra/ChoaGuzz//3N67d+8aAQEBStu2baOCgoI8pUuXdteuXTupZ8+e18LCwuqWLFnS1b1799Rnr/fs2RM4adKkyoqi4Ha7Rb9+/a41b948vnnz5vE7duwIbtiwYXhISIi7Q4cOjp07dwJQr169xFmzZp185pln7omPj9c5nU5Rt27duPbt258CaN++fZxer+f06dNF+vTpE5VyrESnO+CiIyE0KsF565mYgXWrlhNe/z7uqVb9pu0/r17Bz6tX4Ofnh9vtppPpYfo8NgSAf//ex1cfv8v/5v0AwAvmSUwa+xyL56lN7MNGvkj9RuqTTTM++4gfFszm+rVIjh85xHtvjGfxui2UKl2GjLw46UOmTnkFIQSG4sUY2Lsr9Tv0JyQ4iMXTrDn6/5QPagMzgDewGMxYHIu0CkS6u8qWLev+/vvvT4wbN67KCy+8oNPpdEyaNOn8wIEDHYsXLz7x4osvVp0wYULlIkWKKAsXLjxhMBg8AEaj0XnffffF/vLLLyXmzp2b+mjW22+/ff6ll16qarVaK9WtWzeuQYMGOer3bdasWXxG1xeX26O/FJVQESA6wV2qeLpbUD8/Pz77diHvvTGBb778BJ1OR/8hw3lk0DDe/XwGH735Gn06tEAIQWBQMG9YP6F8xdBc/Y6WLZqLbcUPoChUq1GLT7+Zn9qasWXjOmb9byo6vZ6y5Svw5dwlFA0MBAGb169l84Z1WD78nNJlyzHJ+injRg5Dp9Ph8Xh49a0PqBhaBcj9deSDyWbGW95FCEGx4ga69+pHv06tCAwK5oOvZuXoe3kUReeIc5a9Guf2TN91feCuH2xv2q0mV65+OYVQTueiD/Pz81tXs2bNmKCgoIS7EFeOXL9+XZfSRzZ//vwSkydPDj158uS/WseVcqJfj3OWSzsVbEGXyVS1OZLgUjh1/grVtr1M0Zi7OoHdn8BLWBw77+ZBC4OCet4XNG6PoouITih3NSapgkdRvGokeKDOk1RDd0Hsd1X2z760thRXEhEXzmH5NYLz0e6jgNluNa3QOq6CzGtr8ADvv/9+uRUrVpTyeDwiJCTEPW/evAz7yO8Wj6KIK9GJZSNjEiu6PYpX/269SAtgOxbDIsCMxXFO64CkwsGjKCIyJrFMZHRiRZdHKfAJMmNK6n+8TC1gudFs2waMs1tNf2odUEHk1UnIarVeslqtl7Ivmf9uxCUZLjoSqjjzazpJKSsCdTBebyyGD4EPsDjiNI5J8mExCa7gczfijHkxF7zW7mCW2oKgFfCH0WxbBrxit5rsGsdToMgBC3coyeXxOxUZe++Za3E1ZHLXXBAwGTiCxfC41sFIvsfjUcS563GVT0XGhPlCck/mjTX49PoC/xjNthFaB1KQyAR/ByJjEksfvRxdLzrBWTL70tJdVBlYgMWwCosh45E/kpRLMQmu4KMR0eHXYpPK+0JG9EHFgJlGs22N0WyroHUwBYFM8LchyeXxP3ElpsaFG/FGbxtUU8j0APZjMXTOtqQkZcJHa+3/8b2JZEzAAaPZ1l/rQLQmE3wuXY9NKnH0cnTd2ESXQetYpBypAKxLnuc+d3NtSoWerLV7rdLAYqPZ9p3RbMvRY8q+6PYH2VkM+bZcLBZHgVs60qMo4sKN+NBrsUnlsy8tFTACdY779lgMA7E4DmkdkNfKr/O+gJ3ziqJw0ZFQ8WpMYiVfT+xePsguO48CbY1m23C71fST1sHcbT5Zgz9y5EjABx98UDbtttDQ0Pp//PFHYGafyUqiy+1/IiKmdm6T+7FD/zKsb3cebteMPh1aMOnl0STE/zcDXNSNG7z6/FP0eKAJvTu0YOp7lgz388tPa+jXqRX9u7Sh94P388X7b5Eyf0FcXCxvjH2Ovh1b8nC7Zkx9z0Jmcxu8aX6Jvh1bMmJAT6Kj1JWiFEVh1OB+nLVr+oTh3dIQdeW6Z7UORLo9KStIhoWFhe/cufO2zueMrFmzptjSpUuLg/pcu/1qbPXIXCT3f/bt5pHOrenxQBNGDOjJ5YsXMix34K+9DOnVmeY1K/HS8JvHgSbEx/PaS8/Sp0ML+nRowQvDHuPa1YzXrcq7c1mQfiY7H1QRWGs026YYzTafvptJzycT/LFjx4rMmjWrbPYls+eISyp+PCImPN7pDna5cjdxUkDRorz69ges3LyTH9b/TnxcHLOnfZb6/qRXRhNWtwGrf9vNil/+ZNDwjOd2v79N29TpKZes+40/t25m0zobAN9+8Qkej5ulG7axdMM2jh48wAbbylv2cezwQc6cOsmyjX/QpEVr1ixfDMDy7+bRtGUbqhir3fIZHxUITMNiWIHFkG+r5Uj5Y8aMGWUnTJhw8fDhwwebNWuWJ/MlO51ONm3aVGzt2rWGRKc74HhETFh0gqtETj/v8XiY+PzTjLO8x+rfdtOmfSc+nDIxw7Jly5dn3OT3eGXyO7e8t3ThHBLi41m28Q+W//InpcuWY+70z28pl7fnsq/n9ptMAr43mm15dmNY0Hl1gl+2bFnx8PDwOrVq1Qpv2rRp7T179hQFeP7556va7faiYWFh4Q8++GDqBMpLliwp2bBhw7DQ0ND648ePr5iy/cyZM37du3e/t379+nVq1aoV/sILL1QCuHgjvmJ47Ro1P3p7kt/AhzrwxpjcLa5yT7Xq1KpTD1BXvqp3X6PUpRvPnDrJwX/2Mfjp51LLp127Pa2s1oM/cugArdp2QAiBv78/97dpz5pli2/Zh7+/P86kRDweD/Fxsfj7B3Dl8iV+WrmMwU89d0v5QqAX8BsWQyWtA5FyZujQoVV2794d8uabb4Y2atQoDDK/BqxZs6ZYWFhYeMpnd+3aVTQ0NLQ+qC18xYoVazhy5MjQ8PDwOu+99165efPmlV3x44+l72vYsP5nH72XqwRw8J+/0Pv50axlGwD6DRrKlo3rSEy4dfK/8hVDqd+ocera6mkJIUiIj0udrz0uNoZyGUxVK8/lO9If2GI02ypmW9IHeG2CP3/+vN/w4cPvnTNnjv3o0aMHn3zyySv9+/ev7vF4+OKLL84YjcaEw4cPH9y0aVPqmos3btzQ//XXX4d37959aNq0aeVPnTrlDzBw4MBqzz33XMT+/fsP/fvvvwf37dsX/PmM2TWvxCRWAnXRloWrN/LeFzNvO964uFiWfz+fdp3VddxPHjtM+YqhvD1xLI92b8czA/tw6MA/mX7+r9076NuxJe0b1aJZywdS14MPr9+Q9baVJCUmEhcbw68/27hw7swtnzdWr0nTFm14tFtbzp85jalPfz6cMpGxr72Jn59Xz3d0J+4D/sRiqKN1IFL25syZc7ZevXpxVqv17L59+w5ndQ3ITkxMjL5u3boJBw8ePDRp0qSIx4YMjTX1HqBf8vNWnn1pfK7iunThXOo87aDekAeHFLtp4Zec6Pf4UIKCi9G+UU0ebFSLmOgoHhv61C3l8vpcVnxvFH12mgK7jGZbI60DyW9em+C3bNkSXKtWrfiUZrqRI0dei4iI8E9J2hkZPHjwNYCKFSu6KleunHT06NEiUVFRuu3btxd/+eWXq4aFhYXXr18//PTZcyFHj51Ibb7t+chjNy0/mVvOpCTGj3qSFg+0p0O3hwBwud0c+GsPXXv25fu1mxn81EieH/ooTqczw32krAf/844DHNz/F3t3/AHAk6NeomJoZQb17MjoJwZQr2Hj1PWf0xs9/nWW/LyVj6bPYftvm6lQKZRKVaryxtjnGPv0EFYsX14YH/mrCmzDYmijdSBS7tzONSCFn5+fMnLkyKseRRFnrsVVdeFn0Hqs2Z+/bUJRPPyy5wi/7DlMseIGvvro3QzLZncur1u1PIdHLVRd0mmFAr8bzbY+WgeSnwpV1S0wMDD11l6v1ytOpzN1sZ29e/ce8gsoqrdHxtZMcLlvuvEJCg7JcH8njh7m1efVO+yGTZoz8Z2PbinjdDoZN+pJyparwIQp/63AVrFSZcpVqJjarNe6fSdcziQunjtL1Wr3Zvod0q8HXzQw8Kb9fvu/T6mevP5zZmKio5j79RdMW7iMb7/8lCb3t8LUpz+Pdm4Z8GTnuQQG+t6jvtkoCWzAYhiExbE029JSgefv76+krcmnXecdoGjRoh6ETnfySmz1uCRXlmMxohwORvRXb8wrVbmHqd8suOn9CpUqc/H8fwssxcZEExMdRdnyuZtrZemiuXR/uF/qmvDdez/Ct19+kuVnMjuXH+nShnaduqmrxWVJoRAn+SBgqdFse91uNWV8J+XlvLYG365du9ijR48G7tq1qyjAjBkzSpYvX95ZrVo1Z4kSJdzR0dE5qo0aDAZPs2bNoia+9kaVE1di6iS43EGZrcWcXvVaYamD3zJK7i6XiwnPDcdQoiST3p96UytAeIOGBIcU4+ihAwDs37cHRVGoUOnWPres1oOPiY4iPl6ddv3cmdP8MH8WQ54enWXcn703hWdeGk9gYBDxcXEIIRBC4HS5SMqkBaEQKAIsxmJ4UetApJzJ6hpQu3btxAsXLhS5cOGCH8Ds2bNLp//8ySsxNVOSe3BIMaKjotIXAaC4wZB6nqdP7qCeyy6nk51/bAVg6YI5tO3YNTVR51Tlqkb+/O1XFEVBURS2/rKe6rWz7j3K7Fx2OZ04nUk5Om5ha59PRwDvGM22L7QOJD/cwXPw2j63WqlSJdc333xz8oknnqjmcrmEwWBwL168+IROp6N58+ZxtWrViq9Zs2bdKlWqJKbth8/I/EXfX3hx7Cu1e7RrLu5kLeb0fl69nF9+Wk2tOnUZ0PUB4L+avhCCtz+dxpTxL5GYEE9AQBE+/noeAUXUwTfPDXmEUS9PpO59jbJcD/7cmdOMGzkMPz8/9Ho9r0x+l7C69TONad+u7SQkJNDigfYAPPrECCaMHsHsaZ/Rp29fl6F4MS9dFStP6ICpWAxVgVewOAr5tS8DBeh59ayuAUaj0Tlq1KhLTZs2rVOmTBlnx44dHSmfc3sUvRA6fbzTndo092DXh1izfDH9u7ThwW49ctUPr9PpePfzr3nLPIbExETKla/AO59NT30/7blsP3GMpx7tRUJ8HIkJCXRqWpcRo8cw4IkRjBxj5k3zS/Tp2BKAatVr8ob100yPm9W5/FCfARQrnuO5uOS/cxhtNNt0wGi71eQzvw+vXg8+L8QnuYucioyp7b3LPeYdL10PPr98CzxVmJO8L573TrdHf/JKbO1El7vQPCqVlUCdO8nod815KKlssNaxZCfdevD5dZivgZG+kuS9tok+LyQ43UVORcbK5C5lZDiQefVJ8jouNbnXksn9PwKfn8kut54BpmdbyksU2gSf4HQHnLwSW9vl8cjkLmXmRSyGt7QOQrpzbo+iOxkZWzPR5b6tFipf5RPV1Lz3tNFs+1jrIPJCThO8B8h0ClRvk+h0B6g1d5nc80rqPw0f+TeSxutYDOO0DkK6fW6Pojt5JaZmgtNd4JuhtaD4/lS1t2Os0WybrHUQdyqnCf6GoiiupKQkr1+Ny+X26E9dja3pdHu8/rsUJEkewONC74zWOpT88D4WwyCtg5ByT1EUTl+NrZZ2QJ0k5ZDFaLaN0TqIO5HTUfSRHo9ny+XLl03+/v5OnU7nlXd8iqJw7kbCPYlOd6F70DsnnDhFgif3/2s9ClxxJBAUsRe/pIwfNfJyApiFxXAJi2Oj1sFIOXfBkVApJjHn88oXNrL3PVsfGc22o3aryaZ1ILcjRwm+cePGnj179kyKj4+vf+LEibJ46b+L6ERP6XiXIu/kMxGnc+rjlBu38UkFXfw1qh6Zg/DdXj1/YBkWwwNYHH9rHYyUvauxiSWvxiQWijnH74QcZJclHbDQaLY1s1tNR7UOJrdy/Bx848aNz+/Zs6e1x+OpmpvPFRTv/n79iUsxLrPWcRRk7fwOHH9DPyc8+5LpeNwExEegU3K32p4XKg6sxWL4PyyOy1oHo4VDYXXyZT34OocP3dHz9UeOHAlYuXKlYfz48VcAYhNdQfXDat479ZuFWc4LkR+2bFzHJ29PwuN2UyMsnLc++R8hxW6dLM/j8fD+ZDO/b9qAEILHRzzLY0OfBuC3X37mq4/f4/iRQ/Qf/CTjLe9leKyoGzcY8/Rgbly7yv81a8Fr76pjw65djWTcs0OZvmgF/v7ZDDWS+T07BmCl0WxrbreavKqJMleJunHjxklAlpPGFERGs60HkLsVJAqha7qoxKIBPvEMe36qBCzAYuiCxZH9qibSXZGyRPT48eOvJLk8fqevxtXIi7zlcrlytYBLXGwMlnEvMOuHNVSrUYt3Xx/HjM8+ZOzrtz6MYVu+hJPHjrDqt93EREUxoNsDNG3Rhhq161C1WnWmfPQFG9asJC4uNtPj2X5cQtOWbXj2pfGMGNCTY4cPUjMsnI/efI0XX52cfXJH1uBzKAyYbzTbennTM/I+/5ic0WyrDiygEHxX6a7pCLyqdRCFUU6WiO7crXu9lCdkfvlpNYMf7ky3lvcx47P/ppOOjLjMuJHDGPhQB/p2bMmXH7yd+l63Fg349N3J3M4S0b//upGwug2oVqMWAAOGDOenlRkv/PLz6uX0eWwIer0eQ8mSdOnRm3UrlwFgvLcGtcPrZ7pwVAo/P38S4uPweDw4kxLxDwhg268bKW4oQYP/a5qr2KVs9QS8amS9Tyc9o9nmD3yH2rQqSXlpChZDa62DKExyskT0z9v2xH0++/vUdSiioxzMX7meRWs2Mffrz7l88QIAr48ZxYAhI1i05hcWr/uNf//5i/Vrfkw91u0uEX3x/DkqVq6c+nOlKlWJjLiEy3Vr99XF8+eoVPm/ZWYrVa7KxQvncnU8U5/+nLWfYkDXB2jeuh3lKlRk5hcf8/z413O8D0WRNfhcmGQ02x7WOoic8rq+9Fx6D3XtX0nKa3rgOyyGhlgcV7UOpjDIaHnY8ePHV01dHlbo/BzxzpsWleneqx8AJUuVJrSqkfNnT1PMYGDnti1ci4xILRcXG4v9xH+9j3e6RPTdEhQUzMdfz039+UPLRIaNepEz9lOpK9E99cLL1A6/u+MQfJhAbapvbreaDmkdTHZ8NsEbzbauwFit45B8WmVgDtBD4zgKPbcHP3T6WzqcA4r890SsXqfH7XanTsY0f+WGTFd8u90loiuGVmb71s2pP184e4Yy5Spk2I9fMbQyF86d5b7GzdSy585QsVLlW8rl1P59e7h29QptO3ZlaJ9uvPPZ1yiKwqSxo5i1NPOnvBQhJ7rJpWLAEqPZ1thuNeVsyT6N+GQTvdFsqwDMRY4PlfLfQ1gMXj0ZhrfIbHlYo9Ho9BQtXj46OmcDnIOCQ2jasg2zvpqaui2No6KEAAAf8ElEQVSvlohu1a4Dhw78zanj6hNVi+d9S9eefTLcVydTL5Z/Nw+3243j+nV+Xr2CLj165+g7pOd0Opn6noVXJr0DQHx8HEKATieyHKQnM/ttqwe8pnUQ2fHJBA/MA8ppHYRUaLyPxSC7gvJZ2uVha9WqFT5z5sxyixcvPnE11ln2nlrhwdVrhdGnQwteGPZYtvt69/MZnLGfpE+HFvTt2JKxTw/hxvVrdxxjcEgxLB98xksjBvFQ6/8j4uIFnn7xldT3+3dpQ8SliwA81HcA1arXpMcDjRn40IMMfuo5atapC8CO37fQqWld5s/8ihXfL6BT07psXr820+POnf45Pfo+Sumy6mVv1Muv8twTA9TXKxOzjFmRw+hv16tGs62B1kFkJUfLxXoTo9k2FJitdRzeqJtux75pAZ810joOL3UcqIfFkah1IHnFG5aLTXC6A45HxNT1KIqvVlbyVaDOnVTBPzbxVGLxYlrHkp27tFxsbu0G7rdbTQUmoLR86qQwmm1lgFvbzSQp/9UAXsm2lJRnFEXh3PW4ajK5SxpqArysdRCZ8bUT4yOgdLalJCl/TMRiqJJ9MSkvREQnlotLkovI3CnZQn/HphjNtlpaB5ERn0nwRrOtPfCE1nFIhVoQ8InWQRQGCU53kSvRiaFax+ETfKuXVgtFgW+NZluBu1PyiQRvNNuKANO1jkOSgH5YDA9qHYSvu3Ajvopsms8binzaKC+0Bp7TOoj0fOUEeQUokE0kUqH0BRaDz84xobXoBGdITKLLoHUcvkI20eeZt41mW0mtg0jL6xO80WwrjVxIRipYwoHntQ7CV11yJNz+bDDSTWRqz1MGClgu8oVaxkTkXPNSwWPBYljka8vK1p9bP1+Wi93/xP4cLRd7PTapRLzTHZwfMRRWsgafp14wmm1T7VZTgTjvvboGbzTbKgOjtI5DkjJQHLBqHYQvURSFy9EJcmBdHpLj6/JcEAVohjuvTvCABXUEoyQVRIOxGIxaB+ErImOSyiS5PHlyvk/7xMoHltyv+Lt5/Vo+tKgzw+3683f6d2mTYbm42Bjuq1KgumMzpQCnT51gSK/O9HigCQNND3L8SObrqCz/fj492jTG1KoRU8a/iNPpzNF7ab1pfom+HVsyYkBPoqMcahyKwqjB/ThrP5Wn308DzxjNtqpaBwFenOCNZlttYKjWcUhSFvQU4EkwvInHo4gr0YmVclo+o+VZ80K7zt0ZZ3k3X/atBYHaRP+WeQx9Bw5l9W+7GTbqRSaNzXhA+Lkzp/nqw3eZvWwta37fy9UrESxbOCfb99I6dvggZ06dZNnGP2jSojVrli8GYPl382jasg1VjNXy5bveRQGolU/NeW2CR/0F6rMrJEkaexKLQU6+dIciohPLuTwe//uqlOTLD96mf9cH6PFAE2wrlqSWua9KSb76+D0Gmh7kc+sUAOZO/4KBD3VgQLe2jBzUjwvnzqSWv3ThPCMG9OThds14ftijqXPRp6/dfzdnBm+MUXsCVy5ZxEvDH88wxh8WzKZHm8b07/oA82dOy/Y7OZ1O3pn4Mj0eaMKgnp346M3XGf7IQwCYR49g7YofAFg89xsa31suddGYEQN6smf7Ns6fPUPruvfw1cfv8Wj3djzU+v/Yuml9jn+nKS5fuSIO/vMXpj79AejYvSeXLp7nzKmTt5TduHYlbTt3pUy58ggheGTwMH5atSzb99Ly9/fHmZSIx+MhPi4Wf/8Arly+xE8rlzH4qQL3pNntGpJcCdWUVyZ4o9lWDXhE6zgkKQeCgNFaB+HN3B5FdzU2sWLqBiFYsu43ps1fivWNCZw/+1/S1un1LLJtYuzrb7F2xQ/YTx5n/sr1LP5pC9179+Pd1/6bTXjvzj+xfjGTlZt3UqFiKJ9b37ztGI8dPsi0T6zMWmpjybrfSEyIz/YzyxbO4Yz9JMt/+ZPZy9Zy7PC/qe81b92O7b9vAeDPrZup26Ahe7ZvIz4+jqMHD9AgeYnZ6KgoatWpy/drN/PqWx/w4ZTcd/+eP3dBlClXPnVJWyEEFSpV5uKFc7eUvXj+HJVC/5ussVLlqlw6fy7b99IyVq9J0xZteLRbW86fOY2pT38+nDKRsa+9meGyul5KD9z+P6g84pUJHhiDrL1L3mM0FkOg1kF4q6uxiaXdHiX1fO/z2GAAKt9jpHHzluzd8Udq2d4D/qtd/7p+Ldt/38xj3dvRv0sb5kz7nItpEk6bBztTplx5APo+PpTtv2++7Rh3/rGVVu06UrZ8BQD6D3ky28/s2PYbpt798ff3x9/fnx79Hk197/42bdm5bQtut5uTx44w+Knn2L51C3t3/Em9hv+Hv78/AEWKFKVDtx4ANGjclHOnc99/rcVEN6PHv86Sn7fy0fQ5bP9tMxUqhVKpSlXeGPscY58ewrpVy+92SPnhEaPZVkfLALzudil5IoHszx5JKjjKAMOAr7QOxNsoisK12KSsl35Ok54Cg/6bml5RFIY/N4Z+jw/N0bFE8o70ej/c7v8WB0tKyP0CgULkPmem/UzF0Cr4BxRh7YofCK9/H81btWXmFx+j1+to3qptarmAIgGpn9Pr9TfFndaQXp1JiI/HP6AIC1dvvOm90MqhSmTEZVwuF35+fiiKwqUL56hY6dbpBiqGVuZsmpuIC+fOUCG0crbvZSYmOoq5X3/BtIXL+PbLT2lyfytMffrzSJc2tOvUjaKBXn1fLFBb7zTrd/C6BA8MB+RzsJK3GYvF8DUWR4FcVjKncvq8el6JincWTz9yfuWSRYwca+b82TPs3fkn4yzvZfjZ9l26M2/G/+jU/WEMJUvidDo5fuQQdeqpS3j//usGrl6JoHTZciz/bh7N26iJs4qxGls3rcftdpOUlMjGn1ZjvLdGlnE2a9mGWf/7lMiIy5QpV54f5me/YnWzVm1Y++NSuvXqB8DqpYtvev/+1m356uN3efrF8RQvUQI/P3822Fby6TcLs913evN+zLxvvkzZckqdeg2wLV/Cw/0HsnHtKspXqETVavfeUrZjt54M7dONkWPMlC5bjh/mz6Zrzz7ZvpeZz96bwjMvjScwMIj4uDiEEAghcDmdOJ1J3p7gQe2Lf9VuNUVpcXCvSvBGs02HfO5d8k7Vgb7AkuwKSv+JzKD27na76d/1AeLj4pjwppXQKhk/kWTq3Z8b168zYoDahO1yu+nV//HUBP9/zVpgfv4pIi5dpGq1e3nrE7WBpWO3HmywraRX++aUr1iJsLr1SYjPuk+9Zlg4z46ZwLC+3QkMDqZD1x7Zfrd+jw/j2OGD9HnwfooZSlC3QUOuXL6U+n7zNu1YMn8W9yffeNzfui3Lv5tH7fB62e47NxQF3rB+yhtjn+ObLz8hJKQYb378Zer7lnEv0K5TV9p17k7le4yMfNnME727AtCkRWv6PT4MIMv3MrJv13YSEhJo8UB7AB59YgQTRo9g9rTPeKjPAIoV94nZiENQF0H7QouDC0XxnqkOjGZbD/6/vXuP8qOs7zj+ns19c1kSQsgVRyoCUqoYsS2KxSq1Oh4sFm/osQoVQS2CtjpQWkLxMj0ePFW8UARBrRYvgIKjolVRoAoYLhKBUIHhnmRv2WSzm+zu7zf9YyZCIGSTzc58Z+b5vM7ZQ+Ds2fnA8pvPPM888wxcY52jqV7bcfPtX5z+mSOsczTYrawaeKl1iN21evXqQ6ZOnfqjgw46aLCzs3Nr2cffNtqavnb95sOf+s9euGI+N6xJmNfViJM/WwY3M3vOXEZHRzn79FM49PAXctL7zijt+J0drZE5U8bGNozO6CztoBOUjo2w4fFHWfXzDTy2uVYTYWuTKDjE4sB1W2T3LusAInvhSFZ1HWYdoi56towstM5QtFPedjxvfs3RnHDsy5g9Zy4nvvu9pWeozxCvtg72w3jnOyIVrDZT9H4Y7wME1jlE9tI7gD3fQs0xaZoyMDT6jIK/85F+izgT1tvTzWlvf+Z96D87+hg+dM75z1jwZkEFX4qTgBvKPmhtCp7s/uUM6xAie+lEVnWdzaqBOpxX25CVbdk2Do/uM9ZuTyv9wJNs34X78a3rSj+v75G6vWymXYdPzjO9yQ/j05Mo2FzmQes0Rb/z7aNE6uUAwGS6bgI2pmk6NjIyMr30Aw+NLij7mA6rRcOnrTFa7TZbRtrWUSZiNvCWsg9aixG8H8bLgL8Y9xtF6uFtwC+tQ+yGnna7/Yv169cH06ZNG+3o6Chl7NROUzZvGZpXpwXAddXqaHmjrbaXVn3NWpoyvKmf367byuaR2v5/8RbgkjIPWIuCJzsh1mm2QWRX/oZVXe9n1UClhyIrV65sr169+l+Hh4cPv//++/ejpJHeSCudtXFrWztVlmC61/KmeumUoXbVqyClf2iMK9ZsrvOagVf4YTwniYLBsg5Y9d/qdidYBxCZRIuBo4AbrYOMZ+XKlY+tXr365e12+wBKOl+c+/Pecwa2tXVLrgTL6N6waMrg0O2t5+56Jx9jrTb0DLUYq3G7k71l7ljg6rIOWPmC98N4X+BI6xwik+x4alDwACtXrhwBfl/W8e7+ts0jRS7qaG8bbU8ZHn2s8nP0jRFQYsHXYdr71dQjp8ie2PUeno7yw/hFZAsRpQSelzLGFJ1fy/M6P4xLW9RYh1/sX1kHECmAz6quSk+LGnmDdQDXtOioQw80xRKgtN1C6/CLfY11AJGCHGUdoIKOsw7gkhQ0gi9faRu2VfoX64fxYcAy6xwiBXmZdYAq8cN4OfBi6xyu0Qi+dCr4nKbnpck0gt+R9roomUfqaQRfuiP9MN6vjANV/RerE6A02QtY1ZDXok2Ol1gHcFGLDu05UK4OStrNsuoFv9I6gEiBOoA/tw5RIfq8G2hpBG+hlIV2lf3F+mG8AHiudQ6RgmmWCvDDuIMSVxfLdh6tVPfgDbyojINU+RerxTbiAhV85mBgjnUI13hoit6I2yN4dD9O3PCnrOrSCVafdzNjTNH/f+Vb5ofxwqIPUuWC1/04ccEc4DDrEBWggjcyphG8lcJH8VUu+FLuUYhUwIHWASpAF/QGPDwtsrNTeMdV8hfrh/EUwLfOIVKS51gHsJR/3nVBb8FLaWsEb8XNggeWU4M33YlMEqcLnuzff7Z1CBelpFpkZ8fZKXrfOoBIiVwveG1HbUgFb+b5+exVYapa8Hr+XVziesEvtQ7gquwevAreyBSg0C1rq1rwvnUAkRKp4MVEiueBV9r7yeUZFhX5w1XwIvYWsqqr0zqEIRW8kbFUK+iN7V/kD6/qL1f35MQ1B1gHMLTEOoCrxvSqWGtOFrzesCWucXmaXiN4I6nuv1tzsuDnWQcQKdli6wCGVPBGWhrBW3Oy4OdaBxAp2XTrAIZU8EbGmKL9Rmw5WfAawYtrnDzR+mE8C13Qm2l5U6vaAa5wq+D9MPbQrlbiHicLHphpHcBlbTzdg7fl3HPwc8leUyziElcLfpp1AJdpkxtzM4r84VUseJfvRYq7VPBSOhW8uUI7uIoFP2odwFU9adfMoXTG2lbqrU9TxqzzOEYFL6VTwZsrtIOreFJRsRi5NT3k0Bdsuyz/uzSdz+b+xV5//1KvZ9MKr3t4hdc9sszrZrHX37EvA9O7vKHZM9k2bxqt+Z6nhVJ7ydWiq+IgwxmpHpOz5lzBawRfCZ7Xz7z5/em8+fek4+/BMpNtw4u8jb1LvZ5Ny72eLcu97q0rvO72EnrZz9s4db432DmbrXNmMDrfI53veWjksKMqfhbL0LIOINJUVTypqOBraCszZj2c7r/84XT8pz482u0FbO5Z4vVuXOb1Di73uodWeBvGlnk97cVe/9QF3qbp8xiaPZORrqm0FngeLuzTXsXPYhk0YycuGynyh1fupJJEQeqHcQs0wmuqlI6OXroW9qZdC9ekB477/Z0Mb9nf29i31OsdWO5tGFrhdW9b5vW0lnq9HfsxMHUfb7Czk61zpzO2j0e6wPNq+RSGqxe2GsGLy7YV+cMrV/C5UVTwkhti1uwH01mzH0yXrBjveztot/ZjY+8Sr2/jMq9ncLnXPbzC2zC21Otlf69/ygJv04y5DM+eycg+U2jv63nFPqayB/qsAxjRCF5c5tYIPjeANsCQCWjTMWU9CxatTxcsuiN93rjfP4ehTYu9vv6lXu+m5V73lhVe9+hyr7u1xOvrWMjA9C5vy6xOts6bxtj8Do99CozuasFvsg4gYsjJEfx6Ct7CTwRgkM55v0875/0+XT7u905lbHQRG3sXe30b84uBrcu97j/MDsz3Ns+aw/DsmYx2ddBe6Hl7tDLeyYJPomDED+M+YIF1FhEDA0X+8CoXvEiljDF12uMsXPx4unDxbenzx/3+LgYHFnt9fcu8ns3bZweWeT3pYq/PW8jAjC5vy6xZbOvKHzN0suBzT6CCFzc9WuQPr2rBr7MOILK3BpjTNZDO6VqbHrA7396dFJynwtYBh1mHEDHwWJE/vKqbHGgEL6553DqAIV3Qi6sKHcGr4EXsbUqiYMg6hKEnrAOIGHFyBK8renFJoVfxNaDPu7jKyYJ/wDqASInutQ5gTCN4cZWTU/Sun/DELfdYBzCmEby4aFMSBYNFHqCSBZ9EQR/QY51DpCSuF3xiHUDEQOG35ipZ8DnXT3rijrutAxh7kII3/BCpoIeKPkCVC/4u6wAiJUiBtdYhLCVRkAJ3WOcQKdnqog+gghex9ZDjj8htd5t1AJGS3VL0Aapc8LqiFxfcaR2gIlTw4ppbiz5AlQv+NmCrdQiRgt1gHaAiVPDikkeTKCj86ZHKFnwSBSPAzdY5RAp2o3WAirgX0K0KcUXho3eocMHnNLqRJhtCI1cAkihoo9sV4g4VPPBL6wAiBbo5iYJR6xAVoosdcYUKHvgVMGYdQqQgmqHaUeGrikUqIEUFD/k2frdb5xApiO6/7+g6spOfSJOtTaKglI2dKl3wuZ9aBxApwCAawe8giYL1lDSyETH0g7IOVIeCv9o6gEgBrkuiQI+BPtO11gFECvbdsg5Uh4K/Fb0vW5pHF647933rACIF6gZuKutglS/4fJ/q0q54REowCsTWIaooiYI7gEesc4gU5Nr8kdBSVL7gc1dZBxCZRL9IomCjdYgK0yhemqrUwWpdCv6XQK91CJFJoun5XVPBSxNtAX5S5gFrUfBJFLSA71nnEJkELVTw4/kZ2rZWmqf0hbW1KPjc5dYBRCbBD5IoeMI6RJXlJ8HrrHOITLLS15LVpuCTKLgBuMc6h8he+pJ1gJq43DqAyCQaweDWU20KPnexdQCRvfAYJW5yUXMx8Lh1CJFJcnUSBf1lH7RuBf9V9I54qa/L8vUkMo78v9NXrHOITJKLLA5aq4JPoqAPuNI6h8gEtIFLrEPUzCVob3qpv7VJFFxvceBaFXzuP60DiEzAj5MoeMg6RJ0kUfAA8GPrHCJ7yayzalfw+WI7vWFO6uZT1gFq6rPWAUT2whbgMquD167gcx+zDiCyB36dRMHPrEPU1A+B/7MOITJBl1nuWlnXgr8a+J11CJHd9HHrAHWVv4vic9Y5RCagDfyHZYBaFnz+oddJU+rgziQKtPXq3rkM6LEOIbKHrkmi4H7LALUs+Nw3gfusQ4iM4xPWAeouiYLNwCetc4jsocg6QG0LPn/lnvl/QJFduA/4jnWIhvgCeo2s1MeVSRTcbB2itgWf+xoaxUt1nVXmu5+bLN+f/jzrHCK7YQw4yzoE1LzgkygYA860ziGyE9cnUXCVdYiGuRy41zqEyDguTqKgEk9+1LrgAZIo+AHZozQiVdEGzrAO0TT59rX/Yp1DZBcGqdBMU+0LPncmMGodQiR3aRIFd1qHaKIkCr4D/MY6h8iz+FQSBRusQ2zXiIJPomAtelZWqmETcI51iIarxP1NkadZB1xgHeKpGlHwufOAylw5ibPOr9IVfBMlUfA/aI96qZ5VSRRssQ7xVI0p+CQKBoAPW+cQp63GeOcqh5xKts+3SBX8DrjUOsTTNabgAZIo+C+ybWxFyjYC/F3+ZIcULImCB4HQOocI2WNx76riZ79RBZ87Fei2DiHOOTeJAr0foVyfB35hHUKc98kkCiq58LNxBZ/f/zzNOoc45Wb0OtjS5e+kOBkYss4izrodON86xLNpXMEDJFFwJfAN6xzihK1k03Mt6yAuyl/mcbZ1DnHSCPDOJAoq+4h2Iws+9wHgMesQ0nhnJVGg3dVsXQjcaB1CnHNuEgVrrEPsSmMLPomCfuAtaAMcKc7VSRRo1byxfL//k4Bh6yzijF9Rg9tyjS14gCQKbgI+ZJ1DGul+4N3WISST7/39T9Y5xAlDZE/MVP62XKMLHiCJgs8BX7XOIY0yBPxtvveCVEQSBZ8HLrPOIY33waq8TGY8jS/43HvJVjuKTIaTtdd8ZZ1KNn0qUoTPJlFwiXWI3eVEwefvkj4e6LXOIrX3qSQKrrAOITuXRMEI8Ea0wFYm34+o2S1fJwoeIImCh4ATyB5tEJmI76Dd0yoviYJ1ZBf0W62zSGPcC7y1Dvfdn8qZggdIouB64J1AahxF6ufnwDvyFdtScUkU3AqcYp1DGqEPeH0d19w4VfAASRR8k5pNs4i524E3JFGwzTqI7L4kCr4GfNo6h9TaKNmC2vutg0yEcwUPkD+7/HHrHFIL9wOvTaJgs3UQmZCPkN07FZmID+Qzv7Xkpam7s9V+GF9ItuOdyM6sA16WRMED1kFk4vww7iQr+aOts0itfDqJglq/gtzJEfxTnA58yTqEVNITwKtU7vWXRMEQEAC3WGeR2vhC3csdHC/4JArSJApOQffpZEcPAUcnUXC3dRCZHPktlr8GtH+BjOdiGjKz63TBb5dfqa2yziGVcB9ZuddyUY08u/z9FK9GJS/P7svAqfmriGvP6XvwT+eH8Rlko3nPOouYuAs4NomC9dZBpDh+GC8AfgK82DqLVMpFwPuaUu6ggn8GP4xPJpui0eyGW24hWy3fZx1EiueH8T7AdcBLrbNIJVyQRME/WoeYbCqxp0mi4FLgOGCTdRYpzRXAMSp3dyRRsBE4FvipdRYxd14Tyx00gn9WfhgfCnwPOMg6ixQmBc5JouAT1kHEhh/GU4HPAO+zziKlGwVOT6LgIusgRVHB70I+jXcF8BrrLDLpBoG3J1FwjXUQseeH8WnAZ4Gp1lmkFBuAE5IouME6SJFU8OPww3gK8O9A7Z+JlD94EDguiYI11kGkOvwwfiXZC4UWWGeRQq0Gjk+i4BHrIEVTwe8mP4xPBL4IzLPOInvlSuAU3W+XnfHD+I+Aa4FDrbNIIb4OvCeJgmHrIGVQwe8BP4yfA3wNbXlZR4PAB5Mo+LJ1EKk2P4znkd2ae611Fpk0LeCjSRRcYB2kTFpFvwfyd8ofA5xFtkBD6uFm4AiVu+yOJAo2Aa8HzicrBqm3fuB1rpU7aAQ/YX4YH0E23aOpvOpqAZ8A/i2JgjHrMFI/fhgfCXwFfc7r6sdkU/IPWwexoILfC34YzwLOJXu//DTjOLKj3wCnJVHwG+sgUm9+GM8kG81/CM161sVG4MOuz9qp4CeBH8YHAxeSbZwhtvqBs4GLkyhoW4eR5vDD+CjgcrQ3RtVdS7af/OPWQayp4CeRH8YnkO1lv8I6i4NSspPvR5Mo6DbOIg2Vv1v+k8A/oHdWVE0v2ULar1sHqQoV/CTzw3g28M/AmcBM4ziuuBU4I4mC/7UOIm7ww/gYspeTHGwcRTJXAu/Xi6J2pIIviB/GS8mmiv8emGEcp6luB85NouBa6yDinnyb25PJXjW92DaNs9YAZ+scsHMq+IL5YbycbER/EjDdOE5TrCFb3Hh1k17tKPWUz9qdCXwEmGscxxUPkJ0DvqG1Ns9OBV8SP4wPICv6d6Gin6g1wMeBb+lDLVXjh/F+wDnAqegzXpQnyJ5ouCSJAu1FMg4VfMn8MN6fbNr+VGC5cZw6aAHfBT6XRMH1xllExuWH8YHAx4C3ooV4k6WP7J0gF7qyzexkUMEbyV9icxzwfuBVxnGqqBv4EnCRCy+FkObxw/hwsqn7E9E6nInqBb4AXJBEwYB1mLpRwVeAH8aHAKcAbwaWGcex1AJ+Srbf/7eTKNhmnEdkr/lhvAg4jeyd84uM49TF7WR7i/x3EgVbrcPUlQq+Qvww9oCjyIr+BGCpbaJStIGbgG8D30yiYINxHpFC+GE8HXgj2cX8K43jVNEwcBXZrN2N1mGaQAVfUXnZvxx4ExAAB9ommlSDwA3A94GrkihYZ5xHpFR+GD8feA/wdmCJcRxrtwGXkq2I32gdpklU8DWRL9w5lux+/SuA/W0T7ZER4Fdk0+8/A27RCliRP1zIHwm8If86zDZRKdrAr4EYuCaJgjXGeRpLBV9T+f73LweOAP4k/+oyDZVpA/cBd+ZftwI3aeWryPj8MH4eT5b9UcAU20STZgC4jmzW7odJFPQY53GCCr5B/DB+Dk+W/aFkj+EtJ1u4N5nb5qbABuBR4BHgYbJn1O8E7lKZi+w9P4wXkr2X/i/JRvkHU5/H7lrAPTxZ6jfqlc3lU8E7wg/jBWRFvwxYCMzKv2Y+7c8pMJR/DT/lz1vISv0R4PEkCkZK/lcQcZofxnOBlWRl/5L8r881DZXZBtxFtvJ9+9dvkygYMk0lKngRkbryw3hfsrL/Y568gN/+tYTJe/5+M7AeWJf/9RHgDrIyv1uj82pSwYuINFQ+zb+98BcDncA0sq10pwNTyabTt3+1ycp8HU+W+TqNxutJBS8iItJAHdYBREREZPKp4EVERBpIBS8iItJAKngREZEGUsGLiIg0kApeRESkgVTwIiIiDaSCFxERaSAVvIiISAOp4EVERBpIBS8iItJAKngREZEGUsGLiIg0kApeRESkgVTwIiIiDaSCFxERaSAVvIiISAOp4EVERBpIBS8iItJA/w9p7Hy1ALuz+QAAAABJRU5ErkJggg==\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))" + ] + }, + { + "cell_type": "code", + "execution_count": 120, + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.plotly.v1+json": { + "config": { + "plotlyServerURL": "https://plot.ly" + }, + "data": [ + { + "domain": { + "x": [ + 0, + 1 + ], + "y": [ + 0, + 1 + ] + }, + "hovertemplate": "function=%{label}
time_sum=%{value}
parent=%{parent}", + "labels": [ + "Py_kgeneration", + "generate", + "fftma2", + "covariance", + "gasdev", + "fourt", + "cov_value", + "ran2", + "build_real", + "prebuild_gwn", + "clean_real", + "cgrid", + "length", + "maxfactor" + ], + "marker": { + "colors": [ + "#636efa", + "#EF553B", + "#EF553B", + "#00cc96", + "#ab63fa", + "#00cc96", + "#FFA15A", + "#19d3f3", + "#636efa", + "#00cc96", + "#636efa", + "#636efa", + "#636efa", + "#636efa" + ] + }, + "name": "", + "parents": [ + "", + "Py_kgeneration", + "Py_kgeneration", + "fftma2", + "generate", + "fftma2", + "covariance", + "gasdev", + "", + "fftma2", + "", + "", + "", + "" + ], + "type": "treemap", + "values": [ + 415.639768, + 329.579564, + 86.059132, + 85.89417, + 242.61094399984552, + 0.15176299999999998, + 34.67470900000529, + 74.07991799999752, + 0.001935, + 0.002618, + 0.001551, + 0.003504, + 0.002481, + 0.0007800000000000001 + ] + } + ], + "layout": { + "legend": { + "tracegroupgap": 0 + }, + "template": { + "data": { + "bar": [ + { + "error_x": { + "color": "#2a3f5f" + }, + "error_y": { + "color": "#2a3f5f" + }, + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "bar" + } + ], + "barpolar": [ + { + "marker": { + "line": { + "color": "#E5ECF6", + "width": 0.5 + } + }, + "type": "barpolar" + } + ], + "carpet": [ + { + "aaxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "baxis": { + "endlinecolor": "#2a3f5f", + "gridcolor": "white", + "linecolor": "white", + "minorgridcolor": "white", + "startlinecolor": "#2a3f5f" + }, + "type": "carpet" + } + ], + "choropleth": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "choropleth" + } + ], + "contour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "contour" + } + ], + "contourcarpet": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "contourcarpet" + } + ], + "heatmap": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmap" + } + ], + "heatmapgl": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "heatmapgl" + } + ], + "histogram": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "histogram" + } + ], + "histogram2d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2d" + } + ], + "histogram2dcontour": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "histogram2dcontour" + } + ], + "mesh3d": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "type": "mesh3d" + } + ], + "parcoords": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "parcoords" + } + ], + "pie": [ + { + "automargin": true, + "type": "pie" + } + ], + "scatter": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter" + } + ], + "scatter3d": [ + { + "line": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatter3d" + } + ], + "scattercarpet": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattercarpet" + } + ], + "scattergeo": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergeo" + } + ], + "scattergl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattergl" + } + ], + "scattermapbox": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scattermapbox" + } + ], + "scatterpolar": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolar" + } + ], + "scatterpolargl": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterpolargl" + } + ], + "scatterternary": [ + { + "marker": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "type": "scatterternary" + } + ], + "surface": [ + { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + }, + "colorscale": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "type": "surface" + } + ], + "table": [ + { + "cells": { + "fill": { + "color": "#EBF0F8" + }, + "line": { + "color": "white" + } + }, + "header": { + "fill": { + "color": "#C8D4E3" + }, + "line": { + "color": "white" + } + }, + "type": "table" + } + ] + }, + "layout": { + "annotationdefaults": { + "arrowcolor": "#2a3f5f", + "arrowhead": 0, + "arrowwidth": 1 + }, + "autotypenumbers": "strict", + "coloraxis": { + "colorbar": { + "outlinewidth": 0, + "ticks": "" + } + }, + "colorscale": { + "diverging": [ + [ + 0, + "#8e0152" + ], + [ + 0.1, + "#c51b7d" + ], + [ + 0.2, + "#de77ae" + ], + [ + 0.3, + "#f1b6da" + ], + [ + 0.4, + "#fde0ef" + ], + [ + 0.5, + "#f7f7f7" + ], + [ + 0.6, + "#e6f5d0" + ], + [ + 0.7, + "#b8e186" + ], + [ + 0.8, + "#7fbc41" + ], + [ + 0.9, + "#4d9221" + ], + [ + 1, + "#276419" + ] + ], + "sequential": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ], + "sequentialminus": [ + [ + 0, + "#0d0887" + ], + [ + 0.1111111111111111, + "#46039f" + ], + [ + 0.2222222222222222, + "#7201a8" + ], + [ + 0.3333333333333333, + "#9c179e" + ], + [ + 0.4444444444444444, + "#bd3786" + ], + [ + 0.5555555555555556, + "#d8576b" + ], + [ + 0.6666666666666666, + "#ed7953" + ], + [ + 0.7777777777777778, + "#fb9f3a" + ], + [ + 0.8888888888888888, + "#fdca26" + ], + [ + 1, + "#f0f921" + ] + ] + }, + "colorway": [ + "#636efa", + "#EF553B", + "#00cc96", + "#ab63fa", + "#FFA15A", + "#19d3f3", + "#FF6692", + "#B6E880", + "#FF97FF", + "#FECB52" + ], + "font": { + "color": "#2a3f5f" + }, + "geo": { + "bgcolor": "white", + "lakecolor": "white", + "landcolor": "#E5ECF6", + "showlakes": true, + "showland": true, + "subunitcolor": "white" + }, + "hoverlabel": { + "align": "left" + }, + "hovermode": "closest", + "mapbox": { + "style": "light" + }, + "paper_bgcolor": "white", + "plot_bgcolor": "#E5ECF6", + "polar": { + "angularaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "radialaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "scene": { + "xaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "yaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + }, + "zaxis": { + "backgroundcolor": "#E5ECF6", + "gridcolor": "white", + "gridwidth": 2, + "linecolor": "white", + "showbackground": true, + "ticks": "", + "zerolinecolor": "white" + } + }, + "shapedefaults": { + "line": { + "color": "#2a3f5f" + } + }, + "ternary": { + "aaxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "baxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + }, + "bgcolor": "#E5ECF6", + "caxis": { + "gridcolor": "white", + "linecolor": "white", + "ticks": "" + } + }, + "title": { + "x": 0.05 + }, + "xaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + }, + "yaxis": { + "automargin": true, + "gridcolor": "white", + "linecolor": "white", + "ticks": "", + "title": { + "standoff": 15 + }, + "zerolinecolor": "white", + "zerolinewidth": 2 + } + } + }, + "title": { + "text": "Time treemap" + } + } + }, + "text/html": [ + "
" ] }, - "execution_count": 133, "metadata": {}, - "output_type": "execute_result" + "output_type": "display_data" } ], "source": [ - "df = analyze(['log_128-aa', 'log_128-ab', 'log_128-ac', 'log_128-ad', 'log_128-ae', 'log_128-af', 'log_128-ag', 'log_128-ah', 'log_128-ai', 'log_128-aj', 'log_128-ak'])\n", - "overall_time[\"128\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n", - "overall_memory[\"128\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n", - "df" + "plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "### Comparación de tiempo" + "### Comparación de memoria" ] }, { "cell_type": "code", - "execution_count": 134, - "metadata": {}, + "execution_count": 121, + "metadata": { + "scrolled": true + }, "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n", + "\n", + "invalid value encountered in double_scalars\n", + "\n" + ] + }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjLUlEQVR4nOzdd3wT5R/A8c+TdNABYa8ywi5lKFZAliwRoS5AQZy4UHCjQl0Yd91bEf0piIKigIwqKKBMkaEge4e9oXtl3O+PS2spLR20vST9vl+vWHu58b3Qy/eecc+jNE1DCCGEEL7NZHQAQgghhLhwktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktBFhaCUmqSUshsdhwClVC+llKaU6mV0LEL4kwCjAxCipJRSRR23uHeZBiKEEF5AyVjuwlcppW7Ns+h2oB9wW57lvwGnAZOmaZnlEZsomFLKBAQBWZqmuY2ORwh/IQld+A2l1EfAA5qmKaNjEedSSlVCkrgQZUba0EWFkLcNXSll9bTjPqGUekAptUcplaaU+lUp1VDpnlNKHVRKpSulZiulquez3wFKqWVKqVSlVLJSKl4p1aaIMVVVSr2rlLIrpTI9x/paKVUz1zq1lVL/U0odU0plKKU2KKXuyLOfCz4XTwzzlFJXKqXWe461RSk1OM961ZVSbymlNiqlUpRSSUqpX5RSF+VZL7ud/Cal1MtKqUNAGlAlvzZ0pVQLpdQMpdRRz7EPKqW+U0pZcq0T4DmP3Z7Py66UelUpFVzAuXRXSq327G+PUur2POsFKqWeV0rt9KxzSim1XCnVryj/fkJ4G2lDFxXdLejVvx8C1YGxwHRgMdALeB1oDjwEvAXclb2hUuo2YDKwABgHhAKjgOVKqQ6aptkLOqhSKhxYBrQGvgT+BmoC1wINgJNKqRDgD8/xPwL2AjcCk5RSVTVNe7+0zsWjBfA9MMFzXncCPyilrtI07TfPOk2B64EfPPHUAe4DliilojRNO5xnn88BWZ7jBXv+P+9nEYT+GQZ7Yj8KRABXA1WBRM+qXwB3AD8CbwOdgac8n+GgPLtt7lnvf55zucvzua3TNG2zZx2bZ/svgNVAFeBS4BL0ZhohfIumafKSl1+80JOeVsB7kwB7rt+tgAYcByy5lr/qWb4eCMi1fCqQCQR7fg8HzgAT8xynDpCQd3k+8bzgOc6gfN7Lbgp7xLPOLbneCwRWAslA5dI4F88yu2fdwbmWVQEOA3/nWhaM3hchd7xWIAN4LteyXp797QZC8qyf/V4vz+8Xe36/4Tyf10WedT7Ps/xNz/Le+ZxLj1zLanlifCvXsvXAPKP/buUlr9J6SZW7qOh+0DQtMdfvf3l+fqNpmjPP8iD0kiPone+qAtOUUjWzX4DLs25hPeuHABs0TZuV9w1N07I7tgxEL61Oy/WeA/gA/YaiZymdS7bDQE48mqYlAV8DHZRSdT3LMjVPG7hSyqyUqgGkANvRS7Z5TdY0LT2f5bllx9xfKRVawDoDPT/fybP8bc/PmDzLt2iatizXuZzwxNg01zoJQBulVItC4hPCJ0hCFxXd/jy/ZyeXAwUsr+b5mZ0EFgMn8ryuBGoXctxmwKZC1mkM7NTO7US2Ndf7uZX0XLLtynUzkW2H56cV9B7qSqnHlFI70Uv5J9HPuT1g4Vx781l2Fk3T9qIn6nvQmxoWePoC5N5fY8AN7Mqz7VH0xFzYZwF6jUrucx6PflO2w9Mn4E2lVPvC4hXCW0lCFxWdq5jLs3vQZ187t6GX1vO+riutAIuhpOdSHE+jJ9+lwK1Af/Tz3Uz+3yeFlc4B0DTtcfSbgleBEPRaiM1KqQZ5Vy1inIWes6ZpS9FvrO5Cv7m6B/hbKXVPEY8hhFeRTnFClMxuz8/jmqYtLOH2bQtZZx/QXillylNKj8z1fmlqrpRSeUrpLT0/7Z6fNwC/a5p2d+4NlVJV0UvrJaZp2kZgI/CyUqorsAK4H3gW/VxN6DUj2TUUKKXqoJeyS/RZaJp2GvgK+MrTUXEpeme5L0p6HkIYRUroQpTMAiAJeFopFZj3TaVUrUK2nwFcpJTK2zsbpVR2KfJnoC4wLNd7Aei91FOAJSULvUD1ydVbXClVBX2wnvWeqm3QS75nleyVUjdybnt8kSmlqnjOK7eN6FXs2Y+k/ez5+Wie9cZ4fsaX4Lg1cv+uaVoKepV+cP5bCOHdpIQuRAlompaklBoFTEGvpv0OvS25EXoHrRXAg+fZxZvopd0flFJfAuvQHzW7Fr1UugGYiP5I2CSlVDR6KfkGoBvwqKZpyaV8WjuA/ymlOgLH0Kui66A/vpZtHjBeKfUVem/7duiPy+25gOP2AT5SSv3giSEAvSnDhX7jg6ZpG5RSk4GRntqAJUAn9MfYftI07fcSHHeLUuoP9M/+NPojazegPy0hhM+RhC5ECWmaNlUpdRiIBZ5EL9kdQn++/KtCtk1RSvVAf3xtEHpiOg4sAg561kn3DL4S53m/CnpP7Ts1TZtU+mfETvTS/5tAK/QObcM0TVuQa51XgTDgZvSag7/Rb2DiLuC4G9BrPK5BL+mneZYN0DRtVa717kG/cRiB/pkdBV5D/wxL4gP0G6gr0f/t9qFX779Zwv0JYSgZ+lUIgdJH0dukadrVRscihCgZaUMXQggh/IAkdCGEEMIPSEIXQggh/IC0oQshhBB+QEroQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhG4wpZRVKaUppZ4wOhZvp5Tq5fmsehkdixBCeBtJ6PlQSo3wJI7sV4ZSaodS6iOlVB2j4/N3SqnRSqkRRschhCg5pdTTSqnrjY6jIgkwOgAvNx7YC1QCugOjgIFKqbaapqUZGpl/Gw2cBCblWb4UCAGyyjsgIUSxPQ38CPxkcBwVhiT08/tF07S1nv//Qil1ChgDXAdMMy4s36GUUkAlTdPSL3Rfmqa5gYwLj0oIURxKKRMQpGmaXH9eTKrci2ex52cTT1X8Y3lXUEp19bw3vKQHUbqJSqkspdTgXMvbK6WWKKXSlVIHlVLPKqXu9BzPmmcfA5RSy5RSqUqpZKVUvFKqTZ51JimlUpRSEUqpnzz/f0Ip9ZZSypxnXZNS6lGl1GZPE8QxpdRnSqlqedazK6XmKaX6K6XWAunAfZ737lRKLVZKHVdKZSqltiilRuXdHmgD9MzV5PGH571829CVUjcqpdZ5PpeTSqlvlFIRJT1XIcqa5295reda2q2Uuk8pZVNKaXnWuzXX3/ZppdR3SqmGedb5Qym1SSkVpZT6XSmVppQ6pJQam89xg5VSLyildnmuwQNKqTeUUsF51tM8TYy3KKU2A5nAVZ73nlBKrVRKnfLEtU4pdUPe7YEw4I5c1/GkXO9HKKW+9HyPZHq+V+66wI+1wpMSevE08/w8BawAbgHezbPOLUAyMLskB/Akly+BYcAgTdPiPcsjgN8BDXgNSAXuQb/Q8u7jNmAysAAYB4SiNxcsV0p10DTNnmt1s2e9v4AngCuAx4HdwKe51vsMGAF8BXwANAEeBDoopbppmubItW4r9BqMz4DPge2e5aOAzcAcwAlcA3yilDJpmvaxZ51HgQ+BFOAVz7Jj5/m8smNaAzwF1AEeAbp5zjWhBOcqRJlRSnUA5gNHgOfR/y7HAyfyrPcM8BIwHfgCqAU8BCzN52+7mmefMz3r3wC8rpTaqGnaL579mdCvve7ARGAr0A54DGgJXJ8n1D7AUOAj9CYwu2f5I579fAsEATcBPyilrs7+vgJu88S82nMs0K8zlN4PaRX6d9lHnvMeAPxPKVVF07T3CvsMRQE0TZNXnhd64tKAvkBNoAF6gj0JpAERwEjPOpG5tgtE/+OcVIxjWT37eQL9Bus7zzGuzLPeB4AbuDjXsuroNxcaYPUsCwfOABPzbF8HSMi9HL2NWgOey7Pu38DaXL9396x3c571+uddjn7Ra0D/fM41JJ9l84HdeZZtAv7IZ91enn33yvV5HwM2olfrZ68X41nvheKeq7zkVdYv9GSYCtTPtaw54NC/kjWAxug3vU/n2batZ72ncy37w/O3fVuuZUHoNww/5lp2K+ACuufZ532e7bvmWqZ51o3KJ/6QPL8Heq7BRXmWp+T3XYie6A8DNfIsn+b5jjrne0JeRXtJlfv5LURP0AfQE20Keqn5EPpdcAZ6iTxbf/QbgG9KcKwg4AfgamCgpmm/5nn/KuBPTdPWZy/QNO00+l1ybv2AqsA0pVTN7Bf6xfkX0DufY0/I8/syoGmu328EEoHf8uxzHfpnknefezVNW5D3IFqudnSllMWzjyVAU6WUJZ+4CnMpUBv4RMvVtqfppYRt6Ik9r8LOVYgy46mBuwL4SdO0w9nLNU3bBfySa9XB6E2i0/Ncc0eBnZx7zaWQ63tH07Qs9NJx3ut4K7Atzz6zmxLz7nOJpmlb8p5Dnuu4GmBBv44uKcL5K2AIMNfza+44Fnj2Veh+RP6kyv38HgB2oN8pHwO2a3rHLDRNS1BKzQVuBp7zrH8LcIj/LpDieAq9dD1A07Q/8nm/MfBnPst35fm9hednQTEk5fk9Q9O0E3mWnUGvwsu9TwtwvIB91s7z+978VlJKdQNeALqgNwPkZkG/aSiOxp6f2/N5bxt6zUJuRTlXIcpSbfQnNfJet+RZ1gJQ6Mk7P448vx/UPMXcXM4A7fPsszV5qvbzxJZbQdfx1cCzwMVA7rb3vMfPTy30AsdIz6socYgikoR+fqu1/3q55+dr4EalVFf0Kqdr0UuL7hIcawF6KXysUuoPreS9SbNrXW5Dv5vPy5nnd1cR93mcs2sjcsv7BXFOj3alVDNgEXqiHYNe65EFDERvwyuP2qKinKsQ3sCEniAHkP/fbUqe3wv621Z59rkR/frLz4E8v+d3HfdAbzJYiv546RH0m4s70Qs3hcm+zr9B7+eTn3+LsB+RD0noF2Y+ejK7Bb06OxSYUsJ9rUKvDp6H3sFkkKZpuZPvPvR2trzyLtvt+Xlc07SFJYwlr93o1YQrtJI/fnYN+t38tZqm7c9eqJTKrwmgKHf6oH8moHfCy1sj0SrX+0J4i+PoTXWFXcu70ZPxXk3TdpTSsXcDF6G3dRf1GstrCHr8/TVNy+mQq5S6M5918zvGCfROw+ZS/H4SHtKGfgE8CXcaek/QEcBGTdNKfHfp+QO/Cb2kPsXTKzXbAqCLUuri7AVKqeqcW2pegF6t/rRSKjDvMZRStUoQ2nT0nrjP5X1DKRWglKpahH1klyBySgyedvP8vghS0avlCrMW/Qvy/tyP3SilBqBXLcYXtKEQRtA0zYXeN+d6pVT97OVKqebopfFsM9Gvmec97c7kWlcppWqU4PDT0Tv03pv3DaVUiFIqrAj7cKEn6pxHPZX+yOz1+ax7znXsOf8ZwBClVNt84ijJ95PwkBL6hfsaeBi9Q8m4C92Zpmk/ee52v0ZPzPd53noDvZfqb0qpD/nvsbX96L3dNc/2SUp/tnsK8LdS6jv0u+JG6J3EVqA/blacmJYopT4DnvLcUPyKXs3WAr2jzSPoI0Kdz6/oVexzPfsKR/9iOQ7Uy7PuOmCUUupZ9HbF45qmndMnQNM0h1JqHPpja0uUUtP477E1O+c+UiiEN7ABVwIrlFKfoifHB9Gf7rgYQNO03Z6//9cAq1LqJ/SSbRNgEPqjYG8V87hT0AsfEzw1Yys8x470LO+PfpN8PvHoVfbzlVJT0du7H0C/TtvnWXcdcIVSagx6r/a9mqb9BcSif1/+pZT6HNiC/h12CXpNYPVinpfIZnQ3e2988d9ja5cWcf1N6HeuESU4ltVzrCfyLB/lWf5mrmUXo7ddZaC3d8WiP5eqAXXybN8LvUkgAb0tbBd64ovOtc4kICWfmGx4Hp/Js/xe9As+Df1m41/gdaBernXswLwCzvUaYIMnnr3AWPQSes5jd5716qA3PSR53vsj1znlPLaWa/2h6I+fZaA/xvdN3n+L4p6rvORVli/0Z7z/Rh9HYhdwN3qCTs+z3mD0HuQpntdW9Ge3W+Za5w9gUz7HmATY8ywL9Fx3mzzXy2nPNT0eqJJrPQ34qIDY70LvLJzhiWdEftcRerPXEs/3hUauR9jQbwQ+Qi+QZKG3xS8E7jX638aXX8rz4YoLoJT6BzitaVpfA479HnopPlzTq7OEED7IUwpvo2lai8LWFSI/0oZ+gZRSl6KXnL8uh2OF5Pm9Bnpv9uWSzIXwHflcyy3Qn/j4w5CAhF+QEnoJeTp0RKMPHVoTaKrletTMM4BEYR08UjRNy/v4yfmOuR79gt+KXi19N1Af6Ktp2tLixC+EMI5S6gh6lfge9PEURqE/BdJB07SCnj0X4rykU1zJ3YDe7rQdGK6d+9x4QwoYmCGXF9DbnorqZ89xs4ed/Ru4W5K5ED5nPjAcqIvejv4n+nCuksxFiUkJvYwopbLnUD+fPZqm7SmPeIQQQvg3SehCCCGEH5BOcUIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+IFiDSyzbt26cPSRyeRGQJSUGzgcHR1d5BHyhLHkuhcFkGvZyxT5OfR169ZdZjKZJphMJgu55rQWopg0t9ud6Ha774+Ojl5ldDDi/OS6F+ch17KXKVJCX7duXbjJZFpetWrVOrVr1z6tlJLRaLycw+U2Z7ncwQ6XFuR2a2anWzO73QS4NLfZ5dYC3Bpmt4ZJQ1OahgJUc/Mxh3I7A8Dz76uUhsnsRJmdmMwuTAEOlNmFyezUTAFOTIEOAoKyUEUvuGmapo4fP149ISHhmNvt7i53995Lrnvf5HC5A7Kc7mCHWwt0uzWzU9PMbjdmt1szuzQtwO3WzG4NE54LvVZAWkYVV0IlQL/mQUOZ3J7r3okp0Ik5wKGpAAfmACf6te/UQK5lL1PUKvf6JpPJUrt27dNhYWHpZRqRKJZMhysoLcsVmul0Vcp0uitlOt2VHE53JZemmc9eM7twZf7v1zzlrUoBKJNbM+vDxGdzBQJ65Zo73xA0zEGZBFRKJ6BSOoEh+iugUiYq/wJd7dq1TyclJVncbnd99HmVhXeS695LaZpGhsNdKS3LGZp93Wc53ZUcLnewW9Py3GGrs3/mufaDAsyZIdnXeV7Z170zn/dMAY46QeasVGdKSP1/3r6Tub/PwZa478LOTFyIoiZ0E6DkDt1YmqaRluUKSc10Vk7NcoWnZ7nCnW53/hdi+VG4sirhyqpEZlK1XIvdBASnExSeTHDlJIKrpGAyaQCevyOFtMl6O7nuvYTLrZlSMp1haVnO8LQsV1iGwxXucue9aS9nbmegyeUINDvTCE3a9QHwATbLCWAdsNbzWoMt8bChcVYgJZ5tzRobH12ageRmj4tZV1b79jVpWc5KSemOqqmZrsrpDleY+5ySt7fSTDgzwnBmhJF2si4ojcCQFILDk9CCM42OTpRMWV33cs2fTdM0UrNcoUnpjqopGU5LhtMVanRMRVQLuMrz0tkse4A5wE/AcmyJLkMiqwCkhFRG5s2bV/nHH3+sUtztNE0jOcMRfvBMWsOtR5La7jqe0uZ4cmZEapazilvTzCv+WMTQ/j1yXldEt2bYgJ4528/5YRpDruiqv3/V5Sxb/Gu+x9mwbnXOPgb17cKLsY+SkZmV8/7/pv1Ei27X0azrtdz75Es4HI5893Pf2Jdp13cofW4cSWJScs45DLj1QXbbD+Q+M4UjrTIpxyNMifubBqUfb9hq2QPvYbMMxmYJLu7nJERpW7NmTaWIiIh25XW82267rVFkZGRU9is4OPiS5196pfG+U6mNtx5Jar/nRErrgycS6g24vGPo0P49Ct3fnp3b6dyiPm/YnspZ5na7ee25scR068DV3S9h2qSJ+W57JiGJ3jeMpF3foYx+6rWc5SdOnaHXDfcWeP0XUVPgUeAP4Bg2yyRsluuxWXzlJsVnSEIvocL+wBcvXlz5559/thR1f8kZjrADp9Mabj2S3H7vydRWp1Ozajtc7nMSXbdefZm+YFnOK7JdewZefyMAiWfOEDd+HJ9NncX0BcuIffF1nhvzQL7HaxnVlm/nLWb6gmXM+G0Fp0+e5JOvppkB9u4/xHNvfsKyWf9j14rZHDtxionfzjxnH5u27WLn3v1sXDSdXl0vZcqMeAC+mDqL3l0vpZm1YcEnrLlNAc6U/sAM4Cg2yxfYLL2xWeRvUlQIU6ZM2b9169Ytq/7+99CkH+dlKmVSPWNuqJmY7qjpdGuBAO+9ZuPiSzsXui+Hw8GL4x6lz1UxZy2PnzmdPTu3M2fpWr6du4jJEz5k1/at52z/7ayf6d3tUjYums62XXvZtG0XAGNsbxP31EMEBpZay14N4A5gFnASm2U2Nsud2Cw1SusAFZlPf3l+8803VZs2bdqmVatWUaNGjYqoVq3aRdu3bw8C2LhxY3CvXr2at23btnXLli2jXn311VrZ2ymlomNjY+u2a9eudURERLv3338/54+psO0ee+yx+m3btm394IMPNli9enVIdHR0q6ioqNbNmjVrM3bs2HoAK1euDPn6669rzZo1q3pkZGTUE088UQ9gxowZVaKjo1u1adOmdbt27VrPnjPXcjwpo9b2o0lRe0+mRp5Jy6pdnDbx40ePsHr5Uq4eMgwAt+bWq+pS9c6myUmJ1KlXP99tQ0JCcy5SR1YWmRkZKE8nth/jF3Jtv57UrV0TpRT333YD035acM4+AgMCyMxy4Ha7SU1LJygwkCPHTjDtp/mMGXlrUU8DoCpwN7AY2I/N8hY2S4fi7EBUDOe75keOHNmgbdu2rSMjI6MuvfTSVhs2bAgGSElJUTExMU2bNWvWplWrVlHdunVrkb2/MWPG1G/cuHHbNm3atJ4yZUr13MfKe73OnTu3MkDXrl1bfPXVVzn9RebNm1e5devWUcU5jwyHK/jQmfSIrUeS2+8/ndb8u6nfVO3asw81a9fJWWfVsj84fvQIAwfdWOj+PnvvDfpdfT2NmjQ7a/mCuTMZPPx2zGYzlmrV6H/NIObPnnHO9oEBAaSlZ+B2u8nMchAUGMj831dQrWoVLotuX5xTK44Q4FrgS+AQNstUbJbLy+pgFUGJ29CNdujQoYAHH3zQ+vvvv2/r0KFDxvvvv18jISEhAMDpdDJ8+PCmU6ZM2duhQ4eM5ORkU3R0dGS3bt1Se/bsmQYQHBysbdy4ces///xTqXv37q1Hjx59SilV6HZms1nbtGnTVoAzZ86Yli9fviMkJERLSUlRHTt2bN2/f/+kvn37pt5+++0nEhISzF9++eUBgC1btgS99NJL9RcvXrwjKKxKpTXrN9UZeu1VzX9ZuYGg4JLVOM/5YSrd+/SjRk39nqNa9Ro8+9rb3DSgF5aqVcnIyGDitFkFf4YH9vPo3TdzYJ+dHn2uZPSdN7kA8/5DR2ncoF7OetaG9dl/6Og527dqbqV310u5pP/NtGjSiOfHjOSuMS/w5nOPEhBQ4j+tCOBx4HFslr+At4GZ0u4mznfNA9hstqP169c/CDBx4sRqDz74YKNly5btnDlzpiUxMdG8e/fuzQDHjh0zA3z33XeWOXPmVPvnn3+2VK1a1T1o0KAm2fvKfb1Wr17dvWnTpuDevXu32r9//8bbb7/91Ndff13jzjvvPAPw5Zdf1rj11ltPFha/W9PU6dSs6mdSs2qmO1zhud/76ftvGfPsizm/JyUm8u6rz/PJlB/Zs3P7eff77z9r+ffvNXw2dRYT3n39rPeOHDpI/Qb/1ZTVb9CIf/9Ze84+bh0Swx2PjKfDlcO5/qpeRNSrzd1PvMDPUz4s7LRKSzAwHBiOzbIF+Az4ClticnkF4A98toT+xx9/hLVq1SqtQ4cOGQAPPvjgqcDAQA1gw4YNlXbt2hUyfPjwppGRkVEdO3aMTE1NNf/7778h2dvffffdpwA6dOiQYTabtf379wcWZbtRo0blXLhpaWmm4cOHW1u2bBkVHR3d+vDhw0Hr1q3Lt11o9uzZln3794d07X75RZde0qH1qLtuq66UiSOHD5bo/DVN46fvv2XQTf+VhJOTEvn2f5/x7dyFzF+1EdubH/DYPbfhyMrKdx8RDRvxw6/LWfz3NhxZmcyMX1jsv4eXxz3A+t++44eJb/Db0r9oWL8O1gb1ufOx5xly7xN8P/vckn0xdAamAzuwWR7CZgm7kJ0J33a+ax5gzpw5VS6++OLIFi1atHn99dfrb926NRTg0ksvTdu9e3elW2+9tdHnn39eLSgoSANYuHBh5euuu+509erV3SaTiVGjRp3ItS/Lvn37grt27RoZGRkZdcMNNzRTSrFr166gW2+99cz69evD9u3bF5iYmGhavHhx1ezvk/y43JrpWFJGnW1HktsdTki35k3mf/+1krSUFHr0uTJn2WvPPck9D47JuVkvSHp6Gq8+8wTjX38/p4atJMJCQ/jx8zfZsPB7XnhiFM++/jHjRo9gl/0AN44cy40jx7Jhc7k9YRoFvA8cxGZ5G5ulUXkd2Nf5bAn9fDRNo0qVKs5t27ZtKWid0NDQnC8Cs9msOZ1OVZTtLBZLztPYY8aMiahRo4Zz8+bNWwIDA7nyyiubZWRknHVVaZrGqdSsGqnugPpdLu9jivvoi/PGvnvHNp566F4ALr60M0+/8la+661dtYLMzEy69uybs2zVsj+oXMVC0xatAOjVbwC2Jx7i8KEDNM5TFXfWZxEWTv9rBzN15temW67rR6OIuuy2/3ejYT9wmEYRdc8bd1JyCm9N+JoFUz/mtQ+/oudl0dw6ZCAX9buJa6/sSUhIpfNuX4imwAeADZtlAvAhtsRzqwxEhbVz586gcePGNVq5cuXWNm3aZP71118hV1xxRSuAqKiorG3btm2eN29e5d9++63K888/32DDhg3nXOO5E6KmaXTv3j1p7ty5e/M73sCBA898/vnn1WvVquXs0qVLUt26dc+pQYp96un6P82eXQtlCnjkKRvdevXNb1fM+u4brrnxJszm/x5gWb9mFevXrOKdl58jMzOTxIQzXNuzI3OWrDlr24P2vRw9dJB7h10D6Df1brdGUmICL7/7KfUiGnD44AEuiu4EwOGD+6lXv8F5P8vV/2zi+KkzXN3vcnoMuospH7yMpmmMeOx5lsw4//dXKasCjAEexmaZCbyCLfHf8gzA1/hsCb1Xr16p27dvD81uJ/v0009rOBwOBXDRRRdlhIeHu3K3jW/atCk4u6qtIMXdLiEhIaBBgwZZgYGBbNiwIXjFihU5vdorV67sSkhODd12NLnt4YR062WX9w1YtXwJO7Zuytl+4z/nPqnTrGVkToe3gpI5wKzvpnDdjcPP+hJo0MjK9i0bOXn8GKD3ZHe6nNStF3HO9vv37snp2OfIymLx/HjatW6hAQwZ2Jc5vy3h6PGTaJrGhCk/ctN1V56zj9xiX/2Q8Y+NJDQkhNS0dJRSKKVwOJxkXVgP2dyqA08DdmyWT7BZapfWjoX3O981f+bMGXNAQIDWqFEjh9vt5r333sv529i9e3egUopbbrklccKECQc1TWPPnj1B/fr1S54zZ071M2fOmNxuNxMmTKiZvc0111yTtGLFiip//fVXTu3c77//nlP7ds8995ycOnVqzW+++abmnXfeeVZ1e5bTHXDgdFrDWx8cV2f6rysCpi9YVmAyT0lO4ref53D9sLP7nPzy5785r9c//h/NWrQ6J5kDtGjdhj827MpZ95a7R3H9sFt4+d1PAegXcz0zp32Ny+Ui8cwZFsydRf9rBhX4GTscDsa98gHvPD8GgNS0DJQCk0mRkppW4HZlLAAYCvzj6SF//juSCqzEJXSjnxuNiIhwfvDBB/ZBgwY1DwoK0nr27JkUGhrqrlGjhiswMJC5c+fueuihhxp+/PHHddxut6pWrZpz+vTpe4AC22KLu9348eMPjxgxoum0adNqNG7cOPOyyy5L0jSNkymZNboNGFL7+xm3Bg26oht9BlzD/Y+OJe7Dz3kpdgwZ6Wk4HA4i27SjsBJ7fpKTEln0yzxm/LbirOWt213EvQ89zr03XUdAQADmgADe/OQrgivppWPbkw/Tq99V9LpyIKtXLmXql59hNptxulx07nY5z40Z6QLMTRs34IXH76fb9XcB0KtLNPfdOqTAeFasWU96Rgb9Lr8MgAdGDGX4A0/z+ieTuG1IDJYqlYt9joUIBkYBt2KzvAa8iy0xo7QPIs5l5HV/vmu+VatWWddee+3pyMjINtWqVXMOHDgwIXu7devWhYwfP76Bpmm4XC51ww03nO7cuXN6586d0//666+wiy++OCo8PNzVt2/fxNWrVwPQtm3bzC+//HLPfffd1zg9Pd3kcDhUmzZt0nr37r0XoHfv3mlms5l9+/YFDx48OAnA7dbUseSMOqdSsuqdO1pb/ubPmUlUu4vOW4OW1/GjR3jwjqFMX7Cs0HWvHjKMzRv+5prLo1Eobrv3AVq0blPg+m9++jW33xhDnVp6mebFJ+5n4G0P6+89+2iRYywjJvQe8kOxWd4D4rAlJhkbkncp6ljukQEBAfNbtGiREhoa6jVfnGfOnDFVq1bNDTBlypSqzz//fMSePXs2GxVPSqYz9HBCeuMMh88MAnGWtgEHs0xuR1BZHyfDqbH30AmarHicSikHCt+gcPvQS+7TsCXKqGalxBuve2+75kGvnj+dmlX9eHJmhMPlLvPrp7Q1DEpNqeY8Hl74mucqg2u5OE4ALwKfYUsstWpAX+bTbeivv/567VmzZlV3u90qPDzc9fXXX+fb3lXWHC53wOGE9IjEdEfNwtcWZaAx8C3wCDbLGGyJKwrbQPgmb7nmsyVnOMKPJGY09NWbeB9XC/gQvY39KWyJ5z6PV8H4dAndaJqmcSI5s9aJ5MyIcydD8T0+XELPaxrwELbEAnsei8LJdV8wp8ttPpSQ3jAx3eHzA6L4cAk9r6XAndgS9xgdiFF8tlOc0VIznaE7jqVEHU3KaOQPydzPDAc2Y7Nca3Qgwv+cTs2qtv1Yclt/SOZ+5nJgAzbLSKMDMYok9GLSNI0jCen19pxIjcx0ukIK30IYpA4wG5tlMjZLkYfgFaIgDpc7YO/J1KYHz6Q1dbk1n26u9GPhwGfYLPOwWc7/rK0fkoReDBkOV/DO4ymRJ1Iy62toJR/FQZSn24FN2Cznf+5OiPNISMuy7DiW3CY5w1Gt8LWFF4hBv+5vMDqQ8iQJvYhOpmTW2HU8JSrD4ZLRynxPA2ABNssEGW1OFIemaRw8k9Zg/+m05lIq9zk1gB+wWb7BZqlqdDDloeR/oDZLmc2Hji3Ra+ZGdrk104HTaY2TMhzVC19beLn7gB7YLIOwJZbbOJZ+payuey+65rNlOd2B+06lNs07VKvwObcAPbFZbsWWuMToYMqST5fQs2deioyMjFq9enVI3t/feOON8w+EXIgMhyto1/HkyNzJ/PjRI9x/yxCu7dmRG/p1Y8zI2zl9qtB5Gc6RmZHBo3ffwjWXX8qNV3bnvpsHsX/vf50zv/jwba7t2ZGLG1Vn8fz48+7ryKEDPHTnTVzbsyOD+lzG1K/+m/N40oQPGNy3C4P6XMaj99xKUmJivvuY9d03tLn82sAOVw7n743/Ta84/s1PmTrrl2KfnxeLAtZgs1xndCCi9Gzfvj0o7/UeERHRbuXKlSXq55KU7gjfeTw5qrjJfOfWzdw5ZCDX9erE4L5dGP/4g2Skp+e8f1HDagy5oitD+/dgaP8e/P3XygL3tfbPFdwc04dBnut3w7rVOe9NfP8tYrp1IKZbBz58/aV8t3c4HDx69y3ceGV3Hrv3NpxOJ6B/99w5ZCBJCQnFOTVf1wD4DZvlbqMDKUs+ndAnTpxYa9y4cUe2bdu2pVOnTum5fz9+/HjAl19+WeKEnpThCN99IqV1ptN91heC2Wxm5CNPMGfJGn78bQUNGjXm3ZfHl+gYQ265gzlL1vDDr8vpdeUAXhj7cM57nbv34pOvfyC6c9fz7kPTNB679zauGXITc5asYdbiVfS/+noA/lz6O7OnT2XK7F+ZtXgVUe0u5qM38r/4J37wJn/98p3j/Ref4NUPvgRg8/bd/Lt1JzcPGlCi8/NiVYBZ2CwvYrNIXwg/sHPnzuALud5zO5qYUXffqdRWLrcWkJ0EiyqoUiWeevkNZv+xmh9+XU56Whpfffr+Wet8NeOXnOGdLyng+j5+9AjPjRnFy+99yqxFf/L9L0to0lyfo2HdqhX8MmcGP/y2nFmLV7FyyWKWLjp3EqSVSxZRpWo1fvh1OZWrWFjxx0IAJr7/JjeNuJcqVasW69z8QCDwBTbLG9gsPp37CuKzJzVixIiGa9euDX/xxRcjOnToEJn394ceeqiR3W6vFBkZGdWnT5/moN+xP/zww/U7dOgQWbdu3fZvvPFGrffff7/GxRdfHBkREdFu4sSJ1QBOJGfWHD785lZDr+oVcEO/bjx4x9Cc8dFr1KrNJZ265MTRrsOlHD64v9jxB1eqRI8+V+ZMCNG+Q8ez9tOuQzQNGlsL3c9fy5cQFBTElZ4knh0jwI4tm+jQ8TLCwvWhV3v06ce8mdPz3Y/ZZCYjM5PUtAyCggJxu908Znub9198otjn5iMU8Bx6G5sMCuIjZsyYUSUqKqp1y5Ytozp27Nhq3bp1lQDyu94Bpk+fXi37+h47dmzOnMD79+8PGDhwYNN27dq1btmyZdTDDz9c361pyn4ytUl025YR77z6PDdf3ZfnHhtVrPgaN2lGy9ZtAf3mv+1FHTh8oPjfD9O//h8DrrshZ6KloOBgqnge1lgwdxZXDx5KaGgYQcHBXD/sFn7JZ47zgIBAMtL18dcz0tMIDAxix9ZN7N2987zjuVcATwIz/PG699mEPmnSpANt27ZNi4uLO/DPP/9sy/v7hx9+uN9qtWZs27Zty+LFi3dlb5eammr+559/ti1cuHD7+PHjGx46dCho/fr126ZOnbp73LhxjQ6cTmt4JDG98ZO215j28+/8+NsKOnTqwqfvxp0Tg8vl4rtJn9PryoEXfD7ffjmhRPvZvXM71arXZOzouxh61eU8es+tHNxnB6B1+4tZtfwPTh4/hqZpxM/6gdSUZBLPnDlnP48+8wL9h40MjPv4K8Y/di+fTJ5OTN/uNG5Q/0JPzdsNAZZhs5w7g43wKocOHQq4++67m06aNMm+Y8eOLXfdddeJoUOHNnO73RR0vSckJJjXr1+/be3atVs//fTTOnv37g0EuPnmm5s88MADxzdu3Lh18+bNW/7555+wDyZOzmleSzxzhm/nLuS1Dz8vcbxpaanM/G7KOdf1yOHXceOV3XnzhWdIS0vNd9vdO7eTmZHByOHXM7R/D157bmzOukcOH6R+RK45zhs24uihc6dh7nJ5b8LCK3Pjld0Jr1KFTt0u560Xn2XcC6+V+Jz8yPXo171ffcH5bEIvqZtvvvk06JMvBAUFuYcPH34GoGu37hlJSUkB+46cqA3wy08/Mnxgbwb37cKsaVPYvnnTWfvRNI1Xnnmcypaq3HL3/RcU0xcfvs0B+14eji1+1b3L6WT1ymWMfORJps9fSteefXhy1J0AdOragztGPshDI27i1mv7Ua2GPg6GOeDccXCuGHAN6377wbFkxheEhYQwe8ESHrxzGE+/9iHD7h/HM3EfXdA5erlLgFXYLC2NDkQUbMmSJWEtW7ZM79SpUzrAqFGjTh8/fjwwO0nn57bbbjsNUK9ePWeDBg2yduzYEZyUlGRatWpVlccff7xRZGRkVLt27drsO3Cw8q5du3JKbNfeOPyC5hd3ZGUxdvRddLm8N30HXJ2zfP6qf/nu5z+Y/NMCzpw+WWBzncvpZN3qlbz16SS+nbeYpMQEPn373ELF+ZhMJp5/431++HU54+Pe47tJn9O7/0CcThexD97DmJG389eKpSU+Rz9wCbAam6WD0YGUlgqX0ENCQnLmMzebzVpoaKjb5dZM9tNpLZRSuFxO/l79J1O//IyPvp7OzEV/8sT4l8nKPHvky7jx4zh2+BBvfvIlJlP+H+Pt11/J0P49uOWaKwqMZ/KED1n0yzw+/voHQkKKXwNUL6IBkW3a0bxVa0CfXWnrpg05U6MOu+Mepv38O9/OXUjHLt2pU68+4ZWrnG+XPPL8m7zz/Bj+WLmWw8dO8v2E1zl45Di/rzh3+kY/0gBYgs1S8FRUwufkvd4dDkfOcNd///331vUbN++e9ftq07zl/6iRj/zXvBQaln9fuN07tuV0aHv1mfyboxwOB0+Ovotatesy7oWzk3A9T8k6NDSMYbffzd+r/8x3H3UjGtCjz5VUqVqVwMBABlw3hH//0a+/evUbcPjQf8OsHj6wn7oR559R9PDB/Sxb/BvDbr+Hj996hSG3jOCldz4mbvy4825XAUSgl9T9YlRJv03oVatWdSUnJxc6JKvLrZn3nEhpmZ71X2/WpMQEwsLDqVqtOo6sLH78dtJZ28SNH8cB+x7e/fwbAoMKHvr8659+ZfqCZXw7d2H+70/8mF/mzOCzqbNy2seKq1vvKzh29DDHjhwGYPni32jSohWBgXqh5cSxowCkp6fx8VuvMWLUI+fd3/ezF9C6eRPatW5Baro+FzIYPh9yeakL/OFPd+z+pFevXqk7duwIWbNmTSWAiRMnVqtTp46jSZMmjqJe7wAWi8XdqVOnpKeeea7R7hMpkQ6XO+j40SMcO3Ko0G2btYzM6dD29CtvnfO+0+lk3AN3Y6lajfGvv3dWKT8pIYF0T5u22+1mwdxZRLZtn+9xBl5/A2tWLiMrMxOA5b8vpJWnbb7f1dczb+Z00tJSycrM5Kfvv+WqawefN+43nn+KJ59/BZPJRHpaGgqFMpnIKKDKv4IJQ29T9/lBaC7gOXTve240t86dO6e1bNkyvUWLFm0aNmyYmbtdLRd1JNnRpFbls4dw7dbrCuJn/sB1PTtiqVady7r35PjRIwD8s2YV076aSJPmLbn1Wr3kXb9hY9774ptixXfsyCHefulZGjSycs+wawAIDArOSf4T33+LH775ijOnT7Jr+1Zee24s389fQvUaNfn4rVepVacuQ2+7i9DQMJ599R0eGjEMTdMIr1yFN3LNsX7/LYNxaxrOrCxihgxj+Ih7C4zpdEIiH0+ezq9TPwHgql5d+WLqLNpfMZQmDSO4qvf5e9z7iZrAYmyWq7Al/mV0MF7HwOu+fv36zi+++GLPHXfc0cTpdCqLxeL6/vvvd5tMpqJe7zm+/va7I48+/kTL63pfppRShISG8VzcO9Spd2FdKRbMncmiX+bSsnUbhl11OQAXX9qZp195i727d/BS7GMopXC6XLRu255xtv9K8A/cfiOjH3+aNhd14OJLO9PrygEMG9ATk8lEs5aRPPvauwB07NKd/tcM4oZ+3QDof80gel5xVYEx/TzrB1pGtc2pxbtr9KO8OO4RHA4H9z7y5AWdrx8JAKZhs4At8UejgympCjvbmsPlDthzIrWljMf+Hz+aba00JAMx2BKXGR2IUfzxugdIy3JW2ntSfyzN6Fi8gR/NtlYanMBNvjoVq99WuZ+Pw+UO2H0ipZUkc3EelYH52Cx9jA5ElJ4MhyvYfjK1pSRzUYAA4DtslqsLXdMLVbiE7nJrpr0nU5tnOd2VjI5FeL1Q4CdslouNDkRcuAyHK2jPidRWTrdWYK94IdCT+g/YLD2NDqS4KlRC1zQN+6nUpjLBiiiGykA8NkvDQtf0P25A0zTfn1kwy+kO3HsytZXT7ZZkXopyWmyL0HTrYyoBc8p0zpIyUKGqnQ6cTm+cmumUubFFcdUHfsZm6Y6tgMHw/dNht9udePz48Tq1a9c+rZTyyW9tt1vjQEJ60yynu8z7h/iiLOU0ZbiK/0+raXAi1YXKTCIwo/jzWfiAKujNbt18ZTKnCpPQjySk10tIz6ppdBzCZ7VFf7RlALZEh9HBlIfo6OiUdevW3Z+QkDAhKSnJgj5crs9JzHDXynRp0l+mAFnmDHO4O7lE26rMJBqsfxuzy2/6TOZVE73ZrRO2xBSjgylMiRN6u8ntyqwqYuMdG0v10ZiTKZk1TqRk+tUQf8IQfYEvgDuMDqS8REdHr1q3bl13t9tdHx9sonthyekHT6W7HjA6Dm82MujXjcPUr5cWe0NNIzDjpD8n82ytga+AG40OpDB+WULfvn170OzZsy1jx449kZzhCD+SkNF4QJf2vPvFt0S2aVeusSxZOJ93Xh6P2+WieWQUL73zcb4jtbndbl5/Ppbli39DKcUt99zP8BEjC30vt6SEBB4beRsJp09xSacuPPPq2wCcPnWSJ+8fwYSps3IGnBEldjs2ix1b4vNGB1JeoqOjUwCfqHLMzRobPxQYbXQc3i4t4Hh6pQC/eOSsLN2AzfIktsQ3jQ7kfHzujrsosqdSzHK6Aw6cTm+qUTqdeoo7lWJaagq2Jx/mvS++Ye6yddSqU5eJ7+f/9xA/czp7dm5nztK1fDt3EZMnfMiu7VsLfe+sffw0nY5dezBj4Ur27t7Jzm1bAHjrxWd45KnnJZmXnuewWWKMDkIUzBobHw1MwkebCYRXes3bH2P16YRe2FSK7du3bzf6jmE5WWzRL3O57borGdD1Iia+/9+wjSePH+PJUXdy89V9GXJFVz564+Wc9wZ0ac+7JZxKcfnvC4ls054mzfU5P4bdfje/zJ6Z77oL5s5k8PDbMZvNWKpVo/81g5jvmRLxfO/llj1dotvtxpGVSWBQECt+X0gVS1XaX9KxWLGL81LAJJmhzTtZY+MtwAxA2s1FaTKjP6PutU+8+GxCL3QqxabNXNN/XW764KtpOdskJyUyZfavTJ23mMmffZAz/vmzj41m2O33MHXeIr6fv5TN/67n13k/5WxX0qkUjxw6SL0G/02aUL9hI04eP5pvSf/IoYPUb5BrSsQGjThy+GCh7+UWM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4sVtyiSmsC32Cw+ew35sQlAY6ODEH6pFvAjNkuw0YHkx2fb0PObSnHs2LGN9u7dG5jpIhRlOufcBl6vj71frXoNIhpZOXRgH5UtFlavWMLpk8dz1ktLTcW++7+hoC90KsXyEhoaxtufTc75/U3b09w5+hH22/fyv4/eAeDehx+nVVT59iPwYz2B54AXjA5E6Kyx8bcDNxkdh/BrnYAPgPuMDiQvn03oBXG6tYCkLOrl915Q8H+Dw5lNZlwuV86ACFNm/0ZwpfwHjzvfVIpPPaRPdpI9AUNu9SIasGrZHzm/Hz6wn5q16xIQcO7HXi+iAYcPHuCi6E76ugf3U69+g0LfK8jGf9Zx+tQJel5xFSMGD+CV9z9D0zTGjxnNlz/Gn3dbUSzPYbP8ji2xQk8s7Q2ssfHNgI+MjkNUCCOxWRZhS5xudCC5+Wx1YUFTKQZYatcPDa9sTk5OKtJ+QsPC6di1B19+8l7OstKaSrFbr75s3bSBvbv0DsLff/2/Aqc57BdzPTOnfY3L5SLxzBkWzJ1F/2sGFfpefhwOB++9ZuOJ8a8A+tSpSulToKbJdImlzYxe9V7D6EAqMmtsfAAwFX1kPyHKwwfYLNWMDiK3EpfQS/tZ8eLKbyrFL6dMO5Ga5W7YonUbmrWMZHDfLjRoZCV3O3p+Xv1gIm+9+AyD+3ahNKdSDAuvjO2N93n0nltxOZ00b9Wal979JOf9of178NHk6dSuW4+rhwxj84a/uebyaBSK2+59gBat2wCc9738TJ7wAdcMuYkatWoDMPrxp3jgjmEAjHlGaofLQANgIjDE6EAqsPHoVaFClJc6wJvAPUYHks1vpk91utzm7ceS28osSiUn06desGuwJc4zOoiKxhob3xrYAMhzmSUwLmDaslEBc3sYHYeP0oDe2BKXGB0I+HCVe16HEtIbSDIXBvsAm0UelSp/nyDJXBhDAROxWbxi9k6/SOiJ6Y7KiekOGaddGK0JIM8IliNrbPytQC+j4xAVWku85LovakJ3gz79qLdxuzV1OCFdnjn1IX485SLAE9gskUYHURFYY+OrAuf2RhWi/I3FZmlrdBBFTegJmqY5s7KyvG76waNJGfUcLrdXPuQv8pflBtxOzI6SzfDk5YKAj40OooJ4Bb1jkhBGCwQ+N3qgqaK2OZ90u91Ljh07FhMYGOgwmUxeUbRyuNzmk4npdbyx5sAXZWhuZSrjz9KtwYnEDEKP/01AVtEeLfRBfbBZbsaWONXoQPyVNTa+A3C/0XEIkctlwAjgS6MCKFIvd4B169ZFmEymWSaTqRZeMuFBcqa7erpTk+dOS0l90xmnSXOWccdCDVP6aZqsfo6gjJNleyhjHQGaYUtMNzoQf2SNjf8ZGGB0HP5AermXqr1AK2yJDiMOXuQv7+jo6EOeeZEbFWe7shK/M7XRgt1p8ohQKfol+JljQWSW7YQjbhdB6ccxacWbuc4H1QNGAe8YHYi/scbGd0WSufBOTYA7gC+MOHixEnN0dHQWsKvQFcvBkB/iX0AeVSlVlbLsjiDl94m2PI3FZvlUSuml7uXCVxHCME9js0w2opTuk4+tWWPjLwVuNDoOIQpRB72ULkqJNTa+D9Db6DiEOI/sUnq588mEDryKl7TjC1GIsTLYTKl6yegAhCiCZ7BZyr0G2ecSujU2/mKgn9FxCFFEUkovJdbY+KuArkbHIUQRWNF7vJcrn0vowBijAxCimKSUXjrGGh2AEMVQ7qV0n0ro1tj4esBNRschRDHVAUYaHYQvs8bGX4S0nQvf0phyLqX7VEIHHkR6tgvfNNroAHzco0YHIEQJPFyeB/OZhG6NjQ8B7jM6DiFKqCU2Sy+jg/BF1tj4GsBwo+MQogTaYrOUW78Pn0no6I8B1DA6CCEugFS7l8ydgMzXIHxVuRVEfSmhP2h0AEJcoMHYLHJTWgzW2HiF1MwJ3zYUm6VaeRzIJxK6ZyCZNkbHIcQFCsagASd82OVAc6ODEOICVAJuLo8D+URCR74Ehf+41+gAfIw81SL8wW3lcRCvT+jW2PhA5KIW/iMSm0VmtioCa2x8ADDE6DiEKAWdsVlalvVBvD6ho48KV9PoIIQoRbcbHYCP6APUMjoIIUrJrWV9AF9I6MOMDkCIUnY1NovMRVA4ufaFP7mlrA/g1QndGhsfDFxvdBxClLK6QEejg/Bm1tj4IGCQ0XEIUYqaYrO0LssDeHVCB/oCVYwOQogycI3RAXi5fkC5POojRDkq04nFvD2hX2l0AEKUkWuNDsDLXWV0AEKUgQqd0GWaVOGv2mOzNDI6CC/W1+gAhCgDvcpyBjavTejW2PgIIMroOIQoQ1Ltng9rbHx9oEzbGoUwSDhwWVnt3GsTOlI6F/5Pqt3z18foAIQoQ2WW2yShC2Gcy8uy+s2HSXW78GcVK6F7JmS4wug4hChjlYAORgfhhSShC3/WEZulalns2CsTOnr7WW2jgxCiHHQxOgBvYo2NbwI0NDoOIcqQGehdFjv21oQebXQAQpSTrkYH4GUuMToAIcpB57LYaUBZ7LQUXGx0AEKUBZemThyl+t417lbpC13RlVe620T+bXRQ3uUiowMQohyUyRNcktCFKCOaRsoZwnf/626asNh9SfDv7osbHdBq1yfPhCPW2Pjq9riY0waF6W0koYuKQBK6EN5K03CmEbxrh9bwxBJ3e7XQdUndzZq1qYapKAnqEmBhWcfoIyShi4qgCTZLCLbE9NLcqdcldGtsfCOgutFxCHE+WZp53z6t7qEV7jbOhe7o6mvcrZpnEhQJRJZgd5LQAWtsfFWgsdFxCFEOTOjfFf+U5k69LqEjj/EIL+PW273ta9wt0xa6osOXuds1TaByY0ov+bQopf34Oimdi4okigqQ0NsbHYCouDSN1ATCd+nt3h2Cf3df3HC/VieCPO3epaxJGe7bl8hwr6IiKfV2dG9M6FajAxAVQ552bxa7OtTdpDVp6i5au3dpalrOx/NW8vy5qEjalPYOvTGhNzA6AOGfsjTz/v1anYO52r2bZRBc0nbv0tTQGhsfYI+LcRoch9Hk2hcVSYUooctdurhgbk2dOEY1+xp3q7SFrkvCl7rbN02gciPAG6csDUD/u99rdCAGk2tfVCRNsVlM2BLdpbVDb0zocpcuiiWfdu8G+7U6DSjbdu/S1hRJ6HLti4rEDFQBEkprh16V0K2x8VWAykbHIbyXpuFMJ3j3Dq3B8SXu9mqR65I6BrV7lzbpGCcJXVQ8VfHXhI5UuYk8HJp5/z6t9sE/3W0cv7mjq692RzbPILgV0Mro2EpZHaMDMJI1Nr4GEGJ0HEKUs6qluTNvS+gRRgcgjOPW1MljVNu7zt0ybaHrkrAl7vZNz1DFW9u9S1sVowMwWE2jAxDCAFVLc2feltBrGB2AKB96u3fY7o3upmcWuzsE/e6+uNE+rW4EFfeLvaI3NYUaHYAQBqhamjvztoQeZnQAovTp7d5Be3ZqDY7p7d7RdTbq7d4yiNB/KnoJXarbRUVUtTR35m0JPdzoAMSFc2jmA/u12gf/dEdl6e3erZulE9wSaGl0bF6soid0KaGLiqhqae7M2xK6lNB9jFtTp45Rdc86/XnvsKXudk1OY2mIdHAsroqe0KWELiqiqqW5M29L6EFGByAKpmmkJRK2a6O7yZnf3R2CFrsvbmjX6jVA+j6Uhoqe0KWELiqiqqW5M29L6IFGByB0moYrg6DdO7WIY0vd7Vnoiq7zr9a0mbR7l5lKRgdgMCmhi4rIXJo7k4Qucvzlbr1vv1Zr30J3dLVV7qjm0u5drhxGByAqpnedN3Sa5Ox/PExlZISRkRmm0h3hpDsqk+4IV+nOcNJdlVW6O5x0d7hKJ4x0wsgkVGWYQsg0VSLLVEk5AoJwBAbiDAjEFWTGFWxGC1K4QxSEKEWw0efppUr1uve2hC4MdJvjqZ5Gx1CBZRkdgMHSjQ6gosoiMPgY1WujeRZo5129RBRudwhZ6SFkZoSpjIxQMjPDSM8KV+mOcDKywlWaqzLpznCV7gonXatMuham0rUwMlSYylAhZKoQssyVVFZAMI4A/cbBGRSAK8iMO8iEVkmhhaDfPJhK/wzKTKle996W0NOMDkAIg0hCF35Lw2RKo1JYGpXCTmmW3G+UuiAcWSFkpoeSmR6qMrLC9VqHrHAyHOGkOcJVurOyXtvgrkyaO0xlaOFkqDDSCVH6jUMImeZg5TAH4QwMxBkYkFPr4A42oVVCv3EojT5ffl1CTzU6ACEMIgldiFKQRWBQFoFBiYRbyrLWwYTbFUJmegiZ6WEqIyuMjIwwMjy1DunZNw6ucJXmDifDFU46epNFhhaqMk2hZJgStPCT3UoxJknoQngHSehC+BA3JnMqIeGphISfzH3DULybh1n2UozJ29oaUowOQAiDVPSELs1toiJKLs2deVtClxK6qKgyjQ7AYFJCFxWRJHQh/NApowMw2EmjAxDCAKdLc2feltBL9W5FCB9y3OgAjGSPizmB1FKIiudAae7M2xL6QaMDEMIgFTqhexwyOgAhypnfJ3SX0UEIYYAjRgfgBSShi4ok0R4XU6odwb0qodvjYpzIF5uomEr1Tt1HSQ2dqEhK/Zr3qoTusc/oAIQwgCR0SeiiYin1v3dJ6EIYzwEcNToILyA3NaIikRK6EH5olz0uxm10EF5gh9EBCFGOdpb2Dr0xoduNDkCIcrbR6AC8xCajAxCiHK0v7R16Y0LfbHQAQpSzf40OwBvY42IOAWeMjkOIcrKhtHfojQl9PSDVj6IikYT+H6mtEBXBEXtcTKmPPeF1Cd0eF5MKbDM6DiHKkSSx//xtdABClIP1ZbFTr0voHuuMDkCIcpJkj4uxGx2EF5GELiqC9WWxU29N6GuNDkCIciKl87PJtS8qglJvPwfvTehSQhcVxRqjA/Ay25Bx7YX/W1YWO/XWhL4e6RgnKobFRgfgTexxMRrymQj/ts0eF3O4LHbslQnd0zFuvdFxCFHGXMASo4PwQouMDkCIMlRmf99emdA9FhodgBBlbK09LibJ6CC8kJTQhT8rs9wmCV0I40jiyoc9LmYPMmKk8E8u4I+y2rk3J/RlQIbRQQhRhiShF0yq3YU/+tseF5NQVjv32oRuj4vJAH43Og4hykgmsMLoILzYAqMDEKIM/FaWO/fahO4xz+gAhCgjS+1xMelGB+HFfgbSjA5CiFL2Q1nu3NsTerzRAQhRRr43OgBv5nnSRW7ohT/Zbo+LWV+WB/DqhG6Pi9mHDAUp/E8WMNPoIHyA3PQIf1Lmf89endA9phgdgBCl7Fd7XIxME1q4n4Fko4MQopR8V9YH8IWEPhVwGh2EEKVISp5F4OkYO9voOIQoBRvtcTFby/ogXp/QPXPGSo9X4S/SkSRVHHLzI/xBmZfOwQcSusfXRgcgRCn52R4XI9XIRTcfKJNxr4UoJy7gm/I4kK8k9DlAotFBCFEKpE9IMdjjYpzABKPjEOICzLbHxewvjwP5REL3tKWV6fN7QpSDA8ijWCUxEf3JACF80YfldSCfSOgecpcufN0Ee1yMy+ggfI09LuYYckMvfNNGe1zMH+V1MJ9J6Pa4mHWU4aD2QpSxTOALo4PwYeVWyhGiFJXr363PJHSPN40OQIgSmup5YkOUgD0u5i9gjdFxCFEMZ4Bvy/OAvpbQfwE2Gx2EECXwjtEB+AH5DIUvmWiPiynX+Qh8KqHb42I04C2j4xCimH61x8VsMjoIPzAduaEXviEZA3KVTyV0j6nIc6nCt7xkdAD+wB4X4waeNzoOIYrgfXtczMnyPqjPJXR7XEwW8J7RcQhRRL/Y42KWGx2EH5kJ/GN0EEKcxxkMqkn2uYTu8TFSShfeTwOeNjoIf+JpdhtvdBxCnMfb9rgYQwZC88mE7uloIBe18HY/lPX8xxWRPS5mHrDK6DiEyMcJ4H2jDu6TCd3jK2Cj0UEIUQAn8JzRQfgxqfkQ3ug1e1xMilEH99mE7ukgM9boOIQowGR7XMwOo4PwV/a4mN/Re70L4S02Ax8ZGYDPJnQAe1zMfOA3o+MQIo804AWjg6gAHkN/PEgIbzDKHhfjMDIAn07oHk8CbqODECIXmz0u5oDRQfg7e1zMYeQxNuEdJtvjYpYZHYTPJ3R7XMwG4HOj4xDCYwPwrtFBVCAfoH/mQhjlDHrB0nA+n9A9xgFHjA5CVHhu4F7PHN6iHHhmrxuN/oigEEZ4yh4Xc8LoIMBPErrnmb8HjY5DVHgf2+NiZAKRcmaPi1mJPme6EOXtT7yohtgvEjqAPS5mJvCj0XGICusg8IzRQVRgY4DtRgchKpRU4HbPE1dewW8SusdoQKaoFEZ40B4XIz2uDeIZbOpmwNBexqJCGWOPi9lldBC5+VVC97Rj3G90HKLCmWiPi5ltdBAVnT0u5m/gWaPjEBXCHHtcjNc18/hVQgewx8XMQh9FTojysBF4xOggRI43gcVGByH82kHgTqODyI/fJXSPB4B/jQ5C+L1UYJg9LibD6ECEzjN5y+3AaaNjEX7JBdxsj4vxyr8vv0zo9riYdGAIYMiMN6LCeNAeF7PV6CDE2exxMYfQ29NdRsci/M7T3jCATEH8MqEDeDor3I48nyrKxhR7XMwko4MQ+bPHxSwAHjc6DuFXJtvjYt4wOojz8duEDmCPi5kDePU/gPBJ29CfqBBezB4X8z5e9Iyw8GkrgJFGB1EYv07oHs8AvxsdhPAbp4CrjZwiURTLA8ASo4MQPs0ODLLHxWQZHUhhlKb5f420NTa+FrASaG50LMKnZQFXeHMbmjiXNTa+BrAGaGJ0LMLnJAPd7HExG40OpCgqQgk9+/n0/sBRo2MRPu1eSea+xx4Xcwq4Gun5LorHCQz3lWQOFSShA9jjYvYAA4Ako2MRPulZe1zM10YHIUrGHhezBf36l6YSURQu4FZ7XEy80YEUR4VJ6AD2uJj1wPVAprGRCB/zqT0u5hWjgxAXxh4Xsxq4FpBxA8T5aMBd9riY740OpLgqVEIHsMfF/A7chj7VpRCFmYbM5Oc3PNf/YOSmXhTsfl+tjatwCR3AHhfzA/IlLQr3DXCbN82mJC6cPS7mF/SBp7y+17Iod4944xjtRVUhEzqAPS7mU+BepKQu8jcZuMMeFyOjjfkhT9voECDd6FiEV9CAJ+xxMR8YHciFqBCPrZ2PNTb+JmAKEGB0LMJrfIneo11u9vycNTa+KzAXqG50LMIwDuBue1zMFKMDuVAVPqEDWGPjrwGmA5WMjkUY7nPgPs8kH6ICsMbGtwbmA42MjkWUuxTgBs9QwT5PErqHNTa+DzAHCDM6FmGY94AxkswrHmtsfAR6Um9rdCyi3BwDYuxxMeuMDqS0SELPxRob3wWYh1S/VTRO4CF7XMwEowMRxrHGxluA2UBPo2MRZW4ncJVnfBK/UWE7xeXHHhfzJ9AZ2G50LKLcJKLfpUsyr+DscTGJ6CNKfmZ0LKJM/QZ09bdkDlJCz5c1Nr4qept6P4NDEWVrD/pEKzKnuTiLNTb+NmACEGp0LKLUaMDLgM1fO7xKQi+ANTbeDMQBTxgdiygTK4Dr7XExJ40ORHgna2x8O2AG0MLoWMQFO40+lOsvRgdSliShF8IaGz8U/TEm6SznP94HxtnjYmS0MHFe1tj4KsAkYJDBoYiSWwPcaI+L2Wd0IGVNEnoRWGPjo4CpwEVGxyIuyHHgTntczM9GByJ8izU2/iH0GjupgvcdbvSb91hfmMu8NEhCLyJrbHwQ8AIwFulM6It+RR/5TabQFSVijY1vBvwP6QXvC7ajT7Cy0uhAypMk9GKyxsZ3A74GmhodiyiSLOBp4B15vlxcKGtsvAJGA68jzXDeyAW8A4y3x8VUuFn1JKGXgDU2Phx4F7jH6FjEef2LXsX+t9GBCP9ijY1vAnwB9DE6FpFjM3qpfLXRgRhFEvoFsMbGXw18BDQ2OhZxljT05pF37HExTqODEf7JU1q/BXgVaGhwOBVZEvAa8G5F7+gqCf0CWWPjQ4AngVggxOBwBMSjj/q21+hARMXg+Q54HBgHhBscTkXiAiYCz9vjYk4YHYw3kIReSqyx8Y2AN4GhRsdSQe0CHvVMiylEubPGxtdFH7jkTqTjbFn7GXjSHhezxehAvIkk9FJmjY3vif6ohDziVj5OoHdQ+qiiV7cJ72CNjW+PntivBpTB4fib1cCz9riY34wOxBtJQi8DnlHmbkXvXd3S4HD81Wn0GpEP7XExqUYHI0Re1tj4tujV8DcBAQaH4+t+BeLscTG/Gx2IN5OEXoassfEm9Cr4p4F2BofjLxLQH0t5zx4Xk2xwLEIUyhob3xh9COm7kX42xeFCH3o3zh4X84/RwfgCSejlwNMb9jrgGeBSg8PxVSeAT9F7siYYHIsQxWaNja+F/gz7XUAjg8PxZonAN+g37buMDsaXSEIvZ9bY+P7Aw8BVSMeZovgT+AT4QdrIhT/w1Nz1RU/sg4BgYyPyGiuAz9Gv9TSjg/FFktANYo2NtwIj0S/qOsZG43XS0cfO/1iq2oQ/s8bGV0N/lv0uoIPB4RhhLzAFmCKl8QsnCd1g1tj4AGAAMAK4Bgg0NCDjaOil8e/RL+4zBscjRLmyxsY3Rf8OuBbogX9+F2jAOmAuMFdu2EuXJHQvYo2Nr4H+qMu1wJX4/yAVbvRqth+BGfa4mEMGxyOEV7DGxlvQm+WuRb/hr2ZsRBckDViInsTj7XExRwyOx29JQvdS1tj4YPR2tmvR79rrGxtRqclAT+IzgZky+5kQ5+dpc2+LXmrvDnTBu4eb3gesQq9x+xNYX1GmLzWaJHQf4OklH41+QXdFv6AjDA2q6DKBtcASYBGwsiLOgiREabLGxtcGOgGXoI910RJoAVQtxzDS0Edo3OF5rQP+lBK4cSSh+yhrbHxD/kvuXYA2GD+dYxqwFdiCPtPZSmCd9E4Xonx4Ho3LTu6NgRoFvMIoeBS7dOAU+uBNuX+eAvYDO9ET+GGZkti7SEL3I9bY+ProF3L2qzn/XdhVSuEQbvSL+rjntR89eW/2/LTLBS6EEMaQhF5BWGPjg4CanldV9ARfBf1OXUNP1q5cr+zfE9CT9zHgpD0uxlXOoQshhCgCSehCCCGEH5CRyoQQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0EWhlFJWpZSmlBphdCxCVCRKqY5KqZVKqVTPNXixUuoqpdR6pVSGZ1lVo+MU3iHA6ACEEEKcSykVCPwAZACPAWnAAWApsBl4AMgEUpVSTwNbNE37yaBYawB3AdcArYFAYBvwrqZp3xsRU0UkCV0IIbxTM6AxcK+maV8AKKWuAioDz2matjB7RU9C/xH4yYA4AboArwA/Ay8DTmAI8J1SKkrTtOcNiqtCkYQuhBDeqbbnZ0Ihy7zBZqCFpmn7shcopT4BFgLjlFJvaJqWalh0FYS0oXs5pVQvpdRaT3vZbqXUfUopm1JKy7XOnUqpxUqp40qpTKXUFqXUqHz2dalSaoFS6qRSKl0ptVcp9WWedaoqpSYppRKVUglKqclA1QJii1RK/aiUOu2Jb61S6to8x9OUUnfks21/z3tXX8jnI4Q/UkpNApZ4fv3Bc638AUz2LFvjWTbJ810QBtzhWaZ5tif7u0Ip1VIp9Y3nuj6hlHpJ6RoqpWYrpZKUUkeVUo/niSNIKfWiUmqdZ9tUpdQypVTv3OtpmrY3dzL3LNPQawyCgaal+gGJfEkJ3YsppToA84EjwPOAGRgPnMiz6ij0O+Q56FVd1wCfKKVMmqZ97NlXbeBXz7Zx6Hf4VmBwruMpYDbQHZgAbAUG8d+XSO7Y2gArgEOe/aUCQ4GflFJDNE2bpWnaWqXUHs/yvPsYBpwBFhTzYxGiIvgM/dp6GvgAWAMcA7YDI9G/B/YCu9FLwV8Aq4GJnu1359nf9+jXcywQAzwLnAbuAxYD44BbgLeUUms0TVvq2a4KcA8wDfgcvbr/bmCBUqqTpmnrCzmPup6fJ4t+6qLENE2Tl5e+0BN0KlA/17LmgAPPDbBnWUg+284Hduf6/XpAAy49z/Gu86zzZK5lZvROOBowItfyhcC/QHCuZQo9ye/ItexVIAuolmtZEHoy/5/Rn7G85OWtL6CX57q7IdeyEfldx0AKMCmffdg863+Wa5kZvXOdGxiXa3lV9I53k/KsG5Rnn1WBo4Vdv0B19JuQpUZ/lhXlJVXuXkopZQauAH7SNO1w9nJN03YBv+ReV9O09FzbWZRSNdGr65oqpSyetxI8P6/29J7Nz0D0Ev6nufbtAj7ME1t1oA8wHaislKrpOWYN9BJ3C6VUhGf179F7vA7OtYsr0b8UpPerEOXji+z/8VzTa9FvwP+Xa3kCeg1A09zrapqWBaCUMnmu/QDP9pcUdDCllAn4Fv06f6gUz0OchyR071UbCAF25fPeWcuUUt2UUguVUqnoifsEeskYIDuhLwFmoFfdn/S0m92plArOtavGwBFN01LyHG97nt+bo38ZvOQ5Vu7XC7niR9O0DeiPrwzLtf0w9Cq4xfmeuRCitO3P83sikKFpWt6q8ESgWu4FSqk7lFL/oj8+dwr9Oo/hv++W/HwIXAXc4/kOEOVA2tB9nFKqGbAIPWmOQa9Ky0IvbT+G56ZN0+vAblBKXYbext4f+BJ4XCl1WT5J/HyybwTfouA28Nw3Hd8Dz3hK8cnAtcA0TdOcxTimEKLkXEVcBvrNuv4/St0KTELv3PYmcNyz3VPoj9Wdu7FSzwOjgVhN06aUOGJRbJLQvddx9Dvi5vm8l3vZNei9SK/VNC3nLjxvL9RsmqatAlahJ9ib0avFbkKvktsH9FVKhedJ8K3y7GaP56dDy/Us7Hl8j14zMAS9Ta0K8F0RthNCFI1W+ColcgP69T7YUygAQCn1Qn4rK6UeQG+3f0/TtNfLKCZRAKly91Kedq6FwPVKqfrZy5VSzYEBuVbNvsvOfVdtAe7MvT+lVDVPL/bc1nt+Zle7/4x+kzcq13Zm8rSBaZp2HPgDuE8pVS9v7EqpWnnW3wpsRK9qH4bea39p3u2EECWWSgGPl16g/L5fOqMPJHMWpdQw9B7536LXFopyJiV072ZD70C2Qin1KXqP0weBTcDFnnV+Ra9in6uU+gwIB+5FL+HnTrZ3AKOVUrPQH2mp7FkvCT2RA8xF76Uep5SyAlvQO7Pl11b2ALAc2KiU+hz9Lr4O+oXeALgoz/rfAy+i1zr8T9M0d7E+CSHE+awDrlBKjQEOA3s1TfurFPY7D/07YJZSKh5oAtyP/t0Qnr2SUqoT8DV6G/si4JY85YeVmqbtQZQpSeheTNO0dUqpAeht1S+ht4+PRx8rOdKzznal1A3owy2+hf44yafoHVdyDxqzBOiEXr1eB73zy2rgFk3T9nr25fYMDPMecCt6Nd4c4HHgnzyxbVFKXYpelT4CvYf7cc96L+ZzOt97YgxFercLUdrGoD+D/jJ6Z9rJQGkk9Enoz5Lfh97vZgv6d8ON6I/VZYtCfxy1Fmd/72S7k/+a6kQZUbmaRYSPUEr9BLTRNK2F0bEIIYTwDtKG7uWUUiF5fm+B3oP9D0MCEkII4ZWkhO7llFJH0Ku99qA/Jz4KvRNbB03TdhoYmhBCCC8ibejebz4wHL0dKxP4E3hakrkQQojcpIQuhBBC+AFpQxdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8QLEGllm3bl04UB+5Eago3MDh6OjolELXFH5LrnvhBeS7qAiKPLDMunXrLjOZTBNMJpOFXHPjCr+mud3uRLfbfX90dPQqo4MR5U+ue+El5LuoCIqU0NetWxduMpmWV61atU7t2rVPK6VkeDkf4XZrOFxaUJbLFehwa0FOlxbodGmBGpoJUJqG0vS/A1XHnJJVSUsL0rdUmobJdSI5MzD51JGUVkvumxCYeeYYcAZ9vuU9wEFsiTKvuZ+S6963uN0aTrcW6HS7A5wu9J9uLcDl1gJd+s8Al4YZNDTPtR+qXI4IjgSB0o6a6mSmuQMDlcKtFG6TQjMrkyPArBwBZpUVaFKOQLMpK8hscphM5fu3oGmaOn78ePWEhIRjbre7u5TU81fUKvf6JpPJUrt27dNhYWHpZRqRKLZMpysoI8tVKdPlDnY4taAslzvY4XIHOVzuYJdby/NvrCiooBVs1twhzszQ3MtqV9JIU4S4AsKeC8w8c86hsVns6Ml9N7ADWAf8gy1R/k58n1z3XirT6QpMy3SFpTtcoekOV2imwxXqdGuB566Z63rP59I3mZQzBEyggQo0uwj4bx+a5+UGHNkLXIALs0k5A82mrECzygoKMKeHBZlTw4IDUgLNJlfpn62udu3ap5OSkixut7s++neNyKOoCd0EKLlD9w6ZTldgSoazckqms0palquyw+UOKqtjKZX3f84SDLTyvHJzYbNsAdYAa4HV6EleSvO+Ra57L5DldAemZjrD0hyusIwsV2iG0xV67o36hXMXcJHnRy/xuwIyHISCs+opz/IgsykzJMicEhoUkBIWbE4NCTSnq6Lv9rw8f4cK6ctRoJL/Udgs0aUYR559J64rs337oCynOyA5w1ElNdNVOTXLWdnhcgcbHVMhzEA7z+suz7LT2CyLgF+BBdgSDxgVnCg5a2x8mVz39rgYueY9NE0jNcsVmpTuqJqc4aya6XSFlMdx3dqF95HIcrmDs9LdwYnpjhoAJqVclQLNqWHB5uSqIUEJIUHmjAuPVBTEL+90tm/fHvTGG2/Uyr0sIiKi3cqVK8vlwsht586dQX369GlutVrbNmvWrM0rr7xSO/u9Z555pm6zZs3aREZGRl100UWRv//+eyiA262p06lZVQ+cTmu07WhSm4+/mnpRl46XNLny8s41r+7ZKfjD118iu+/DL7NnMLR/Dwb37cLgvl2Y/NlHBcbyYuyjDLmiK/cMu5bkpERA//IYfdsNHLDvLdPPAagO3Ah8DuzHZtmKzfIeNksPbBbpbCW8XmRkZNSZM2fK5DvT7dZUQlqWZf+ptMZbjyS333MipfXJlMx6xU3mm9b/zR2D+nPjld0Z2r8Hf61YmvPevr27ue/mQdx4ZXcG9e3C/DkzyV0Hn7uEnpWZyavPPsk1PaIZckVXnnp4ZM56cePHMaBLey5qWI1tmzcWGMuyxb9yfZ/LzFf16Fjlp7k/R+w8ntxm29GkNnHvfNDsyXGxDYpzXqJo/HI+9J07dwZ/+eWXtcaOHXuiNPfrcDgIDMynmaoAbreb66+/vtnjjz9+9K677joDcODAgQCAlStXhnz11Ve1tm7dutlisbg/+eST6g8/8oj15z9WpSSmO6q7Nc2cvZ/LevSkd/+BmEwmHFlZ3DF4AFHtO9B3wNXUrR/BJ1N+pGbtOiQnJTJ8YG+i2l9Mxy7dz4pl57Yt7N+7hxkLVzLhvTeYN/N7ho8YycxpX9Oxaw8aWpug93crN5Ge1yPoCf57YBq2xH/KMwghCpN93W/btm1Lae7X5dZMZ9KyqiWlO6qlZrkqa5p2QTcLmqbx2L238dI7H3NZj17Y9+zivuHXM/uPNVQKCWH8mNFcN/QWBg+/ndOnTnJzTG+6d+5I03r69m7tv4T+/msvoJRiztK1KKU4efxYznH6DbyWO0c9zIjBA84bzydvvcbHX08HYMy9t9OtV1+OHDlaacaPP1T6bOosth1NslSpFHjGEhJ4Jiw4QPpolAKfLqHPmDGjSlRUVOuWLVtGdezYsdW6desqATz00EON7HZ7pcjIyKg+ffo0z15/+vTp1S6++OLIiIiIdmPHjq2XvXz//v0BAwcObNquXbvWLVu2jHr44YfrZ78XERHRbtSoURHt2rVrPWTIkCbFiW/OnDmVg4KCtOxkDtCwYUMngFIKp9OpziQmBhxPzqh1+HRKRO2IxiFn0rJq5U7mAGHhlTGZ9H+qzMwMHFmZZLdLdeh4GTVr1wGgchUL1uYtOHxg/zmxBAYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HinNaZaER8CTwt6fkPh6bJcLooIT3WbhwYVh0dHSrVq1aRbVs2TLqm2++qQqwdOnS0A4dOkS2bNkyql27dq1//fXXMICbbrqp8fjx4+tkb79t27agmjVrXpSZmalmz55d+eKLL45s3bp1VPPmzdu8++67NbPXGzJkiPXGG2+0Xnrppa1atmzZBkApFX3y5EkzwMiRIxu0bdu2dWRkZNSll17aasOGDTnNYEqp6NjY2Lrt2rVrHRER0e7999+vkf3e33//Xal7jx6RLSOjLm7dpm2H9z782JqS6bScOHbU9OSoO7n56r4MuaIrH73xcrE/m4Qzpzlz+iSX9egFgLVpcypXsbD8j4UAbN+yme69+wFQvUZNWrZuy9zZs3K+azRPcT0tLZVZ33/DQ2Ofzfmeyf6OAYi+rBt16hV+eQYEBpKRnk56WhqBQXpB6M0XnubRp2wEBASQ5XRXOpmSWW/3iZSobUeS2h5OSK+X5XQXvcQkzuGzCf3QoUMBd999d9NJkybZd+zYseWuu+46MXTo0GZut5sPP/xwv9Vqzdi2bduWxYsX78reJiEhwbx+/fpta9eu3frpp5/W2bt3byDAzTff3OSBBx44vnHjxq2bN2/e8s8//4R9+eWX1bK3O336dMCGDRu2zpkzp1j10ps2bQqpXr264+qrr27aunXrqH79+jXbsmVLEEDbDpeaR4wc7WjdKrJdu5bNGk3+/NOg2BdfL3Bf69f+xZArutK7Q0s6db2c3v0HnrPO7h3b+HfdGi7r0fOc96zNWtCxSw9uGtCTQ/v3ETN4KG++8DRjnnmRgACvqqiJBF4A7Ngs07FZehgdkPAOx44dMw8bNqz5K6+8cmj79u1btm7duqVfv37JGRkZatiwYc2effbZwzt27Njy1ltvHbj55pubJyYmmu6+++6T06ZNy0nUn332Wc1BgwadCg4O1rp27Zq2du3abVu3bt2yYsWKbW+++Wa93bt35ySUf//9N/S3337buXfv3s15Y7HZbEc3bdq0ddu2bVtGjhx5/MEHH2yU+/3g4GBt48aNW+fNm7fz6aefbpSZmaUOn06pOeiGG6OuGXZH2I8LV5p//G0F/WKuA+DZx0Yz7PZ7mDpvEd/PX8rmf9fz67yfivX5VKteg1q167Bg7ixAr36379mVc4Mf1e4i4mfpJeaD++xsWLeaQwf255TKXZ4S+sF9e7FUrcoXH73D8IG9GTF4AH8tX1KsWAAee9rGs4+N5rkxDzDm2ZdYsnA+NWrWpl2Hc7thZLncwSdTMutvP5rcbu/J1KbJGY7wYh9Q+G6V+5IlS8JatmyZ3qlTp3SAUaNGnR47dmyj7CSdn9tuu+00QL169ZwNGjTI2rFjR3CNGjVcq1atqvL4448HPv744wCkpaWZtm3bVil7u7vuuutUdgm5OJxOp1q1alWVJUuWbL300ksz4l5/o86Nw26KnPHbcteePXsrLfjlZ+YuW0ftuvWYNmkiYx+4i8kz5+e7r4sv7cyMhSs5feokj4+8nb//Wkn0Zd1y3j925BCP3n0Lz772ToF3zw+OfZYHxz4LwO8LfqZu/QjqN2zEc2MeIDUlmVuu7RNw57Xn3gwYJAC9zf1GbJYNwEfAt/I4XMX1+++/hzdp0iTjqquuSgEwm83UqVPHtXr16hCTycSQIUOSAPr3759So0YNx6pVq0L79++f4nQ6WbJkSWiPHj3Spk+fXuOnn37aCXDs2LGAW265xbp3795KZrNZS0hICPjnn39CmjVr5gC47rrrzlSrVi3fJzPmzJlTZcKECbVTU1PNbrebxMTEs75L77777lMAUe3au8wBAWr5xl3tExMTA7IyMxlw/Q0561WrXoO0tFRWr1jC6ZPHc5anpaZi372L4nrvf9/y3qsv8L+P36VZy0g6dLwMs+eG/aV3P+Xtl55laP8e1ItoSKduPXPe8zyhpgBcTheHDx6gWYtIHn3KxtZN/3L/zYOYuehPatSqXeCx87qkc1e+navXDqSmJPPA7UP55Jsf+eaLT1m/9i+q16zFk+NfITDov4d0NDSVnOGolpzhqBYcYE6vGR50tHpY0OnS6inv73w2oZdESEhIzsVpNps1h8ORM7DO33//vTU0NDTfx3MqV66c77OV69atq3TLLbc0BejYsWPKlClTzqrrbty4cVbr1q3T2l98ievA6bRGvQfdWvPpp2JVanpm4KKf59AiMoradfWa/+uG3kLcc+NwZGWd9QeeV/UaNenepx+/xs/OSejHjx5h5PBB3PvwE1x59fWFfg4pyUlM/uxDPv12Bv/76F0uvawbMYOHcvOVlwXd1K8zISGVCt1HObsIvTNdHDbL28CH2BJlYAlRoNwJ4Oabbz71+eef10xKSjpTrVo1Z8eOHTMARo4c2fjKK69MnD9//m6TyURUVFTr9PT0nDv38PDwfK/7nTt3Bo0bN67RypUrt7Zp0ybzr7/+CrniiivOenQzIDjYvO9UakRSurOG2RygshzOgr9rPd9BU2b/RnCl8197j993BwfsewCY+N1sqlarftb7raLa8ek3P+b8fn3vzjRvGQlARMNGvDPx65z3Rt16Ay0u7+H5zst5JIy6EQ0wmUwMHHQjAK3btieiYWN2bttSrISe2wevv8S9Dz3OqePH+f3Xn/nf9Ll88vZrxM/6geuH3ZLvNplOV8ihhPQmx5MzI6qHBR0LM2nJJTp4BeKzVe69evVK3bFjR8iaNWsqAUycOLFanTp1HE2aNHFUrVrVlZycbC5sHwAWi8XdqVOnpGeffTanTd1utwfmrnorSHR0dMa2bdu2bNu2bUveZA5w7fWDUo4ePx6ydP32tmfSsmotW/yratKiFYGBgUQ0tvLP2r9IS9Xz0tKFC2jctHm+yXzvrh243fq9SGpKMssW/UrL1m0AOHHsKCOHX8+dox7h2huHF+WUef+1F7jv0bGEhISSnpaGUgqlFA6nU2U5HEXah0FqAK8Ce7BZnsRmCS1sA+E/+vbtm7Jv377g+fPnhwO4XC6OHTtmbt++fYbb7WbWrFlVAH777bewkydPBl522WVpAPfee++p+Pj4ahMmTKh12223nczeX2JiotlqtWaaTCZ++eWX8O3btxfp7+nMmTPmgIAArVGjRg632817772Xk+UcLrcZYO+pjDaJ6Y6aGlrOnYW1WQsqhYTyy0//Jdwzp08RGhZOx649+PKT93KWHz96hGNHDp1z7Lc/m8z0BcuYvmDZOckc9O+DbDOmTiYkJJRO3S4H4NSJ4znfIyv+WMSendu4bvCN+k2LUjmFnWrVa9CpW09WLlkEwMH9+zh0YB9Nmrcsysdzjn//XkNKchLdel9Benpqzs2WyWQiLS210O0dLnfQsaSMhntPp7VKc7irnEl3VaiCaHFcwHPoxj4rXr9+fecXX3yx54477mjidDqVxWJxff/997tNJhOdO3dOa9myZXqLFi3aNGzYMDN3O3p+fvjhh72jR49u2KJFizZKKS0kJMQ9YcKEfdlVb8XldLtNx5My655OU3Wefe0904N3DEXTNMIrV+GNj74AoO9VV7N5w98Mj+lDUFAQIaGhxH34ec4+Hrj9RkY//jRtLurAgrmzWDB3FgEBAbhcLvrFXMfg4bcD8Mnbr3Hk0EGmfjmBqV9OAODmu+4v8K73nzWryMjIoMvlvQG46Y57GPfgPXz16fvcNOQ6h6VK5TIbpKYU1QLeAB7HZnkD+FSq4suHkc+L16pVy/Xdd9/tfvLJJxs+/PDDJpPJxPjx4w/dfPPNid9///3uRx55pNG4ceMaBAcHa99+++1ui8XiBrBarY6LLrooddGiRVUnT568L3t/L7/88qFHH320UVxcXP02bdqktW/fvvDsAnTq1Cn92muvPR0ZGdmmWrVqzoEDByYAHElIr3cqNasOgJbPM90BAQG8/79vee25cXzx0TuYTCaG3n43N956J69+MJG3XnyGwX27oJQiJDSM5+IKbj4ryIypk4mf9QNoGk2at+TdL6bkJNAlC+fz5cfvYTKbqVWnLh9Nnk5IiP5U3Oz5f/D1r+uwvfkBAM+99g7PP/kQ771qw2Qy8Vzcu9Spp/cVfjH2UZYt+o1TJ44x6tYhhIWFM2/53/nG43A4eO9VG299NhmAlq3b0qCRlcF9u1Cteg3e/fybIp+b262ZU7K0ai8tOzPvnnnxj9njYmYV68OpAIo6lntkQEDA/BYtWqSEhobKwAAF0DSNkylZNY8nZ0SUxUhOZa150JmUUGfCWZ1RMpwaew+doMmKx6mU4rVjwRwExmJLnGZ0IP5ErvvCuTVNnUzOrHkiJbO+L17z4SZXZlP2B2sqwLHR1dCre5hrziyOHz6I7ffjHEp2ASwBxtjjYvK/m6iAfLbK3dskpTsq7ziWEnUkMb2xL17YPq4BMBWbZRk2y8VGByMqhtOpWdW2H01uezQpo5HPX/O+ObxvT2CNNTZ+kjU2vn6ha1cAktAvUKbDFbTnREoz+6nUluU1RKMoUHdgLTbLB9gsVYwORvgnh8sdsPdkatODZ9KaluU8CuWpFEZ9NYoJuAPYYY2Nf94aG+91PXrLkyT0C3AqJbP6zuMpUSmZzqpGxyJymIGHgG3YLNcYHYzwL6dSM6vtOJbcJjnDUa3wtX1ATh73yRJ6bmGADVhrjY2/2NhQjCMJvQScbrfJfjK1yaGE9CZ5R3UTXqMeMAeb5QtslspGByN8W5bTHbD3ZEqzQ2fSm/p89Xo+NN+scs9PG+Ava2z8WGtsfIXLbxXuhC9USoYzbOexlDZJGY5znxkR3uhuYIOMOCdKSq+JS26TnOHPNXF+k9ABgoDXgd+tsfGNjQ6mPElCLyJN0ziSkF5v78nUVv7SblaBNAH+wGZ5E5vF26eeFV7C4XIH7DmR0uxQQnoTfyyV5+bDbejnczmwwRobf6vRgZSXEv+RltW8yOB9cyNnOl1B+0+lNUl3uGR8Yd9lAp4ALsdmGYIt8aDRAfkkm6VsrnuDx7XIKzXTGbL/dFrzCnPz7j9V7nlZgCnW2PirgVH2uJhynVKyvEkJHX1WtHbt2rVu1qxZm+bNm7e5//77G7hc+gBKp1Ozqu08lhJVlGR+cP8+bhrYK2d+8ifuH0FSQgIAaakp3H/LEHq2b0b3NoXXAi38eQ5DruiaM8/5Ic8EC6dPneShO2/ihn7duL53Z559bBQZ6eeOqeJwOHj07lu48cruPHbvbTidTgAyMzK4c8jAnLgqoE7AOmyWy40ORBTfN998U7Vp06ZtIiMjo1avXl1qT5XMmzev8o8//lgF9Gt+78nUyOIk83//WcuNV3bnmssv5Z5h13LsyOF811v0yzxu6NeNof17MKjPZXz4+ktkjwWSkZ7OM4/en3PNP3zncE6fOpnvfl6MfZQhV3TlnmHXkpyUCOi1iKNvu4ED9uLMIaVl/9dfE3q2YcB6a2x8e6MDKUt+k9AdFzBkaY0aNZzff//97t27d2/+999/t6xZsybso48/rrnvVKr14Jm0pkXt+Fa7Tl0mzfiF6QuWMXPRn9SqU5dP340DICAgkDtHP8Jn034qdD9bN/3Lh2+8zKffzGDmoj+ZMvtXqtfUJ4z64sO3aWRtxo+/rWDGwpWcOnGC2dO/PWcfK5csokrVavzw63IqV7GwwjOF4sT33+SmEfdSpWrVIn46fqk2sAib5RGjAxHFM3HixFrjxo07sm3bti3ZEzNdKIfDweLFiyv//PPPlkMJ6fU913yRvxvdbjdPPzSSJ22vMXfpWnr07sebLzyd77qX9eiZM3Tr9PlL+XPZHyyeHw/Aj99OIiM9nRkLV+ZMhDJ5wgfn7GPnti3s37uHGQtXcmmX7syb+T0AM6d9TceuPWhoLdYszwBo/pMKzqcRsNwaG3/+idx9mE//Kyqloh977LH6bdu2bf3ggw82WL16dUh0dHSrqKio1s2aNWuTe87zMWPG1I+JiWnap0+f5s2aNWtz2WWXtTx27JgZoFu3bulRUVFZAKGhoVqbNm3Sd9gP1UtMd9Qo6Nj5CQoOppJnKEWXy5UzTnr2e527XU7lKpZC9/P1xI+47d7RORO3hIVXJiREH2ZaoUhLTcHtduPIyiIjPS1nSMbcAgICyUhPAyAjPY3AwCB2bN3E3t076X/NoOKclr8KAN7DZpmCzSLjB/iAESNGNFy7dm34iy++GNGhQ4dIgBkzZlSJiopq3bJly6iOHTu2WrduXSXQS9yRkZFR2duuWbOmUkRERDuA7du3B1WuXPniUaNGRURFRbV+7bXXan/99de1fpo9u1bfbp3qTXjvjWLFteXf9ZgDAujUVe93ecOtI1iycD6ZGecOrhcWXpnsmRszMzNwZGXmfEcopchIT8PpcOB0OklLTaF2PkO/BgYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HihV7Nn8vnudSGZhrjY0fZXQgZcGnEzros6Zt2rRp62effXawRYsWmcuXL9+xZcuWrRs2bNgyd+7caosWLQrLXnf9+vVhU6dO3bt79+7NNWvWdL733nu18u5vj31fpZ9/mV+ze9+rStR25sjKYmj/HvS8qBn79+5m1JjYYu9jz87tHD10kLtuiGHoVZfz0ZuvkN0EMPKRJ9lv30OfS1rRu0NLmrRoSa8rz50bvcvlvQkLr8yNV3YnvEoVOnW7nLdefJZxL7xWktPyZ7cCv2Gz+MdzxX5s0qRJB9q2bZsWFxd34J9//tl26NChgLvvvrvppEmT7Dt27Nhy1113nRg6dGiz7AlIziclJcXcpk2bjC1btmwd+9QziUNvv5uBg4aq6QuWcf+jY4sV19HDB6kX0TDn97DwyoSFVz5ropTc1q/9iyFXdKV3h5Z06no5vfvr1+8Nt4wgNKwyvTu0oE+HlqQkJzF8xL3nbG9t1oKOXXpw04CeHNq/j5jBQ3nzhacZ88yLBASUtFuU37ah58cMfGKNjX/H3x5t8/mTGTVqVE4jU1pammn48OHWli1bRkVHR7c+fPhw0Lp163JmUOrZs2di3bp1XQCdO3dO2bNnz1k9no+eOBl87XXXR40Y9Yhqc1GHEsUTGBTE9AXL+P3vHVibt+DHbycVex8up5Ntm//lkyk/MmnmL2xYt5rpU/4HwPw5M2jWohWL1m1j4dot7Nuzm5nTvj5nHyaTieffeJ8ffl3O+Lj3+G7S5/TuPxCn00Xsg/cwZuTt/LViaYnO0Q91A5ZhsxRvJgxhqCVLloS1bNkyPbvqfdSoUaePHz8euHfv3kLHJA8ICNBGjRp1KindUXn3iZTWGqrcerFffGlnZixcyYK/NrFl43r+/mslAH8uXYymuVm0bjuL1m2jchULn7z1ar77eHDss0xfsIy3Jkxi1dI/qFs/gvoNG/HcmAcYM/J25s+ZWcRo9NoBrWLON/4YMMMaG+83szb6fELPnlEJYMyYMRE1atRwbt68ecv27du3dO7cOTkjIyPnL7VSpUo5d6Fms1lzOp057x09firkqgED2/S6MkbdPjL/aqvdO7YxtH8PhvbvwavPPHHeuAKDgrh+6C3Mm/F9sc+pbkQD+g64lkohIYSGhtH3qqv59++1AHz/9f8YOOhGzGYzYeGV6TfwWtasXHbe/R0+uJ9li39j2O338PFbrzDklhG89M7HxI0fV+zY/FgbYCU2S6TRgYgLFxgYqOUuqeee5xygUqVK7uRMl2Xf6bQWLvf5+8gkJSbmXPeP3nPuE1B16zfgyKH/Ji5KTUkmJTmJWnXqnjfG6jVq0r1PP36Nnw3Aj1Mn06d/DMGVKhEYFMTAQTey5s/zX9spyUlM/uxDRj3+FN988SmXXtaNNz75ks/efzPfzrIF8dPH1oriemCJNTb+/P9YPsLnE3puCQkJAQ0aNMgKDAxkw4YNwStWrCjSeN5HTpwOGzBwYOuuva5QIx8pOFE3axmZ06Hl6VfeOuf9wwf3k+5pt3a73fw6b3bOvOXFMfC6G/hz6WLcbjdOp5M/l/5Oq6i2ADRoZGXFH/o8xQ6Hg5VLFtO8Vevz7u+N55/iyedfwWQy6e36KJTJREYR5iKuYBoBy7FZOhsdiChcr169Unfs2BGyZs2aSgATJ06sVqdOHUeTJk0crVq1yjx8+HDw4cOHAwC++uqrs/vDKKUOnE5vpmn6fOVh4ZVJTkrK9zhVLJac6/69L86d7jOq/cU4HQ5We26sf/xmEj2vuIrgSucOK753146cOclTU5JZtujXnO+IBo2s/Ln0dzRNQ9M0li36lWaFXNvvv/YC9z06lpCQ0Jw+O0opnA4HDkfWebfNTdMqbEIHuBR9dLmmRgdyoUpczeRtz4oDjB8//vCIESOaTps2rUbjxo0zL7vssvyv0FyS0h3hr775TotNG/5W6elpLP5lLgD9Yq7j3ofPXwrPa8fWzXz0xsuAntBbt7uIcS++nvP+Df26ceb0KVKSk+nXsQ0du3bn1fc/A2Bo/x58NHk6tevW46rrhrB1078M7tsFk8nEJZ26cMtd9wMw9oU4Xn5qDEOu6Irb7ab9JR259Z7RBcb086wfaBnVNifp3zX6UV4c9wgOh4N7H3myWOdXQdRA7wF/FbbE5UYH43W86Hnx+vXrO7/44os9d9xxRxOn06ksFovr+++/320ymbBarY7Ro0cf7dixY+uaNWs6rrjiisTs7ZIynFWVUiYtV1ewPlddzbyZ3zO0fw/6DLimWO3oJpOJVz/4jJdiHyMzM5PaderyyvsTct5/4PYbGf3407S5qAML5s5iwdxZBAQE4HK56BdzHYOH3w7AqMdieTH2UQZf0RWAJs1a8FzcuwUe9581q8jIyKDL5b0BuOmOexj34D189en7XD14WJE64GZz++9z6EXVCH1kuV72uJjiPPfnVSr0fOhn0rKqHjyT3lSr4Len2Xx4PvSykAxcgS1xtdGBGMUfr/tTKZnVDyWkF/+5Lj8VbnZlNtX2BycH1EjZm1XFqwfOymc+9LKwD+hpj4vZV1YHKEt+VeVeHKdSMqsfPJ3WTJK5KEBlYD42y0VGByJKx+nUrGqHJZnnkT2wjHwNejRGL6k3LHRNL1QhE3pSuqPy4YQMa0WvYxKFqob+SNv5GzKF1zuTmlX10Jn0JnLN508S+lmaAL9aY+NrGh1IcRU1obsBzR9Ks+kOV/CB02nNNHz/XMpDTotMEZpm/FQt9Db1ZkYHIkomKd1R+eCZ9KZyzRes8Cf3K5xIYL41Nt6npl4uaqe4w263O/H48eN1ateufVr5aAcKl9ttOnA6o5nT7ZY5zPORqVwmk+u/f1pNgxOpLlRmEoEZ+Y8pXUHUA+KxWbpgS/TryR38TYbDFXzgjNzAF0ZK6PmKBmZbY+MH2ONiMo0OpiiKlNCjo6NT1q1bd39CQsKEpKQkC/jkv746k+Gq7XBRMWZPKgHNnGoOdqedtUxlJtFg/duYXX7RJ+pCtAJ+8PR+dxodjCic0+022U+lNi/sOXMhCf08egP/Qx9R0usV+bG16OjoVevWrevudrvr44Nt788sPvVScpb7BqPj8GZvB3/5byRbOuYs0DQCM05KMv9PX+Aj4H6jAzHK1sjWZTJ9auttW0v1cThN09h3Kq1pltN97sPg4hxuKuZQcUV0izU2/i97XMyHRgdSmGI9hx4dHZ0C7CijWMqMNTb+cUCSeSG0jAPplcwV6tG0krgPm2UrtsT3jQ5E/Gf79u1Bs2fPtowdO/YEwKGE9AaXXxJlefeLb4ls065cY1mycD7vvDwet8tF88goXnrnY8IrnzvGldvt5vXnY1m++DeUUtxyz/0MHzESgKWLFvDJ26+xa/tWht52F2Nt+c/BkJSQwGMjbyPh9Cku6dSFZ159G9CnWX7y/hFMmDqLwMBCR8KVEnrh3rbGxv9tj4tZYXQg5+NzJe3issbGXwMUb/okIc7vbWyWq4wOQvxn586dwV9++WUtgJMpmTVOp2bVKY39Op3Fa11JS03B9uTDvPfFN8xdto5adeoy8f038103fuZ09uzczpyla/l27iImT/iQXdu3AtCoSTNeeOtDRtz30HmPF//TdDp27cGMhSvZu3snO7dtAeCtF5/hkaeeL1IyB3D7ZK+ochUI/GCNja9X6JoG8uuEbo2NvwiYip+fpyh3ZmCKTOZS/gqaLvWhhx5qZLfbK0W2bt32hsHXW7PXX/TLXG677koGdL2Iie//N1zzyePHeHLUndx8dV+GXNE1Z4RHgAFd2vPuq89z89V9ee6x4s2yufz3hUS2aU+T5i0BGHb73fwyO/+JUhbMncng4bdjNpuxVKtG/2sGMX/2DACsTZvTKqod5kJmT8ueJlmfTjmTwKAgVvy+kCqWqrS/pON5t81NqtyLpB4w3RobX7S7JAP4baKzxsbXBuYCXj36kfBZNYFvsFn89hryNuebLvXDDz/cb7U2yZyxaJX5gy+n5WyTnJTIlNm/MnXeYiZ/9gHHjhwG4NnHRjPs9nuYOm8R389fyuZ/1/PrvJ9ytks8c4Zv5y7ktQ8/L1aMRw4dpF6DBjm/12/YiJPHj+Zb0j9y6CD1G/w3fkn9Bo04cvhgsY4XM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4u1H00SelF1B86dyMNLlNuUgQb4AvDJ0X6Ez+gFPAu8aHAcFUJ+06WOHTu2Uc50qSZzkMutnXWDNfB6vetMteo1iGhk5dCBfVS2WFi9YgmnTx7PWS8tNRX77l05v19743CUD+S40NAw3v5scs7vb9qe5s7Rj7Dfvpf/ffQOAPc+/Ditos7fj8AtT/UVx8PW2PjV9riYb40OJC+/TOjW2PgRwDVGxyEqhPHYLL9jSzz/PJeiTKU5qYJS59SWBAX/18ndbDLjcrlyBkmaMvu3fGdEAwgNy79ib/eObTz10L2APq953lkX60U0YNWyP3J+P3xgPzVr1yUgn6rzehENOHzwABdFd9LXPbifevUbnLNeUW38Zx2nT52g5xVXMWLwAF55/zM0TWP8mNF8+WP8ebd1++ajyEaaaI2NX2ePi9lmdCC5+V11oWcM3veMjkNUGGbgW2yW6kYH4u8Kmi61fsNGEFy5VnJyoZMrAnqy7ti1B19+8l7OsuNHj3DsyKFCty1sCuVuvfqyddMG9u7SHwb6/uv/cdW1g/PdV7+Y65k57WtcLheJZ86wYO4s+l8zqEjnkJfD4eC912w8Mf4VANLT01AKTCZFWhGmSdY0H6iO8C6hwBfW2Hiv+tz8sYT+P6Do8wYKceEaAm8DdxodSFkr7efFi6Og6VIPJ2Ram7duY27WMpLBfbvQoJGVD76adt59vfrBRN568RkG9+2CUoqQ0DCei3uHOvUurJ9jWHhlbG+8z6P33IrL6aR5q9a89O4nOe/nnib56iHD2Lzhb665PBqF4rZ7H6CFZ270v5Yv4dnHRpOakoymafwWP4dnXnmTXlcOzPe4kyd8wDVDbqJGrdoAjH78KR64YxgAY555odC4pVNciXQD7gMmFLZieSnS9Km+whobfz/wqdFx+KppgS8v7WLecrnRcfiwvtgSFxsdRGnxhelTTyRn1jySmN7Y6Dh8VbjZmdlUOxC8SzVypLnMXtt7G8pt+tTiSgJa2+NiDhsdCPhRlbvn+cDXjY5DVGifYbPIyGTlJNPhCjqWlCEdX0uBW6rcS6oK8LHRQWTzm4SO3m5+7nBMQpSf5sB4o4OoCDRN48CZdKtb0/zpO8wwUuV+Qa63xsYPMToI8JOEbo2N7w8MNToOIYAnsFnKd6zRCuhkSlbNtCynT01t6c3cMvbrhfrQGhtf1eggfD6hW2PjKwGfFLqiEOUjEOnHUabcbk2dSM6sb3Qc/kSq3C+YVzT5+nxCB54GmhodhBC5dMNmkcmAysix5Iw6Trfbqztw+Rp5Dr1U3GuNje9sZAA+ndCtsfE1gDFGxyFEPl7HZgkyOgh/43C5zadSsuoaHYc/0cB/HnUylgJeMjIAX38O/TEgzOgghMhHU/R50z8wOpDS1G5yuzKZD33jHRuL9Hz7saSMem5NM5dFDBWX0pASemnpZ42N726Pi1luxMF9toRujY23AA8aHYcQ5/EMNotMDlRKMh2uoDNpjtpGx+F3lJISeukyrJTuswkdeAgZEU54t9rAo0YH4S+OJGXU17TSmUXk7huvZvH8849vnp+P33qV+FnTAfj0nTjesD2V73pLFs7n7huvvqAYy4/Sliycz3W9OnFNj2geu/c2UgoYRtftdvPac2OJ6daBq7tfwrRJE4v0Xm5JCQncPfQahlzRlVeefjxn+elTJ7n7xqtxOByle3rlr5c1Nr63EQf2yYRujY0PQ74ohW94DJtFmoUuUFqWMyQp3VGjqOvnN11paXjgiaeJGeRfT8gmp6Zpticf5r0vvmHusnXUqlOXie+/me+68TOns2fnduYsXcu3cxcxecKH7Nq+tdD3ztrHT9Pp2LUHMxauZO/unezctgWAt158hkeeep7AQL/o71j4eLtlwCcTOnrbZJEvbiEMVB242+ggfN3RxIwIgIsaVuOjN15m6FWXc83ll+aUlrPf++Tt17g5pg8fxL1AakoyL4x9hJuv7ssN/brx4rhHcWRl5az/14ol3BzTh6u7X8JbLz5L9jDYeUvvj993B7OnTwXgucdG880X5z6V6HA4eOXpx7mmRzQ3X92XNSsLb0I9cewo9908mEF9LuO+mwczdvRdfPpOHABXXBrF8aNHAHhy1J3cfv2VAGRlZnJ5u6ZkZWYye/pURg6/nnEP3M2QK7oyfGBvDu6zF+tzVcDPi5aryDbtadK8JQDDbr+bX2bPzHf9BXNnMnj47ZjNZizVqtH/mkHMnz2j0PdyCwgIJCM9DbfbjSMrk8CgIFb8vpAqlqq0v6RjseL3Yj2ssfH9yvugPpfQPc+dP17oikJ4jzHYLL7eAdUw6VmuSimZzv+a15Ri+vylfDrlR+KeG8ehA/tz3jKZzUyNX8yYZ1/i7Zee45JOXZg6bxE//Loct9vNt1/+N4/Gnp3bmfzTAn74bTnrVq3gl59+LHGMM76dhH3PLmYu+pPJM39h66YNhW7z+vOxXBTdkVmLV/HKe5+ydtWKnPc6d7+cv5Yvwe12s33LJpKTk0lJTuKfNato3e5igoKDAdi84W8eGjeeGQtX0rlHT7789L1ix77/0FHqNfhv2tb6DRtx8vjRfGs5jhw6SP0G/422W79BI44cPljoe7nFDB7KAftehl11OZ2796J23Xp8/uHbPDT22WLH7uVeLO8D+lxCRy/t1DM6CCGKoTFwo9FB+KoTKZlndYQbPPw2ABo0thLduSt//7Uy571Bw27J+f/FC+KZNOEDhvbvwbCrLufv1X+y374n5/1rhtxEYGAgISGhxAweyqrlS0oc418rlur7CwoiMCiI63PFUeA2y5fkrFezdh0u79s/573Luvdi1fI/2LbpX1pFtaVT1x6s/XM5q5b/Qefu/82f1P6STjRopM9Nc9ElnYpdQjdCaGgYb382mR9+Xc7ox5/i4zde4c7Rj7Dfvpcn7h/BE/ePYPuWjUaHWRous8bGDyjPA/pUqcEaGx8IjDU6DiFK4Eng/HN6inM4XW5zYmFt57m6yYWE5nqoQNN4e+LXWJs2L9KxlGewNHNAAG73f7N5ZWYWf6I5VYKB13Jv07l7T96Pe5GmLVrRuXtPatSszarlS/h33RqeefXtnPWCPSV1AJPZhCufUvXuHdt46qF7Abj40s7nzOPeMKK+e/bS9Tm/Hz6wn5q16xIQcG56qBfRgMMHD3BRdCd93YP7qVe/QaHvFWTjP+s4feoEPa+4ihGDB/D/9u49zq7x3uP4Z83smUmjslEicd1KXI6DkEgpoieUsIi79mhVo7QhPagWmxarVbXUOQelF1WltJVSdTub0qLiWhIiTYO4rURCJHJZucwlc9nnjzUhZZLJJHvv37p836/XvCavZGatb5id736etdbzXH7tDZTLZS4590x+/ce+37QYQ2cDD9bqZIkqdOArwDbWIUTWwZ54+YPwwkesg6yPtX1evFLeX9a2WfkjG7Dce8fvOePcInPensULzz3Ded4VPX7vfxzqcvPPruVi/2pyuRxLFi9m8aKFbLNdtLBk6e47OOzo4+ns6OCBe/7IyaedAcDWhe34x4uTOPjwMcyeNZMpzz/L5w8/ao0599n/wA+OR7n8wTX3NRmx30juu/N2xn3rAhbMn8fERx7i+C99FYCBgwaz4YAB/PG3N3PjhPvYaJNNuOoHF9G8bBm77LZHr8de1fY77swdDz2x2j8ffdDIzvHfvYK3Xp/BdjvsyB9uvYnRY47t8Ws/7x7Nn26/lUOOOJplS5bw0P13c93NE3r9s560t7dzzRUeP/7pTQC0tDTjONEbm+bm5X36O8bYIYVi6dOB777Z+5euv6QV+nesA4ish68DiS70WiqXyyxqbt/so7/f2dnJiaNH0tLczAU/8Nly657f45936eVcc8X3OfHQA6irq6M+l+NbF33/g0LfbocdOeWY0SxZvIjPHXI4o4+KNswaO+5szj/zVI47+LNsv+PO/PvQ4b1mPfakU3j91Zc5dtQ+bJjfiL1G7MvL/5iyxu8537uCi889k2NG7cNmmw9it6HD2HDAh7cKfGb/A5n4yENstW0BgE03G8imu+5OXV1lr5RuOGDDsvfjaznntC/T2dHBDjvtwmVXf7g9xomHHsD1v7mDgYMGc8RxX+CfL73AkSOH4eBw8unjGbLLrgBr/LOe/OYXP+HI477IpzaLrqic+e0LGX/KFwA497smN4lXgwN8A7igJidbeWdn3BWKpT2BF6xzpNntDT+cuG/99JG9f6WsozZgMF64yDrI2pg8efLOuVzuz0OGDFnWv3//vs87r6fFzSsGzFrYPGTV39tj6415YlrAgHzyl6BobWkh19BALpdj8aKFnDzm81z+kxvYfc/e30BUyob1HW1b1S/sfHnFwP41O+k6KnesYN47s/Eem8ecpZ29f0N8vA9sFfhuW7VPlKQR+hesA4ispybgS8D11kGSYOHyFR8bnafJrOANvnfOGZTLZdrb2znxK1+raZl/SCvFVdmmwNHAH6p9oiQVerpWc5CsGosKvVcrOroalrd1bPTR33/p7URMbnzgiUcf5rorP74S6Knjv8XoMceu8dp2rWgr9Jo4BRV6pFAs7Q1sZ51DpAL2wsvvjhdOtQ6yFrqAcqWWW+2LhctXbJKGYeMBow7hgFGHWMdYo3JSRujlMlCmKxlpP+qQQrE0OPDdd6t5kkQUOppul3T5KsnY9vedrq6ucN68eZsPHDhwoVPDTTwWL23epNzRVavTZVZnV6fT0tVVV+5Y0fsXWyqX6WhewtLWTha1JPLnoh74MtDzmroVEvtCLxRLDlqUQ9LlWBJQ6MOGDVs2efLkcYsXL/7FkiVL8tRoi82uMvULmjv7J3MglixNTmfd8rqW+nmdS62j9KLM0tZOfj5pMa2dif3JqHqhx/4u90KxtC/wdK9fKOtNd7nX1FC8sPf1QWNg8uTJnwS2oEYrS/746UXHz17SYbYFZZZs77wTjGt8aP55bWNjvYh6VxkWtXQlucxX2jrw3Y+vh1shsR+ho+l2SaejgEQU+rBhw5YBM2p1vr/fWfpMrc6VdZ8sN7e3Ns5tntOeqMfAkmw08KtqHTzWa7l3T7cfb51DpArGWAeIo+6tkQ+2zpEVDtBGKrYrTYrR1Tx4rAsd2B/Y0jqESBXshZfXz/bHHQL0sw6RJa00Jn4eO0EOLhRLVZsZj3uhH2cdQKRKHOAI6xAxtOZF06Xi2sqNehC9dvLAPtU6eNwLfT/rACJVNMo6QJwUiqV69CanpspAC43WMbKmatPusS30QrHUCOxunUOkivSG9V/tCax5q1SpKIcyrTTGtgdSKnuFTlTmeusoabYlXr5gHSJGRlgHyKI2GjTlXlt7FYqlgdU4cJwLPdbPRYpUyP7WAWLEYmeSzGspN6nQa8sBDqrGgVXoIrZU6B9SoRtopbHeOkMG7VmNg8a50PXilixQoQOFYqk/8G/WObLGwaGVhjj3QFpV5f6wWP6P1ItbMmQXvLyeu45GLBop1pjj4LSWm2LZAym3WzUOGtf/kXpxS1bUATtbh4gBzcgZKEd3uSdhCfC02aJQLFX8iY64Frqun0uWaDZKhW6mlQYNnmxUfNo9roWuF7dkiQpdb+LNtJZ1U5yRzBS6XtySJZku9EKx1A/Y0TpHFjk4tGnK3Ur6C717hbgh1jlEaijThU60AZOehTbQvduaCt1GxW+Mi12hA4PRi1uyZXu8fBxfi7WiXeeMlIFWFbqVXbu3CK+YOP4jMtg6gEiN5YBNrUMYUqEbKVNmRblBS2zb6A9sXMkDxrHQt7AOIGJgkHUAQ3rNG9KUu6mKvpGPY6FrhC5ZlOWfe43QjUQ3xTU0WOfIsNQXut6tSxZleYSuQjfiUKadXJN1jgzbrJIHi2OhZ/laomSXRuhiYgW6hm4o9SP0vHUAEQObWwcwpEI30uHk6rqoi2MPZIUKXSSF+lsHMJTl2QlTreR0/dxW6gt9gHUAEQOZ3HGtUCzVA7qGa6S9rFXijKX+GrpG6JJFWS01Xb81pDvczWmELpJCKnSpuRXk9N/f1gaVPFgcCz2OmUSqLauFrhGioXYVeqrEsTyXWwfIooEsmr9D3ZyKvluUPslqoesarqE2PbJmrVzJg8XxxbTMOkCW7Oq89fqVDTe+u6sTjHAchlnnybCsbkjUZR0gy8p6ZC1VVOgZdUTdM5MvabiVgU44DNjBOo/QZh3AiApdskwjdFk3jbS3nZm79/lx9fdv3s9p12g8XrJa6J3WAUQMVfR1r0LPgE0IF1zacOu0I+qe/bd6p7y/dR7pUYt1ACMaoUuWVfR1r0JPsZ2cWW9d2XDj7D2cN4Y7Dgda55E1WmodwMhyomnHrN5DINmmQpc1O7Tu+Slew2/aB7FwuOOwnXUeWSuZLPTAdzsKxdJC4FPWWUQMqNDl43J0tH+9vvTcN3P3bNrfaRtqnUf6LLQOYGguKnTJpor2nQo94fIsW3xJw20vHV335E71Tnk/6zyyzt6xDmDoPWBX6xAiBmZX8mAq9ITa3pkz02+4ceZwZ8YwXR9PhTnWAQzNtQ4gYmRWJQ8Wx0LP5LXEtTWq7oWpP2i4pXVL3h/uOGxrnUcqJsuF/p51ABEjqS/0iv4F06Cezo6x9X9+7pzcXRt90mnd3TqPVEVFp94SRiN0yarUF/o/rAPExYYsDy/M3T7lxPq/7ZBzuj5rnUeqphUvXGgdwpAKXbJoBRX+2Y/dOr6B784H5lnnsLStM3f27Q0/nDi16fS6k3KPHphzura0ziRVleXpdtCUu2TT7MB3U7/0K8A0YJR1iFrbr27atMtzNy3b1nlvb8dhK+s8UjOvWAcw9rZ1ABEDFb+8rEI3VkdX55fr//r8d3J3bDDAad7NOo+YyPplphlAK9DPOohIDWWq0FNtA1qWnZ+b8MJJ9Y9u1+B07mOdR0xlutC7V4ubBgy3ziJSQzMrfUAVeo1t5cx/5/LcTa+NrJs61HEYaZ1HYiG1P+998CIqdMmWKZU+YJwLPVUbNoxwXp7+o4ZfLd7eeXeE47CFdR6JjQ50DR2iQhfJkmcrfcBYFnrgu0sLxdIsSPbCKQ5dXV+sf2zS+bkJ/TZ2luv5cenJq3jhCusQMaBClyyZHfhuxZd7jmWhd5tGQgv9E7Q1n5u7c9Ip9Q9v0+h0jLDOI7E2yTpATEwl2hs9do/SilTB36tx0Di/eBJ3XXEwC+be1HDV4/9sGtt2eu6BkY1OR8E6k8Te49YB4iDw3WbgVescIjVS8el2iPcIfYp1gLU11Hn9Vb/hxvd3ct4eoY1SpI8mWgeIkReBXaxDiNRA5gr9L0AnUG8dpGfl8nF1T0y6qOF3DZ9ylg4FdrJOJIkzBy98wzpEjEwCTrIOIVJlHcDkahw4toUe+O6CQrH0NHCAdZZV9aOt5azc3ZO+Vv/Alk1Ox97WeSTRNN3+rx62DiBSA1MD322pxoHjfA0d4D7rACsNZNH8nzdc/fj0plObz8zdd0CT0/Fp60ySeJpuX0Xgu/8EAuscIlVWlRviIP6Ffq91gN2cN18rNV745N+bxg84rP75A+uc8qesM0lqPGIdIIZK1gFEquzP1TpwrAs98N3XMLrz9ci6pyc/13TG5Pubvjdk17qZ+zsOTRY5JLWm4YWvW4eIIRW6pNkyqnhpKbbX0FdxH3BeLU7USHvbmbl7nxtXf/+gfk77sFqcUzLrbusAMfUosBzYwDqISBU8EPhua7UOHusRereqX0ffhHDBTxqu+9vLTV9dck7uTwf0c9qHVPucknl/sg4QR4HvtqFLEZJed1Xz4EkYoT8NvA9sWukD7+zMetNvuHHOHs4bwx2Hz1X6+CKrEeCFU6xDxFgJGGMdQqTCWoEHqnmC2I/QA9/tosLX1Q6te37KM03ffP7BxuJ2Q+veOMBx+EQljy/SC023r5muo0saPRz47rJqniD2hd5tvafdc3S0j6+/56npTWNfvaHx6qGDnYV7O056dnOTRLnTOkCcBb47hyotvCFiqOqX2ZIw5Q7RXYFt0Pc7zfMsW3xJw20vHV335E71Tnm/ykcT6ZPpeOEz1iES4FZAN6ZKWrRTg/vBEjFC756m+GNfvmd7Z87MOxu9iVOavt5wXP0TB9Y75UFViifSF7+yDpAQvyV6Ey+SBo8Fvruo2idJRKF3u35tvmhU3QtTn2w667m/Np639d51M0Y6jh5/kdhYQTTylF4EvrsQuMc6h0iF3FyLkySm0APffZbV7B1dT2fHafWlp6c1nTr9143/vftWzvsjHCc5fzfJjLvxwgXWIRLkJusAIhXwHlV+XG2lpFxDX+mnrPJOZ0OWhxflfj/lhPrHh+Scrs8a5hJZG5pu75u/Aq8DO1gHEVkPvwp8t70WJ0raKHYCsGBbZ+7s2xt+OHFq0+l1/5l77MCc07WFdTCRXsxAC6b0SeC7ZeBn1jlE1kMncEOtTuaUy+Vanasinr9k7/OHOzN+5Dhx3SddpEen4YWaQu6jQrGUB+agpWAlme4KfPf4Wp0saSN09q6bcZvj0GGdQ6QP5gC3WYdIosB3Q6I73kWS6KpanixxhY4Xvote4JIs/4MXrrAOkWDXAF3WIUT66KnAd6u293lPklfokStBo3RJhAXAL61DJFngu6+gN/GSPP9d6xMms9C98DXgFusYImvhOrxwuXWIFLiU6Dl+kSR4mRqsDPdRySz0iEe0e41IXC0ArrUOkQaB7wbAjdY5RNbS+d0bi9VUcgvdC+cQPZcuEleX4YWLrUOkyA+BZusQIr14NPDd/7M4cXILPfIjILQOIdKD19Az1BUV+O5c4CfWOUTWoAv4jtXJk13oXrgQgxsPRNbCBXhhTVaHypgfA4utQ4isxm8D333R6uTJLvTI/wBvWYcQWcUTeOHd1iHSqHvHKr2JlzhqAb5rGSD5he6FLcB46xgi3crAt61DpNw1wLvWIUQ+4n8D351tGSD5hQ7ghQ/Sx/3SRarkF3jh89Yh0izw3eXAmdY5RFbxHuBbh0hHoUfOBpZah5BMewcoWofIgsB37wHusM4h0u3iwHeXWYdIT6F74TvAxdYxJNPG44VLrENkyDeB961DSOb9hZhsjZyeQo9cD9R07VyRbhPwwnusQ2RJ4LvzgbOsc0imLQLGdm/1ay5dhe6FncCX0NS71NY8otGi1Fjgu7cD91rnkMwaH/juHOsQK6Wr0AG88A30j6vUThkYixcusA6SYWegZ9Ol9iZ0v6GMjfQVOoAX3gpMsI4hmXAVXviAdYgsC3z3XeBc6xySKXOI4ZMW6Sz0yDhgpnUISbWnMV5IQiKB794M3G+dQzKhDJzavchRrKS30L0wBE4CtPymVMMC4It4YYd1EPnAycAM6xCSej8LfPdh6xA9SW+hA3jh08B/WceQ1CkDp+CFb1sHkQ8FvhsCRwF6dFCqZSpwvnWI1Ul3oQN44Q1o1yuprMvwwpJ1CPm4wHdfIRqpx+IxIkmVucARge/Gdgvf9Bd65GzgMesQkgq/wwsvtQ4hqxf47n3A961zSKq0AGMC3431rFw2Cj26znkC8KZ1FEm0J4BTrUPIWvkBcI91CEmFMnBy4Lux36MhG4UOdD8nfCTRyj4ifTUDOBovXGEdRHrXvXLXV4Dp1lkk8b4b+O5d1iHWhlMuZ+xSk5ffh2jt3U9aR5HEWADsgxe+bh1E+qZQLA0hWg56Y+sskki3BL471jrE2srOCH0lL3wWOBpoM04iyRACh6nMkynw3deAwwDznbAkcSYC37AO0RfZK3QAL3wEOBHQM8SyJkuB0drfPNkC3/070eW2FusskhivAMcGvpuoS2zZLHQAL7wP+Cp6vEV6toxoZP6sdRBZf4Hv/g04DkjUP9Bi4hXgPwLfTdz+DNktdAAv/B0wFui0jiKx0gy4eOFT1kGkcgLffRD4Alo9UlZvZZnPtQ6yLrJ3U1xPvPzRRJu5NBknEXvLgDF4odYtSKlCsTQGuBNotM4isfIq8Lmkljmo0D/k5UcR7ausu9+z6z3gcLzwBesgUl2FYskF7kJv4iUyBTg08N151kHWR7an3FflhY8Co4geUZLsmQHsqzLPhsB3S0Trvi+1ziLmniaaZk90mYMK/V9FdzOPBALjJFJbzwL74YVvWQeR2gl89yFgP7TNcpY9DHw+8N3F1kEqQYX+UV44HRiO1n7PivuAUXjh+9ZBpPYC3/0HMIJolCbZcgNwZJw3W+krXUNfHS+fA/4Xbb+aVl1E631fhhd2WYcRW4ViqQm4kWinNkm3NmB84Ls3WQepNBV6b7z8WODn6OaZNFkIfAkv/LN1EImXQrF0IXA54FhnkaqYDRwX+O5z1kGqQYW+NqL13/8AbGMdRdbbJOB4vFDXTaVHhWLpGOA2YAPrLFJRE4ET0nDz2+roGvraiFYLG0r0mIsk1y+B/VXmsiaB794N7E/05IOkw3XAQWkuc9AIve+8/GnA1eh59SR5FzgdLyxZB5HkKBRL/YErgfFoCj6pWoBxge/eah2kFlTo68LLfxr4DdG7eIm33wH/hRcusg4iyVQolg4Cfo0uuSXNROC07h33MkGFvq68fB3RHfCXARsap5GPmweMwwvvtg4iyVcolgYA1xJt6CTxtgS4ALgh8N1MFZwKfX15+cFEj7d90TqKANHueTcDF+jZcqm07nXgfwlsbp1FevR/wBmB7862DmJBhV4pXv4g4KfATtZRMuwZ4Cy8cJJ1EEmvQrG0KdFr/UTrLPKB+cDZge/ebh3Ekgq9krx8I3AuUATyxmmyZA7RFNvv8UL9QEtNFIqlA4CrgM9YZ8m43xOVeeZn5FTo1eDlNwHOA84C+hunSbNlwDWAjxcuN84iGVUolk4ArgC2t86SMX8Dvhf47lPWQeJChV5NXn4QcBHwDbT3ciUtJ5ryvErXySUOCsVSA3AGcDGwqXGctHuWqMgfsQ4SNyr0WvDy2wAXAl9BI/b1EQLXA9eoyCWOCsVSnuiS29nAJ4zjpM2LwMXdW99KD1TotRRNxX+DaKGKLY3TJMmbRDsj3YAXhtZhRHpTKJa2Ar4NfA091rq+pgOXAndl7TG0vlKhW4h2cjsBOIdo60b5uC7gAeBnwEPaEU2SqPv59dOJRuxbG8dJmieJZuTuDHxXr/+1oEK35uX3Ar4M/CcwyDhNHLwL3EI0Gtea65IKhWIpBxwDjANGGceJs+VEqzv+NPDdqdZhkkaFHhdevh44mKjcjyFbOz29R7TxzR3AExqNS5oViqWdiC69nQJsYhwnLp4leiM/IfBdXVZbRyr0OPLyGwCHAYcDo4HBtoGqYi5wL9G2tI+rxCVruu+MH0X0Bv4osjdDNwuYANwS+O7L1mHSQIUed17eAfYgKvfDgH2BetNM62Yp8DjwV+ARvHCacR6R2CgUSw6wD1G5HwPsYJuoKtqBp4jujXkg8N1/GudJHRV60kSj9+FEL/7PdH9sYZqpZ28RPWYymWgBiOfwwg7TRCIJUSiW/p2o2I8EhgINpoHW3bvAg0Ql/pfAd5cY50k1FXoaePmtgL2BnYEhwI7dnwdW+cxloqnzAHiDqMCjDy9cXOVzi2RCoVjqB+xJ9ETMyo84juBXED1iNgV4CXg88N0XTRNljAo9zbx8nuiFvxXR7lCbE61itXH3xwCi6fu6Hj4vJ1rIZUn355W/fo+owGcCM/HCtpr9fUQEgEKxtAnRm/gRRDN22xE9FrdRjSK8T1TaU7o/vwS8HPhue43OLz1QoYuIpEShWNqA6A381t2fV/31RkAT0K/7c1P3t5VX+dxOtHPZvDV8vBf47vzq/22kr1ToIiIiKVBnHUBERETWnwpdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEUUKGLiIikgApdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEU+H/hwjDTOC9PBwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8HMX5x/HPc5LcrbOxcTcIU2w6xkDAOMHEgAERCAmd0ELoJqEjIIBo4Uih944JNhAIxQhwMO0Hpjg4NNMxPuOGu+SmfvP7Y1fmONWTdbfS3ff9eu1LurnZnedOZZ+bmZ015xwiIiIi8UJBByAiIiLtjxIEERERqUcJgoiIiNSjBEFERETqUYIgIiIi9ShBEBERkXqUIIiIiEg9ShBERESkHiUIIiIiUo8SBBHJeGZ2opk5MysIOhaRjkIJgmSEuBOAM7MxDTxvZjbPf/6FIGIUEelIlCBIpqkAjmmgfC9gCFCZ3nCknXgU6ArMDToQkY5CCYJkmheBw80sN6H8GGAm8EP6Q9pwZtY96Bg6orr3zTlX65yrcLo7nUiLKUGQTDMZ6APsW1dgZp2Aw4BJDe1gZiEzO8fMPjOzCjNbbGb3mFnvhHpRM3vBzMaa2QdmVm5mn5rZWP/53/iPK8xsppmNbKCtX5rZW2a21sxKzew5M9s6oU6xPxSyjZlNMrOVwNtmdpJf3tBxLzWzWjMb3NSbY2aDzewBM1toZpVmNsfM7vLfo7o6w8zsX2a2wszWmdl7ZlaYcJyxfixHmNmVZrbAzFab2VNmFjazzmZ2s5ktMbM1ZvaQmXVOOIYzs9vN7Fgz+yrufftFQr1NzexOv065mS334ytIqFc3zLSXX38JMD/huYK4+ruY2VQzW+Yfd46ZPZhwzO5m9g9/eKrSj+ECM7NGXsuvzWyWX/czM9s/oV5P/32J+nWWmNkrZrZzUz83kSAkfsoS6eiiwLvA0cBLftkBQBh4HPhjA/vcA5wIPATcCmwGTABGmtmezrnquLpb4CUa9wD/BC4AppjZ6cBfgDv9epcAT5rZcOdcDMDM9vFj+g4oxuvyPhuYbmY7O+eiCXH9C/gGuBQw4CngDuBY4MOEuscCbzjnFjT2xpjZIGAG0Au4F/gSGIyXPHUDqsysP/CO//hWYDlwAvC8mR3mnHsm4bCXAOVAxH9vzgaqgRjQ23+du+O9v3OAqxP23ws40m+rEjgTeNnMdnPOzfLr7AqMxvv5zQcKgDOAN8xsG+fcuoRj3gks9dtqsOfFzPoB//HrRYBS/7i/iatjwPPA3sADwEfAeOBv/vt2bsJhx/j73wmsxvtde9rMNnHOLffr3I33ft8OfI6XzI4Btgb+11CsIoFxzmnT1uE3vBOQA3YBzgJWAV39554EXvO/jwIvxO03xt/vmITjjU8s9/d1wB5xZfv5ZeuATeLKT/XLx8aVfQgsBjaKK9sBqAUeiSsr9ved1MDrnAQsAEJxZSP9+ic28x494re1SwPPmf/1Jv9YY+Ke64GX1MypaxcY69f7FMhLiC8GvJhw/HeAaEKZ87dRcWWb4CUc/44r69pAvLv7+x7XwO/AW0BOI78fBf7jX9f9vjTxfh3i17ksofxf/mvcPOG1VCaU7eCXT4grKwVuD/rvRZu2lmwaYpBM9CTep/ODzKwncBCNDC8AhwNlwCtm1rduw5uvsAbv02O8z51z78Y9ft//+ppz7vsGyocBmNlAYCfgYefcirpKzrlPgFeAAxuI7e4GyiYCgxLiOhbvpPp0I68RMwvhnRSnOOc+SHzeOVc3Nn8gMMM593bcc2vwehwKgG0S43E/7WF5H6+348GEeu8DQ63+3JB3nXMz49r6HngOGG9mOX5ZedzryDOzPsC3eCfbhrrm73PO1TZQHq/U/3qQmeU1UudAvITq1oTyf+C9xgMSyqc552bHvZZP8BLVYQnt/szvzRFp15QgSMZxzi0FpuFNTPwNkIPXPd+QLfGGH5bgdTfHbz2Afgn145MAnHNl/rfzEurVldfNY9jU//pVAzF8AfS1+hMR5zRQ9xVgEV5SUHfiPxp4zjm3uoH6dTYG8oFZTdSpi7OxGOuej/d9wuOm3o8Q3nsd75sG2voab4hjYwAz62pmV5vZPLxP6cvwfj69GjgeNPy+JXoTL6G6EljmzwU5KWGexKbAwgbe15a+FwAr+fF3AOAiYDtgnpnN8OebDGtgP5HAaQ6CZKpJwH3AAOAl51xpI/VCeMnBsY08vzThcWOfTBsrt0bKW6I8scA5V2tmk4BTzOxMYE+8HoV/bkA7GyId78dtwEnAzXjzS8rwuu4fp+EPOfXet0R+j8lhZrY78Cu8IaUHgfPNbHe/1yRZzb5m59yTZvYWcCje8NSFwMVm9hvn3EuN7C8SCCUIkqmewZtIuDveJLjGzAb2AabHd2WnQN3198MbeG4EsMw5t7aFx5oInI93YjsAL4mZ2sw+S/G6u7drQZyNxVj3fFvasoGyrfDmdNQlZ4fhzdE4v66CmXXB60HYIM6594D3gMvM7BjgMeAo4H6817qPmfVM6EXYoPfCObcIbyLjnf5kyf8Bl/HjpFqRdkFDDJKR/E+AZ+BN+JvSRNUn8YYgLk98wsxyzWyDT0J+PIvwZsGfEH9MM9sO75Pki0kc6xPgE+APwG+Bx51zNc3sEwOeBX5lZrskPh932d6LwG5mtkfcc93xJl1G8Wbet6U94i/xM7OheJMD/xM3j6CW+j0PZ+P93FrFzHonXqqI9/MBqBtmeNFvY0JCvXPxejCSOqGbWY6Z/WRIxDm3BFgY16ZIu6EeBMlYzrlHWlDnTTO7B7jEzHbCu/StGu+T7eHAn2h8/kKyLsQ7qbxrZg/w42WOZXiJTDImAn/3v2/p8MKleMnIm2Z2L95Y+kC81zkGbwJdBP8SUTO7FViBd5njZsBv/USjLc0Cpvpt1V3mCN7cgDovAMeZWRlegrIHXq/PclrvBOBMM3sGrxepJ3AKXi9LXbI2BXgduM5fP+FjvPfvEODm+AmJLdQTmG9mT/nHWuO/jl3xeoRE2hUlCJL1nHOnm9lM4DS8tQxq8D4t/xOY3obtTPMXzrkK7xr9arzJchc751oysS7eY8ANwGzn3IwWtr/AzH4GXIM35yIf75LJl/C69HHOLTaz0f6xzwa64PVW/Mo5V5JkjC3xJt68givxLnH8HO9yzU/i6vwJrxfhWD+e6Xgn1uaGVZprdze84YT+eEnaDODYup+Fcy5mZgfj/ayOxJsHEcVL9P7RijbX4Q0t7Ic3eTaEdzXGmc65uzbgtYikRN21zyLSgfiXYi4CrnbOXRN0PK1hZg64wzmX2IUvIu2A5iCIdEwn4o2PPxpwHCKSoTTEINKBmNkv8RYrugx41tVfnllEpE0oQRDpWK7Auy/BdLw5AiIiKaE5CCIiIlKP5iCIiIhIPUoQREREpB4lCCIiIlKPEgQRERGpRwmCiIiI1KMEQUREROpRgiAiIiL1KEEQERGRepQgiIiISD1KEERERKQeJQgiIiJSjxIEERERqUcJgoiIiNSjBEFERETqUYIgIiIi9ShBEBERkXqUIIiIiEg9ShBERESkHiUIIiIiUo8SBBGRDsTMCszMmdkFQcfS3pnZWP+9Ght0LB2REgQRkQ1kZif6J6K6rcLMvjaz282sf9DxZTozO9PMTgw6jkyTG3QAIiIZ5ApgDtAFGAOcARxoZts559YFGllmOxNYBjycUP5/QFegKt0BZQIlCCIibecl59wH/vf3m9ly4DzgEGBycGF1HGZmQBfnXPmGHss5FwMqNjyq7KQhBhGR1HnN/7qZP/RwbmIFMxvtP3d0axsxz71mVmVmv4kr38HM3jSzcjObb2Z/NrOT/PYKEo5xgJm9ZWZrzWy1mZWY2bYJdR42szVmNtjMnvW/X2pmfzeznIS6ITM7x8w+84dcFpvZPWbWO6Fe1MxeMLPxZvYBUA6c5j93kpm9ZmZLzKzSzD43szMS9we2BfaKG+J5w3+uwTkIZna4mc3035dlZvZPMxvc2teaqdSDICKSOpv7X5cD04FjgZsS6hwLrAaea00D/snqQeBI4FDnXIlfPhh4HXDA9cBa4A9AZQPHOA54BJgKXAx0wxseedvMRjrnonHVc/x67wMXAPsA5wOzgbvi6t0DnAg8BNwKbAZMAEaa2Z7Oueq4usPxeljuAe4DvvLLzwA+A54HaoBfAXeaWcg5d4df5xzgNmANcJ1ftriJ96supv8ClwD9gT8Be/qvtbQVrzUzOee0adOmTdsGbHgnQgeMA/oCQ/BO2MuAdcBg4FS/zoi4/fKApcDDSbRV4B/nArwPeY/7beyXUO9WIAbsFFe2EV6y4oACv6wHsBK4N2H//kBpfDneGL8DLk+o+z/gg7jHY/x6xyTUG59YDkT9svENvNauDZS9DMxOKJsFvNFA3bH+scfGvd+LgU/xhjHq6hX69a5K9rVm8qYhBhGRtjMN74Q/D+/EvQbvU/0C4Em88fBj4+qPx0so/tmKtjoB/wIOAg50zv0n4fn9gXedcx/VFTjnVgCPJdTbF+gFTDazvnUbUIv3yXnvBtq+O+HxW8CwuMeHA2XAKwnHnIn3niQec45zbmpiIy5uHoKZhf1jvAkMM7NwA3E1ZxegH3Cnc2793ATn9bp8iZcoJGrutWYsDTGIiLSds4Cv8brDFwNfOW+iHM65UjObAhwDXO7XPxZYwI9zFZJxCd6n/wOcc2808PymwLsNlH+b8HhL/2tjMaxKeFzhnFuaULYSiJ9bsCUQBpY0csx+CY/nNFTJzPYErgL2wBv2iBfGS0KSsan/9asGnvsSr+cjXktea8ZSgiAi0nZmuB+vYmjIROBwMxuN1819MN6n2Vgr2pqK10twkZm9Ef+JOEl1PcnHAT808HxNwuPaFh5zCT/tLYmXeNKtd8WCmW0OvIp34j4Pr1emCjgQOJf0TLJvyWvNWEoQRETS52W8k+OxeN333YBHW3ms9/C6v18A/mVmhzrn4k/mc4EtGtgvsWy2/3WJc25aK2NJNBtvQt901/rLFX8FdAYOds59X1doZg0NebgWHnOu/3U49XtMhsc9L+gyRxGRtPFP4JOBI/AmNn7qnPtkA443DTgKryfhUTOL/58+FdjDzHaqKzCzjaj/qX4q3jDCpWaWl9iGmW3citCexLsC4PLEJ8ws18x6teAYdZ/eLW7fMHBSA3XX4s2jaM4HeD0bp5tZ57jjHgBsDZS04BhZQz0IIiLpNRH4I95EvYs39GDOuWfN7CT/uKvw1xAA/gr8Dm+i4G38eJnj93hXMzh//1X+2gKPAv8zs8fxejk2wZu0Nx3v8sRkYnrTzO4BLvETlP8A1XhzEw7Hu6zwqWYO8x+8IYUp/rF6AKfgneAHJtSdCZxhZn/Gm2OxxDlXb06Fc67azC7Gu8zxTTObzI+XOUapfwlqVlOCICKSRs65mWb2Gd4n1sQrClp7zH+aWU+8NQJWOecudM7N87vjbwUuxTvp34GXKNxK3AqDzrlJZrYQKAIuxOvaX4A3Y/+hVsZ0upnNxEtY/oI3lyGKd8XG9Bbs/5WZHQZcC/wdb37EXf7reDCh+tV4ExAvAnriXenQ4KRL59zDZrYO77XegPd+PANc7H66BkLWM/+6ThERSRMz+xBY4ZwbF0DbN+OdtHs457J6Ep40TXMQRETSyMx2AXbCGxJIdVtdEx73wbta4W0lB9Ic9SCIiKSBmW0HjMJbqrcvMCz+0kR/yeTmJgSucc6tSaLNj4A3gC/wxtpPBgYB45xz/5fUC5Csk3QPgpn9wsymmNlC/yYYv27BPmPN7H/+zTa+Nd23W0Syz2F44/l5wNENrFswFFjUzHZBkm2+iLduwE14EyK/x1tYScmBNCvpHgT/cpA98WaN/htvGdFnm6i/Gd462XcD9+OtVX4zUNjQ0poiItnIzLpQfyW/RN85575LRzwiGzTEYGaO5hOEG/CSge3iyh4Hejnn9m914yIiIpIy6ZikuAfeDUziTfXLRUREpB1KxzoIA6h/b+7FQL6ZdW1oGU5/havOCcUbAStSE6JIVukJLHSaoSwiTWivCyVdAlwZdBAiGWwI3kI4IiINSkeC8APe5TXx+gOrmriJx/XAjXGPewLz582bR35+fgpCFMkOq1atYujQoQCrg45FRNq3dCQI7+JdZhNvXxq+TzkAzrlKoLLusZl3r478/HwlCCIiImnQmnUQepjZTnF3CNvMf7yJ//z1Zha/QtjdwDAz+6uZjTCzM/HuZKabYoiIiLRTrelB2AV4Pe5x3VDAI3i3Lx2IdxcwAJxzc8ysEC8h+BMwH/iD1kAQyQ4zZ87sgbd6n5Z2l9aIAaXAslGjRsWCDiabdIills0sHygrKyvTEIPIBli1ahXhcBgg7Jxbler2Zs6cuXsoFLo7FAqFAUt1e5KZnHM1sVjsTefcFaNGjdLk2jRRgiCSRdKZIMycObNHKBR6u1evXv379eu3wl9YTTqY2ljMamPk1jiXE6uN5dQ6cgBzYM5hvW218zI/cw5zWMgRyqkhlFtLKK+aUGiDfu7OOaqqqjotXrw4v7y8/PtYLDZm1KhRVW3x2qRp7fUyRxHp+AaFQqFwv379VnTv3r2xK5YkYFU1sdyKmtouldWxLpU1tV2qamJdqmtjnWpjLrc2Rq7DNdnzMyi0tJmuIYsRyq0mJ7eGUG61932nSvK6ldOp2zpyOtU0F2P37t0r8vLyqmfPnr1xLBbbBPg2uVcpraEEQURSJQSYeg7aj4rq2k5rK2t6rK2q7VFRXdutqibWJeZcTmpbdSFi1Z2JVScufucJ5VST26Wc3K7ryOu6jrxu5eR1rcB+mnaEvJ4IQ+ettNEbLSKSgZxzrK2q7ba2sqbHuqraHuVVtT1qYrG8oOOqJ1abR9XaPKrWxo0fW4xO3dbQOb+MLuEy8rpWNn4ASRUlCCKSNgVFJaNScdxopHBmKo6bTi+88ELPiooKO+yww1o9N6SmNpZTVl4dXl1RE15bVROujbmc6W+8yi3XF6+vs2LZMvr068cTL70JwKrSUq6//EJmffwhuXl57LXPeM65pLjese+79e+8UvLc+sfzv5/LoUcdx8Sr/sAb73zAAcedzfBhm65//t3nH6Zr1y71jnPaRdfyzsxP2HijXjzzwD8I5/fEOceBx53N7ddezOYFQwEXomptPlVr81m9aCihvEqzLmtDtRW13Upnd4OU/BpJAiUIIiJpUF1dTV5e4x/gX3vttZ6lpaU5ySYI1bWx3NJ11b1WlVf3XldV2zNxzsCeY8ex59hx6x9POPFIdt3j5+sfX3HBBEbu8jOuv+0+AJYtSbx1jueUP17AKX+8AICqykr22WVrCg89fP3zw4dtykevPN5krLO+/JZv5nzPp68+ydU33cujT5cw4aSjuH/SM+w9ehc/OWhArLqz1VR1zq0speDD69/jrTPeBp4CJlNctrLJRqXVdF2yiGSNf/7zn72GDRu27fDhw7c544wzBvfu3XvHr776qhPAp59+2nns2LFbbLfddltvtdVW2/zlL3/ZuG4/MxtVVFQ0YPvtt9968ODB299yyy196p5rbr9zzz130Hbbbbf1hAkThsyYMaPrqFGjhm+zzTZbb7755ttedNFFAwHeeeedrhMnTtz4mWee2WjEiBHbXHDBBQMBnn766fxRo0YN33bbbbfefvvtt54yZUpP8IYPStdVhb9bumaLLxet2nFRWfmma6tq8pubULjkh0XMePv/OOi3RwLw/Zzv+PyTDznu1LPW1+nbL3Fl/Ppem1rCgEGD2WaHnZqtGy8vN5fKqmpisRhr15XTKS+PRYuXMvnZlznv1N+16BiGywP2Bu4AFlIcnkxxeD+KwzqftTH1IIhIVliwYEHuhAkTCl5//fUvR44cWXHLLbf0KS0tzQWoqanh6KOPHvboo4/OGTlyZMXq1atDo0aNGrHnnnuu3WuvvdYBdO7c2X366adffPjhh13GjBmz9ZlnnrnczJrdLycnx82aNesLgJUrV4befvvtr7t27erWrFlju+6669bjx49fNW7cuLXHH3/80tLS0pwHH3xwHsDnn3/e6Zprrhn02muvfb3RRhvFZs2a1XnvvfceMePTr5eWx3L6tmY+wfP/msSYX+5Ln75eDvPdN1/Sf+Bgrr30PD7/5CPCvTbinEuL2Xq7HZo8zjOP/5NfH3XcT8pmz53PzuOPIScnxElHHMyZJx5Rb7/hWxSw9+hd2Hn8MWy52SZced6p/P68q/jb5eeQm9uq01EX4Ch/+57i8CPAQxSXzWnNweSnlCCISFZ44403ug8fPnzdyJEjKwAmTJiw/MILL9wU4OOPP+7y7bffdj366KOH1dVfu3ZtzieffNK17kR/8sknLwcYOXJkRU5Ojvv+++/zSktLc5rb74wzzlhW99y6detCJ5100tDPP/+8q5nxww8/dJo5c2a3cePGrU2M9/nnnw/PnTu38+jRo0dgoRwslGs5eaFZ33w3cNPNNk/69TvnePaJx7j46sj6spraWmZ9NJOzL76cKyI38/brr3D2iUfx0rsfNzocsnD+93z03/f46x0PrC/befsRzP/gJcL5PZm/cDEHHn82fTfqxREH71dv/2svPotrL/Z6LJ6b+gZDB/WnYMggTjr3SlatWcsRB+3LkYeMT/r14a3geznwZ4rDbwC3A89QXKaraFpJCYKIZD3nHPn5+TVffvnl543V6dat2/oTTU5OjqupqbGW7BcOh9cvD3zeeecN7tOnT81nn332eV5eHvvtt9/mFRUVDQ4LxGIx9vz5XpV/v3diTlVNrFNjx5/99ZdccvYpAOy0y8+49Lq/N1jvg/emU1lZyei9fpyPMHDQEPoNGMhuo705CWP23pea6ioWzZ/HJpsNa/A4zz05ibH7HUC4d+/1Zfk9e6z/fsig/hx9yP68NePDBhOEOqtWr+Hvd09k6qQ7uP62h9hr91H87rcHsuO+R3Hwfns1OMGxhQxvCGJvYBbF4euAJyku0zLNSdKYjYhkhbFjx6796quvun388cedAe66664+1dXVBrDjjjtW9OjRozZ+bsGsWbM6L168uMk1ApLdr7S0NHfIkCFVeXl5fPzxx52nT5++/tK+/Pz82lWrVuXEnLNlqyv77LzXAQPeeWd691mffrL+TPnph/Uv1th8qxE8OfUtnpz6VqPJAcAzjz/KIYcfTU7Oj6Fts8NOdO/Rk6+/mLX++M45Bgwa3OAxYrEYzz35GIcmDC8sWryUWMw7/65es5YXpr3FyO2GNxoLQNFfbuOKc0+lW9eurF1XjplhZlRX11BVXd3kvknYDpgMfEZx+DiKwyle8yGzqAdBRLLC4MGDa2699dbooYceukWnTp3cXnvttapbt26xPn361Obl5TFlypRvzz777KF33HFH/1gsZr1796558sknvwNqGztmsvtdccUVC0888cRhkydP7rPppptW7r777uuvWDjiyCNLn3jyX/232W6Hkb884Fd2+jkXEbntPq4pOo+K8nVUV1czYtvtidx+f9KvffWqMl596QWefmX6T8rNjGtvuourLjqHyopyOnXqzD/umUinzt6aRmcdfzhnnn8p2+44EoD33noDC4X42Zi9fnKcp198lbsmPkVuTg41tbUcftA+nHTkIY3GM/2/H1FeUcG+v9jda+fEIzj6rEu54c6HOe63hYTzeyb9GpsxApgIXEFx+HpgIsVlza7gmO10LwaRLJLmezGMyM3NfXnLLbdc061bt4pUttVSK1euDPXu3TsG8Oijj/a68sorB3/33XefBR1X6bqq8A9lFUOramMNrzbYjm0fmpOWu3BV1DjmLFjKZtPPp8uaeRt6uChwCcVlTV+XmeXUgyAiWeOGG27o98wzz2wUi8WsR48etRMnTgx0tnt5dW3nhaXlQ9dW1oSDjCMLFQCTKQ6fDJxFcdnXAcfTLilBEJGsEYlEfohEIj8EHUdtzIUWlZUPWrm2ul9zaxdISu0DfEpx+G/AdRSX6aZicTRJUUQkjZavqdzoqx9WbbdibVV/JQftQifgMryJjAcFHUx7ogRBRCQNqmtjud8tXbP5gtLyzWpirv3dNEk2A6ZQHH6O4vAmQQfTHihBEBFJsRVrq3p/vXj1tmsqa3oFHYs062DgE4rDhwUdSNCUIIiIpEhtzIXmLl9bMH/lumG1Mac5Xx1HGPgXxeE7KQ53uCtL2op+YUUkfYrDqblPb3FZu7vd85rKmm7zVqwbVt0BL12U9c4ARlMcPiIbr3RQD4KIZI26uzmOGDFimxkzZnRNfHzeeecNWrdu3QZPHFy2prLPnGVrR9QlB5efdxa/+sUuHL7fGE44dDyzPvpfq457a+RqDhm7G4fvN4ajD9yb6W+8uv65xx++j9/uM5ojxv+c34zbg8cevKfBY1RWVHDOyceuj+e0Yw7l+znfrX/+5MMP4oDRO3LE+J9zxPif8+h9dzZ4nM8+/pAjxv+cbcf+lkeenLK+/LW3Z3DaRde26vW1UzsCMykOt+x2kxlECyWJZJHAF0oKuAfhF7/4xZbHHnvs8tNOO21FQ4/NbNTSpUs/6tu3b6OrJzbFOcf8leVDV66r6hdf/sZ/XmTML/cjNzeXN6e9TOTyi3jp3U+SPv7br7/CLruPoUvXrnz1+af8/rBCXvngC7p1687qVWX0zPeWU1izehW/3Wc0Nz8wqd6dGSsrKpjxzv8xZu99MTMmP3wv00qe54F/vQB4CcKxJ5/BL/cvbDKW8087gWNOOpXDd+rNDuOO4Lt3p1BeXsH4Y8/i+Yduple4bVdDbOOFklrrYbx1E9YFFUA6aYhBRLLCiSeeOPSDDz7oMXv27C533313vx133HFt/OOtt956HcDo0aOHh0IhXn311a//+Mc/DunUqZObO3duZ//OiqvPPPPMJRdffPHQhQsXdtp///1X3n///fMBrriyeOC/n31uQE1NTSg3N4+Lr46w46jdABi734Hr49hh511Z8sMiampqkr7F8Zi9913//ZYjtsU5WLl8Od26dV+fHACUr1tHTU3DKwl37tKFn//yx5so7TByVybec3tScQDk5uZSUV5ORUU3ckJeZ3Shb7ebAAAgAElEQVTxjffwp5OPafPkoB05EdiZ4nAhxWXzgw4m1ZQgiEhWePjhh+d9/vnn3c4+++zFxx13XClA4uPJkydv/M4773wV34PwxRdfdH3nnXe+CoVCbLXVVtuWlpbmvPXWW19XVlbaZptttv3pp5++bOvtd7L9Djuu72GnnBMC+OR//+Xy887iuTdm1IvjsQfuZsze+yadHCR69snHGLLJpgwaMnR92Sslz3HnjRHmRb/j7Isur9d70JDHHrz7JwkMwC2Rq7jj79cxbMsR/KnoCoZsWlBvv9POuYhris7l/vKV/O3yc/ho1ld8N3cBN1z2pw16XR3ADsB7FIcPorjso6CDSSUlCCIiTTjwwANL6271PHz48PJ99913VefOnV3nzp3dFltsUf7xZ1/07jJwywGzPvk4dP9t/6B05Qpyc3OJzv6GivJyunTtuv5YL/z7Cf7zwrM89FTJBsX0/ttvcs9NN3DPpGcw+3HKxL6Fh7Bv4SEsmPc9557yO/baZzwFm2/Z6HHuv+0fzIvO4fLHb1pfdt0tdzNg0BCcczz+yH2cfdJRPPPae/X2HbblcB56+kW2D80hVlvLfkefyaO3XsvkZ1/mqZJp5Pfozo1Xnk/vXhk5LDwYeMufvPhS0MGkiiYpiog0oUuXLrG673Nyclz841BOXm5pRWxgZWVl6LxTj+e8P1/Dv199lwf9BKCqqmr9cV5+/t/cc9NfuWfSv+mz8U+mKKwXueLi9ZMDv/mi4XtIffDudK44/yxufWhyoyf/wUM3YfuRo3hz2tRGX9cjd9/Gqy+9wB0T/0XXrt3Wlw8YNATw7vR49ImnMv/7KKUrVzR6HICb75vE4QftS69wD665+T6euCvCL3bfmZvvf6zJ/Tq4HsDzFIePDzqQVFEPgoiIr3v37rEVK1bktGSS4rI1lX1cTm5XgMrKCqqrqxg42Du5Tn7o3p/UnTrlGe7423XcM/kZBg4eWv9gvqKrb2iyzZnvTeeyc07j5gcmMXyb7X/y3Oyvv2TzrUYAsGL5MmZMf4t9Dji4weNMvPcOXnr+ae6d9Cz54R/nLtTU1FC2csX6BGbai8/Tp+/G9Oq9UaMxzfl+Aa+89R4v/fN2Vq1eQ01NLWZGyEKsWZvxtzbIBR6mONyH4rKbmq3dwShBEJH0aYfrFcQ77bTTfthvv/226tKlS+zVV19t9Lr3xasq+i1eVbH+TN+jZz4TLryMY381jl4b9WH/g3/zk/qX/vFU+mzcj3NOPnZ92b2PP9fkibchxRf+kaqqKq48/6z1ZdfdfDdbbr0tjz14Nx/OeI+8vDycc/zu5NPZ4xd7A95VFG+88jLFf7uVxYsW8I9r/syQTQr4w5G/AiCvU2cemzKNqqpKJpxwJFVVlYRCIXpt1IdbHpzUZEznXPE3br7qAsyMcH5Pjjl0f7YfdwQ9unfjibsiSb2+DsqAGykO96W47LKgg2lLusxRJIsEfpljBlhUWj5w6ZrKQUHH0V5sH5pDOu441U4uc2zOXzIpSdAcBBGRFlpUVj5AyYE04VKKw+cHHURbUYIgItICS1dX9l26unJw0HFIu/d3isMnBR1EW2hVgmBmZ5lZ1MwqzOx9M9utmfrnmNlXZlZuZvPM7CYz69K6kEWkg4iBt7pgR7dibVWvRWXlmwYdRzZb/2vUMX6f7qM4fGjQQWyopBMEMzsSuBG4CtgZ+BiYamYNXrdjZscAEb/+1sDJwJHAX1oZs4h0DKXOuZqqqqpOQQeyIVaVV/dcUFo+LOg4st26aqC2iryK5UGH0hI5wGSKw+OCDmRDtOYqhvOA+5xzDwGY2elAIfB7vEQg0WhgunOubips1MwmAz9rRdsi0nEsi8Viby5evLgwLy+vOhQKdYiPfvHKq2u7LCit2Mw5l455eB1SRcildJKic15ysGRFKb3mvkRObYe5dLIz8CzF4XEUl9VfUrMDSOoqBjPrBKwDDnPOPRtX/gjQyzl3SAP7HAPcCeznnJthZsOAEuBR51yDvQhm1hnvza3TE5ivqxhENkw6r2IAmDlz5uBQKPRMKBTaGNIy2b3N1DpyV5bXDow5zdVqyhBbBqQ496utotfclxjwzSQs1W21veXAzygumx10IMlKtgehL17XyeKE8sXAiIZ2cM5NMrO+wNvmrQmaC9zdWHLguwS4MsnYRKSdGTVq1IKZM2eOicVim9CB1l2ZW1bd5db3yyZVx5wmJTZjWqcLYmYpTKKcI69ieUfqOUjUB3iK4vAeFJd1qMt9U/4Ha2ZjgUuBM4H3gS2AW8zscufcNY3sdj3ePIc6PYGMv3OWSCYaNWpUFfBt0HEk47dFJZPx5kxJM7p0nod1qL6hQOyE15P++6ADSUayWd8yoBbon1DeH/ihkX2uwRtOuN8596lz7hm8hOESM2uwfedcpXNuVd0GrE4yThGRVikoKjkPOCroOCTjnERx+OSgg0hGUgmCc64KmAmsn5npn+THAe82sls3/Mud4tStc668U0TajYKikj2Bpm+IINJ6t1McHhl0EC3VmnGjG4FTzOwEM9sauAvoDtRd1TDRzK6Pqz8FOMPMjjKzzcxsX7xehSnOuWZviCIikg4FRSX9gCfpQHMlpMPpAjxNcbhX0IG0RNJ/CM65J8xsY+BqYADwEbC/c65u4uIm/LTH4Fq8Ka7X4t1Deyle0pAx61WLSEa4H9AyypJqmwETKQ4fQnFZu74kQzdrEski6b7MsaMoKCo5AXg46Dg6ojmdj0ntVQyZ67z2foto/VBFJKsVFJUMBm4OOg7JOtdQHC4IOoimKEEQkWx3H9AhxoQlo3QH7g46iKYoQRCRrFVQVPJ74ICg45CsNZ7i8LFBB9EYJQgikpUKikqG8NMF2USCcBPF4T5BB9EQJQgikq1uAsJBByFZb2PgH0EH0RAlCCKSdQqKSn4OHBZ0HCK+E9rjraGVIIhIVikoKjE0tCDtzz0Uhzs3Xy19lCCISLY5Htgl6CBEEmwOnBp0EPGUIIhI1igoKukONHWreZEgXUpxuGvQQdRRgiAi2eQitJyytF8DgAlBB1FHCYKIZIWCopKNgQuCjkOkGRdRHO4ZdBCgBEFEssef8G4/L9Ke9cX7XQ2cEgQRyXgFRSU9gbOCjkOkhc5vD7eEVoIgItngdHS/Bek4etEOhsOUIIhIRisoKukMnBt0HCJJ+hPF4UBX+lSCICKZ7gRgYNBBiCSpB/C7IANQgiAiGaugqCQEXBh0HCKtdFqQjStBEJFMNh7YIuggRFppe4rDewbVuBIEEclk7WrpWpFWCKwXQQmCiGSkgqKSAcBBQcchsoEOpzi8URANK0EQkUx1PJAbdBAiG6gL3kTbtFOCICKZ6vigAxBpI4EMMyhBEJGMU1BUMgrYNug4RNrIcIrDY9LdqBIEEclExwYdgEgb+3W6G1SCICKZ6JCgAxBpYwenu0ElCCKSUQqKSrYBhgUdh0gb25Li8PB0NqgEQUQyjS5tlEz1q3Q2pgRBRDKNEgTJVGkdZlCCICIZo6CoZCNgdNBxiKTI6HQumqQEQUQyyQFATtBBiKRIDlCYrsZalSCY2VlmFjWzCjN738x2a6Z+LzO7w8wWmVmlmX1tZge2LmQRkUbtH3QAIimWtnkISS9DamZHAjcCpwPvA+cAU81suHNuSQP1OwGvAEuAw4AFwKZA6QbELSLSkD2CDkAkxdJ2d8fW9CCcB9znnHvIOfc5XqKwDvh9I/V/D2wE/No5N905F3XOvemc+7h1IYuI1FdQVNIX2DzoOERSbBDF4UHpaCipBMHvDRgFTKsrc87F/MeNZe4HA+8Cd5jZYjObZWaXmlmj44Rm1tnM8us2oGcycYpIVto96ABE0mSXdDSSbA9CX7xJEosTyhcDAxrZZxje0EIOcCBwDXA+8Ocm2rkEKIvb5icZp4hkHyUIki12TUcj6biKIYQ3/+BU59xM59wTwHV4QxONuR4Ix21DUh6liHR0Pws6AJE0SUsPQrKTFJcBtUD/hPL+wA+N7LMIqHbO1caVfQEMMLNOzrmqxB2cc5VAZd1jM0syTBHJJgVFJSGgyaupRDJI+xti8E/mM4FxdWVmFvIfv9vIbtOBLfx6dbYCFjWUHIiItMKWQH7QQYikSV+KwwWpbqQ1Qww3AqeY2QlmtjVwF9AdeAjAzCaa2fVx9e/Cu4rhFjPbyswKgUuBOzYsdBGR9bYKOgCRNEt5L0LS6yA4554ws42Bq/EmJn4E7O+cq5u4uAkQi6s/z8zGAzcBn+Ctg3ALcMMGxi4iUmeLoAMQSbOdgKdS2UDSCQKAc+524PZGnhvbQNm7aIaxiKSOEgTJNim/pbnuxSAimUALJEm2KUh1A0oQRCQTqAdBss1mqW5ACYKIdGgFRSW5ePd3Ecl4zhGrdbZ4teu6rPiyszulsq1WzUEQEWlHNkH/yyQDOEcsRmjJOjovX+F6rl7o+lbNcQPcbDeo0zducPeoG9BnoevTr4bc/njrDw0uhjmpikd/VCLS0fULOgCR5jhHbe36k3/+moWuT+V3biDfusGdZrtBPaNuwEYLXZ9+teQMoPFbFyQaiBIEEZFG9Q06AMluzlHjnfy7rFjm8lcvcH2rom4A37rBnb91g3tEY/37LqLPxjFCA/FO6m2lLY9VjxIEEenolCBIyjhHdS2hJWvpsnyZC69d4PpWzfE++Xf+1g3qOTfWv88iNurnCA0C0nIb5jgp7T1TgiAiHV3voAOQjsk5qmrIWbKWLiuWufCa+a5v9Rw30L51gzt/GxvUM+oG9F1Cr76O0GBgcNDxNqBbKg+uBEFEOrqeQQcg7Y9/8l+8hq4rlrnw2vmub/V3bhDfukFdZ8cG9Yy6/n2X0Lsv2BA67h2Du6Ty4EoQRKSjU4KQZZyjopqcJWvounKZC6+d5/pVfecGhr51g7rMjg3uGXX9N15GuA/YUGBo0PGmUNdUHlwJgoh0dD2CDkDajnOUV5OzZDXdVix1vdbNdxvXzPa6/bvOjg3Kn+v6911OuA/e5a2bBB1vwJQgiIg0QQu+dRDOsa6a3MWr6Fa61IXXzXP9qme7QTmz3aAu38YG5891/fqtJL833sJXWvyqeUoQRESaUBt0AALOsbaK3CWr6bZyseu9bp7buPY7Nyj0TWxwl+/coF5zXb+NS+nZizQsEZxFlCCIiDRBCUKADq66dvZc16/fKnqE8U7+SgDSp3MqD64EQUQ6OiUIAfrUDdsy6BiyWEUqD66xOxHp6GqCDkAkIOtSeXAlCCLS0akHQbLV2lQeXAmCiHR0ShAkW6kHQUSkCauDDkAkIOpBEBFpwpKgAxAJiHoQRESaoARBspV6EEREmqAEQbLVolQeXAmCiHR0i4MOQCQg36fy4EoQRKSjUw+CZCslCCIijYlGCteR4rFYkXZouf+7nzJKEEQkE8wNOgCRNEtp7wEoQRCRzPBF0AGIpJkSBBGRFvg86ABE0kwJgohICyhBkGzzZaobUIIgIplAQwySbT5JdQOtShDM7Cwzi5pZhZm9b2a7tXC/o8zMmdmzrWlXRKQRX6GbNkl2aX8JgpkdCdwIXAXsDHwMTDWzfs3sVwD8HXgr6ShFRJoQjRRWAHOCjkMkTeZEI4WrUt1Ia3oQzgPuc8495Jz7HDgd74YRv29sBzPLAR4DrgS+a02gIiLN+CjoAETS5IN0NJJUgmBmnYBRwLS6MudczH+8RxO7XgEscc490MJ2OptZft0G9EwmThHJSu8EHYBImvw3HY0k24PQF8ih/trni4EBDe1gZmOAk4FTkmjnEqAsbpufZJwikn2UIEi2aJcJQlLMrCfwKHCKc25ZErteD4TjtiEpCE9EMsv/gPKggxBJsUrg/XQ0lGyCsAxvpnD/hPL+wA8N1N8cKACmmFmNmdUAxwMH+483b6gR51ylc25V3QasTjJOEcky0UhhNepFkMz3djRSmJZEOKkEwTlXBcwExtWVmVnIf/xuA7t8CWwP7BS3PQ+87n8/r1VRi4g07PWgAxBJsf+kq6HcVuxzI/CImX0AzADOAboDDwGY2URggXPuEudcBTArfmczKwVwzv2kXESkDbwWdAAiKdZ+EwTn3BNmtjFwNd7ExI+A/Z1zdRMXNwFibReiiEiL/RdYCfQOOhCRFFiCt/ZQWphzLl1ttZp/qWNZWVkZ+fn5QYcj0mGtWrWKcDgMEPbn92ScgqKSh4ETgo5DJAUmRSOFx6arMd2LQUQyzdNBByCSIlPT2ZgSBBHJNP8B1gQdhEgbqwJeSGeDShBEJKNEI4WVQEnQcYi0sZeikcIV6WxQCYKIZCINM0imeSzdDSpBEJFM9CJaVVEyxypgSrobVYIgIhknGilcCzwbdBwibeTf/i3N00oJgohkqruCDkCkjaR9eAGUIIhIhopGCt8CPgs6DpENtJCAVghVgiAimezuoAMQ2UB3RSOFgaxOrARBRDLZRGBt0EGItFI5AQ6VKUEQkYwVjRSuAiYFHYdIK02MRgqXB9W4EgQRyXR3Bh2ASCs44OYgA1CCICIZLRop/Ig0r2Ev0gZeikYKvwwyACUIIpINioMOQCRJNwUdgBIEEcl40Ujhe6gXQTqOmdFI4bSgg1CCICLZojjoAERa6M9BBwBKEEQkS6gXQTqIt6KRwpeDDgKUIIhIdikOOgCRZlwadAB1lCCISNbwexGeDzoOkUY8G40Uvh10EHWUIIhItjkfqAo6CJEENcDFQQcRTwmCiGSVaKTwW9rBJWQiCe6KRgq/DjqIeEoQRCQbXQssCDoIEd8C2smVC/GUIIhI1olGCtcA5wQdh4hvgn/fkHZFCYKIZKVopPAp4KWg45Cs9+9opPDZoINoiBIEEclmZwGrgw5CslYpMCHoIBqjBEFEslY0UjgH+FPQcUjWujgaKVwUdBCNUYIgIlktGil8CHg66Dgk67wJ3Bd0EE1RgiAiAqcCC4MOQrLGcuB30UihCzqQpihBEJGsF40UrgBOANr1P2zJCA44PhopnB90IM1RgiAiAvi3170l6Dgk4/01Gil8MeggWqJVCYKZnWVmUTOrMLP3zWy3JuqeYmZvmdlKf5vWVH0RkQAVAf8NOgjJWG/TDhdEakzSCYKZHQncCFwF7Ax8DEw1s36N7DIWmAzsDewBzAP+Y2aDWxOwiEiqRCOFlcCv0XwEaXvLgKOjkcKaoANpKXMuuSE3M3sf+K9zboL/OIR30r/NORdpwf45wEpggnNuYgvbzAfKysrKyM/PTypeEfnRqlWrCIfDAGHnXLtbua29KCgq2RX4P6BL0LFIRqgFCqORwqlBB5KMpHoQzKwTMAqYVlfmnIv5j/do4WG6AXnAiiba6Wxm+XUb0DOZOEVENkQ0Uvhf4OSg45CMcWZHSw4g+SGGvkAOsDihfDEwoIXHuAGv+25aE3UuAcritnY/21NEMks0UjgJaLZXVKQZkWik8N6gg2iNtF7FYGZFwFHAoc65iiaqXg+E47YhaQhPRCTRZcDzQQchHdYk4NKgg2itZBOEZXhjKf0TyvsDPzS1o5ldgDdDeD/n3CdN1XXOVTrnVtVtaK10EQlANFIYw/tQ82bQsUiH8wZwUntfDKkpSSUIzrkqYCYwrq7Mn6Q4Dni3sf3M7CLgcmB/59wHrQtVRCT9opHCcuAg4L2gY5EO4wvg0GiksCroQDZEa4YYbgROMbMTzGxr4C6gO/AQgJlNNLPr6yqb2cXANcDvgaiZDfC3HhsevohI6kUjhWuAA4APg45F2r2vgX2ikcLSoAPZUEknCM65J4ALgKuBj4Cd8HoG6iYubgIMjNvlDKAT8BSwKG67oPVhi4ikl/8Pfz/gs6BjkXbrG2DvaKQwI9bRSHodhCBoHQSRtqF1EDZcQVHJALw1ErYMOhZpV74GfhmNFC4IOpC2onsxiIgkIRop/AHYC/g06Fik3ZgF/CKTkgNQgiAikrRopHARXpIwPehYJHAzgbHRSGHi+kAdnhIEEZFWiEYKVwL7Ai8EHYsE5gW85GB50IGkghIEEZFW8i+B/DXe1VySXW4CDvGvcMlImqQokkU0STF1CopKLsRbSt6CjkVSqgaYEI0U3hN0IKmmHgQRkTYQjRT+DTgQyMjuZgGgFNg/G5IDUIIgItJmopHCl4GdgRlBxyJt7itgj2ik8NWgA0kXJQgiIm0oGin8Hvg5cHvQsUibuR/YORop/DLoQNJJcxBEsojmIKRXQVHJ0cB9eMvRS8dTCpwajRT+K+hAgqAeBBGRFIlGCicDo2jiZnbSbk0HdszW5ACUIIiIpFQ0UvgVMAY4D1gXcDjSvBrgKmAvf7goa2mIQSSLaIghWAVFJZvjDTnsHXQs0qDpwBnRSKGW0UY9CCIiaRONFM4GxgGnA0rQ2o/lwB+Anys5+JF6EESyiHoQ2o+CopLBwHXAcejDWlAc8BBwUaYul7whlCCIZBElCO1PQVHJTsDfgH2CjiXL/A/4YzRSqBtuNUJZq4hIgKKRwo+ikcJ9gQPQLaTT4WvgSGAXJQdNU4IgItIO+Ksw7gScDMwNOJxMNAc4Bdg2Gil8MhopbP/d5wHTEINIFtEQQ8dQUFSSCxwDFAFbBxxOR/cd8BfgkWiksCboYDoSJQgiWUQJQsdSUFRiwK/w1lDYK+BwOhIHTMNb7vqFaKQwFnA8HZISBJEsogSh4yooKhkJ/Ak4HOgWcDjt1WrgEeCObLtvQiooQRDJIkoQOr6CopIewGHA8cBYwAINqH34EHgAmBiNFK4OOphMoQRBJIsoQcgsBUUlm+Cto3A8sFXA4aTbJ8CTwJPRSOE3QQeTiZQgiGQRJQiZq6CoZGfgQH/7GZl5ldosfkwKvgo6mEynBEEkiyhByA4FRSUbAfvhra2wP9Av2IhabS7wur+9Fo0Uzg84nqyiBEEkiyhByD7+lRDbAbv62y7ADkCnIONqgANmA+8DrwGvRyOFc4INKbspQRDJIkoQBKCgqKQzXpKwK97iTFsCWwCDSc+kxyXA53HbR8DH0UjhmjS0LS2kBEEkiyhBkKYUFJV0ATYFhgKb4CUM+f7WM+5rT6AHEAOqgGr/a/y2HFgELPS/1m0Lo5HCdWl7UdJqShBEsogSBBFpqUyc5SoiIiIbSAmCiIiI1NOqBMHMzjKzqJlVmNn7ZrZbM/UPN7Mv/fqfmtmBrQtXRERE0iHpBMHMjgRuBK4CdgY+BqaaWYPX2ZrZaGAy3jKYI4FngWfNbLvWBi0iIiKplfQkRTN7H/ivc26C/zgEzANuc85FGqj/BNDdOXdQXNl7wEfOudNb2KYmKYq0AU1SFJGWyk2mspl1AkYB19eVOediZjYN2KOR3fbA63GINxX4dRPtdAY6xxX1BO+fm4i0nv6GRKSlkkoQgL5ADrA4oXwxMKKRfQY0Un9AE+1cAlyZWDh06NCWRSkizdkIULYgIo1KNkFIl+v5aa9DT2A+MATvft/tleJsex0l1o4W54qgAxGR9i3ZBGEZUAv0TyjvD/zQyD4/JFkf51wlUFn32Gz9yp+r2/O4qeJsex0l1g4Yp4hIk5K6isE5VwXMBMbVlfmTFMcB7zay27vx9X37NlFfREREAtaaIYYbgUfM7ANgBnAO0B14CMDMJgILnHOX+PVvAd40s/OBEuAovLuJnbqBsYuIiEiKJJ0gOOeeMLONgavxJhp+BOzvnKubiLgJ3g086uq/Y2bHANcCfwG+AX7tnJuVRLOVeOsuVDZXMWCKs+11lFgVp4hklA5xsyYRERFJL92LQUREROpRgiAiIiL1KEEQERGRepQgiIiISD1KEERERKSedpMgmNlZZhY1swoze9/Mdmum/uFm9qVf/1MzO7C9xWlmp5jZW2a20t+mNfe6gogzYb+jzMyZ2bOpjtFvL9mfey8zu8PMFplZpZl93R5/9n79c8zsKzMrN7N5ZnaTmXVJcYy/MLMpZrbQ/zk2elO0uH3Gmtn//PfzWzM7MZUxikjH0C4SBDM7Em8BpquAnYGPgalm1q+R+qOBycADwEjgWeBZM9uuPcUJjPXj3BvvrpbzgP+Y2eB2FmfdfgXA34G3UhlfXHvJ/tw7Aa8ABcBhwHDgFGBBO4z1GCDi198aOBk4Em8tkFTq7sd2Vksqm9lmeAuYvQ7sBNwM3G9m41MWoYh0DM65wDfgfeD2uMchvH/6RY3UfwJ4IaHsPeDu9hRnA/vn4N1B7/j2Fqcf23S8E9nDwLPt8Od+OjAbyEt1bG0Q6+3Aqwll/wDeTmPMDm9Rsqbq3ADMSih7HHg53e+xNm3a2tcWeA+C/6lwFDCtrsw5F/Mf79HIbnvE1/dNbaL+BmtlnIm6AXmk8E56GxDnFcAS59wDqYotXivjPBjvHh53mNliM5tlZpeaWU47jPUdYFTdMISZDQMOBF5MZaytkPa/JRHpGNrD7Z774n16XZxQvhgY0cg+AxqpP6BtQ/uJ1sSZ6AZgIfX/IbelpOM0szF4PQc7pTCuRK15P4cBvwQewzvZbgHciZd0XZWaMIFWxOqcm2RmfYG3zbuFYi5eD1eqhxiS1djfUr6ZdXXOlQcQk4i0A4H3IGQLMyvCu1HVoc65iqDjqWNmPYFHgVOcc8uCjqcZIWAJcKpzbqZz7gngOryhh3bFzMYClwJn4s1Z+A1QaGaXBxmXiEhLtYcehGVALdA/obw/8EMj+/yQZP220Jo4ATCzC4AiYB/n3CepCW+9ZOPcHG/S3xTvgy7gJ45mVgMMd87NbgdxAiwCqp1ztXFlXwADzKyT825HngqtifUa4FHn3P3+40/NrDtwr5ld5w9RtAeN/S2tUu+BSHYLvAfB/6c+ExhXV2ZmIf/xu43s9m58fd++TdTfYK2MEzO7CLgc746XH6Qqvg2I80tge7zhhbrteX6c1T6vncQJ3iTKLfx6dbYCFqUwOWhtrN2Iu6upry6xMdqPtP8tiUgHEfQsSecceJd/VQAn4F0Sdg+wEujvP1Lyn1MAACAASURBVD8RuD6u/migGjgfbwy4GKgCtmtncV6Md1vd3+KN9dZtPdpTnA3s/zDpuYoh2fdzKN5VILfhJQaFeOPll7XDWIv9WI8CNsM76X4LPJHiOHvwY6LngHP97zfxn78emBhXfzNgLfBX/2/pTKAGGJ/q91Rb6jdgV7wJs2v934edgP2Bj/zfZwf0CjpObe1zCzyA9YHABGCuf0L9f/buO76J8o8D+Oe5JN1tKAUKlBFGJ5Rh2Uv2KqBsfgxFEBREFFSogBAUsQoK4gABGbL3LBsBEQGhoozSQWkZhU5oOrJz9/vj0tK9aHJN8rxfr740uSd334Tc5XvPvAqgfZ5t5wFsKlB+JIAoY/nbAAZWtTgBxBtPwIJ/8qoUZxGvNUuCUJ44wbfnvw6+d/0V48Ut1vi8qCrFanwsBrDImBSoADwE8JOpL8bg594o6juX8zluAnC+iNfcML6vWAATzfF50j/T/oHvvBsPvpZwKoDxADzAJ66XwXdMHm8sNxbAhwLGygCYCL728hH4hOY2gAUAHIT+LG31jxj/cSiqSiOEZAHYy3HcRKFjoShLQAjxA99HZwpn7AtDCOkP4DiAPhzHnclT9ij4GliZQLG6AMgEn/wfBd8ZuSP4Grs/APTk6I+V2VWFToqUjTG239txVWg0B0VZoZxZPtNLea4q0ALozHHcX3meW0cIiQc/hLkXTDs8nCqC4J0UqZdnnEv/unGNgFhCyDuEEDkhhCtQbjwhJNy4NsAzQshOQkj9AmXOGycgCiCEnCOEKAkhCcbOlgWPa08IWWycv19jXG/gG0KIfYFyHCHkR0LIOELIHfBV2f2N2z4mhPxFCEkzxhVOCBlR8PXgpxB+07gvjhCyKc92L0LIBuPkSRpCyB1CyKSX/FgpymIZz48Lxod7jOfMeQCbjc9dyzmPjM8HA2iY5/yKN+6nu/HxKELIIuO1IJMQspcQIjVeA1YSQpIJIVmEkI1FnP9vEUJ+N5bREEIiCCHT8pbhOE5bIDnIccD4X//K+Fyo8qE1CBaOENIawAnwQwAXgZ/QZyGAlALl5oMfercbwHoANQG8D+APQkhrjuPy3lG4G/e531h+BICvCSG3OI47btwfA769sAuAteCrMgPBd4rzAd9fIK+eAEaBn4I4FXzbKAB8YNzPNgB24Dv17SGEDOI4LsxYZoIx5r+NxwL4tnIQQjzBV0tyxn2nABgA4FdCiBvHcSvL8DFSlLX5BfxU4PMArAJwDXyH3ijw/REWAogDfx65AJACqAf+/AWArAL7+xR8X5pQ8BOUvQ++ozgL/nohB9ABfD+COACf53ntNAB3wJ/negCDAfxMCGE4jvuplPeRM/ldVZ+jxToJ3QmC/r3cH/iTLhtA3TzPNQV/8uY02zUEf2LOK/Da5sZy8/I8dx78j+2EPM/ZgU9A9uZ5bjz4YXtdCuzzHePrO+V5jjOWDSgifscCjyUAbqHwOgZZKKJjJfjE4QkAjwLP7wBfjepY8DX0j/7Zwh9edFgdkee5icbn2hQoexRAfAn7uIU8a6AA2A4+OThWoPxfBfdT1DkI/gYktgzv4TQABehIC0H+aBODBTOuQdAb/IiDJznPcxx3D3xHpBzDwDcn7SaE1Mj5Az9JTgz41SbzygKwNc/+tODv3hvnKTMSfK1BZIF9/m7cXnCfFziOiyj4Hrg8k/EQQtzB38lcBD/7YGnvn4AfQnrE+DBvHCeN+yp1PxRFleo3juN0eR5fBT+fx4YC5a4CqE8Iya2dLnCOS43n5wUAjQkh0uIOSAiZB/76FsLlr+GkzIQ2MVi2WgAcwQ+lKyjvc97gT+aYYvajK/D4MWdM3/N4DqBFgX36o0BTRoHY8oorqhAhZBD4oUytAORtuyxLj+WaAKqBrzKdWsY4KIoqv4cFHiuM/y04kZoC/M2IFEAaABBCOoPvaNgR/ARieUnz7CsX4ZdXXwLgV47jVr9U5FSF0QTBNjDgf3AH4MVsfnkVbG8sqgyQfwZABny14+xiyha8cBSatpcQ0hV8E8kf4CfoeQo+WXkL/Ljs0uTUgG3Fi85XBZl6amuKsgXFXRNKvFYQQpoAOAt+LobZ4K8LWvCLrc1CER3lCSF9wE88FoYquM6KLaEJgmVLBj9hUNMituV9Lhb8CRvHcVx0JR07FkBL8H0FKjo+eTj4+PtxHKfJeZIQ8lYRZYs6Rgr4sdMiLs+Yboqiys1UcwwMBl8zOITjuNxaCEJIwSbInOfbgx+5cB3AKI7j9CaKiyoD2gfBgnH8okVnALxOCKmb8zwhpCn42oIc+8Fn+ouM7fbIU5YQQjwqcPjdALwATCm4gRDiSPiFiUpjAH9hEuV5rQyFR0AAfEfManmfML7/fQCGE0KaFxFHzTLEQFEUf34V2x/gJRRaf8TY76DQTQAhxB98rUE8gEEcXSxMcLQGwfLJAfQFcIkQshr8j+0M8NOUtgIAjuNiCSELwM/DLyOEHAR/590IwFDwQweXl/O4W8APW1xjvBu4ZDy2n/H5fuDvAkoSBr7a8QQhZDv4/gLvge8/0aJA2XAAvQkhs8GPWojjOO4q+FUyewC4SghZByACQHXwnRN7G/+foqiShQMYTQj5DvyQyCyO445Uwn5PgW9SOEII+QX8kMop4Gs/6+QUIvyy8yfBD5lcBn5p9Lz7ieU4ji4gZmY0QbBwHMeFE0IGgP+B/wJ8G99C8B0I/fKUCyWERINv91tkfPoR+BP4cAWOyxJCXjfu7w3wiYYSwH0A3wMotSmD47jfCSGTwf/IrwTfkXEu+OWnCyYIs8EnMkvAd8zcDOAqx3FJhJB2xvc8DHxfhjTw467nlvd9UZSN+hn8DcVb4M/pB+BHB70UjuOijBOfLQF/jUoEsBp882DeERAe4BdjA/i5FgraDLrCqNnRtRislLGWoBnHcd5Cx0JRFEVZHtoHwQoQQhwLPPYG30v4vCABURRFURaP1iBYAULIU/DL+N4HP2viNPA9h1tzHFfc3AcURVEUVSzaB8E6nADwP/DzlmvAt9XNo8kBRVEUVVG0BoGiKIqiqEJoHwSKoiiKogqhCQJFURRFUYXQBIGiKIqiqEJogkBRFEVRVCE0QaAoiqIoqhCaIFAURVEUVQhNECiKoiiKKsSsEyWFh4e7AKgLmpjYOhZAOoDUoKAgVuhgKNOi5z1VRbAAngQFBWUJHYilMNtESeHh4R0YhlnDMIwUedYGp2wTx3F6lmUvcBy3MCgoKEHoeCjToOc9VYVwLMsqWJZ9Nygo6IrQwVgCsyQI4eHhLgzD/FmtWjXPWrVqPSOE0OkbLQ3LErA6CVi9GAadmHAGMTiWAccR5F74uZz/5UDAAQQgjIFjxHqIJHowYj0YsY4DgVartUtKSnJTqVQPWZbtEhQUpBXuzVGmQM9768JxHAwcJ2I5MODAn+AcYMfq+AKEgAM4IhIZwDAsIVUrH+Q4jiQnJ1dPT09PMl5zaE1CKczVxFCXYRhprVq1njk7O6vMdEyqPDgO0CkdoFU6Q69yhEEnAat/8cexoko7FhHpnRmxzs6VGOIzMvwbXJm/AkdunQcQDrnifqUdhxIaPe8thIHlGKVW76jVs/Z6lpPoDayY/y8n0bOcRM+yEgPLFfl74Z1edAUgYRgWDKMnIpEeYrGOiMVaIrHTGpzs1QZHidZB5KAWMSKzNjHWqlXrWUZGhpRl2boAos15bEtkrgSBAUDoHUQVwScDjtBmO0GncoJO5Qy92hHgzNNGzBnEMBjEIgMHxqCGRJs+HcB0AIBc+hzAPwDCc//kilizxEVVNnreV0FaPStRavVOKp3BSa1jHdU6g5POwNpX9nE4lmXAsnacXm8HjSb3ebXUMeuJVu0CACJGpLdj7NT2YvtsR7Gj0knslG0vsteYqvbB+F0koP1hyoSu5mgLOA7QZjlDnV4NmmxXsyYD5ecOoJfxjyeXpoNPFk4BOAy5IlKY0CjKsnAch2ytwSlTpZNmaw0uGr3BqbiaAHPRiV/0RTGwBrGKVbmo9CqXdKQDABjCGBzEDllOYqcsJ4lTlrPEOZshDE0yBSBsgiCXBplmv4rwl3l5VFSU3aFDh6Rz5sxJyXnOy8srcM+ePfc6depktqpShULBBAcHN7lz546TXq8nmZmZ/+bdvmPHDum8efPqsSxLfH19VTt37oyrXr06CwA7t2+vtmDB/AYca2Ba+DdlNq9cTNxcXQodg2VZfLBwGY79fgmEAB++PRYz3hpT6ra8nqdnYNjbHyP1eTq6tmuNn7/6FACQkvYcI9+Zg9M7foZEInmZj6IaXiQNX0MujQFwxPh3EXKF4WV2TpmPLCTMJOd8fGjwS53z5uDn5xdw+fLlSHd3d5NWq+sNrEih0kkzNXq3bI1eWp6E4Pa//2DZ4k+hzM4GIQQfLfwS7Tt3y1fmfkwU/jewB4aPexNz5F8VuZ8Tf/yBxT/+CJZlYTAY8OHEiRj/2msAAA3DMgBw9eJVTBkxBZ8s/gQT3p2Q+1qWY0VKnVIafS9a+snUT6DMVmLIsCHqeZ/NS3azc0u//d9t0ccff1zv999/v1f+T4cqj6p6FymomJgY+w0bNtSs7P3qdLpylbezs+PmzJmTGBYWVqitTKFQMDNmzJDt378/9sGDB7dr166tm/dpSD1kJdXIjP+36QcfvN/k6KZvJbF/HRJ51a5Jvli5rshjbN13DBHR9xF98QD+ProFy1b/hjtRsaVuy2vbgWPo0bkNbp3djch7cbgdyZ+3s+XfIvTT9182OSiKN4DZAM4BSIZcuhVy6WjIpW6VfSCKelk5531kZGSEqZKDbI3e8Wm6qk5MUqbf3acZrRLSVY0yVDqP8iQHHMdh1pQJmDb7U+w59Se+Wb0RC2dPh1r14p5Ip9Ph87kfomf/4BL3M/nTT7H2iy9wde9e7PvxR7z/+efIzM4GAKgZvSQzIxMrvliBrr27FrufHRt2YMykMdh/YT8O7D7gcD/pfoM0xYNGc2fN8P9l+edqvU5T6c0iVH42nSDs27fPLSAgwN/Hxyegbdu2vuHh4Q4A8P777zeIj4938PPzC+jZs2fTnPK7d+92b9WqlZ+Xl1fgnDlz6uQ8//DhQ/HAgQMbBwYG+vv4+ATMnDmzbs42Ly+vwGnTpnkFBgb6Dx8+vFF54nN0dOSGDBmS6eHhUegOed++fdKAgABl61YtNchOrT7n7ZFORw8fqomMJw1PnDwlbd3cF35N+cNNf3MUdhw8WeQxdh0+hSnjhkEkEqG6uxSjh/TFjoMnSt2Wl0QshlKlBsuy0Gh1sJNIcOLcJbhXc0OHoBblecsVUR3AOAA7AaRALt0DubQP5NKq1YWaqhLOnDnjHBQU5Ovr6xvg4+MTsHXr1moA8Mcffzi1bt3az8fHJyAwMND/1KlTzgAwZsyYhgsXLvTMeX1kZKRdjRo1Wmo0GnLo0CHXVq1a+fn7+wc0bdq02YoVK2rklBs+fLhs5MiRsjZt2vj6+Pg0AwBCSFBqaqoIAKZOnVqvefPm/n5+fgFt2rTx/e+//3J/7AghQSEhIbUDAwP9vby8Ar///nuPnG3//POPQ5cuXbx9fHwCfHx9m30RurxxZGJGs6t3YgMmThhbd2i/7s7DenfCj98sKfdnk/78GZ4/S0WHrt0BALLGTeHqJsWf58/klvll5TfoM+h1NGjUpMR9EUKgyMwEAGRkZaF6tWqwt7MDCGG1hBV/GfIl3pn9Dqq5Vyt2H2KxGGqVGnqdHizLghCCnWt/c+j/agfGu7az54PULJ+oxEz/RIXaU6tnK/0uhLLhBCEhIUE8efLkxps2bYqPjo6OmDRpUsqoUaOasCyLH3744aFMJlNHRkZG5K3GSk9PF/3777+R169fv7t69WrPuLg4CQCMHTu20XvvvZd869atu3fu3Im4ceOG84YNG9xzXvfs2TPxf//9d/fw4cNxlRX/o/j7Tk0b1JEg8XYLKB41auzl4fw0ORV6vR4PExLR0Cs3f4Gsfh3kbCvo4ZNENPSq/aJsvbp4mJBY6ra8xg8Pxr24R2jd93/o3bUdvOrUwperfsWXc9+rrLdbVnYARoDvqxALuXQ+5NLapbyGshFJSUmi0aNHN/3yyy8ToqKiIu7evRvRp0+fTLVaTUaPHt1kwYIFT6KjoyOWL1/+aOzYsU0VCgUzefLk1B07duT+8P/yyy81hg4dmmZvb8916tRJef369ci7d+9GXLp0KXLZsmV1YmNjc3+obt686XT69OmYuLi4OwVjkcvlibdv374bGRkZMXXq1OQZM2Y0yLvd3t6eu3Xr1t2jR4/GzJs3r4FOp4NOp8PQoUObjh7/hur4pX+0+85edeg2cKi7Vs86LJg1HaPfeBvbj57FrhN/4M7Nf3Hq6MFyfT7u1T1Qs5YnTh45AIBvboi/fw9PHj3k38+N67j5zzWMfWtqifshhOC3Zcvwv1mz4Nu3L3q/+SbWLVkCO4kEkIh1pw6fAkMY9Ojfo8T9jJ8yHmfDzmLcgHGY+N5EKDOz9UePnpR8OGUsDCIHdbZBZKfRG5ySM9X1IhMzWtxLzvJ5nq2tZq65fWyBzXZSvHDhgrOPj4+qXbt2KgCYNm3aszlz5jTI+dEvyoQJE54BQJ06dfT16tXTRkdH23t4eBiuXLni9tFHH0k++ugjAIBSqWQiIyMdcl43adKkNIaphFyM4wB1uhTZKbVcoHSzIwaAE7753dnJEXvXLct9PGvRcsydPhH34h9h6aoNAIAFH7yNls18zBlWIwBLACyEXLobwPeQK66bMwCqajl37pxLo0aN1P37988CAJFIBE9PT8Pff//tyDAMhg8fngEA/fr1y/Lw8NBduXLFqV+/fll6vR4XLlxw6tq1q3L37t0eBw8ejAGApKQk8bhx42RxcXEOIpGIS09PF9+4ccOxSZMmOgB47bXXnhfXpHD48GG3NWvW1MrOzhaxLAuFQpHvWjx58uQ0AGjdurVaJBJx9+MfOD1KTPPQ6g32rw4a5Zmt4ZN99+oeUCqz8felC3iWmpz7emV2NuJjy99Ev/LXbVi5dDF+/WkFmvj4oXXbDhCJxVCplFg6/2MsX7MZpY0w0Ov1+HrtWuxYsQJd2rTB9du3MfL993Ft/35oJSLDL9/9go2HNpYaS83aNbF2z9rcxx+/NRvfLpyNc5euY+XmA2LW3hUzQxaibj0+t1Jq9a5Krd41MYPReDjbJXu42KeKGEJnan0JNpsgVISjo2Pul00kEnE6nS53oql//vnnrpOTU5Gpq6ura5G/4uHh4Q7jxo1rDABt27bN2rJly8MiD8yxhCFgkBzRHAatPQA08KqN0xdfTAYW/+gp6tSqAbFYXOK2ghrUrY0HCYno2KYlX/bxEzQw1hqUtK04f9+4jeS05xjUpxu6Dp2ELauWgOM4TJy1CBf2rS/xtSZiB2A8gPGQSy8D+BbAfsgV9DaDKlbeH8GxY8emrVu3rkZGRsZzd3d3fdu2bdUAMHXq1IZ9+/ZVnDhxIpZhGAQEBPirVKrcOwEXF5ciz/uYmBi7uXPnNvjrr7/uNmvWTHP16lXH3r17++Ytk3Mt0egMdiKxmIlLVfoptWzRv8zGa9CWQ6dh7+BQZJEcH73zJh7F81ONrN15CNXcq+fb7hsQiNVb9+Y+fr1HezT18cPj+DgkJjzGlNGDAQCZGQqwLIcMRTp2LZqfbx//RUXhaUoKurRpAwBo07w5vDw98d/du8gSgaQkp2BEjxEAgOdpz3Hu5Dk8S3uGD+Z/UGzcp4+chk/Delyr5r7wf3UYdhw7x12/cQs/f/sVlqxYna+szsDaJ2ao6ydnauq6O0lSarjaJ9uLReXrAEYBsOEmhu7du2dHR0c7Xrt2zQEA1q5d6+7p6alr1KiRrlq1aobMzMwyTQwklUrZdu3aZSxYsCC3Tj8+Pl6St6qxOEFBQerIyMiIyMjIiCKTA44DspI97DIe+BACkpMcAED/Hp3wz61IRN7jWy1+3rwbY17rV+q2gkYO6o112/bDYDDg2XMFdh0+hdFD+pa6rSg6nQ5zv1yF7xbNBgBkK9UgBGAYgqxsZWkfhzl0BLAXwDXIpX2EDoYyr169emU9ePDA/sSJEy4AYDAYkJSUJGrRooWaZVkcOHDADQBOnz7tnJqaKunQoYMSAKZMmZIWFhbmvmbNmpoTJkxIzdmfQqEQyWQyDcMwOH78uEtUVJRTWeJ4/vy5SCwWcw0aNNCxLIuVK1fWKlhGq2clD9OyG0YnZTUHCOEAImviDQdHJxw/+OIH/PmzNDg5u6Btp67Y8PPK3OeTE58i6WnhCYy+/WUzdp+8iN0nLxZKDgAgJelFE+K+7Zvh6OiEdp27wdu/Gc7/dw/HL9/E8cs3MW7yNLw+elyhH2cAqOfpicSUFETe5xOR2IcPEffoEXwaNUKf/r0Mf0T8gVP/nMKpf06h7+C+mPbRtBKTgwxFBrau3Yqls6eIACBbpeHUnETCEAZKY8fHorAcJ0rL1taOTswKjE/NbpSl0Zfp34d6wWZrEOrWratfv379/TfffLORXq8nUqnUsGvXrliGYdC+fXulj4+Pytvbu1n9+vU1pQ2n2bNnT9z06dPre3t7NyOEcI6OjuyaNWse5FQ1VojymRSZT+u16PG6Q0paOjIys1EvqD96dGqDLT8sgauLM9YvX4jXJ30EvUGP5r5NsXnlYgAocRsAtOozBse2/IC6tWtiwohgXPvvDry7vA5CCGZPHY9Af28AKHFbUZat/g1vjAyGZ02+T9XnH7+LgRNm8tsWfFjhj8IEggCcglx6FkAIbXqwDTVr1jTs3Lkz9pNPPqk/c+ZMhmEYLFy4MGHs2LGKXbt2xX7wwQcN5s6dW8/e3p7btm1brFQqZQFAJpPpWrZsmX327NlqmzdvfpCzvyVLliR8+OGHDUJDQ+s2a9ZM2aJFi+J/rfJo166dasiQIc/8/Pyaubu76wcOHJies02jM9gBQFyaKsBVapevxkAsFuP7X7fhq8/mYv2P34FhGIx6YzJGjn8LS1etxfLP52NYr44ghMDRyRmfhX4Hzzpe5fqM9m3fjLADewCOQ6OmPlixfkupTQoAcPTcOYSdP4/VixfDs0YN/LhoESZ89BEYhgHLsvhu3jzUr1MH6aLyz7+y4vMV+HDODLWzg70DAMz64H3t2OCe9hKJBPJlP5T6eg4cyVDrqmeoddWdGFZh4ECnWC4jc63F4CcWi094e3tnOTk5qU1+QEumznBB5hMv6FSFJy2wMmo9h7iEFDS69BEcsh4JFQYHYB+A+ZAr6NSrlYie92Wn0RvskjI0dRRKnQcHzqJG4HinPy5z2cRaEo2S0Zd7eGIdxi6rujrLBQBiSEOdysBUaNQCp9ci5eljbsVfaZvupGhnx4cGp5f+Kttls00MVY422xGpMU3xLNbXFpKDKoSAH/lwB3LpL5BL65b2AoqqLCzHkSfpqrrRSVnN05XaGpaWHJSXmuFrSMrLVat2AACDyEFd0eQgB8eBpKsNbwG4JwsJmykLCaNDJItBEwShsQYGzx/UR2p0ALRZUqHDsWFiAFMBxEAu/RByKT03KJPKUOlcoxMzm6VmaepwnHUnBgAAkUjHViABshdJ1BJWLwaALOJaeKx2xXkA+B7AbVlI2GuVuF+rQS+CQlJnuCDlbgBUzwp1UqIE4wRgBYDzkEtLng2GoipAZ2DFD9KyZfFp2T5aEyySVFVxElGFftxdOUYP8H22k/VOpvi8fAAclIWEnZKFhNUzwf4tFk0QhJBTa/As1hcGnc1cICxMVwA3IZfOpLMyUpUlNUvjEZ2U2Uyh0nmUXtq6sGKmQpO2uOm1Yv71DioV+3LNC6XoA+CWLCRsQqklbQRNEMyN1hpYEifwVZC0NoF6KWqdwf5ecqbvk3SVTOjVFIWiE5U/zxYzIp2jXuMAAJmk6PlkKlk1AL/JQsL2ykLCbC6JK4gmCObCGgjSH9ajtQYWqRv42oT3aW0CVV7PsrXu95KzApRag013Ps67zHNZuRCxBuCbF1JM07xQnOHg+yYUvyqVDRA0k7WZpV+1Sgc8j2uad6IjyuI4AVgFYCi/cqQipbQXUIUFbg40yTl/681bVeucBz9CIeG5qt5zpZbWFuLFMs/l4WYwMADAih1VKh3jWPlRlag2gKOykLD1AGbFhwbb3PwJtAbBRK5du+bg5eUVCOUzKdJi/E2dHLAsi/cXfI0mnYagaech+HHjzmLLxtx/iE5DJsKny+toO3B8viWcS9qW17Gzf6J5z5Fo3nMkTp7/K/f5DTsPYumqXyvvjVU9PcDPxNhS6ECoqkujN9jdS87ypcnBC2pGX67+AwwhrLNW5QgAmaToaavN5G0A/8pCwgIFjEEQNEEwIYZwIqQ/aAqu/JlzeW3ddwwR0fcRffEA/j66BctW/1bsj/s7c5dg6rhhiP7zIOZOn4iJsxaVaVteC5evxrEtq3BsyyrM//onAEBSShq27D2GOdPfrPw3WLU0BHAJcukwoQOhhDF79uy6kyZNql/UtnSlVnovOStArTM4F9x2/tQxLJPPAwBcu/wnRvXrWuT+ldlZaFnfvchtVY1ao8GomTPRYtAgtB8+HIOmTEHswwIzxxuXeU54mIAWni0wvPvw3L+HcS/K/rrqVwzpPATDuw/H//r+D9dv3CIcCo9eOLBzK4b27IBR/bvh7q3/cp//aflSHDuwxxRvswmAy7KQsBGm2HlVZdMJwtatW6s1bty4ma+vb8C0adO83N3dW0ZFRdkBxa/XnpWVRYKDgxs3adKkma+vb0Dnzp1z5x6ePXt23YYNGzZv1izAf++W9Y1FBLnrOZw8/xe6vD4JQf3Hol3wBJy7dA0A0GfMNOw9+mK99fN/XUfrvv8r93vZdfgUpowbBpFIhOruUowe0hc7Dp4oVC459Rmu37yL8cMHAgCGB/fCoydJuBf3sMRtBUnEYihVamQrGyszdwAAIABJREFUVfwyrgBmyb/F1/NnFrkolBVyBrAXcqmc9kuwPjpd+WdJ5zgOCekqr4fPlE0NLFfkWi7d+w7EJ/KlLx1fVTNpxAj8d+QIru7bh+AePTB9UYEbC4k49wN1dnHGvvP7cv8aNOJXY4y8FYmdG3di58md2Hd+H6ZOGqudseBrsCJHlbrA6IW1q5Zh29GzmCv/Cut//A4AcC/qLmLu3sHAoSNN9TadAeyWhYR9IQsJs4lz3mYThISEBPGMGTNk+/bti42Kiorw8/NTp6en5/6yFbde+/79+6UKhUIUGxt7JyoqKmL//v33AWDnzp3Sw4cPu/97/WrMrd/3IiHhUW572f0HjyH/9hcc27IK4Se2Y/uPX2LsjPnQaLR4a/QQbNp9ODeujbsOY9KY8s/Z8fBJIhrmWWlRVq8uHiYkFir36ElivpUdCSFo4FUbDxMSS9xW0DcLPsCbHy7CxFlyLP9sFo6e/gOeNaqjXevm5Y7dghEAiwDsgVxa6G6RqnoIIUEzZ86s6+/vHyCTyZqvXr26et5ts2bNqtu8eXP/GTNm1AOAhQsXegYGBvoHBAT4d+3a1Ts6Ojp3JsCEhAS7Dh06+DRq1KhZj549m16PeuCTlqWpvfq7UHwj/zT3mDs2rcVns6YDAA7t3o4PJ48rMrY9WzdicNcgjOrfDVvWFV4EqSCdTocv532Ewd3aYPyQPlj++QJMHjkIABAy4+3cO+ldm9cjqHEtKJX8UhFvjx6C8CuXkPDoIbo0a4ifv/0KYwZ2x6Aur+Di76fK+YkCDvb26N+tW+6aDe1atsSDJ0/ylWHFZZgDgQB6nR5KJb+wmy493a5enVrIKKJ5QcSIoNVooFIpIZFIwLIsli2ejzmLvyp3/OVEACwAsFcWEmbuPhFmZ7MJwvnz5519fX2VrVu3VgPAjBkz0iQSSe7CFIcPH3Zr1aqVn7e3d7Ovv/667t27d50AoE2bNsrY2FiH8ePHN1i3bp27nZ0dBwBnzpxxHfbaoCx3Q7IvY9A4vTN+eO6xTpz7C/fiH6HbsLfRqs8YjJg6BwxD8DAhEUP798CVf27jaVIKsrKVOHrmIsa+3t/Mn0b5dW3/Cq4e/Q1Xj/6GQP+m+PrnTVgy9z2sXLcNI6fOwYz5odBqbWaF1eHgmxwaCh0IVTpCCO7evRtx7Nix6JCQkAY5tYYAv4z77du37/7yyy+P16xZUz06Otrhxo0bdyMiIu6OGTMmberUqQ1yyl67ds1l9+7d96PvxUZ51pM5f/2F3LWiMcVERmD1d6HYsDcMu0/8AY1aVepr9m3bhIfx97H/7GVs3HcMMZF3cre179IdV/68AAC4fPE8mrVohfArl6BSKREdcRstgtoBADIzMuDj3ww7j53Hp198g2WL5xd1qHL5eetWDOrRI99zBjHJvbaqlCqM7jMaI3uOxOrlq2Ew8L//fs39MOHdCejfpj96tejFrVq3lVn1xVyk6J0KrWH94fzFeGfsUGz4aSXe+XAOdv22Ht169UXdeg0KFjWVYQDOyULCrLqPic0mCCXJWa9927ZtcTExMXe2b99+X6PREAAICAjQRkZG3hkwYIDi0qVLLs2aNWuWkpIikhCDgxPUHmANEiD/evIcOPTp1gH/nt6Z+5cQfhLejRvA0dEBIwf1xpZ9Ydhz9DR6dm4Lj+rVCsUU+uNGtOozBq36jMnXKTBHg7q18SDPnX784ydokKdGIUf9urXxNDkVej2f0HMch4cJiWjgVbvEbSWZF/oj5s+cjMTkVBw6eQF71n4DD3cpth04VvqHbT1agu+8+IrQgVAle++991IB/lxu27Zt5unTp3N/2KdNm5a7nPPhw4erXbx40a158+YBfn5+Ad9//33tJ0+e5CYTPXv2VNSq4yW6l5zlN2zcW+Irf56vcEx//3URnbv3Rk1P/lwb9cakUl9z9dIfCB46ChKJBBKJBINHjMnd1qHrq/j70gUYDAbcj4nChCnv4crFC/jn6mU0b/UKJMZmQXt7B/QaMBgA0CKoLR4/iKvwewCAb9atQ+zDh/j8g/zLN+uMDS41PWvi7M2z2HV6F9bvW4/wK+HY/PNmAMDjB49xNuwsjv19DLdu/5k9a8pYjHo3hFWzTKE2y94DBmPX8QvYsDcMjk5OOH/qOMZMnIJVoZ/jk2mT8MPXX7zU+yij9gCuykLC/M1xMCHYbILQvXv37KioKKecvgWrV6/20Ol0BCh5vfbY2FgJIQTjxo1TrFmz5jHHcXgQ+W/Nwd1eke4NO0Mys7LBcRzWbt2fe6x+r3bEmYtXcTPixWKBf9+4nfv/b40ego27DmPT7iPFNi+EzHgrN7no171Toe0jB/XGum37YTAY8Oy5ArsOn8LoIX0LlatVozpeCfTD1n38j/e+sLOoV6cWmjZqUOK24lwJvwlFRhb69+iMbKUKOXkRwzDIyi79LsjK1ARwFnJpB6EDocqOkBd3tzlLPAN8gjxr1qynkZGREZGRkRHR0dER0dHREbnbQUSxKVl+OuN0ycQ4zF8kEufeFQOAVq2pSEwv9Zo6XvUhsbPHsQN7EBDYEu07v4prly/i6p/n0b7zq7nl7Oztcl8nEonyxZ3XG6/3xah+XTFucO9ij79y0yYcOnMGB1evhpNj/tp3rXGZZzt7O3gYl4OXuksxbOwwhF/hR6iePnoa3v7eqFW7Ftx0Gru3Rr+Gy9f/ZXRabYnv++tFn+Ljz5bg+uU/kZKUiGWrNyAp8Qn+/utiia+rJDIAf1jrCAdBe5MJOV+Bl5eXftWqVfFDhw5tamdnx7366qsZTk5OrIeHh8HX11db3Hrt4eHhjgsXLqzHcRwMBgMZO+I1VZsmNbzQpAv+/vc2Xuk3Fm6uzhjQo3PusZo2aoDtPy7FO3O/hFKlhlanQ+vmftj+E99ZqV3r5hCJRLgX/wh9X63Yb8uEEcG49t8deHd5HYQQzJ46HoH+fP/Jw6cu4PCpC1i/fCEA4JfQ+Zg4axGW/rABbq7O2PidPHc/JW0rSKfTYe7SVdi7dhkAoEWADxo3rIfmPUeiRvVqOLD+2wq9FwtXDcApyKXBkCvMcoWyJFVhvoI1a9bU+O67755ERUXZXb9+3fWnn34qcq3xIUOGpP/www+eEyZMeO7p6WnQaDTk+vXrDp07d1YZOCI5f+FCteSkJHjUrIX9O35D+678D299WSNc/P0UDAYDtFoNzhw/AlnjpiXG1K5TV2z4aQVSk5NQo5Yn9mzZWOr7aNe5K44d3IsBr/Md64/s3ZVve4cur+Lnb5di6gdz4FatGsRiCU6HHcKK9dvK9Dnl9dvBkvsmrNq8GbuPHUPYunWo5uZWaLuaMYgAIC0lDW7V3CCRSKDVaHHm6Bn4B/I34PUa1sPBHQehVWq09mJid+D0H5A1bgKJXfELQJ44vB+Nm/rA278Zzp86hpw7FEIYKLPNNm1BDQBnZSFhPeNDg2+XWtqC2ER38+IMHjw444033kgHgC1btlQ7ffq0tEaNGgYA2Lhx4yMAuReOb7755ikAjBo1KmPUqFH8XURmYk1kPs29vZZ/9C7kH72bu/8lc9/L/f/e3dqjd7f2xcZy+/eXG5ojEonw09JPi9w2pO+rGNL3xV2Db1MZLh/ZXGTZkrYVJJFIcGHf+nzP5SQhNs4VwAnIpUMgV5wVOhgqP4PBAH9//wCVSsV89dVXD319fYu8RZ02bdqztLQ0cbdu3XyNryPjxo1LDXylnUhLJB6vtOuIkPenIDnxKRo0aowvvvsZAF/9fTrsEF7v0R6ederCr1kg1KqSa9O8/QLw7qy5eGv4QDg6O6NX/8Glvo8R495CTGQEhvXsAFdpNTRr0QopSS+aGdt37Y7dWzaggzFx6dDlVezf8Rt8Ayq3I/HjxESELF+ORvXqof/kyQAAezs7/LF9OwDg8x9/hF1TT7tRE0fhn6v/4KevfwIjYmDQG9C+S3tMnTUVANA7uDdu37iNET2Hi13sJHB0dGK/+mF9sbXcGenp2LV5PdZs42trO3fvjf07tmBEn87wqt8QnbsXX9thAjUB/C4LCesRHxp8p9TSFoJwHFd6qZcUHh7uJxaLT3h7e2c5OTmpTX7AMgoJCal94MCB6izLEhcXF8MPP/zwsEuXLsoyvTgrqQYyntBOaS9BrecQl5CCRpc+gkNWkTdxlk4JoL+t1iRUxfOeEBKUkpLyb86NQHllqnXO8WlKH47jqkTzbHZWJpxdXKHT6TBv5lT4B7bEpOkfmjUG7/THJRcQiXT3a7JlniRJxolUzjqV43NxraxHWudKnZ6a02uR/OQx5OeSkZBpkrmXkgH0iA8Njii1pAWw6RqE0NDQxNDQ0MJj+EqTneJBkwOqDJwAhEEu7Qu54orQwVAvR6XVOzxMU3pXleQAAKb+byh0Wg00Gg1at+2AsW+9I3RIhfDLPJctQWAIY3DSqhz5yZEcC41esAC1wNckdI8PDY4UOpiXZa4EgQX4Tj8WLzvVHYrHMqHDsAa5Xwdr+F4UzxXAccilvSBX/CN0MLaO47gK9YHQ6A2SuDSlt4EregIkU0lLTcG0cYUn7OzQtTtmL/gC246cKeJVVUt5lnl2YSQqArWLXuyk1GgZJ1PGZUKe4IdAdo8PDY4SOpiXYa4EIZ3jOL1Wq7VzdnauElWNFaJWuEDxqJHQYVgLpQ6AQQuJOk3oUEytGvgkoQ3kCqtsS7FmegMrikvN9tEb2OJ7y5mIR42a2H3SsluoyrPMsxvLEgDIgAtbWtkqrjb4moR28aHBCUIHU1HmShBSWZa9kJSUFCyRSHQMw1jeLaNBKyHPHzQm4Gxiik1T4jg+OUh+lo5qD45DZLCJ4ZC1AByCXNoFckXZ+rlQgmNZjsSlZjfV6llLrO6uEsq6zDMBOBe+eYGz0OaFguoCOCgLCesaHxpskTfGZkkQgoKC2PDw8IUqlSowNja2JlD+dcGFxTESdVptwuptus9GpTJoUe3BcdSO2S50JObUGsAmAKMEjoMqA47jEJ+W3VilM1RqRzlbU9Zlnh1FdiqRVuukFzsptZbbvFBQGwC/Aih6fu0qzmw/eEFBQQnh4eFdWJZtYM7jvizC6uF7aeYqkT67yJXbqArgOEjUabZSc1DQSMiln0GuMMtUb1TFPXquapCl0Ree1pQql7Iu8+zG8X3VrKB5oaCxspCwW/GhwaFCB1JeZv2hDgoK0gK4Z85jvjS59HMAfYQOg7IqiyGX3oJccVDoQMztrp9/kCn26x9596UmYIqKirI7dOiQdM6cOSkAkJql8ejY0q/mivXb4NfMfJPkxdy9g6ULPsGztFSIRCI0bxWEeUuWwcGx8LpAt//9B9/IQxB15zY6duuBlb9uK9O2vHQ6HT55dyISHj1AvYaNsGz1RojFYmjUarw7bhi+/3U73Kq9RI5kXOa5LEVddWp7DuCSdU7WuAjSl7KQsDvxocFHhA6kPKrMcJ0qSS4dCX7lLoqqTATAFsilVjk9qyWKiYmx37BhQ02AH86YqFBXyqo/OeualJWdgwM+XfINDp3/G3tO/QmVUomNq78vsmxNT098sugrfLzoy3Jty+uvC2fhVs0de079CVc3KS6d50dFrP1+GcZMnPJyyQGQb5nnktgxEo2dQS8xiJ1VWo6YdaSImTAAtslCwgKEDqQ8aIJQHLm0Ffj2YgvrL0FZCBcAhyGX1hA6EFuyb98+t4CAAH8fH5+Atm3b+oaHhzsAwPvvv98gPj7ewc/PL2BA8CB/1jjXwdnjRzDhtb4Y0Kkl1n6/PHc/qclJ+GTaWxg7qBeG9+6EH79ZkrttQMcWWLF0EcYO6oXPZk0rV3wNGzWBjz8/06FIJELzlq3x5NHDIst61vFCYOsg2NnZl2tbXmKxBGoV32dWrVJCIrFD9N3biIuNQb/BQ8sVe1HKtMwzADcwOgBQWF/zQl6uAA7LQsKql1qyiqAJQlHkUjcAB8FPdENRpiIDsB1yKU1CzSAhIUE8efLkxps2bYqPjo6OmDRpUsqoUaOasCyLH3744aFMJlOfvBSevWrjztzrYmaGAlsOncL2o79j8y+rkPT0CQBgwazpGP3G29h+9Cx2nfgDd27+i1NHX7QYKZ4/x7YjZ/DVD+sqHK9SmY39O7ege9+BL/GuS9axWw84u7hiZN8ucHFzQ7vO3bD88wWYu/irStl/3mWeS+Jq0In55oUi2lKsSxMAZZvLvgqwmM6CZvYtADpTImUOfQC8A2CN0IFYuwsXLjj7+Pio2rVrpwL4tRbmzJnTIC4uju9ERxiRQqXLV6Mz0LgQknt1D3g1kCHh0QO4SqX4+9IFPEtNzi2nzM5GfOyL7lVDRv6vQisy5tBptZgzfRI6duuBXgMGVXg/pWEYBou+edGEsXX9avToNxB6vQEhM96GVqvF6DffRvvO3Sq0f10ZGgtEjEjnqFY56MXOSp2W2MJN2SBZSNjE+NDgTUIHUhqaIBQkl/YD8LbQYVA2ZRnk0hOQK+KFDsRW6TlIwIgKTYRkZ/9iOL6IMS6HbJz5c8uh07B3KHq4vlMxSwjERkfi0/enAABatWmPeV8uL1RGp9Phk+mTULNWbcxdbL6O708eP8TF309j9da9WDBrGoaPm4iAwJYY/1pfHDh7uUL7zFnmuSQuRKwhgMQKRy+UZKUsJOxsfGhwlZ44jTYx5MU3LVS8TpCiKsYFwK+0qcG0unfvnh0dHe147do1BwBYu3atu6enp66hTKY32LnVyczMKNN+nJxd0LZTV2z4eWXuc8mJT5H0tPQJ85r4+GH3yYvYffJikcmBXq/H3PcmQ1rNHQu/XvlStRDl9c2iT/HJoi/BMAxUSiUICAjDQK3MrvA+1Yyh1JtQN4OB4UBsoXkhLyn4+RGqNJog5PcdADrfASWEngDeLbUUVWF169bVr1+//v6bb77ZyMfHJ2DdunW1du3aFZucqa3TyDfAoYmPH4b16oiZb/2v1H0tXbUWD+PvY1ivjhjeuxNmT30D6c+fvXSMJ4/sx9njRxBx8wZG9++GUf26Yun8j3O3v/fGSNz57wYAID42Bn3aNsPyz+fjrwu/o0/bZti1eX2p24py7MAe+AQ0R1NffwDApOkf4utFczE2uCemfPBJhd+PmjGUOAcCIYR10aoc9WInlc46Ry+UpI8sJKxKn/NmWe7ZIsil/QEcFzoMyqZlAQi0lqaGqrjcc0FqncE+JjmrGcfRKdQrqtjlnsuwzLOLyD67oSrTOVXsmfVE62TyGSvNsNxzeWUBaBkfGnxf6ECKQmsQANq0QFUVLgA20KYG80lIVzWgyYFp8Ms8l8yV5TgOhEuxreaFvFwAbJSFhFXJ7yBNEHjfAagndBAUBaAHgPINnqcq5Fm21j1bo3cTOg5rVZZlnt10Kge92Elpg80LeXUDMEPoIIpCEwS5tDOAyUKHQVF5fA25tJbQQVgzA8sxiQo17W9kQqUt8+wgslOJWYNYAboWFoDFVXECJZogAF8LHQBFFeACOsW3ST1VqOrq2ZLbx6mXoytl/IIrRww2OHqhOO4AFgsdREG2nSDIpYMBdBY6DIoqwjuQSxsJHYQ1Umr1Ds+zdbSGxsQ0DFtis4GbXiPRi52Veo7Y9u/QC+/KQsL8hQ4iL9v9h5FLGQBLhQ6DoophB4AuCW0CT9LVDTjQjommVtIyzxJGrHXQa+3TafNCXmIAy4QOIi9bnklxPIDmQgdBUSX4H+TSbyBX3BQ6kEojl5pkuWfIFWVa7lmh0rkqtXpXk8RAvVDKMs8uRKTlQCQpOgfavJBfsCwkrEt8aPCfQgcC2GoNglxqD+BzocOgqFIwACpn1RwKALB15+4Gr/doj1H9uiLm7p1K2++1y3/i0rkzFX79zRvXMbJvFwzu1gZvjx6SuyhUcdQqFYb27IBR/brmPndw1zaM6tc19+/VFk0wa8qEIl//y8plGNqrI8YP6YMnj1+sFvnZrOm4ce1Khd9HrlKWeXbT6xnavFCsKnPO2+o/zjTQxZgoyzAQcmnFVsqh8lGodG47ftvo8M4Hn2D3yYvw9m9WKfvV6/W4fvlPXLpwtkKvZ1kW896fik/kX+HIH9fRtUcfLFs8r8TXrPxKjlZt2ud77vXR43Kncd598iI8atZC8NCRhV6blZmBsAO7sffUnxj9xmTs2MhPAXP5j3NwcHRE67YdKvQ+8r2nEpZ5ZghjcNapHGnzQrG6yELCgoUOArDFBIGfFGm+0GFQVDnQkTaVYPr092T//H0Fq775Am+83hcAcOn8WYwe8CpG9OmMSSOCERsdCYCvEch7dx4TGYEBHVsAABIePUSXZg2xYukijB7wKnZuWoc9Wzfi2IE9GNWvK9as/KZccUXc/BcisRjtOvHHGzF+Ii6cOQGNuujJJ69cPI/kxKcYWMSPf46bN67jWVoqXu0zoNA2RiQCazBAr9NBpcyGRCKBSqXE2u+X4YNPF5Ur9uKUtMyzMyNRA4SjzQslkgsdAGCbfRA+BFCj1FIUVXV0gFw6CHLFUaEDsVQZKp3r3C++kURHRmDc5Gno2T8Yaakp+PT9Kfh19xF4+zdD2IHd+PjdidhfhpULMzMy0NTHH7PmLTY+ViAzQ4E58vLXDic+eYw6Xi+mZHB2cYWziytSkhJRr6Es//tQKLBi6SL8vGUv7sdEFbvPgzu3YtCw0ZBICvcTdHJyxoQp0zHhtT7wqOmJJSt+xs/Lv8IbU2fAxbVy5o0qaZlnN5aFTuys0muJc6UczDq1kYWEdY4PDb4kZBC2VYMgl9oBmC50GBRVAbOEDsCSpWRqahd87taN6/D2C8htaggeOgopSU+RnFhy+z8AiCUSBA8bVfmBluKrzz7B2zNmw6NGzWLLKJXZOHF4P4aOGV9smdFvvo3dJy9i9da9SHr6BElPE9C5ey8snf8xPn53IrZt+OWl4tQUv8wz56pVOdDmhTL5QOgAbCtBAMYA8BQ6CIqqgJ6QSwOFDsISZWv0jtna8k2pLBKJYDC8mClYq9Hk2+7o6AiGKdvlM0OhyO04+OHbhX+0a9eth6cJj17Em5WJrMwM1PQslNPg32tX8N2SzzCgYwvMfW8yYmOiMOTVtvnKnD56CE18/NDEx6/U2PR6Pb5d8hnmyL/C0QO74e5RA8vXbMLvJ47i8YP4Mr2/omiKWebZUWSnZjiO0OaFMhkqCwkTdLZPW2tiEDwjo6iXMBPAFKGDsDRF1R4AQItX2iImMgIxkRHw9gvA8UP7ULN2XdSqXReEMHia8BjP0lJR3aMGju7fVeIxnF1c8eTxoyK3uUml2H3yYrGvDWjRCnqdDn//dRHtOnXF3q2b8Grv/rB3cChU9vjlFyNer13+E8vknxba94GdW0qsPcjrt7U/YuDrI1CjlidUSiUI4aeHIIRApcwu0z6KUtwyz24cMejELioDbV4oCzH4Gu9PhQzANvBrLrwidBgU9RLGQS4NgVyRJnQgFVbG+Qoqi97AijI1eveitlX3qIGvVq3FglnTYNDr4SathuWrN4IQglq162DiuzMxbnAveNSohS49epd4nJ79B+Ho/l0Y1a8reg4YjHc/nFPmGBmGwdJVv+CLkFnQaDSo5VkbX36/Jnf7e2+MxPSP5qFZy9al7is+NgZREbfRb/DQUss+io/D9ct/4qff9gAABg0dhVlTxuPU0YNo1bZ9xUd5iEQ6FkVPY+2mU9ulkxolDoGk8pkqCwn7PD40WCXEwQnHFdvZ1LrIpVsBjBM6DIp6SR9BrvhO6CDKIjw83E8sFp/w9vbOcnJyKrpLvomlZGpqPFWo6JBmE/JOf5zvMedgp4qrpivUhGDHiDVN1SpJBNcQBoHmP+D0WiQ/eQz5uWQkZJa62GRVMTU+NHidEAe2jT4Icqk7gOFCh0FRlYA2MZTDc6WWjlgys+KWeXYlIp1O7KISKjmwYDOFOrCt/ENNAFC4QY+iLI8f5NIuQgdhCVRag4NaZ6Bt3WamK2YOBFe9TvSco6MXKqC5LCRMkMnSbCVBoHddlDWZKnQAZcQCgFDNmM+ytR6CHNjG6USFf1dEhNE76bV2qXoHJyFiKoi1vJZ184+phS0kCHJpa9BFmSjrMhxyqSUME0vnOE6v1WrtzH1gjuOgUOlogiAADcMW+l1xYSRqnchZbeAg6CqanEEPA8siW8sKGUZFDJOFhJn9s7OFUQxDhA6AoiqZE4DeAI4IHUgpUlmWvZCUlBQskUh0DMOY7b4tU61z1mk1xS43TFUeDZv/xzbboJWwBZ6z1+qYZNYFnF5rztDy4zioMp7jZqIamVqLq0KoA6ATALPOrEgTBIqyTENQxROEoKAgNjw8fKFKpQqMjY2tCZjv7lGhYWtq9Bb3I2CRiOp53odciib/7woB4RiDwT6Rq86wnJAVCByeK/XYeTsTFvrNGAEzJwjWPcxRLvUC8LjUchRleRIB1IVcUeVP4PDwcDsADWCmG5IMDSv67FzaVQ6gHRRNjeOw9uyy3Idae3H83Dchy1vEk2NuzXtK9G+rPyh9IgcTMrBAqtIAC84bHwFoGB8abLZ3YO01CIOFDoCiTKQ2gLYA/hY6kNIEBQVpAdwz1/FkIWFdQZMD8+A4ME+f5j7MdEPyU61YlrfIgHTF843PRjkkGCxm3oGqqj7MfM5beydF2rxAWTOaABetr9AB2KpEd5J/xj+O40ZkZNc9aOjSUqCQrM0Icx7MehMEudQZQE+hw6AoE6IJcNFogiCQB7Xy9zNx4rjIbF2dJC0k9kLFZGXMOuGf9SYI/EWCfikpa9YCcmkDoYOoSmQhYdUBtBE6DlsV50nyzXPQTalKWm8YaPZhrlassSwkrJG5DmbNCQK9u6JsAf2e59cb1n1dq9IeeJJ8c0+MyFC6HTJ0ps0LlaujuQ5kzSdSycuvUZR16CN0AFUMbV4QCAdwT6qjbs5jEcc9cVXVVOogpjUIlauTuQ5knQmCXOoJoJ7QYVCUGQRpf61cAAARb0lEQVQJHUAVQxMmgbAESXoxyW3WDdRo763TB9M1cCofTRBeEr1oUrbCy5gQ2zxZSFhj8PMtUAJQ2iM57+PXM1TkCNuRNi9UvhaykDCzDOOlCQJFWT76fee1EDoAW5bmhozcBxyXWT/Lg9VDTKe7rnwiAO3NcSCaIFCU5aPfd16g0AHYssc1SO5MSPX1+jtbdQPp2s6mY5ZmBpogUJTlo993Hk0QBBTvSXJrC/pmarLD2A60ecF0aIJQIXJpLdAOipRtoQkCjyYIAorzhBsAgOMMTRWenAEia5/KX0i0iaGC6MWSsjX1jImxzZKFhDkA8BY6Dlv2qCapDQBuLHvnhLZ3daHjsXLVZSFhNU19EJogUJR1sPXvfQD4zluUADggO92F1ACAjkp90nG2He0wanomT4itMUGgX0zKFtl6ey9tXhCQVownOf/fJL2ugTYvmIWPqQ9gjQkC7X9A2SJb/97TBEFAGU54BgASjov7T9nNppu7zIjWIFRAHaEDoCgB2Pr3vqnQAdiyRHeiBgB/NXv/FNvW1muzzMXkizbRBIGirEPd0otYNXreCyhnmed66fXVLBjaF8Q86pv6ANaVIMil1UGXeKZsk63/QNr6+xdUnCdxIhz3PCWjE/13MB+aIJQT/XJStqq20AEIjK5HIaAHnsSjjo7cOs++QpsXzMdLFhJm0t9wmiBQlHWwN9ag2RxZSFh1AHRJYYHkLPPsoZBl0uYFsxIDMOlcCNaWINh6Oyxl22z1+2+TiVFVwRIk6UUg6ucdbfX7JyQnU+7c2hIEWoNA2TJb/f67Cx2ALVPaI8nFwNy8YQikzQvm52jKnVvbZBa23g5L2TZbTRCqCR2ALUtzQ6ZjZuMsDoy13XBaApMmCNb2D0qXF6VsmbPQAQiEJggCelyD6PXPOtObM2HQJoZykJRehKKslrXVCJYV7aAooGduEuUjrR+d4l4YtAahHGz1AklRgO1+/w1CB2DL7jv7sLR5QTA0QSgHW71AUhRgu99/miAI6JZjR5NP2EMViyYI5UDH4FK2zFa//zRBEAoheCL2pc0LwqF9EMqBXigoW8YKHYBA6HkvLCJ0ADaMzqRYDnqhA6AoAdnq958mCJStUphy5zRBoCjrYavff1t93xSVYcqd0wSBoqyHrX7/aQ0CZatoDUI5ZAsdAEUJSCl0AAKx1cSIomgNQjkkCh0ARQnoqdABCCRN6AAoSiC0BqEcbPUCSVGA7X7/E4QOgKIEQhOEcrDVCyRFATb6/Y8PDU4DoBY6DooyMzY+NDjLlAewtgThidABUJRAdABShQ5CQPTcp2yNSfsfANaXINjkHRRFAUiEXMEJHYSAaDMDZWtM/ntnbQlCGvg7KYqyNbaeHNMEgbI1UaY+gHUlCPwdFB3JQNkimiBQlG2hCUIF0LZIyhbZ+veeJgiUrYk29QGsMUGgFwrKFtl6gvBI6AAoysxoDUIF3BI6AIoSwE2hAxCYrb9/yvbQBKECwoUOgKIEYOvf+xiYYdgXRVURz+JDg00+rJkmCBRl+ZIgV9h001p8aDAH4IbQcVCUmZi8/wFgjQmCXPEEdCQDZVtoUsy7LnQAFGUmJm9eAKwxQeD9I3QAFGVGNEHg0c+BshVmSYatNUGgFwrKltDvO49+DpStuGSOg9AEgaIsH/2+82hHRcoWZMJMo3ZogkBRli0ZcsVjoYOoCowdFWnzImXtrsSHBhvMcSDrTBD4C2aS0GFQlBnQZDi/K0IHQFEm9oe5DmSdCQLvd6EDoCgzOCt0AFXMSaEDoCgTO2OuA1lzgnBY6AAoygzo9zy/S+DbaCnKGmUAuGaug1lzgnACdOlnyrpFQa6IETqIqiQ+NFgHM95hUZSZnTdX/wPAmhMEuSIdwEWhw6AoE6K1B0U7JnQAFGUiZm1Cs94EgUcvoJQ1OyJ0AFXUEQCs0EFQVCUzANhnzgNae4JAL6CUtUoD8JfQQVRF8aHBSQAuCx0HRVWy343fbbOx7gRBrrgP4I7QYVCUCRyDXGG2tkgLdEDoACiqkm039wGtO0Hg0WYGyhrR73XJaIJAWRM1gP3mPihNECjK8mhBx/uXKD40+D6AP4WOg6IqybH40GCzTyNuCwnCVQCxQgdBUZXoMOQKOta/dGuEDoCiKskOIQ5q/QmCXMEBWC90GBRVidYJHYCF2Au+MydFWbIMAEeFOLD1Jwi8jaCTJlHWIQ7AaaGDsATxocEaAJuEjoOiXtLB+NBgtRAHto0EQa5IAh3ySFmHX421YlTZ/AKAfl6UJftRqAPbRoLAo+2RlKXTAdggdBCWJD40OAbAOaHjoKgKuhAfGmy2tRcKsp0EQa44DeCu0GFQ1EvYA7niqdBBWCB6c0BZqmVCHtx2EgTeKqEDoKiX8L3QAViogwDMOgMdRVWCCAi8roitJQi/AXgudBAUVQFXIFf8LXQQlsi4wiNNrihLszw+NFjQ/jO2lSDIFUoAa4UOg6IqYKXQAVi4VQBShA6CosroCYBtQgdhWwkCbzn4caUUZSluAtgjdBCWLD40OBvAV0LHQVFl9H18aLBW6CBsL0GQK1LBJwkUZSnmQa6gyxe/vNUAEoQOgqJKkQl+eK7gbC9B4H0H2mmJsgwXIVeECR2ENTBONrNE6DgoqhSh8aHBCqGDAGw1QZArsgF8IXQYFFUGc4UOwMr8Cn42SoqqiuLB38BWCbaZIPDWgi7iRFVthyBXXBY6CGtiHNGwWOg4KKoYnwg1rXJRbDdBkCt0AD4TOgyKKoYBwDyhg7BSWwFECh0ERRVw4f/t3WuMXVUZxvE/AtaCZlvAS8WYYxrBCAgK0WggQauJyW5KQYFSLaBBhIKtFIKbAHYVqVmtoYgUKAFDAhEbkYCFQxGiXGKjREhakYsSZXEttmDdbRGmzHT8sE7Tcc5g53LOeffl+SU7nW/zNJnZ85y1135X8OmvrEMMVd+CEK0C1lmHEBnBLbj8SesQVRR8OgDMt84hMsQOYIF1iOHqXRDioTcXWccQGaYPWGQdosqCT+8nDk4TKYIbg0/XW4cYrt4FAcDl9wK3W8cQGeIyXP68dYgaOA/YaB1Cai8HLrEOMRIVhGge8Kp1CBHgUWCpdYg6CD79FwVc1pXaccGnhZzyqYIA4PKNwDnWMaT2+oDTcfmAdZC6CD5dBdxtnUNq6/cU+BBBFYSdXP5LoFA7SKV2FuPyJ6xD1NA84vQ6kV56HTg9+LSwU1JVEP7XPHSgi9j4E7DMOkQdBZ++gDYrS+9dEHxa6Fk8KghDuXwTetQgvadHC/auBR6yDiG1sSb4dKV1iN1RQRjO5behk/OktxZp5oGt4NNB4BT0VoN03wbgNOsQo6GCMLJ56EYhvfEIOl20EIJPNwBziENrRLphBzC3qG8tDKeCMJJ4JPSJwFvWUaTS/gmcqEcLxRF8+lt0VoN0z9LWz1gpqCC8HZc/DJxrHUMqaztwAi5/wTqItLkc0BHb0ml3U7Lzf/YYHBy0zlBsLrmG+MhBpJO+hctvsg4hI2tkzYT4+Odg6yxSCeuAY4JPt1kHGQutIOzeAuAB6xBSKVepHBRb8GkOzAK2WGeR0nsJmFG2cgAqCLvn8n7ifoR/WEeRSrgfON86hOxe8OnTwGyg3zqLlNY2Yjl4yTrIeKggjIbLXwNmomlrMjHPACdrU2J5BJ+uAeaiNxtk7AaA2cGn66yDjJcKwmjFEbjfALRpQ8ZjCzATl2+2DiJj0zqv4SzrHFI63ws+LfVmVxWEsXD5avRmg4zdG8AsXP60dRAZn+DTG9CjIRm9K4NPV1iHmCgVhLFy+bXoRiGj1wccj8u10bXkgk+XA5dZ55DCWx58utA6RCeoIIyHy5cDl1jHkMJ7CzgJl//GOoh0RvDpIuBK6xxSWEuCTyvzAVJzECbCJYuBH1jHkELqB07B5TpCvIIaWfMG4AzrHFIolwafXm4dopO0gjARLl+EVhKk3XbgayoHlXYmOkNDdrmwauUAtILQGS5ZCFxhHUMK4U3iCOU11kGk+xpZ8xzgp+jDVl0NAguCT6+2DtINKgid4pJ5wNXoRlFn24DjcPnvrINI7zSy5nHAL4DJ1lmkpwaAs1tvuFSSCkInuWQGcCvwHuso0nOBOOfgcesg0nuNrPlZ4C7gfdZZpCc2E4cg3WcdpJtUEDrNJZ8AVgPTrKNIzzxE3HPwqnUQsdPImtOANcDHrLNIVz0OzAo+rfz4fS2Hd5rLnwQ+A5TmzG+ZkJXAl1UOJPj078DngbXWWaRrbgM+V4dyAFpB6B6X7AUsB75rHUW6oh+Yj8uvsw4ixdLImnsBPwQuRB/CqmIHcHHwqbcO0ksqCN3mkjOAa4B3WkeRjnmN+EjhQesgUlyNrDkduAWYap1FJmQzMCf49F7rIL2mgtALLjmauDT1QesoMmHriaOTn7UOIsXXyJoHADcBM6yzyLg8Any99fiodlQQesUl+xFfg5xjHUXGpR9YClyGy7dbh5FyaWTN+cAyYJJ1FhmV7cBiYGnwaW2PZ1dB6DWXHA9cB3zAOoqM2l+A03H5Y9ZBpLwaWfNwYBXwcess8n/9GTg1+HS9dRBr2kDTay6/AziEOFhFim0A+BFwpMqBTFTrD86niBsY+4zjSLs3gYuBo1QOIq0gWIqrCSuB91tHkTZPEFcNHrUOItXTyJoHETcvf8k6iwDwIHBm8Okz1kGKRAXBmkv2B1YAs62jCBBXDZYBi3G5PuVJVzWy5snEn7ePWGepqQBcCvw8+FR/DIdRQSgKl3wB8MQhS2LjTuDi1rArkZ5oZM3JwAXA94F9jePUxUZgCbAy+FSbjt+GCkLRuOQE4nPvg62j1MjDQIbL/2AdROqrkTU/BDjgNDQ3pVu2Ek/evSL4dJt1mKJTQSgil+wJfJN4szjQNkylrQcu0tHMUiStorAQ+A7wbuM4VdFH3O+1JPh0k3WYslBBKDKXTCaOas6AKcZpquRZ4nPHW3G5fgGkkBpZcz/gXGA+sL9xnLLaCtwM/Dj49DnrMGWjglAGLnkvcB5wNjpOdiKeAX4C3KhhR1IWjay5L/Bt4Hzgw8ZxyuIp4lsiNwefbrUOU1YqCGXikknAKcAC4AjjNGVyP3AVcI9WDKSsGllzb+Ak4FRgOrCnbaLCGQB+DawIPn3AOkwVqCCUlUuOAc4CvorGt45kM/GgnOv1VoJUTSNrTiV+WJiLPixsAH4GXB98+qJ1mCpRQSi7eMbDXOIS5CHGaYrgIeAG4HZc/qZ1GJFua2TNw4j3gDnUZ1Pz34ivJd8J/FEzDLpDBaFKXPJJYGbrOgrYwzZQT7xFLAWrgbtwebCNI2KjkTXfARwLfIX4COIIqjNOfxB4lFgI7gg+fco4Ty2oIFSVS6YSj5idSbxZTLYN1FGbgXuIpeBeXL7FOI9I4bTegjiW+Ps/nfLNVnkZWEscg7xajw96TwWhDlyyD3Hm+0zgi8BHbQON2QBxV/J9xFKwFpf320YSKZdG1jyQWBSOBg4HDgX2MQ21y+vEuSSPAY8Aa4NPg2kiUUGoJZdMAT4NHDnkmmaaaZcB4EnijWLntR6X/8c0lUjFtB5JTAMOI64uHDTkOqAL33Ir8DzwXOvf54lnIawD/hp8uqML31MmQAVBojhrYWdpOJS42Wlq6+r0kKZBYBNx9/EG4EXiTWJnGXijw99PRMagkTUnAfsRf/eH/rvz6ynE1yy3D7v6hn39Cq0yEHz6797+L2SiVBBk91zyLnaVhaHXZGCv1rU3cUPUANBP3DzYD2wjloCX2VUIXtEjAhGRYlNBEBERkTZVeQVGREREOkgFQURERNqoIIiIiEgbFQQRERFpo4IgIiIibVQQREREpI0KgoiIiLRRQRAREZE2KggiIiLSRgVBRERE2qggiIiISBsVBBEREWmjgiAiIiJtVBBERESkjQqCiIiItFFBEBERkTYqCCIiItJGBUFERETaqCCIiIhIm/8CwXQKa6zjgMwAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, - "metadata": {}, + "metadata": { + "needs_background": "light" + }, "output_type": "display_data" } ], "source": [ - "plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))" + "plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Análisis de la CPU" ] }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 122, "metadata": {}, "outputs": [ { @@ -6112,7 +8550,7 @@ 1 ] }, - "hovertemplate": "function=%{label}
time_sum=%{value}
parent=%{parent}", + "hovertemplate": "function=%{label}
cpu_mean=%{value}
parent=%{parent}", "labels": [ "Py_kgeneration", "generate", @@ -6166,20 +8604,20 @@ ], "type": "treemap", "values": [ - 415.639768, - 329.579564, - 86.059132, - 85.89417, - 242.61094399984552, - 0.15176299999999998, - 34.67470900000529, - 74.07991799999752, - 0.001935, - 0.002618, - 0.001551, - 0.003504, - 0.002481, - 0.0007800000000000001 + 39.623390375, + 39.95615625000001, + 38.34373725, + 38.374862375, + 4.585811751037405, + 21.86151395833333, + 1.2108900187277127, + 1.2193375291062964, + 0.0125, + 0.025, + 6.2875000000000005, + 0.025, + 0.008333333333333333, + 0.00625 ] } ], @@ -6994,14 +9432,14 @@ } }, "title": { - "text": "Time treemap" + "text": "CPU treemap" } } }, "text/html": [ - "