import numpy as np import matplotlib.pyplot as plt from Var_analytical import * rdir='./data/' clabels=[r'$K_{perm}$',r'$K_{diss}$',r'$K_{average}$',r'$K_{1/3}$','analitycal Gaussian cov'] cases=[r'$Lognormal \ \sigma^{2}_{\log(k)} = 0.1$',r'$Lognormal \ \sigma^{2}_{\log(k)} = 7$', r'$Binary p = 0.2; k+/k- = 10^4$'] scales=np.array([4,8,16,32,64,128]) variances=[0.1,7,13.572859162824695] x=scales/512.0 lcs=[16,16,8] va=VarLgauss(16/2.45398,scales,3) for i in range(3): kpost=np.zeros((len(scales),4)) for scale in range(len(scales)): kpost[scale,0]=np.nanvar(np.log(np.load(rdir+str(i)+'/kperm/'+str(scales[scale])+'.npy')))/variances[i] kpost[scale,1]=np.nanvar(np.log(np.load(rdir+str(i)+'/KpostProcess/Kd'+str(scales[scale])+'.npy')))/variances[i] kpost[scale,2]=np.nanvar(np.log(np.load(rdir+str(i)+'/KpostProcess/Kv'+str(scales[scale])+'.npy')))/variances[i] kpost[scale,3]=np.nanvar(np.log(np.load(rdir+str(i)+'/KpostProcess/Kpo'+str(scales[scale])+'.npy')))/variances[i] plt.loglog(x,(x**3)*kpost[:,0],label=clabels[0],marker='x') plt.loglog(x,(x**3)*kpost[:,1],label=clabels[1],marker='s') plt.loglog(x,(x**3)*kpost[:,2],label=clabels[2],marker='^') plt.loglog(x,(x**3)*kpost[:,3],label=clabels[3],marker='o') if i==0 or i==1: plt.loglog(x,(x**3)*va,label=clabels[4],marker='',linestyle='--') plt.vlines(lcs[i]/512.0,((x**3)*kpost[:,0]).min(),((x**3)*kpost[:,0]).max(),label=r'$lc = $'+str(lcs[i])) plt.xlabel(r'$\lambda / L$') plt.ylabel(r'$(\lambda / L)^3 \sigma^{2}_{\log(K_{eff})} / \sigma^{2}_{\log(k)}$') plt.legend() plt.grid() plt.title(cases[i]) plt.tight_layout() plt.savefig(rdir+str(i)+'/Kpost_var.png') plt.close()