You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/fftma_module/gen/sources/fftma.c

186 lines
4.4 KiB
C

#include <stdlib.h>
#include <math.h>
#include "geostat.h"
/*FAST FOURIER TRANSFORM MOVING AVERAGE METHOD */
/*Turns a Gaussian white noise vector into a */
/*spatially correlated vector */
/*input: */
/*variogram: structure defining the variogram */
/* model */
/*grid: structure defining the grid */
/*n: vector with the number of cells along the */
/* X, Y and Z axes for the underlying grid */
/* i = [0 1 2] */
/* --> 0 0 0 : n will be computed and */
/* updated as output */
/* --> nx ny nz: these dimensions are used */
/*realin: structure defining a realization - */
/* must be a Gaussian white noise */
/*output: */
/*realout: structure defining a realization - */
void FFTMA(struct vario_mod variogram,struct grid_mod grid,int n[3],struct realization_mod *realin,struct realization_mod *realout)
{
int NTOT,i,j,k,NMAX,NDIM,ntot,nmax,NXYZ,nxyz,maille0,maille1;
double *table,*covar,*workr,*worki,*realization,temp;
/*test over the input realization*/
/*if ((*realin).code != 0) {
printf("Input realizations in FFTMA must be Gaussian white noises");
exit;
}*/
/*covariance axis normalization*/
axes(variogram.ap,variogram.scf,variogram.Nvario);
/*pseudo-grid definition*/
cgrid(variogram,grid,n);
/*constant definition*/
NTOT = n[0]*n[1]*n[2];
ntot = NTOT+1;
NMAX = n[0];
NDIM = 3;
for (i=1;i<3;i++) {
if (n[i] > NMAX)
NMAX = n[i];
if (n[i] == 1)
NDIM--;
}
nmax = NMAX+1;
NXYZ = grid.NX*grid.NY*grid.NZ;
nxyz = NXYZ+1;
/*array initialization*/
covar = (double *) malloc(ntot * sizeof(double));
if (covar == NULL) {
printf("FFTMA.c: No memory available for covar");
exit;
}
table = (double *) malloc(ntot * sizeof(double));
if (table == NULL) {
printf("FFTMA.c: No memory available for table");
exit;
}
realization = (double *) malloc(ntot * sizeof(double));
if (realization == NULL) {
printf("FFTMA.c: No memory available for realization");
exit;
}
workr = (double *) malloc(nmax * sizeof(double));
if (workr == NULL) {
printf("FFTMA.c: No memory available for workr");
exit;
}
worki = (double *) malloc(nmax * sizeof(double));
if (worki == NULL) {
printf("FFTMA.c: No memory available for worki");
exit;
}
/*covariance function creation*/
covariance(covar,variogram,grid,n);
/*power spectrum*/
fourt(covar,table,n,NDIM,1,0,workr,worki);
/*organization of the input Gaussian white noise*/
for ( k = 1; k <= n[2]; k++) {
for (j = 1; j <= n[1]; j++) {
for (i = 1; i <= n[0]; i++) {
maille1 = i+(j-1+(k-1)*n[1])*n[0];
if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) {
maille0 = i-1+(j-1+(k-1)*grid.NY)*grid.NX;
realization[maille1] = (*realin).vector[maille0];
} else {
realization[maille1] = 0.;
}
}
}
}
/*forward fourier transform of the GWN*/
fourt(realization,table,n,NDIM,1,0,workr,worki);
/*decomposition and multiplication in the spectral domain*/
for ( k = 1; k <= n[2]; k++) {
for (j = 1; j <= n[1]; j++) {
for (i = 1; i <= n[0]; i++) {
maille1 = i+(j-1+(k-1)*n[1])*n[0];
temp = covar[maille1];
if (temp > 0.) {
temp = sqrt(temp)/(double) NTOT;
} else if (temp < 0.) {
temp = sqrt(-temp)/(double) NTOT;
}
realization[maille1] *= temp;
table[maille1] *= temp;
}
}
}
free(covar);
/*backward fourier transform*/
fourt(realization,table,n,NDIM,0,1,workr,worki);
free(table);
free(workr);
free(worki);
/*output realization*/
/*is the output realization already allocated?*/
/*if not, memory allocation*/
if ((*realout).vector == NULL || (*realout).n != (*realin).n) {
(*realout).vector = (double *) malloc((*realin).n * sizeof(double));
if ((*realout).vector == NULL) {
printf("FFTMA.c: No memory available");
exit;
}
}
(*realout).n = (*realin).n;
(*realout).code = 1;
for ( k = 1; k <= grid.NZ; k++) {
for (j = 1; j <= grid.NY; j++) {
for (i = 1; i <= grid.NX; i++) {
maille1 = i+(j-1+(k-1)*n[1])*n[0];
maille0 = i-1+(j-1+(k-1)*grid.NY)*grid.NX;
(*realout).vector[maille0] = realization[maille1];
}
}
}
free(realization);
return;
}