{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Análisis de la etapa de generación de medios" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import matplotlib.pyplot as plt\n", "import numpy as np " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Armado del dataset\n", "\n", "En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU (TODO). Con esto buscamos identificar:\n", "- Qué funciones son las que consumen mayor cantidad de memoria\n", "- Qué funciones son las que tienen un mayor tiempo de procesamiento\n", "- Qué funciones son las que son invocadas una mayor cantidad de veces\n", "\n", "Una vez identificados estos puntos de análisis podemos proponer soluciones para mejorar estas estadísticas." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "def get_function_name(function_name):\n", " return function_name[10:].rsplit(\".c\")[0]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "relations = {\n", " \"generate\": [\"gasdev\"],\n", " \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n", "}" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "def get_data(file_name):\n", " data = []\n", "\n", " with open(file_name) as log_file:\n", " lines = log_file.readlines()\n", " for line in lines:\n", " row = {}\n", " split_line = line.split()\n", " if \"USED\" not in split_line or \"ELAPSED\" not in split_line: continue\n", " idx_used_mem = split_line.index(\"USED\") + 4\n", " idx_elapsed = split_line.index(\"ELAPSED\") + 2\n", " \n", " function_name = get_function_name(split_line[2])\n", " used_virtual_mem = float(split_line[idx_used_mem])\n", " elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n", "\n", " # TODO: add CPU\n", " row[\"function\"] = function_name\n", " row[\"memory\"] = used_virtual_mem \n", " row[\"time\"] = elapsed\n", " data.append(row)\n", " \n", " return data" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "def create_df(file_name):\n", " data = get_data(file_name)\n", " df = pd.DataFrame(data)\n", " return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median']})" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "def analyze(file_name):\n", " df_grouped = create_df(file_name)\n", " return df_grouped.sort_values(by=('time', 'sum'), ascending=False) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 8" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memorytime
minmaxmedianminmaxmeansumcount
function
Py_kgeneration2.92.92.90.0918050.0918050.0918050.0918051
generate2.92.92.90.0817070.0817070.0817070.0817071
gasdev0.00.50.00.0000000.0056740.0000930.047828512
fftma20.00.00.00.0079420.0079420.0079420.0079421
covariance0.00.00.00.0074920.0074920.0074920.0074921
ran20.00.50.00.0000000.0000180.0000020.001708702
cov_value0.00.00.00.0000000.0000300.0000010.000707700
fourt0.00.00.00.0000790.0001070.0000910.0002743
cgrid0.00.00.00.0000670.0000670.0000670.0000671
length0.00.00.00.0000080.0000080.0000080.0000243
build_real0.00.00.00.0000090.0000090.0000090.0000091
prebuild_gwn0.00.00.00.0000070.0000070.0000070.0000071
maxfactor0.00.00.00.0000010.0000010.0000010.0000033
clean_real0.00.00.00.0000020.0000020.0000020.0000021
\n", "
" ], "text/plain": [ " memory time \\\n", " min max median min max mean sum \n", "function \n", "Py_kgeneration 2.9 2.9 2.9 0.091805 0.091805 0.091805 0.091805 \n", "generate 2.9 2.9 2.9 0.081707 0.081707 0.081707 0.081707 \n", "gasdev 0.0 0.5 0.0 0.000000 0.005674 0.000093 0.047828 \n", "fftma2 0.0 0.0 0.0 0.007942 0.007942 0.007942 0.007942 \n", "covariance 0.0 0.0 0.0 0.007492 0.007492 0.007492 0.007492 \n", "ran2 0.0 0.5 0.0 0.000000 0.000018 0.000002 0.001708 \n", "cov_value 0.0 0.0 0.0 0.000000 0.000030 0.000001 0.000707 \n", "fourt 0.0 0.0 0.0 0.000079 0.000107 0.000091 0.000274 \n", "cgrid 0.0 0.0 0.0 0.000067 0.000067 0.000067 0.000067 \n", "length 0.0 0.0 0.0 0.000008 0.000008 0.000008 0.000024 \n", "build_real 0.0 0.0 0.0 0.000009 0.000009 0.000009 0.000009 \n", "prebuild_gwn 0.0 0.0 0.0 0.000007 0.000007 0.000007 0.000007 \n", "maxfactor 0.0 0.0 0.0 0.000001 0.000001 0.000001 0.000003 \n", "clean_real 0.0 0.0 0.0 0.000002 0.000002 0.000002 0.000002 \n", "\n", " \n", " count \n", "function \n", "Py_kgeneration 1 \n", "generate 1 \n", "gasdev 512 \n", "fftma2 1 \n", "covariance 1 \n", "ran2 702 \n", "cov_value 700 \n", "fourt 3 \n", "cgrid 1 \n", "length 3 \n", "build_real 1 \n", "prebuild_gwn 1 \n", "maxfactor 3 \n", "clean_real 1 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "analyze('log_8.txt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 16" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memorytime
minmaxmedianminmaxmeansumcount
function
Py_kgeneration4.94.94.90.3529310.3529313.529310e-010.3529311
generate4.24.24.20.3195650.3195653.195650e-010.3195651
gasdev0.00.50.00.0000000.0146543.830811e-050.1569104096
fftma21.01.01.00.0312170.0312173.121700e-020.0312171
covariance1.01.01.00.0301040.0301043.010400e-020.0301041
ran20.00.50.00.0000000.0000221.032080e-060.0054375268
cov_value0.00.50.00.0000000.0000138.762626e-070.0031233564
fourt0.00.00.00.0002690.0003713.073333e-040.0009223
cgrid0.00.00.00.0000470.0000474.700000e-050.0000471
length0.00.00.00.0000080.0000108.666667e-060.0000263
prebuild_gwn0.00.00.00.0000230.0000232.300000e-050.0000231
build_real0.00.00.00.0000210.0000212.100000e-050.0000211
clean_real0.00.00.00.0000040.0000044.000000e-060.0000041
maxfactor0.00.00.00.0000000.0000016.666667e-070.0000023
\n", "
" ], "text/plain": [ " memory time \\\n", " min max median min max mean sum \n", "function \n", "Py_kgeneration 4.9 4.9 4.9 0.352931 0.352931 3.529310e-01 0.352931 \n", "generate 4.2 4.2 4.2 0.319565 0.319565 3.195650e-01 0.319565 \n", "gasdev 0.0 0.5 0.0 0.000000 0.014654 3.830811e-05 0.156910 \n", "fftma2 1.0 1.0 1.0 0.031217 0.031217 3.121700e-02 0.031217 \n", "covariance 1.0 1.0 1.0 0.030104 0.030104 3.010400e-02 0.030104 \n", "ran2 0.0 0.5 0.0 0.000000 0.000022 1.032080e-06 0.005437 \n", "cov_value 0.0 0.5 0.0 0.000000 0.000013 8.762626e-07 0.003123 \n", "fourt 0.0 0.0 0.0 0.000269 0.000371 3.073333e-04 0.000922 \n", "cgrid 0.0 0.0 0.0 0.000047 0.000047 4.700000e-05 0.000047 \n", "length 0.0 0.0 0.0 0.000008 0.000010 8.666667e-06 0.000026 \n", "prebuild_gwn 0.0 0.0 0.0 0.000023 0.000023 2.300000e-05 0.000023 \n", "build_real 0.0 0.0 0.0 0.000021 0.000021 2.100000e-05 0.000021 \n", "clean_real 0.0 0.0 0.0 0.000004 0.000004 4.000000e-06 0.000004 \n", "maxfactor 0.0 0.0 0.0 0.000000 0.000001 6.666667e-07 0.000002 \n", "\n", " \n", " count \n", "function \n", "Py_kgeneration 1 \n", "generate 1 \n", "gasdev 4096 \n", "fftma2 1 \n", "covariance 1 \n", "ran2 5268 \n", "cov_value 3564 \n", "fourt 3 \n", "cgrid 1 \n", "length 3 \n", "prebuild_gwn 1 \n", "build_real 1 \n", "clean_real 1 \n", "maxfactor 3 " ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "analyze('log_16.txt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 32" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memorytime
minmaxmedianminmaxmeansumcount
function
Py_kgeneration2.72.72.71.1808461.1808461.180846e+001.1808461
generate4.94.94.90.8400750.8400758.400750e-010.8400751
gasdev-1.30.50.00.0000000.0032431.513522e-050.49595132768
fftma2-2.2-2.2-2.20.3388820.3388823.388820e-010.3388821
covariance-2.5-2.5-2.50.3302820.3302823.302820e-010.3302821
ran2-0.30.50.00.0000000.0001039.740325e-070.04047341552
cov_value0.00.50.00.0000000.0000581.230344e-060.03029624624
fourt0.00.30.20.0022120.0033462.646333e-030.0079393
prebuild_gwn0.00.00.00.0001780.0001781.780000e-040.0001781
build_real0.00.00.00.0001510.0001511.510000e-040.0001511
clean_real0.00.00.00.0001040.0001041.040000e-040.0001041
cgrid0.00.00.00.0000570.0000575.700000e-050.0000571
length0.00.00.00.0000080.0000161.300000e-050.0000393
maxfactor0.00.00.00.0000000.0000014.000000e-070.0000025
\n", "
" ], "text/plain": [ " memory time \\\n", " min max median min max mean sum \n", "function \n", "Py_kgeneration 2.7 2.7 2.7 1.180846 1.180846 1.180846e+00 1.180846 \n", "generate 4.9 4.9 4.9 0.840075 0.840075 8.400750e-01 0.840075 \n", "gasdev -1.3 0.5 0.0 0.000000 0.003243 1.513522e-05 0.495951 \n", "fftma2 -2.2 -2.2 -2.2 0.338882 0.338882 3.388820e-01 0.338882 \n", "covariance -2.5 -2.5 -2.5 0.330282 0.330282 3.302820e-01 0.330282 \n", "ran2 -0.3 0.5 0.0 0.000000 0.000103 9.740325e-07 0.040473 \n", "cov_value 0.0 0.5 0.0 0.000000 0.000058 1.230344e-06 0.030296 \n", "fourt 0.0 0.3 0.2 0.002212 0.003346 2.646333e-03 0.007939 \n", "prebuild_gwn 0.0 0.0 0.0 0.000178 0.000178 1.780000e-04 0.000178 \n", "build_real 0.0 0.0 0.0 0.000151 0.000151 1.510000e-04 0.000151 \n", "clean_real 0.0 0.0 0.0 0.000104 0.000104 1.040000e-04 0.000104 \n", "cgrid 0.0 0.0 0.0 0.000057 0.000057 5.700000e-05 0.000057 \n", "length 0.0 0.0 0.0 0.000008 0.000016 1.300000e-05 0.000039 \n", "maxfactor 0.0 0.0 0.0 0.000000 0.000001 4.000000e-07 0.000002 \n", "\n", " \n", " count \n", "function \n", "Py_kgeneration 1 \n", "generate 1 \n", "gasdev 32768 \n", "fftma2 1 \n", "covariance 1 \n", "ran2 41552 \n", "cov_value 24624 \n", "fourt 3 \n", "prebuild_gwn 1 \n", "build_real 1 \n", "clean_real 1 \n", "cgrid 1 \n", "length 3 \n", "maxfactor 5 " ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "analyze('log_32.txt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 64" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memorytime
minmaxmedianminmaxmeansumcount
function
Py_kgeneration233.5233.5233.530.35427030.35427030.35427030.3542701
generate168.4168.4168.421.73952121.73952121.73952121.7395211
gasdev-2.94.40.00.0000090.0007420.00006116.076987262144
fftma268.068.068.08.6138548.6138548.6138548.6138541
covariance63.863.863.88.4123358.4123358.4123358.4123351
ran2-0.60.80.00.0000070.0002810.0000144.680977333450
cov_value-0.71.00.00.0000180.0003200.0000304.646094156816
fourt0.31.70.40.0518300.0785160.0645630.1936893
prebuild_gwn2.52.52.50.0029390.0029390.0029390.0029391
build_real-0.3-0.3-0.30.0020890.0020890.0020890.0020891
clean_real1.01.01.00.0016770.0016770.0016770.0016771
cgrid0.00.00.00.0002710.0002710.0002710.0002711
length0.00.00.00.0000480.0000810.0000650.0001963
maxfactor0.00.00.00.0000130.0000150.0000140.0000564
\n", "
" ], "text/plain": [ " memory time \\\n", " min max median min max mean \n", "function \n", "Py_kgeneration 233.5 233.5 233.5 30.354270 30.354270 30.354270 \n", "generate 168.4 168.4 168.4 21.739521 21.739521 21.739521 \n", "gasdev -2.9 4.4 0.0 0.000009 0.000742 0.000061 \n", "fftma2 68.0 68.0 68.0 8.613854 8.613854 8.613854 \n", "covariance 63.8 63.8 63.8 8.412335 8.412335 8.412335 \n", "ran2 -0.6 0.8 0.0 0.000007 0.000281 0.000014 \n", "cov_value -0.7 1.0 0.0 0.000018 0.000320 0.000030 \n", "fourt 0.3 1.7 0.4 0.051830 0.078516 0.064563 \n", "prebuild_gwn 2.5 2.5 2.5 0.002939 0.002939 0.002939 \n", "build_real -0.3 -0.3 -0.3 0.002089 0.002089 0.002089 \n", "clean_real 1.0 1.0 1.0 0.001677 0.001677 0.001677 \n", "cgrid 0.0 0.0 0.0 0.000271 0.000271 0.000271 \n", "length 0.0 0.0 0.0 0.000048 0.000081 0.000065 \n", "maxfactor 0.0 0.0 0.0 0.000013 0.000015 0.000014 \n", "\n", " \n", " sum count \n", "function \n", "Py_kgeneration 30.354270 1 \n", "generate 21.739521 1 \n", "gasdev 16.076987 262144 \n", "fftma2 8.613854 1 \n", "covariance 8.412335 1 \n", "ran2 4.680977 333450 \n", "cov_value 4.646094 156816 \n", "fourt 0.193689 3 \n", "prebuild_gwn 0.002939 1 \n", "build_real 0.002089 1 \n", "clean_real 0.001677 1 \n", "cgrid 0.000271 1 \n", "length 0.000196 3 \n", "maxfactor 0.000056 4 " ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "analyze('log_64.txt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 128" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "5897863\n" ] }, { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
memorytime
minmaxmedianminmaxmeansumcount
function
Py_kgeneration1864.71864.71864.7126.767549126.767549126.767549126.7675491
generate1759.01759.01759.097.73152797.73152797.73152797.7315271
gasdev-134.618.50.00.0000000.0007720.00002757.5910662097152
fftma2129.3129.3129.329.03478329.03478329.03478329.0347831
covariance93.193.193.127.49376927.49376927.49376927.4937691
ran2-4.82.20.00.0000000.0000650.0000024.6610662668394
cov_value-0.60.70.00.0000010.0002810.0000022.4437651132300
fourt-5.218.70.50.3904090.5911450.4994731.4984183
build_real0.00.00.00.0170850.0170850.0170850.0170851
prebuild_gwn17.017.017.00.0141170.0141170.0141170.0141171
clean_real14.114.114.10.0090170.0090170.0090170.0090171
cgrid0.00.00.00.0001870.0001870.0001870.0001871
length0.00.00.00.0000320.0000350.0000330.0000993
maxfactor0.00.00.00.0000020.0000030.0000030.0000083
\n", "
" ], "text/plain": [ " memory time \\\n", " min max median min max mean \n", "function \n", "Py_kgeneration 1864.7 1864.7 1864.7 126.767549 126.767549 126.767549 \n", "generate 1759.0 1759.0 1759.0 97.731527 97.731527 97.731527 \n", "gasdev -134.6 18.5 0.0 0.000000 0.000772 0.000027 \n", "fftma2 129.3 129.3 129.3 29.034783 29.034783 29.034783 \n", "covariance 93.1 93.1 93.1 27.493769 27.493769 27.493769 \n", "ran2 -4.8 2.2 0.0 0.000000 0.000065 0.000002 \n", "cov_value -0.6 0.7 0.0 0.000001 0.000281 0.000002 \n", "fourt -5.2 18.7 0.5 0.390409 0.591145 0.499473 \n", "build_real 0.0 0.0 0.0 0.017085 0.017085 0.017085 \n", "prebuild_gwn 17.0 17.0 17.0 0.014117 0.014117 0.014117 \n", "clean_real 14.1 14.1 14.1 0.009017 0.009017 0.009017 \n", "cgrid 0.0 0.0 0.0 0.000187 0.000187 0.000187 \n", "length 0.0 0.0 0.0 0.000032 0.000035 0.000033 \n", "maxfactor 0.0 0.0 0.0 0.000002 0.000003 0.000003 \n", "\n", " \n", " sum count \n", "function \n", "Py_kgeneration 126.767549 1 \n", "generate 97.731527 1 \n", "gasdev 57.591066 2097152 \n", "fftma2 29.034783 1 \n", "covariance 27.493769 1 \n", "ran2 4.661066 2668394 \n", "cov_value 2.443765 1132300 \n", "fourt 1.498418 3 \n", "build_real 0.017085 1 \n", "prebuild_gwn 0.014117 1 \n", "clean_real 0.009017 1 \n", "cgrid 0.000187 1 \n", "length 0.000099 3 \n", "maxfactor 0.000008 3 " ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "analyze('log_128.txt')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## N = 256" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "0\n", "1\n", "2\n", "3\n", "4\n", "5\n", "6\n", "7\n", "8\n", "9\n" ] } ], "source": [ "dfs = []\n", "for i in range(10):\n", " print(i)\n", " df = create_df(\"log_256_{}.txt\".format(i+1))\n", " dfs.append(df)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [], "source": [ "functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n", "\n", "\n", "#df_final = pd.concat(dfs).sort_values(by=('time', 'sum'), ascending=False) " ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 2 }