import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import ListedColormap, LinearSegmentedColormap def plotK(kk,pdir,logn): y=np.arange(kk.shape[0]) x=np.arange(kk.shape[1]) newcolors = np.zeros((2,4)) alto = np.array([0.0, 0.0, 0.0, 1]) bajo = np.array([191/256.0, 191/256.0, 191/256.0, 1]) #[108.0/256, 122.0/256, 137.0/256, 1]) alto = np.array([204.0/254, 0.0, 0.0, 1]) bajo = np.array([0.0, 0.0, 153.0/254, 1]) #[108.0/256, 122.0/256, 137.0/256, 1]) newcolors[0, :] = bajo newcolors[1, :] = alto newcmp = ListedColormap(newcolors) if logn==True: kk=np.log(kk) vmin,vmax=-2*np.var(kk)+np.mean(kk),2*np.var(kk)+np.mean(kk) #print(vmax) colormap='viridis' plt.pcolormesh(x,y,kk,cmap=colormap)#,vmin=vmin,vmax=vmax) else: #colormap='binary' plt.pcolormesh(x,y,kk,cmap=newcmp) cbar=plt.colorbar() cbar.set_label('k') #plt.title('Guassian N(0,1)') plt.savefig(pdir+'k.png') plt.close() ''' if logn==True: plt.hist(kk.reshape(-1),range=(2*vmin,2*vmax),histtype='step',bins=250,density=True) plt.xlabel('k') plt.ylabel('p(k)') plt.savefig(pdir+'histo.png') ''' return def plotK_imshow(kk,pdir,logn): kk=np.rot90(kk) y=np.arange(kk.shape[0]) x=np.arange(kk.shape[1]) newcolors = np.zeros((2,4)) alto = np.array([0.0, 0.0, 0.0, 1]) bajo = np.array([191/256.0, 191/256.0, 191/256.0, 1]) #[108.0/256, 122.0/256, 137.0/256, 1]) alto = np.array([204.0/254, 0.0, 0.0, 1]) bajo = np.array([0.0, 0.0, 153.0/254, 1]) #[108.0/256, 122.0/256, 137.0/256, 1]) newcolors[0, :] = bajo newcolors[1, :] = alto newcmp = ListedColormap(newcolors) if logn==True: kk=np.log(kk) vmin,vmax=-3*np.var(kk)+np.mean(kk),3*np.var(kk)+np.mean(kk) #print(vmax) colormap='viridis' plt.imshow(kk,vmin=vmin,vmax=vmax) #,cmap='binary' else: #colormap='binary' plt.imshow(kk,cmap='binary') #,cmap='binary' plt.colorbar() #cbar.set_label('k') #plt.title('Guassian N(0,1)') plt.tight_layout() plt.savefig(pdir+'k.png') plt.close() ''' if logn==True: plt.hist(kk.reshape(-1),range=(2*vmin,2*vmax),histtype='step',bins=250,density=True) plt.xlabel('k') plt.ylabel('p(k)') plt.savefig(pdir+'histo.png') ''' return def plot_hist(k,pdir,logn): plt.figure(1) if logn==True: k=np.log(k) vmin,vmax=-4*np.var(k)+np.mean(k),4*np.var(k)+np.mean(k) plt.hist(k.reshape(-1),range=(vmin,vmax)) else: plt.hist(k.reshape(-1)) plt.xlabel('k') plt.ylabel('Counts') plt.savefig(pdir+'-histo.png') plt.close() return rdir='./perco_lc8/' for i in range(11): k=np.load(rdir+str(i)+'/k.npy')[:,:,0] log='False' plotK_imshow(k,rdir+str(i)+'Map',log) #plot_hist(k,rdir+'Res/'+resname,log)