import numpy as np import matplotlib.pyplot as plt rdir='./data/' clabels=[r'$K_{perm}$',r'$K_{diss}$',r'$K_{average}$',r'$K_{1/3}$'] names=['Kperm','Kdiss','Kaverage','Kpower'] cases=[r'$Lognormal \ \sigma^{2}_{\log(k)} = 0.1$',r'$Lognormal \ \sigma^{2}_{\log(k)} = 7$', r'$Binary p = 0.2; k+/k- = 10^4$'] scales=np.array([4,8,16,32,64]) lcs=[16,16,8] est=3 ranges=[(-0.5,0.5),(-5,5),(-4,4)] for i in range(3): for scale in range(len(scales)): if est==0: keff=np.log(np.load(rdir+str(i)+'/kperm/'+str(scales[scale])+'.npy')) if est==1: keff=np.log(np.load(rdir+str(i)+'/KpostProcess/Kd'+str(scales[scale])+'.npy')) if est==2: keff=np.log(np.load(rdir+str(i)+'/KpostProcess/Kv'+str(scales[scale])+'.npy')) if est==3: keff=np.log(np.load(rdir+str(i)+'/KpostProcess/Kpo'+str(scales[scale])+'.npy')) plt.hist(keff.reshape(-1),label=r'$\lambda = $'+' ' +str(scales[scale]),density=True,histtype='step',range=ranges[i]) #plt.semilogx(scales/512.0,kpost[:,1],label=clabels[1],marker='s') #plt.semilogx(scales/512.0,kpost[:,2],label=clabels[2],marker='^') #plt.semilogx(scales/512.0,kpost[:,3],label=clabels[3],marker='o') #plt.vlines(lcs[i]/512.0,kpost[:,0].min(),kpost[:,0].max(),label=r'$lc = $'+str(lcs[i])) plt.xlabel(r'$\log(K_{eff})$') plt.ylabel(r'$P(K_{eff})$') plt.legend() plt.grid() plt.title(cases[i]+' '+str(names[est])) plt.tight_layout() plt.savefig(rdir+str(i)+'/Kpost_dist_scales_'+names[est]+'.png') plt.close()