{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd " ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['12:30:24', 'INFO', './lib_src/generate.c:61:', 'TOTAL', 'VIRTUAL', 'MEM', '=', '7683.0', 'MB,', 'USED', 'VIRTUAL', 'MEM', '=', '304.2', 'MB,', 'USED', 'VIRTUAL', 'MEM', 'BY', 'CURRENT', 'PROCESS', '=', '1072', 'MB']\n", "['12:30:24', 'INFO', './lib_src/Py_kgeneration.c:64:', 'TOTAL', 'VIRTUAL', 'MEM', '=', '7683.0', 'MB,', 'USED', 'VIRTUAL', 'MEM', '=', '303.6', 'MB,', 'USED', 'VIRTUAL', 'MEM', 'BY', 'CURRENT', 'PROCESS', '=', '1072', 'MB']\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
function_nameelapsed_timeexecutions
0./lib_src/Py_getvalues.c:157:0.0000071
1./lib_src/ran2.c:68:0.000004142
2./lib_src/gasdev.c:35:0.000023151
3./lib_src/gasdev.c:43:0.000003202
4./lib_src/generate.c:75:0.0109571
5./lib_src/maxfactor.c:42:0.0000041
6./lib_src/length.c:47:0.0000131
7./lib_src/cgrid.c:50:0.0000601
8./lib_src/cov_value.c:60:0.00001176
9./lib_src/covariance.c:86:0.0121621
10./lib_src/fourt.c:593:0.0000652
11./lib_src/prebuild_gwn.c:57:0.0000091
12./lib_src/build_real.c:50:0.0000191
13./lib_src/clean_real.c:48:0.0000071
14./lib_src/fftma2.c:106:0.0125031
15./lib_src/Py_kgeneration.c:74:0.0238291
\n", "
" ], "text/plain": [ " function_name elapsed_time executions\n", "0 ./lib_src/Py_getvalues.c:157: 0.000007 1\n", "1 ./lib_src/ran2.c:68: 0.000004 142\n", "2 ./lib_src/gasdev.c:35: 0.000023 151\n", "3 ./lib_src/gasdev.c:43: 0.000003 202\n", "4 ./lib_src/generate.c:75: 0.010957 1\n", "5 ./lib_src/maxfactor.c:42: 0.000004 1\n", "6 ./lib_src/length.c:47: 0.000013 1\n", "7 ./lib_src/cgrid.c:50: 0.000060 1\n", "8 ./lib_src/cov_value.c:60: 0.000011 76\n", "9 ./lib_src/covariance.c:86: 0.012162 1\n", "10 ./lib_src/fourt.c:593: 0.000065 2\n", "11 ./lib_src/prebuild_gwn.c:57: 0.000009 1\n", "12 ./lib_src/build_real.c:50: 0.000019 1\n", "13 ./lib_src/clean_real.c:48: 0.000007 1\n", "14 ./lib_src/fftma2.c:106: 0.012503 1\n", "15 ./lib_src/Py_kgeneration.c:74: 0.023829 1" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "data = {}\n", "with open(\"log_8.txt\") as log_file:\n", " lines = log_file.readlines()\n", " \n", " for line in lines:\n", " if \"MEM\" in line:\n", " split_line = line.split()\n", " print(split_line)\n", " if \"ELAPSED\" in line:\n", " split_line = line.split()\n", " idx_elapsed = split_line.index(\"ELAPSED\") + 2\n", " function_name, elapsed = split_line[2], float(split_line[idx_elapsed])\n", " if function_name not in data or (function_name in data and elapsed > data[function_name][0]):\n", " val = data.get(function_name, (elapsed, 0))\n", " data[function_name] = (val[0], val[1] + 1)\n", "\n", "values = data.values()\n", "new_data = {\"function_name\": data.keys(), \"elapsed_time\": map(lambda x: x[0], values), \"executions\": map(lambda x: x[1], values)}\n", " \n", "df = pd.DataFrame(new_data) \n", "\n", "df" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "df[\"total_time\"] = df[\"elapsed_time\"] * df[\"executions\"]" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
function_nameelapsed_timeexecutionstotal_time
15./lib_src/Py_kgeneration.c:74:0.02382910.023829
14./lib_src/fftma2.c:106:0.01250310.012503
9./lib_src/covariance.c:86:0.01216210.012162
4./lib_src/generate.c:75:0.01095710.010957
10./lib_src/fourt.c:593:0.00006520.000130
7./lib_src/cgrid.c:50:0.00006010.000060
2./lib_src/gasdev.c:35:0.0000231510.003473
12./lib_src/build_real.c:50:0.00001910.000019
6./lib_src/length.c:47:0.00001310.000013
8./lib_src/cov_value.c:60:0.000011760.000836
11./lib_src/prebuild_gwn.c:57:0.00000910.000009
0./lib_src/Py_getvalues.c:157:0.00000710.000007
13./lib_src/clean_real.c:48:0.00000710.000007
1./lib_src/ran2.c:68:0.0000041420.000568
5./lib_src/maxfactor.c:42:0.00000410.000004
3./lib_src/gasdev.c:43:0.0000032020.000606
\n", "
" ], "text/plain": [ " function_name elapsed_time executions total_time\n", "15 ./lib_src/Py_kgeneration.c:74: 0.023829 1 0.023829\n", "14 ./lib_src/fftma2.c:106: 0.012503 1 0.012503\n", "9 ./lib_src/covariance.c:86: 0.012162 1 0.012162\n", "4 ./lib_src/generate.c:75: 0.010957 1 0.010957\n", "10 ./lib_src/fourt.c:593: 0.000065 2 0.000130\n", "7 ./lib_src/cgrid.c:50: 0.000060 1 0.000060\n", "2 ./lib_src/gasdev.c:35: 0.000023 151 0.003473\n", "12 ./lib_src/build_real.c:50: 0.000019 1 0.000019\n", "6 ./lib_src/length.c:47: 0.000013 1 0.000013\n", "8 ./lib_src/cov_value.c:60: 0.000011 76 0.000836\n", "11 ./lib_src/prebuild_gwn.c:57: 0.000009 1 0.000009\n", "0 ./lib_src/Py_getvalues.c:157: 0.000007 1 0.000007\n", "13 ./lib_src/clean_real.c:48: 0.000007 1 0.000007\n", "1 ./lib_src/ran2.c:68: 0.000004 142 0.000568\n", "5 ./lib_src/maxfactor.c:42: 0.000004 1 0.000004\n", "3 ./lib_src/gasdev.c:43: 0.000003 202 0.000606" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_values(by=[\"elapsed_time\"], ascending=False)" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
function_nameelapsed_timeexecutionstotal_time
15./lib_src/Py_kgeneration.c:74:0.02382910.023829
14./lib_src/fftma2.c:106:0.01250310.012503
9./lib_src/covariance.c:86:0.01216210.012162
4./lib_src/generate.c:75:0.01095710.010957
2./lib_src/gasdev.c:35:0.0000231510.003473
8./lib_src/cov_value.c:60:0.000011760.000836
3./lib_src/gasdev.c:43:0.0000032020.000606
1./lib_src/ran2.c:68:0.0000041420.000568
10./lib_src/fourt.c:593:0.00006520.000130
7./lib_src/cgrid.c:50:0.00006010.000060
12./lib_src/build_real.c:50:0.00001910.000019
6./lib_src/length.c:47:0.00001310.000013
11./lib_src/prebuild_gwn.c:57:0.00000910.000009
0./lib_src/Py_getvalues.c:157:0.00000710.000007
13./lib_src/clean_real.c:48:0.00000710.000007
5./lib_src/maxfactor.c:42:0.00000410.000004
\n", "
" ], "text/plain": [ " function_name elapsed_time executions total_time\n", "15 ./lib_src/Py_kgeneration.c:74: 0.023829 1 0.023829\n", "14 ./lib_src/fftma2.c:106: 0.012503 1 0.012503\n", "9 ./lib_src/covariance.c:86: 0.012162 1 0.012162\n", "4 ./lib_src/generate.c:75: 0.010957 1 0.010957\n", "2 ./lib_src/gasdev.c:35: 0.000023 151 0.003473\n", "8 ./lib_src/cov_value.c:60: 0.000011 76 0.000836\n", "3 ./lib_src/gasdev.c:43: 0.000003 202 0.000606\n", "1 ./lib_src/ran2.c:68: 0.000004 142 0.000568\n", "10 ./lib_src/fourt.c:593: 0.000065 2 0.000130\n", "7 ./lib_src/cgrid.c:50: 0.000060 1 0.000060\n", "12 ./lib_src/build_real.c:50: 0.000019 1 0.000019\n", "6 ./lib_src/length.c:47: 0.000013 1 0.000013\n", "11 ./lib_src/prebuild_gwn.c:57: 0.000009 1 0.000009\n", "0 ./lib_src/Py_getvalues.c:157: 0.000007 1 0.000007\n", "13 ./lib_src/clean_real.c:48: 0.000007 1 0.000007\n", "5 ./lib_src/maxfactor.c:42: 0.000004 1 0.000004" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.sort_values(by=[\"total_time\"], ascending=False)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Import libraries\n", "from matplotlib_venn import venn3\n", "from matplotlib import pyplot as plt\n", "%matplotlib inline" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "relations = {\n", " \"generate\": [\"gasdev\"],\n", " \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n", "}" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "\n", "plt.figure(dpi=125)\n", "set_a = set([0.023829, 0.010957, 0.012503])\n", "\n", "set_b = set([0.010957])\n", "\n", "set_c = set([0.012503])\n", "\n", "venn3([set_a, set_b, set_c], ('Py_kgeneration', 'generate', 'fftma2'))\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "venn3([set(['Py_kgeneration', 'generate', 'fftma2']), set(['generate', 'fftma2']), set(['fftma2'])])" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "plt.figure(dpi=125)\n", "plt.title('Py_kgeneration')\n", "plt.pie([0.010957, 0.012503], labels=[\"generate\", \"fftma2\"], normalize=True)\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# Import libraries\n", "from matplotlib import pyplot as plt\n", "import numpy as np\n", "\n", "\n", "# Creating dataset\n", "size = 6\n", "cars = ['AUDI', 'BMW', 'FORD',\n", "\t\t'TESLA', 'JAGUAR', 'MERCEDES']\n", "\n", "data = np.array([[23, 16], [17, 23],\n", "\t\t\t\t[35, 11], [29, 33],\n", "\t\t\t\t[12, 27], [41, 42]])\n", "\n", "# normalizing data to 2 pi\n", "norm = data / np.sum(data)*2 * np.pi\n", "\n", "# obtaining ordinates of bar edges\n", "left = np.cumsum(np.append(0,\n", "\t\t\t\t\t\tnorm.flatten()[:-1])).reshape(data.shape)\n", "\n", "# Creating color scale\n", "cmap = plt.get_cmap(\"tab20c\")\n", "outer_colors = cmap(np.arange(6)*4)\n", "inner_colors = cmap(np.array([1, 2, 5, 6, 9,\n", "\t\t\t\t\t\t\t10, 12, 13, 15,\n", "\t\t\t\t\t\t\t17, 18, 20 ]))\n", "\n", "# Creating plot\n", "fig, ax = plt.subplots(figsize =(10, 7),\n", "\t\t\t\t\tsubplot_kw = dict(polar = True))\n", "\n", "ax.bar(x = left[:, 0],\n", "\twidth = norm.sum(axis = 1),\n", "\tbottom = 1-size,\n", "\theight = size,\n", "\tcolor = outer_colors,\n", "\tedgecolor ='w',\n", "\tlinewidth = 1,\n", "\talign =\"edge\")\n", "\n", "ax.bar(x = left.flatten(),\n", "\twidth = norm.flatten(),\n", "\tbottom = 1-2 * size,\n", "\theight = size,\n", "\tcolor = inner_colors,\n", "\tedgecolor ='w',\n", "\tlinewidth = 1,\n", "\talign =\"edge\")\n", "\n", "ax.set(title =\"Nested pie chart\")\n", "ax.set_axis_off()\n", "\n", "# show plot\n", "plt.show()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.9" } }, "nbformat": 4, "nbformat_minor": 2 }