You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
7396 lines
873 KiB
Plaintext
7396 lines
873 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"# Análisis de la etapa de generación de medios"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 28,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"import pandas as pd\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"import numpy as np \n",
|
|
"import plotly.express as px"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Armado del dataset\n",
|
|
"\n",
|
|
"En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU. Con esto buscamos identificar:\n",
|
|
"- Qué funciones son las que consumen mayor cantidad de memoria\n",
|
|
"- Qué funciones son las que tienen un mayor tiempo de procesamiento\n",
|
|
"- Qué funciones son las que son invocadas una mayor cantidad de veces\n",
|
|
"\n",
|
|
"Una vez identificados estos puntos de análisis podemos proponer soluciones para mejorar estas estadísticas."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 29,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def get_function_name(function_name):\n",
|
|
" return function_name[10:].rsplit(\".c\")[0]"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 30,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"relations = {\n",
|
|
" \"Py_kgeneration\": ['generate', 'fftma2'],\n",
|
|
" \"generate\": [\"gasdev\"],\n",
|
|
" \"gasdev\": [\"ran2\"],\n",
|
|
" \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n",
|
|
"}"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 31,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def get_data(file_name):\n",
|
|
" data = []\n",
|
|
" row = {}\n",
|
|
"\n",
|
|
" with open(file_name) as log_file:\n",
|
|
" lines = log_file.readlines()\n",
|
|
" for line in lines:\n",
|
|
" split_line = line.split()\n",
|
|
" \n",
|
|
" if \"USED\" not in split_line and \"ELAPSED\" not in split_line and \"CPU\" not in split_line: continue\n",
|
|
" \n",
|
|
" if \"CPU\" in split_line:\n",
|
|
" idx_cpu = split_line.index(\"CPU\") + 1\n",
|
|
" idx_per = idx_cpu + 1\n",
|
|
" row[\"cpu\"] = row.get('CPU', [])\n",
|
|
" row[\"cpu\"].append(float(split_line[idx_per].rsplit(\"%\")[0]))\n",
|
|
" continue\n",
|
|
" \n",
|
|
" idx_used_mem = split_line.index(\"USED\") + 4\n",
|
|
" idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
|
|
" \n",
|
|
" function_name = get_function_name(split_line[2])\n",
|
|
" \n",
|
|
" used_virtual_mem = float(split_line[idx_used_mem])\n",
|
|
" elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n",
|
|
"\n",
|
|
" row[\"function\"] = function_name\n",
|
|
" row[\"memory\"] = used_virtual_mem \n",
|
|
" row[\"time\"] = elapsed\n",
|
|
" if \"cpu\" in row:\n",
|
|
" row[\"cpu\"] = sum(row[\"cpu\"]) / len(row[\"cpu\"])\n",
|
|
" data.append(row)\n",
|
|
" row = {}\n",
|
|
" \n",
|
|
" return data"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 32,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def create_df(file_name):\n",
|
|
" data = get_data(file_name)\n",
|
|
" df = pd.DataFrame(data)\n",
|
|
" return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median'], 'cpu': ['min', 'max', 'mean']})"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 33,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def analyze(file_name):\n",
|
|
" df_grouped = create_df(file_name)\n",
|
|
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False) "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 55,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def merge_dfs(dfs):\n",
|
|
" functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n",
|
|
" df_final = pd.concat(dfs, join='inner').sort_values(by=('time', 'sum'), ascending=False) \n",
|
|
"\n",
|
|
" memory_min, memory_max, memory_median = [], [], []\n",
|
|
" time_min, time_max, time_mean, time_sum, time_count = [], [], [], [], []\n",
|
|
" cpu_min, cpu_max, cpu_mean = [], [], []\n",
|
|
"\n",
|
|
" for function in functions:\n",
|
|
" memory_min.append(df_final.loc[function, ('memory', 'min')].min())\n",
|
|
" time_min.append(df_final.loc[function, ('time', 'min')].min())\n",
|
|
" cpu_min.append(df_final.loc[function, ('cpu', 'min')].min())\n",
|
|
" memory_max.append(df_final.loc[function, ('memory', 'max')].max())\n",
|
|
" time_max.append(df_final.loc[function, ('time', 'max')].max())\n",
|
|
" cpu_max.append(df_final.loc[function, ('cpu', 'max')].max())\n",
|
|
" time_mean.append(df_final.loc[function, ('time', 'mean')].mean())\n",
|
|
" cpu_mean.append(df_final.loc[function, ('cpu', 'mean')].mean())\n",
|
|
" time_sum.append(df_final.loc[function, ('time', 'sum')].sum())\n",
|
|
" time_count.append(df_final.loc[function, ('time', 'count')].sum())\n",
|
|
" try:\n",
|
|
" memory_median.append(df_final.loc[function, ('memory', 'median')].median())\n",
|
|
" except:\n",
|
|
" memory_median.append(df_final.loc[function, ('memory', 'median')])\n",
|
|
" \n",
|
|
" df = pd.DataFrame({('memory', 'min'): memory_min, ('memory', 'max'): memory_max, ('memory', 'median'): memory_median, ('time', 'min'): time_min, ('time', 'max'): time_max, ('time', 'mean'): time_mean, ('time', 'sum'): time_sum, ('time', 'count'): time_count, ('cpu', 'min'): cpu_min, ('cpu', 'max'): cpu_max, ('cpu', 'mean'): cpu_mean})\n",
|
|
"\n",
|
|
" df.index = functions\n",
|
|
" df.index.name = 'function'\n",
|
|
" return df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 56,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def analyze(file_names):\n",
|
|
" if len(file_names) == 1:\n",
|
|
" df_grouped = create_df(file_names[0])\n",
|
|
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False)\n",
|
|
" else:\n",
|
|
" dfs = []\n",
|
|
" for file_name in file_names:\n",
|
|
" print(\"Executing file {}\".format(file_name))\n",
|
|
" df = create_df(file_name)\n",
|
|
" dfs.append(df)\n",
|
|
" return merge_dfs(dfs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 43,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def plot_pie(df, function, plt):\n",
|
|
" \n",
|
|
" labels = relations[function][:]\n",
|
|
" total = df.loc[function][('time', 'sum')]\n",
|
|
" sizes = []\n",
|
|
" explode = []\n",
|
|
"\n",
|
|
" rest = total\n",
|
|
"\n",
|
|
" for func in labels:\n",
|
|
" func_duration = df.loc[func][('time', 'sum')]\n",
|
|
" rest -= func_duration\n",
|
|
" value = func_duration/ total\n",
|
|
" sizes.append(value)\n",
|
|
" explode.append(0 if value > 0.01 else 0.1)\n",
|
|
"\n",
|
|
" labels.append(\"other\")\n",
|
|
" sizes.append(rest/total)\n",
|
|
" sizes = np.array(sizes)\n",
|
|
" porcent = 100.*sizes/sizes.sum()\n",
|
|
" explode.append(0 if rest/total > 0.01 else 0.1)\n",
|
|
"\n",
|
|
" plt.set_title(function)\n",
|
|
"\n",
|
|
" patches, texts = plt.pie(sizes, startangle=90, radius=1.2)\n",
|
|
" labels_formated = ['{0} - {1:1.2f} %'.format(i,j) for i,j in zip(labels, porcent)]\n",
|
|
"\n",
|
|
" sort_legend = True\n",
|
|
" if sort_legend:\n",
|
|
" patches, labels_formated, dummy = zip(*sorted(zip(patches, labels_formated, sizes),\n",
|
|
" key=lambda x: x[2],\n",
|
|
" reverse=True))\n",
|
|
"\n",
|
|
" plt.legend(patches, labels_formated, loc='upper left', bbox_to_anchor=(-0.1, 1.),\n",
|
|
" fontsize=8)\n",
|
|
" \n",
|
|
" plt.axis('equal')\n",
|
|
"\n",
|
|
"def plot_analysis(df):\n",
|
|
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
|
|
" fig.suptitle('Time comparisons')\n",
|
|
" functions = list(relations.keys())\n",
|
|
" for i in range(2):\n",
|
|
" for j in range(2):\n",
|
|
" plot_pie(df,functions[2*i + j], axs[i, j])\n",
|
|
" "
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 37,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"parents = {\n",
|
|
" \"Py_kgeneration\": \"\",\n",
|
|
" \"generate\": \"Py_kgeneration\",\n",
|
|
" \"gasdev\": \"generate\",\n",
|
|
" \"fftma2\": \"Py_kgeneration\",\n",
|
|
" \"covariance\": \"fftma2\",\n",
|
|
" \"fourt\": \"fftma2\",\n",
|
|
" \"prebuild_gwn\": \"fftma2\",\n",
|
|
" \"ran2\": \"gasdev\",\n",
|
|
" \"cov_value\": \"covariance\",\n",
|
|
"}\n",
|
|
"\n",
|
|
"def plot_treemap(df):\n",
|
|
" df[\"parent\"] = [parents.get(item, \"\") for item in df.index]\n",
|
|
" df2 = df.reset_index()\n",
|
|
" df2[\"time_sum\"] = df2[[(\"time\", \"sum\")]]\n",
|
|
" df2 = df2[[\"function\", \"parent\", \"time_sum\"]]\n",
|
|
" fig3 = px.treemap(df2, names='function', parents='parent',values='time_sum', color=\"parent\", title=\"Time treemap\")\n",
|
|
" fig3.show()"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 8"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 57,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>sum</th>\n",
|
|
" <th>count</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>1.2</td>\n",
|
|
" <td>1.2</td>\n",
|
|
" <td>1.2</td>\n",
|
|
" <td>75.100000</td>\n",
|
|
" <td>75.100000</td>\n",
|
|
" <td>75.100000</td>\n",
|
|
" <td>0.633546</td>\n",
|
|
" <td>0.633546</td>\n",
|
|
" <td>0.633546</td>\n",
|
|
" <td>0.633546</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>1.3</td>\n",
|
|
" <td>1.3</td>\n",
|
|
" <td>1.3</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.397899</td>\n",
|
|
" <td>0.397899</td>\n",
|
|
" <td>0.397899</td>\n",
|
|
" <td>0.397899</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>0.2</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>5.669727</td>\n",
|
|
" <td>0.000106</td>\n",
|
|
" <td>0.007636</td>\n",
|
|
" <td>0.000579</td>\n",
|
|
" <td>0.296354</td>\n",
|
|
" <td>512</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>30.534783</td>\n",
|
|
" <td>30.534783</td>\n",
|
|
" <td>30.534783</td>\n",
|
|
" <td>0.234361</td>\n",
|
|
" <td>0.234361</td>\n",
|
|
" <td>0.234361</td>\n",
|
|
" <td>0.234361</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>-0.1</td>\n",
|
|
" <td>31.918182</td>\n",
|
|
" <td>31.918182</td>\n",
|
|
" <td>31.918182</td>\n",
|
|
" <td>0.224350</td>\n",
|
|
" <td>0.224350</td>\n",
|
|
" <td>0.224350</td>\n",
|
|
" <td>0.224350</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>0.2</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.859143</td>\n",
|
|
" <td>0.000103</td>\n",
|
|
" <td>0.000966</td>\n",
|
|
" <td>0.000134</td>\n",
|
|
" <td>0.093502</td>\n",
|
|
" <td>700</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>0.2</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.998148</td>\n",
|
|
" <td>0.000101</td>\n",
|
|
" <td>0.000583</td>\n",
|
|
" <td>0.000133</td>\n",
|
|
" <td>0.093435</td>\n",
|
|
" <td>702</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000553</td>\n",
|
|
" <td>0.000795</td>\n",
|
|
" <td>0.000664</td>\n",
|
|
" <td>0.001993</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.001623</td>\n",
|
|
" <td>0.001623</td>\n",
|
|
" <td>0.001623</td>\n",
|
|
" <td>0.001623</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000355</td>\n",
|
|
" <td>0.000359</td>\n",
|
|
" <td>0.000358</td>\n",
|
|
" <td>0.001073</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000463</td>\n",
|
|
" <td>0.000463</td>\n",
|
|
" <td>0.000463</td>\n",
|
|
" <td>0.000463</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000454</td>\n",
|
|
" <td>0.000454</td>\n",
|
|
" <td>0.000454</td>\n",
|
|
" <td>0.000454</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000410</td>\n",
|
|
" <td>0.000410</td>\n",
|
|
" <td>0.000410</td>\n",
|
|
" <td>0.000410</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000105</td>\n",
|
|
" <td>0.000106</td>\n",
|
|
" <td>0.000105</td>\n",
|
|
" <td>0.000316</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" memory cpu \\\n",
|
|
" min max median min max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration 1.2 1.2 1.2 75.100000 75.100000 75.100000 \n",
|
|
"generate 1.3 1.3 1.3 100.100000 100.100000 100.100000 \n",
|
|
"gasdev -0.2 0.2 0.0 0.000000 100.100000 5.669727 \n",
|
|
"fftma2 -0.1 -0.1 -0.1 30.534783 30.534783 30.534783 \n",
|
|
"covariance -0.1 -0.1 -0.1 31.918182 31.918182 31.918182 \n",
|
|
"cov_value -0.2 0.2 0.0 0.000000 100.100000 0.859143 \n",
|
|
"ran2 -0.2 0.2 0.0 0.000000 100.100000 0.998148 \n",
|
|
"fourt 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"cgrid 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"length 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"prebuild_gwn 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"maxfactor 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"\n",
|
|
" time \n",
|
|
" min max mean sum count \n",
|
|
"function \n",
|
|
"Py_kgeneration 0.633546 0.633546 0.633546 0.633546 1 \n",
|
|
"generate 0.397899 0.397899 0.397899 0.397899 1 \n",
|
|
"gasdev 0.000106 0.007636 0.000579 0.296354 512 \n",
|
|
"fftma2 0.234361 0.234361 0.234361 0.234361 1 \n",
|
|
"covariance 0.224350 0.224350 0.224350 0.224350 1 \n",
|
|
"cov_value 0.000103 0.000966 0.000134 0.093502 700 \n",
|
|
"ran2 0.000101 0.000583 0.000133 0.093435 702 \n",
|
|
"fourt 0.000553 0.000795 0.000664 0.001993 3 \n",
|
|
"cgrid 0.001623 0.001623 0.001623 0.001623 1 \n",
|
|
"length 0.000355 0.000359 0.000358 0.001073 3 \n",
|
|
"clean_real 0.000463 0.000463 0.000463 0.000463 1 \n",
|
|
"prebuild_gwn 0.000454 0.000454 0.000454 0.000454 1 \n",
|
|
"build_real 0.000410 0.000410 0.000410 0.000410 1 \n",
|
|
"maxfactor 0.000105 0.000106 0.000105 0.000316 3 "
|
|
]
|
|
},
|
|
"execution_count": 57,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_8-aa'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 45,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8FMX7wPHPc5dOOUKHUEILIYD8MAJKkSaggAVpIioIKoJYQAXsp6Jix/JVQUVsKFgQASsoCFgQFJSOQADpLf2SXJnfH3uJR0hIAbJ3l3m/XveC25vbfTbJ7rMzO7MjSik0TdM0TQsuFrMD0DRN0zTt7NMJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV4LeiISKyJKREaaHYsGIrJMRJaZHYemBbsQswPQtNIQkeI+Y7k7kHQOQ9E0TfNLop9FrwUiEbku36IbgF7A9fmWfw8cBsIBp1LKXQbhaachImEASqkcs2PRtGCmE7wWFETkVeA2pZSYHYtWMBGJUkplmh2HppUX+h68FvQKugcvIrNFJF1EGojIIu//94nIbd7PW4vIDyKSISK7ReTaAtZbRUSmi8heEckWkX9EZLKIFOu4EpHLRGS5iKSJSKqI/J5/OyIyWETWiohDRI6KyAciEpOvzBnti4iM9P58LhaRGSJyzBvPeyISna/slSKyWET2e/d5h4g8JCLWfOWWicgGEUkUkZ9EJBN40uezZfnK3y4iG0UkU0ROiMiaAuJsKyJfe2NLF5GlInJhIfvSSUReEJEj3v2eLyI18pW9QES+9f5cHSKyS0RmFf2b07TAoBO8Vp5Zga+BvcAkjHv1r3ovBL4B1gCTgTTgPRFplPtFEYkClgPXAe8BdwCrgKeAF4rasHcbi4Gq3u9MAdYBl+YrMw9wA/cBbwJXAytFpMrZ2hcfrwItALt3n4YDX4iIb6vISCDdu493AmuBx4BpBayvmjemdcBdwI+F/CxuBl4GNnnLPeL9TgefMi2BFUAb4BngcaARsExEOuRfJ/CKt+yjwOvA5d79y11fTeA7INYb++3Ah8CF+VekaQFLKaVf+hXwL4yTtyrks1hAASN9ls32LrvPZ1kVIBPwAEN9ljf3lrX7LHsQI9E1y7etpwAXUP80sdqAVOBXICLfZ7m3zUKBQ8DfvmWAft5YHj2L+zLSu2wNEOqz/F7v8it8lkUWsD9vABlAuM+yZd7vjimg/DJgmc/7L4ANRfx+5wPZQGOfZXW8P8flBezL97k/S+/yF7y/F5v3/VXecheY/berX/p1rl66Bq+Vd2/l/kcplQxsxUhW83yWbwWSgcY+3xuMUaM8ISLVc1/AEoza9MWn2WYvoBIwTSmV5fuBUiq3U8wFQE3gNd8ySqnFwBaMRH+29iXXTKWU0+f96xhJsa/P9x25/xeRSt59XgFEAfH51pcNvFPAdvJLBuqJSLuCPvQ2//cGvlBK7fSJ5QAwB+gsIpUL2BffDkYrMH4vDX22CdBfREKLEaOmBRyd4LXyLEspdSTfshTg33zJIXe57/3oZhjN6UfyvZZ4P695mu028f674TRlchPR1gI+2+Lzea4z2Zdc233fKKXSgQMYLSCA0VTuvZ+dglF7PgJ84P3Ylm99+1Txeso/jdEaslpEtovI/0Skk8/nNTAuIAr6WWzGOI/Vz7d8T773J7z/5u73cuAzjNsBR0VkgYjcKCLhxYhX0wKCHgevlWeFDZkrbLnvvWgLRjPwM4WU3VbaoErpTPalWLz3/ZdjJPaHgR1AFnA+RpLOX2FwUAxKqc0i0hzoj3HRNBAYJyKPKaUeKWmcXqfdb+9FzyBvJ73LgT7ALOBuEbnQe3GjaQFNJ3hNK50dQEWl1JIiSxb8XYBWwD+FlNnt/bc58EO+z5r7fH42NcOnI5yIVMS4z/2Vd1E3jI5zVyulfvIpV1CHvRJRSmUAc4G5YoyT/xx4QESewmglyMTY7/ziMfoZ7C3ldn/F6AvxgLfX/ofANfjc7tC0QKWb6DWtdOYBF4lIn/wfeIfPne7i+TuM3uz3iUhEvu/m1qzXYDyg51bfZmMRuQyjp/viM4y/ILfkux89FqMS8LX3fW6tOK/2703G485koyJSzfe9t1l/k3c7ocp4ONF3wJUiEuvzvVrAtcBKpVRqCbcZnW90ABg998F4KJKmBTxdg9e00nkWuAJYJCKzMYaLVQBaA4Mw7lsfLeiLSqlUEZmAUUv8XUTmYNwjboNxr3mEUsopIpMxOqktF5GPgFoYQ9OSgBfPwT6FAUtFZB5GbXkcsBL40vv5z9443xWRlzF6oV9PKZr78/lORA5iDDM8hHEBMx5YrJRK85Z5EKNz4koReQ2j898YjGQ8qRTbHIFxG2A+RotKJeBmjNsPX53ui5oWKHSC17RSUEplikhX4H6MHvU3YCSHbRgdt1KK+P7bInIYY/z7Q4ATo/Pciz5lZnsfEDMF4x53BsZwscneXvJn23iMse+PYQzT+wi4I7eTnlLqmIj0B54HpmIk+w+ApcC3Z7DdGd7tTgQqAv9ijIufmltAKbVRRLpgDEO8D6P18TfgOqXUb6XY5nKgPUZzfC2M39dqYLhSalfpd0XT/Id+VK2mlXPeh+G8A7RTSq0xORxN084SfQ9e0zRN04KQTvCapmmaFoR0gtc0TdO0IKTvwWuapmlaENI1eE3TNE0LQjrBa5qmaVoQ0gle0zRN04KQTvCapmmaFoR0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8FqRRCRWRJSIjDQ7Fk0LdD7H0z1mx+LvRKSb92fVzexYApFO8JqmlXsiMtKbSHJfWSKyTUReFZFaZscX7ERknK5AnH0hZgegaZrmRx4GdgERQGdgLNBXRFoppTJNjSy4jQOOArPzLf8JiARyyjqgYKATvKZp2n++Vkqt8f7/LRE5BkwErgQ+Mi+swCEiAkQopRxnui6llAfIOvOoyifdRO/nvPeg1nibDHeIyBgRsYuI8ilzo4j8ICKHRSRbRDaJyNgC1nWBiHwrIkdFxCEiu0RkVr4yVURktoikiEiyiLwLVCkktngR+VREjnvjWyMiV+TbnhKREQV8t4/3s/5n9APStHPrB++/jbx/rxPyFxCRjt7PhpV2I2KYKSI5InK1z/LzRGS593j9V0Qe9B7vSkRi863jMhFZISIZIpImIotFpGW+MrNFJF1EYkTkC+//j4jIcyJizVfWIiJ3ichG7/F9SERmiEh0vnJJIrLIe0yvARzAGO9nRZ6bRCQJaAl09blFssz7WYH34EVksIis9f5cjorIByISU9p9DVa6Bu/HRKQt8A1wAHgEsGI0IR7JV3QssBH4EnABlwOviYhFKfU/77pqAt95vzsNSAZiAd+TiQALMJom3wA2AwOAdwuIrSWwCtjnXV8GMAT4QkQGKqXmK6XWiMhO7/L86xgKnAC+LenPRdPKUBPvv8cw/t6HAy/mKzMcSMM4dkrMm2xmYRwTA5RSi73LY4AfAQU8hXGM3QRkF7CO6zGOsW+ByUAUxnlhpYi0VUol+RS3esv9BtwDXALcDewAXvcpNwMYCbwDvAw0AsYDbUWkk1LK6VO2OUYLxwzgTWCrd3mR5ybgLuAVIB14wrvs0Gl+Xrkx/Q7cB9QC7gQ6efc1uRT7GpyUUvrlpy+MgyIDqOuzrCngNH51ecsiC/juN8AOn/dXYZwoLjjN9q70lrnXZ5kV4z6YAkb6LF8C/AWE+ywTjJPgNp9lT2LcP4v2WRaGkdzfNvtnrF/6pZQCI5EpoCdQHaiHkXCPAplADHCLt0y8z/dCMS6aZ5dgW7He9dyDUcn62LuN3vnKvQx4gP/zWVYV42JDAbHeZRW9x9PMfN+vhXEhP9Nn2Wzvdx/KV/YPYI3P+87ectfmK9cn/3IgybusTwH7WuS5ybtsA7CsgLLdvOvu5vPzPgT8jXEbILdcP2+5R0u6r8H80k30fsp7VX8J8IVSan/ucqXUP8DXvmWVz70uEbGJSHVgOdBYRGzej3KvavuLSGghm+2LcZWdd2WrlHJjXF37xlYV6AHMAyqJSHXvNqthXC0382kum4txUF7ts4reGM3+c0/7Q9C0srcEI2HvxUi86Ri16n0Yf+9ZGDX2XH0wLgg+KMW2woBPgP5AX6XUd/k+vxT4RSm1LneBUuo48GG+cr0wjqePco9F7/Hoxqi5di9g22/ke78CaOzzfjCQAnyfb51rMX4m+de5Syl1SmtcMc9NJXEBUBN4TSmVd29eGa0eWzASfX5F7WvQ0k30/qsmRu/Rfwr47KRlItIJeBS4CKNpzpcN40BdDnyG0dQ/wXuP6wtgjlIqt8mvIXBAKZWebx1b871vilFbf9z7Kiz+fUqp9SKyBaM29Lb3s9ya0Q+FfFfTzHIbsA3jQvcQsFUZHb1QSiWLyELgWuAhb/nhGLepSvO3fB9G7fsypdSyAj5vCPxSwPL854Rm3n8LiyE13/sspVT+23wnAN97680wzh2HC1lnzXzvdxVUqJjnppJo6P03/zkJjATfOd+y4uxr0NIJPsCJSBNgKcYf90SMmkcORm18At6OlMpomxokIhdi3Afrg3Hf724RubCApH46uS0/z1H4PXTfk9Bc4AHv1XsacAXwkVLKVYJtalpZWK3+60VfkPeAwSLSEaOZ+AqM2qSnFNv6FqOWPklElvnWSEso93i8HjhYwOf5jzN3Mdd5mJNbK3zlT5qn9Jgv7rnpHCvOvgYtneD912GM5sCmBXzmu+xyIBy4Qim1J3ehiBTULIdS6lfgV4yEey1Gc981wFvAbqCniFTMl/Cb51vNTu+/TqXUkmLsy1yMloOBGLWiyhjNn5oWaL7BSG7DMZq/o4D3S7muXzGajxcBn4jIgHwXvbsp+vgHo8MYwOFiHo/FsQPjFuEqVfrhbiU5N6kClhVkt/ff5pzaYtHc53MNPUzOb3nvfS8BrhKRurnLRaQpcJlP0dwrVPEpYwNu9F2fiER7e8n7yr23F+799yuMi76xPt+zArfni+0wsAwYIyJ18scuIjXyld+MUdsZ6n0dwOi4p2kBxZuAP8IYGTIS+Fsp9dcZrG8JxgX2pcD7IuJ7Tv4WuEhE/i93gbf/S/5a9bcYzfD3F9S/Jv/xWEzzMDrYPpT/AxEJEZECh87mU6xzk1cGhQzHzWcNRuXnVhHJPW8hIpcBLYDFxVhHuaFr8P7NjtEhbZWIvI5xwI3H6HGae9B/h9HstVBEZmDc07sZ4yDwTb4jgHEiMh/j6rySt1wqRmIHWIjRC36ad4ztJozOcQV1hrkNWAn8LSJvYtTqa2Hca6sHtMlXfi7wGEarxNulbNLUNH/wHnAHRkezyWe6MqXUFyJyo3e9qXjHkAPPANdhdHR7hf+Gye3B6E2vvN9P9Y4tfx/4Q0Q+xmhlaIDR6WwVxnmjJDEt955P7vNeYHyHMXqnGUYHvDuBT4tYTXHPTWB03hsrIg9i3N47rJQ6pU+BUsopIpMxhsktF5GP+G+YXBKnDmEs38zuxq9fp39h9Fb/A2Ps6z/AaIx73w6fMpcD6zHug+0CJmFcJfsOpWkLzMFowsrCaCpfCCTm215VjBNNCkbP+/cwLiZOGibnLdsYY+ztAYwD+V/vOgcWsB9NvetQQCezf676pV++L/4bJlfoMNJ85Tdg1FBjSrGtWO+27sm3fKx3+bM+y/4Po7UrC+Me9hSMFjUF1Mr3/W4YtxCSveeCfzASYaJPmdlAegEx2fEZeuuz/GaMWnMmxsXHX8DTQB2fMknAokL2tchzk7dcLYxbFanez5b57FPeMDmf8kO858UsjGGDH+T/XZR0X4PxJd4d1gKIiHwBtFRKNSuysKZpZ52I/AkcV0r1NGHb0zFq+RWVcStP0wqk78H7ORGJzPe+GUYv1GWmBKRp5ZyIXIBRs36vDLaV//ivhtFbfqVO7lpRdA3ez4nIAYympp0YY0DHYnSKa6uU2m5iaJpWrohIKyAR41Gn1YHGymdom7dDalEd2tJVCYakisg6jIv5zRjN2KOBukBPpZTuqKqdlu5k5/++AYYBtTHuw/8C3K+Tu6aVuUEYc0FsBYapU8et16eQB774eBTjHnBxfeXdbu5jcv8ARuvkrhWHrsFrmqadBSKSO4f86exUSu0sooymnRU6wWuapmlaENKd7DRN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8JqmaZoWhEr0oJu1a9dWxHiKkr4wKB88wP7ExMRiP3lLCz76uNfOkD6PmKTY4+DXrl17ocViecNisdjwmd9XC2rK4/GkeDyeWxMTE381Oxit7OnjXjsL9HnEJMVK8GvXrq1osVhWVqlSpVbNmjWPi4h+Ok4AUkrh9KgQl1uFKqUsylgmSokAEinZKlQ5BeOtUuA5ciKtYnLy8SO1N711Se0d8w5gT9G/+3JCH/fa2aCUksOHD1dNTk4+5PF4OuuafNkpbhN9XYvFYqtZs+bxChUqOM5pRFqpKaXIcXtCc1ye8ByXJyzHbfzrdKtwp9sT5nKrMIUqoBZmnLebhmWkR7lOVPT9xBKicOQkV69y8Od9gBu7LQXYjzH5zQ6ff3cASdhTcs7pTmplSR/3Acjp9oRkuzxhuecBp9sT7nR7wjwKi1JKlHH1LgpliQh3OEIk01Iv2xGGGB8hFjcWqwtriAtLqBNLiAtLiBNrqIuQ8GysYa6SxlSzZs3jqampNo/HUxfYdg52WytAcRO8BRB9Be8/lFJk5rgj07NdlTKyXZWyXZ7IwhN46Ymc9B8rUNX7alVAcSd229/AGu/rd2AD9pQSnxA0v6CPez+V5XSHZ+a4o3JcnvAc939J3OVWYR6lit1XIjTM7QKXBXd2ZNGlvcTixhqeRUi4g5DwLEIiswiNdBASnvPfCSPfV4y/IUH34yhTeja5AKGUwuF0R6ZlGQnd4XRXcnuU1ey48gkFzve+bvEuy8Ju+xP4AfgW+EUnfE0rmSynOzz32M/McVdyeTyhZ2/tJbyAUx4rLkcFXI4KJ6/G6iI0Mp2wCumEV0onrEImYtEXhyYqfYK32xLPYhz51p2y9ky+vnXr1rAFCxbYJk2adCR3WUxMTOtPPvnkn44dO5ZpU+P27dvDxowZ02Dnzp0RVqtVjRo16sgDDzxwGOCBBx6o/fHHH1cLDQ1V4eHhnunTp+/p3r17Zu53HTmuiLQsV6WMHHelzBxXpYyMzJBh/boTGhrKvG9XAPDF3A+ZM+uNvO0dOrCf8zt05MU33z8llhnTn+WbhZ9ToUJFnnntberWawDAQxPGcfW1N9C0U/y5+BFEABd5Xw8AqdhtPwLfAd9iT9lxLjaqnRuxUxafk+M+aVq/Mzrm/cGiRYsqZWVlyaBBg1LPdF1ZTndYerarUro3oe/dszvsyQfvZffOHVitVgZfP4prb7yF7Zs38uSD93L82FGsViut/i+R+6c+S0TkqRXyLIeDx++bwOa/1wNQr0Esz7z6tNSqGUXS3v2MnPAIf27YSqP6dVn3/ceFxjZm0lR+XvsXNapWYf7bz2OrXAmlFH2vGxvy6tTJVZrE1q9C+iFAPIRGZhJWIQ0iMgtdoXbOBGVzyfbt28NnzZpV42yv1+l0lqi8x+PhqquuanLdddcdS0pK2rBjx46NN9xww3GAn3/+OfKdd96p8ccff2zesmXLpjFjxhy+4447GmY53eH7TmTGbNqfet72w+ktD6ZmNUjLcka7PSpk+lN2/u+CDidt46qhw5n37Yq8V7UaNek3YPApsaSnpbJ4/jw+/W4lQ28YzUfvvAnALz/9SERkJG3bXVjaH0tJVQauBP4H/IPdtg67bRJ2W4OyCkDTSqOo4/+HH36o9NVXX9lKs26PUnI8Iyd697GM2M0HUltvO5TWen+yIzbV4azmdLnDJtx8PZcPvIYvl//O/B9+pU//qwAIi4jgvqnPsGDZaj75biWOzEzeef2lArfx6YezyXI4+GzJz3y+9Beq1ajJjJf/FwZQuWIFpk4ax5xXnzhtnBu2/MP2XXv4e+k8unW8gPc/WwzAW3Pm073jBTSJre9TWllwZlYk40gdS8qeJqGOI/XiVt31IHbbJdhtuvW4DAR0gv/ss88qJyQktIiLi0to165d87Vr10YA3H777Q2SkpIi4uPjE3r06NE0t/y8efOi/+///i8+Jiam9aRJk+rkLt+zZ09I3759G7du3bpFXFxcwh133FE397OYmJjWY8eOjWndunWLgQMHNipJfF9++WWlsLAwNWrUqBO5y+rXr+8CEBFcLpekpqZaPB4lh0+kVK4V0yBs26G0Vscycmrnb4L7dcUyDh88QN8Ckneuv/5cw/FjR+na67JTPrNYrXjcblxOJ47MDEJDQ3E4Mpn50rPced8jJdmts60N8DSQhN22ArttHHbbWb8404LDBx98UKVx48YtmzdvnjB27NiY6OjoNlu3bg0D+Pvvv8O7devWtFWrVi3i4uISnnzyyby/IxFJnDJlSu3WrVu3iImJaf3SSy9Vy/2sqO9NmDChbqtWrVqMHz++3urVqyMTExObJyQktGjSpEnL3PPIzz//HPnee+/VmD9/ftX4+PiEe+65pw4Y56jExMTmLVu2bNG6desWCxcurOS7P5k5roh/T2TW33wg9bx/T2Q2TnE4qzndnjDfMr+tXE5YWBi9vUkdoFqNmgA0bNSEuBZGdxir1UqrNm3Zv3dPgT87ESHLkYnL6cTlcpGZkU7tunU8AlSNttG5fVsqRJ3+VnxoSAjZOU48Hg8ZmQ7CQkM5cOgIH33xDRNvue603xXltobmnBgOfA8cxm77ALutL3ZbQOchfxawV1H79u0LGT16dOPvvvtua/v27R2vv/561SFDhjTZvn37xldeeWXPPffcU3/Lli2bfL+TnJxsXbdu3ZYDBw6ExMXFtRo7duzRRo0aOa+99tpG991334F+/fqlO51OevTo0WzWrFnRuYn5+PHjIevXr99ssZTs73DDhg2RVatWdfbv37/xjh07IurVq5f90ksv7U1ISMi56KKLHDfdcuuJuLi4NpWrRBMWFs6sTxcXuJ7UlBRefPIRXnv/U3Zu31ro9r74+AP6Xz2U0NBTb89FRVXg+pvHcf2VvahWoxZTX3yN1557ihtuGU/FSpVLtF/niACdva+XsNvmA69gT1lhbliav9i3b1/I+PHjY3/88cctbdu2zXrppZeqJScnhwC4XC6GDRvW+P3339/Vtm3brLS0NEtiYmJ8p06dMrp27ZoJEB4erv7+++/Nf/75Z0Tnzp1bjBs37piIFPk9q9WqNmzYsBngxIkTlpUrV26LjIxU6enp0q5duxZ9+vRJ7dmzZ8YNN9xwJDk52Tpr1qy9AJs2bQp7/PHH6/7www/bqlat6tmwYUN49+7dm+9K2r3R4bFGn8jMqZ7ldFcobH9z7di+leiq1Zk0bhRJO/+hbr0G3PPQVOo1jD2pXGZmBp9//D53TH64wPUMGj6SdWtW071tMywWK63bJjJyzE1OIavYv4PmTWPp3vECzu9zLc0aNeCRibcwauKjPPvQXYSElCidRAPDva+92G2zgLexp+wtyUq00wvYK6fly5dXiIuLc7Rv394BMHbs2OOHDx8O3bVrV6GdT66//vrjAHXq1HHVq1cvZ9u2beGpqamWX3/9tfLdd9/dID4+PqF169YJu3fvDt+yZUtE7vdGjRp1rKTJHcDlcsmvv/5a2W6379+8efOmXr16pQ4eMqTp4dSsGkt++6vl4q+/qblwxR98//smrrt5LJNuG1Xgep566F5uGj+RatULr9hmZmbwzZefM+Cawq+ih464iXnfruD1Dz7l0IH9HDqwj07devLkA/dwz60jeeWNt89ix50zEgIMBn7yNuGPxm4rfi9fLSgtW7asQvPmzTPbtm2bBTB+/PhjoaGhCmD9+vUR//zzT+SwYcMax8fHJ7Rr1y4+IyPD+tdff+X93YwePfoYQNu2bbOsVqvas2dPaHG+N3bs2KO5/8/MzLQMGzYsNi4uLiExMbHF/v37w9auXRtVULxffvmlbffu3eEdO3aMj4+PTxg0eHAzsVqty//YfN6BFEfD4iR3ALfLxeqfV3DLnfcy75uf6Ni1B/eOvfGkMs6cHCaNG8VFF3en52X9C1zPLz/9gFIelq7dytK1W6hU2cbzU6eFFVj4NKZOvo1133/MJzOf4fuffqN+3VrE1qvLjRMeYeDN9zB3wbclXWV94BGMVryvsNsG6Cb8s6Nc/RAjIyM9uf+3Wq3K6XTmPejnjz/+2BwVFVVgj89KlSq5C1q+du3aiOHDhzcGaNeuXfr7779/UttYw4YNc1q0aJF5wQUXZDmc7vD+14yoMGXKlMi9x9IafL1wAc3iE6hZ27hTcOWQ4Ux7aDLOnBxCw04+5tb9/ivrfv+VF6Y+RHZ2NinJJ7iiazu+XP57XpnvFy2gSVw8TeKK7ijncrl4fupDPP3qWyyaP4/oatW5/4nnGDe4T8jgXu1p3LBekesoQ22At4BnsNveBF7AnnLY5Jg0P6OUonLlyq78rXa+fI9vq9WqXC6XFOd7Npst77wxceLEmGrVqrk2bty4KTQ0lN69ezfJysoqcGyYUorOnbukvfnBvIzkzJzqOW5PeEHldmzbwn233wzA/13QgfufeO6kz+vE1CO+ZWuaNm8BQP+BQ3nygXtwOp2EhobidDq5d9woatSszeRHpxW2G3w65136XjmI8Aij7tJ3wGDefvWZEOGuUj27IjUtnefeeI9v5/yPp155h64XJnLdwL606XUNV/TuSmRkRNErOZkFuMz72ofd9hwwE3uK7qBXSgFbg+/WrVvGtm3bIn///fcIgJkzZ0bXqlXL2ahRI2eVKlXcaWlpxRpCZrPZPO3bt0998MEH8+7JJyUlhe4siT4kAAAgAElEQVTYsaPI2mxiYmLWli1bNm3ZsmVT/uQOMHDgwJSDBw+F/fLX1sb/HEpr9dVXX1dr1Kw5oaGhxDSM5c81v5GZYTzU6acl39KwcdNTkjvA17/8lfd6+n9v06RZ85OSO8D8j98/be3d13szX6XvVYOoXrMWjsxMxDt2VUTIyPTb55lUBSYDu7DbnsFuq252QFrZ6tatW8bWrVuj1q9fHw7w+uuvV3M6nQLQpk2brIoVK7p9761v2LAh/NChQ6c9D5T0e8nJySH16tXLCQ0NZf369eGrVq3Ku79VuXJld2pqqhXA5fZYO13SN2LVL79Er1y9pl6O2xMB8Pefpw4WaBIXn9dJNn9yB+jU/RIOHdzPoQP7AVj5w/fknkdcLheTbxuNrUo0Dz89Pe9YLki9BrH88tOPKKVQSrFi6Xc0i29eYOWlOKY8+QoPT7iFqMhIMjIdiAgigtPpIqeEHZILEAO8iFGrvw+7zS/uIwaagK3B161b1/XWW2/tHDFiRCOXyyU2m809d+7cHRaLhQ4dOmTGxcU5mjVr1rJ+/frZP/zwwz+nW9cnn3yya9y4cfWbNWvWUkRUZGSk54033tjdpEmTUv+VZrvcocmukDoPPf1y6I3DBkUrpahYqTLPvPoWAD0v7c/G9X8wrF8PwsLCiIyKYtorb+Z9/7YbBjPu7vtp2aZtkdtK2rGdrZs20OfyAUWW3Zu0izW/rOR/730CQP8BQ5hw83V8t+gLOl9wnqd1i2b+NrY+vyjgXmAsdtvLwHPYU04U8R0tCMTExLhefvnlpAEDBjQNCwtTXbt2TY2KivJUq1bNHRoaysKFC/+5/fbb6//vf/+r5fF4JDo62jVv3rydQKFJrKTfe/jhh/ePHDmy8UcffVStYcOG2RdeeGHekLhrrrnmxIABA6rFJ7Q8r+dlV1jHTJhsmfbKmzw+ZSJZjkycTifxLVszzXsOKK6oqAo8+OQL3D5yKPnPI98u/JylXy8krkVLhl56MXByK4DveWTshCk8NuUurr6kIwCNmjTjyelP5AiQ6XAQ13kA2Tk5pKSlUy/xUq4f1I+n7ru9wJhW/b4OR1YWvS42Rt/cNnIIw267n6dfm831A/thq1ypwO+VQg3gSWASdturwHTsKcfO1sqDXXGfRR8fEhLyTbNmzdKjoqKK3yOjHHJ5PJZDKdl1jmfm1FLq7D5V7lxrGpZ8yqNqs1yKXfuO0GjV3USk+2X/l1TgOYxE77fND4HIH4/7EydOWKKjoz0A77//fpVHHnkkZufOnRvNjsujlBxOy655LD27ttujAqbiVCEqMz1CMolxpFUsunTpncXzSBpGwn8Re0r22YkueAVsE72/UUpxJC27+taDaa2PZWTXDrTkHsAqA48BW7DbhpgdjHZuPf300zWbN2+e0KxZs5YvvPBC7ffee2+X2TEdz8ipsvVgWsvDqVn1Aim55wqwE1Ul4ClgE3bbQLOD8XcB98foj1IczkoHU7LqZ7vcuqe3eRoAc7HbbgXGYU/ZYnZA2tk3bdq0g9OmTTtodhwA6dmuqAPJjvoOp/uc1n61AjUGPsVuWwbchT1lvcnx+CVdgz8Dbo+y7D6WEbv7WEacTu5+ozuwHrvtCey2Enfj1bSiuD3KsudYRsOdR9JbBENyD7AafH7dgD+w297AbivVUwSDmU7wpZSe7YradigtIcXhrFZ0aa2MhQH3A2ux2843OxgteKRnuSpsO5SWkOxwBs0oDsmdLzpwWYAxwEbstn5mB+NPdIIvIaUUB1IcdXYdyYh3FjKuVfMbCcCv2G0PYrf5++gAzY8ppTiQ7Kiz62hGc33c+60YYBF227u6Nm/QCb4Esl3usH8Opzc/kpZd92zPu66dM6HA48BK7LZmZgejBZ4sp/e4Tw/O415UoLfSn+IG4C/stu5mB2K2UneyO1fTRoJ/Th15PCMnen+yo6FH+d0c7FrxXAisw24bjz3lHbODCVjnaproM5wi+lw5lp5d9UBKVoMgP+4DvYm+IA2ApdhtzwL3Y08p9QN9ApmuwWPM+ta6desWTZo0adm0adOWt956az232/h7yO1I9++JzMZFHeT/7tnNNX27MaRPF67ueRH33DqS1ORkADIz0rl1+EC6nteEzi0bnjae11+YRrc2TRnSpwtD+nTJe4wlwMez32TgJR3ztvHhrBkFriM1OZnRQy5n4CUdeeL+u/OWHz92lNGD+5d46tsgEQXMwm57HbvNX567r5VA7mxy8fHxCatXr47M/37ixIl1MzMzz7hG6nJ7rElHMxrtS3Y08ihlfWjibVx+8QUM7t2ZEQP6sGHdH6Va7ytPP553/A7p04WvF3x20udz332Lq7p3YOAlHRncuzPZWQU/fmDhZx8zuHdnru55ETdfcyUH9v03tnzVj0sY1rc7g3p14rorerF1098FrmPj+j/p1+WSqM4X9qnw7ryFect/WLmaMZOmlmr//IwAk4DvyusMlaV+0I2/1eBzn8tcGqtWrYqMjo52JyQk5GRmZkqXLl3iRowYcXTULeOy9p7IbFTce2452dl4PB4iIo0O9U8/MgWAyY9OIyc7mz/X/IatSjQ3DenPyo27C13P6y9MIy01hUn2p075LC01hUqVjdtL6WmpDLykI9PfnkOLVuedVO6j2TNJSU7m1rsmcdPQK5j86DSaxSdw/51juGbETZx3frtT1h2gD7oprVXAIOwpfjHkyh8V+KAbk2vwF198cbPhw4cfGzNmzPGC3otI4pEjR9ZVr1691DW2VIez4r5kRyPfaVuXffcVnXv0JiQkhOVLvmHaQ5P4+pe/Sr7ulBQqe28PHzqwnwE9LmTxqj+JrlqNH7/9itlvvMSr786jUmUbx48dxVYlGqv15HrFrn+2MXrI5cz9ejk1atVm0edz+WbBZ7z67jxSk5Pp3+V8Zn26mKbNW/DHbz8z9f67+XzpL6fEcveYEYwcc72jY9s4d8/OfSvu/GUhDkcWfYbfxpfvTKeK7aw9jc4fziN7MY731WZs3CwBXYMv7lzNABMnTqzbr1+/xj169GjapEmTlhdeeGFc7vOmO3Xq5EhISMgBY0KKli1bOnbs2mPbdaxkHWrCwsPzkrvb7T7pOe9h4eF06HRxXnIuLd/vOzIzcblcBZYLCQkly5GJx+PBmZNNaFgYq35cQmVblQKTeznUCaOX/UVmB6IVz8iRI+uvWbOm4mOPPRbTtm3b+Pzvr7322gYAHTt2bB4fH5+wb9++kIEDB8YOGzasYceOHeNiYmJaDx48OPbHH3+Mat++ffN69eq1vummm/JmVrLb7bVandemdfsLzm8++NJuYevX/pcLuvXumzcd6nnnt+PwwQOFHnunU9nme/xmoJTC4zHmspk942XG3DU57xivWq36Kckd4J+tm2kW35IatWoD0KV7b1b+uITkE8fZu3sXtuiqeRPTnN+hIwf372Pz36cOEw8JCcGR6SA7Kwurd7ZM+wszuHP0tWc1ufuJ+hizU95cZMkgEtAJHv6bq3nGjBn/NmvWLHvlypXbNm3atHn9+vWbFi5cGL106dK8KRnXrVtXYc6cObt27NixsXr16q7p06ef0myzZ8+ekK++/rrqRZf0iy7N0+icOTkM6dOFrm2asGfXDsZOnFKq/fpu0QIG9+7MTUOvYPXPJ0+J/v3iBQzoeRGXdWzDDbeMP6X2DtDv6iHsTdrF0EsvpkPnbtSsXYc3X3me2yc9WKp4glRdYBl22wizA9GKNnv27L2tWrXKnDZt2t4///xzS/73c+bM2QPw888/b92yZcummJgYF8DmzZsjlyxZsn3Hjh0bfvvtt4pPPvlknRUrVmzbtGnTxvnz51dbs2ZNBMCAa0eGzPlqedi8b1cw5fGnefju8QXG8eHbb9C5e6+Szn/+3/dnzeCKru0Yelk3Hp72Yt400Du3bWXTX38yYkAfhvXtXujtt7iEVmzZsJ6kncYUG4vmzzN6+f+7lwaNGpNy4jjr1vwGGC0PGelp7Pv3lLmwGHPXJN6Y/krY4IEjo5596C7WbdjKzt37GNivZ6n2KwCEAzOx294sL9PRBvxO5p+r+cYbb6y/adOmSBHh4MGDYWvXro3q2bNnBkDXrl1Tateu7Qbo0KFD+oYNG056OM3x48ctfftf3mLk2LusCcWY5KUgoWFhzPt2Bc6cHJ56eBKffjibG8feWaJ1DL7uRm66/W5CQ0P58/dfmXDz9cxZtJS69RoA0KvflfTqdyX79u5hws3X0fWSPsQ2ObmDeFRUBZ6f8W7e+2ft93PjuDvZk7SLt199AYCb77ib5gmtS7WfQSQMmI3dVgt7yjNmB6OdfX379k3OnSq2efPmjl69eqWGh4er8PBw1bRpU8emTZsiajVOqPnL73/UeOuV50k+cZyQkBCSdmwny+HIa5UDWPT5XL5b9AXvfLq41PEMHzWG4aPGsHXT39x/xxgu6tqDKtFVcbvd7Nu7h1mffkVqSjKjBvenXoOGdL3k0pO+37BREx586gUevGssbpeLLj17U8lmwxpipVJlG8/NeJeXpz1GZmYG553fjsZx8YQU0BLQuFlz5n71hcNGJtEZyRV7DxvH+y9P5aMvvuHTxUuoXLECLzxyN9FVgm4it5uAuthtg4N9KtqAr8EXNlfz1q1bN3Xo0CHNd67miIiIU+aDzn1/4sQJS49Lerfq1ufysBtuua3Abe3YtiWvc8yTD9xz2rhCw8K4ashwFn02t8T7VL1mrbz+BG3bXUh8y/PY9Ne6U8rF1G9A67aJLF/y7WnX9/efazl+7AhdL7mUpx+ezIQHHuOu+x/l6YdL17oQpJ7GbnsWuy3YhgyVexEREXnnCKvVqnzfW6xWkrM9tQ4np9eYeMsNTHzwcT5f+guzvAk8J+e/qdK/+fJzZrz4DDPmfE61GjUL3Na0hyfnnSO2bz79HDjNE1pTs3Zd1vyyEoDadWO49MqBWK1WoqtWo0v3S/j7jzUFfrdXvyv54Mvv+eirHxly/Siys7KoH9sYgPYduzDr08V8/NUy7nloKkcOHaBxs/hC4xAU09+cw+D+vahiq8jj099k7uvTuPjC85n+1oen3YcA1hdYgt0WbXYg51LAJ3hfp5uruYjvWXr06t26Y4/eobfcWXjiLmre5v3/7sHhMC4IPR4P3y1aQFyLliXej0MH9uX9f/euHWzd9DdN4xMA4yIj1/FjR1m9asVpt+F0Opn+lJ17Hn4CAIcjExGwWITMzIwSxxbk7sGozQd8y1Z5VaFCBc/x48eLNaTN7VEWZQmJcnqkYnZ2Fk5nDnVijFvyH70z86Sy3y6cz/+efYIZH82nTkz9Qtc55bGn884RzQo4Ln2P371Ju9iy8S8aN2sOQN+rBvHzsiUAZDkcrPllFXEJrQrczpFDRt9Qt9vN9KfsDL3hJiIjo076DGDmS8/SvuPFNGjUuNCYk5L2yPcrfmXM9QNxOl24XG5EBItYSM8I6gkaLwJWYLfFmB3IuVLqE5k/jlU/3VzNhfF4lNiffLbFhvXrQhyOLH742hgu0qvfldx8x+lr6flt27yRV5+Z6l2vhxat2zD5safzPh/UqxMnjh8jPS2NXu1a0q5jZ558ybjPNqRPF159dx41a9fhlWemsumvdYSEhGCxWrl/6rPENm4KwIez3uDP1b8SGhqKUorrRt/KRRcX/jyHd994mcsHXpNX4xh3933cNmIoABMfeLRE+1dO3ABUw24bhD3FL6ZI9St+Ol4915gxYw727t07LiIiwrN06dJthZVzuj0hu45mNEMsVoCKlSoz/t4HGH55T6pUrcalV1x9Uvn777iFajVqctfo4XnLZn68gCrRVUsU34tPPsK+vXsIDQnBag3hvsefyUvw1998G4/fN4EBPS4EES657HJ6978KgHnvz+LIoYPcds/9ADxyz3gO7PuXnOxsuvTszR2TH8rbxmvPP8Ufq3/B7XJxXmI77M++ctqY7psyNeLlR+9BRLBVrsS1Ay6ldc8hVKwQxdzXp5Vo/wJQS+Bn7Lbe2FO2mh3M2Vau54N3uT3WXccymjpyAn/CiLOhnA2TK8pXwADsKTlFlgxSwXrcZzvdYbuOZsTl6EfOUiEqMz1aZVA1Oz1Q5oM/V44C3bCnnP6+SoAJqib6knC6PSE7jmQ018ldK0RfYI5+hn1wycxxRew4khGvk/t/JCgfZFdi1YHvsduamB3I2VQuE7zHo2TX0YxmeopXrQgDgXex28rlcRJssl3usKSjGXEuj0c/xdCH7lWapw7G423rFVkyQBT3xOUBY0alQKeUYvfxzEZZTneU2bEEgrxfeRD87ktpOPCG2UFoZ8bl8ViSjmY0dXmUTu6n0jn+Pw0xetcXPEwiwBQ3wScrpVw5OTlhRRf1b/uTs2LSspxBPTTibMrxAB4XVmea2aGY6WbstqeLLqb5I6UUu49mNsl2eXSLXQF0dj9Fc4zm+oDPE8XtRX/U4/EsP3ToUL/Q0FCnxWIJyOpcssNZ5Whadm2z4/BX2eKyWNz//Wo9Co6kZBF1+A9CcoockBDsJmG3bcWeMsvsQLSS2XvC0SAjxxV0T2s5a8pv69zpnAcsxG7rEcgdbYuV4BMTEz1r16592OFwtN6xY0cNAvCiL8etIlKyPLX0n3LhlDXDGu7xfbCTwuI4ToOts3VHHMPr2G3/YE/5yexAtOI5lJpVKzkzp1zOJFZcAXcyLzudgNeB0WYHUlrFHgefmJi4b+3atZ09Hk+DknzPHyzclhG7ZJfjo2DoQ3AuPRc+6694Nv03E43HTZjjMBZV8kk1glQY8Bl2WwfsKTvNDsYMrd9tfU5mk/t7xN9nNL5+69atYQsWLLBNmjTpSO6ymJh6bV6c9VFIfMuyfRzz8iXf8MLUh/G43TSNT+DxF/5HxUqnNiB8OGsGn304GxFBRBg59g76Xz007/OZLz3HgnnGk+QuveJqbvcZ657L6XRy760j2bd3N/UaNuLZ198hJCSE7Kwsbh1+NS+9PYfKVaoUFbLO8YUbhd32F/aUl8wOpDRKlKgTExNzgH/OUSznROyUxVWBhUCRf+Xlncramxlh9csxqv6kOkbTXUfsKSlmB6MZtm/fHj5r1qwauQk+I9sVhcVyxhURl8tVokllMjPSsd97B7M+WUSjpnE8+eC9zHzpWSY++PgpZZvGxfPu/G+oVNnGwf3/MvTSrrQ5vz31Yxux9tdVfP3lZ3zy/UpCrCGMGHApbS5oz8U9+5y0jp+XL6VylWimv/0hD989nlXLltD1kkuZ+dKzXDPy5uIkd53di/Y8dtsm7Cnfmx1ISQX18J/YKYvDgPlAU7Nj0YJKAvC+2UGUR5999lnlhISEFnFxcQnt2rVrvnbt2giA22+/vUFSUlJEfHx8Qo+ePZvtPpbZFGDp1wu5/sreXNaxDTNf+u/x0kcPH+LesTdybf+eDLykY94TKAEuu+g8XnzyEa7t35OHJowtUXwrf1xCfMvzaNQ0DoChN4zm6wWfF1i2Q+eueVPD1q5bj2o1anLQ+5jqbxfOp//VQ4iKqkBYeDhXDR3O1ws+O2UdudNCA2Q5MgkNDWPb5g3s2rGdPpcPKFbMols2i2IF5mK3BVweCeoED8wALjY7CC0oXY7ddrvZQZQn+/btCxk9enTj2bNnJ23btm3TqFGjjgwZMqSJx+PhlVde2RMbG5u1cdPmLa9/+EVo7lj3tNQU3l/wHXMW/cC7M17m0IH9ADw4YRxDb7iJOYuWMvebn9j41zq+W/RF3rZSTpzgw4VLeOqVN0sU44F9/1Kn3n/DqOvWb8DRwweLnDv+1xXLSE1JoaV3FssD+/+lrs8z7+vWb8DBff+e8r2LLu5OhYqVGNy7MxUrV6Z9p4t57rEHmfzoUyUJW1fiixYNLMBuC6jh1QF1L70kYqcsvg4YaXYcWlB7FrttBfaUU6f608665cuXV4iLi3O0b9/eATB27NjjkyZNarBr1668se37TmTW932AVd+rBgEQXbUaMQ1i2bd3N5VsNlavWs7xo4fz1p2ZkUHSjv/uPl4xeBgiZZP3tm/eyMN338Yzr71NVFSFEn3XYrHwyDP/3R7+4K3X6d6nLy6XmynjbyInJ4ehI26iQ6fC6zk6uxdbAvACcKvZgRRXUCb42CmL6wGnn2FB085cOPAxdlsi9hQ9NZ/ZxGJNdjir+y4KC4/I+7/VYsXtducNC3t/wfeER0RQkKgKBT/Bese2Ldx3+80A/N8FHU6ZVbJOTD1+XbEs7/3+vXuoXrN2offxd2zbwu03XsOjz73K+e0v+m89deuxf99//WH2791D7ZjTP2Bt/797WPHD97z+wac8OGEsA4ePJKF1G667sjfzl/5ymm/qJvoSGIPdthh7ykKzAymOoGuij52yWIBZ6E51Wtlojr6YLBPdunXL2LZtW+Tvv/8eATBz5szoWrVqORs1auSsZLORlpFRrAdxRVWoSLuOXZj12vS8ZYcPHjhpmubCFDVldKduPdm8YT27/jEmspv73tunzEyXa+f2rYwfMYSHpk0/ZUbIXv2vYtHn88jMzCAnO5sv5n5Y6HpyPfPIfdz7yBNYLBYcmZkIglgsZBUxLbToSnxJvY3dVsvsIIoj6BI8MA7oZXYQWrlyI3bbILODCHZ169Z1vfXWWztHjBjRKC4uLuHNN9+sOXfu3B0Wi4U6TVvVbBIXz9U9L+KOG4cVua4nX57JnqSdXN3zIgZe0pGJt9xA8onjZxxjhYqVsD/zEnfddB39O5/P4QP7ueXO/6adHtKnC4cPHgDg6UemkJaWyktP2RnSpwtD+nRh1bKlALS7qDN9Lh/AoF6duKpHBy68uBtdL7m00O1+Nf8T4hJa0bR5CwBGjbuLpx+ZzLX9enDznfeeNmbdya7EagBvmx1EcRRruthAETtlcVNgPRBQHSH8xZzQqcs7Wjd1NTuOAHUQaIE9JdnsQM6WQJku9mh6drX9yY5Ys+MIRBWiMtPrupJDIl3ZBd+rOEsCYLrY0rgNe8prZgdxOsFWg5+BTu6aOWoD08wOorxxuj0hh1Kz6hddUiuMbqIvtWex2xqYHcTpBE2Cj52y+Aagh9lxaOXaLdhtncwOojzZd8JR3+1RVrPjCGzB04pbxqKA6UWWMlFQJPjYKYurAc+bHYdW7gkwE7st4GddDAQpDmfl1CxnVbPjCHSidA3+DAzAbiu8c4TJgiLBA89hPEJU08yWAEwyO4izxAMopZTfJQC3R1n2Jzsamh1HcDj3Nfi8rl5B1OfLxyvYbeFmB1GQgB8HHztl8cXoB9po/uU+7LZ3sKcUPe7Kv+33eDwphw8frlWzZs3jIuI3Z+fDadk1c7KduqXkDLlznJZsl0eU59z9apWCIxluJDuV0Kyj52w7JmoK3AtMLapgWQv4BA88YXYAmpZPFMbBfqPZgZyJxMTE9LVr196anJz8Rmpqqg0/6YzlUViPOdzVg7MyWLbCQrOs2e5MS4hyn9PtSHYq9dY9j9Xtt4MxztT92G0fYE9JMjsQXwGd4GOnLO4OdDY7Dk0rwA3YbdOxp6w3O5AzkZiY+Kt3mui6+MktvUeWHb/nRJY7YOfo9ieVan//11upPzSq7naeu1ucShGadTSYkztAJMZF/XVmB+IroBM88LDZAWhaISwYrUv9zQ7kTCUmJqYD28yOAyB2yuIawDVmxxEsIiodyYxIT1IRbo/ZoQSDYdhtU7GnbDE7kFx+cUVeGrFTFncGupkdh6adRj89bO6suxso2Yws2mlZVcBX9PyFBXjE7CB8BWyCR9fetcDgdx1vApV3OOxtZscRbKyoQM4D/mYIdltLs4PIFZC/2NgpizugnzevBYZu2G3tzQ4iSNwNFDzNm1ZqVoV+UNDZ41e1+IBM8OjauxZY7im6iHY6sVMWVwXGmx1HMLIGfl8sfzMIu6212UFAACb42CmLE4G+ZsehaSVwNXZbY7ODCHATgUpmBxGMrEo/6vcsE+A+s4OAAEzwwENmB6BpJWQFJpgdRKCKnbI4Grjd7DiClRXdRH8ODMJuq2t2EAGV4GOnLG4DXGF2HJpWCqOw26qZHUSAmgBUNjuIoKREWQIsDwSIUGCc2UEE2i92In7yNC1NK6Eo4Gazgwg0sVMWhwC3mh1HsLIE6cPh/cQtZk88FTAJPnbK4khggNlxaNoZCOhH15qkF1DD7CCClUX5z/wCQagGMNDMAAImwQP90J1stMAWh93W0ewgAsy1ZgcQzCy6QfRcG2PmxgMpwevHU2rBQNfii8nbaneV2XEEM1FlMFds+dYVuy3OrI0HRIKPnbK4EkYNXtMC3RDstiizgwgQl6MfbHNOWXV6LwtDzdpwQCR4jKv4CLOD0LSzoDJwtdlBBAjdPH+OWdE1+DIwxKwNB0qCH2Z2AJp2FvnVlJL+KHbK4irAZWbHEewsuom+LLTCbmthxob9PsF7J5i4xOw4NO0s6o7dpjuMnt4gwNQhRuWB7mRXZgabsVG/T/AYB3qo2UFo2lkUBvQ2Owg/p5vny0CIHgZfVkxppg+EBK97z2vBSD+RsRCxUxbXBbqaHUd5oMfBl5mW2G0JZb1Rv07w3gP9YrPj0LRzoC92m18ffyYaip+fm4KFfgh9mepf1hv094PoSvw/Rk0rjerARWYH4af0bJFlxKr72JWlHmW9QX9PnvqpX1ow04ksn9gpiwVoZ3Yc5UWIzu9lqTN2W5n2J/P3BN/e7AA07RzqYnYAfqgFYDM7iPLCqofJlaUKlHFO89sE7x0H28zsODTtHGpn9mxTfuhCswMoT/Q9+DLXvSw35rcJHuNKRw/S1IJZBHC+2UH4GZ3gy1CIUvocW7bK9D68vyd4TQt2ncwOwM/oBF+GQnQTfVm7CLstvKw2phO8pplLJ3iv2CmLKwItzY6jPNG96MtcBGX4N64TvKaZS48U+U87/PucFHT0PXhTnFdWG/LLgyl2yuKGQFtXsfMAACAASURBVC2z49C0MlALu6262UH4Cd08X8b0o2pNUb4TPLr2rpUvZf4ISz+lE3wZ0+PgTdG6rDakE7ymmc+UqST9UAezAyhvQvQ9eDPoGrzZAWhaGSr3CT52yuIY9G25MmfVTfRmqIndViZ/6/6a4JubHYCmlaFyn+CBhmYHUB6F6XHwZimTnvR+l+BjpywOBWqaHYemlSGd4KG+2QGUR/oevGnK5O/d7xI8UAf9BDutfInBbivvI5bqmR1AeaTvwZsmpiw24o8Jvkx2XNP8iAXdaqVr8CYIwWN2COVVuU3w+kpeK49qmx2AyXSCN4F+Fr1pym2Cr2t2AJpmgvKe4OuYHUB5VKaTk2u+ym2Cr2F2AJpmgvI+RKyq2QGURyFKN9GbpNwm+CpmB6BpJijvNXid4E2gh8mZpkz63Phjgo82OwBNM0F5fx69Pu5NEIJO8CaxYreFneuN+GOC1zV4rTwqszmi/U3slMWVgRCz4yiP9GQzpoo41xvQCV7T/MM5v5r3Y7p53iShOsGbKfJcb8AfE7zN7AA0zQTltgZP+b64MVUobt1Eb55yWYPX3Tq18qg8J7ksswMor0KVfmqoicplgs80O4Dyyir62spEOsFrZU5h1QnePOWyiV4n+DLWx7L6z1Xht69uL1u6mB1LOaYTvFbmHnPd0P6oqvyH2XGUU+f84sofe67qBF8GwsnJui3kizU3W7+qFSk5bc2OR8NldgAmcpgdQHnlIDyqY/YrLZeFT1hdV463Nzuecuac/93rGnw5U5ejB94MfW7Z5vAbM+4I+aJzpOQ0MzsmDSjHtdikaf2cgNvsOMqrHELDL86e3jbJU+sXs2MpZ855rtM1+HKio2XDxsdC3klpIgfaiejnfvuhcpvgvbKBKLODKK9chIT2yHm+/Tdhk1fFWfZ1MjueckIneK30rLhdI63frr4r5DNbJXG0NDse7bQyzA7AZFnoBG8qDxZrn5ynL1oQ9tCK8yy7dH+cc08neK3kokk9/lDoB39dafm5uVU8Hc2ORyuWVLMDMJm+D+8HFBbLFTlTO88Ne3x5B8uWrmbHE8QU+h68VhKtZef2L8MeWPFH+K2RV1tXdrOKRzfFB47ynuDL+y0KPyIyNOfhrj+62ywzO5Ig5sCecs4fI6gTfIATPJ7B1mWr14Tf+sfC8AebnWfZ1UXk3I+v1M6642YHYDKd4P3Mjc7J3Ra5OywzO44gdbQsNqKb6ANUBRxp94bM/XO4dWnDUHHr4S2B71+zAzCZPu790Hjnnd0y1IxlQ0OWdzM7liCztyw24o8JPsXsAPxZY9m/+4mQt5MutGxuK8LFZsejnTVlcsD7sSSgndlBaKea7BrTLZ2o5aOsX18soh9te5aUyQW9Pyb47WYH4I/6WFb/+XDo+866HLtAhIZmx6OddeW9Br/F7AC0wj3uur5rJuErxlu/6CTil7d2A025rcFvMjsAfxFOTta4kAW/32JdXFs/bS6opWNPSTY7CJPpBO/nnncN6ZKuIldNCfnoQhGsZscT4MokwfvdlVjStH7JwAGz4zBTHY4dfDP0+eWbw2/MuDNkfhf9tLmgt8/sAPyATvABYIb78k4Pu0b+rhROs2MJcOW2Bg9GLb7cDfEynjY3O6WJ7G8ngh6DWn7sNjsAP7AVY2ywvsfr5953974wU0X8/lzoG+eJEG52PAGqfNbgvcpNM70Vt2u09auf/w4fvXFO2JMtm1r2dxQh1Oy4tDK10ewAzJY0rV8Guh9CwPjMc3G725x3blRKj34opW1lsRGd4E0STerx50NfX7Y1fMSRh0I/6KgfJVuu/WV2AH5is9kBaMX3lafD+aOc925XijSzYwkwu7GnlMmDrXSCL2O+T5sbaF3RLUQ/bU6Dv80OwE/o+/AB5kdP2zbDnA/s8SjKeyfRkthQVhvy13vwQdVkKXg8g6w/rZkc8nFIdUk9H9Cd5rRcboLs7/0M6AQfgH71tGw5MOfRrZ+F2d0WUdXMjicArC+rDfllDT5pWr9jwBGz4zhTFXCkPRLy7vKt4SP2Phs6s703uWuar+3YU/RjWg06wQeoP1Wz5v1znkh2K/l/9u47vonyD+D458noBFL2FKPsLbKXgKgoRWQIKCKKKIriFqmIEHBQJ6j8BFERBBVRREZlKMhQhoioCLIpm7LTkWbe/f64tJTSQgttL0mf9+uVV+nl8tw3oU++d/esE3rHEgQ2F9WBAjLB+wXtbfrrxNGDX5tfW/Nv+BB1sGlZxzDhkxPTSLkpsrP5ICATfBDbrlpr3O5+0+FVDUf1jiXAyQRPECb4roZNf/0W/uTvK8NeqNbGuP0mISild0xSwFuvdwCBIjE+9hjFfA6MYLdbrWbt4n5H8ajGg3rHEqBOYrMX2bDYQE7wG/QOIC/CcTufNX279r/wB3d/HDbxhqridEs5laOUD6v0DiDALNU7AOnqHFArVevommh2qab9escSgFYV5cECOREtARS9g8iNnG1OKgBnkEPksluidwDS1TtKucrtXB+USFfD5NoiF1pRlAcL2ASfGB97Evhd7ziya23Ytu3nsBfWrQt/suytxs0dZa9R6SqswWZX9Q4iwPwEePUOQrp6p4gp38b1Ybk0NULOb3Dez0V5sIBN8H4JegcA52eb+yd8yL9zwl6Xs81JBWW13gEEGv9aFLJfQog4R8nSrV0fVrGrUXKuB0jEZt9blAeUCf4Sss82V0qkN9QzHinkrNI7gAAlb9OHkBSiLW1ck68/rZbconcsOivS2/MQ4Ak+MT52CzqstNVA7N8jZ5uTCtlR5BC53MgEH2IcRES3c31QN0mN+UPvWHQkE3wOfiyaw6hqX+OqTX+EP/ZnQvjLNRsb9ncQgsiiObZUDP0g299zlhgf+xfaCZAUQpyER7Z3fdD4kFJuo96x6MCL1r+kSAVDgi/U2/QZs83tCh908G3ztBZytjmpiMzTO4AAJ4fLhSAPprBO7onN9imV1+kdSxFbic1+qqgPGgwJ/mfAVdCFytnmJB2dRnawuxx5mz5E+TCaurjfbr1dqf6r3rEUoW/0OGjAJ3j/OtGrCqo8OducFAAWYLP79A4iwMnhciFMxWDo5p7QbrNSa43esRQBN/C9HgcO+ATvd1W36bPMNrdLzjYnBQBdKnswSYyPtSPvcoQ4Ifq4x930m69BqP8/L8Nm12U53WBJcgu4glntKnP6+DTzu6uyzDZXuxBik6T8OIkOnW2C1Gd6ByAVvvs8L3dc7mu2Su84CtEcvQ4cFAk+MT72ILAsr/tnnW3uNuPmTnK2OSmAzMRmd+sdRJD4HijyjklS0Rvqeb7TfF+7ULySdwAL9Tp4UCR4vymXetI/29x6OducFOA+0TuAYJEYH+sCZuodh1Q0nvU80XGW95ZQS/JfYbOn6nVwk14HvgIJwEGgetaNpUk+M9r85T93GX6rYxJKG31Ck6Q8WY3NvkvvIILMNOB5vYOQisYr3oc6phGx5lHj4g5CIPSOpwB8qOfBg+YKPjE+VkGr7IA229yCsNFytjkpmEy7/C5SVonxsbuAX/SOQyo68d4BN73r7fubqhLsI03WYLPrulpkMF3BA3zay7C2+8vmL8PLieSmQE29A5KkPDqNnNzmSn0AdNY7CKnoTPb1au8gYt0rplkthQi6PJXhA70DCJoreIDE+NikiWFT9viTuyQFk4+x2Qt8wqZiYiGwR+8gpKI13XdH25e8D29WVYKxU+oh4Ae9gwiqBO/3rt4BSFI+OYBJegcRrPzNcxP1jkMqenN8N7d6yjP8H1UlXe9Y8mlKIExmFXwJ3mb/Cx1W5ZGkq/AJNvtJvYMIcjPQmjmkYmaR0rb5o55nd6gquvVGzyc78LHeQUAwJnjNeL0DkKQ8cgPv6B1EsEuMj3VwmaGyUuharrRoOsgTt19VsesdSx5MxGY/o3cQEKwJ3mZfAyzXOwxJyoNZ2OyH9Q4iRHwAQfEFLxWCtUrjRv3cY44qKmf1juUSThNAzUnBmeA1o/UOQJIuwwfE6x1EqEiMjz0JvKp3HJJ+Nql16/V0v3pKUUWgNnm9jc2erHcQGYI3wdvsm9DmqJekQPUpNrvs/V2wPgB26h2EpJ9/1Bq17nBPSPWphmN6x5JNEjpPbJNd8CZ4zSuAqncQkpSDZGCM3kGEmsT4WA/wrN5xSPraqVa/7hb3Wx6vagik5q8J2OwOvYPIKrgTvM2+FfhK7zAkKQcTsNlP6B1EKEqMj10C/Kh3HJK+9qtVqndyTzS4VeMBvWMB9gJT9Q4iu+BO8JoXgRS9g5CkLBIJoI42IepZwKN3EJK+Dqvlq9zkej/CqZr36hzK8ECcyCr4E7zNfhQYq3cYkpTFS4FY2UOJf4563acClfR3nDIV27k+sDjUcL36ZszDZl+q07EvKfgTvOZDYKveQUgS8Cs2+xy9gygmxqN1bJKKudNYyrVxfVgxRY3cVsSHTgWeKeJj5lloJHib3Qs8juxwJ+nLBQzVO4jiIjE+Nhl4We84pMBgp0RMa9fk6ufU6L+L8LC2QJ7nIjQSPIDN/ivwhd5hSMXaG9js/+kdRDHzObBZ7yCkwJBGZMk2rsm1Tqml/iyCw20F3i+C41yx0EnwmueAo3oHIRVL/wAT9A6iuPEvRPMYssOd5JdOeFQ71wf1j6llNhXiYTzAQ/67xwErtBK8Nv/vYOSteqloeYAHsdllktFBYnzsH8AIveOQAoeLsIgOrkk3HFAqbCikQ7yCzf5HIZVdYEIrwQPY7MsJsNmEpJD3Ojb7Fr2DKM4S42PfB+bpHYcUOLyYzJ3d77XYpVT9rYCL/gV4u4DLLBShl+A1I4Gi7k0pFU+rgdf0DkIC4CG0CUckCQAFg7Gr+802WxXr2gIq8gxwPza7UkDlFarQTPA2uxMYiLZUpyQVlhPAvdjsPr0DkTJ71fcFnHrHIgUOFYPhTvfr7X9X6qwugOIewWY/UgDlFInQTPAANvtfwAt6hyGFLAUYgM0eaAteFGuJ8bFbgKf1jkMKNEL0c4/tuNrXeNVVFPIJNvv3BRVRUQjdBA9gs38IzNA7DCkkjcdmX6F3ENLFEuNjpwGz9Y5DCjwPeOI6JfharbqCl/4GDC/gcApdaCd4zWPA73oHIYWUn5Hrkge6xwA5J4F0kSc8T3ea671pVT5ecgDohc0edE2+QlWLwYgym6Uq8AdQSe9QpKC3E2jrH5IpBTBrXEJ9YBMQpXcsUuAZY/pi9WDj0puEQFxit1S0+h6UU6EXhyt4/J0ieiM73UlX5yTQTSb34JAYH7sdeAQ5L4aUg/HeQR3/57vrV1Ultx7xCnBfsCZ3KC4JHsBmXw8MQVZ26cqkAz2w2ffpHYiUd4nxsV8RhG2nUtF4x9u/w5vee9arKjmNhHkZm31hkQdVgIpPggew2WcTwCv/SAFLAQZisxfWrFhSIUqMj/0Ibf14SbrIVF+PdmO9D/yuqhdMdzwZmz1et6AKSPFK8AA2+wfIDlJS/rwQbMNjpAslxsdOAuL0jkMKTF/4urYZ4X10i6riQlu07Cm9YyoIxaOTXU5slv+hLTErSZcyGpv9db2DkAqGNS5hDDBO7zikwBRrWP+//4V9+HSoTF5V/K7gz3sS+FrvIKSA9opM7qElMT52PCD/T6WcfJ+gtHkmVJI7FOcEr80lPAg5IYaUMxs2u5xjPgQlxseOBt7ROw4poMwD+ifGxwb08q/5VXwTPOBfy3cQMEXvUKSAMg6bXd7GDWGJ8bEjgA/0jkMKCPOAe0ItuUNxboPPzmaJR1uFTiq+VLShMRP0DkQqGta4hClos95JxdMc4P5QTO4AJr0DCBg2exw2SzKyfa648gAP+YdSSsXH40ASMFbvQKQipQKvJMbHhvT3vbyCz85mGQpMBsx6hyIVGTvQG5t9pd6BSPqwxiX0Bz4HIvWORSp0ycDAxPjYRXoHUthkgs+JzdIJ+A4oq3MkUuE7DNyBzf6v3oFI+rLGJbQAFgCV9Y5FKjS7gLsS42N36B1IUSjenexyY7OvAloC23SORCpcm4HWMrlLAInxsZuAFmh/F1LoWQK0LC7JHWSCz50253gbYLHeoUiFYirQzr8QkSQBkBgfewRoB0zTOxapQL0JdE+Mj7XrHUhRkrfoL8dmMaDNfDUKeUIUChzAo7IznXQ51riEjCG0crnZ4JUOPJQYHztH70D0IBN8XtksXdAmxZFrygevnUAfbHbZ9CLliTUuoSHaOOnaesci5dtBoGdifOwWvQPRi7wizSubfQXQBHnLPljNBFrI5C7lR2J87L9Ac7QmndzWDZcCiwJ8BDQuzskd5BX8lbFZHgPeRd66CwZHgaHY7Al6ByIFN2tcQiu0RH+D3rFIufobGJoYH/u73oEEAnkFfyVs9qlAY+AnvUORLmkm0EAmd6kgJMbHbkS7mn8WSNE5HOlCacAIoLlM7ufJK/irZbPcC0wEKuodipTpCFpHOpnYpUJhjUuoCkwC7tY7FokE4InE+NgDegcSaGSCLwg2SwzwBvAo8q6InpxoJ1tvYLOn6h2MFPqscQl3oM18eb3esRRDR4GnEuNj5+kdSKCSCb4g2Syt0M7qW+sdSjH0HTACmz1R70Ck4sUalxAJvIx2izhM53CKg4xOdC8nxscm6x1MIJMJvjDYLD3RFq2pr3coxcAW4Bls9jV6ByIVb9a4hLqADe22vVHfaEKSF/gGeDMxPnar3sEEA5ngC4s2Qc4gtAp/rb7BhKQdwKvAHGx2OXxJChjWuITr0DriPQRE6xxOKHAAnwLvyXb2/JEJvrDZLGFobfPPIxN9QdiO1t/ha5nYpUBmjUsoAwwDnkR2wr0Sp4EPgcmJ8bGn9Q4mGMkEX1RsFiParbvn0BaykfJnIzABWIjNLv9opaBhjUuIAO4HXkDOiJcXB9DmGfksMT7WoXcwwUwmeD3YLO3Rruh7IHvdX4oDmANMxWbfpHcwknQ1rHEJAq3Ovwi01TmcQLQVbVGYbxLjY716BxMKZILXk81iRWunHwTU0DeYgLIN+Bj4Apu9WK3+JBUP1riElkBfoBfFu+4fA74F5iTGx67XO5hQIxN8oLBZ2gEPAP0Ai87R6OE4MB/4Cpv9V72DkaSiYo1LaAT0REv2TXUOpyicRlvAZw6wOjE+VvalKSQywQcamyUC6A7cCdwBlNc3oEJ1BPgebQz7r7LTnFTcWeMSruV8sm9P6Ay3+w9toa5FwLrE+FifzvEUCzLBBzJtqF1LtIQfS/AvcuEBfgdWAkuB9bLDnCTlzBqXUA7tRP8uoB1QTt+I8uUQ2hwVvwCLEuNj9+ocT7EkE3wwsVmqoFX0Nv7HjQT2zFlezlfylWhX6Wn6hiRJwcl/dd/C/2gONEP/5jwfsBOtnv+V8VMOawsMMsEHM5slHK2StwEaAXX8j9I6RGMH/kGr5H+hLdv4Lza7S4dYJKlY8C96Uw9t1sz6/n9fh5b4SwKiAA7jBc75HyfQertv8T+2JsbHphfAMaRCIBN8KLJZKqAl+rpoi2BUBir5H2X9j8g8luZBWxozBa2CHwIOZvl5EDiAzX6oAN+BJElXyRqXYEBL8pYsj1LZfrcAbuAsWv2+6GdifKxcuClIyQRfXGmd+cIBE2DO9jMjqafKK3BJkqTgJBO8JEmSJIUgOYuaJEmSJIUgmeAlSZIkKQTJBC9JkiRJIUgmeEmSJEkKQTLBS5IkSVIIkglekiRJkkKQTPCSJEmSFIJkgpckSZKkECQTvCRJkiSFIJngJUmSJCkEyQQvSZIkSSFIJnhJkiRJCkEywUuSJElSCJIJXpIkSZJCkEzwkiRJkhSCZIKXJEmSpBAkE7wkSZIkhSCZ4CVJkiQpBMkEL0mSJEkhSCZ4SZIkSQpBMsFLkiRJUgiSCV6SJEmSQpBM8JIkSZIUgmSClyRJkqQQJBO8JEmSJIUgmeAlSZIkKQTJBC9JkhSghBAthBDrhBBpQghVCHGDEOJ2IcRfQginf1uM3nFKgcmkdwBS8SCEGAVsV1X1B71jkaRgIIQwA98CTuBZwAEcAtYA24AnABeQJoQYAFRQVXWSTrEagEFAb6ApUAbYD8wB3lFV1alHXMWdUFVV7xikYkAIkQp8p6rqg3rHIknBQAhRF/gPeERV1U/9224HlgC3qqr6c5Z9FwMNVVW16hRrCSAF2AAsBk4AbYAH0E5IblZlsily8gpeyjf/2XqYPCuXpEJVwf/z3GW2BQI30E5V1XVZtn0ihEgExgFdgJ9zeqFUeGQbfAAQQnQSQvzhb1PbK4R4VAhhE0Ko2fYbKITYLIRIF0KcEULMEUJck22fVUKIf4UQ9YUQvwghHEKII0KIF3M4brgQYpwQYo8QwiWEOCSEeEsIEZ5tP1UIMVkIcZ8QYhvabcHb/c+94G8jPO2Pa7MQ4u7srweigQf8ZalCiBlZnq8qhJguhEjyx7FNCPHQVX6skhS0/PVjtf/Xb/11ZhUw079tU0Y98m+PBa7NUr8S/eV08v/eTwgx1v9dkCKE+E4IYfF/B0wSQpwQQqQKIT7Pof4PFkKs9O/jEkJsF0IMy7qPqqrubMk9w3z/z3oF8blI+SOv4HUmhGgKLAWOAWMBIzAGOJltv5eBV4G5wKdAeeBJYI0QoqmqqlnP6Ev7y/zev//dwJtCiK2qqi7xl2cAFgLtgWlotwIbobX11QZ6Zgv1ZqAfMBk4BST6tz/tL+dLIAy4B+0Lqbuqqgn+fe73x/y7/1gAe/1xVES7raf6yz4J3AF8JoQopVeboiTp7GPgCDAK+ADYBCQBO4GhaN8R+9HqUQnAAlRDq78AqdnKewlIB+KBmmjfHR5AQfu+sAGtgQf95Y7P8tphaG3+CwEvcCfwkRDCoKrq/y7zPir5f57Ky5uWCpiqqvKh4wOt0qQBVbJsq4lW+TKara5Fq1ijsr22oX+/UVm2rUJLlvdn2RaGdgLxXZZtAwEf0D5bmY/6X982yzbVv2/9HOKPzPa7GdgKrMi2PRWYkcPrPwWOAmWzbf8a7TZkZPbXyId8FIcH0Mlf9+7Osu1B/7bm2fZdDCReooytgDnL9q/QkvuP2fZfl72cnOog2gXE3jy8h58AOxCj9+dZHB/yFr2OhBBG4BbgB1VVj2ZsV1V1D1pHmgy90ZpT5gohymU8gOPAbqBztqJTgdlZynOjXT1fn2WfvmhX7TuylbnS/3z2Mlerqro9+3tQVTU9y/spjXYlsRa4MQ/vXwB9gEX+X7PGscxf1mXLkSTpsr5QVdWT5feNgACmZ9tvI3CNECLz7m62Om7x18/VwPVCCEtuB/SPnLkFiFMvvMMoFRF5i15fFYBIYE8Oz2XdVgutMu7OpRxPtt8Pq/7T5yzOAo2zlVmPbE0B2WLLan9OOwkhugOjgRuArG13eekxWx6IQbvlODSPcUiSlH8Hs/1u9/88lMN2A9rJ9WkAIUQ7tI5ybYCobPtbspSVSQjRH3gN+ExV1SlXFbl0xWSCDw4GtIR5B9qt8uyyt7fltA9oJwlZy9wKPJfLvtkrfnr2HYQQHdCaGNYAj6M1A3iAwcCAXMrNKuMO0mzOdx7K7p88lCNJ0qXl9p1wye8KIUQNYAWwA+274hBaj/luaO39F90FFkLcCnwBJACPXVXU0lWRCV5fJ9AmsaiZw3NZt+1Fq3D7VVXdVUDH3gs0QWsrv9LxqX3Q4u+qqqorY6MQYnAO++Z0jJNoY2eNapYxvZIk5VthjTG/E+3OXA9VVTPvAgghsjfhZWxvhdZz/g+gn6qq3kKKS8oD2QavI1VVfWhjQ3sKIapkbBdC1ES7Ws/wPdqZ9lh/uzVZ9hVCiLJXcPi5QFXgkexPCCEihRDReSjDh/bFYszyWisX98AHrSPhBVNq+t//PKCPEKJhDnGUz0MMkiRp9SvX9vCrkHGFn/m94293v+gkXghRD+2qPRHonrXtXtKHvILXnw24DfhNCDEFLVkOB/5Fa9dGVdW9QojRwATAKoT4Ae3K9zqgF9rQs3fyedxZaMPepvrPxn/zH7uuf3tXtLPwS0lAu223VAjxFVp7+RNo/QcaZ9t3M3CLEOI5tF7z+1VV3QjEoXXo2yiE+ATYjjbN5Y1oHXTK5PN9SVJxtBnoL4R4D21IXaqqqosKoNzlaLfkFwkhPkYbkvcI2t3Hyhk7CSFKonWMLQ28DcRmuxbZq6rq+gKIR8oHmeB1pqrqZiHEHWgJ+lW0Nq4xaB3g6mbZL14IsQut3Wusf/MhtAq48AqOqwghevrLG4R2ouAA9gHvA5dtClBVdaUQYghakp6E1hFvJGDl4gT/HNqJyGtoHQtnAhtVVU0SQrT0v+feaG35p9HG3Y7M7/uSpGLqI7QLgsFodfoA2uiUq6Kq6k7/xFWvoX1HHQemoDWvZe2BXxbImHQrPoeiZgIywRcxORd9gPJfpTdQVbWW3rFIkiRJwUe2wQcAIURktt9rofVSXaVLQJIkSVLQk1fwAUAIcQyYgXZ7/Fq0qSHDgaaqquY29l2SJEmSciXb4APDUuBetHmbXWhtVaNkcpckSZKulLyClyRJkqQQJNvgJUmSJCkEyQQvSZIkSSFIJnhJkiRJCkEywUuSJElSCJIJXpIkSZJCkEzwkiRJkhSCZIKXJEmSpBCUr4luNm/eXAKogjwxkC6kAOeAU82aNVP0DkYqWLLeSwFAfsdcgTxPdLN58+bWBoNhqsFgsJBlbWBJAlBV1asoympVVcc0a9bsiN7xSAVD1nspUMjvmPzLU4LfvHlzCYPB8GtMTEzFChUqnBFCyOnvgpSqqvhU1aAomLyKavQpikEFgaot3lxKpAkQKgJV+ylAGL0YzV6E0Ye4+DteVVXcbndYUlJSqfT09IOKorRv1qyZu8jfnFSgZL0PHYqiCq+imr2KagRVqCpCBYSqEul1odVzAaCCUITJqGA0eoXRGBBXy/I75srk9RZ9FYPBYKlQocKZ6Ojo9EKNFX7YtQAAIABJREFUSLoqPkU1OD2+cJdXiXB5feFurxLh9irhPkU1+1TV5FNUY86vVBFAJcPxS5QuVAxGDwazB6Mp46cbg9kTHRnuMletfHbvvsTyiqJUB/YUwtuTipas90FAUVWR7vZFpnt8kR6fYvb6VLNXUc1en2L2KqrZp6hmRVVzbF6JQPGUOHfCnGvhQqhCS/QeTCa3MJu1R1iY2xAW5hKRkenCYCiSE7/o6Gin2Wz27N27V37H5FFeE7wBEPIMPrB4fYoxzeWNTnP7SqS7fdEurxLpVZTcK+tVUwWKNwzFG4b34mdNXhWz86ynxobR77Jo+0rgD2ALNruj8GKSCpGs9wHG61OMDi2ZRzk9viinR4lye5UIFbVwmk9UVaher1n1es24XFEX7yBUEWZ2GcLDHSIiwuGKiUqLMkc5DIbCufI3aCcTArlQWp7IDymIOD2+sBSnt5TD7Y1O9/hKuL1KhN4xZScUr9nkSekB9PBv8mGz/IeW7DcCCdjsh3QLUJKCiMenmOzpHkuq01sq3eOL9viUcL1jupAqVLc7wud2R5CWZjlgPGWs7VM9BmHwYo5OIbxECuGlUjCafXpHWhxdcYK3xiU0K8hAskqMj91cWGXn1aZNmyJ69uxZ68iRI1uL4nj3339/9U2bNpXI+H3//v0Ro0ePPvzMiLi05HRvTIrLE5OckhZxb2xnzGYzc5etvWR5+3bv5N5unelz3wO8aJsAwJnTpxj7wnCOHT6E1+ul4Q03MvqN94iIjLzgtR6Ph76PjmT/wSPUsFZj7tQ3MZlMOJ0ubhvwOAumT6R0TKm8vjUj0ND/eBAAm+VPYAGwAJv977wWJOmvsOp9INT5y6lbt2799evX7yhdunShtUurqkqayxed7PRYUl1ei9Pjy+GqOXf//vUnb497CUdaGkIInh/zOq3a3QTAK88+zvq1qyhTtiwArTt0YtTocReXsWsXQ0aNyvzdnpJCSmoqR377DYA7hw4l6dQphMFAyeho3omL44Z69VDDzS6jwWc2u9PNgPnHZSsiX3z9/QoAz4+Z4Li9W/dzpSLN9mkffRiZlJRkjo+Pv1R7oFQA5BV8gJg1a9ZB0NrT/tudWKZZ43rWDnf2r7z/VFrm/9GkCTZuaN6KbX//ecmyPB4P40c+w823x16w/dMP36W6tQYffj4Hn8/H8Af6s2Dul/R/4OEL9lu2aj1lYkrxw/T3eOg5G0t/WUf3W2/i1UmfMPzB/vlJ7rm50f8Yh82SSEayhzXY7PJMXwooHo8Hs9nMjh07thdG+T5FNZxLd1tSnN6YNJe3lE9Rr+h7WVVVnn3kfl5973+07tCJxH17ePTenixYtSnzJP7Bx55k4MPDsrzq4nOVhrVrs/G77zJ/f/b11xFZOtfOeucdYkpp3wELVqzg0dGj2ThvHu4wgy9Sa84xA4x5Zwo/zvoAnyHM1X3wiKhmN90atWP/oSpffztPnfP94tMpTk+JkhHm1Ct5r1LeBPW41tmzZ8dcf/31DerUqVN/2LBhVUuXLt1k586dYQBDhw6t1rBhw3p169at37x58zp///13OEBqaqqIjY29vkaNGg3q1KlTv127drUyynvuueeqXHvttQ0bNGhQb9asWWWyHmvevHmlmjVrVqdBgwb1GjVqVG/RokUlAdq2bVvr888/L52x3+LFi0vWq1evfn7fS5rLG3XojKP6f0eTm3wyY6a1bcculClXIbOib1i7ihPHj9GtV9/LlvXxpLe4tXtPql9X44LtAoEjLRVFUfC43TjTHVSsXOWi15vNJhzpTgAc6U7Cwsz8s30XO/Ym0q/Hbfl9a5djBZ4GVgInsFlmYLPcVNAHkULDzz//HN2sWbM6derUqV+7du36s2fPjgFYs2ZNVNOmTevWrl27fqNGjeotX748GuCee+65dsyYMRUzXr9jx46wcuXKNXG5XGLBggUlb7jhhrr16tWrX7NmzQYTJ04sl7Ffnz59rH379rU2b968Tu3atRsACCGanTp1ygi5f79k7BcXF1epUaNG9apWrdro/fffL5vx3J9//hnRvn37WrVr165fu07dhrb4d+v+dyy5yd87E69/9MGBZfp3u9nU55a2TH7rtXx/NufOnuHsmVO07tAJAOv1NSlZysKvq37Od1kZnC4X3yQk8EDv3pnbMpI7QHJKSkbve5xm1RClktlfw2zSvkdOO1SvOUzrGvT2uFE8/dI4keql3P5TaXX+O5bc8Jg9vZLL6yvEvkPFV9BewR85csQ0fPhw6y+//LKjadOmzvfff7/suXPnMt+PzWY7XqVKlcMA06ZNKz18+PDqa9eu3f39999b7Ha7ce/evdsAkpKSjABz5syxLFy4sPSWLVu2x8TEKL169bouo6zt27eHvfrqq1VWrly5q0yZMsq///4b3rlz5zoHDx7cOmjQoNNffPFF2cGDB58FmD59etmBAweeyst78PoU4+k0d9lzDk85l9eXeZ/8h2++5LnR4zP3S7bbmfjGWD6a9R37du+8ZJn/bPmDf/7cxMdfzWfqxDcveG7o0yN47tFB3HxjHVxOJ3f07EOn27pdVMatN7Xmu4QVNLmlP61vbMTN7Vpw+33DmTHx4tt5BawM8ADwADbLdmAaMBOb/VxhH1gKfElJScb+/fvX/PLLL/fefvvtqT6fj1OnThmdTqfo379/jcmTJx/o06dP8rJly0oMGDCg5t69e7cOGTLk1OOPP24dP358EsDHH39crlevXqfDw8PVtm3bOv74448dJpOJpKQkY9OmTev36NHDXqNGDQ/AP//8E7Vhw4Ycb8nn9v2S8Xx4eLi6devW/7Zs2RLRvn37eo8//vhpgN69e9d69sWX027r1T/C41PCzp45Ha6oKqOffZyHhz9H8zbt8Hq9PPngPSxf/AO3de+Z58+ndJmylK9QkWWL5tP1zl78+9efJO7bw9FDBzP3+XL6VH74ZjaVqlZj+IjR3NCgwSXLXPDzz1irVaNJ3boXbH941ChW//47APM/+giAVKM3rLJPzex++9bop3ngmbG4VFPkc2PjWf3zUsqWq0CjpudbeTw+JfxkiqvqyRRX1egwU3Lp6LBTMVHmcwbZsbNABG2CX7VqVXSdOnUcTZs2dQIMHz789IgRI67NeH7hwoWlpk6dWiEtLc2oKAp2u90E0Lx5c8fIkSMjBg4cWL1jx44pd999tx3g559/LnnXXXedKVOmjAIwbNiwk0OGDCnhL8ty4MCB8LZt22b+lQsh2LNnT9jAgQPPvvTSS9ccOHDAHBMT41u5cmXMRx99dMlOZA63N+JEiqtSitNbRlUv7P3658Z1OFJT6XDz+SvlCa+M4OHhz1G2XPlLJvj0dAdvvPwC70ydecEttQxLF86jRq06TPv6B5zpDp56aADff/0Fve8ddMF+BoOBT95+JfP3SZ98Sc/bO+H1+RjwxChcbjdPPNCPm9u3vNTbvFr1gUnABGyWL4GJ2OyFcotUCg6//PJLieuuu855++23pwIYjUYqVqzo+/333yMNBgN9+vRJBujatWtq2bJlPRs2bIjq2rVrqtfrZfXq1VEdOnRwzJ07t+wPP/ywGyApKcl03333Wffv3x9hNBrVc+fOmbZs2RKZkeDvuuuus7m1t+f2/ZJhyJAhpwGaNm3qNBqN6o49iaUPnzxTzuXxhnXu0TfM49OKLV2mLA5HGr//tpozp05kvt6Rlkbi3vyPApv02ZdMemMcn/1vIjVq16Vpi9YYTVpow18cTfmKlTAYDKxYspgnBvVl+ZrfL1nezPnzL7h6z/DpG28AMHvBAkZPnMgP06Z5XcJnivR4Mofhdmh1IxsWz1K2qVaRkpLCE4P68dHs75j96RT++mMjZcqVZ8SY1zGHhQGQ5vaWSnN7Sx07J3ylIs1nypUMT4o0G135/hCkTEGb4C9l9+7dYSNHjqy+bt26/xo0aODauHFj5C233FIHoH79+u4dO3ZsW7x4ccmffvqp1NixY6v9/fffFyWOrAlSVVXat2+fvGjRov05Ha9bt25nP/nkkzLly5f3tmnTJrlSpUoXtSOPGjWq0vfz55dDGM1PjxpnaNepS46xz58zmzv73oPReH64+l+bNvDXpg2899oruFwu7OfO0qNjCxau3nTBaw8n7uf4kcM80v9OAFKS7SiKSrL9HK9NnMI3X3zGmDcnYTQaiS5Rklu79WDTurUXJfisDhw+yo8rf2Ppl5N54OkxDL2vN80a16P1nQ+w7Zfvcn1dAYoEHgaGYLMsR0v0y4riwFLwylp/BwwYcPqTTz4pl5ycfLZ06dLeFi1aOAGGDh167W233WZfunTpXoPBQP369eulp6dnNluWKFEix/4gl/p+yRAVFaUCnE1zxxhNZuPhc+nXp3ty6Zvnn2xs1oKfCI+49MCY5x99gEOJ+wCYNmcBMaUvaEmkTv1GTJl9vl727NyKmrW165KszXFd7ujO+/Hj2Ldnt6h7bUVyknj4ML//8w9fvfdervEMvOsunnr1VU6mpbrCK1qMBtV9wRvwmqKcipuoD958lUeefJ7TJ07wy/If+WzuIj56dwIJ87+lZ//7LijTp6rGsw53+XMOd/mSEeYzFUtFHIsMMzov+cFIOQraNvhOnTql7dy5Myqj7WvKlCllPR6PADh79qzRZDKp1atX9yiKwqRJkypkvG7v3r1mIQT33XefferUqYdVVWXfvn1ht956a8rChQvLnD171qAoClOnTs1sj7vzzjuTf/vtt1IbN27MvI3+yy+/ZPZuffjhh0999dVX5WbPnl1u8ODBF9yeV1WVcw63ZfDTL1nm/rQ+fO7yX3NN7qkpyfz040J69h94wfYl6//JfLz5v8+oUavORckdoFa9Bqz6e0/mvvcNGUbP/vfx2sQpAFSrbuW3VSsArePQutUrqVmn3iU/56fHvMNE2/MYDAbS0tMRQmj/dhT5vCcC6AosxWbZgs1S4J0BpMDWpUuX1AMHDoQvXbq0BIDP5yMpKcnYuHFjp6IozJ8/vxTATz/9FH3q1Clz69atHQCPPPLI6YSEhNJTp04tf//992fWT7vdbrRarS6DwcCSJUtK7Ny5M0891i/1/ZIh2ekptet4Sr1DZx2ZHWGsNWoRERnFkh/OJ+CzZ04TFV2CFm07MP2jSZnbTxw/RtKxi2djfffjmcxdtpa5y9ZelNwBTiad75g+76uZREZG0dLfiz5ref/8uQn72TNce931ud4Knzl/Pj1uvvmCNvdzyckcPXH+TsPCFSsoY7FQokJpNVIYLpodI40o5Z8/N5Gakky7zreQnp6WefJlMBhwONJyOzwqkOz0lNl9IqXB/lNp1zvc3shcd5ZyFLRX8FWrVvV+8MEHib169aoZFhamduzYMTkqKkopW7asr06dOu4ePXqcqVu3boPSpUt7u3XrltmGu3nz5sgxY8ZUU1UVn88n7r777jOtWrVKb9WqVfrGjRujb7jhhvolSpTwdenSxf67v42pYcOGrunTp+979NFHr01PTzd4PB7RoEEDR+fOnfcDdO7c2WE0Gjlw4EB47969kzOOlZzuKXnM7qzm8uZtqMvShd9Tv1ETrs3WOe5SThw/xvAH+l122BzAi+Piee2l5+hzS1sURaHxjS0Y+PDjue7/1fwlNKlfiwZ1tHjinhjMIyNexe3x8Mozj+Q5xkJwA7AMm+UnYIQcalc8lC9f3jdnzpy9I0aMuOapp54yGAwGxowZc2TAgAH2b775Zu/TTz9dfeTIkdXCw8PVL7/8cq/FYlEArFarp0mTJmkrVqyImTlz5oGM8l577bUjzzzzTPX4+PgqDRo0cDRu3Dj3bJNFy5Yt03P7fjnncJcCOGp3X1/KcuENAJPJxPuffcmEV0by6eT3MBgM9Bs0hL4DB/PGB9N4Z/zL9O7SBiEEkVHRvBL/HhUrV83XZzTvq5kkzP8WVJXratZm4qezMhPqK889wemTJzAajYRHRPL21BmUKmWBc2l8Mncux06cYMzw4QAoisLsBQsyb8VnSE5N5b7nn8fpdGIwGChXujTz/vc/nGEYohTlolsUJ5xG86Q3bLzz8UwAatdrSLXqVnp3aUPpMmWZ+MnsPL2vFKendIrTUzrS4Ev2Kmqe/p+kvM9FX9dkMi2tVatWalRUVMDcKjl79qwho41s1qxZMWPHjq26b9++bXrHle72hR+zp1+T6vJa9I4lPwTQyJBjK0SeOL0q+4+c5LrfnicitcjmslGA2cBoOYFOwQrUeh+I7OmeUieSnVXSPb5ovWPJjwgUzzXnjl51D/ZDFY3eaxWfEu7zhGVsUw0mz1bvNQXaO171ujlx9DBvrj21as9Zz+OJ8bH/FWT5oSZor+AB3nzzzQrz588voyiKKFGihO+LL7648uxUADw+xXTc7qxyzuEpV2hTR0rZGYBBQD9slg+AN7DZ7TrHJBUTTo8v/PDZ9OoOt/eqJ4cIWiaTx2dQDeGe88kdwGWIduEfE1/Q0r1KJ+Bva1zCu8D4xPhYuVZCDoK2DR4gPj7++M6dO7fv3r1725YtW3a0b99elznPVVUlKdlZYefxlIZnHe7yMrnrIgJ4EdiLzfI0Nksui+pI0tVTVZVj9vRKu0+k1i/WyR1Qwk3uSIPpot7uyUQW9vegGYgDtlvjEroX8rGCUlAn+ECQ5vJG7j6RWi8p2XmNoua2UptUhMqiDa9bi81SU+9gpNCT6vRG70pKrX8yxVVVzWWVtuLEZRZqpCouaH9XgTOeywwJKDhWYJE1LuEHa1zCNUV0zKBQ7P84r5SiquLIufQq+06m1cvvfNFSkWgD/I3N8gQ2i7yjIl01n6IaDp1xXLPvVGrdrBNTFXfpZsUQpXgvyCWKMcLpVkVRX/DcBfxnjUt40RqXIGfGQyb4K5Lm8kbuTkqtdzrVVVnejg9oUcBktKF1+euOLElZnHW4Lf4muIuGxBV3qUZveJTHdcEqd+kiKocFpYtENPAm8Ic1LiHfU4aHGpng80FVVY7bnRX3nUyrJ8/gg8ptwL/YLAMvu6ckZaGoqjh4xlH90BlHTa+iyKvC7Mxmt8Fg8BpV5YKr9XNKpN7NlY3RkvyjOsehqyvvRW+zFNpysdjsAbd0pNenGA+ecVhTXd4YvWORrkgMMAub5S5gGDZ7ntYLkC70X916hVLv6+34L+DqvMvjCztwxlFDNsHlzhdmdPu70mVewavC4DvrDSuq9vdLiQSmWuMSbgUeToyPLXZrWoTkFfzOnTvD3nrrrfJZt1WtWrXRunXrruiqO6MjXX6T++7/tjG4Tzfu6tSS3l3aMOb54TjTz4/maHJNafrc0pZ+XTvQr2sH/ty4LsdyFsz9inb1q2fuN6TfnZnPLVkwj35dO9C7Sxt6d2nDzI8n5xrP+Lhn6HNLWx7u34OUZG0kmaqqPH7/3RxK1HWEYVG6G61t/ka9A5EKTkHXebvDXWrPydT6+U3uhw8e4J5unTLr5AuPPUjyuZzzypfTP6Z3lzb0uaUtd9/ajsXff5P53Ioli7n71nb069qBXje35sM3XyWnOUs8Hg/PDLmPvre159lH7sfr1e6Mu5xOBvfpluuxC4orTBCVLS6vMcqpatNqBIo+wJ/WuIQb9A6kqIVkgt+9e3f49OnTy19+z8s7leoqu+9UWl2PTwnPqDx5FRYRwUuvvcWCVb/z7fJfSXc4+HzK+xfs8/m8JZlTT97Yqm2uZbVo0yFzv8/mLsrcXqlKVT6a9R3fr1jPzPlL+XbWdDat//Wi1+/esZ2D+/cx7+d1NG/TPvPL5Puvv6BF2w5cY73uoteEsCpovex76R2IVDAKqs6rqsrRc+lVDpxx1PIpqjG/db5CxUrM8Nfp71esp3zFSkyZGJ/jvjVr12Xm/KXM+3kdk2d+w9u2UZkn2q07dMys73OXrmH92lWsXJpwURnrVq+gVExpvl3+KyVLWfjNvzTstPff5p4HH6FUTOHecHSYFGOk13NB00UqUYG4Etx1wHprXMJgvQMpSkGd4OfNm1eqfv369WrXrl2/RYsWdTZv3hwB8OSTT1ZPTEyMqFu3bv2bb745c6jU3LlzS99www11q1at2ujFF1+snLH94MGDpm7dul3fqFGjerVr167/1FNPVcloe2tSr5b1vdfHGAZ078Irzw7LV3zXXleD2vUaAtrKVw2bNL1g6caC0LRFa8pV0BaLKFnKgrVmrRyPYTab8bhdKIpCuiMNszmMk0nHWbJgHvc/8kSBxhQkooB52Cwj9Q5EyrvCrPMen2LcdzKtVotGdSpPfGMsV1Lnw8LDiYjUbhr4fD7SHY4cV3YEaNW+IyVLaZNdVqpSjbLlK3DcP198dImSGAza17PL5cTjduVYjslkxpmuTf/hTHdgNoex679/2b93N13vLPzzV4fRa47wXtjB7owvIiy3/XUWAUy3xiV8bI1LCOpJ3vIqaBP8kSNHTEOGDLl+xowZibt27dr+0EMPnezXr18NRVH48MMPD1qtVueOHTu2r1y5MnPNxXPnzhn/+uuvHX/88cd/U6ZMqbh//34zwIABA6574oknTmzduvW/bdu2bd+yZUv0B9Nm1j3ncJcHsJ89y5eLfmbCh59ccbwORxrfz5l10frrQ++9i763teftcS9fcuGFLZs20K9rBwb1vI3li3/IcZ+9u3bwz+ZNtO7Q8aLnrDVq0aJNB+65oyNHDh4gtnc/3h43iudeHo/JVCz+1nMigHhslunYLLIDVYAr1Dr/118lP/z0i4Zp/klrrqbOe9xu+nXtQMcmNTi4fy/Dnou77Gs2rF1Fst1OgyZNM7f99cdG+tzSls5Na9Oy7U107trtote1uakz0SVK0ve29pQoVYqW7W7infGjGTluQr7jzrcws8tsNHmynnaoBrM7zWcM1ASfYSiw0BqXEPJ9K4I2wa9evTq6du3a6S1btkwHGDZs2JkTJ06YMypwTu6///4zAJUrV/ZWq1bNvWvXrvDk5GTDhg0bSj3//PPV69atW79Ro0YNDhw6XHLPnj2Z//k9+t6b61l4Xnjcbl58/CHa3NSZLnecn3Bp6YZ/mPPjKmb+sIyzZ04x8bUxOb7+plu6snTjVuYuW4vt7Q95Z/zL/PPnhavJJR07wjND7mP0hNwXqBj+4mjmLlvLO1NnsGHNKipVqUqVa6rzynNP8NzQQSxd+P0Vv8cgNxj4CZulrN6BSLkrtDrfuHHDAwcPl9i3Z0/mme7V1HlzWBhzl63llz93Ya1Zi+++nHHJ/Xf/t40xzz/BWx99RlTU+ansb2jeink/r2PZxn/ZvvWvHPvoGAwGxr71Pt8u/5Ux8ZOYM+MTOnfthtfrI274wzw3dBAbf1tzRe/jcrxhJk8U4oI2DKcx2l0oByt4dwArrHEJFy/JF0KK1aVbZGRk5mxLRqNR9Xg8mYvt/Pnnn/8ZzOFh+0+l1fL4lAtqdlR0iRzL27trBy89qa2qdkPzVox6/Z2L9vF4PIx4/CHKV6jEyHEXtsVVrqpNuhQVFU3/QUMYP/KZHI9Tusz5vHN9rTq0v/lWtmzaSOMbWwDainJD7+3FI0+9wG3de17mU9CWpZ358YdM+XIen02eSPPW7Yjt3Y9+XTswvOt0IiMDoQNskesIbMBm6Y7NvlPvYKSCcbk671JNlsPn0q/P3oHtaup8BnNYGD373ce4F59m8LCncy3vycH3MO6dydzYsk2O+5QpW472N9/K8oQFNGvdLtfjHT18kLUrf2LK7O8Y/eww+tz3IPUbNWHgXbcxf8X6XF93pVxhEOXzXXCRmKwU+vS0Bak18Ks1LqFrYnxsSC5UFbRX8J06dUrbtWtX5KZNmyIApk2bVrpixYqe6667zhMTE+NLSUnJ0zhMi8WitGzZMvmll1+pvvdkal2PTwnPbS3m7GrUrpvZESaniu71ehn5xBAsMaUZ8+akC64Iks+dI93fdqYoCssWzaduw8Y5Hifp2NHMf58+eYJNv63N3Pdk0nGG3tuTwcOepkffe/Pylnl/wjgefeZFIiOjMtsIhRB4PR7cHk+eyghRNYH12Cwt9A5EulhB1/m4l8fUOHTWUUNVVVFQdf7o4YMX1OvlixdQu16DHMvat3snwx/oxyvxk2hzU+cLntu/ZxcZq6+mpaawdsXyXMvJ8NbYlxgx9nUMBoNWrxEIgwHnJZr+robD5DNFZWl/V0E97Q0PtquDesA6a1xCPb0DKQxXMQ5e37HqVapU8X766af7Hnjggeu8Xq+wWCy+b775Zq/BYKBVq1aO2rVrp9eqVavBNddc48raJpeTGV9+feK550fUuKtza3E1azFnt2zR96xYsoja9RrQ//abgPNn/fv37uLVuGe1xOrzUa9hY0bazl/hPzGoL48/P4oGTZryzcxP+eWnJZhNJhRFYeDDw2jVTivvo3cncOzIYb6aPpWvpk8FYMBDj9Gz/305xrRl0wacTmfmF8o9DzzMyOEP8/mU9+neuz+WUiWv6j2HgNLAcmyW27DZN11272JGz/HqBVnnP57xVUpc3ItVr3b99ex2/beNyW+9BmgJvl6jJowc/2bm8/26dmDyzLlUqFSZN8fGkZKSzPsTbLw/wQbA0y/ZaNepC8sWzWfZovmYTCZ8Ph+3xt5F73sH5XrcH+d/S+36DalZR8tTDz3+DONHPo3H4+GRp0dc1XvKkRCqy6gKk9eXmUMUY6TT6xHBOAFYNbQr+djE+NgNegdTkIJ6PfiCkOr0RieeTqutyEUjgnU9+MJyDijWST5U6/1xu7PiiRRnNb3jCARXvB58eJjzZDmDr3p6SmangRRz2ZT9rsK9QshYD972ywmOpPgKungH0CsxPnZ5QResl2Kd1NJc3sjE02m1ZHKXchCDdiVfeDM2SkXumD29kkzuV88bZvRGZbs6POuLDPaRKFHAfGtcQs6dIYJQsU1s6W5vhP/KXe85k6XAFQMsw2YJyfa54uZkiqvcyRQO23WXAAAgAElEQVSXXHSoADjNEOXzZt6eV4XBZ/eag639PSdRwOJQWagmrwleAXKcKjEYOT2+8P2n0mr7FLVYjSIobJl/HiHyd+JXFm0InVXvQKQrd87hthy3O6vrHUeocJh8pogsK8h5jNHOEKr1ZYBlobC2fF4T/DlVVb1utzvQJzC4LLdXMe0/lVbbq6jBfjsp4Dg8gM+N2Xla71AKWlXgZ2yWSnoHIuVfqssbdfhs+vVyaecCIoTiMwnVkOXzTCEyhPI7oHW8W2aNSwjquTHyegV7SlGU1UlJSbFms9ljMBiC8j9TUVQOnUu/zu1Vgv5EpbA4r+C/VlW15H7izDliDizB6Eu//IuCTw1gMTZLe2z2kOlwFuqcHl/YAdnPpkCp4WZXhBAX9HA7440Mz23/IFYP7Xb9LYnxsYUz1rCQ5SnBN2vWTNm8efOY9PT0Rnv37i1PYK0UlGd2l1LO5VVDfnrCKyVQMYsrXEXV5ybmwBIq7f6qYIMKLM2AKWgz30kBzuNTTImyKa7AecOMvijFl5kDFEOYK91rCMUED9pkON9Z4xJ6JMbHBt0kIXn+w2/WrNmRzZs3t1cUpXp+XhcoXl1zZuhJh+9ZveMIZAYU30/hL+a/06GqYnaeDtUr9+wexGb5HZt9it6B6KKwRhXkcV6N2bNnx4wZM6ZqWFiY+sUXX+zPmLY2O0VRxf5TaTXdPiVPiWfT+l9xO52063xLfqLO9M+WP3h15DM4nU4qVq7C65OmUrFylYv2c6an8+pLz/Lf1r8BqFbdiu2dDylTthyb1v/KE/f3xVojc60cvvhheebiNVmNj3uGv//4ndJlyzHxk1mULGVBVVWeGNSXl159u1BXh3SaETHe8821TkOUhyzrwYeg24H/oc1hH1TylaibNWvmBi45gUQgssYl9AJyngdWymTER4Qn6MevF4X3sVn+wmYv+Pk/pUuaNm1a+ZEjRx579NFHz1xqvwNnHNc5Pb7oS+2Twev18sf6X0lJtl9RglcUhVFPDmXMW+/Tsm0HZk79kLfHjeKdqTMu2ve7L2fgTE9n3s/rEEIw7sWnmTn1A559eTwA1ho1mbts7SWPl3Xp56mT3mLx999w74NDi2zp53STYqjgOb9ErF2NKg7NH49Y4xLWJMbHztY7kPwI+f8Ya1xCI2AWQdqsIAUkM/Cd7HRXtB588MFr/vjjjxLjx4+v2rRp07qQ8/KxJ1Nc5Vb+8kvpfl07ZL52947t3NFGm975yKGDtG9wLRPfGEv/OzoyZ8YnfDv7c36c/y39unZg6qS38hXX9n/+wmgy0bKtdry7Bz7I6p+X4nJe3FVDCIEz3YHX48Hr9eJIS6VCPmfP03XpZ4PBh0lkzu+vItQz3rBQGB6XF1OtcQl19Q4iP0I6wVvjEiKBb4A8nclLUj5UAb6Vy8wWnRkzZhxq2LChIz4+/tCWLVt25Lx8bP+ax+zplx3elJKcTM3a9fhmyWoGPjyMvgMH061XX+YuW8tjz7yYr7iOHz2cuXAUaGu5R5coycmk4xfte/d9DxIVXZLOTWtxc9PapKYkc++Dj2Q+f+hAIv3v6MiA2Jv5ZuanOR5Pz6Wf1XCzK1IlsyeuzxSZ7lNFSOeRLKKBb/15JSiE+n/Mu2g9ISWpMLRH+xuTdJB9+dhHH33s7MmTJ8OTjh257PeayWwmtne/wg8ym/VrVqKqCis272TF5h2ULGXho3feAKBew8Ys//1fvlmymomfzuLb2Z+zbNH8HMvRa+lnT5jBF+XzZvbTcRClXGr/ENQQmKx3EHkVsgneGpfQAximdxxSyHsSmyVvy/hJherwufRrMhrijEYjPt/5kVxul+uCfSMjIzEY8vb1l2y3069rB/p17cAzDw+86PlKVapx7Mj5vitpqSmkpiRTvuLFLTjffTWTm7vGEh4RgTksjG69+rJpvdbmXqJkKUqWsgBQsXJV7rirD3/+fuluHhlLPw97/iVmfzqF5q3b8dZH0/n4/bdxphd8p1enSTVkXUHujBL009NeiYescQm5r/wTQEIywVvjEioDn+kdh1RsfIjNUl7vIIqbrMvHnk1zx3z99dfly1eqQoVKVahW3cqxI4c5c1ob9rn4+28uWVZ0iZKkJCfn+FwpiyVzidhJn17cx6p+4xvwejz8vk5L1N/NnkHHW24nPOLipulq1a2sX/MLqqqiqiprVyynhn8FuJNJxy9YInbNimXUbZDzEtIZLrX0s8fjvuRrr4TbDAZVMQCowuhN9ppCuff8pUwJhulsQy7BW+MSBDATKKd3LFKxURaYpHcQxU2W5WNrtGretMa3s6bzzpTPEUJQoVJlHnzsKe67swsDe9yKJab0Jcu6+fbu7Ny+9Yo62RkMBt744GPeGhvHnTc1Z82KZYwY+3rm808M6su2v7cAMOzZOByONHrf0pbet7Tl9KmTPPniKwD8vGQhfW5tR9/b2jPwrtto3aFzrss+Q85LP8+Z+Sl339qO7r37Z94NKDBGo9dgPN/+7jZGF+cJn6KAuda4hICeNC1Py8UGE2tcwuNoYxalfDLi8+2NuF8uvnPlumGzL9E7iIISDMvFqqrKnhOpddI9vhJ6xxKM8rNcrBIV7nBbUEq7UksAnDJVSj3qjizSz72Ql4u9EuMS42NtegeRm5C6grfGJVQE3tA7DqnYmorNIhNNETqd5i4rk3vR8JgNvkiv2wza9NSnveHFZXjcpbxkjUsI2I7cIZXg0Xo0F/B9KUnKs+rAa3oHUVx4fYoxKVmu7V5UXGZEuM8dDqCawl0uxRB0M5oWgjBgmr9pOOCETIK3xiV0AnJvsJKkovEkNktLvYMoDo7ZnVXkPPNFx2s+P1tYuiG64HvwBa/2wBC9g8hJSCR4a1yCGfhI7zgkCa1OfSonwClcDrc38pzDXUHvOIoNk8ljEuf7a9mVSNlX50ITrHEJl+7JqYOQSPDAC8gJbaTA0Qh4Tu8gQtmRs+nVQ6t7cGBTwkzuKMWnDY9DKGe8YUEzm1sRKQe8qncQ2QV9gvd3rHtZ7zgkKZs4bBbZH6QQnE51lZEd64qWO0wokR5tghuvKcqpqHJtjxw8Zo1LaKJ3EFmFQvvVS8i55qXAEwM8C9h0jqNANZrZqFCWi936wNY8LRfrU1RDUrJLdqwrYh6zwOTzGQHSit/0tHllBN4CuuodSIagvoK3xiVUAx7TOw5JysUz2CwxegcRSo4nOyt5FUX2byhiPvP5BpGzvgj5+efuNmtcQiu9g8gQ1Ake7dZ8cZ0qUQp8FuB5vYMIFV6fYjybVjAd66a8F89btpfy/bpVy3/kbdsoADat/5WsS9Jm5UhLpck1AdfnKld7Dhyg88CBNO7enfb33MP2PXvOP2kyucNQBMC+w0mefr17hrerX/2i964oCu+++gq9u7Thrk4tGfvCk3jcOXe2/3jS2/Tq0oaBPW7l6OGDmdtfefZxtmzaUAjvsEi9oncAGYI2wVvjEqwE6NAEScriaWyWMnoHEQpOpLgqKqqap97bXq+3UGLodFs3RthCby6tJ8eP56G77+afxYt5/qGHGDp6dOZzvnCTJ8rrMQGElyrvemLEy0z48JOLypg/Zxb//fs33yxZzQ+/bMRgMPDl9KkX7ZeakkzC/Ll8t/xX+g8awtefa2WtX/MLEZGRNG3RurDeZlGJtcYl3Kh3EBDECR4YA8hbRVKgK4k2ykO6Cl6fYjyT5q7Q5JrSTH7rNfrdfhN33tSchPlzM/dpck1pPnp3AgNib+aD+HEAzJz6IQO6d6H/HR0ZNvDuC64Wjx89wsP9e3BXp5Y8Ofgezp09A1x8df/1jGm88uzjACyY+xXPDMl5uo1vZ3/OnR2a0e/2m5j1yZTLviePx8Pro57nzpuaM7DHrbwzfjRD+nYHIG74w/w4/1sAvpn5Kc2ur4DDkQbAw/17sHnDbxw5dJD2Da7lo3cncE+3TnRvfyNrVy7P82ea4cTp0/y5bRv/b+/O46QoD/yPf3pmeoaZERC5REXbAxVRQ2QVPAh4xWiJwSMY7yu66ma9Nolt4kFiEmtzrL/EKxpX/Wk8gne0vQ8UFXAXs1E3agxYCojc90zftX9UBbnP7nrq+L5fr3mhzFHfGab7W0/1U89zyrHesUcfeSQzvviCqZ95P6tSc0O1i7+DXHqb7VL7HXAgrW1rTnv66K/vM+yQEaSbm0mlUhx86BE8/eiam/w0NDZSrVQol0p0diwnnU7T2dnBHb/5JZdedd0m5w+pa00HgIgWfCab2xmIxHZ9IniL32jzoy0wd1mhz4rReyrFuOde57b7HsG+5kpmTv+ytBsaG3kg9wpXXH09zzz+MM60v3Pfky/wx2df45jjT+LnP/ryXOudtydi3/R7nhz/Ntv2257f2j/Z7Hwff/hXbvsPm7seyTHuudcp5De8Veuj99/DZ840Hnt5Inc/+gwff/i/K9439JCRTHrjNQAmThjPoH0HM2XSm3R2dvC3v77PvkO8tZSWLlnC7gMH8dAz47nq+l/wyx9v+g1FM774gm1796apyZtznUql6N+vH9NnzQKgksZNQcoFFpTWskWeb699BjP+xedYtnQJpVKJF556nM9nTF/j49ra2jnj/Is545tH8uoLz3LaeRdy669u4MwLvstWXbttcv6QOi6Tza1/K8AARLLggUvwZiyKRMFWwPdNh4iqatVNLVjptfcTTjkDgB12yjBk6EG8M/mtFR97/Eq7r736wjNMemM8pxwzkjFHDeee237LrJkzVrx/+GFfp1efvgCceNrZTHpj/GZnfPutCRw88ogVe8CPOfPcDX7O5Ddfxzp+DOl0mnQ6zaiTvr3ifcOGj+DtN1+jUqkw7eOPOOP8f2HShNd4Z/JE9h68H+m0d/GypaULhx89CoB9h+zPjE8/2ezvYV2qTW4KoNrYJV90U+t83v3mmFM5eOThnPutYznvWxY77bIbjY1r//CTz/oO456fwG1/eITZsz5n9qyZHDzycH7+o+/xvQvP5v67bq/59xGwFCF4LT5yBZ/J5rqh194lei7SRjSbZ/7yYs/1Lkm70h3ZrW1f/ohd1+W8f7l8xV7uj770Fo++9NZavsA/voz3hRobm6hUvtyprJgvbHLmVGrTbxNf+XP6bd+fdHMLzzz+MHvt8xWGHjyC/5o4gclvjGfowSNWfFxzS/OKz2tsbFwl98rOHP11xhw1nNNGHbHG+3bYdlu+mDt3xbwF13WZPmsW/fv1g+Z0oaVabgDoTLWtd2JDKpXioiuyjHvude594gV2GbAHu+6+53q/53K5zK9/eg0/GHsDTz8+jh49e/Gr393DK889zYxPnfV+bgScmMnmBpkMEMX74M/Be11TJEq64u2VEOmhycber14rrusyf1mh78p/9+S4B7joiiwzp3/GO29P5Ptjb1jr5x561DHce8ctHHnMN+neowelUom/f/QBA/f2rpy+8eqLzJ87h569+/DYg/cydLhXnP0zOzPhlReoVCoUiwVeevYpMrvstt6cBxw0nLtuuZF5c2bTq09fHr7v7g1+bwccPJxnnniEo0efBMBTj6z6evWwQ0Zw669/zgWX/oBuW29NU1OaF3NPcuOd92/wa6/u3ifW/dp8n549GTxwIA8+/TRnjB7NEy++yPZ9+7LrjjtSaW4qtZU7ugAs2sDytIV8nkI+T7ett2bhgvncfev/4+Lv/XD9ue64mWNGn0SvPn3p7OhYcbKSSqXo9OccRFgKby2M75gKEMWCv8h0AJHNdCERL/igLe4sdStWqqu87lupVBjzja/R2dHBlT+x2b7/jmv9XOv4MSxauJDvnOxdwi5XKowec9qKgt/vgAPJ/uv5zPliFjvuvAvX/4e3ncURR4/ixdyTjD50KH37bceeg/Yh37n+19QH7LkXF15+JeeceAyt7e0c/o1RG/zeTjrtHD7+8K+ccNgwunbfmkH7Dmbu7C9WvH/o8JGMu+8uhvknHsMOGcFjD97LHnvtvcGvvaluuvZaLrj6an555510bW/n9uu9VVdLzanqZVdc23Ts10dUdz3i7C6dnR0c97X9KRULLF26hCP3H8SxJ47h0ux1LFu6hPPGjCLV0IBbrXLquf/MyCOPXucxpzuf8N8T3+CWe73JhMceP4bLzz+dF55+gsH7D2XAQKOD31oZk8nmLnFsq8PEwVOuG50VnTPZ3GHAy6ZzxFUjlcrULmdobkN9DWXs4rdNh9gYU6ZM2bOpqem5AQMGLGtra8ubyPDJvOW7LM2XVtxQ/pX+PZjwvkO3mKwCvHzZUtq36kqpVOKHl1zAwH2+wrkXXxbY8btQLfVf9Pk670bq6NO2uGd5cfdS01bLPyj2Nr5iqFsuMufzGYx9dQ4zl6795YgQOsuxrXtNHDhqI3itWidRdwEQiYI3rVytNiwrlGO9EuAFpxxPqVigUCjw1f2Hceo5/2w60kpSLo3VBsqwjLbojATD5xxABb8+mWyuO3Cc6RwiW2gMY7v/K2MXb/g+qoRbtLzUw3XdVWar/WX6QlNxNsv8eXO56LQT1vj7YcNHcsXV13P/Uy8ZSLWRmtOFLlVvgZsFlS7NpuNE2IhMNrezY1u1v8VhAyJT8MA30bK0En1dgeOBB0wH2QhV8Ca6mbCos9TTyIFrqGev3ox7foLpGJul3NJYbi91tLsN6eLycmM4Ct51AZdqtK4npPBG8YEvfhOl2+RONh1ApEaiskjTItd1y8ViMfAn90K50txRLOtuGYOq6VSlATeVb2xf+4LyBrjlIqWKy8J85Da0OyuTzQXet5EYwWeyuW2AI03nEKmRIxjbvR9jF88yHWQD5lWr1ddmz55tpdPpUkNDQ2DjpnnLCr3ccimowyVWhSqF6trLsuBWGloqLvOrTQ1u2XDHuy5uucjCBfN4edoy8uVoDeGBHYHDgEBfk4lEweNd0tS68xIXjcAo4A7TQdZnyJAh1SlTplzb2dm5z9SpU3uzypIy9TW/s7JNJXKDtOhJU20odS5e27vcUr6xeUGlyCzcLhU3sH/6dXApVVxenraMxz6I7P3xZ6KCXytdnpe4OYqQFzzAkCFDZk6ZMuWQarW6IwE9Xzzw3tJBk2bmHwniWEnXJ7943k/fuL3v6n/f2Z7+uPuR87bqVu6y9Dv5a/YwkW1lVRcW5qtRHLmv7BuZbC7l2FZg30ToCz6TzfXAu7QhEieHMbZ7I2MXh/5m3iFDhhSBv2/wA2vkxIdzY4I6VtJVlhfKDbPWfKVo9vbujH9aOOuwJysHjZ9Zqhgv+JjoDewHBLYaZBQm2R2KNpaR+NkaOMB0iJA63HSApFver9IB8GDl0D4b+ljZJF8P8mBRKHiN3iWuAn2wR0Emm2sDhpnOkXTl/sV01WXh5OrA9e8WI5vqqCAPFoWC19m8xJUKfk2HAOG45zqhXFjSd+tCb8fd9kOXhih0RJQclMnmAttVMtT/eJlsbjtAZ5ASVwcwNiaLqteOTugNW9rK1APy+d2eqh4Y+vkhEZTGe9k5EKEueHR5XuKtCRXa6vSYN2xxz+q8rq7bbVx55K6ms8RUYFfuVPAiZukyvc+/Y2Y/0zmSrrRdqVBw01Nn0ruf6SwxFdjr8GEv+INNBxCps0NMBwiRkYT/OSn2GvsXt3qnOmCm6RwxNiCTzQVy8hTaB5M/m3Y30zlE6mx3xnbXKo2er5kOkHRVmL9je36HP1ZGtpnOEnOBXKkKbcED+xDufCK1kAYGmA4REvuYDpB0y9rdaXsUSts/X91/L9NZYu6rQRwkzAX6FdMBRAKyt+kAITHQdICkK/SszF9Itw86adEIvr4SP4JXwUtSDDIdwLRMNtcd2M50jsTbrui+XNlvqekYCTA4iIOo4EXMS3zBA7okHAItOxS2eahyqGbP11/Gn2dWV6Es+Ew2l0Kvx0ly6BK9Ls8bV0kxa8fmco8/u7tpTkj9pYC6b+ITyoIH+gDdTIcQCchujO3eYjqEYRrBG5Zvd50l5b5zIWV68/ekqPtJbVgLfgfTAUQC1EgAZ/Mhp4I3rVdp8eMVLcsQIBW8SEIkfc8FXaI3rGm7YtNjleG7m86RIJl6H0AFLxIOvU0HMCWTzaWBnUznSLqOfs2pOfRI7O+hAXX/WavgRcKhh+kABvXGm3QkhlQa3M8WN/TXv0GwetX7ACp4kXBIesGLQdX26vQnKyOS/DtoQmJH8NubDiASsG1MBzBIBW9ar8qSV6pf1UTHYCV2BN/ddACRgCV59KSCN2z6tr2KRdJJv1UzaG31XuwmrAXfajqASMCSPILf2nSAJHOh+ue+e2jteTPqOopXwYuEQ5JH8F1NB0gyt8H95M3UsF1M50ioul69CmvB62xSkkYFL0YUt2qa/oG7066mcyRUIgteI3hJmiRfolfBG/Rhz/4dpjMkWF3nPajgRcKh2XQAgzS5y6DX+w3Wvh/mVOr5xZvq+cU3RyabaySEuZKgSirlVPtOak6VG5spNaappBupNDVRSTdSbW6g2pzC7ZLynpC7pFJanKSGyqYDGFQ0HSCpyqmG1ISeg3V7nDnJKnjHtiqZbM5FK1sFzqWhYWTxxmEb+/HNlIotFPOtFAutqUKxlWKxlUKxPZUvtZEvtZOvtKUKlXby5fZUp9tGodpO3m1L5WmlQBtFWlOFVBeKqS4UG5spNXonF+WmJspNTVTTjVSaG70Ti+YG3H+cWMRxtKuCl8DNa+vRDz3XmlTXx33oCt7XiSbahV6RdHORdPNS2sFd6R3uOj+lJlJUq10oFVoo5tsoFLqk/BML8qXWVKHcTqHUnuqstJEvb0W+2pYqVNvIV9vJ05Yq0ErBbaPQ0CVVTHWhmGqh2NiSKq04sUhTaWpccdXCO7FIfXly0VinbyvJBV8wHSDBVO5mJWsE71PByzq5NDR00tLaSUvrIroGenLRRLncQqmzlUKh1TuxKLRRKLWmCiuuWrSn8pU2CuV2Oqvtqbx/1aJAGwW3lUJq5asWLZQamlPlxgaq+b71jR5mKnhJqkQWfAfQ03QIkdWVaWoq09R1Oa1da3xiMcPZ4i8RWSp4Saq6XrkL6yx63bYhSbPMdACDVPCSVHUdwYe14DtNBxAJmApeJHkSWfBJfrKTZFpkOoBBKnhJqgX1/OJhLfjZpgOIBGym6QAGLTYdQMSQuj7uw1rwM0wHEAlYkgv+M9MBRAyY79hWvp4HCGvBTzcdQCRgSS74T00HEDGg7o/5sBa8RvCSNIkteMe25qI7ZyR56t5zKniRcEj677wu00vSJLbgdYlekiaxI3ifLtNL0iT2Ev3n1Pn+QJEQ6QDmmA5hmApekiaZI3jHtsrAx6ZziATkPce2qqZDGKaCl6RJ7Age4H3TAUQC8q7pACGggpek+aDeBwhzwb9nOoBIQFTwATzZiYTIAse26j6xNMwF/z+mA4gE5C+mA4TAu2gPCkmOQB7zYS74KaYDiAQk8SN4f96NHvOSFIEMYENb8I5tzURr0kv8ferYltZi90wyHUAkIIGczIa24H1vmw4gUmcqtS9NNh1AJCCBPO7DXvCvmg4gUmevmA4QIjrZkSSY69jW1CAOFPaCf9l0AJE6U8H7HNuagVb0k/gL7EQ27AX/HlrhS+LrM8e2/m46RMhoFC9x91ZQBwp1wTu25aIRjsSXXoJa00TTAUTq7NmgDhTqgvfpMr3ElU5e1/Si6QAidfSpY1uBrXsRhYJ/yXQAkTrRyetqHNt6F20dK/H1VJAHC33BO7bloGUsJX7+y1/rQdYU6JOgSIBU8GvxR9MBRGpMv9PrpoKXOFoCjA/ygFEp+IdMBxCpIRd42HSIEHsV0Op+EjfPO7ZVDPKAkSh4x7Y+QpvPSHxMDmInqajynwSfNJ1DpMb+FPQBI1HwPo3iJS50eX7DxpkOIFJDZSAX9EFV8CLB0uX5jfMCsMh0CJEaedmxrYVBHzQyBe/Y1qdoEQyJvvGaPb9hjm2VgEdM5xCpkd+ZOGhkCt53u+kAIlvoFtMBIkQ/K4mDGRi6MyRqBf8QMNd0CJHNNANNHttojm39D/CG6RwiW+gOx7YqJg4cqYJ3bKsA/N50DpHNdLtjW2XTISLmJtMBRLZAGbjT1MEjVfC+2/B+aCJRUgTuMB0igh5DW8hKdD3h2NYsUwePXMH7e0Y/bjqHyCZ6xLEtbX28ifwrHkYmKInUwG0mDx65gvfpsp1EjX5nN98dQMF0CJFN9JFjW0Z3jIxkwTu2NQHdMifR8aJjW5NMh4gq/8qHFr6RqDF+F0gkC953jekAIhvpWtMBYuC3pgOIbILphGDOTWQL3rGtl/E2pRAJs2c1et9yjm39N7rFUKLjev+uL6MiW/A+jeIl7DR6r52rACP3E4tsgo+Bu02HgIgXvGNbbwLPmc4hsg5/8keeUgOObX0A3GU6h8gGXBuW9S4iXfC+q00HEFkLF7jOdIgYug7oMB1CZB3+Qoh2i4x8wTu2NYUQ/UBFfP/pL7UqNeQvGnKj6Rwi63C1Y1uu6RD/EPmC910BLDUdQsQ3H8iaDhFjvwDmmQ4hspq3HNt62nSIlcWi4B3b+hxNuJPwuMqxrfmmQ8SVY1tLgOtN5xBZiQtcaTrE6mJR8L6bgT+bDiGJNxmDm0skyO/wZiuLhMHdjm2FbufD2BS8vx3fRXhnUiImVIGLw/QaXFw5tlUEzsX7mYuYNAf4vukQaxObggdwbGsy2k5WzLnNsa13TIdICn/EpBXuxLTLHdtaYDrE2sSq4H1X4i0TKBKkaWhinQk/BP5mOoQk1rOObT1gOsS6xK7gHdtaBJyOLt1JcKrAmY5tLTMdJGkc2+oEzkGPdwneIuB80yHWJ3YFD+DY1uvADaZzSGL8wl9VUQxwbOstdG+8BO9Sx7Zmmg6xPrEseN9YvBnNIvX0NlpvPgyuBj4yHUIS40+Obd1rOsSGxLbg/bWAT0UL4Ej9LAFOcWyrZDpI0jm2lQfORpfqpf4+A+r+wawAAAejSURBVM4zHWJjxLbgARzbmgZcbDqHxNYF/u+YhIC/La8WvJJ6ygPHO7YViZUUY13wAI5t/QHdSiO193PHtrQHQvjcADxhOoTE1oVRuhU29gXvuwJtKyu18wTaxTCU/EWGzkSvx0vt3ezY1v83HWJTJKLg/VXuvg18YDqLRN67wBlarS68HNtaCozGmyMhUgsTgMtNh9hUiSh4AMe2FgOj8Hb6Etkcc4HjdL97+Dm29SFwMlAxnUUibybwLX/idqQkpuABHNuaCpwIaNazbKoicIJjW5+aDiIbx7Gt54jgqEtCpQic6NjWbNNBNkeiCh7Asa3X8Dap0CVW2Vhl4OQw7hYl6+fY1k3ALaZzSCRVgNP8PU4iKXEFDytm1n/XdA6JhH8sQ6uZ2dF1KfCg6RASKVXgbMe2HjEdZEsksuABHNu6FW0OIuvnAuc7tqVyiDB/ku0ZwDjTWSQyLvQHgpGW2IIHcGzr39HCGLJulzi2dZfpELLl/JI/DYj0iEwCcZljW7HYdjzRBQ/g2NZP8datF1lZ1rGtm02HkNrxZ0GfAjxuOouE1g8d2/qN6RC1knJdzTUDyGRzPwBsIGU6ixhVxdslSuUeU5lsLo03kj/OdBYJlZ85thWrBaxU8CvJZHOnA3cBadNZxIgCcHrUJ9bIhmWyuWbgUeBY01kkFGzHtq4yHaLWVPCryWRzR+I98LuaziKBWgyMdmxrvOkgEoxMNtcC3I+3NoYkUwX4rmNbvzMdpB5U8GuRyea+CjwDbGs6iwRiFvANx7beNR1EgpXJ5lLA9cCPTGeRwC0FxvgLIsWSCn4dMtlcBm+Dmj0MR5H6eh8Y5diWYzqImJPJ5k4D/hNoMZ1FAjEDsOJ+Up/4WfTr4j/hHwA8ZjiK1M/9wFCVuzi2dT9wKDDHdBapuz/jPe5jXe6gEfxGyWRzVwD/DjSZziI1UQIud2xLS5jKKjLZ3E7AU8A+prNIXeSAbydlwygV/EbKZHMH462EtZ3pLLJFZuDtDDXJdBAJp0w21xV4AM2wjxMX+BVwlb/oUSKo4DdBJpvrg7em9WGms8hmeQk41bGtuaaDSLhlsrkG4Ergx+i22aibi7efRGwn062LCn4T+Q/8y/Fm3rYajiMbZznwA+A2x7b0Cy8bLZPNDQb+AAwynUU2yyt4a1vMMh3EBBX8ZspkcwPwZt0ON51F1utV4DzHtj4xHUSiyb9f/md4J/aamBwNBbxbH290bKtqOowpKvgt4N9D+13gBqDdcBxZ1TK8S6watUtNZLK5EcA9QMZsEtmAd/Auyf+v6SCmqeBrIJPN7Qz8HjjcdBYB4Hm87R4d00EkXvwJeL8BzjGdRdaQx7vb6WeObZVMhwkDFXwNZbK544FfALuZzpJQHwD/5tjWs6aDSLxlsrmj8Yp+gOksAnibB31fJ/WrUsHXmL9T1cXAtcA2huMkxXzgOuB2f0tQkbrzN6y5BLgG6GY4TlL9BW/3x9dMBwkjFXydZLK5HsDVeK/RNxuOE1dF4Gbgese2FpkOI8mUyeb64t1Vcy7QaDhOUszFO7H6fZIn0W2ICr7OMtncLniTvc5C61zXSgdwJ/Brx7Y+Mx1GBCCTze2JN+F2tOksMVbCO6n/sWNbi02HCTsVfEAy2dy2wGXARehy3uZaBNwC/EaL1UhYZbK5A4GfAEeYzhIjy/FuS75Rr7NvPBV8wDLZXDe8kr8MbUe7sb4AbsS75W2p6TAiGyOTze2L9zg/FV2921xzgJuAWx3bWmA6TNSo4A3xF884Ee91u8OAlNlEoePiLVJzB/C4Y1tFw3lENov/Gv1F/lsfw3Gi4m/Ar4F7HdvKmw4TVSr4EPB3sDoLOBvY2Wwa46YD9wH3OLb1sekwIrXin9Sfjjeq39twnDBygTfwrtY9qclzW04FHyL+yngjgTPxdrLqZTRQcL4AngYeAl7VA1viLpPNjQS+DZwA9Dabxrh38Tbxekivr9eWCj6k/E1tDsQr+lHEb7OL94A/4e29/baWk5UkymRzjXgn9d8iWWU/Da/UH9SSsvWjgo+ITDaXwSv7o4CDiN4iOrOAicB44CmdqYusaqWyH4NX9nG7gjcN74T+Qce2JpsOkwQq+AjyL+UPBA4GDvDfBhGeRTbKeCtMTQTeAiaq0EU2nl/2++E9xg/x/4zaXTez8SbKvgy8pOeA4KngYyKTzbUBe+Ktjb36W71GAgvwZrv+DfhopT8/1sxXkdrKZHO7smrhDyQ8d9+U8B77bwFvAm86tjXVbCRRwSdAJpvbGuiHd1l/9bceeEvpuiu9sdJ/L8Zb633ean/O1fKwIub4y2HvBewO7OG/7QrsRH0W03KBGXx5Ur/y2yeObVXqcEzZAip4EZGYyWRz3fGKfge8sm/z39rX8t8teMs/LwGW+n8uWe3/FwLTHNvqCPQbkS2ighcREYmhBtMBREREpPZU8CIiIjGkghcREYkhFbyIiEgMqeBFRERiSAUvIiISQyp4ERGRGFLBi4iIxJAKXkREJIZU8CIiIjGkghcREYkhFbyIiEgMqeBFRERiSAUvIiISQyp4ERGRGFLBi4iIxJAKXkREJIZU8CIiIjGkghcREYkhFbyIiEgM/R9qKgk7PHkAUwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 46,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.plotly.v1+json": {
|
|
"config": {
|
|
"plotlyServerURL": "https://plot.ly"
|
|
},
|
|
"data": [
|
|
{
|
|
"domain": {
|
|
"x": [
|
|
0,
|
|
1
|
|
],
|
|
"y": [
|
|
0,
|
|
1
|
|
]
|
|
},
|
|
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
|
|
"labels": [
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"gasdev",
|
|
"fftma2",
|
|
"covariance",
|
|
"cov_value",
|
|
"ran2",
|
|
"fourt",
|
|
"cgrid",
|
|
"length",
|
|
"clean_real",
|
|
"prebuild_gwn",
|
|
"build_real",
|
|
"maxfactor"
|
|
],
|
|
"marker": {
|
|
"colors": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#EF553B",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#ab63fa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#ab63fa",
|
|
"#636efa",
|
|
"#636efa"
|
|
]
|
|
},
|
|
"name": "",
|
|
"parents": [
|
|
"",
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"Py_kgeneration",
|
|
"fftma2",
|
|
"covariance",
|
|
"gasdev",
|
|
"fftma2",
|
|
"",
|
|
"",
|
|
"",
|
|
"fftma2",
|
|
"",
|
|
""
|
|
],
|
|
"type": "treemap",
|
|
"values": [
|
|
0.633546,
|
|
0.397899,
|
|
0.2963540000000001,
|
|
0.234361,
|
|
0.22435,
|
|
0.09350199999999986,
|
|
0.09343499999999917,
|
|
0.001993,
|
|
0.001623,
|
|
0.001073,
|
|
0.000463,
|
|
0.000454,
|
|
0.00041,
|
|
0.000316
|
|
]
|
|
}
|
|
],
|
|
"layout": {
|
|
"legend": {
|
|
"tracegroupgap": 0
|
|
},
|
|
"template": {
|
|
"data": {
|
|
"bar": [
|
|
{
|
|
"error_x": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"error_y": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "bar"
|
|
}
|
|
],
|
|
"barpolar": [
|
|
{
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "barpolar"
|
|
}
|
|
],
|
|
"carpet": [
|
|
{
|
|
"aaxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"baxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"type": "carpet"
|
|
}
|
|
],
|
|
"choropleth": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "choropleth"
|
|
}
|
|
],
|
|
"contour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "contour"
|
|
}
|
|
],
|
|
"contourcarpet": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "contourcarpet"
|
|
}
|
|
],
|
|
"heatmap": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmap"
|
|
}
|
|
],
|
|
"heatmapgl": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmapgl"
|
|
}
|
|
],
|
|
"histogram": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "histogram"
|
|
}
|
|
],
|
|
"histogram2d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2d"
|
|
}
|
|
],
|
|
"histogram2dcontour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2dcontour"
|
|
}
|
|
],
|
|
"mesh3d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "mesh3d"
|
|
}
|
|
],
|
|
"parcoords": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "parcoords"
|
|
}
|
|
],
|
|
"pie": [
|
|
{
|
|
"automargin": true,
|
|
"type": "pie"
|
|
}
|
|
],
|
|
"scatter": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter"
|
|
}
|
|
],
|
|
"scatter3d": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter3d"
|
|
}
|
|
],
|
|
"scattercarpet": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattercarpet"
|
|
}
|
|
],
|
|
"scattergeo": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergeo"
|
|
}
|
|
],
|
|
"scattergl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergl"
|
|
}
|
|
],
|
|
"scattermapbox": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattermapbox"
|
|
}
|
|
],
|
|
"scatterpolar": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolar"
|
|
}
|
|
],
|
|
"scatterpolargl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolargl"
|
|
}
|
|
],
|
|
"scatterternary": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterternary"
|
|
}
|
|
],
|
|
"surface": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "surface"
|
|
}
|
|
],
|
|
"table": [
|
|
{
|
|
"cells": {
|
|
"fill": {
|
|
"color": "#EBF0F8"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"header": {
|
|
"fill": {
|
|
"color": "#C8D4E3"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"type": "table"
|
|
}
|
|
]
|
|
},
|
|
"layout": {
|
|
"annotationdefaults": {
|
|
"arrowcolor": "#2a3f5f",
|
|
"arrowhead": 0,
|
|
"arrowwidth": 1
|
|
},
|
|
"autotypenumbers": "strict",
|
|
"coloraxis": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"colorscale": {
|
|
"diverging": [
|
|
[
|
|
0,
|
|
"#8e0152"
|
|
],
|
|
[
|
|
0.1,
|
|
"#c51b7d"
|
|
],
|
|
[
|
|
0.2,
|
|
"#de77ae"
|
|
],
|
|
[
|
|
0.3,
|
|
"#f1b6da"
|
|
],
|
|
[
|
|
0.4,
|
|
"#fde0ef"
|
|
],
|
|
[
|
|
0.5,
|
|
"#f7f7f7"
|
|
],
|
|
[
|
|
0.6,
|
|
"#e6f5d0"
|
|
],
|
|
[
|
|
0.7,
|
|
"#b8e186"
|
|
],
|
|
[
|
|
0.8,
|
|
"#7fbc41"
|
|
],
|
|
[
|
|
0.9,
|
|
"#4d9221"
|
|
],
|
|
[
|
|
1,
|
|
"#276419"
|
|
]
|
|
],
|
|
"sequential": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"sequentialminus": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
]
|
|
},
|
|
"colorway": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#FF6692",
|
|
"#B6E880",
|
|
"#FF97FF",
|
|
"#FECB52"
|
|
],
|
|
"font": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"geo": {
|
|
"bgcolor": "white",
|
|
"lakecolor": "white",
|
|
"landcolor": "#E5ECF6",
|
|
"showlakes": true,
|
|
"showland": true,
|
|
"subunitcolor": "white"
|
|
},
|
|
"hoverlabel": {
|
|
"align": "left"
|
|
},
|
|
"hovermode": "closest",
|
|
"mapbox": {
|
|
"style": "light"
|
|
},
|
|
"paper_bgcolor": "white",
|
|
"plot_bgcolor": "#E5ECF6",
|
|
"polar": {
|
|
"angularaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"radialaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"scene": {
|
|
"xaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"yaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"zaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
}
|
|
},
|
|
"shapedefaults": {
|
|
"line": {
|
|
"color": "#2a3f5f"
|
|
}
|
|
},
|
|
"ternary": {
|
|
"aaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"baxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"caxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"title": {
|
|
"x": 0.05
|
|
},
|
|
"xaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
},
|
|
"yaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
}
|
|
}
|
|
},
|
|
"title": {
|
|
"text": "Time treemap"
|
|
}
|
|
}
|
|
},
|
|
"text/html": [
|
|
"<div> <div id=\"39726ffb-b775-4f55-aac1-aab94725d325\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"39726ffb-b775-4f55-aac1-aab94725d325\")) { Plotly.newPlot( \"39726ffb-b775-4f55-aac1-aab94725d325\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"cov_value\", \"ran2\", \"fourt\", \"cgrid\", \"length\", \"clean_real\", \"prebuild_gwn\", \"build_real\", \"maxfactor\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"covariance\", \"gasdev\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [0.633546, 0.397899, 0.2963540000000001, 0.234361, 0.22435, 0.09350199999999986, 0.09343499999999917, 0.001993, 0.001623, 0.001073, 0.000463, 0.000454, 0.00041, 0.000316]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
|
|
" \n",
|
|
"var gd = document.getElementById('39726ffb-b775-4f55-aac1-aab94725d325');\n",
|
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|
" var display = window.getComputedStyle(gd).display;\n",
|
|
" if (!display || display === 'none') {{\n",
|
|
" console.log([gd, 'removed!']);\n",
|
|
" Plotly.purge(gd);\n",
|
|
" observer.disconnect();\n",
|
|
" }}\n",
|
|
"}});\n",
|
|
"\n",
|
|
"// Listen for the removal of the full notebook cells\n",
|
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|
"if (notebookContainer) {{\n",
|
|
" x.observe(notebookContainer, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
"// Listen for the clearing of the current output cell\n",
|
|
"var outputEl = gd.closest('.output');\n",
|
|
"if (outputEl) {{\n",
|
|
" x.observe(outputEl, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
" }) }; }); </script> </div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 16"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 59,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>sum</th>\n",
|
|
" <th>count</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>-21.2</td>\n",
|
|
" <td>-21.2</td>\n",
|
|
" <td>-21.2</td>\n",
|
|
" <td>37.944037</td>\n",
|
|
" <td>37.944037</td>\n",
|
|
" <td>37.944037</td>\n",
|
|
" <td>4.518677</td>\n",
|
|
" <td>4.518677</td>\n",
|
|
" <td>4.518677</td>\n",
|
|
" <td>4.518677</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>-20.0</td>\n",
|
|
" <td>-20.0</td>\n",
|
|
" <td>-20.0</td>\n",
|
|
" <td>41.633546</td>\n",
|
|
" <td>41.633546</td>\n",
|
|
" <td>41.633546</td>\n",
|
|
" <td>3.283041</td>\n",
|
|
" <td>3.283041</td>\n",
|
|
" <td>3.283041</td>\n",
|
|
" <td>3.283041</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>-23.9</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>2.239697</td>\n",
|
|
" <td>0.000099</td>\n",
|
|
" <td>0.121965</td>\n",
|
|
" <td>0.000595</td>\n",
|
|
" <td>2.437584</td>\n",
|
|
" <td>4096</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>1.231253</td>\n",
|
|
" <td>1.231253</td>\n",
|
|
" <td>1.231253</td>\n",
|
|
" <td>1.231253</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>-1.2</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>28.555285</td>\n",
|
|
" <td>1.223604</td>\n",
|
|
" <td>1.223604</td>\n",
|
|
" <td>1.223604</td>\n",
|
|
" <td>1.223604</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>-9.1</td>\n",
|
|
" <td>1.3</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.456891</td>\n",
|
|
" <td>0.000095</td>\n",
|
|
" <td>0.001958</td>\n",
|
|
" <td>0.000135</td>\n",
|
|
" <td>0.710129</td>\n",
|
|
" <td>5268</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>-3.8</td>\n",
|
|
" <td>0.9</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.365993</td>\n",
|
|
" <td>0.000101</td>\n",
|
|
" <td>0.001366</td>\n",
|
|
" <td>0.000137</td>\n",
|
|
" <td>0.488994</td>\n",
|
|
" <td>3564</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000824</td>\n",
|
|
" <td>0.001123</td>\n",
|
|
" <td>0.000944</td>\n",
|
|
" <td>0.002831</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.001635</td>\n",
|
|
" <td>0.001635</td>\n",
|
|
" <td>0.001635</td>\n",
|
|
" <td>0.001635</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000352</td>\n",
|
|
" <td>0.000360</td>\n",
|
|
" <td>0.000356</td>\n",
|
|
" <td>0.001069</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000103</td>\n",
|
|
" <td>0.000112</td>\n",
|
|
" <td>0.000106</td>\n",
|
|
" <td>0.000318</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000274</td>\n",
|
|
" <td>0.000274</td>\n",
|
|
" <td>0.000274</td>\n",
|
|
" <td>0.000274</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000267</td>\n",
|
|
" <td>0.000267</td>\n",
|
|
" <td>0.000267</td>\n",
|
|
" <td>0.000267</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000217</td>\n",
|
|
" <td>0.000217</td>\n",
|
|
" <td>0.000217</td>\n",
|
|
" <td>0.000217</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" memory cpu \\\n",
|
|
" min max median min max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration -21.2 -21.2 -21.2 37.944037 37.944037 37.944037 \n",
|
|
"generate -20.0 -20.0 -20.0 41.633546 41.633546 41.633546 \n",
|
|
"gasdev -23.9 3.0 0.0 0.000000 100.100000 2.239697 \n",
|
|
"fftma2 -1.2 -1.2 -1.2 28.555285 28.555285 28.555285 \n",
|
|
"covariance -1.2 -1.2 -1.2 28.555285 28.555285 28.555285 \n",
|
|
"ran2 -9.1 1.3 0.0 0.000000 100.100000 0.456891 \n",
|
|
"cov_value -3.8 0.9 0.0 0.000000 100.100000 0.365993 \n",
|
|
"fourt 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"cgrid 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"length 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"maxfactor 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"prebuild_gwn 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"\n",
|
|
" time \n",
|
|
" min max mean sum count \n",
|
|
"function \n",
|
|
"Py_kgeneration 4.518677 4.518677 4.518677 4.518677 1 \n",
|
|
"generate 3.283041 3.283041 3.283041 3.283041 1 \n",
|
|
"gasdev 0.000099 0.121965 0.000595 2.437584 4096 \n",
|
|
"fftma2 1.231253 1.231253 1.231253 1.231253 1 \n",
|
|
"covariance 1.223604 1.223604 1.223604 1.223604 1 \n",
|
|
"ran2 0.000095 0.001958 0.000135 0.710129 5268 \n",
|
|
"cov_value 0.000101 0.001366 0.000137 0.488994 3564 \n",
|
|
"fourt 0.000824 0.001123 0.000944 0.002831 3 \n",
|
|
"cgrid 0.001635 0.001635 0.001635 0.001635 1 \n",
|
|
"length 0.000352 0.000360 0.000356 0.001069 3 \n",
|
|
"maxfactor 0.000103 0.000112 0.000106 0.000318 3 \n",
|
|
"build_real 0.000274 0.000274 0.000274 0.000274 1 \n",
|
|
"prebuild_gwn 0.000267 0.000267 0.000267 0.000267 1 \n",
|
|
"clean_real 0.000217 0.000217 0.000217 0.000217 1 "
|
|
]
|
|
},
|
|
"execution_count": 59,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_16-aa'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 48,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FNUawOHft5tOYIFAKAkQWgiBiIigIAqKgGKn2sUuiF5EBWy412vB3guoiA3FhopRQUFQ7KCidAi9hpa+Sbac+8ds4pJCCklmd3Pe59kHdubMzDdJZr6Zc87MEaUUmqZpmqYFF4vZAWiapmmaVvN0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXgp6IJIiIEpGxZseigYgsEZElZsehacEuxOwANK06RKSy71g+Hdhai6Fomqb5JdHvotcCkYhcXmLSlcBg4IoS078B0oFwwKmUctdBeNpRiEgYgFKq0OxYNC2Y6QSvBQUReQG4WSklZseilU1EopRSeWbHoWn1hW6D14JeWW3wIjJbRHJEpK2IfOH9/y4Rudk7P0VEFotIrohsE5FLy1hvYxF5RkR2iEiBiGwSkSkiUqnjSkTOFpGlIpItIlki8nvJ7YjIKBFZISIOETkgIu+ISFyJMse0LyIy1vvzOU1EZojIQW88b4lIkxJlLxCRVBHZ7d3nNBG5T0SsJcotEZFVItJLRL4XkTzgYZ95S0qUv0VEVotInogcFpHlZcTZU0S+8saWIyKLROTkcvblFBF5SkT2e/d7nog0L1H2RBFZ4P25OkRki4jMqvg3p2mBQSd4rT6zAl8BO4DJGG31L3gvBL4GlgNTgGzgLRFpX7SgiEQBS4HLgbeAW4EfgUeApyrasHcbqUBT7zJTgb+As0qU+QBwA3cBrwLDgWUi0rim9sXHC0BXwO7dp8uAT0XEt1ZkLJDj3cf/ACuAB4DpZawvxhvTX8BE4LtyfhbXA88Ba7zl7vcuc5JPmW7AD0AP4DHgf0B7YImInFRyncDz3rL/BV4GzvPuX9H6YoGFQII39luAd4GTS65I0wKWUkp/9CfgPxgnb1XOvARAAWN9ps32TrvLZ1pjIA/wAGN8pnfxlrX7TLsXI9F1LrGtRwAX0OYosdqALOAXIKLEvKJms1BgH/CPbxngHG8s/63BfRnrnbYcCPWZfqd3+vk+0yLL2J9XgFwg3GfaEu+yN5ZRfgmwxOf7p8CqCn6/84ACoIPPtFben+PSMvblm6KfpXf6U97fi837/UJvuRPN/tvVH/2prY++g9fqu9eK/qOUygDWYySrD3ymrwcygA4+y43CuKM8LCLNij7Atxh306cdZZuDgYbAdKVUvu8MpVRRp5gTgVjgJd8ySqlUYB1Goq+pfSkyUynl9Pn+MkZSHOazvKPo/yLS0LvPPwBRQFKJ9RUAb5SxnZIygHgR6V3WTG/1/xDgU6XUZp9Y9gBzgP4i0qiMffHtYPQDxu+lnc82Ac4VkdBKxKhpAUcneK0+y1dK7S8xLRPYWSI5FE33bY/ujFGdvr/E51vv/NijbLej999VRylTlIjWlzFvnc/8IseyL0U2+n5RSuUAezBqQACjqtzbnp2Jcfe8H3jHO9tWYn27VOV6yj+KURvym4hsFJEXReQUn/nNMS4gyvpZrMU4j7UpMX17ie+Hvf8W7fdS4GOM5oADIvKZiFwtIuGViFfTAoJ+Dl6rz8p7ZK686b5t0RaMauDHyim7obpBVdOx7EuleNv9l2Ik9mlAGpAPnICRpEveMDioBKXUWhHpApyLcdE0AhgvIg8ope6vapxeR91v70XPSG8nvfOAocAs4HYROdl7caNpAU0neE2rnjQgWin1bYUly14WoDuwqZwy27z/dgEWl5jXxWd+TeqMT0c4EYnGaOf+0jtpIEbHueFKqe99ypXVYa9KlFK5wFxgrhjPyX8C3CMij2DUEuRh7HdJSRj9DHZUc7u/YPSFuMfba/9d4GJ8mjs0LVDpKnpNq54PgL4iMrTkDO/jc0e7eF6I0Zv9LhGJKLFs0Z31cowX9NzkW20sImdj9HRPPcb4y3JDifbocRg3AV95vxfdFRff/XuT8fhj2aiIxPh+91brr/FuJ1QZLydaCFwgIgk+y7UALgWWKaWyqrjNJiWeDgCj5z4YL0XStICn7+A1rXoeB84HvhCR2RiPizUAUoCRGO3WB8paUCmVJSK3Ydwl/i4iczDaiHtgtDVfpZRyisgUjE5qS0XkPaAFxqNpW4Gna2GfwoBFIvIBxt3yeGAZ8Ll3/k/eON8UkecweqFfQTWq+0tYKCJ7MR4z3IdxATMBSFVKZXvL3IvROXGZiLyE0fnvRoxkPLka27wKoxlgHkaNSkPgeozmhy+PtqCmBQqd4DWtGpRSeSIyALgbo0f9lRjJYQNGx63MCpZ/XUTSMZ5/vw9wYnSee9qnzGzvC2KmYrRx52I8LjbF20u+pk3AePb9AYzH9N4Dbi3qpKeUOigi5wJPAg9iJPt3gEXAgmPY7gzvdicB0cBOjOfiHywqoJRaLSKnYjyGeBdG7eOvwOVKqV+rsc2lQB+M6vgWGL+v34DLlFJbqr8rmuY/9KtqNa2e874M5w2gt1JqucnhaJpWQ3QbvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIt8FrmqZpWhDSd/CapmmaFoR0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8JqmaZoWhHSC1zRN07QgpBO8pmmapgUhneC1ColIgogoERlrdiyaFuh8jqc7zI7F34nIQO/PaqDZsQQineA1Tav3RGSsN5EUffJFZIOIvCAiLcyOL9iJyHh9A1HzQswOQNM0zY9MA7YAEUB/YBwwTES6K6XyTI0suI0HDgCzS0z/HogECus6oGCgE7ymadq/vlJKLff+/zUROQhMAi4A3jMvrMAhIgJEKKUcx7oupZQHyD/2qOonXUXv57xtUMu9VYZpInKjiNhFRPmUuVpEFotIuogUiMgaERlXxrpOFJEFInJARBwiskVEZpUo01hEZotIpohkiMibQONyYksSkY9E5JA3vuUicn6J7SkRuaqMZYd65517TD8gTatdi73/tvf+vd5WsoCI9PPOu6S6GxHDTBEpFJHhPtOPE5Gl3uN1p4jc6z3elYgklFjH2SLyg4jkiki2iKSKSLcSZWaLSI6IxInIp97/7xeRJ0TEWqKsRUQmishq7/G9T0RmiEiTEuW2isgX3mN6OeAAbvTOq/DcJCJbgW7AAJ8mkiXeeWW2wYvIKBFZ4f25HBCRd0Qkrrr7Gqz0HbwfE5GewNfAHuB+wIpRhbi/RNFxwGrgc8AFnAe8JCIWpdSL3nXFAgu9y04HMoAEwPdkIsBnGFWTrwBrgYuAN8uIrRvwI7DLu75cYDTwqYiMUErNU0otF5HN3ukl1zEGOAwsqOrPRdPqUEfvvwcx/t4vA54uUeYyIBvj2Kkyb7KZhXFMXKSUSvVOjwO+AxTwCMYxdh1QUMY6rsA4xhYAU4AojPPCMhHpqZTa6lPc6i33K3AHcCZwO5AGvOxTbgYwFngDeA5oD0wAeorIKUopp0/ZLhg1HDOAV4H13ukVnpuAicDzQA7wkHfavqP8vIpi+h24C2gB/Ac4xbuvGdXY1+CklNIfP/1gHBS5QGufaZ0Ap/GrK54WWcayXwNpPt8vxDhRnHiU7V3gLXOnzzQrRjuYAsb6TP8W+BsI95kmGCfBDT7THsZoP2viMy0MI7m/bvbPWH/0RykFRiJTwCCgGRCPkXAPAHlAHHCDt0ySz3KhGBfNs6uwrQTveu7AuMl637uNISXKPQd4gON9pjXFuNhQQIJ3WrT3eJpZYvkWGBfyM32mzfYue1+Jsn8Ay32+9/eWu7REuaElpwNbvdOGlrGvFZ6bvNNWAUvKKDvQu+6BPj/vfcA/GM0AReXO8Zb7b1X3NZg/uoreT3mv6s8EPlVK7S6arpTaBHzlW1b5tHWJiE1EmgFLgQ4iYvPOKrqqPVdEQsvZ7DCMq+ziK1ullBvj6to3tqbAGcAHQEMRaebdZgzG1XJnn+qyuRgH5XCfVQzBqPafe9QfgqbVvW8xEvYOjMSbg3FXvQvj7z0f4469yFCMC4J3qrGtMOBD4FxgmFJqYYn5ZwE/K6X+KpqglDoEvFui3GCM4+m9omPRezy6Me5cTy9j26+U+P4D0MHn+yggE/imxDpXYPxMSq5zi1KqVG1cJc9NVXEiEAu8pJQqbptXRq3HOoxEX1JF+xq0dBW9/4rF6D26qYx5R0wTkVOA/wJ9MarmfNkwDtSlwMcYVf23edu4PgXmKKWKqvzaAXuUUjkl1rG+xPdOGHfr//N+yot/l1JqpYisw7gbet07r+jOaHE5y2qaWW4GNmBc6O4D1iujoxdKqQwRmQ9cCtznLX8ZRjNVdf6W78K4+z5bKbWkjPntgJ/LmF7ynNDZ+295MWSV+J6vlCrZzHcY8G1b74xx7kgvZ52xJb5vKatQJc9NVdHO+2/JcxIYCb5/iWmV2degpRN8gBORjsAijD/uSRh3HoUYd+O34e1IqYy6qZEicjJGO9hQjHa/20Xk5DKS+tEU1fw8Qflt6L4nobnAPd6r92zgfOA9pZSrCtvUtLrwm/q3F31Z3gJGiUg/jGri8zHuJj3V2NYCjLv0ySKyxPeOtIqKjscrgL1lzC95nLkruc50jqyt8FUyaZbqMV/Zc1Mtq8y+Bi2d4P1XOkZ1YKcy5vlOOw8IB85XSm0vmigiZVXLoZT6BfgFI+FeilHddzHwGrANGCQi0SUSfpcSq9ns/deplPq2EvsyF6PmYATGXVEjjOpPTQs0X2Mkt8swqr+jgLerua5fMKqPvwA+FJGLSlz0bqPi4x+MDmMA6ZU8HisjDaOJ8EdV/cfdqnJuUmVMK8s2779dKF1j0cVnvoZ+TM5vedu+vwUuFJHWRdNFpBNwtk/RoitU8SljA672XZ+INPH2kvdV1LYX7v33S4yLvnE+y1mBW0rElg4sAW4UkVYlYxeR5iXKr8W42xnj/ezB6LinaQHFm4Dfw3gyZCzwj1Lq72NY37cYF9hnAW+LiO85eQHQV0SOL5rg7f9S8q56AUY1/N1l9a8peTxW0gcYHWzvKzlDREJEpMxHZ0uo1LnJK5dyHsctYTnGzc9NIlJ03kJEzga6AqmVWEe9oe/g/Zsdo0PajyLyMsYBNwGjx2nRQb8Qo9prvojMwGjTux7jIPBNvlcB40VkHsbVeUNvuSyMxA4wH6MX/HTvM7ZrMDrHldUZ5mZgGfCPiLyKcVffAqOtLR7oUaL8XOABjFqJ16tZpalp/uAt4FaMjmZTjnVlSqlPReRq73qz8D5DDjwGXI7R0e15/n1MbjtGb3rlXT7L+2z528AfIvI+Ri1DW4xOZz9inDeqEtNS7/nkLu8FxkKMp3c6Y3TA+w/wUQWrqey5CYzOe+NE5F6M5r10pVSpPgVKKaeITMF4TG6piLzHv4/JbaX0I4z1m9nd+PXn6B+M3up/YDz7ugm4FqPt2+FT5jxgJUY72BZgMsZVsu+jND2BORhVWPkYVeXzgV4lttcU40STidHz/i2Mi4kjHpPzlu2A8eztHowDead3nSPK2I9O3nUo4BSzf676oz++H/59TK7cx0hLlF+FcYcaV41tJXi3dUeJ6eO80x/3mXY8Rm1XPkYb9lSMGjUFtCix/ECMJoQM77lgE0Yi7OVTZjaQU0ZMdnwevfWZfj3GXXMexsXH38CjQCufMluBL8rZ1wrPTd5yLTCaKrK885b47FPxY3I+5Ud7z4v5GI8NvlPyd1HVfQ3Gj3h3WAsgIvIp0E0p1bnCwpqm1TgR+RM4pJQaZMK2n8G4y49WRlOeppVJt8H7ORGJLPG9M0Yv1CWmBKRp9ZyInIhxZ/1WHWyr5PEfg9FbfplO7lpF9B28nxORPRhVTZsxngEdh9EprqdSaqOJoWlavSIi3YFeGK86bQZ0UD6Ptnk7pFbUoS1HVeGRVBH5C+Nifi1GNfa1QGtgkFJKd1TVjkp3svN/XwOXAC0x2uF/Bu7WyV3T6txIjLEg1gOXqNLPrbehnBe++PgvRhtwZX3p3W7Ra3L/AK7VyV2rDH0Hr2maVgNEpGgM+aPZrJTaXEEZTasROsFrmqZpWhDSnew0TdM0LQjpBK9pmqZpQUgneE3TNE0LQjrBa5qmaVoQ0gle0zRN04KQTvCapmmaFoSq9KKbFStWRGO8RUlfGNQPHmB3r169Kv3mLS346ONeO0b6PGKSSj8Hv2LFipMtFssrFovFhs/4vlpQUx6PJ9Pj8dzUq1evX8wORqt7+rjXaoA+j5ikUgl+xYoV0RaLZVnjxo1bxMbGHhIR/XacAOXxKHG6VagHZVEKASVKIQpoQD6C91crFqUQz/5DmQ0PZ2Ts8yj66Svw+kUf91pNUEpJenp604yMjH0ej6e/Po/UncpW0be2WCy22NjYQw0aNHDUakRatXmUkkKXJ7TQ5Qlzuj1hhW5PmNOtwpxuT5jL+69HKWt5y6eE7HOKxxXqO81iVTgKDsS2X3b7AebvOAQcAnYBaRjjTRd90rBnFtTi7ml1Tx/3AabQ5QkpcLkjClyecKfLE+byqBC3Ula3R4W4PSrE4/2uFBaFcT1va3A4u60joyEiCsTj/VdhsbqwhhZiCS3EGlaINbSQkHDv/8OcSOUrdGJjYw9lZWXZPB5Pa2BD7f0ENF+VTfAWQPQVvH9xFLojcgpc0XmFrmhHoTu60O0Jr+ltFB/DQjjQyvvpVkZRD3bbDmAF8Jv38zv2TH21Hrj0ce+nCl2ekFzjuI8qcHkinC5PeKHbE360C/ijU4JSAliKKvHwOMNw5UeVtwCWEKeR9CMchDbIJTw6h9DIMi/yvX9Dxvq1OqNHkwsQHqUkt8AVlVvgNhK60x3t9ih/+v1ZMIazbQcM907zYLetxUj2S4CvsWemmxOepgUmj1KSV+COyi10NcgrdEfnO90NnG5PmMlhCR5XGB5XGE5HNI7DxjC5YnURGplLWIMcwhrkEhadi8XqMTnWeqv6CcJu61WDcZRYd+aKY1l8/fr1YZ999plt8uTJ+4umxcXFpXz44Yeb+vXrV2dVjR9//HGje+65J77o+6FDh0KaNWvmXLNmzVqAxYsXNxg3bly7goICS8uWLQvfe++9Le3bt3cWlc8tcEVmOJxNDmZkN7znjluj1/6zEoD4tgnYn3iepjHN+HTuu8yZ9UrxNvft2c0JJ/Xj6VffLhXPjGce5+v5n9CgQTSPvfQ6rePbAnDfbeMZfumVpPSNq+kfgQXjbr8bcDWgsNv+AL7CGAbzV+yZ+uAPIAlTU2vluN86/ZxjOub9wRdffNEwPz9fRo4cmXWs6yp0eUIzHU5bdr7TtnDhgkbPPGwvvvM9dOAAMbGxzP1qKel79zDt9gns3rmdsLAw2rbvyL2PPEXTmGZlrnfj2tVMnzaFgweMU+OEyfcyauSpLPlpOWdfcQtdOrQrLvvz57OJjIwotY4bJz/ITyv+pnnTxsx7/UlsjRqilGLYFbfwwoNTQjomtLFRmGPzFleEhDtEhTss7gK3tTCnmjUMWnUEZXXJxo0bw2fNmtW8ptfrdDorLuRjxIgRWevWrVtT9OnWrVveqFGjDgG43W7Gjh3b/oknntixdevWVUOGDMkcP358mwKnO2xPpqPlur1Z3dL25yQfzClo9c7s16PzHQ4+/vYnPln0MzHNY3nzlecAuHDMZXyw4IfiT0zzWM65aFSpWHKys0id9wEfLVzGmCuv5b03XgXg5++/IyIykp69Tz7WH09lCNALuBf4CdiP3fY2dttZ2G36wNf8WkXH/+LFixt++eWXtqMWOoqcAlfU7gxH6/V7s7uu25t13J5MR7ucAlfjfgMGWXyP8aSU4xh2oXGMW61WbvjPHXy+9Hc++uZH4tu24+kHp5W5focjj/9cdxk333kPn373Kx9/+xMn9OlbPL9Lh3b89c37xZ+ykvuqdZvYuGU7/yz6gIH9TuTtj1MBeG3OPE7vdyIdE9qUXERwFURJQWZMSMHh2C4/TlyG3TYTu22QPuZrX0An+I8//rhRcnJy18TExOTevXt3WbFiRQTALbfc0nbr1q0RSUlJyWeccUanovIffPBBk+OPPz4pLi4uZfLkya2Kpm/fvj1k2LBhHVJSUromJiYm33rrra2L5sXFxaWMGzcuLiUlpeuIESPaVzfWrVu3hv7888+NbrjhhoMAy5Yti7Jareq8887Ldrk91qtunOBZvPi7Jn9v25+yP7sgrtDlKT66RIR8Rx4upxOXy0Vebg6xrUrfbf/953IOHTzAgMFnl5pnsVrxuN24nE4cebmEhobicOQx89nH+c9d91d3t45VU+ByjDv6ndhtT2O3nWBWMJr/e+eddxp36NChW5cuXZLHjRsX16RJkx7r168PA/jnn3/CBw4c2Kl79+5dExMTkx9++OHii3wR6TV16tSWKSkpXePi4lKeffbZmKJ5FS132223te7evXvXCRMmxP/222+RvXr16pKcnNy1Y8eO3YrOIz/99FPkW2+91XzevHlNk5KSku+4445WYJyjevXq1aVbt25dU1JSus6fP7+h7/4UON1hezIcrdbuyeq+eX9O1wM5Ba0KXO7y2r1J37uH35Z9z7kjxgAQ0zz2iCSd0vNEdu/cXuayX336Ecf1PLG4vNVqLfdOvzyhISEUFDrxeDzk5jkICw1lz779vPfp10y64fIKlxc8jYHrgW+B3dhtL2G3DcBuC+hc5K/8qQ23Snbt2hVy7bXXdli4cOH6Pn36OF5++eWmo0eP7rhx48bVzz///PY77rijzbp169b4LpORkWH966+/1u3ZsyckMTGx+7hx4w60b9/eeemll7a/66679pxzzjk5TqeTM844o/OsWbOaXHPNNYfBqFpfuXLlWoul+n+Dr7zySsyAAQMy4+LiXACbN28Obx3fRm3en9Mxt8BtU4RJg4YN2b9vL/HtEo5YduRlY/lr+W+c3rMzFouVlJ69uGTs9aW28en773Du8DGEhoaWmhcV1YArrh/PFRcMJqZ5Cx58+iVeeuIRrrxhAtENG1V7v2pQS2AiMBG7bQ3wJvAa9sxD5oal+Ytdu3aFTJgwIeG7775b17Nnz/xnn302JiMjIwTA5XJxySWXdHj77be39OzZMz87O9vSq1evpFNOOSV3wIABeQDh4eHqn3/+Wfvnn39G9O/fv+v48eMPikiFy1mtVrVq1aq1AIcPH7YsW7ZsQ2RkpMrJyZHevXt3HTp0aNagQYNyr7zyyv0ZGRnWWbNm7QBYs2ZN2P/+97/Wixcv3tC0aVPPqlWrwk8//fQuW7ZuW52vrI0z8pwxeYWuhuXtb1k+/3AO/c8YTEyz0hWUbreb92e/ysAhw8pcNm3DekLDwpkwdgzpe3bTuWs3br/vQZo0MNJA2radnDD0UqxWC1ePPp/xY0eXWkeXTgmc3u9EThh6KZ3bt+X+STdwzaT/8vh9EwkJqXI6iQXGeT+7sds+At7FnvlbVVeklS1gr5qWLl3aIDEx0dGnTx8HwLhx4w6lp6eHbtmypXR287riiisOAbRq1coVHx9fuGHDhvCsrCzLL7/80uj2229vm5SUlJySkpK8bdu28HXr1hXfQV9zzTUHjyW5ezwe5syZ0+yaa645UOjyhO48nBd/2GlNUJbQyJwCV2OFOurzJj9/vxilPCxasZ5FK9bRsJGNl554+IgyeXm5fP35J1x0cflX0WOuuo4PFvzAy+98xL49u9m3ZxenDBzEw/fcwR03jeXZV9/xl7+HZOBRYAd228vYbYlmB6SZb8mSJQ26dOmS17Nnz3yACRMmHAwNDVUAK1eujNi0aVPkJZdc0iEpKSm5d+/eSbm5uda///47smj5a6+99iBAz549861Wq9q+fXtoZZYbN27cgaL/5+XlWS655JKExMTE5F69enXdvXt32IoVK8q84/78889t27ZtC+/Xr19SUlJS8siRozqJ1Wpd+sfa43ZnOBKqmtyVUnw6990yj3GlFA/dczsNbY257Nqbylze7Xbx67Il3PfI08z9+ntiW7biobtvR4ATUpLYufwr/lgwh3mvPckr73zEB58vLHM9D065mb++eZ8PZz7GN9//SpvWLUiIb83Vt93PiOvvYO5nC6qyW0VaA7cCv2K3/YzdNlpX4R+7gL2Dr47IyMjiDl1Wq1U5nc7iF/388ccfa6Oiosp8HKhhw4busqavWLEi4rLLLusA0Lt375y33367zLqxL7/8smFBQaG198CzGq/fm91RoaRl63j27NpRXCY3J5uc7Cyat2hZavmP5rzJsAtGEh5hXHMMu2gUr7/w1BFlvvniMzomJtExMemoPwMw7naefPA+Hn3hNb6Y9wFNYppx90NPcOvowZbzz+xPh3bxFa6jjkQBNwE3Yrd9CTyFPXOxyTFpfkgpRaNGjVwla+18+R7fVqtVuVwuqcxyNput+LwxadKkuJiYGNfq1avXhIaGMmTIkI75+fllXqArpejfv3/Wex/OS9+fk98yO9/VuKxyaRvWcdctRo3c8SeexN0PPVFmHMt/+ZGCggL6DRhUat70aVPYt3sXz7z2LuXdjLRqHU/vfqfSopXRAnnORaMZd/lIABo1jC4uF9+6BZdccBY//PYno88fUua6ALKyc3jilbdYMOdFHnn+DQac3IvLRwyjx+CLOX/IgDLb8CvpZGAusB277XlgJvbMY+64WB/5yx1blQ0cODB3w4YNkb///nsEwMyZM5u0aNHC2b59e2fjxo3d2dnZlbr6s9lsnj59+mTde++9xW3yW7duDU1LSyu3JqBIr1698os60JWX3PMKXZEzZr2ZcMGYy0NynKpZ0d168nHH43I6+e2nHwD46J3ZDDjzrOIk7ivpGP1lAAAgAElEQVS+bQI/f/8dSimUUvywaCEdu3Q9osy8998+6t27r7dmvsCwC0fSLLYFjrw8xPuwu4iQm+eX7zMR4BxgEXbbH9ht55gdkFb3Bg4cmLt+/fqolStXhgO8/PLLMU6nUwB69OiRHx0d7fZtW1+1alX4vn37jnoeqOpyGRkZIfHx8YWhoaGsXLky/Mcffyxu32rUqJE7KyvLCkZyP33oOerHn39u8vUPvyQVJfd//iz9sEDHxKTiDnTlJXcwjvELRl2C1XpkaNOnTWHH1s08/eo7hIaV//TckPMuZPXKP8nJNnLlsu++oUuy8UqLPfv24/EY1zHZObl88e0P9Ozepdx1AUx9+Hmm3XYDUZGR5OY5EBFEBKfTRWEVOySXoy3wOLANu+0B7LamNbHS+iRgE3zr1q1dr7322uarrrqqfWJiYvKrr74aO3fu3DSLxcJJJ52Ul5iY6OjcuXM330525fnwww+3pKWlhXfu3LlbYmJi8gUXXNAxPT39mGo3HIXu8C0Hcjv8uWlX8rdffxl24Zgjk6/FYuHh52bw2P1TOe+0E/l+0QLuvP+h4vk3XzmK1Sv/BGDcbVPJy8tl+Jn9GH5mPw4e2M8tk+8rLrs1bSPr16xi6HkXVRjXjq1bWP7zMoZfciUA5140mt9+/J7hg/rSqX1bldK187Hsdl3oCXyB3fYDdlt/s4PR6k5cXJzrueee23rRRRd1SkpKSv7nn38io6KiPDExMe7Q0FDmz5+/6bPPPmuSmJiY3KlTp25XX311Ql5e3lHPcVVdbtq0abvnzJnTLDExMfmOO+6IP/nkk4vvLC+++OLDq1evjkrqmtz9ljvvPi4qtm276c+/Jv+bOolRQ/pz4ekn8e7rL1dr37OzMln01ReUPI/8+fsvvPfGTHbv3MHl55/J6KGnMvG6f8vY77yVJQu/BKBVXBuunXAbV144lJGDT+G3H7/n3keMmsCPv1xEyqDR9DhzDCefdxWDTzuJq8dcUG48P/7+F478fAafZjx9c/PY0bz45gekDBrNFSPOwdaoSq0PFWkM3IeR6B/DbmtRkysPZpV9F31SSEjI1507d86JiorKr4O4Ala+0x22Lyu/dZbDGRNor/9KCdlR6lW1+S7Fll37af/j7UTk7ChvUTN9CdyNPXOl2YEEG3887g8fPmxp0qSJB+Dtt99ufP/998dt3rx5tdlxgfHeij2Z+fF5hS6/6LVaWTENMrLiHIdrNeYaPo/kAg8CT2LPrJGqgmBVr9rga5NHKdmXld/yQE5hK6WO3mlOq1HDgLOx294BJmPP3Gt2QFrtefTRR2PnzZvX1OPxSHR0tPutt97aYnZMxrsr8uOy8p26CrluNAAeAa7CbrsFe+a3Zgfkr3SCrwE5Ba6oXYcdCQUud2TFpbVaIMAVwPnYbdOAF7FnltkxUgts06dP3zt9+nS/uIjzeJTsycpvdSi3sGVgX9QH7FgDScA32G0fArdhz9xldkD+JmDb4P2B26MsOw/nxW/Zn9NVJ3e/YAOeBX7DbutpdjBa8Mp0OBuu35fd7WBOQRDU2AV6/IwC1mG3TcZuq7BzdH2iE3w1ZTqcDTfsy04+lFvYIlAvf4PYCRhJ/lHstmo/q6NpJbncHuu2g7kJ2w7mJjprYfRGM0jg3sH7isZ4d8ZK7LYzzA7GX+gEX0XBeIAHqRBgMvA7dlt3s4PRAl9GXqFtw76cbpkOZ0zFpQNJMOT3Yl0xHqd9A7utgdnBmE0n+Co4lFvYeP2+7O7Bd4AHte4YSX682YFogcmjlGw/lNd2+6G8Ti6PR1cBB4axGLV4yWYHYqZqd7KrrWEjwf+GjlRKsfOwo83hvMJYs2PRqiUCeBG7bQhwLfbMg2YHFLBqa5joYxwiurbkO93h2w7mdTjaADCa30rGSPI3Yc98x+xgzKDv4IHPP/+8YUpKSteOHTt269SpU7ebbrop3u02OmG73B5r2v7czpVJ7hvXrubqEcO4YGAfhg/qy7TbJ5Dv+PfNcPM/fp9RQ/ozfFBfrr/4giNeVetr147tXDvqXE5JbsvooaceMW/lit8YPfRURg89lYsG9eWBqRMpLCgocz0PTJ3IiDP7cd2Y88nOygSMi5XxV4xkx1bTny4ywwUYbXQDzA5Eq56i0eSSkpKSf/vtt8iS3ydNmtQ6Ly+vRjqNHcotbLIpPSe5wOWOum/SzZx32omMGtKfqy4ayqq//qjWOp+b/gAXDOzDqCH9uWTY6fy4ZFHxvIfvuaP42B499FR6d2rJu7NmlLmeo8Vz323jOfPE5OL1PPXgfWWuY+f2bVx23pkMOOnMhg8/93rx9LUbN3P+2InV2j8/1AB4G7vt1frYHydoEnxVx2r3FRMT45o7d25aWlra6r///nvN77//3uDFF1+McRS6Izam53St7IsrwiIiuOvBx/hsyW98uHAZjrw83nj5WQC2bNrA0w/dz0tvf8Qni37mgtGX8tDdt5e5nujohtx85z088vyrpeYlJnfn3S8W88GCH/j4mx85dOAAc996vVS5jevWsH3LZj7+9idO7NufLz6ZC8An771F736n0iah2iPfBro4jEdrbjA7EK3qZs6c2XzKlCl71q1bt6ZPnz6Okt+ffvrpVhW9va4iHo9RJb/zcF4Hj1IWgEFnncO8xb/w4cJlXHPzbdw5bmy11n3CSX2Z+9VSPly4DPsTzzF5/NXk5eUCcPdDTxS/svaltz9CEIaee2GZ66konrE33VK8rkn3/q/Mdcx98zUuvuo6vvtpYfabH35Bdk4uSikm3v8Ezz5wZ7X2z49dB/yC3eb3r+qsSQH9HLyI9Jo4ceKeb775xnbKKadkX3vttQfHjRvX1uFwWAoKCiwjRow49Nhjj+0BmDRpUuv169dHOBwOy7Zt28KbN2/u/Oyzz9JatGjhPuWUU4pvs6OiolS3bt0caVu2NUrbn9PGo1SlRzRq175j8f+tVivde/Rk0/q1AGxav5bOSd2KB5M59fQh3DtxHBmHD9G4yZHvx7A1acIJffry+8/LSm0jMvLfmkJnYSEF+fnF75L3FRoairOwAI/HgyMvl2bNY9m/by9fffYxr7z7SWV3KViFAjOw27oBk/Qz84Fh7NixbZYvXx6dlpYW8corr8T26NEj1/d7165d8wD69evXxWKxsGjRog233nprfFhYmNq2bVu4d2S37PHjx6dPmTKlze7du8POOuusw6+99tpOALvd3uKjjz+OcblVeEhomGXKA9Pp0asPwBFDsB53Qm/S9+7B5XJVeYjU/qcPLv5/56RuKAWHDx4kKurI/mCff/Qe/QacQbPYst/KWhPxhISG4HDk4XQW4vF4sFgsvPLWRww5rS/t28ZVab8CRA9gOXbbddgzPzQ7mLoQ8HfwRWM1z5gxY2fnzp0Lli1btmHNmjVrV65cuWb+/PlNFi1aVHzk/PXXXw3mzJmzJS0tbXWzZs1czzzzTKlBlbdv3x7y5VdfxZx85rlNq5LcS8rLy+WT998uPhATk7uzbtVKtm7eBMAX8z5AKcWenVV/beOuHdsZNaQ/A3p0IrphI8ZceW2pMgkdO9O776lcfPYAdm3fxjnDR/P4f+9m0j0PVGfc5mB1K8Z77QPq1aL11ezZs3d07949b/r06Tv+/PPPdSW/z5kzZzvATz/9tH7dunVr4uLiXABr166N/PbbbzempaWt+vXXX6MffvjhVj/88MOGNWvWrJ43b17M8uXLIwCuvPq67A8X/mj5YOEyy9T/Pcq02yeUGce7r79C/9MHH/Nx9OkH7xLfth2t49uUnjf3XS6s5OBRZcXz7qxXGDn4FCaMHcO61f+UudylV9/I4q9TOWfwRdF33HQFmVk5fJT6LROvv7R6OxQYGgEfYLc9gd0W6M//Vyjgz/Qlx2q++uqr26xZsyZSRNi7d2/YihUrogYNGpQLMGDAgMyWLVu6AU466aScVatWHfFymgMHDlqHnXt+97HjJlq69aj+e1KchYVMHn8NfU87nUFnnwsYd/f3PvIU904ch9vl4tRBQ2hos2ENqfo1RFybtny4cBl5uTncfeuNfPvVfM6+YESpchMm38uEyfcC8N2CL2nZOo7Wbdpy36Sbyc3JZsi5F3LW+cOrvZ9B4izgZ+y287BnbjY7GK3mDRs2LKNoqNguXbo4Bg8enBUeHq7Cw8NVp06dHGvXro1I7N4j5Ntlv3We+fyTlozDhwgJCWFr2kbyHQ4iIv89TXzxyVwWfvEpb3yUekwx/bpsKTOefpQZc+aVqoH749efyMvJ4dQzyh+q9WjxTJh8L81btMRisbDoqy+4+cpRzP9+OVENoo9YtnmLlrzy7sfENsjIaek4bBt1w2SenDaJ735czstvf0h4WBiP3DWBdvGtj2lf/dTtQFPstuuDuQYv4O/gyxuref369WtOOumkbN+xmiMiIkqNB130Pf3AobAzh5513MCh51qvvOHmMreVtmFdcceVh++5o8wyTqeTO8dfQ/PYlkz57/Qj5g0+5wLe+fwb3vvyO0ZfcQ0F+fm0SehQ7X2PahDN0POH8+WnR69tysnO4s0ZzzPu9rt457WXOfHkU3jspVnMePbxIzoB1mPJwE/6efngFBERUXyOsFqtqsR3cgpcDTftzkiceMOVlkn3/o9PFv3MLG/CLCwsLF7P159/woynH2PGnE+IaV52n9vp06YUnyM2ri17DJzlP//ItNtv5rk33iOhY+km4Xnvv8N5oy4uNSxsSeXF06JV6+Ix4QedfS4NohuyNW3TUdf1ceoiOibEc3z3Ltxy36PMfvq/XH/pRUx7/JWjLhfgrgbex24rf4zdABfwd/C+MjIyQpKSknJ8x2ru379/dkXLHTh0OGzoWWd363f6YMsN/yk7ccO/4zaXx+VyMeXma7E1bsK0R58pdWW+f99emrdoidvt5plH7Iy58roj2tQrY/uWzbSKb+NtYy9k8depJCZ1O+oyzz7yX26cOJnIyKji8d9FBJfTidNZeMQdSj3WAliC3TYEe2b1ukhrpmvQoIHn0KFD1mbNmlXqrkyJJSzPbWmYX+DA6SykVVw8AO+9MfOIcgvmz+PFxx9ixnvzaBVXukq9yNQHHj3q9lb88iP3TLyRZ16fQ5fklFLzc7Kz+ObLz5n79dKjrudo8ezbs4sWrYw29L//+J3Mw4eO2qk2IyNTnn19DgvefRGAPEc+FosFi8VCTl7eUeMIAiOBaOy24dgzg+5up9oJ3t+eVQdjrOaxY8d2eO+992LatWtX4DtWc3mcbo/1f9OfTFq18g+Lw5HH4q/mA8bd9vW3lp/sy7Jg/ics+mo+iV27Meas0wA4/sSTuPuhJwC4/44J7Nm1k8KCAk4dNIRbp/z7+Ir9zlsZOPgsBg4ZhsORx/mn9cZZWEB2dhaDe3fj3BGj+c/U+/ntp++ZM2sGVqsVl9vNSaecxg3/Kb/H65+//0J+fj59TzsdgIuvuo4pE67jjZef5dzhY2jYyFalfQxyMcBi7LazsWf+bHYwfslPn1cvcuONN+4dMmRIYkREhGfRokUbjlZ2b6ajpbKEhANEN2zEhDvv4bLzBtG4aUyppqu7b72BmOaxTLz2suJpM9//rFQH2YrY77yVwsJC7r/931rCh555hc5djYv0rz//hOSUHkd02AVYvfJPXnryYV5868MK47lv0s0c3J+O1WolPCKSx1+ZfdTj/IFpD0fYJ91IZKTxFNm9/7mOE8++jLDQUF5/8v4q7V+AOgtYgN12LvbMCnNGIKnX48G73B7r5v25ifn6JRZAwI4HXxtygHOxZx79NirIBetxD0ZyT88uCMqu4lXVokFGZgvH4Vq90g+Q88gK4CzsmQcqLBkgAr4NvrrcHmXZfCC3s07uWhmiga+w2waZHYhW83Ry18rRC/geuy1o/jbqZYJ3e5Rl8/6czvlOd70fjEArVyQwr9ZezaqZQid3rQJdgR+w21qZHUhNqGyC94DxmtNA5/Eo2XIgt5PD6Y6uuLRW/CsPgt99NTQEvsRu62R2INqxS8/Kb66Te2lBMVhszWqPcdw3NDuQY1XZBJ+hlHIVFhYG9OMEHqVky8HcjnmFroD/xdWVQg/gcWF1VvgwQrCKxeiA09LsQLTqO5xXaNubld/W7Di0gHE88DF2W0CPHljZXvQHPB7P0n379p0TGhrqtFgsAXfNp5Rid2Z+m7xCt35rWTnylUJ87tQ9CvZn5hOV/gchhUHVubSqOmC0yQ8Itl629UFOgStq12FH9V84odVXg4HXgSvNDqS6KpXge/Xq5VmxYsU0h8ORkpaW1hwIuFf85RR6Guc5lU7uRxFqOWQR5fv4sMLiOETb9bMRAu6arqYdD3yC3TY0mN98FWwKnO6wbQdzOxcNGqOVFnAn87p1BXbbZuyZdrMDqY5KPwffq1evXStWrOjv8XjaVmU5f/DcbxlnbjrkfM7sOPzd1+F3HQjF+e/oFh43YY50LMplYlR+ZRAwHQi6obYqK+XNlFrpdPjPVf8c0/P169evD/vss89skydP3l80rXVcXMoLs99Xnbqm1On5aum3X/PUg9PwuN10Skrmf0+9SHTD0vcW3y9awEtPPsKm9WsZfcU1TLY/UjzP4/Hw6P1TWbb4G0SEy667iUvGlh4AMSsjg9tuuIKMQwc5oU9f7nn4SQAOHTzAnTeN5ZU58wgNDehaZn8wDbttdSAOUFOlP/xevXoVAkd/56GfSZiamgw8gr5QrVBk4VZXiHgqLli/3YHd9lsgHuzBbOPGjeGzZs1qXpTglVKIWEJdnmM77qs6Qltebg72O29l1odf0L5TIg/feyczn328zCFb27bvyH+feJ5vvviseMjYIqmffMDmjev5/Pvl5GRlMebs0+jd91Q6del6ZLlPP6B3v1O5aeJkrhtzPhvXraFzUjJPPHAP/7nrfp3ca4YAs7Hb0gLtLZdBXW2VMDXVBnyK8VyzptWUWdhtyWYHUR99/PHHjZKTk7smJiYm9+7du8uKFSsiAG655Za2W7dujUhKSko+44wzOu3NzG+FiCz6aj5XXDCEs/v1YOazTxSv50D6Pu4cdzWXnjuIEWf244XHHiyed3bf43j64fu59NxB3HfbuCrFt+y7b0nqdhztOyUCMObKa/nqs7KHZ07o0IkuySlYy7iAWDD/E4ZfciVWqxVbkyYMPe8ivv7s41LlQkJCyXfk4fF4cBYWEBoWxo/ffUsjW2OOO6F3lWLXjioK+CzQOtsGdYIHXgNKj+agaccmGqM9XvfpqEO7du0KufbaazvMnj1764YNG9Zcc801+0ePHt3R4/Hw/PPPb09ISMhft27dmk9TF+w7kFPQGiA7K5O3P1vInC8W8+aM59i3ZzcA9942njFXXsecLxYx9+vvWf33Xyz84tPibWUePsy787/lkedfrVKMe3btpFV8fPH31m3aciB9Ly5X1Zq59uzaecQwsq3j27Jn985S5c4ZPpodW7cw5qzTOKn/QGJbtuLV55/kFu8okpWhqzYrLR54N5CGmQ2otvSqSJiaehPGQAKaVhu6AG8Apcfp1WrF0qVLGyQmJjr69OnjABg3btyhyZMnt92yZUtxPbTT7QnZedjRvqhL6LALjVNAk6YxxLVNYNeObTS02fjtx6UcOpBevO683NwjRlw7f9QlpQaL8kdRUQ14csabxd8ft9/N1eP/w/atW3j9hacAuP7W28sc2EarljOAW4CA6NMVlAk+YWrqccDTZsehBb3h2G1jsWfONjsQzbDtYF57l8dTnPDDwiOK51ktVtxud/FLm97+7BvCIyJKrwRKjZ1eJG3DOu665XrgyIGkirSKi+eXH5YUf9+9YzvNYltWqR2/aD27d+6gR68+xnp2bqdV6/ijLvPPnys4dHA/A848i7HDz+ahZ2eglGLapPHFw99qNWI6dtsC7JnrzQ6kIkFXRZ8wNbUBMBco+8jVtJr1DHZb+eOHajVm4MCBuRs2bIj8/fffIwBmzpzZpEWLFs727ds7Gzdu7M7OyQ3LK3RV2GwS1SCa3v1OZdZLzxRPS9+7h317dlUYQ9GQ0R8s+KFUcgc4ZeAg1q5ayZZNxkB2c996vdTIdJUx+JwL+eS9t3C73WQePsyC+fMYet5F5ZZ3Op0884idO6Y9BIDDkYcIWCxSqgOfdswigbex2/z+BtnvA6yGR4Aks4PQ6g0b8Lr3+fh6/7KA2tS6dWvXa6+9tvmqq65q73K5xGazuefOnZtmsVhI6dnL0ykp2Tp8UF/i2ybw3BvvHXVdDz83kyceuIfhg/oiIkRGNeC+6U8Vj6NeXQ2iG2J/7FkmXnc5bpeLTl268r+nXyqeP3roqbzw5gfEtmzFr8uWcu9t48nNyUYpxTepn3PPQ48zcMgwzh0xhtUr/+C803ohCFdcf3PxkLJlefOV5zhvxMXENI8FYPztd3HzVWMAmHTPf48as37HRbX0Bu4GHjA7kKOp1HCxgSJhaurxwHLAanYsgWhT+OW7QsSj39VdPTdjz3yp4mKBI1CGi1VKsTE9J0kPHlU9cVGHM2PyM/RwsVXnBE7250fngqaKPmFqqgAvopO7Zo7HsNs6mh1EfZSeXRCrk7tmglCMqnq/bQ4OmgQPXAX0MzsIrd5qALxsdhD1TYHTHbZfjxB3TPz/WQG/lgw8ZHYQ5QmKBJ8wNbUx8KjZcWj13mDstgvMDqI+2XnY0U6/Z14z2UTstpPNDqIswXJgPIgxrKemme0p7LZws4OoIR5AKaX88ibvYG5Bk9xK9JrXKlTrv9/irl5B1OfLhwV4zOwgyhLwvegTpqb2BG4yOw5N8+oATMJ4miPQ7fZ4PJnp6ektYmNjD4mI35ydPUqx96CjjfLosROOlbPAbcl31d6vVinYn+tGCrIIzT9Qa9sx2anYbedhz5xvdiC+AroXvbdj3Y9AX7NjCQa6F32NyQG6YM/cbXYgx2rFihUnWyyWVywWiw0/aq7Nc3oa5RSqJmbHEQwah+bkR7sctdpRTAqyiP/rSaIz1tbmZsy2GjgOe6bfXHUG+h38WHRy1/xPNEafkCvMDuRY9erV6xfvMNGt8ZMmvVXpBQ1f/TN7YSDfnPiTG2JeWD4mZ2v/WtuAUoTmH8Dq9tsnLWtKN4zO3m+YHUiRgL2D976xbjO67b3G6Dv4GuUBemDPXGV2IMEmYWrqY8CdZscRLKY2nbLgprwdQ82OI0jsABKxZ/rF1YxfXJFX07Xo5K75LwtgNzuIYJMwNbUdcKvZcQQTi36TXU1qgzEYjV8IyASfMDXVCtxmdhyaVoHh2G09zA4iyEwDguUpBb8QkEnAv92F3dbY7CAgcH+3I4EEs4PQtAoIxvuqtRqQMDW1DUHQr8HfBGoS8GNNgLvMDgIC93d7h9kBaFoljcRuSzQ7iCBxO8brQbUaZNE19LXhFuy2ZmYHEXAJPmFq6kDgRLPj0LRKsgBTzA4i0CVMTW0KXG92HMHIgn++yCjARQJXmx1EwCV49N27FnguxW5ranYQAe5GIMrsIIJRICaBAHEDdpupF08B9btNmJqaDAwzOw5Nq6II/OBqPlAlTE0NBSaYHUewsvjpq4iDQCdgsJkBBFSCx2iD03+MWiC60eyr+QA2EmhtdhDByqqr6GuTqa9RD5gEnzA1tSVwudlxaFo1dQYGmR1EgLrG7ACCmaAfhK9F52G3mfbysIBJ8MANQJjZQWjaMRhndgCBxvto3BlmxxHMdBV9rQoBrjNr44GU4EeZHYCmHaPzsdt0VXPVXElgnacCjtXsAILf9dhtpvyYA+LASZia2hnobnYcmnaMQoAxZgcRYK4yO4BgZ9H9mmpbHHCeGRsOiAQPjDA7AE2rISPNDiBQJExN7YfRd0GrRfpFN3XClM52OsFrWt3qq6vpK03fvdcB/aKbOjEIu61JXW/U7xN8wtTUtug312nBQ9AXrBVKmJoqwIVmx1Ef6Cr6OhGCCe9w8fsEDww3OwBNq2G6w2jF+qCHg64Tuoq+zlxQ1xsMhASv73a0YHMKdltLs4Pwc+eYHUB9YRFdRV9HzsJuq9NHvf06wXtfbtPP7Dg0rYZZ0K9crsi5ZgdQX/h1EgguDYGBdblBf//dXoj/x6hp1XG62QH4q4Spqa2BnmbHUV/oF93UqaF1uTF/T54XmR2AptUSneDLp6vn65C/J4EgU6eDz/jt7zZhaqoVOMXsODStlsRht+lnvMs2xOwA6hP9mFydSqnL/jd+m+CBFKCB2UFoWi3Sd/Fl62t2APWJVfeir2tn1tWG/DnB64NcC3Y6wZeQMDU1HuPVnlodEZQ/54FgVGeDJ/nzL/ZkswPQtFp2mtkB+CF93NcxPdhMnetRVxvSCV7TzNMau02/zOVI+rivYxY9HHxdS66r0eX8MsEnTE1thB5kQqsfjjM7AD+jE3wd04/J1bkIoFNdbMgvEzxGBzv9R6fVB3VWXefvEqamhgAnmB1HfaOr6E1RJ8Of+2uC13c1Wn2h/9b/1RGINDuI+kZ3sjNFSl1sxF9/sfquRqsv9N/6v3SznAn0Y3KmqNcJXt/VaPVFV+y2ULOD8BM6wZtAdHOoGep1gk8yOwBNqyNhQFuzg/ATOsGbQL/JzhQdsduiansjfpfgE6amhgFNzI5D0+pQvNkB+Amd4E3gd0mgfrAAyXWxEX/TzOwANK2O6QRv0AneBPoxOdN0re0N+GOC1y/+0OqbNmYHYLaEqamh6J+DKSy6Dd4sMbW9AX9M8M3NDkDT6pi+gzdq7vzxfBT0dII3Ta03RfvjAaXv4LX6Rid4aGp2APWVflWtaeplgtd38Fp909rsAPxArVdXamWzKP2iG5PoBK9p9UBDswPwAzrBm8SCvoU3Sb1M8LqKXqtvav152ACgE7xJLPpVtWaplwle38Fr9Y1O8DrBm8ai/DIP1Ac6wWtaPdDA7AD8gG6mMIlVV9GbpV4meH2y0+qbCOy2+v6oknrz9HYAACAASURBVD+ei+oFPZqcaeplgi8wOwBNq2OCHiZVM4l+Dt404dht4bW5AX9M8PlmB1DfCB5Pb1m3zoKKMDuWesxqdgAm00nGJIdVwxylKDQ7jnqqVn/uIbW58mrSCb4OdJDd20dav982zPJraFtJT7SI0iP4mUvXXGmmOL3w6b4WPO4E2bv9ONmcfrxlU153y1bayb7oJmS3sOJpLaIvwGqBA3tmrfZ/0Am+nmhK5sELrT9tuNC6zNVVtieEirstephSf6GwZ9b3OyidQEzkwWLdrFq33axat/3U0/+IeREUOBJl584els0Hj7dsKkiS7dZ42W9riKO1RZR++qH68mp7AzrBB6kIChyDLSvWjLR+n9Pbsr5lJAWJIvQ1Oy6tTPruXfNb+YRH/q06dv7b3bHz2+7BR8yzkZORbNm263jZlNHDkuZKlJ1hLeVw00gK4kV0h+kK6ASvVY4Fj/sky9p1o61LDgyw/G1rQnZXEXqZHZdWKTrBg8PsALSqyyS68c+ebo1/phu4j5zXmgN7u1u27j3esik7RTZ7Olr2RDUjs1korngRQs2J2K/k1vYGdIIPYF1k+5aR1u93nGX5PTxe9ieJ0M3smLRq0X/zcNjsALSatZtmLXd7mrVc6DnxiOlW3K72smfbcbI5vadlU143y1ZLW0mPbkxOSyuelvWovV/fwWv/iuXw/ousyzaeb/3J00V2dAgRT3ugvdlxacdM/83DIbMD0OqGG2vIJhXfbpOKb/eJ57Qj5kVSkNdFduzsYUk75G3vD4mTA7ZoHHEWqf3nxuuYTvD1WQMcOUMtv68daf0+r6dlY+tIcXZGv+kvGOnkpn8GGuAgPOov1SnxL3cn3nQPPWJeE7IOdzPa+zN7WDa7OsvO8BZyuGkEhfEiAfm653qZ4OttW5wVt+sUy6q1o61LD/W3/NPERm5XEXqbHZdW6/aZHYAf0AleO6rDNGqyzJPSZBkpJdr7lYqXA3u6y5a9PS2bclJks6e9ZU9UDFmxobjjRPwyz0E9bYNPNzuAutRNtqSNsi7dNcS6IrIVB5NESDE7Jq3O1au/+XLoNnitmkR2quatdqrmrb729DliTgguZ0fZveU4y+YDx8umvG6WbZa2kt7QRm5Lq3hamhRwkXqZ4DeYHUBtas2BPcOtP2w+z/oznWRXJ6uojkBHs+PSTLXH7AD8wEGzA9CCj4uQ0PWqbfv17rbtP2TgEfMa4MjpIjt2HW9JO9TDsqkwSXaEtJaDjaNxxItgq4Pwdtb2BvwxwW80O4CaFE1e1jnWX9aNsP6Q30PS4sPF1QFoZXZcml/ZYXYAZts6/ZwDCVNTHeh38mt1JJfI6D9UYpc/3ImlHvGLIfNgN8vW3d72fncn2RUeK4djInC2EaGmXum9uYbWUy5/TPA7MDraBeR70UNxFZ5mWbl2lHVpRj/L6piGOLqK0KfiJbV6rNav5APEVqCr2UFo2kFsMd97esR8T48jkr/g8bSR/btSZMu+4y2bclIsW2gve6Kakh0bYrT3V2VMiS01HngJfpfgt04/x5MwNTUNAuWZbqWOl7SNo6xL9pxp/aNBLBldRehhdlRaQNlqdgB+YjM6wWt+TGGxbFct4rarFnGpnpOPmBeKq7CT7Np2nCXtQE9JcyRbtlrayP5GjchtZRUVW8bq6l+C99qIHyf4NpK+a6R16ZZzLL9YOsjezhZRiUCi2XFpAckNrDM7CD+xyewANK26nISErVXtOqx1t+swlzOOmNcAR3aybNtlPN+f5kyS7dZOlt3bazsmf07wfsNGTsb51p/XXWT9wdldtrQNE3c7IM7suLSgsAl7pn5VrWG92QFoWm3IJbLh7yop6Xd3UlGV/8at089x1vZ2/TXBm9qTPgxnwRmWP9eMsi7NOsmytnkD8pNEOLniJTWtylaZHYAf0Qleqy/W1sVG/DXB1/EdvFInyoZ1o61L0k+3/tWwGZldRehZtzFo9dRqswPwI2vMDkDT6ohO8LWpvezZMdL6/dZhll9D2sm+LhZRXdEdfP7P3n2HN1W2Dxz/PmlDByOUPQSi7C2CoAICoqBUEWQpAoooLl4HDgoqRFx5wVdxgqhs/DEUFCwCIoIgU8SJIBTCEsoq6W4zzu+Pk9ZSWmih7UnS+3NdudqenHNyp+2T+5xnipInd/A+Dnv0cWtM7BHgCqNjEaKY/VISL+KXCd5hj/7HGhObBJQvqnNGkXjmzpBNe/qGbHQ3UwetZuWpA9QpqvMLcYkkwZ9rK5LgRfDbXBIv4pcJ3mcrcPOlHhxORtrNpp//6h+yPula057qkWQ0VorrizA+IS7XWaTdObetQD+jgxCiGB1z2KMPlsQL+XOCX08hErzC6+1g+mv3wJD1J7uYfrVUIqmpUlxTjPEJcbk2YnN6jQ7Cz2wxOgAhilmJ3L2Dfyf4Hy62QyN12NE/5IdDt5q2hdVRJ5soRbOSCEyIInLR//FSaAfgxr8/m4S4HJLg0avqzpmytgpnT94VsnHvnSE/ehurw1eGKq8VsBoUnxCXSxJ8Lg57dKo1JvZ3kFEsImhJgnfYozNaxixed7NpR5X+IT+kXGPaWyuczAZKUdXo2IQoAinod6vifOuRBC+CUyYlWO79NsED/B7+4CZgotFxCFEMNmNzuo0Owk+tAJ4yOgghisE6hz06vaRezFRSL3SJVhkdgBDFZI3RAfix9UCy0UEIUQy+LskX8/cE/xNw2ugghCgGS40OwF857NGZwHdGxyFEMVheki/m3wleH0K0wugwhChiu7A5DV1vIQDEGh2AEEXsT4c92lGSL+jfCV630OgAhChiS4wOIADIhb0INiV69w6BkeBXAwlGByFEEZLq+Ytw2KOPAjuNjkOIIlSi7e8QCAne5nQhdzwieDiwOX82OogAMd/oAIQoIkcpwfHvWfw/wesWGB2AEEVELlYLbj76rHZCBLo5Dnt0iU9LHSgJ/nvghNFBCFEEPjU6gEDhsEcfR4bKiuAw04gXDYwEb3N6kM52IvBtwubcZXQQAWa20QEIcZk2OezRe4144cBI8LqpRgcgxGWabnQAAWgZ0slWBDZD7t4hkBK8zfkXsNboMIS4RE5gsdFBBBqHPToDqb0TgSsVA/9/AyfB6943OgAhLtF8bM5Uo4MIUB8YHYAQl2iRwx6dZNSLB1qCXwYcMjoIIS7BR0YHEKgc9ug/kM52IjD9z8gXD6wEr3e2m2Z0GEIU0ipszt+MDiLAvWl0AEIU0grfxalhAivB6z4G0owOQohCeM3oAAKdwx69BvjF6DiEKIRJRgcQeAne5jyF9KgXgWMjNucGo4MIEnIXLwLFVoc9er3RQQRegtf9F0gxOgghCkDu3ovOQuCw0UEIUQCTjQ4AAjXB25wnkJ61wv/9jM250ugggoXDHu0G3jA6DiEuYg9+sqBUYCZ43WQg2egghLiAV40OIAh9DPxtdBBCXMBYI+adz0vgJni9Lf49o8MQIh8bsTn94io+mPju4scaHYcQ+djosEf7TbkP3ASvexM4Y3QQQuSiAU8bHUSwctijl2DA0ptCFMBzRgeQU2AneJvzDPCS0WEIkctcbM6fjA4iyD1vdABC5LLYYY/eYnQQOQV2gtdNA3YaHYQQPqnAOKODCHYOe/RG9JkthfAHmfhh01HgJ3ib0wuMQq8WFcJok7A5jxodRCkxGpn0SviH9x326Dijg8gt8BM8gM25CZhjdBii1DuAn4x/LQ18H6g2o+MQpd4BYLzRQeQlOBK8bgz6kpxCGEEDRsiKcSXuf0gTnTDWSIc92i8nXgueBG9zxgPPGh2GKLWmYXN+b3QQpY3DHu0BHgQ8RsciSqWZvnUS/FLwJHgAm/MTYLnRYYhSx4H06jaMwx79M/C20XGIUucYej8QvxVcCV73IHDS6CBEqZFVNS+zKhprAuB3nZxEUHvcYY8+a3QQFxJ8CV6fp/4ho8MQpcZ0bM61RgdR2jns0anA3ejDlYQobnP9aca6/ARfggewOb8CZhgdhgh6u/DzKrrSxGGP/glpKhHF7y/gUaODKIjgTPC6J4G9RgchglYqMEB6zfsXhz36HeAro+MQQSsVGOCvveZzC94Er7eJ9gGSjA5FBKVHsTl3GR2EyNNw4KDRQYig9LjDHv2n0UEUVPAmeMD3ATwMmeVOFK2p2JwysZKfctijE9Db411GxyKCyiyHPXqW0UEURnAneACb80tkXW5RdDYDTxkdhLgw36If8ncSReU34HGjgyis4E/wugnI+Hhx+Q4C/bA5pad2AHDYoz8E3jc6DhHwjgN3+EZqBJTSkeBtTg0Ygt7rWYhLcQa4FZvzmNGBiEJ5ClhpdBAiYKWiJ/dDRgdyKUpHggewOROBnkBA/qGEodKB3ticu40ORBSObyrbAch89aLwPMBg3/DLgFR6EjyAzXkEuAWZ6U4UnBe4F5vzR6MDEZfGYY9OBnohPetF4TzusEcH9JDL0pXgAWzOv4FbgUSjQxEB4SlsziVGByEuj8MefRy9Bu+40bGIgDDRYY/+yOggLlfpS/AANufPQG/0qlch8vMSNud7RgchiobDHr0H6IYkeXFhrzvs0ROMDqIolM4ED2BzrgcGInNXi7zFYHPK8Mog47BH7wZuAuKNjkX4pVcd9ugXjA6iqChNK+VzwNgstwFLgHCjQxF+YzQ2pyw/GsSsMbFNge+B6kbHIvzGxGC5c88iCR7AZrkJWAaUNToUYbgnpFq+dLDGxDZDT/LVjI5FGM7msEe/bHQQRU0SfBabpT2wAqhsdCjCEF7gcWzOaUYHIkqONSa2EfANcJXRsQhDaMA4hz3abnQgxUESfE42S1NgNXCF0aGIEpUCDMbmXGZ0IKLkWWNiq6LX4F1ndCyiRGUAwx326P8zOpDiIgk+N5ulNrAUuNboUESJOArcgc0pE6GUYtaY2AhgHnCX0bGIEnEauNNhjw7q+S1Kby/6/NicR4EbgflGhyKK3S9AB0nuwmGPTkOf8U46Vwa/vcB1wZ7cQe7gL8xmeQ6wIxdCwWg5cA82Z4rRgQj/Yo2JfQyYApiNjkUUuR+Avg579BmjAykJkrguxOacDNwOOI0ORRQZD/Ai0EeSu8iLbxW6ToDD4FBE0dGASUD30pLcQe7gC8ZmaQR8BrQ1OhRxWY6g37VvNDoQ4f+sMbFRwEzgTqNjEZflJDDMYY8udasKSoIvKJvFDLwMjEFqPgLRcmA4NudpowMRgcUaEzsavalOquwDz3r0FeH+MToQI0iCLyybpTMwF6hndCiiQDKBMdicU4wORAQua0zsdejlvoHRsYgC8QCvoc9O5zE6GKNIgr8UNosF+AC41+hQxAVtAh7C5txldCAi8PmG0r0MjAZCDA5H5O9X4MFAXse9qEiCvxw2S2/gHcBqcCTiXIlADDANm1P+wUWRssbEtgU+BVobHYs4Rzr6BdibDnu02+hg/IEk+Mtls0Sg98p+FihjcDQCvkKfcvao0YGI4GWNiQ0FngPGIwtV+YO1wMMOe/Q+owPxJ5Lgi4rN0hh4H7jZ6FBKqTjgeWzOJUYHIkoPa0xsQ/ThV32MjqWUOga84LBHzzQ6EH8kCb6o2SwD0Tt3SGecknESeAW9Ot5ldDCidLLGxHYC3gQ6GB1LKZEITAbectijU40Oxl9Jgi8ONksocD/wElDX2GCCVir6tKKTsDkTjQ5GCABrTOwA4A2gvtGxBKlMYBrwisMefcroYPydJPjiZLOUAUYC44CaBkcTLNKBWcAr2Jylcmyr8G/WmNiscv8ccoFfVDzAQuAlhz16v9HBBApJ8CVB74j3CPAkMn7+Up0BPgTew+Y8YXQwQlyMryPe3eiJvpXB4QSqZGAG8LbDHu0wOJaAIwm+JNksIUBv9ETfxeBoAsUB9Kr4GTJ3vAhU1pjYnsDzwE1GxxIgjgHvAdMc9ugEo4MJVJLgjWKztAaeAAYjw2xy8wJrgI+BpdicpXYmKhFcrDGx1wAPod/ZVzQ4HH+0Cb3cf+awR2caHUygkwRvNJulEvo61IOBzoAyNiBDxQHzgJnYnAeNDkaI4mKNiQ1HH1p3P3ALpXt9Cwf6NMBzZBx70ZIE709slivQr+wHA20Mjqak/AN8CczH5txkdDBClDRrTGxtYBh62S8tbfVOYAkwG/jBYY+WRFQMJMH7K5ulCfpa9D3Q7+yDpRpfA7YDXwNfY3PuNDgeIfyGNSb2SvR+Or3R16QPptkxD6CX+2XAeoc9WuatKGaS4AOB3gv/RvRk3wNoYWxAhbYf2Ax8B6zA5ow3OB4h/J41JrYceqe8nkBH9HIfSIvcnEZvU18NrHLYo/caHE+pIwk+ENksVYH2OR5tgOqGxvSvNOAn9IS+CdgiCV2Iy+dL+NcC1wHX+75WNTSof2UAO4GtwDZgq8MeHWdsSEISfLCwWWoAVwMNgStzPSoU8at5gaPAHuDvXF8PYnN6i/j1hBB58LXfN0Iv91lfG6LPpFfU1fsaep+ZOGBfjsdeYJf0evc/kuBLA5slCqgDWPJ5hKLPFOVBT95Z32eiTzBzEjjl+3oSSJAkLoT/ssbEmoDK+Tyi0Mu8yvHA99UDJPgeZ3J9f1zmfQ8skuCFEEKIIFSax14KIYQQQUsSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBC+Cml1LVKqU1KqRSllKaUulopdatS6helVLpvW0Wj4xT+KdToAETpoJQaB+zSNO1Lo2MRIhAopczAYiAdeBpIBQ4DPwB/Ao8DGUCKUmowUE3TtCkGxWoChgF3AW2ASsABYAHwpqZp6UbEVdopTdOMjkGUAkqpZOBzTdPuNzoWIQKBUqoJ8BfwkKZpn/i23Qp8A9yiadqaHPt+DbTQNM1qUKzlgCRgC/A1cAK4HrgP/YLkJk2STYmTO3hRaL6r9TJyVS5Esarm+3r2Itv8QSbQUdO0TTm2fayUcgAvA92BNXkdKIqPtMH7AaVUV6XUT742tTil1MNKKZtSSsu13xCl1A6lVJpS6oxSaoFSqk6ufdYppf5QSjVTSn2vlEpVSh1VSj2fx+uGKaVeVkrtU0plKKUOK6UmKaXCcu2nKaXeV0rdq5T6E71a8Fbfc8/62ghP++LaoZTqn/t4oCxwn+9cmlJqVo7nayulZiil4n1x/KmUeuAyf61CBCxf+Vjv+3Gxr8ysA2b7tm3PKke+7dFAvRzly+E7T1ffzwOVUhN8nwVJSqnPlVIW32fAFKXUCaVUslJqZh7lf7hSaq1vnwyl1C6l1KM599E0LTNXcs+y1Pe1aVH8XkThyB28wZRSbYCVwDFgAhACjAdO5trvBeAVYBHwCVAV+A/wg1KqjaZpOa/oo3znXOLbvz/wX6XU75qmfeM7nwlYBnQCpqNXBbZEb+trBPTJFepNwEDgfeAU4PBtf9J3nvlAGeBu9A+k2zVNi/XtM9QX8zbfawHE+eKojl6tp/nOfRK4DfhUKVXBqDZFIQz2EXAUGAe8C2wH4oE9wEj0z4gD6OWoHGABrkAvvwDJuc43FkgD7EAD9M8OF+BF/7ywAdcB9/vOOzHHsY+it/kvA9zAHcCHSimTpmkfXOR91PB9PVWQNy2KmKZp8jDwgV5oUoBaObY1QC98Wc1W9dAL1rhcx7bw7Tcux7Z16MlyaI5tZdAvID7PsW0I4AE65Trnw77jb8ixTfPt2yyP+CNy/WwGfge+y7U9GZiVx/GfAP8AlXNt/z/0asiI3MfIQx6l4QF09ZW9/jm23e/b1i7Xvl8Djguc43fAnGP7Z+jJfUWu/TflPk9eZRD9BiKuAO/hW8AJVDT691kaH1JFbyClVAhwM/Clpmn/ZG3XNG0fekeaLHehN6csUkpVyXoAx4G9QLdcp04G5uU4Xyb63fNVOfYZgH7XvjvXOdf6ns99zvWapu3K/R40TUvL8X6i0O8kNgDXFOD9K6AfsNz3Y844VvnOddHzCCEuao6maa4cP28FFDAj135bgTpKqeza3Vxl3OIrn+uBq5RSlvxe0Ddy5mYgRju3hlGUEKmiN1Y1IALYl8dzObc1RC+Me/M5jyvXz0c03+VzDglAq1znbEqupoBcseV0IK+dlFK3Ay8CVwM52+4K0mO2KlARvcpxZAHjEEIU3qFcPzt9Xw/nsd2EfnF9GkAp1RG9o9z1QGSu/S05zpVNKTUIeBX4VNO0qZcVubhkkuADgwk9Yd6GXlWeW+72trz2Af0iIec5fwdG57Nv7oKflnsHpVRn9CaGH4DH0JsBXMBwYHA+580pqwZpHv92HsrttwKcRwhxYfl9Jlzws0IpVR/4DtiN/llxGL3HfC/09v7zaoGVUrcAc4BY4JHLilpcFknwxjqBPolFgzyey7ktDr3AHdA07e8ieu04oDV6W/mljk/thx5/T03TMrI2KqWG57FvXq9xEn3sbIiWY0yvEKLQimuM+R3oNXO9NU3LrgVQSuVuwsva3gG95/xPwEBN09zFFJcoAGmDN5CmaR70saF9lFK1srYrpRqg361nWYJ+pT3B125Njn2VUqryJbz8IqA28FDuJ5RSEUqpsgU4hwf9gyUkx7FWzu+BD3pHwnOm1PS9/y+AfkqpFnnEUbUAMQgh9PKVb3v4Zci6w8/+3PG1u593Ea+Uaop+1+4Abs/Zdi+MIXfwxrMBPYAflVJT0ZPlKOAP9HZtNE2LU0q9CLwBWJVSX6Lf+V4J9EUfevZmIV93Lvqwt2m+q/Effa/dxLe9J/pV+IXEolfbrVRKfYbeXv44ev+BVrn23QHcrJQajd5r/oCmaVuBGPQOfVuVUh8Du9CnubwGvYNOpUK+LyFKox3AIKXUW+hD6pI1TVteBOddjV4lv1wp9RH6kLyH0Gsfa2btpJQqj94xNgqYDETnuheJ0zRtcxHEIwpBErzBNE3boZS6DT1Bv4LexjUevQNckxz72ZVSf6O3e03wbT6MXgCXXcLrepVSfXznG4Z+oZAK7AfeAS7aFKBp2lql1Aj0JD0FvSPeGMDK+Ql+NPqFyKvoHQtnA1s1TYtXSrX3vee70NvyT6OPux1T2PclRCn1IfoNwXD0Mn0QfXTKZdE0bY9v4qpX0T+jjgNT0ZvXcvbArwxkTbplz+NUswFJ8CVM5qL3U7679OaapjU0OhYhhBCBR9rg/YBSKiLXzw3Re6muMyQgIYQQAU/u4P2AUuoYMAu9erwe+tSQYUAbTdPyG/suhBBC5Eva4P3DSuAe9HmbM9DbqsZJchdCCHGp5A5eCCGECELSBi+EEEIEIUnwQgghRBCSBC+EEEIEIUnwQgghRBCSBC+EEEIEIUnwQgghRBCSBC+EEEIEoUJNdLNjx45yQC3kwkCcywucBU61bdvWa3QwomhJuRd+QD5jLkGBJ7rZsWPHdSaTaZrJZLKQY21gIQA0TXN7vd71mqaNb9u27VGj4xFFQ8q98BfyGVN4BUrwO3bsKGcymTZWrFixerVq1c4opWT6uwCmaRoeTTN5vIR6NM2EpikNlEIjkgwFyou+lrMGSsMU6sEU6kbl/fmuaRqZmZll4uPjK6SlpR3yer2d2rZtm1mib0oUOSn3gU/TNNxeLcTt0ULdXm+oVyNUA6Vp+sVaqObRIjPTFChUOF6PKuNNx6yZTMprQnlCTMobalJuk8nYv718xlyaglbR1zKZTJZq1aqdKVu2bFqxRiQui6ZpZHq8ZdJd3rAMtyc80+0Nz3R7w9xeLdTj1UK9mhbq8WoheR0bZvK6q3A0//8JU6jL98gkxOzCZHYRYnYRYs4sWy4swxxa+3Tc/v1VvV5vXWBfcb1HUWKk3Ps5TdNIc3kiUjM9kb5ybnZ7vGb9q2b2eLVQDS3fmpcKeNMrnE0IBwipiitDVciIz6xQDs7N5yEm5S4TYsowh5oyyoSYMsJCTellQk0Z4eaQDHOIyV3MbxOAsmXLppvNZldcXJx8xhRQQRO8CVByBe9fvJqmUjM8kSmZ7rKpmZ5ymW5PeKZHC9M0rXjaSr1uM163GYjM6+kQt/Ka0xNcV22zjWX5L6uB7dic+4slFlESpNz7Ea+mqbRMT3hqpqdsussTmebyRGa4vRFFUt6V0pTmRcunls7j1ULTvJ7QNJenbO7nTEp5y4Sa0iPMIcllw0KTy4WFJpUJLZ6kbzKZNPSmIlkorQDklxRAXB5vaFK6u3xqprtsWqanXLrbG6lp+V+dlzSF16S8mWHmjNMPAA8AYLOcAX7yPbYCa7E5k42LUojA4NU0lZTuLp+Y5rKkuTzlfMm8mMq70pSmmTyX0M3Cq2mmdJcnMt3liUxIzawGUCbElBFRJiTJl/CTw80hGUUesrioS07w1pjYtkUZSE4Oe/SO4jp3QW3fvj28T58+DY8ePfp7Sbze0KFD627fvr1c1s8HDhwIf+mll46Mfj4m0Znmqpic7q6YkJhc9p7obpjNZhat2pDned61T+S7lV9TpkwZQkPNjHr+RTp27Q7A1LfsLJz9CdVq1ASgfqMmvPHex+edI+FsInc9+CynEs7SuX0bPnxjLAAnTycw4OHn+fb/PsRsNhf0rVUCevgeABnYLGuAL4Fl2JwnCnoiYbziKvf+UOYvpkmTJs02b968Oyoqqth6cbs83lBnmsuSlO6qmJLhqeAt5N35H7/8zOSXx5KakoJSimfGv0aHjjcCcPBAHK+/8CxnTp3E7fHw8JPPMbB3b/1AhabQlNc3UOLhwXdx+mQ8JpOJyLLlGDPxvzRt0QqADWtXMv1q1AAAIABJREFU8/7k19C8XtxuN/c/8gS9B9xzThyZHm/Yzi07wl5+/okqLpeLBx590nPv0GHOChHmhA1rVnoXLlwQ9dlnnx283N+XuDC5g/cTc+fOPQR6m9pfcY6K17RoWv/G2wdW33ciuU7WPlPesHF1uw78+evP+Z7nmg7XM/LJ5wiPiGDPrt95oH803/70F5GRes1ar74DeN72xgVjmb90Bd06tmP80yO5acBI/ti9jxZNGjDa9j/sY/9TmOSelzAg2vf4CJtlM3qyX4rNGXc5JxaiOLhcLsxmM7t3795VHOdPzXSHJ6a5KialuyvmVQVeUJqm8fRDQ3nlrQ+4rnNXHPv38fA9ffhq3XbCIyIYP/ox7hx4L3fdM4wzp08xOLobna9tR/UIk6+KXjNl9a6dPHUmFSwWAL775mvGj36Mxas3omka4554mE8XL6dR0xYcPXyIPt3a0/222ylbrvw58cz4cApjXrbTtNXV9L+lY8gdA+6pdCIhsdLE1+3M+GxRwtnUTEuFCHOiSZqAik1Aj2udN29exauuuqp548aNmz366KO1o6KiWu/Zs6cMwMiRI69o0aJF0yZNmjRr165d419//TUMIDk5WUVHR19Vv3795o0bN27WsWPHhlnnGz16dK169eq1aN68edO5c+dWyvlaX3zxRYW2bds2bt68edOWLVs2Xb58eXmAG264oeHMmTOjsvb7+uuvyzdt2rRZYd9LussTdjQhrfZfx5JaTZ8xu/4NXbpTsUq1MlnPb9mwjhPHj9Gr74ALnqdTt1sIj4gAoGGT5mgaJJw+XahYzKGhpKal4/V6ych0UcZsZuX3PxJVsQLXtW1V2Ld2ISagIzAZ2IfN8js2y0RslgZF+SIieKxZs6Zs27ZtGzdu3LhZo0aNms2bN68iwA8//BDZpk2bJo0aNWrWsmXLpqtXry4LcPfdd9cbP3589azjd+/eXaZKlSqtMzIy1FdffVX+6quvbtK0adNmDRo0aP72229XydqvX79+1gEDBljbtWvXuFGjRs0BlFJtT506FQL5f75k7RcTE1OjZcuWTWvXrt3ynXfeqZz13M8//xzeqVOnho0aN27eqEnTVuPfeKvVvhPJzXfFHao96sFhZQff3p1+N9/A+5NeLfTv5mzCGRLOnOK6zl0BsF7VgPIVLGxctwaAPbv+pFO3WwCoVLkKjZq2YPlXS0N9QWsKTXl8LQBZyR0gOSkRlaNtXilFktMJQEpyIpaKlShTJvvtZwsNDSU9LY3MjAxCTHq/3qlv27l3xCOosHJRh86kNvjrWGLrQ6dT6jnTXOULOmRbFFzA3sEfPXo0dNSoUdbvv/9+d5s2bdLfeeedymfPns1+Pzab7XitWrWOAEyfPj1q1KhRdTds2LB3yZIlFqfTGRIXF/cnQHx8fAjAggULLMuWLYvauXPnrooVK3r79u17Zda5du3aVeaVV16ptXbt2r8rVark/eOPP8K6devW+NChQ78PGzbs9Jw5cyoPHz48AWDGjBmVhwwZcqog78Hj1UwJqZlRCSmZVdJcnuzq+S8Xzmf0ixOz90t0Onn79Ql8OPdz9u/dU+Df0ZeL5nNF3XrUuiK7EoDVX3/F9k0bsERVYuSTz9H+hs7nHTekXzT3PTmeNj3uoc+tXaldsxojnn2ZFXPfK/BrX6IWvseLvmr8aejV+CXSS1f4t/j4+JBBgwY1mD9/ftytt96a7PF4OHXqVEh6eroaNGhQ/ffff/9gv379EletWlVu8ODBDeLi4n4fMWLEqccee8w6ceLEeICPPvqoSt++fU+HhYVpN9xwQ+pPP/20OzQ0lPj4+JA2bdo06927t7N+/fougN9++y1yy5YteVbJ5/f5kvV8WFiY9vvvv/+1c+fO8E6dOjV97LHHTmuaxl139Wv0xPPjMm/pPTBMQ1MJZ/SL7xeffowHR42m3fUdcbvd/Of+u1n99Zf0uL1PgX8/UZUqU7VadVYtX0rPO/ryxy8/49i/j38OHwKgWcvWxC5dxPBHn+TIQQe/7thG3dq1sjK3pgBvjrGwLzz1CNs36U2BH8xeBOjJfdKHMxg9chgRkZEkOp28NX0O5jJlyO3hp57nlZinSUtL5ekXJrL7z985euggT497OXsfj1cLOZvmqnI2zVUl1KRcFSLMZ6qUCzsRbg6RIXBFIGAT/Lp168o2btw4tU2bNukAo0aNOv3cc8/Vy3p+2bJlFaZNm1YtJSUlxOv14nQ6QwHatWuXOmbMmPAhQ4bU7dKlS1L//v2dAGvWrCl/5513nqlUqZIX4NFHHz05YsSIcr5zWQ4ePBh2ww03NMk6v1KKffv2lRkyZEjC2LFj6xw8eNBcsWJFz9q1ayt++OGHhy8Ue7rLU+ZkUkYNZ5qrcu42tp+3biI1OZnON/XI3vbGS8/x4KjRVK5StcAJfuvG9Xz09n/56LOl2VffA4YM58H/PIPZbGbn9i08/dBQPvv6O2pdUfecY8tGRvD5x5Ozf356wpuMeex+9jkO8/q7MwB48ckHad28UYFiuQQKuMX3+Aeb5SNgKjbnyeJ6QeH/vv/++3JXXnll+q233poMEBISQvXq1T3btm2LMJlM9OvXLxGgZ8+eyZUrV3Zt2bIlsmfPnslut5v169dHdu7cOXXRokWVv/zyy70A8fHxoffee6/1wIED4SEhIdrZs2dDd+7cGZGV4O+8886E/Nrb8/t8yTJixIjTAG3atEkPCQnRft2zv+Y/JxOqZLhc5pt7DzBrvmFoUZUqk5qawrYf13Pm1L/dUVJTUnDEFX4U2JRP5zPl9Zf59IO3qd+oCW2uvY6QUD20V96eyv9eeZGBPTtTs3Yd2nfsQmhoqB6Ir5rck6Mb/WtTpunvdfH/MeUNGx/MWYzb7ebjd9/krelzaHtdR/745WeeHDGYz7/9kahKlc+J5aqGjZn5xQoAPB4Pj9x7F69NmcY3X37OtyuWUbZceZ4b/xoVKlYEwO3VzGdSMqufScmsXi4s9GyVcmHxFSLM0iH3MgRsgr+QvXv3lhkzZkzdTZs2/dW8efOMrVu3Rtx8882NAZo1a5a5e/fuP7/++uvy3377bYUJEyZc8euvv57XtpazSkrTNDp16pS4fPnyA3m9Xq9evRI+/vjjSlWrVnVff/31iTVq1PDk3mfcuHE1lixZWhmTyfzUuIkhN/g6vuW2dME87hhwNyEh/w5V/2X7Fn7ZvoW3Xn2JjIwMnGcT6N3lWpat357nOX7a/CPjn3mcd2f+H9b62S0QVKmWXVNJm2uvo0nzVuz67ZfzEnxO23b+wYnTCdx+y4107vsAc999FU3TuP/pCaz/4pN8jytCtYCXgbHYLHOAt7A5C16NIUqlnOV38ODBpz/++OMqiYmJCVFRUe5rr702HWDkyJH1evTo4Vy5cmWcyWSiWbNmTdPS0rIvuMuVK3deOYYLf75kiYyM1DLcHvOJxIwaIaHmkJNJGbXc3nyqoH1V03O/+paw8PALvq9nHr6Pww595On0BV9RMeqclkQaN2vJ1HmfZ//cp1sHGjTS70tq16nLW9PnZD/36JD+NOzcWdN/X/oVhwfTec22vQfcw6tjR3M24QxHDx3kRPxx2l7XEYAWV19D9Rq12P3Hb1x/Y7d84573yVRuib6T8hYL0999k8WrN/L1FwuZ9+lUHntm7Hn7J2e4KyZnuCuGh4akVikfdjwq0pyg8hnCJ/IXsG3wXbt2TdmzZ09kVtvX1KlTK7tcLgWQkJAQEhoaqtWtW9fl9XqZMmVKtazj4uLizEop7r33Xue0adOOaJrG/v37y9xyyy1Jy5Ytq5SQkGDyer1MmzYtuz3ujjvuSPzxxx8rbN26NSJr2/fff589FvzBBx889dlnn1WZN29eleHDh59XPZ+Y5io/4ulx5Ret2Ry+aPWP+Sb35KREvl2xjD6Dhpyz/ZvNv2U//vvBp9Rv2Djf5L5jy4+88NTDTPn0Mxo3a3nOc/HH/p3d8eCBOPbs+p0GTfLvLuByuRjz2ru8NWE0ACmp6SgFJpMiOSU13+OKSTgwEvgLm+UrbJYWJR2AMFb37t2TDx48GLZy5cpyoN8VxsfHh7Rq1Srd6/WydOnSCgDffvtt2VOnTpmvu+66VICHHnrodGxsbNS0adOqDh06NLt8Op3OEKvVmmEymfjmm2/K7dmzJ8/5HXK70OdLluOJGbX+jk9umTVsDMBavyHhEZF88+W/CTjhzGkiy5bj2hs6M+PDKdnbTxw/dk55zfK/j2azaNUGFq3acF5yBzgZfzz7+y8+m01ERCTtfb3oT588gderV0j8uO479u/dTZ++/T1A9vh3r6ZUotPJiePHss+zdmUslqhKWCpGUaNWbU6diM+uSTx0YD+HDx7AWj//bjNHDh1ky4Z1DBgyHLfLhdvtRimFyWQiNSUl3+MA0t2eyCMJqVftOZ7U4lRSRmWvtNMXSsDewdeuXdv97rvvOvr27dugTJkyWpcuXRIjIyO9lStX9jRu3Dizd+/eZ5o0adI8KirK3atXr7NZx+3YsSNi/PjxV2iahsfjUf379z/ToUOHtA4dOqRt3bq17NVXX92sXLlynu7duzu3bdsGQIsWLTJmzJix/+GHH66XlpZmcrlcqnnz5qndunU7ANCtW7fUkJAQDh48GHbXXXclZr1Wcrq77DFn2hU529cvZOWyJTRr2Zp6V9Yv8O/hxPFjjLpvYPawOdtzT5CZmcmEZx7P3ue1KdNo2LQ57016lV2//UJoaCimkBDGvToZ61X5F8zJU+cwbEA01avqVW8Tn32EXkOf0J978akCx1jEFNAbiMZmmQW8hM157MKHiGBQtWpVz4IFC+Kee+65Ok888YTJZDIxfvz4o4MHD3YuXLgw7sknn6w7ZsyYK8LCwrT58+fHWSwWL4DVanW1bt065bvvvqs4e/bs7KFZr7766tGnnnqqrt1ur9W8efPUVq1aXTjb+LRv3z4tr88Xj1cznUhMrw5wNs1drUKZc5NRaGgo73w6nzdeGsMn77+FyWRi4LARDBgynNffnc6bE1/gru7Xo5QiIrIsL9nfonrN2oX6HX3x2Wxily4GTePKBo14+5O52bUZ69esZMYHUzCFhFC1eg3en72IiIgIyHCy/Ns1ptUbv2XMm5+q5CQnzz4ynIz0NEwmE1GVq/DerAUopahctRrj7W/z3KPDMZlMeL1exr4yiZq16+Qb06QJMTxvex2lFOUrWOjVpz/9b+lIRGRZJn04o0DvK9PjDfvHmWYN8bpd6W4tkfxqQ8Q5CjoXfZPQ0NCVDRs2TI6MjEwvgbgKJCEhwZTVRjZ37tyKEyZMqL1///4/jY4rw+Upc8yZXjsx3XX+JbYfCzN53Y05eMkXfelujQNHT3Llj88QnnzBbghFKQX4HzAJm7NAH9CiYPy13Psbr6apk0kZVU8lZ9T0eLWAummqgDu9+tnj4So8LDU8Mjlyt2b1ZGoqz6ms/YHmzuTEP0d4/YeTvxw46x7psEfnXZUpgAC+gwf473//W23p0qWVvF6vKleunGfOnDl5tpGXFLfXa4p3ZtQ8k5pZ3Z9mmAtyZYHxwEhslvHADGzOPNtOhShKmqZxOiWz8smkjFouj/f8buSBxPdp5QmQZttMj3Y1sNUaEzsLGOuwR8cbHJJfCugEb7fbj9vt9uMX37N4aZrGqeTMKieS0msH2hV8EKkBTAeexGZ5HptzhdEBieCVlukOP5yQZk2/jIlp/IpSmsa5vegDgAKGA/2sMbGvAO847NEug2PyKwFxtebP0jI9YftOJDc+5kyrJ8ndLzQHYrFZFmOzVL7o3kIUgqZpHHOm1dh3MqVZ0CT3bKrYpuAtZhXQJ8v6wxoT28voYPyJJPhL9G9BT25e0E50okT1B37HZrnV6EBEcEjNdEfsPZHc9GRSRu2ga4JTaChToCb4LI2AWGtM7DxrTGz5i+5dCkiCvwRpmZ7wvSeSmwRlQQ8uNYFvsFmmYrMUaAiUELlpmsaxs2k1406kNE13eYL3/yh45oS/F/jFGhPbwehAjCYJvpBOJKZX3XcyOQir54LaI8Av2CylvsCLwknJcEf8HZ/c9GRyRi2NIL6YV0rTCPg7+JyuAjZaY2JfsMbElto8d+ltxjZLsS0Xi83pd0tHerya6fCZ1HqBNvRNZGsI/IjN8jowUea3vzR/NWlaLOW+6e6//K7Mn0hMrxqfmFEnqBN7FgWaMgXLHXyWUOBV4BZrTOwQhz36iNEBlbSgvLLZs2dPmUmTJlXNua127dotN23aFJHfMReiV8knNS1sct/7158M79eLO7u2567u1zP+mVGkp6VlP9+6ThT9br6BgT07M7BnZ37euinP83z87pvZ+wzs2ZkbmtZl8ssvALB980baN6h5zvM5XyOniTFP0e/mG3hwUG+SEvXVoDRN47Gh/TnsMHSEYUkJAV4CNmOz1LvYziJwFGWZ92qaOng6pd7xxPS6l5Lc169ZyZ1d23NH57Y8/dBQkpMS89xvwayPs8v/Xd2vZ/6Mj7Kfe/2FZ88p09c2qHHO81lcLhdPjbiXAT068fRDQ3G79evWjPR0hvfrReLZs+cdk7+gqaLPrQvwqzUmtq/RgZS0oEzwe/fuDZsxY0bVi+95cadTMqLiTiY3zXR7w7MKT0GVCQ9n7KuT+GrdNhav3khaaiozp75zzj4zv/gme+rJazrckOd5Hnri2ex95i1bQ2hoKNE5lo211m+Q/fyiVRuyl4vNae/uXRw6sJ8v1myi3fWd+HrJQgCW/N8crr2hM3WsV553TBBrB2zFZrnW6EBE0SiqMp/p9obGnUhu7ExzVQEobJlPTUnG9twTTPlkHss37KBq9RpMf2dynvtG3zWQL9ZsYtGqDcz5chVzPnqPv/74DYBxr72ZXZ4/nPs5CkXPPFaW27T+OypUjGLx6o2Ur2DhR9/SsNPfmczd9z+UvZDLRSm0ILyDz6kSsMQaE/uBNSa21Ix2CugE/8UXX1Ro1qxZ00aNGjW79tprG+/YsSMc4D//+U9dh8MR3qRJk2Y33XRT9lysixYtirr66qub1K5du+Xzzz9fM2v7oUOHQnv16nVVy5YtmzZq1KjZE088UUvTNA6fSa3TqknDq/732njT4Nu789LTjxYqvnpX1qdRU33K9JCQEFq0bpO9dOOlWrsqlhq1atOs1dWFOs5sNuPKzMDr9ZKWmoLZXIaT8cf55qsvGPrQ4xc/QfCpDqzHZrnL6EBEwRVnmU/OcEfuO5HcrGu75mXffn0Cl1LmN36/hibNW3FlA32lxUHDRvDNV0vy3Ld8hX/XXE9LTc33YmLZ5//HDV1uOmexqCyhoWbS0/R1IdLTUjGby/D3X39wIG4vPe8o+A2rArTgvYPP6TFgmTUmtlSMfArYBH/06NHQESNGXDVr1izH33//veuBBx44OXDgwPper5f33nvvkNVqTd+9e/eutWvXZq+5ePbs2ZBffvll908//fTX1KlTqx84cMAMMHjw4Csff/zxE7///vtff/75566dO3eWfXf6rKZZC0U4ExKYv3wNb7z38SXHm5qawpIFc+na49xhmiPvuZMBPTox+eUXSE29+EyrSxfMo8/dQ8/Zdvigg0G3dWFw9E0snJ33Cm/W+g259vrO3H1bF44eOkj0XQOZ/PI4Rr8wkdDQUnNBm1sE8Dk2y3NGByIurjjL/M+//Fpx2sx5TdxerxkuvcwfO3qEmldckf1zrTp1OXXieL7J+9vYr+jb/Xpuu6E1w0aOommLVuft8+XC+fS5e0geR8P1N3ajbLnyDOjRiXIVKtC+4428OfFFxrz8RqHiRoGX4O9q4HMbsN4aE1vD6ECKW8Am+PXr15dt1KhRWvv27dMAHn300TMnTpwwZxXgvAwdOvQMQM2aNd1XXHFF5t9//x2WmJho2rJlS4VnnnmmbpMmTZq1bNmy2cHDR8rv3ReXPRym94B7uJylCl2ZmTz/2ANcf2M3ut92e/b2lVt+Y8GKdcz+chUJZ07x9qvjL3ief44c4pftW4ju82/1fNMWrVi97Q8WfrOetz+Zy+J5M1m1fGmex496/kUWrdrAm9NmseWHddSoVZtadery0ujHGT1yGLFfLSk1JTwHBUzCZvkIm6XUXukEgmIr862vbn3o0OEIR9y+7P//yy3zBXVL9J0s/W4zX63bTuzSRTji9p7z/M9bN5GanEznm3rkebzJZGLCpHdYvHoj4+1TWDDrY7r17IXb7SFm1IOMHjmMrT/+UKBYNIK6ij63a4DN1pjYJkYHUpxK1QdaRERE9jCQkJAQzeVyZS+28/PPP/8VYg4zHziV0jDT4z2nZEeWzbs2J+7v3Yz9z0MAXN2uA+Nee/O8fVwuF8899gBVq9VgzMv2c57LWoEpMrIsg4aNYOKYC6/Q9tWiz+ja4zYsUVHZ28qVr5D9ffWatbntzn78vG3zBavnkpMSmf3Re0yd/wWfvv827a7rSPRdAxnYo1PIoz1mEhFx4TWpg9RIwIrNMgCbM+9eUSLgXKjM/7Rjx+6TadqVSenu8zqtXGqZr1n7CrZsWJf98z+HD1GlWo2L1pLVrlOXlm3asn7NKqz1G2ZvX7pgHncMuJuQkIuv//LPkUNsWPstU+d9zotPP0q/e++nWcvWDLmzB0u/23yRozW8gXu/d6mswI/WmNg7HfbojUYHUxwC9i/atWvXlL///jti+/bt4QDTp0+Pql69uuvKK690VaxY0ZOUlFSgFZEsFou3ffv2iWNfeLFO3MmUJpkeb3h+azHnVr9Rk+yOMHkld7fbzZjHR2CpGMX4/045544g8exZ0nxtZ16vl1XLl9Ikj+q5LF6vl68Wzadvrur5k/HHs9d4TklO4ofvVtGkef7nAXjnjZd5+KnniYiIJC01FaUUSincbheZrlI9lXMPYBM2S/5rXwrDFHGZTxrz0svNktLdFSH/9ddzu1iZ79i1O3/98SsH9v0NwMI5n3Jr77y7ecT9vTv7+zOnT7Htxw00ato8e1tyUiLfrlhGn0F5V8/nNmnCWJ6b8Bomk0kv1yiUyUR6AZr+UKAFbjq4HJWANdaY2P5GB1IcLmMcvLFj1WvVquX+5JNP9t93331Xut1uZbFYPAsXLowzmUx06NAhtVGjRmkNGzZsXqdOnYycbXJ5mT1/QfzTzzzboHe3Dupy1mLObdXyJXz3zXIaNW3OoFtvBP696j8Q9zevxDytJ1aPh6YtWjHG9u8d/uPDBvDYM+No3roNAFs2rEOZTHTo1OWc11jzzTIWzZ1JaEgIbo+HHtF30mfQvfnGtHP7FtLT07n+xm4A3H3fg4wZ9SAzp75D734DvZYK5UtlKc+hObAOm6UrNmeJrXkbKIwcr15UZd7j1UxvTZ+nXhkfE3a566/nVrZceWyT3uGpB4fgcbtp0Lgpr7z9YfbzA3t25v3Zi6hWoybzZ0xj57YtmM1mNE1jyIhHssslwMplS2jWsjX1rqx/0dddsXQxjZq1oEHjpgA88NhTTBzzJC6Xi4eeLFgXk1LUBp9bGLDIGhP7tMMe/c5F9w4gAb0efFFIyXBHHDiV0tiraX67BnJJCdD14ItLHNAFm/Pit3VBKhjLvcermfafTG6UJjNRAv+uB2+KCk9KN4erg5nl/Lp3edZ68LbvT3A0qVhWhX7CYY9+rzhObIRSfbeWmukOd5xOaSTJXeShPvA9NkstowMRRcOX3BtKcj+folTfwef0jjUm9iGjgygqpTbBp2V6wg+cSmksS7yKC2gIfIfNUsXoQMTl8Xo1deBUSgNZ+TE/Gh5J8KBf60yzxsQOveieAaCgCd4L+rSmwSDd5Qk7cCqlkST3opX97xEk/yc+TdBXpJPEEKC8mp7cUzPdsoRofhR4MUmG15mAmdaY2N5GB3K5Cprgz2qa5s7MzCxTrNGUAJfHG3rgVEqjrAktRNFJdQGeTMzpp40Opai1A77EZgkzOhBReIfPpNZNyXRXuPiepZryaCUw8D9whAALrDGxHY0O5HIU9A72lNfrXR8fHx9tNptdJlNgTojg1TSOJKRdmen2BvyFSnHwmrykU/g/rabpyf3EmbNUPPgNIZ68F7sJcN2B+b5x8gH5/18axSemV8+aV15ciIYXSfC5RADLrTGxnR326D+NDuZSFCjBt23b1rtjx47xaWlpLePi4qpCYDbWJGZ4q6S7tciL71k6hSqvCS7x7tuTScWD31Bj72dFG5R/6Ye+Gt1EowMRF3c2NbPCicT0Ky6+pwBN7uDzFgWstMbEtnfYo48ZHUxhFbgNum3btkd37NjRyev11i3Mcf7i1Q1nHjyR4nnG6Dj8WRWVeHZhmYmFX+9e0zCnnw7WO/fcJmCzbMXmXGV0IIawWYplPfiCzqsxb968iuPHj69dpkwZbc6cOQeypq3NLS3TE34kIe2qgla1bN+8kcz0dDp2u7nAIef0286feGXMU6Snp1O9Zi1emzKN6jXPH4DxzVdfMPPDKdlz09858F7ue3gUAL/u2MZr4/SPKJfbTZtrOxDz8n8pE3Z+y9DEmKf49adtRFWuwtsfz6V8BQuapvH4sAGMfWVy4VeHVCAJPl9XoFfX3+SwRxfL2LziUqhE3bZt20zggpPG+CNrTOydwNNGx+HvXGR4wsMDfvx6cTOhV9W3xeY8aHQwpc306dOrjhkz5tjDDz98Jr993B5viON0SoOCDn91u938tHkjSYnOS0rwXq+Xcf8ZyfhJ79D+hs7MnvYek18ex5vTZp23b41atflw7udUqVadpEQn9/TqRrNWV3Pt9Z1o1KwF879ei9lsxuv1MnrkMBbO+ZShDz12zjlyLv08bcokvl6ykHvuH3lZSz8rNOWRKvoLuRF4HRhjdCCFEfTD5Kwxsc2BeZSC9ypKTGX0Veik010Juv/+++v89NNP5SZOnFi7TZs2TeD85WN/2rEjwnE6tf6mjT+EDezZOfsf+SmQAAAgAElEQVTYvbt3cdv1+hTORw8folPzerz9+gQG3daFBbM+ZvG8maxYupiBPTszbcqkQsW167dfCAkNpf0N+uv1H3I/69esJCP9/LmB2lx7Xfayr+UrWLA2aJi9hHRERCRms97315WZSUZ6ep4L3hTT0s/Koyn5jLyw5wKtZ31Q/0GtMbHhwP8BMsRJFLV2wLtGB1GazJo163CLFi1S7Xb74Z07d+7Oa/nYQXff0zglw3XR4XBJiYk0aNSUhd+sZ8iDjzJgyHB69R3AolUbeOSp5wsV1/F/jmQvHAX6dLVly5XnZPzxCx4X9/duftuxnes6/zv99NHDhxjQoxNdWjegXPkKDBo24rzjimfpZw1J8BelgNnWmNjCV5EYJNj/oJOBlkYHIYLWSGyW+40OorTKvXzsoGEjvCdPxIecOP7PRY8NNZuJvmtgsceYn/hjR3lqxL28+Ma589/XrlOXxas3svbn3bgyM1jzzfI8j7/Y0s8rly0pZETSya6AKgKfW2NiA6L2LmgTvDUmNhoYZXQcIuh9iM1ytdFBlHYujzf0mDOtXtbPISEheDz/9ofKzMg4Z/+IiAhMpoJ9/CU6nQzs2ZmBPTvz1IPnr+xWo9YVHDv6b9+VlOQkkpMSqVq9Rp7nO3H8GCPv6ctDTzxLj9v75LlPZNly9Ox9Fyu+XHzB2LKWfn70mbHM+2Qq7a7ryKQPZ/DRO5NJTytcp1ctQEdHGeAaAqT2LigTvDUmtgYw0+g4RKkQASzGZgk3OpDSJufysYfPpNb7eunnoVVr1KJajVpcUdfKsaNHOHP6FABfL1l4wXOVLVeepMTEPJ+rYLFkLxE75ZN55z3frNXVuF0utm3aAMDn82bR5eZbCQs//1/iZPxxRt7Th+GPPknvAfec89yhA/tx+ZZrdmVmsnZlLI2aND/vHDnlu/Szy4XLlXnBY88hqb2wRgbCdLZBl+CtMbEKmANUNToWUWo0QB8fL0pQ9vKx9w9veOuNHSounjuDN6fORClFtRo1uf+RJ7j3ju4M6X0LlopRFzzXTbfezp5dv19SJzuTycTr737EpAkx3HFjO374bhXPTXgt+/nHhw3gz193AvDh/97g2NEjfDZjWnatwJcL5wOwbdMPDLr1Rgb06MTA27pQuWpVRl5gqde8ln5eMPsT+t/SkdvvGkT5CpaCvwmlZPKmwnvfGhNb0+ggLqRAy8UGEmtM7CPAVKPjCETVOHNyW/gouTC6NC6gDTZnQM54lZdAWC420+01741Pau6RFSEvSdZysaFVQ9P+ctWIMDqeiymB5WILa7HDHm1cZ46LCKo7eGtMbDXgDaPjEKWSGfgIm0UqO0vQ4YTUepLcL5+mLmGOagEwwBoTe5vRQeQnqBI88CZ6L0chjNARCJq1pP3dyaSMKikZ7kLUQ4u8KU1JI/zl+MAaE+uXtR9Bk+CtMbFdAb/v9CCCnh2bpbrRQQS7DLfHHC/zzBcNuXu/XFcC440OIi9BkeCtMbFlkHZ34R+igLeNDiLYHXem1y7oVLTiIpTSQDrZXaZnfLOm+pWgSPDAs0ATo4MQwucebJaeRgcRrFIz3RHONFdlo+MIGkppWtCkAsOYgY98o7j8RsD/VX0d68YZHYcQuXyAzRJwqy4GgmPO9NoX30sUlFJomtzBF4WOwPlzCxsoGD6AxgJljQ5CiFzqA8OAGUYHUpRazm5ZLMvF/n7f7wVaLjYxzVVeOtYVNaV5ZRr6ojLRGhM7z2GP9othpQH9V7XGxNYGHjE6DiHyMQ6bRdqJi4imaRyXjnVFTylN0/yqZjmQ1cSPRtIEdIJHnz1MpggV/qo+cK/RQQSLhFRXVLrLE1kU55r6lp1JtrGFPm7d6hVMtuktgts3byTnkrQ5paYk07rOhWfP8xsKbc++A2pYnx7ccWM7BkffxL49f+W7+5IFc7mjc1uiO7bh5eefzJ5ed+uPPzD49u70vek6+na/nrdfG4/X683zHB9NmUzf7tczpPct/HPkUPb2l55+jJ3btxTt+yt5Y/xlMZqATfC+JfseMDoOIS7iBbmLv3xeTVPxiQVve3e73cUSR9cevXjO9nqxnNswSvGfZ8eF9xt8P8t/+Inhjz3J+NF5ryt/5NBBPpz8OjO/WMHXG3/m9MkTfDF/FgAVLBWZ9MGnLF27hQWx3/PLjm0s/3zBeedITkokdukiPl+9kUHDRvB/Mz8GYPMP3xMeEUGba68rrndaUmrjJ7kpYBM8MAG956IQ/qwRcLfRQQS6U0kZVVweb1jrOlG8P+lVBt56I3fc2I7YpYuy92ldJ4oP//cGg6Nv4l37ywDMnvYeg2/vzqDbuvDokP7n3C0e/+coDw7qzZ1d2/Of4XdzNuEMcP7d/f/Nms5LTz8GwFeLPuOpEXlXyiyeN5M7Ordl4K03Mvfji4/adblcvDbuGe64sR1Det/CmxNfZMSA2wGIGfUgK5bqK8ktnP0Jba+qRmpqCgAPDurNji0/cvTwITo1r8eH/3uDu3t15fZO17Bh7eoC/06zxJ86pf36++8hWcvn3tyrN8ePHeXQgf3n7btmxVd06XErVapVRynFgKHD+WbZFwA0bdGKK+pZAQgLD6dxs5bn/L6zmEJC8Ho8uF0u0lJTMJvNpKWlMv2dyTw5dkKh4/dTY33Dtw0VkAned/d+/rqNQvinF7FZArKs+QNN0zidkvnv2qtKsWjlD0yd+zn2l8Zw9PC/ScQUEsJnsWsZ/eIrrFi6GMf+fcz9ajULv1lPr779ef2FZ7P3/XnbZuzvfcxX67ZRo2Zt3rVPvOQY9+7exdS37Mz4PJZFK38gI/3iS7V+MX8Whxz7WfLdZmZ+sYK9u/9dxqBDp65s2bgegM0b1tG81dXs2PIjaWmp/L3rD1q1bQ9AUmIijZo2Z8GKdYx9ZRKTX36h0LEfOXZcVataTQsN1ftcK6X0JXD/OXLevseOHqFW7TrZP9e6oi7Hj56/36kT8axZsYwbu58/WjQysixDH3qMoXfewverv+HeEY/w4ZtvMGzkKMqVr1Do+P1UHeB+o4MI1A+dJwCp9hSBogngtwtS+LuEVFeUy+PNvhu66x59wsor6llp2+EGft66KXvfvoP+vbv+fvUKtmxcxz29ujKwZ2dmTX2XYzmSUeebelClmj7pYL9772fLxnWXHOO2TRvo2PXm7DXgBw67eA3t1h9/ILrvQMxmM2azmTv6/1vRc13nLmz7cT0ej4f9e/cw9KHH2bJhPT9v3UyLq6/BbNYrL8PCwul+2x0AtGp7LUcOHih88EXcvy45KZEnht/D/Y88QfPWbfLcZ9B9D7Jo1Qamzvuc+GP/EH/sKB27duf1F57l2UfuZ/6Mj4o2KGOMtcbEGlrLHHDD5KwxsRXws7GGQhTAi9gsC7E5ZbxxIZ1Kzrjw1L85ElREZLns7zVNY8TjT9P/3vsL9DpZ87GHhITi8fy7UllmekbBg806lyp81sx5TM3adTCXCWPF0sU0a9maDh278PF7/yMkxESHjl2y9ysTVib7uJCQkHPizmlYnx6kp6VhLhPG/OVrznmuTq2a3hMnTyq3201oaKg+WuGfI9T8//buPEqOsl7j+Ld7ZpJJJpNJCAmEzQbFgCxyDLIJEoSwFTsxeEXxgoKCyCqXFsEb4OIpRcQFEBXh3iDIJotYyCKbrCJBlF22EgghG0nITPdM90z3/aMqELJOMtP1q+X5nDMn5wToeoDMPPW+9b5vbbD8hoXxG27Em0vdRLz91husv+EHf19X52JO+PIUJu29P0cdt+Ln+Evr7e3lov85hx9ccgV/vOUGRo9Zl7Mu+BFfnXogu++5z/tT/glVINgq+xurAIkreILFC+3WIUTW0FbA3sBd1kEGor/71QfL4u5qW3e170PnXNx2w7Ucf1qRmW++wVNPPMYZ01b8Ask99tmf6b+6lMn7H0zH6NFUq1VeeekFttx6WwAevv8e5s+dw5ix47j5d9PZcbegODcubMpD991NX18flUoPf/7T7RQ2+9gqc+6wy25ceenFzJszm3XHrceNV1+12n+3HT6zG3fcehP7HTIFgNtvuv5Df32nXXfnsou+z3En/xcjR42iubmFe7zbuPiKa1b72cuafuvKn82vN3Zsfautt655N9+QP3jqF/nzHX9gvfU3YJNNN1vu791rv4P4z8P24/hTi4wZO44br76KfQ86DAh2Dpzw5SnsMmkvjjv528v9syvM9atL2P+QKaw7bj3KpdL7Nyu5XI5yuOYg4c5ABd8/4TGAx1vnEFlLx5Lwgo/a/M7KuGV/r6+vj6n7fpZyqcSZ57lsuPEmK/xnnUOnsnDBAr52RDCF3dvXxyFTj3y/4D+1w84Uv3Usc96ZxSabbsb5P74MgL32O5B7vNs4ZI8dWW/8Bmyx1TZ0l1f9TH3zLT7BN049k6MP359hbW3sue+Bq/13m3Lk0bz84vMc9rmdaO8YxVbbbsfc2e+8/9d33G0SN1x9JTuFNx477bo7N/9uOhM+sfVqP3sN1d0f/qhy8imntl5xyY8ZMaKd8y665P2/OO2Mk5g0eV8m7b0/G32kwPGnF/nKofsCsP3OuzLlyKMBuOY3l/Ps009RLpW470+3AzDZOZhjT1px2b/pv86Tjz3MpdODxYQHHDqVU4/9Enf/8Va2+/SObL5l7I52XxsTCkVvd991HrS4eK5eT86MYaHoTQbWfJmo9Ms43p37ROuJY61zpFgV2Ihpi+ZYB+mPGTNmbNHc3Hzn5ptv3jl8+PDIT+aq9tWaX5y1eNs6H5zC8smNR/PQsz4jO9JxmF1X52LaRrRTrVY566Tj2HKbT3LMCadEdv2R9HaPry7sfWdYR/Oi3pbYnylS760w5+23mHb/HGYuXvHjiBi6xncdk0XhSVtk93XrACID0AJ8xTpEUszvrIxZutzT6Lj/OJSp++zGlMmfoW1EO1882uBHXA766muxaED66/BC0VvH4sKJmaIPF9cdYJ1DZIC+ClxoHSLu6vU6C0qV5WaT/vHmAos4a23+vLkcf+Rhy/3+TrtN4rSzz19uwZuReg0dRt9ArQTbun8W9YUTU/DAoUAsjv8TGYAJTOvYnmmLnrQO0g81CMo2aou7e9urfbXEf7+PWXcsN9z1kHWMVcrloDcpI/h6HahTS86T5SWOwqDgk3TXptPAJC2Scj79wnq93lupVCI/kWtRuToq6mtmWa2ejBF8vbdCta/Ogu4Vn3EfYxMLRW+LqC+aiBF8oeiNAfayziEySI5gWsfpTFsU959S82q12oOzZ892Wlpaqvl8PrJx06LO0uj6Sl5UIoOnl75cd60vX61X413w9Tr13goL3p3Hva910t2bvCE8wTT92VFeMBEFD0whOVlFVmc88DkgFg9gV2bixIm1GTNmfK9cLm/z6quvjmXQzzxbsWqtPmRBuab3TESglb58qVZqmpOP+57zOtW+Ove+1snNL8Q960odWSh65/iuE9ndSVJKU9PzkjYHE/OCB5g4ceLMGTNm7Fqr1TYhop8X5z747knvlvt03kUEtnhv5hunzb1h1rSPnrqrdZZVqdVhQXctqSP3JQrAJ4Gno7pg7Au+UPRGA5+1ziEyyPa0DtBfEydOrACvRHW9Z270Yl02aTJ6fqlSn+V3zhyXmD3lSTeZCAs+3s9dAnuQjJwia2JLpnVsYB0ibgpFbzNgG+scWdLb1KTFDtGZHOXFklCcWlwnafU56wAxdIh1gKzpzTer4KOzW6HoRXZiYBIKPjFTmSJrSH+2l6eCj1g135zoB9sJ0wpE9ggq1gVfKHobAx+3ziHSICr4pRSKXgewi3WOrKk0xX4pVtpENk0f64JHPwAl3TZmWsfm1iFiZHugyTpE1lTy2pEYMRV8SAUvaac/4x/4tHWALOrJR35QYdZtVyh6kby1M+4Fv6N1AJEGU8F/YAfrAFnU09ScjHPo0yNHRN/3sS34QtEbAXzUOodIg2nP9wc0gjfQ3aQRvIGdo7hIbAse2JZ45xMZDOszrWO0dQhrhaK3PrCRdY4sKjcN1Qg+eltFcZE4F+h21gFEIhL5W6ZiSKN3I91NQ7SwMXqfiOIiKngReyp4PX83U24aGuceSKvx4THsDRXn/7EqeMkKFbxG8GZK+dY490CaNXyaPpb/YwtFLwdsbZ1DJCIqePiUdYCsKjcN1RS9jWwWPLAeMMw6hEhEMl3whaI3DIhkX7Asr9Q0VCfd2Gj4c/i4FvzG1gFEIrQZ0zqy/ENWq+cNlfJDdVatjcyO4FXwkiXNwMesQxja0DpAlpVzw1TwNlTwIhkxwTqAIY3gDZWbhg61zpBR6xeKXlsjL6CCF4mHcdYBDKngDZXzQ7L8eMjaOo38cBW8SDy0WwcwpCl6I3WgnG9ttc6RYQ3dCx/Xgh9vHUAkYiOtAxjSCN5ILU+9BxW8oUyO4LM8mpFsynLBawRvJJevUWKotiTbyeQIfrh1AJGIqeAlenkoq+AtZXIEr4KXrMnyrFWWb25M1Zqa8hVa9L5YO5ks+IZuHRCJoSyXnLZpGSnnh+i/vS1N0YtkQCYLPnzvhLZpGdEeeHPZGsEXil4e3dFL9mSy4AFNDxvqzg/VCnpbHY388DgeUai7eSPdDBnydn3M31qptAyhOqSF3tYmasPy1IbnoC2Xi+Wfl7TI6kInFbyhcn6oZktTLI4/sCvWAbLqPUZ07NLz85W+l3sI1Uob5c6RuVK5nVK5I1fqGUlXZVSus9pBV29Hrquvg65aR66rPpKuXHuunG+ju2lYrqe5lUrL0PCmoZm+1vCmYUQupxu6UI91AMmean6IRvC2+hr54bEreN916oWi14Om6WOnQsuQCi3rLKiHs8n1gX9mC73VNspd7blyqZ1SeWSuq6eDUqUj11kZRVdvR66zbxSdtY5ciXZKtOdK+Ta688PpaW7NVVqGUhkyhN6hzfQNz1MflqPelssl8s9OVgu+Zh1AxFBvIz88dgUf6kYFnwlVmlsW0j5qYb19FDAoNw1N9PW2US61Uy6158rlkXR1d+S6esKZhuqoXGdfB121kbkuRlKiPVfOtVFuGk5P07BcT0sr1aEtwU1DaxO1JTcNjZ5C727w58eVCl6yLFsj+FA3DV58IOnVR1Pze4wY+R4jRr5/wzDAG4cctVob3V3BTUOp1EFXTzDb0FUZlQtmGj54PFGiPVdiBOXmNrqbWnOVllaqQ1qovn/TkKc+HBiey5ELL5HVgh+EWzqRxGroI+m4FnzZOoDI0urk850Mb+9kePus+pglvznQT6230d05gnJpRK789r0D/bhkqhCMYpqsg4gY6Grkh8dum1woq6MZyZRcrothI2azzrhX6xvmVv/3p4/vOjVgvnUOESOdjfzwuBb8IusAIhFbaB3A0GzrACJGMjmCf9s6gEjEVPAi2ZPJEfxM6wAiEXvLOoChOdYBRIy808gPV8GLxMO/rQMY0ghesspv5Ier4EXiIcsFrxG8ZNXrjfxwFbxIPGS54DWClyxa6LtOQ9fexLXgs/w8UrJnge86i61DGNIIXrLIb/QF4lrwb9DgI/xEYiTLo3fQjJ1kU0On5yGmBe+7TjfwmnUOkYg0/Bs95l6kwS/dEImhbBZ86DnrACIRedo6gKXwhv4l6xwiEfMbfQEVvIi9p6wDxECmb3IkkzI9gtc3vGSFCl7f75I9LzT6AnEueP3Qkyx4x3cdHc2sgpdsme27zquNvkhsC953ndfI9vnckg1/tw4QEyp4yZLHorhIbAs+FMl/BBFDmqkCfNeZh7bLSXY8EsVF4l7w91kHEGmwv1oHiBGN4iUrHo3iInEv+PutA4g0UBV4wDpEjGg2Q7KgB5gRxYXiXvB/BxZYhxBpkMczfkTtsv5sHUAkAjN81+mJ4kKxLnjfdWrAg9Y5RBrkbusAMfMoWlgr6RfJ83eIecGH9Bxe0uoe6wBx4rtOL7rpkfSL5Pk7JKPgNW0nabQA+Jt1iBi6wzqASAP1Ag9FdbHYF7zvOi8QvIxCJE3uDR9ByYf9CahbhxBpkPt915kf1cViX/ChG60DiAyyW6wDxJHvOnOAJ61ziDRIpF2WlIK/3jqAyCDqAm6zDhFjnnUAkQboJeIb+0QUvO86zwHPW+cQGSR/8F2nyzpEjOk5vKTR/eGJjZFJRMGHbrAOIDJIrrUOEHNPAu9YhxAZZJE/albBi0RrPnCXdYg4812njm6CJF0in56HBBV8uJpei28k6W70XadqHSIBrrQOIDKIIp+ehwQVfOgy6wAiA3S1dYAkCNfd6JwASQuTnWBJK/jfEUxxiiTRk77rRHaKVQpoFC9pUAJusrhwogred51u9E0vyfVT6wAJcy3QaR1CZICu8V3H5KVpiSr40GWATgCTpJmFFoquEd913gN+a51DZIB+bnXhxBW87zo+2icryfML33Uq1iES6BLrACID8KDvOs9YXTxxBR/6mXUAkTXQDVxuHSKJwsV2emW0JJXpY7lEFrzvOvcAj1vnEOmna33XmWsdIsEutg4gshb+hfGR1Iks+NB/WwcQ6YcqcIF1iCTzXec2dAaGJM+F1m+MTGzB+65zN/CwdQ6R1bjCd53XrEOkwDnWAUTWwNvAdOsQiS34kEbxEmcl4HzrEGngu86d6IZekuPiOCyqTXTB+65zH/CAdQ6RlbjEd51Z1iFS5LvWAUT64Q1isvsj0QUf+p51AJEVWAT8wDpEmviu8xfgbuscIqtxZngom7nEF7zvOg+hA0Qkfi70Xedd6xApdLZ1AJFVeNR3neusQyyR+IIPnYaOtJT4eA34sXWINPJd528Ybz0SWYk6cKp1iKWlouB915kJnGudQyR0gu86ZesQKXY20GcdQmQZ1/iu84R1iKWlouBDPwGesw4hmXed7zp3WYdIM991nkWH30i8lIDvWIdYVmoK3nedXuCb1jkk0xYSsym6FPse8Ip1CJHQhb7rvGUdYlmpKXgA33UeBK62ziGZ9R3fdd6xDpEF4SOQYwmee4pYegv4oXWIFUlVwYdOItiHKBKlx4FfWofIEt91HgB+bZ1DMq0OfM13nZJ1kBVJXcH7rrMQOAq9M16i0wUc5buORpPROwOYaR1CMuvncV5zk7qCh/en6i+0ziGZcYrvOi9bh8gi33XeA75hnUMy6TngTOsQq5LKgg+dAzxlHUJS72bfda6wDpFlvuv8EYjN4SKSCRXgyLicWLcyqS1433WqwJGA9iNLo7wOfNU6hADB2hud+y9R+a7vOv+wDrE6qS14AN91XkRb56QxqsAXwjUfYsx3nbnAFIKRlUgj3QdcZB2iP1Jd8AC+61wF/NQ6h6TOqXE7tSrrfNd5FDjZOoek2gLgK0lZUJv6gg+dDtxjHUJS41LfdS61DiHL813nckBrIqQRlmyJi92BNiuTiYL3XacPOALQSmcZqDvRKDHuTgT+ah1CUucs33Vutg6xJnL1eiJmGgZFoehNIPjG77DOIon0LPCZcGuWxFih6G0AzADWt84iqfBr33WOsw6xpjIxgl/Cd52XgC8AvdZZJHFmAweo3JPBd523gc8TLIYUGYi7gBOsQ6yNTBU8gO86dwLHoDOspf/KwCG+6/zbOoj0n+86DwOnWOeQRHsGmBq+zCxxMlfwAL7rXI2+8aV/ysCBvus8bh1E1pzvOpcB37fOIYk0C3CSPGuXyYIH8F3nZ8DZ1jkk1noIRu73WgeRtee7zneBS6xzSKJ0ETySe9M6yEBktuABfNe5ADjfOofEUgU4zHedu62DyKA4CZhuHUISoQoc4btO4o86z9Qq+pUpFL0LgLOsc0hsVIHDfde53TqIDJ5C0WsCrgWmWmeR2KoAn/dd5w/WQQaDCj5UKHqnE7yBLmedRUxVCI6gvcU6iAy+QtFrBq5BJS/L6yGYtbvDOshgUcEvpVD0vgRcCbRYZxETCwmeuT9oHUQaJxzJX0Nw+JUIQDfB935s3+2+NlTwyygUvX2Bm4A26ywSqTeA/XzXed46iDReWPJXAV+2ziLmFgEH+a7zF+sgg00FvwKForcD4AHrWmeRSPydYDuMXjeaMYWidw5wLno0l1WzgX1913naOkgjqOBXolD0Pg7cBmxhnUUa6i5giu86ndZBxEah6B0B/C/QahxFouUDk33XecU6SKNkepvcqviu8y9gB4LpekmnnxDsdVW5Z5jvOtcDkwhGc5INDwA7prncQSP4fikUvW8DLtBknUUGxSLgmKS9GUoaq1D0PgLcDmxjnUUa6kdAMXzLaKqp4PupUPQmAdcB6xlHkYF5imCf62vWQSR+CkWvneD7fH/rLDLoFgNH+67ze+sgUdEUfT/5rvMA8CkgdSstM+SXwC4qd1kZ33UWAwcBF6EXUqXJC8AOWSp30Ah+jRWKXo7g2MvvA8ON40j/zANODJ+1ivRLoejtSbCVbmPrLDIgNxI8ksvcWhsV/FoqFL2PEXzz72qdRVbpOuAk33XmWgeR5CkUvVEEL6o50jqLrLEq8B3fdS6yDmJFBT8AhaKXB04GLgCGGceRD5sJHK/z5GUwFIre54HLgXWss0i/PAYc67vOc9ZBLKngB0G4Z/4SYLJ1FqEOXAGc4bvOIuswkh6Fojee4Cjrfa2zyEq9R/DisF/4rlOzDmNNBT+ICkXvAIItGBOss2TU48C3fdd5xDqIpFeh6H2D4Ptcx1nHy23AN33XmWkdJC5U8IOsUPRagBOA/wZGG8fJilcJ9rXqUCKJRDiaPx84Gu1GsjYL+FbWVsj3hwq+QQpFbx2CM66/jt5O1yjzgfMIpuOq1mEkewpFbxuC0fze1lkyqI/gcdyZehy3Yir4BisUvY2BM4CvoYV4g2UBcBlwob6xJQ4KRW8fgqLf2jpLBtQIdsec57vOS9Zh4kwFH5FC0RsLnEowfd9hHCep3gAuBq7I4p5WibfwFbRHE8wqjTeOk0Y1gj3t5/qu84J1mCRQwUesUPQ6gLceTA4AAALKSURBVG8SHJajY2/75x/AhcD1vuv0WocRWZVC0Wsj2D6r7/HBUQd+D0zL+ra3NaWCN1Ioes3AgQRT9/ugF9ksq0rw4o9f+q5zt3UYkTVVKHpDgaOA09Brp9dGHbiFYMT+T+swSaSCj4FC0duQYGrvGGBT4zjWngH+D7jad5051mFEBio83toBTiRYjJezTRR7Cwh+BlyuZ+wDo4KPkfAHwR7A4QQvvNjINlFk/g3cAPxWd+qSZuER18cT3NBrG+2HPUbwQqjrfdfptg6TBir4GCsUve2Bg8OvNL2juhd4BPAAz3ed543ziESqUPSGEYzqDwMOANptE5l5A/gtMF2j9cGngk+IQtHblOAd1bsDnyV5i3deBx4iKPW7fddZaJxHJBbCZ/V78cHM3RjbRA33MnAncCtwv+86KqEGUcEnVHj+/c7AjsBOBPtv43KgzkLgCeCvS37V29xEVi9cfLs7wcj+UNKx3a4TuA+4C7jTd53XjPNkhgo+JcIfDJsSrNadsNSvE4CxDbhkleDZ+SsER8Uu+fUl4GXdlYsMTLgmZwuCG/glX1sR/x03NYLFsncRjNQf8V2nYhspm1TwGRBOAa4bfo1d5tdWglW9+aW+cuHXYoLR+IJlvt4F3vJdpy/SfxGRjAv32H+aD5e+5eO6uQRl/gzwz/DX53zXKRlmkpAKXkQkwcL3Xmyyiq/xrN0LcSrAvBV8vUpY6r7rvDPQ/NI4KngRkRQL33A5FhhO8D6MJV9L1uwsmbGDYMZuHjDPd533Io4qg0wFLyIikkJ6j7GIiEgKqeBFRERSSAUvIiKSQip4ERGRFFLBi4iIpJAKXkREJIVU8CIiIimkghcREUkhFbyIiEgKqeBFRERSSAUvIiKSQip4ERGRFFLBi4iIpJAKXkREJIVU8CIiIimkghcREUkhFbyIiEgKqeBFRERSSAUvIiKSQv8P+GVR2aIrjsIAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 49,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.plotly.v1+json": {
|
|
"config": {
|
|
"plotlyServerURL": "https://plot.ly"
|
|
},
|
|
"data": [
|
|
{
|
|
"domain": {
|
|
"x": [
|
|
0,
|
|
1
|
|
],
|
|
"y": [
|
|
0,
|
|
1
|
|
]
|
|
},
|
|
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
|
|
"labels": [
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"gasdev",
|
|
"fftma2",
|
|
"covariance",
|
|
"ran2",
|
|
"cov_value",
|
|
"fourt",
|
|
"cgrid",
|
|
"length",
|
|
"maxfactor",
|
|
"build_real",
|
|
"prebuild_gwn",
|
|
"clean_real"
|
|
],
|
|
"marker": {
|
|
"colors": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#EF553B",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#ab63fa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#ab63fa",
|
|
"#636efa"
|
|
]
|
|
},
|
|
"name": "",
|
|
"parents": [
|
|
"",
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"Py_kgeneration",
|
|
"fftma2",
|
|
"gasdev",
|
|
"covariance",
|
|
"fftma2",
|
|
"",
|
|
"",
|
|
"",
|
|
"",
|
|
"fftma2",
|
|
""
|
|
],
|
|
"type": "treemap",
|
|
"values": [
|
|
4.518677,
|
|
3.283041,
|
|
2.4375840000000117,
|
|
1.231253,
|
|
1.223604,
|
|
0.7101290000000031,
|
|
0.48899400000001014,
|
|
0.002831,
|
|
0.001635,
|
|
0.001069,
|
|
0.000318,
|
|
0.000274,
|
|
0.000267,
|
|
0.000217
|
|
]
|
|
}
|
|
],
|
|
"layout": {
|
|
"legend": {
|
|
"tracegroupgap": 0
|
|
},
|
|
"template": {
|
|
"data": {
|
|
"bar": [
|
|
{
|
|
"error_x": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"error_y": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "bar"
|
|
}
|
|
],
|
|
"barpolar": [
|
|
{
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "barpolar"
|
|
}
|
|
],
|
|
"carpet": [
|
|
{
|
|
"aaxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"baxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"type": "carpet"
|
|
}
|
|
],
|
|
"choropleth": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "choropleth"
|
|
}
|
|
],
|
|
"contour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "contour"
|
|
}
|
|
],
|
|
"contourcarpet": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "contourcarpet"
|
|
}
|
|
],
|
|
"heatmap": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmap"
|
|
}
|
|
],
|
|
"heatmapgl": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmapgl"
|
|
}
|
|
],
|
|
"histogram": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "histogram"
|
|
}
|
|
],
|
|
"histogram2d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2d"
|
|
}
|
|
],
|
|
"histogram2dcontour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2dcontour"
|
|
}
|
|
],
|
|
"mesh3d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "mesh3d"
|
|
}
|
|
],
|
|
"parcoords": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "parcoords"
|
|
}
|
|
],
|
|
"pie": [
|
|
{
|
|
"automargin": true,
|
|
"type": "pie"
|
|
}
|
|
],
|
|
"scatter": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter"
|
|
}
|
|
],
|
|
"scatter3d": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter3d"
|
|
}
|
|
],
|
|
"scattercarpet": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattercarpet"
|
|
}
|
|
],
|
|
"scattergeo": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergeo"
|
|
}
|
|
],
|
|
"scattergl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergl"
|
|
}
|
|
],
|
|
"scattermapbox": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattermapbox"
|
|
}
|
|
],
|
|
"scatterpolar": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolar"
|
|
}
|
|
],
|
|
"scatterpolargl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolargl"
|
|
}
|
|
],
|
|
"scatterternary": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterternary"
|
|
}
|
|
],
|
|
"surface": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "surface"
|
|
}
|
|
],
|
|
"table": [
|
|
{
|
|
"cells": {
|
|
"fill": {
|
|
"color": "#EBF0F8"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"header": {
|
|
"fill": {
|
|
"color": "#C8D4E3"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"type": "table"
|
|
}
|
|
]
|
|
},
|
|
"layout": {
|
|
"annotationdefaults": {
|
|
"arrowcolor": "#2a3f5f",
|
|
"arrowhead": 0,
|
|
"arrowwidth": 1
|
|
},
|
|
"autotypenumbers": "strict",
|
|
"coloraxis": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"colorscale": {
|
|
"diverging": [
|
|
[
|
|
0,
|
|
"#8e0152"
|
|
],
|
|
[
|
|
0.1,
|
|
"#c51b7d"
|
|
],
|
|
[
|
|
0.2,
|
|
"#de77ae"
|
|
],
|
|
[
|
|
0.3,
|
|
"#f1b6da"
|
|
],
|
|
[
|
|
0.4,
|
|
"#fde0ef"
|
|
],
|
|
[
|
|
0.5,
|
|
"#f7f7f7"
|
|
],
|
|
[
|
|
0.6,
|
|
"#e6f5d0"
|
|
],
|
|
[
|
|
0.7,
|
|
"#b8e186"
|
|
],
|
|
[
|
|
0.8,
|
|
"#7fbc41"
|
|
],
|
|
[
|
|
0.9,
|
|
"#4d9221"
|
|
],
|
|
[
|
|
1,
|
|
"#276419"
|
|
]
|
|
],
|
|
"sequential": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"sequentialminus": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
]
|
|
},
|
|
"colorway": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#FF6692",
|
|
"#B6E880",
|
|
"#FF97FF",
|
|
"#FECB52"
|
|
],
|
|
"font": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"geo": {
|
|
"bgcolor": "white",
|
|
"lakecolor": "white",
|
|
"landcolor": "#E5ECF6",
|
|
"showlakes": true,
|
|
"showland": true,
|
|
"subunitcolor": "white"
|
|
},
|
|
"hoverlabel": {
|
|
"align": "left"
|
|
},
|
|
"hovermode": "closest",
|
|
"mapbox": {
|
|
"style": "light"
|
|
},
|
|
"paper_bgcolor": "white",
|
|
"plot_bgcolor": "#E5ECF6",
|
|
"polar": {
|
|
"angularaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"radialaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"scene": {
|
|
"xaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"yaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"zaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
}
|
|
},
|
|
"shapedefaults": {
|
|
"line": {
|
|
"color": "#2a3f5f"
|
|
}
|
|
},
|
|
"ternary": {
|
|
"aaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"baxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"caxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"title": {
|
|
"x": 0.05
|
|
},
|
|
"xaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
},
|
|
"yaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
}
|
|
}
|
|
},
|
|
"title": {
|
|
"text": "Time treemap"
|
|
}
|
|
}
|
|
},
|
|
"text/html": [
|
|
"<div> <div id=\"1109b423-6acd-47fa-8105-1f774368a62d\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"1109b423-6acd-47fa-8105-1f774368a62d\")) { Plotly.newPlot( \"1109b423-6acd-47fa-8105-1f774368a62d\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"build_real\", \"prebuild_gwn\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"\", \"fftma2\", \"\"], \"type\": \"treemap\", \"values\": [4.518677, 3.283041, 2.4375840000000117, 1.231253, 1.223604, 0.7101290000000031, 0.48899400000001014, 0.002831, 0.001635, 0.001069, 0.000318, 0.000274, 0.000267, 0.000217]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
|
|
" \n",
|
|
"var gd = document.getElementById('1109b423-6acd-47fa-8105-1f774368a62d');\n",
|
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|
" var display = window.getComputedStyle(gd).display;\n",
|
|
" if (!display || display === 'none') {{\n",
|
|
" console.log([gd, 'removed!']);\n",
|
|
" Plotly.purge(gd);\n",
|
|
" observer.disconnect();\n",
|
|
" }}\n",
|
|
"}});\n",
|
|
"\n",
|
|
"// Listen for the removal of the full notebook cells\n",
|
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|
"if (notebookContainer) {{\n",
|
|
" x.observe(notebookContainer, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
"// Listen for the clearing of the current output cell\n",
|
|
"var outputEl = gd.closest('.output');\n",
|
|
"if (outputEl) {{\n",
|
|
" x.observe(outputEl, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
" }) }; }); </script> </div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 32"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>sum</th>\n",
|
|
" <th>count</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>240.1</td>\n",
|
|
" <td>240.1</td>\n",
|
|
" <td>240.1</td>\n",
|
|
" <td>24.536011</td>\n",
|
|
" <td>24.536011</td>\n",
|
|
" <td>24.536011</td>\n",
|
|
" <td>47.638534</td>\n",
|
|
" <td>47.638534</td>\n",
|
|
" <td>47.638534</td>\n",
|
|
" <td>47.638534</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>197.0</td>\n",
|
|
" <td>197.0</td>\n",
|
|
" <td>197.0</td>\n",
|
|
" <td>23.163878</td>\n",
|
|
" <td>23.163878</td>\n",
|
|
" <td>23.163878</td>\n",
|
|
" <td>35.573628</td>\n",
|
|
" <td>35.573628</td>\n",
|
|
" <td>35.573628</td>\n",
|
|
" <td>35.573628</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>-14.9</td>\n",
|
|
" <td>6.5</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>1.806851</td>\n",
|
|
" <td>0.000098</td>\n",
|
|
" <td>0.017469</td>\n",
|
|
" <td>0.000797</td>\n",
|
|
" <td>26.105193</td>\n",
|
|
" <td>32768</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>43.1</td>\n",
|
|
" <td>43.1</td>\n",
|
|
" <td>43.1</td>\n",
|
|
" <td>28.564730</td>\n",
|
|
" <td>28.564730</td>\n",
|
|
" <td>28.564730</td>\n",
|
|
" <td>12.060570</td>\n",
|
|
" <td>12.060570</td>\n",
|
|
" <td>12.060570</td>\n",
|
|
" <td>12.060570</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>42.6</td>\n",
|
|
" <td>42.6</td>\n",
|
|
" <td>42.6</td>\n",
|
|
" <td>28.493006</td>\n",
|
|
" <td>28.493006</td>\n",
|
|
" <td>28.493006</td>\n",
|
|
" <td>12.036319</td>\n",
|
|
" <td>12.036319</td>\n",
|
|
" <td>12.036319</td>\n",
|
|
" <td>12.036319</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>-7.1</td>\n",
|
|
" <td>2.6</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.449610</td>\n",
|
|
" <td>0.000094</td>\n",
|
|
" <td>0.001763</td>\n",
|
|
" <td>0.000191</td>\n",
|
|
" <td>7.933390</td>\n",
|
|
" <td>41552</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>-4.1</td>\n",
|
|
" <td>2.5</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.460892</td>\n",
|
|
" <td>0.000181</td>\n",
|
|
" <td>0.000461</td>\n",
|
|
" <td>0.000199</td>\n",
|
|
" <td>4.906137</td>\n",
|
|
" <td>24624</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>33.400000</td>\n",
|
|
" <td>0.004642</td>\n",
|
|
" <td>0.006769</td>\n",
|
|
" <td>0.005419</td>\n",
|
|
" <td>0.016257</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.003691</td>\n",
|
|
" <td>0.003691</td>\n",
|
|
" <td>0.003691</td>\n",
|
|
" <td>0.003691</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>33.366667</td>\n",
|
|
" <td>0.000633</td>\n",
|
|
" <td>0.001058</td>\n",
|
|
" <td>0.000914</td>\n",
|
|
" <td>0.002742</td>\n",
|
|
" <td>3</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>20.020000</td>\n",
|
|
" <td>0.000179</td>\n",
|
|
" <td>0.000185</td>\n",
|
|
" <td>0.000182</td>\n",
|
|
" <td>0.000910</td>\n",
|
|
" <td>5</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>0.5</td>\n",
|
|
" <td>0.5</td>\n",
|
|
" <td>0.5</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000599</td>\n",
|
|
" <td>0.000599</td>\n",
|
|
" <td>0.000599</td>\n",
|
|
" <td>0.000599</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000510</td>\n",
|
|
" <td>0.000510</td>\n",
|
|
" <td>0.000510</td>\n",
|
|
" <td>0.000510</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000403</td>\n",
|
|
" <td>0.000403</td>\n",
|
|
" <td>0.000403</td>\n",
|
|
" <td>0.000403</td>\n",
|
|
" <td>1</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" memory cpu \\\n",
|
|
" min max median min max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration 240.1 240.1 240.1 24.536011 24.536011 24.536011 \n",
|
|
"generate 197.0 197.0 197.0 23.163878 23.163878 23.163878 \n",
|
|
"gasdev -14.9 6.5 0.0 0.000000 100.100000 1.806851 \n",
|
|
"fftma2 43.1 43.1 43.1 28.564730 28.564730 28.564730 \n",
|
|
"covariance 42.6 42.6 42.6 28.493006 28.493006 28.493006 \n",
|
|
"ran2 -7.1 2.6 0.0 0.000000 100.100000 0.449610 \n",
|
|
"cov_value -4.1 2.5 0.0 0.000000 100.100000 0.460892 \n",
|
|
"fourt 0.0 0.0 0.0 0.000000 100.100000 33.400000 \n",
|
|
"cgrid 0.0 0.0 0.0 100.100000 100.100000 100.100000 \n",
|
|
"length 0.0 0.0 0.0 0.000000 100.100000 33.366667 \n",
|
|
"maxfactor 0.0 0.0 0.0 0.000000 100.100000 20.020000 \n",
|
|
"prebuild_gwn 0.5 0.5 0.5 0.000000 0.000000 0.000000 \n",
|
|
"build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
|
|
"\n",
|
|
" time \n",
|
|
" min max mean sum count \n",
|
|
"function \n",
|
|
"Py_kgeneration 47.638534 47.638534 47.638534 47.638534 1 \n",
|
|
"generate 35.573628 35.573628 35.573628 35.573628 1 \n",
|
|
"gasdev 0.000098 0.017469 0.000797 26.105193 32768 \n",
|
|
"fftma2 12.060570 12.060570 12.060570 12.060570 1 \n",
|
|
"covariance 12.036319 12.036319 12.036319 12.036319 1 \n",
|
|
"ran2 0.000094 0.001763 0.000191 7.933390 41552 \n",
|
|
"cov_value 0.000181 0.000461 0.000199 4.906137 24624 \n",
|
|
"fourt 0.004642 0.006769 0.005419 0.016257 3 \n",
|
|
"cgrid 0.003691 0.003691 0.003691 0.003691 1 \n",
|
|
"length 0.000633 0.001058 0.000914 0.002742 3 \n",
|
|
"maxfactor 0.000179 0.000185 0.000182 0.000910 5 \n",
|
|
"prebuild_gwn 0.000599 0.000599 0.000599 0.000599 1 \n",
|
|
"build_real 0.000510 0.000510 0.000510 0.000510 1 \n",
|
|
"clean_real 0.000403 0.000403 0.000403 0.000403 1 "
|
|
]
|
|
},
|
|
"execution_count": 50,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_32-aa'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 51,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FNX6wPHvu5tGXXovoYUQjIoBVLCgXlDBjqCIKHZBLFgwXtte9SpXvdZrV+wioIJKVBAVFNSfEgWlI11AehLSt5zfH7OJSwhpJJndzft5nn1gZ87MvLMw886cc2aOGGNQSimlVGRx2B2AUkoppaqfJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJngV8UQkXkSMiIy1OxYFIjJfRObbHYdSkS7K7gCUqgoRqeg7lk8BNtZgKEopFZJE30WvwpGIXFpi0mXAYGBMielfAjuBWMBjjPHVQniqDCISA2CMKbQ7FqUimSZ4FRFE5H/ADcYYsTsWVToRqW+MybU7DqXqCm2DVxGvtDZ4EXlDRLJFpJOIzA78fauI3BCYnywiX4tIjohsEpFLSllvExF5SkS2iEiBiPwhIneKSIWOKxE5U0QWiMh+EckSkZ9LbkdERohIuojkichuEXlHRNqXKHNY+yIiYwO/z0ki8pKI7AnE85aINC1R9lwRSRORbYF9Xici94qIs0S5+SKyTERSRORbEckFHg6aN79E+RtFZLmI5IrIPhFZXEqcfUTk80Bs2SLylYgcd4h9GSgiT4jIrsB+zxSRliXK9hWROYHfNU9ENojIlPL/5ZQKD5rgVV3mBD4HtgCTsNrq/xe4EPgCWAzcCewH3hKRLkULikh9YAFwKfAWcBOwCHgEeKK8DQe2kQY0CyyTCiwBzihRZjrgA+4CXgEuABaKSJPq2pcg/wN6Ae7APo0GZolIcK3IWCA7sI83A+nAA8DkUtbXPBDTEuAW4JtD/BbXAM8AKwLl7g8sc2xQmd7Ad8BRwKPAg0AXYL6IHFtyncCzgbL/Al4Azg7sX9H6WgFzgfhA7DcC7wLHlVyRUmHLGKMf/YT9B+vkbQ4xLx4wwNigaW8Ept0VNK0JkAv4gYuCpvcMlHUHTbsHK9H1KLGtRwAv0LGMWF1AFvAjEFdiXlGzWTSwA/g9uAwwLBDLv6pxX8YGpi0GooOm3xGYfk7QtHql7M+LQA4QGzRtfmDZ60opPx+YH/R9FrCsnH/fmUAB0DVoWtvA77iglH35sui3DEx/IvDv4gp8Py9Qrq/d/3f1o5+a+ugdvKrrXi36izEmA1iNlaymB01fDWQAXYOWG4F1R7lPRFoUfYB5WHfTJ5WxzcFAI2CyMSY/eIYxpqhTTF+gFfB8cBljTBqwCivRV9e+FHnZGOMJ+v4CVlIcGrR8XtHfRaRRYJ+/A+oDiSXWVwC8Xsp2SsoAOohIv9JmBqr/hwCzjDHrg2LZDrwHnCAijUvZl+AORt9h/bt0DtomwFkiEl2BGJUKO5rgVV2Wb4zZVWJaJvBnieRQND24PboHVnX6rhKfeYH5rcrYbrfAn8vKKFOUiFaXMm9V0Pwih7MvRdYGfzHGZAPbsWpAAKuqPNCenYl197wLeCcw21VifVtNxXrK/werNuQnEVkrIs+JyMCg+S2xLiBK+y1WYp3HOpaYvrnE932BP4v2ewHwIVZzwG4R+VhErhCR2ArEq1RY0OfgVV12qEfmDjU9uC3agVUN/Oghyq6palBVdDj7UiGBdv8FWIn9PmAdkA8cg5WkS94w5FEBxpiVItITOAvromk4MF5EHjDG3F/ZOAPK3O/ARc+FgU56ZwOnA1OA20TkuMDFjVJhTRO8UlWzDmhojJlXbsnSlwU4AvjjEGU2Bf7sCXxdYl7PoPnVqQdBHeFEpCFWO/dngUmDsDrOXWCM+TaoXGkd9irFGJMDTAOmifWc/EfA3SLyCFYtQS7WfpeUiNXPYEsVt/sjVl+IuwO99t8FLiaouUOpcKVV9EpVzXTgeBE5veSMwONzZV08z8XqzX6XiMSVWLboznox1gt6rg+uNhaRM7F6uqcdZvylubZEe/Q4rJuAzwPfi+6Ki+/+A8l4/OFsVESaB38PVOuvCGwn2lgvJ5oLnCsi8UHLtQYuARYaY7Iquc2mJZ4OAKvnPlgvRVIq7OkdvFJV8xhwDjBbRN7AelysAZAMXIjVbr27tAWNMVkiMhHrLvFnEXkPq434KKy25suNMR4RuROrk9oCEZkKtMZ6NG0j8GQN7FMM8JWITMe6Wx4PLAQ+Ccz/PhDnmyLyDFYv9DFUobq/hLki8hfWY4Y7sC5gJgBpxpj9gTL3YHVOXCgiz2N1/rsOKxlPqsI2L8dqBpiJVaPSCLgGq/nhs7IWVCpcaIJXqgqMMbkicjLwT6we9ZdhJYc1WB23MstZ/jUR2Yn1/Pu9gAer89yTQWXeCLwgJhWrjTsH63GxOwO95KvbBKxn3x/AekxvKnBTUSc9Y8weETkL+C/wEFayfwf4CphzGNt9KbDdW4GGwJ9Yz8U/VFTAGLNcRE7EegzxLqzax/8DLjXG/F8VtrkA6I9VHd8a69/rJ2C0MWZD1XdFqdChr6pVqo4LvAzndaCfMWaxzeEopaqJtsErpZRSEUgTvFJKKRWBNMErpZRSEUjb4JVSSqkIpHfwSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK/KJSLxImJEZKzdsSgV7oKOp9vtjiXUicigwG81yO5YwpEmeKVUnSciYwOJpOiTLyJrROR/ItLa7vginYiM1xuI6hdldwBKKRVC7gM2AHHACcA4YKiIHGGMybU1ssg2HtgNvFFi+rdAPaCwtgOKBJrglVLqb58bYxYH/v6qiOwBbgXOBabaF1b4EBEB4owxeYe7LmOMH8g//KjqJq2iD3GBNqjFgSrDdSJynYi4RcQElblCRL4WkZ0iUiAiK0RkXCnr6isic0Rkt4jkicgGEZlSokwTEXlDRDJFJENE3gSaHCK2RBH5QET2BuJbLCLnlNieEZHLS1n29MC8sw7rB1KqZn0d+LNL4P/rxJIFRGRAYN6oqm5ELC+LSKGIXBA0/UgRWRA4Xv8UkXsCx7sRkfgS6zhTRL4TkRwR2S8iaSLSu0SZN0QkW0Tai8iswN93icjjIuIsUdYhIreIyPLA8b1DRF4SkaYlym0UkdmBY3oxkAdcF5hX7rlJRDYCvYGTg5pI5gfmldoGLyIjRCQ98LvsFpF3RKR9Vfc1UukdfAgTkT7AF8B24H7AiVWFuKtE0XHAcuATwAucDTwvIg5jzHOBdbUC5gaWnQxkAPFA8MlEgI+xqiZfBFYC5wNvlhJbb2ARsDWwvhxgJDBLRIYbY2YaYxaLyPrA9JLruAjYB8yp7O+iVC3qFvhzD9b/99HAkyXKjAb2Yx07lRZINlOwjonzjTFpgentgW8AAzyCdYxdDRSUso4xWMfYHOBOoD7WeWGhiPQxxmwMKu4MlPs/4HbgH8BtwDrghaByLwFjgdeBZ4AuwASgj4gMNMZ4gsr2xKrheAl4BVgdmF7uuQm4BXgWyAb+HZi2o4zfqyimn4G7gNbAzcDAwL5mVGFfI5MxRj8h+sE6KHKAdkHTugMe65+ueFq9Upb9AlgX9P08rBNF3zK2d26gzB1B05xY7WAGGBs0fR7wGxAbNE2wToJrgqY9jNV+1jRoWgxWcn/N7t9YP/oxxoCVyAxwGtAC6ICVcHcDuUB74NpAmcSg5aKxLprfqMS24gPruR3rJuv9wDaGlCj3DOAHjg6a1gzrYsMA8YFpDQPH08sllm+NdSH/ctC0NwLL3lui7C/A4qDvJwTKXVKi3OklpwMbA9NOL2Vfyz03BaYtA+aXUnZQYN2Dgn7vHcDvWM0AReWGBcr9q7L7GskfraIPUYGr+n8As4wx24qmG2P+AD4PLmuC2rpExCUiLYAFQFcRcQVmFV3VniUi0YfY7FCsq+ziK1tjjA/r6jo4tmbAqcB0oJGItAhssznW1XKPoOqyaVgH5QVBqxiCVe0/rcwfQanaNw8rYW/BSrzZWHfVW7H+v+dj3bEXOR3rguCdKmwrBpgBnAUMNcbMLTH/DOAHY8ySognGmL3AuyXKDcY6nqYWHYuB49GHded6SinbfrHE9++ArkHfRwCZwJcl1pmO9ZuUXOcGY8xBtXEVPDdVRl+gFfC8Maa4bd5YtR6rsBJ9SeXta8TSKvrQ1Qqr9+gfpcw7YJqIDAT+BRyPVTUXzIV1oC4APsSq6p8YaOOaBbxnjCmq8usMbDfGZJdYx+oS37tj3a0/GPgcKv6txpilIrIK627otcC8ojujrw+xrFJ2uQFYg3WhuwNYbayOXhhjMkTkU+AS4N5A+dFYzVRV+b98F9bd95nGmPmlzO8M/FDK9JLnhB6BPw8VQ1aJ7/nGmJLNfPuA4Lb1Hljnjp2HWGerEt83lFaoguemyugc+LPkOQmsBH9CiWkV2deIpQk+zIlIN+ArrP/ct2LdeRRi3Y1PJNCR0lh1UxeKyHFY7WCnY7X73SYix5WS1MtSVPPzOIduQw8+CU0D7g5cve8HzgGmGmO8ldimUrXhJ/N3L/rSvAWMEJEBWNXE52DdTfqrsK05WHfpk0RkfvAdaSUVHY9jgL9KmV/yOPNVcJ07ObC2IljJpHlQj/mKnptqWEX2NWJpgg9dO7GqA7uXMi942tlALHCOMWZz0UQRKa1aDmPMj8CPWAn3EqzqvouBV4FNwGki0rBEwu9ZYjXrA396jDHzKrAv07BqDoZj3RU1xqr+VCrcfIGV3EZjVX/XB96u4rp+xKo+ng3MEJHzS1z0bqL84x+sDmMAOyt4PFbEOqwmwkWm6o+7VebcZEqZVppNgT97cnCNRc+g+Qp9TC5kBdq+5wHniUi7ouki0h04M6ho0RWqBJVxAVcEr09EmgZ6yQcratuLDfz5GdZF37ig5ZzAjSVi2wnMB64TkbYlYxeRliXKr8S627ko8NmO1XFPqbASSMBTsZ4MGQv8boz57TDWNw/rAvsM4G0RCT4nzwGOF5GjiyYE+r+UvKueg1UN/8/S+teUPB4raDpWB9t7S84QkSgRKfXR2RIqdG4KyOEQj+OWsBjr5ud6ESk6byEiZwK9gLQKrKPO0Dv40ObG6pC2SERewDrgJmD1OC066OdiVXt9KiIvYbXpXYN1EAQn38uB8SIyE+vqvFGgXBZWYgf4FKsX/OTAM7YrsDrHldYZ5gZgIfC7iLyCdVffGqutrQNwVIny04AHsGolXqtilaZSoeAt4CasjmZ3Hu7KjDGzROSKwHqzCDxDDjwKXIrV0e1Z/n5MbjNWb3oTWD4r8Gz528AvIvI+Vi1DJ6xOZ4uwzhuViWlB4HxyV+ACYy7W0zs9sDrg3Qx8UM5qKnpuAqvz3jgRuQereW+nMeagPgXGGI+I3In1mNwCEZnK34/JbeTgRxjrNru78eun7A9Wb/VfsJ59/QO4CqvtOy+ozNnAUqx2sA3AJKyr5OBHafoA72FVYeVjVZV/CqSU2F4zrBNNJlbP+7ewLiYOeEwuULYr1rO327EO5D8D6xxeyn50D6zDAAPt/l31o5/gD38/JnfIx0hLlF+GdYfavgrbig9s6/YS08cFpj8WNO1orNqufKw27FSsGjUDtC6x/CCsJoSMwLngD6xEmBJU5g0gu5SY3AQ9ehs0/Rqsu+ZcrIuP34D/AG2DymwEZh9iX8s9NwXKtcZqqsgKzJsftE/Fj8kFlR8ZOC/mYz02+E7Jf4vK7mskfiSwwyqMiMgsoLcxpke5hZVS1U5EfgX2GmNOs2HbT2Hd5Tc0VlOeUqXSNvgQJyL1SnzvgdULdb4tASlVx4lIX6w767dqYVslj//mWL3lF2pyV+XRO/gQJyLbsaqa1mM9AzoOq1NcH2PMWhtDU6pOEZEjgBSsV522ALqaoEfbAh1Sy+vQlm0q8UiqiCzBuphfiVWNfRXQDjjNGKMdVVWZtJNd6PsCGAW0wWqH/wH4pyZ3pWrdhVhjQawGRpmDn1vvyCFe+BLkX1htwBX1WWC7Ra/J/QW4SpO7qgi9g1dKqWogIkVjyJdlvTFmfTlllKoWmuCVUkqpCKSd7JRSSqkIpAleKaWUikCa4JVSSqkIpAleKaWUikCa4JVSSqkIpAleKaWUikCVetFNenp6Q6y3KOmFQeTzYw1asTslJUVHfqvD9LhXh0nPJTap8HPw6enpxzkcjhcdDoeLoPF9VeQyxnj9fv8CY8x9KSkpW+2OR9U+Pe5VddBziT0qlODT09MbOhyOhU2aNGndqlWrvSKib8cJU36/wes3MT6/ESMIxogxOAwQh4covCACBlPg9Tt27t5bPzcvd7PfyICUlJRCu+NXtUeP+/Dn9xt8xkT5/Mbp85sonx+nzxin328cYMQAseLzNzbZTkQMiEGsj5EoL84oD44oL45oL1K16ztjDIWFhTE7duxonJeXt9nv95+g55LaUdEq+nYOh8PVqlWrvQ0aNMir0YjUYfH6/M4Crz+m0OePLfT6Yzw+f4zHZ2I8Pn+sx+eP8fnNIf/Ne8ZkZMd6sxoWfa8PxNY3bMrY3bLLwluz+XRrBrAXa/z3dUGfP4B1uDMza3bvVC3T4z4MFHr9UfleX1yBxx9X6PXFFnj9cYU+f5zXZ2L8xpTRrGIl7BYxvpx63n0Nyt2QOAMJP7oQR5QHZ7SHqLg8YhrkEhVXUNYFQIMGDfKjo6M969ata+n3+zthnTNUDatogncAolfwoaXQ64/en+9plFPoa5hX6Gvo8fljyz6gK88hAALiiMYaKasl0BMYdFBht2sXkA78HPj8hDtzR3XGo2qVHvchxuvzO7MLvA1yC30Ncwt9DfI9vgZ+Y5y1snHji8Lri4KCegfNE4ePqLhcouvnEF0vl5iGOUTHHXCX7nA4DNZVhQ5yVkv0hw4j+R5fTHaBt1FOgbdRbiCh2x1TCS2BMwIfi9u1BfgJa8jLObgzdRQ8pSqo0OuPysr3uHIKvA3zPL6GhV5/nN0xlcr4nXhyG+HJbVQ8TRw+ourlENMgm3pNMkAvFGtb1RO825VSjXGUWHdm+uEsvnr16piPP/7YNWnSpF1F09q3b588Y8aMPwYMGFCrVY1r166Nue666zqtX78+zul0miuvvHLX3XffvRPg3nvvbf3++++38Pv9dO3aNX/q1KkbW7Ro4StaNt/ji92fbyX0+fPnN378wXuj8vLzwBjcjz3DUSn9WbbkFx51p7J6+TKOP+kUnnrt3VLj8Hg83HH9WLZu2USHzl147IXXiYqKoiA/n+tHX8DTr70HrWrkJ+gY+AwHwO1aB8zBGgb3a9yZOTWyVVUj4lPTauS43zh52GEd86Fg9uzZjfLz8+XCCy/MOpz15BZ662XmeVz7871N8j2+Bovmf8XTj7iL5+/dvZvmrVox7fMFByz3/H8f4aWnHmXaF9+S2Du51HWvXbmcyffdyZ7d1qlxwqR7uPjcIbw+7WOefnVqcbk/t+/kpOP68NGr/z1oHQ8++QrvfzKHRg3qM+3FyXTu0A6AsbfczzWjz2dgv6OtgsbvxJPTGE9OY3J2thOf0xNVmJXfdvmr/fl01h+4M72H8zup8kXkHfzatWtjp0yZ0jI4wVcHj8dDdHR0hcv7/X7OO++8brfddttfV1555T6ALVu2RAHMnDmz8Xvvvddi8eLFK5s2beqfNGlS24kTJ7Z//Y03t+7NKWyWkedpke/x1QfY+dd27p44jufemkHXHj0pLCggP98airpl69bccf8jrFr+G4u+mXfIWL5f8BWNmzTlqdfe5b7bJrBo/jxO/scZvPz0Y1w89hoaN2kC7Kn6j1Nx3YDxgU8hbtdXwLvALE32KpSVd/x//fXXjTIyMpxVSfD78z0NM3I9TbMLvE08Pn9M8LyBg05j4KDTir9PGHsR/Y4/8YDlf/81neVLf6Fdh46H3EZeXi43Xz2ah558gWP6H4/P5yMzYx8AV1x0LldcdG5x2SNOHcHo84cetI6s/dm889FnrJj/Ae9+9DnPTpnG4/dN5Mtvf6R+vbi/k3spxHijHd7c6Ma7098EnsTt+gz4GPgCd2Z2Wb+Pqpqwfq71ww8/bJyUlNQrISEhqV+/fj3T09PjAG688cZOGzdujEtMTEw69dRTuxeVnz59etOjjz46sX379smTJk1qWzR98+bNUUOHDu2anJzcKyEhIemmm25qVzSvffv2yePGjWufnJzca/jw4V0qE98nn3zSKCYmxhQld4COHTt6AX799dd6/fv3z27atKnfGMPgM8/yzZw1q+XK7fuP+isrv1NRcgeY/tZrnHnuhXTt0ROAmNhYGrtcALRu257kPinExJRdWx8VFU1+Xi4A+Xm5REfHsGblMjasW8vpZ59fmd2qTjHAmcA7wA7crndxu4bidkXkhac6fO+8806Trl279u7Zs2fSuHHj2jdt2vSo1atXxwD8/vvvsYMGDep+xBFH9EpISEh6+OGHWxYtJyIpqampbZKTk3u1b98++emnn25eNK+85SZOnNjuiCOO6DVhwoQOP/30U72UlJSeSUlJvbp169a76Dzy/fff13vrrbdazpw5s1liYmLS7bff3hasc1RKSkrP3r1790pOTu716aefFldhF3r90dsz89qs2p51xIbdOT335Ra2KpncS9r513Z+WvgtZw2/qHhaXl4uj9w7iXsnP1nmb/f5rA84sk9fjul/PABOp5NmzVscVO7/fvmdnbv3cs6Qkw6a53Q68fl9eDxecnLziImOIjcvjwefeoXJ/7yxzO2X0Ay4FJgB7Mbt+gi36wzcrrDOSaEmbE+kW7dujbrqqqu6zp07d3X//v3zXnjhhWYjR47stnbt2uXPPvvs5ttvv73jqlWrVgQvk5GR4VyyZMmq7du3RyUkJBwxbty43V26dPFccsklXe66667tw4YNy/Z4PJx66qk9pkyZ0rQoMe/duzdq6dKlKx2Oyv3fW7ZsWb1mzZp5zjrrrK7r1q2L69ChQ8HTTz+9JSkpqbBfv365U15/vfXiFX90inO1aPr21OlROdnZZOzbK66mTQ9Yz7q1q2nXviPXjjqPjL176NP/eG6+637q1y+/42uR4086hXmffcKIISeQfExf+g88ifFjLuTBJ56r1D7VoAbAJYHPLtyud4BncWdusDcsFSq2bt0aNWHChPhvvvlmVZ8+ffKffvrp5hkZGVEAXq+XUaNGdX377bc39OnTJ3///v2OlJSUxIEDB+acfPLJuQCxsbHm999/X/nrr7/GnXDCCb3Gjx+/R0TKXc7pdJply5atBNi3b59j4cKFa+rVq2eys7OlX79+vU4//fSs0047Leeyyy7blZGR4ZwyZcoWgBUrVsQ8+OCD7b7++us1zZo18y9btiz2lFNOSVy6at2mPL+jRW6B11XZRulPZrzHCacOpnmL4msQnvz3/YwccyVt2nUoc9l1a1YTHRPLhLEXsXP7Nnr06s1t9z5Ei7aNDij32vuzGDN8WKm1FQ3q1+PWay7luLMvp02r5rz51APc99iL3HbdGBo3anhQ+QqKBc4PfDbidr0KvIY786+qrlBZwvZqacGCBQ0SEhLy+vfvnwcwbty4vTt37ozesGHDIevQxowZsxegbdu23g4dOhSuWbMmNisry/Hjjz82vu222zolJiYmJScnJ23atCl21apVxZ1Zrrzyyj2VTe4AXq9Xfvzxx8Zut3vbypUrVwwePDhrxMiR3Xdk5bdK6Deow+XX3xx9+cUjWo466x9RTZtbNxTOqIM7xPq8XtJ/+p7HX3iDd2d/TVZmBi/8d3KlYnE4HNz/6NPMmLuQ+yY/xftvvMIppw/F6/WROuFqbr32Mr5asKh2euOWryUwEfgDt2sWbtcpdgek7Dd//vwGPXv2zO3Tp08+wIQJE/ZER0cbgKVLl8b98ccf9UaNGtU1MTExqV+/fok5OTnO3377rbjH91VXXbUHoE+fPvlOp9Ns3rw5uiLLjRs3bnfR33Nzcx2jRo2KT0hISEpJSem1bdu2mPT09PqU4pNPPnFt2rQpdsCAAYmJiYlJF44Y2VOcUVHpK9Z2y6lCcjfGMGvau5x/8aXF03749hu2b93CeReNLnd5n8/L/y2cz72PPMm0L76lVZu2/Puftx1QJic3j/c/nstVo8475HrGjx3Jki/f54t3n+PP7Tv4c/sOzhg0gBv++Qgjrp3EM69NPeSyFRAPPARsxu16p0b7etUBYXsHXxX16tUrfk2i0+k0Ho+n+EU/v/zyy8r69euXesw1atTIV9r09PT0uNGjR3cF6NevX/bbb7+9OXh+586dC3v16pXbt2/ffI/PH3XeqCtiU1NT6/25Z3/H6OhoLrr8ai66/GoAfvvlZ1q3bUfDRo0P2k6b9h3o2Ts50E4OZ547nNeeK7s6rizb/tzMd19/yQvvfMA9E8cxfPRYkpKP4opzTokdOn9GlddbAxzAucC5uF2/Ac8A7+LOzLc3LBVqjDE0btzYW7LWLljw8e10Oo3X65WKLOdyuYrPG7feemv75s2be5cvX74iOjqaIUOGdMvPzy/1AXBjDCeccGL2i2+9n78v19PyUI+zrVuzirtuvAaAo/seyz///XipcSz+cREFBQUMOPnv9vifvv+Wlb//xpnHHwnAju3bmHDZSO6Z/ASDBp95wPJt23Wg34ATad3WaoEcdv5Ixl164QFlZnz6Jb0TupKU0PVQP0cxr9fL7Q88xdTnH+adjz6jZfOmPPfwXZxy4bWc9Y8T6dq57BqFckQDo4HRuF3fAU9i9dPRnviVELZ38IMGDcpZs2ZNvZ9//jkO4OWXX27aunVrT5cuXTxNmjTx7d+/v0J3oy6Xy9+/f/+se+65p7hNfuPGjdHr1q0rtzddSkpK/qpVq1asWrVqRckjKPmwAAAgAElEQVTkDjB8+PDMv/76K+b/fl/dafVf+5M/SUtr3aVHz+Kqr107rBqovLxcnnv8EcaOu7nU7Qw970J+/v47CgsKAFj4zTx69jqiIrtXqkfvv4s77v83DoeDvNxcBEEcDnJz80L5VaRHAq9i3dVfj9tV8d6OKiIMGjQoZ/Xq1fWXLl0aC/DCCy8093g8AnDUUUflN2zY0Bfctr5s2bLYHTt2lHkeqOxyGRkZUR06dCiMjo5m6dKlsYsWLSq+Im/cuLEvKyvLCdYTMMeddmbDRT/80OSHxb+0KUruv/968MMC3RISmT7nO6bP+e6QyR1g5vtvc+6IUTidf4d2c+r9zFu8gs9/+I3Pf/iN1m3b8b+3ph+U3AGGnH0ey5f+SvZ+qw/gwm++pGdS7wPKvPb+rDLv3oP996V3uOT8M2jTqgU5uXlI4EU3IlZNQDU6EfgISMftGlydK450YXsH365dO++rr766/vLLL+/i9XrF5XL5pk2bts7hcHDsscfmJiQk5PXo0aN3x44dC77++usy35o0Y8aMDePHj+/Yo0eP3iJi6tWr53/xxRc3devWzVPV+Lw+vzPLF9X23kefibr84gtbGmNo2Kgxj/7v1eIy14++AL8xeAsLGTb8IkaNvaZ43g2XjWD8bf+k91F9OLrvsQwaciYXnXkyDoeDbgmJ3POIdQe/cd1arrn4PPLzcinIz2dwv95cPWFicc1ASZ/NnEFC0hF079kLgCvH38IDd96Mx+Mh9ZbxhVjtYaGsPfACcAdu17+Ad3Bn6gAWdUD79u29zzzzzMbzzz+/e0xMjDn55JOz6tev72/evLkvOjqaTz/99I8bb7yx43PPPdfa7/dL06ZNvdOnT18PlFoDB1DZ5e67775tY8eO7Tp16tTmnTt3LjjuuOOKe8xffPHF+84///zmiUm9jz5t6LnO626ZxORnX+HB1FvJz8vF4/GQ2DuZyUHngIran5XJV5/P5sMvF1VqOfcdNzFo8BkMGjKUtu07ctWEiVx23uk4HA5atWnLff95qrjs6j82smT5Gj57e0i56123cQvzf1jMZ28/C8ClFwzl/KtvY8bseQzsexTJvXpUbgcrpg8wF7frS2AS7swlNbGRSFLRd9EnRkVFfdGjR4/s+vXra/VoGfx+Izv3F7Tak13Q1ldbb5iqJj1j9hzwqlqAfK9hw9ZddFl0G3HZW+wKrSwrgfuBD7T6rnqF4nG/b98+R9OmTf0Ab7/9dpP777+//fr165fbHZffGNmZld96d3Zh2+p+m2RNaxFTkNPOu63iPXarqJrPJQZ4D7gHd+bGww4uQoXtHXyoMcawJ6ew+c79Be285TzqoqpVL2A6sAi3a4Je1Ue2//znP61mzpzZzO/3S8OGDX1vvfWW7U9Z7MkpaLozq6BDeY+4qWolWG30F+J2PQ88hDtzr80xhRxN8NUgr9AXu2Vfbpd8j6/Gr4LVIQ3EaqN7Ebgbd2aG3QGp6jd58uS/Jk+eHBKPT+UUeOtty8jrnKfHvZ1isZ64uRK36x7gOa3J+1tYVSWFGmMMO7LyW/2xKztJk3tIcGC9IW8Vbtcou4NRkcnvN7J1X1779btyemlyDxku4FlgHm5XJ7uDCRWa4Kso3+OLWbcru+eOrPyOJsza3OqA1sB7uF2f4Xa1sTsYFTn253sarNmxP2lPTkEbgwnlp07qqlOB33G7rrI7kFCgiakKdu0vaPHHzuzeuYW+Kr+6SdWKM7EO9nPLLalUGfzGumvfuDsnsdAXoiO6qSKNgVdxu2bjdrUtt3QE0wRfCYVef/S6ndk9tmfmdQ63nrJ1WAtgFm7Xy7hdWp2qKi2v0Be7dkd2L+uuXYWRYcCyutxcV+VOdjU1bCSE5tCRe7ILmm3PzO90qLdRqZB3DTAIt2s07syf7Q4mbNXUq0MPc4jomrI3p7DJtoy8LnpBH7aaYTXXnQ9cgzsz0+6AapP+p8Ua9S05OblXt27denfv3r339ddf38Hns95x4fMbx4bdOV23Wgd5mcn9z82buHjoIEaefiIXnHY8t18/lqyMvztzL5j3BecO6s/ZJ6Yw8ZoxxW+UKun9N15h+D8GFK/n3SkvFc/bs2snE68Zw4WDB3LeKcfyzqsvlLoOj8fDLVeNZsSQE5h4zRi8Xmvo5YL8fK4YPvSAuOqQHliP011vdyCqaopGk0tMTEz66aef6pX8fuutt7bLzc097LZxYwx/7svt8Oe+3G5+Yxz33noDZ5/UlxFDTuDy809n2ZJfqrTeZyY/wLmD+jNiyAmMGnoKi+Z/VTzvhScmM+io7ow8/URGnn5i8etrS3PdJRdw4eCBjDz9RMZecCYrl/0GWMf3LVeNLo71ukvOZ/OG9aWuY/nSXxl5+omcPPCE+m9O/7R4+tcLf+K6SQ9Vaf9C2AjgR9yu7uWWjCARk+A9niq/dI7mzZt7p02btm7dunXLf/vttxU///xzg+eee655odcftW5Xds/9+Z6m5a8FWrVuwxsffs70Od/x0Vc/0LJ1G1540hoUJjcnG/cdN/HUq+/w6XfptGzdhpeffqzU9Qy7YCQfzvue6XO+461Zc3jrpWeLD+DHH7ibbj168sGXi3gv7Ws+mfFeqSebovHfZ8xdSKPGLhbNt8aKP3D89zopGngBt+tFfd1t+Hn55Zdb3nnnndtXrVq1on///nklvz/55JNtc3NzD+u8Vuj1R/2xK7vn3pzC1kXTTjtjGDO//pEZcxdy5Q0TuWPc2Cqt+5hjj2fa5wuYMXch7sefYdL4K8jNzSmeP/T8EcWvrX3k2VcOuZ7HXnidD75cxPQ53zHmmhu479bxxfOGj76cTxb8zIy5Cxk05Ez+NemmUtcx5fmnuPNfk/lszpzcfz35MgB5efm4n3iJ/9xd+muzw1wi8H+4XYPsDqS2hHWCr+hYzQC33npru2HDhnU99dRTu3fr1q33cccdl1D0vumBAwfmJSUlFYI1IEXv3r3z1m/Y2GDdruxeweOylycmNpa4etYgVD6fz3rPe+D9zAu/mUdi7yPp0j0BgIsuu4rPP/6o1PU0auwq/ntebm7x3TfA6hXLOOFU63XM9es34JhjBzD7o2kHrSNEx38PJdcBX+F2tSy3pAoJY8eO7bh48eKGDzzwQPs+ffoklvx+ySWXdAIYMGBAz8TExKStW7dGDR8+PH7UqFGdBwwYkNC+ffvkESNGxH/zzTf1+/fv37NDhw7JV199dfGIKG63u/URycm9jzzqqCPPH3xyw6XpPxVve9CQoURFWS2aRx7Tj51/bT/guKyoE04ZXHyO6JHYG2Ng3549lV5PY9ff54js/VnF55nYuDhOPHVI8fcj+/Rj258HDZMBQFRUFPl5eRQUFOAMjJbpfuIlbr7qEpq4GpW6TARohvW620NXj0SQsH/RTUXHagZYsmRJg/T09BVt2rTxnXXWWV2feuqplo888sgBL83YvHlz1Geffd7sf29Nx+PzV7q93VNYyOizT2Pb1i0kJPbm6SnvAbB965+07fD36ErtOnZi986/8Hq9xSeOYF+mfczzT0xmy8b13DjpXnodYY0WlXTk0Xw26wOOPKYfGfv28v2Cr4nvenCtUxiM/x4KTgQW43adq2/AC31vvPHGlhUrVtS/8cYbd4wZMyYDoOT3qVOntvz+++9Xt2jRovg98itXrqz3/fffr3Y4HCQkJPTOyMhwfvfdd2sKCgqkS5cuyddff/3uvn375l982ZWe4ddMjDXGyG+//My9t97Ax/N/OiiOd197kRNOGVzqcVsZs6a/S4dOnWnXoWPxtLmzP+bn77/D1bQZ1958B/0HnHjI5e++5Xp+/v47AJ57c3qpZd6d8iKDhgwtdd51t0ziwdSJPJe7v95j997CkmWrWb9pa6TevQeLBl7G7UoCbsedecixCsJd2Cf4kmM1X3HFFR1XrFhRT0T466+/YtLT0+sXJfiTTz45s02bNj6AY489NnvZsmX1gte1d+9ex9BhZyVeMf4WR9KRfarUjhcdE8P0Od/hKSzkkfsm8cG7b3DFIUaJK8vgYecyeNi5bN2ymYnXXMrJ/zid+G49uO3eh3jiwXu56IyTaNaiJX2PH1jqHUDR+O9F3nn1hQPGfy8sLOSiy6/m2IEnVWU3I0knrHb54bgzv7A7GFX9hg4dmlE0VGzPnj3zBg8enBUbG2tiY2NN9+7d81auXBnXuWdywwU/LO78yrP/JWPfXqKioti4bi35eXnFd9wAsz+axtzZs3j9g7TDiun/Fi7gpSf/w0vvzSy+2x5x6RVcfeNtREdH8+vPPzLxmjG8N/sr2nUo/b0t/37qRQA+mTGVpx5x89xbBw71/Oqz/2XLxg3c+37pQ0t37dGT1z/8jBbRBXmtC7c0GDJqPG8/8xBTZ33BB2nzaNywAU/cfxtNmxw8hHWEuAVIwO0ahTuz9A5RYS6sq+jh0GM1r169esWxxx67P3is5ri4uIPGgy76vm/fPsep/xjSe9AZ58SOufaGUpP7ujWrijvAPHz37WXGFR0Tw3kjRzP7Q6v6vG37Dmz/88/i+du2bKZFqzbl3gW079iJ5D4pLJg3B4CmzZrz4JPPM2PuwuKTQ7eExDLXUTT++0WXXc1zj/+b4aPH8uATzzH5vjvLXK4OqQ98gts1wu5AVPWLi4srPkc4nU5T4jtZ+b6mm3dldp547WXces+DfPTVD0wJJPDCwsLi9XzxyUe89OSjvPTeRzRv2arUbU2+787ic8TalaWPgbP4h0Xcd9sNPPP6VOK7/T3qWotWrYuHku7T7zgSex/Jit/Kr1g6Z8Qofv5+IRn7/n4V+5svPstXn8/mubdmUK9e+a2MT73yHiPOGkwTV0MefOoVpr0wmZOOO4anXn233GXD3FDgB9yuznYHUhPCPsEHK2us5rLsy8hwnjp4SPKAU4fEXHvzoRN3eeM2b/tzM3mBdm+/38/c2R+T0Msab3ngoNNYuWwpG/5YA8C0t17jjHMuKHU769asKv773j27+WnRd8Xrydi3t7hD4cplv/HNnM+46LKyX9p0qPHf84M69yiigfdxu0ofZ1eFhQYNGvj37t1boaY1Ywx+ccbl+6VZQUE+Hk8hbdtbzWhTX3/5gLJzPp3Jc4/9m5emzqRt+46lrQ6A1Af+U3yO6NGr90Hz039cxN23XMdTr71Hz6TkA+bt2L61+O+bNqxj9Yrf6Z6YdNA6sjIz2fnX9uLvX3+RhqtpM1xNrL7Ab738HJ9/8iEvvTfzgLb6Q9m0caN8+d2PXDdmOB6PF6/Xh4jgEAfZOdU6rnuoSgK+xe3qancg1a3KVfSh+Kx6WWM1H4rX73e4H36s17KlS6Ly8vL5+nPrcZHBw87lmpvKvksvac3K5fzvUevxEr/fT6/ko7jzgf8A0KBhI9yPPs0tV1+Kz+ule89ePPjk88XLjjz9RP735nRatWnLu1Ne5NeffiQ6OhpjDJdedT3Hn3QKAMuWpPOf+1JxRkVRv0FDHnt+Ci1bH/ptrGWN/37NzXdUav/qAAfwCm5XE9yZB1/BqZB9Xr3Idddd99eQIUMS4uLi/F999dWaQ5UzxrBxT25XHM5ogIaNGjPhjrsZffZpNGnW/KCL73/edC3NW7bilqtGF097+f2PadK0WaXic99xE4WFhdx/2w3F0/791Iv06NWbZx99iBW/LSEqKgqH08k/H3qsuH/N/LmfMf/LL3A/9gzZ+zO5/forKMjPw+Fw0LR5C559431EhB3bt/LfB++hQ6d4rr7obACiY2J599N5h4zp3nvuif3fv25HRHA1bsQl559B8mkjadigPtNemFyp/QtjnYD5uF2n4M5cZ3cw1aVOjwfvN0bW78pO0FfOWsJ0PPia8gDuzPvtDsJOkXrcG2PYvDc3PjPP09zuWEJBy+iCnLa+sBsPvqZsBU7BnbnW7kCqQ0RV0VeGMYZNe3K7aHJXh3AfbpdWcUSgLfvyOmlyV4fQHvgGt6uL3YFUhzqb4Lfsy+tU0RfYqDrr0bryvGxd8ee+3A4ZuYX67gNVlvZYw862szuQw1XRBO8H6643EmzPyGurB3nFFP+TR8i/fRW8iNs10u4g1OHblpHXLvjtdEqVoStWkm9hdyCHo6IJPsMY4y0sLIyp0Whqwa79BS12ZReE/ZVZbcn1AL5CovMr/7atCOEA3sHtOsPuQFTV7cjKb7U7u6BODx2qKq0XMCecR6GsaC/63X6/f8GOHTuGRUdHexwOR1jezmXleRvt3J/fKSyDrwX54nMYn/XrGGMl9517M2iy6XOcvjrxuMyhRAMf4nadjDtzsd3BqMrJyC1svCMr/9DPtil1aMcArwNhWYtXoQSfkpLiT09Pvy8vLy953bp1LYHDHq2pthX6TFxmgb9V3a1pLp849zuj/UGdpX2FNNn0OW3WvmdfUKGjPjATt6sv7swddgejKiav0Bf35768iHu+uVqF3dm81o3A7boTd+Z/7A6ksir8HHxKSsrW9PT0E/x+f6fKLBcKZqzI7rFwS947xuh/5bK8HPfs8i5m0zEAGEN0/p66fudeUgesO/lTcWcWlls6AiW/mVwj48H/fvnvh/V8/erVq2M+/vhj16RJk3YVTWvXvn3ys6+/T4+k5EqPKXE4Fsz7giceug+/z0f3xCQefOI5GjY6+J1bfr+f/9yfysKvv0REGH319Ywaey0A3341h+f/+wh/rF7JyDFXMsn9SKnbysrIYOK1Y8jYu4dj+h/P3Q//F7BekHXH9WN58b2ZxW/HU4flYdyuJbgz59gdSGVUKlGnpKQUAn/UUCw1Ij41rQXwJRCxL1SuLs6CTXlxjpB9PjVUDASeA7R3fQhZu3Zt7JQpU1oWJXhjDCKOaN9hXtQfajCoQykaFnrKjNl06Z7Aw/fcwctPP8at9zx4UNm0j6azfu1qPvl2MdlZWVx05kn0O/5EuvfsRacu3fjX48/y5eyPDxhO9qB1zJpOvwEncv0tk7j6onNYu2oFPRKTePyBu7n5rvs1uVcfBzAVt6tfOL0IJ6Ifk4tPTRPgTaw7L6Wqy9W4XTeUX0xVtw8//LBxUlJSr4SEhKR+/fr1TE9PjwO48cYbO23cuDEuMTEx6dRTT+3+5768TojIV59/yphzh3DmgKN4+em/X064e+cO7hh3BZecdRrD/zGg+A2UAGcefyRPPnw/l5x1GvdOHFep+CozLPScTz/iglGX4XQ6cTVtyulnn88XH38IQHzX7vRMSsZZzsVF0bDQfr8fT2EB0TExLPpmHo1dTTjymH6Vil2VqykwK5w63UV0ggduxRpMQKnq9hRu1wC7g6hLtm7dGnXVVVd1feONNzauWbNmxZVXXrlr5MiR3fx+P88+++zm+Pj4/FWrVq348NMvdu8LPAa7PyuTtz+ey3uzv+bNl55hx/ZtANwzcTwXXXY1783+imlffMvy35Ywd/as4m1l7tvHu5/O45FnX6lUjGUNC11a2eChYtt16MT2bX8eVK4swy4YyZaNG7jojJM49oRBtGrTllee/S83TrqnUutRFXYEVqe7sBBWbemVEZ+a1h8oveFKqcMXBbyN23U07sz9dgdTFyxYsKBBQkJCXv/+/fMAxo0bt3fSpEmdNmzYUFwPXej1R2/LzCseGWzoeRcC1iiM7TvFs3XLJhq5XPy0aAF7d+8sXnduTg4b1/3d+njOiFHFw7iGsvr1G/Dfl94s/v6Y+59cMf5mNm/cwGv/ewKAa2667aCBbdRhGYHblYo7M+Rf1B+RCT4+Na0x8D7W401K1ZSuwDPAFXYHoiyb9+bG+/ym+LwWExtXPM/pcOLz+Ypf2vT2x18SGxd38EqA+g1Kf4P1ujWruOtGq/vF0X2PPWhUybbtO/Djd/OLv5c1LHTb9h3Y9ucWjkrpb5X9czNt21W9NfH3X9PZu2cXJ//jDMZecCb/fvoljDHcd+v44uFvVbV5ELdrDu7MX+0OpCyRWkX/DBAR7xJWIW8sbteFdgdRFwwaNChnzZo19X7++ec4gJdffrlp69atPV26dPE0adLEtz87Jya30FtuZ9r6DRrSb8CJTHn+qeJpO//afsBwrYdS3pDRlRkWevCw8/ho6lv4fD4y9+1jzqczOf3s88uNoTQej4enHnFz+33/BiAvLxcRcDikzE56qsqigNdwu0L6Jjmkg6uK+NS0c4DL7Y5D1Skv4Xb9gDuz/Ayhqqxdu3beV199df3ll1/exev1isvl8k2bNm2dw+HgiKNTTPfEJOcFpx1Ph07xPPP61DLX9fAzL/P4A3dzwWnHIyLUq9+Aeyc/Qeu27Q8rxsoMC33W8ItYvvQXzj4pBUEYc80NxWPI/9/CBdwzcTw52fsxxvBl2ifc/e/HGDSk9C5Fb774DGcPv5jmLVsBMP62u7jh8osAuPXuf5UdtL4bpKr6AHcQwk3BFRouNlzEp6Y1B5YD+r7pKvgi5s5FiY4tA+2OI0zNw5052O4gqlO4DBfrN0bW7tjfq8Drr2d3LOFIh4s9LPnA0bgzV9sdSGkirYr+eTS5K3v8A7frUruDqIt2ZhW00uSubBKHVVUfkj0yIybBx6emXUCYvi9YRYzHcbtcdgdRlxR4fdG7dfAoZa+BQEi+FyMiEnx8alo08Kjdcag6rzXwULmlVLXZlpHf0W9MRJzHVFh7BLerc/nFalekHBjXA93sDkIpYBxuVx+7g6gmfsAYY0Ky+jEzz9N4f76nqd1xqIrxGwADfp/dodSEhsBLdgdRUtj3oo9PTWsE3Gt3HEoFOIEXcLuOx50Z7j1Yt/n9/sydO3e2btWq1V4RCZn98RvDn3vyOhu/3+5Qwp4Hj+T7a+6f1hgo9MOuzHwceXuJydtZ/kLh6XTcriG4M+faHUiRsE/wWI8ptLQ7CKWCHAtchjUOQthKSUnJTk9Pvz4jI+PFrKwsFyE0sGiux984u9DE2B1HJMh1Fkbl+DNrdiN+L/V3/UqnVa/jMAe/tjeCPASETIIP68fk4lPT2mCNbhc2L/8PZfqYXLXaBPTEnVlgdyCHKz09vSHQjhBp0luzp7D+c4uzvjLGNLE7lkgwODp9aapj6lE1tgFjcHr2E1WYhdSNh+7Pw535sd1BQPjfwd+PJncVmjoD44CnyisY6lJSUrKBNXbHUWR4atq9gCb3arLXmZEfFx0xz6WHggdwuz4JhSa6kLgir4r41LSewNV2x6FUGe7C7apvdxCRJD41rQnWKJFKhaojCZFHtsM2wQMPE/41ECqytSJEn48NY7eid+8q9Llxu5x2BxGWCT4+Ne04oPQRHJQKLXfgdmkzUjWIT01rBtxsdxyRRkLzKchwlwjY/mbLsEzw6MtEVPhoCVxldxAR4lag3NHiVOXUkY5vdrgPt8vWIcvDLsEH2t5PszsOpSphQqi+qzpcxKem1cPqtKhUuOgKjLIzgLBL8MA1dgegVCX1AEof51NV1Bigmd1BKFVJtvbBCasEH5+aFoOO9a7Ck7YdH56b7A5AqSroj9vV166Nh1WCB84HWtgdhFJVMBi3K8nuIMJRfGrayUBvu+NQqorG27XhcEvw19odgFKH4Ua7AwhT19sdgFKH4WLcLlsGRQqbBB+fmtYNOMXuOJQ6DKNxu+rZHUQ4iU9Na4k+ElvTtBt9zaqHTZ3twibBY3Wu057IKpw1As62O4gwczGgg8rUIEEfhK8FY+3YaFgk+PjUtGhs+oGUqmaj7Q4gzITEKz+VOkz97OiDExYJHjgHaG13EEpVgzPsao8LN/Gpae0AHd1QRYoranuD4ZLg9dl3FSligBF2BxEmRqDNcipyDK/tDYZ8gg+MHvUPu+NQqhppNX3FaPW8iiRdcLt61uYGQz7BY/Wct31UHqWq0Ym4XS3tDiKUxaemdQCOtzsOparZmbW5sXBI8PreeRVpBBhidxAhbjhaPa8ijyb4ErR6XkWi0+0OIMQNtjuAukL0Mqo2nYzbVb+2NhbSCT4+Na09UKttFkrVkiE6wlzp4lPTooCT7I5DqRoQSy2+sC2kEzx6964iV2vgaLuDCFF9sV4KpFQkqrVqek3wStlHq+lLp6+kVpFME3yAdrBTkUz/f5fuVLsDUKoGdcXtSqiNDYVsgo9PTUsC2todh1I1qJ+2wx8oPjUtBn17nYp8tdLHJGQTPFo9ryKfC+hhdxAhJgVr9C1VS0SfRrTDkbWxkVBO8Fp9qeqCfnYHEGK042EtEx0t1g51PsHriU/VBfr//EC1cuJTymZ1N8HHp6a50PZ3VTdogj+QJnhVFzTF7epY0xsJyQQP9LI7AKVqSR/crlA9DmtVfGqaAEfYHYdStaTGL2ZD9cSiCV7VFfWAGr+SDxPxQGO7g1CqlmiCV6oO6GZ3ACFCq+dVXVJnE3yi3QEoVYs0wVt03AkbCEafk7PHUTW9gVBN8F3sDkCpWqQJ3tLe7gCUqkUJNd3/JlQTfCe7A1CqFnW3O4AQoQle1SVOoFlNbiDkEnx8aloTtKONqlv0Dt6iCV7VNS1qcuUhl+DRu3dV92his+jvoOqaOpfgO9sdgFK1rKndAdgt8Ay8vtxK1TUta3LloZjgW9kdgFK1LAq3q6HdQdisFRBldxB1kQ42Y6s6dwcfY3cAStmgRjvbhIHmdgdQV+lgM7aqcwk+2u4AlLJBXa+m1yFiVV1U56roNcGruqiuJ/g4uwNQygZ6B69UHdDE7gBspgle1UU12jSlCV6p0BCKx2Jt0gSv6qIazXeheFLRBK9U3aMJXtVFNdrDMRQfSwnFmCJeHAV5TWV/rN1xqDpLE7xNlvm7NPvel7QgRrwSjfWJwifR+BxReB1R4nc48Tmi8Dud+BwOjNOJ3+nA73RgouTAT7RY5/BoIFokJG8iQ0mdS/B6B19LnPi8Zzt+WDIu6pOCBPnzKBH62h2TqrP0WS2bLDddul/iuadGxkNw4PdH4y2MwueJxuuNweONEZ8nGo83Bq8v1tU/QnwAACAASURBVPrTGyMef+C7PwaPN1Y8/hg8/jg8JgaPPxaPiRGPicVrYik0MXhMjHiJwUssHonBQzReosUnMXgkGp9EWRcqjmjxOaPwiRO/w2ldpAQuUMwBFykOjFMwUVgXKdH8fZFSky8K0ASvqpMxJzl+W3ZT1Mx9x8jaJIcYTeoqFOTaHYCqfn4cjgJi4gqCa2hKS2khfHnnwO+LweOJwldoXaR4vTHi9Ubj9cTg9cXg8cXi8cWI1xuDxxe4IPHHiidwweL1x1JoYiVwoWJdpBCDxxQSvf7SGoxdE3wd0Vs2/DEx6sOtJzuWdosWX7Ld8ShVQo7dAShVGj8OZz6xTmrmImVfXUvw+t7EatJRdm69yfnRH2c5f2xXTwp7oMOShrJ8uwOwmSZ4VRfl1eTKQzHB77Y7gHDWlKy910fNXn6R8xuXi5xkER2hK0xk2h2AzbSKXtVFdS7Bb7M7gHBTn/ycMc4vl46N+iK6DfuOFuFEu2NSlVbXE7zewau6KKMmVx6KCX673QGEgyi8nvOci5Zc7/zU0022HSXCALtjUoelRg/0MKAJXtVFf9XkykMxwesd/CEZc6rj199vjJqVeZSs6+0Q08/uiFS12WV3ADbbg9VNSfvgqLpEE3xdd7T8sebmqA+3nej4PSFK/EfaHY+qdtm4MwvsDsJOGycPK4hPTdsJtLY7FqVqUZ1L8DsAP6H5Gt1aEy/bt9wc9dH6Mx0/tY8TTwKQYHdMqsbstDuAELEFTfCqbqlbCX7j5GHe+NS0XdTBA705mbvHRX2yYqRzQbPGknsE0NHumFStWG93ACFiM+jbFFWdUqN9zkIuwQdso44k+Abk7R/rnPPbZVFz41qRcZQIJ9kdk6p16+wOIERssTsApWqRB9hbkxsI1QS/HehjdxA1JRpv4QXOb5dc55zt6yJ/HS3CQLtjUrb6w+4AQsRmuwNQqhat3zh5WJ17Fz1EYEc7we8f7PjltwlRM/cfIRuSHUJ/u2NSIUPv4C2a4FVdsrymNxCqCX6r3QFUl76yeuXNUR/uHOBYkeAU/9F2x6NCkt7BW9bYHYBStajOJvildgdwOLrJ1k03R3208XTHzx1jxdsL6GV3TCqk6R28ZSVWu6QOOKXqgjqb4H+wO4DKas3eneOiPlk13Pld80aS1xvobHdMKiysx52p72EHNk4e5olPTVsF6GiHqi5YVtMbCMkEv3HysL/iU9M2AvE2h1KmhuRmXen8/LcxUfPqtyBTe8CrqvjJ7gBCzFI0wavI56EWmqRCMsEH/EAIJvgYPAUjnfN/vcaZRifZebQIJ9gdkwprP9sdQIhJB2pyiGylQsHajZOHeWp6I6Gc4H8ERtkdBFg94M9w/Lx0QtSsnCTZlCzCcXbHpCKG3sEfaLHdAShVC2qlGTqUE7zt7fDHyooVt0R9tLu/Y2VPp5iIfS5f2cYH/GJ3ECHmF6zfxWl3IErVoAW1sZFQTvBLgHwgrjY3miBbNtwS9eHmfzh+6Rwj3qTa3Laqc5ZrB7sDbZw8LDc+NW0xcKzdsShVg+p2gg/0qF0MNd/G3ZY9f02Imrn6POei1g2kIBHoUtPbVAr43u4AQtSXaIJXkWvTxsnDauWlTiGb4AN+oIYSfGOyM6+O+uz30c6vGjZj/5EitKmJ7ShVhjl2BxCivgTusTsIpWpIrdy9Q3gk+GoTR0Hexc5vllwd9ZmzPbu1B7yykwf4yu4gQtQPQA7QwO5AlKoBmuADDjvBO/D7hjl+XDI+6uP8RNlypAjHV0dgSh2m73Fn7rc7iFAUaJ5bAAy1OxalasA3tbWhkE7wgRfe/EoVRpYb6Fi27OaoD/f2lTVJDjEpNRCeUofjC7sDCHHz0ASvIs9vGycP21BbGwvpBB8wgwom+F6yad0tUR/8eapjSZdo8R1Rw3EpdTg+tzuAEKf9E1Qk+rA2NxYOCf4D4OFDzewgu7bd6Jy59mzn923rS2EC0K32QlOqSrbizgzrAZX+n707j7Op/h84/vrcO3fGLFz7NugKY4wlvraIImWbZF+yRUrRQgpD4tLittNGKmXJLwqJW0gikZ0iWcK1M9Y7+8xdzu+Pc2eMWZhhZs7cO5/n43EfmnPP8r7TnPs+nz2/2SyRB0xR1v2AfFCXfIlM8OnZLJFHTFHWv4B7UreVJPbqcD/r/sf060uUJK6BEFTWMERJyq3FWgfgJf4PeEPrICQpjxyyWSLzfQW59Ap9gvf4PpDkWgP06/Y+4bfaUInLDYWgtdZBSdJt+kbrALzEt8gEL/mOAi29AwhFUQr6mrm2YFLPGgP16/YKQYjWsUjSHfoXs13OkJhDpijrVuSkN5JvaGyzRBbo1NS6grzY7Rr0+tKjQlCgVRuSlE9k6T13FmkdgCTlgUMFndzBSxK8x3ytA5CkO6QgE1ZuLUFdfEaSvNlsLS7qTQn+WyBR6yAk6Q5sxmwvsDGwvsBmiTyPHFIoebdEYJ4WF/aeBG+2X0FWb0re7ROtA/BSM7UOQJLuwBKbJfKqFhf2ngSv+lDrACTpNp1GndNByiWbJXIdyD44ktfSpHoevC3Bm+37KMB5fCUpD32K2e7UOggvJh/uJW+012aJ3KrVxb0rwavkjS55m0TgM62D8HILgCtaByFJufSplhf3xgT/IyA7KkneZKGnD4l0m2yWyETgc63jkKRcOI1GnetSeV+CN9vdwAdahyFJOaQAM7QOwkd8DKRoHYQk5ZDFZonU9O/V+xK8ag7q05EkFXaLMdsPaB2EL7BZIk8jS/GSdzgLfKF1EN6Z4M32ZOB1rcOQpFtwAVO0DsLHvA4kaB2EJN3CWzZLZLLWQXhnglfNBY5pHYQk3cQ8zPbDWgfhSzwT33ykdRySdBPnUGuZNee9Cd5sdwDTtA5DkrKRgvz7zC9vAXatg5CkbLxts0QmaR0EeHOCVy0EDmkdhCRl4XPM9hNaB+GLPLOCvat1HJKUhSNoPDQuPe9O8Ga7CxirdRiSlEEsso9IfpsBXNA6CEnKYLTWPefT8+4ED2C2rwRWaR2GJKUzGbP9vNZB+DKbJTIOeEnrOCQpnVU2S+RPWgeRnvcneNULyJXmpMLhL2QnsAJhs0R+A6zTOg5JApKB0VoHkZFvJHh1Cc7pWochFXkKMMLTdCQVjJGoX66SpKX3bJbIo1oHkZFvJHjV28B/WgchFWlzMdv/1DqIosRmiTyCfLiXtHUaeFPrILLiOwlenfzmWa3DkIqsy8B4rYMooiyAnG9A0spTNktkvNZBZMV3EjyA2b4WDdfelYq0ZzHbL2sdRFHkmTHsadQmEkkqSF/YLJGrtQ4iO76V4FUvIZ/mpYL1f5jti7UOoiizWSI3AO9oHYdUpJwAxmgdxM34XoI32xOAAYBT61CkIuE0smmosJgE7NA6CKlIcAEDbZbIWK0DuRnfS/AAZvtOYKrWYUg+zw0MxGy/qnUgEtgskQ7gMdSJhiQpP023WSL/0DqIW/HNBK+aDmzWOgjJp72J2b5R6yCk6zxDlUZoHYfk0/7ESwqQvpvg1bHI/ZDTWUr5YwNecpMXNZ4JcBZoHYfkk84BvWyWSK9oAvbdBA9gtp8GeqKu7CVJeeU40Auz3Stu8iJqJPC31kFIPiUZ6GGzRJ7VOpCc8u0ED2C2bwae1zoMyWfEAV3lkLjCzTNXfRdArgkg5ZURNkvkVq2DyA3fT/AAZvsc5Ph46c4pwGDM9n1aByLdms0SeRLoChSKtbklr/aRzRL5ldZB5FbRSPCqF4BNWgchebWpmO3LtQ5CyjmbJXI78DhyEhzp9v1GIR/vnp2ik+DNdgfQDTigdSiSV/oGmKZ1EFLu2SyRSwCz1nFIXmkfXtSpLiOhKEXswdZsDAX+AEwaRyJ5j5VAD9mpzruZoqzzgMFaxyF5jf+A1jZLpNf24yg6JfhUZvsZ4GHk8DkpZ34D+sjk7hOeAJZpHYTkFU4DD3lzcoeiWIJPZTbegzqWuaTGkUiF13agHWZ7nNaBSHnDFGX1B34AOmkdi1RoXUItuR/UOpA7VfRK8KnM9r+AR1CHPUlSRv8AnWRy9y02S2QK0ANYq3UsUqEUA3TwheQORTnBQ+oY+YcBOZe4lN5e4EHM9itaByLlPZslMgl1+NwarWORCpUrQHubJXK31oHklaKd4AHM9q1AG2SbvKT6A2iD2R6tdSBS/vEk+W6AVetYpELhNGq1/DatA8lLMsEDmO1/A61Q1/eViq6fgfaY7XatA5HyX7qS/OdaxyJp6hBwn80S6XNDqItuJ7usmI1VgV+A2lqHIhW4b1FnqXNoHYhU8ExR1knAa1rHIRW4XUAnmyXyotaB5AdZgk/PbD+FWpIv9Ov8SnnqQ2CATO5Fl80S+TrqjHfyb6DoWA+09dXkDrIEnzWz0R+Yg3rDS74rGRiB2e51c0xL+cMUZX0IWAqU0DoWKV99CLzkrTPU5ZRM8DdjNr4MWAC91qFIee4c6ux0XrU6lJT/TFHWusD3QLjWsUh5LhEYbrNELtQ6kIIgE/ytmI0PobbPltE6FCnPbENN7l6zrrNUsExR1hDgM6C/1rFIecaGup77Hq0DKSgyweeE2XgXsAhoqXUo0h2bA7yA2Z6sdSBS4WeKsj4NzAQCtI5FuiO/AP1slsgiNbeFTPA5ZTbqgVeAVwE/jaORcu8S8CRm+wqtA5G8iynK2gj4DqihdSxSrqUAU4G3bJZIl9bBFDSZ4HPLbLwXWIi82b3JamAoZrtXLxwhaccUZTWidsySq9F5j7+AwTZL5N9aB6IVmeBvh9kYAnwEDNE4EunmEoFxmO0fax2I5BtMUdaOqG3z1bSORcqWC3gLmOpZe6DIkgn+TpiNnYGPgepahyJl8hswErPdJxaNkAoPTwc8CzASEBqHI93oEGqpfbvWgRQGMsHfKbMxEJgIjAP8NY5GgvPAS5jti7QORPJtpihrK+AL5MyXhUE86kPXu54piCVkgs87ZmMY8CnQTutQiigXam3KZMz2GK2DkYoGU5Q1ABiF+pBv1DicokhBHeE03maJPKN1MIWNTPB5zWzsA7yJ7IRXkDYAozHb/9I6EKloMkVZy6COsBmBrMkrKDuAUTZL5J9aB1JYyQSfH8xGP+AJ1Bu+isbR+LKtwKuY7eu0DkSSAExR1ruB6UAfrWPxYcdRh77Nt1kiZQK7CZng85PZWAz1iX4CUE7jaHzJXtTEvkrrQCQpK6Yoa3NgCtBJ61h8yEHUh6dFvj6HfF6RCb4gqMPqngWeQ5bo78Qe1OaPpZjt8g9XKvRMUdb6wMvAY4BB43C81d/AG8D3NkukW+tgvIlM8AVJrbrvBYwGmmscjbdQACvwPmb7b1oHI0m3wxRlrYJ63w8HimscjrfYBLwLrJRV8bdHJnitqDPijQZ6Iqe+zcpVYC4wC7P9qNbBSFJe8MyI9wTqJFkNtI2mUIoBFgCzbJbIf7QOxtvJBK81s7EC0A8YCDTROBqtOYC1qMNelmO2J2ocjyTlG1OUtSHwODCAot1HRwE2oj7QL7VZIhM0jsdnyARfmJiNtVFv9gHA3RpHU1AUYDNqUv8Os/2SxvFIUoEyRVn9UDvjPe75N0jbiAqEG9gCLAeW2SyRNm3D8U0ywRdWZmMzoDPqDd8E0GkbUJ5KRH1iX4NaUj+hcTySVCiYoqzFgLao935nfOtBPwlYB/wA/GizRF7UOB6fJxO8NzAbywDtUZN9e6CCtgHdlv2oCX0NsAmzXU4nKUm3YIqyhqMm+o5ACyBE24hyJQXYBfzhea23WSLjtA2paJEJ3huZjTWAZulejYBATWO60UVgJ+pMU+rLbL+gbUiS5N1MUVY9UB9oiXrfNwbqAHot40rnArCb6wl9u5wXXlsywfsCdfhdPdReubU9r1qoq9zl15AcN3AaOAYc9fx7CNgpq9wlqWCYoqxBqEm/Jmp1fo10r0r5cMlk1Pv+X9SJZ/5N/W+bJfJqPlxPugMywfs6s7E0cBdQFiidxSt9yV+k+9cNXEMdrnYVuJLuv88ANsz25AL4BJIk3QZP8q8KlAJKZvEKRl2kye35N/0rCbUmLtrzughE2yyRciEnLyITvCRJkiT5IF/qmS1JkiRJkodM8JIkSZLkg2SClyRJkiQfJBO8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INkgpckSZIkHyQTvCRJkiT5IJngJUmSJMkHyQQvSZIkST5IJnhJkiRJ8kEywUuSJEmSD5IJXpIkSZJ8kEzwkiRJkuSDZIKXJEmSJB8kE7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg2SClyRJkiQfJBO8JElSISWEaCqE2CKEiBdCKEKIhkKIjkKIvUKIJM+2klrHKRVOfloHIBUNQoiJwAFFUX7QOhZJ8gZCCAPwHZAEvAgkAKeA34F/gGeBZCBeCNEfKK8oygyNYtUBg4EeQCOgNHAc+BZ4V1GUJC3iKuqEoihaxyAVAUKIOOB7RVGGaB2LJHkDIUQ48C/wlKIoX3i2dQR+Bh5WFGVdun1XAfUURTFpFGsIEAtsBVYB0UAL4HHUB5IHFZlsCpwswUu55nla95dP5ZKUr8p7/r12i22FQQpwn6IoW9Jt+1wIYQOmAu2AdVkdKOUf2QZfCAgh2gghdnra1I4KIZ4WQpiFEEqG/QYKIXYJIRKFEFeEEN8KIapm2GeDEGK/ECJCCPGbECJBCHFGCDEui+sGCCGmCiH+E0IkCyFOCSHeFkIEZNhPEUJ8LIQYIIT4B7VasKPnvZc9bYSXPXHtEkL0yng8EAw87jmXIoT4Ot37oUKIuUKIC544/hFCPHGHv1ZJ8lqe+2Oj58fvPPfMBmCeZ9uO1PvIsz0SuCvd/WXznKeN5+c+Qogpnu+CWCHE90IIo+c7YIYQIloIESeE+CqL+3+oEGK9Z59kIcQBIcSI9PsoipKSIbmnWu75t05e/F6k3JEleI0JIRoBq4FzwBRAD0wGLmbY7xXgNWAJ8AVQDnge+F0I0UhRlPRP9KU851zm2b8X8JYQYp+iKD97zqcDfgRaAXNQqwLro7b1hQHdMoT6INAH+Bi4BNg820d5zvMN4A/0Q/1CekRRFKtnn0GemLd7rgVw1BNHBdRqPcVz7otAJ+BLIUQJrdoUJUljnwFngInAh8AO4AJwCBiO+h1xHPU+CgGMQBXU+xcgLsP5JgCJgAWoifrd4QDcqN8XZuBeYIjnvNPSHTsCtc3/R8AJdAE+FULoFEX55Bafo6Ln30s5+dBSHlMURb40fKHeNPFA5XTbaqLefKnNVneh3lgTMxxbz7PfxHTbNqAmy0HptvmjPkB8n27bQMAFtMpwzqc9x7dMt03x7BuRRfyBGX42APuAXzNsjwO+zuL4L4CzQJkM2/8PtRoyMOMx8iVfReEFtPHce73SbRvi2dYkw76rANtNzrEPMKTbvgg1uf+UYf8tGc+T1T2IWoA4moPP8AtgB0pq/fssii9ZRa8hIYQeeAj4QVGUs6nbFUX5D7UjTaoeqM0pS4QQZVNfwHngCNA2w6njgIXpzpeCWnq+O90+vVFL7QcznHO95/2M59yoKMqBjJ9BUZTEdJ+nFGpJYhPwvxx8fgH0BFZ6fkwfxxrPuW55HkmSbmm+oiiOdD9vAwQwN8N+24CqQoi02t0M97jRc39uBO4WQhizu6Bn5MxDQJRyYw2jVEBkFb22ygOBwH9ZvJd+Wy3Um/FINudxZPj5tOJ5fE7nKtAgwznrkKEpIENs6R3PaichxCPAJKAhkL7tLic9ZssBJVGrHIfnMA5JknLvZIaf7Z5/T2WxXYf6cH0ZQAhxH2pHuRZAUIb9jenOlUYI0Rd4HfhSUZRZdxS5dNtkgvcOOtSE2Qm1qjyjjO1tWe0D6kNC+nPuA8Zks2/GGz8x4w5CiNaoTQy/AyNRmwEcwFCgfzbnTS+1Bmkh1zsPZfR3Ds4jSdLNZfedcNPvCiFEDeBX4CDqd8Up1B7znVHb+zPVAgshHgbmA1bgmTuKWrojMsFrKxp1EouaWbyXfttR1BvuuKIoh/Po2keBe1Dbym93fGpP1Pg7KIqSnLpRCDE0i32zusZF1LGzeiXdmF5JknItv8aYd0GtmXtUUZS0WgAhRMYmvNTtzVF7zu8E+iiK4synuKQckG3wGlIUxYU6NrSbEKJy6nYhRE3U0nqqZahP2lM87dak21cIIcrcxuWXAKHAUxnfEEIECiGCc3AOF+oXiz7dsSYy98AHtSPhDVNqej7/UqCnEKJeFnGUy0EMkiSp91e27eF3ILWEn/a942l3z/QQL4Sog1pqtwGPpG+7l7QhS/DaMwPtgc1CiFmoyfI5YD9quzaKohwVQkwCpgMmIcQPqCXf6kB31KFn7+byugtQh73N9jyNb/ZcO9yzvQPqU/jNWFGr7VYLIRahtpc/i9p/oEGGfXcBDwkhxqD2mj+uKMo2IAq1Q982IcTnwAHUaS7/h9pBp3QuP5ckFUW7gL5CiPdRh9TFKYqyMg/Ouxa1Sn6lEOIz1CF5T6HWPlZK3UkIURy1Y2wp4B0gMkNZ5KiiKH/mQTxSLsgErzFFUXYJITqhJujXUNu4JqN2gAtPt59FCHEYtd1rimfzKdQb8MfbuK5bCNHNc77BqA8KCcAxYCZwy6YARVHWCyGGoSbpGagd8cYDJjIn+DGoDyKvo3YsnAdsUxTlghCimecz90Bty7+MOu52fG4/lyQVUZ+iFgiGot7TJ1BHp9wRRVEOeSaueh31O+o8MAu1eS19D/wyQOqkW5YsTjUPkAm+gMm56AspTym9rqIotbSORZIkSfI+sg2+EBBCBGb4uRZqL9UNmgQkSZIkeT1Zgi8EhBDngK9Rq8fvQp0aMgBopChKdmPfJUmSJClbsg2+cFgNPIY6b3MyalvVRJncJUmSpNslS/CSJEmS5INkG7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg3I10c2uXbtCgMrIBwPpRm7gbOPGjeO0DkTKe/K+lwoB+R1zG3I80c2uXbvu1el0s3U6nZF0awNLEqC43W672+1+pnHjxlu1DkbKO/K+lwoJ+R1zG3KU4Hft2hWi0+n+KFmyZIXy5ctfEULI6e98kKIoZFjDOafHiejo6NLXrl274Ha7W8mnbN8g73vv53K7hdOFwel2G5xuxc/lVnSAUBSEgiL0iqKUFPHKVYIFQgcCt0CgE7j1OuE06HQOg144dDpt/9/L75jbk9Mq+so6nc5Yvnz5K8HBwYn5GpGUJ1xuRZfkcBVLcroCUpzuAJd6c9/4UhS9241eQREAFQxJ8RVc54IBBQQIoYBwo9M70RlS0Ps50Bkc6A0p6P3T/evvKF++/JWYmBij2+2uTA7Wkpe8grzvCzmXW9ElpDiDElJcQSlOd4DTrRicLrfB6VYMLrdicCvKTZpVBEEoKRV08c5YJSTAoaBXt6fmcgW1Zhx0QrgMepHip9c5DDpdikEvUgx+upQAP11SsL9fQkE8AMjvmNzLaYLXAUI+wRc+brci4lOcwfEpruBkh6tYitNdLMXlLuZyK3eykJAABRRFADpcLj9cKcVwZH+AzqV3+CVfdZh2vP40K3dYgR2Y7bF3EIOkPXnfFyIut6KLT3YGJTpcQYkpruAkpysoxekulhfnVm7R/OJWFH2yUwlMdroDM74nEIq/ny4p0F8fH2TQxwUF6OMDDfqk26kNvBnP36H6nSTliFxNzsskOVwB8cnO4IQUV0iiwxWc7HAHppbAtSQUp0HnSjYEJJ4fA4wB3JiNB4Htntc24G/MdqeWcUqSt3C63bqYRKcxNslhTExxhaS43AH5dCmhcPvZWEERyU5XYLLTFXgNygLohHAXM+gSihn08SEBfrElihlitK7mL4puO8GboqyN8zKQ9GyWyF35de6c2rFjR7Fu3brVOnPmzL6CuN6gQYOq7dixIyT15+PHjxd79dVXT0+c+MrFL+ctqPTOW9PL6/R+OofDIR7sEMlz4yZl2V7+6phn+XffXnQ6HX5+BkZNmELzVg8AsG/PLt6aEkVKSjIpycl07dOfoSNGZTrH8ZNn6DdyAnHxCQzo3omJLwwD4N8jxxj/xof8+PWMnHwkHRDheQ3xbEvCbNwMLAWWY7afz8WvSCoE8uu+Lwz3/K2Eh4dH/PnnnwdLlSrlzq9rJDlc/vZER8nYJGfJxBRXSG4f3vfv3c07UyeQEB+PEIKXJr9B8/vuB+DE8aO8+crLXLl0EafLxdOjxtLj0W4AZOyKtWn9Wj5+5w0Utxun08mQZ17g0d6PAXD50kUmjR7B6RPHMfj788ob79L43vtuON6tKLodO3aGTB33QojD4ajwxIhRSv9Bg6+VKOZ3bdOvq11LFi8uuWjRohO3+3uSckaW4AuJBQsWnEz976PHTwTWrVO7zkNd+xoPnIsJrdeirW7J2kfQ6XQ4UlJ4vEcnIho0ol2nRzKdZ+yUNylhNALw7/6/Gd6vKxv/PopOp+O1qNGMfGkCbdp3xn71Kl3bNuP+dh2oERZ+wzk++XoJzz7ehwE9OhHRphfPP9GPkOAgRk95l9mWV+7kYxYD2nleH2M2bkFN9ssw20/e9EhJ0ojD4cBgMHDw4MEDeX1uRVGIS3YGxyQ6S8YlO4xZVYHn5lwvPjWI197/hHtbt8F27D+efqwbKzbsoFhgIJPHjKRrnwH0eGwwVy5fon9kW1o2bYYp1O+GKnpFUZj4wtN8+d1KwurU48ypk3Rr24x2nR4hOKQ4M6dPpcH/mjBr4ffs37ubF58axE9b9mIwGG6IZ+6nMxg/1UKdBg3p9fB9okvvx0pdvBpT6rU33+LzBYtjomOTypUM9L/m76e7sIReYgAAIABJREFUSeOfdCe8ui1j4cKFJe++++66tWvXjhgxYkRoqVKl7jl06JA/wPDhw6vUq1evTnh4eESTJk1q//XXXwEAcXFxIjIy8u4aNWrUrV27dsR9991XK/V8Y8aMqXzXXXfVq1u3bp0FCxaUTn+tpUuXlmjcuHHtunXr1qlfv36dlStXFgdo2bJlra+++qpU6n6rVq0qXqdOnYjcfha3WxGX45JL/xcdV+ujz7+KaPlAOxFUqlwJt6LogkOKo9Op/6uSk5NwpCRn29s9NbkDxMXG3PimEMTGqNsSE+MxGPwxlixFRgaDHwmJSTgcTtxuNzqdjtnzv6f9/S2oXi00tx8tOzqgFfABcAKzcTtm43jMxpp5dQHJ96xbty64cePGtWvXrh0RFhYWsXDhwpIAv//+e1CjRo3Cw8LCIurXr19n7dq1wQD9+vW7a/LkyRVSjz948KB/2bJl70lOThYrVqwo3rBhw/A6depE1KxZs+4HH3xQNnW/nj17mnr37m1q0qRJ7bCwsLoAQojGly5d0kP23y+p+0VFRVWsX79+ndDQ0PozZ84sk/re7t27i7Vq1apWWO3adcPC69wzxfJBw+OX4sMPHT9Z8YWnHg/s/0g7ej7Uko/ffj3Xv5trV69w9col7m3dBgDT3TUpXsLIHxvWAXDowD+0avswAKXLlCWsTj1W/bhMD9e71aX7DMTa7QDEx8VgLFkaf3/1I65d9QO9Bw4FoF7D/1GuQkV2bd2cKR4/Pz+SEhNJSU5Gr1P77836wMKAYc/gF1S8xHl7UrWD52MaHLkQG34hJqm80+XW5/pDSzfltSX4M2fO+D333HOm33777WCjRo2SZs6cWebatWtpn8dsNp+vXLnyaYA5c+aUeu6556pt2rTpyLJly4x2u11/9OjRfwAuXLigB/j222+NP/74Y6k9e/YcKFmypLt79+7VU8914MAB/9dee63y+vXrD5cuXdq9f//+gLZt29Y+efLkvsGDB1+eP39+maFDh14FmDt3bpmBAwdeyunniEtyBl9JSCkbk+go5VYUPcAPi79hzKRpN+y3d+c2Xot6kZO2Y/QZ+ARtO3TO9pwzppv5ZdUKYuzXeG/O/LSHg2nvfcLoYf35+J3XuXr5Mq9aPqBs+QqZjn/hiX4MeXEKny1cysvPDMIeE8f31nWs/b9Pc/qxbkdTz8uC2bgX+AxYgNken58XlbzHhQsX9H379q35zTffHO3YsWOcy+Xi0qVL+qSkJNG3b98aH3/88YmePXvGrFmzJqR///41jx49um/YsGGXRo4caZo2bdoFgM8++6xs9+7dLwcEBCgtW7ZM2Llz50E/Pz8uXLigb9SoUcSjjz5qr1GjhgPg77//Dtq6dWuWVfLZfb+kvh8QEKDs27fv3z179hRr1apVnZEjR15WFIXuPXqGPT/2FWf7rr2KAVy9chmASS+O5MnnxtCkxX04nU6eH9KPtat+oP0j3XL8+ylVugzlyldgzcrldOjSnf17d2M79h9nT6mVYxH178G6fAlDR4zi9Akbf+3aTtXQKpAhvwshePvTuYwZPpjAoCBi7HbenzMfg78/165ewel03PC9EVq1GufOnM4Uz9Ojx/Fa1IskJibw4ivTOPjPPs6cPMGLE6fesF+iwxWc6HAFR8cmh5Yo5ne1TEhAdEiAX0KOP7iULa9N8Bs2bAiuXbt2QqNGjZIAnnvuuctjx469K/X9H3/8scTs2bPLx8fH691uN3a73Q+gSZMmCePHjy82cODAag888EBsr1697ADr1q0r3rVr1yulS5d2A4wYMeLisGHDQjznMp44cSKgZcuWaXXZQgj+++8//4EDB16dMGFC1RMnThhKlizpWr9+fclPP/301M1id7sVcSk+ueyV+JTyGXvB7t62hYS4OFo/2P6GYxo2ac7SdVu4cvkSLw0fzO5tWzK1e6UaPcHM6Almtm7awIw3pjBv+WoM/v7M/eQDXhg/mc7de3P6hI0nekcS0aBhpir6ShXKsWbR9WTee/g43ps8ht8272TWgu8I8Pdn+oTnuKtK5Zt9zDvREJgFTMds/Br4BLP9v/y6mOQdfvvtt5Dq1asndezYMQ5Ar9dToUIF1/bt2wN1Oh09e/aMAejQoUNcmTJlHFu3bg3q0KFDnNPpZOPGjUGtW7dOWLJkSZkffvjhCMCFCxf8BgwYYDp+/HgxvV6vXLt2zW/Pnj2BqQm+a9euV7Nrb8/u+yXVsGHDLgM0atQoSa/XK3sPHgs9e/Fq2RSHw699115pddmlSpchISGe7Zs3cuVSdNrxCfHx2I7m/k9+xpffMOPNqXz5yQfUCAunUdN70fupob32wSzee20SfTq0plJoVZrd9wB+fpkLzU6nk88/fJf358yn8b33sX/vbkYN68/3v2zO1TwZd9eqzVdLfwLA5XLxzIAevDFjNj//8D2//PQjwSHFGTv5DUqULAmAoig6e6KjjD3RUaaYQZ9QJtj/Qqlg/6s6OYrjtnltgr+ZI0eO+I8fP77ali1b/q1bt27ytm3bAh966KHaABERESkHDx78Z9WqVcV/+eWXElOmTKny119/ZWpbS/+HrCgKrVq1ilm5cuXxrK7XuXPnq59//nnpcuXKOVu0aBFTsWJFV8Z9Jk6cWHHZsmWlEXq/FydN07V4oF2W1VHLv11Il9790Ouzrq0qXaYsrR58mLXWFdkm+FT3tm7D9FfHceTgASpVqcr6NVbe/nQuAFXuMtHgf03Zu3NbpgSf3lLrr9QwVaFhvdrUeaAH260L2PnXASa/M5t5M6dle1weKQmMBkZhNq4C3sJsz1wXKEkZpL9/+/fvf/nzzz8vGxMTc7VUqVLOpk2bJgEMHz78rvbt29tXr159VKfTERERUScxMTGt2TIkJCTTfQw3/35JFRQUpCSmuIpFxyZV0PsZ9Jfikiu6sptUzLN9wYpfCCh281FvLz39OKdsxwCY8+0KSpa6oSWR2hH1mbXw+7Sfu7VtTk3P/R1atRrvz5mf9t6Igb2o2fr+TEEd+mcf0RfOp32/1Gv4PypUrMzB/X/T4v626PV+XIq+kFaKP3PqJJXUmoBsLfxiFg9HdqW40cicD9/lu7V/sGrpYhZ+OYuRL03ItH+SwxV05lpi9QsxyVVKB/tHlw3xv3jTC0hZ8to2+DZt2sQfOnQoKLXta9asWWUcDocAuHr1qt7Pz0+pVq2aw+12M2PGjPKpxx09etQghGDAgAH22bNnn1YUhWPHjvk//PDDsT/++GPpq1ev6txuN7Nnz05rj+vSpUvM5s2bS2zbti2tA8xvv/0WlPrfTz755KVFixaVXbhwYdmhQ4dmqp5Pdrj8R7w8yfD9r9sClvyy2ZBdco+LjeGXn36kW9+BN2w//t9h3G61IBEfF8umX9cSVqdupuMdDgcnjx9L+3nfnl1cuXSRKtVMlDCWJDAwiG2bfwfUqsF9e3ZSs3adbH/H1+yxzPxyEVNeHA5AQmISOp0OnU5HXEKB1qAJoAvwB2bjH5iNj2A2aj40UCpY7dq1iztx4kTA6tWrQ0AtFV64cEHfoEGDJLfbzfLly0sA/PLLL8GXLl0y3HvvvQkATz311GWr1Vpq9uzZ5QYNGpR2f9rtdr3JZErW6XT8/PPPIYcOHQrK+so3utn3S6oz9qSq/0XH1rUnOtK+R0w1alEsMIiff7iegK9euUxQcAhNW7Zm7qfXR6dEnz/HhXNnMl37vc/msWTNJpas2ZQpuQNcvHB9YMrSRfMIDAyimacX/eWL0WnfI5s3/MqxIwfp2r13phqKipVDuRR9gWNHDgFw8vgxTp04jqmG2j2mfWRXvlv4FaD22o8+f+6mhY3TJ0+wddMGeg8citPhwOl0IoRAp9OREH/zFjin222Ijk0KPXg+tsHFuOTyihfnLC14bQk+NDTU+eGHH9q6d+9e09/fX3nggQdigoKC3GXKlHHVrl075dFHH70SHh5et1SpUs7OnTtfSz1u165dgZMnT66iKAoul0v06tXrSvPmzRObN2+euG3btuCGDRtGhISEuNq1a2ffvn07APXq1UueO3fusaeffvquxMREncPhEHXr1k1o27btcYC2bdsm6PV6Tpw4EdCjR4+0nm0pTrfhnD2xckyis0xOhrus/nEZEfXv4a7qNW7YvmblctasXI6fnx8ul4uHI7vS47HBAPzz1x4+fe9NPpn/HU6ng1fHjCA2JgY/Pz8Cg4J497N5aVVg78z6ig/emIzL6cTpdDJg2Ajuadws23jGvzET85inCQxUSxWTRj1Jk04D8DcY+PK9KTn9X5XX7gNWAvswG8ditq/RKhCpYJUrV8717bffHh07dmzVF154QafT6Zg8efKZ/v372xcvXnx01KhR1caPH18lICBA+eabb44ajUY3gMlkctxzzz3xv/76a8l58+alDc16/fXXz4wePbqaxWKpXLdu3YQGDRrkqL9Hs2bNErP6fnG63PrzMUmVAGKTXGVKZBi17ufnx8wvv2H6q+P54uP30el09Bk8jN4Dh/Lmh3N4d9or9GjXAiEEgUHBvGp5nwqVctepdemieViXfweKQvWaYXzwxYK02oyN61Yz95MZ6PR6ylWoyMfzllAsMBBEnLJh7U9s+GU15nc+pEy58ky2fMDYEUPR6XS43W4mvPY2lUKrAjB6opmJo56hS+vG+Pn78+aHn2XqQZ/e21OiGGd+EyEExUsY6dytF70evo/AoOC0GsVbcSuK7lqCo9zlBJd79o6rj+34zvqazRIp59S4hZzORR/u5+e3ulatWnFBQUFJBRBXjly9elWX2ka2YMGCklOmTAk9duzYP1rH5XIrugsxSRWvxKdUuPlUkYVLuqlqcy3JqXD8zEWqb36JYnE37YKQ16zAGMx2OXVlHius931h43IruujYpPKX41IqpnaU9RZBuFNM+ouOA64Kt3XfFyTFmUL02dOYf4vmTKzrEBBls0T+oHVchZnXluAB3nrrrfLLly8v7Xa7RUhIiGv+/PlZtpEXFEVRuBSXUjY6Nin0DqeKlXIuEmiP2fgRMA2zZ2yPJOUzRVG4GJdc7lJsciWnW8m+CCvlh9rAclOUdRMw1maJ3KZ1QIWRVychi8Vy3mKxFIrZ0OyJjuLn7InV8mpuaClXDKjT4w7CbJwEfIHZnm+zjUlSXJIz+PS1BJNv3O9e3Z2lNbDVFGX9DjXRy9nx0vGa6uPCyuFy+9kux5tOXI4P842b3auVQx0/vwuz8QGtg5F8j1tRxJmrCaHHL8WF+8r9rmSe58Yb9Qb2maKsw7QOpDCRCf4OXI5LLn34QmzdmERHmVvvLRWghsAGzMZ5mI3FtQ5G8g1xSc7gwxdiIy7Hp1T0hYyYxqsL8DcoDnxhirKuNEVZK2odTGEgE/xtSHG6/Y5djKtx5lpiddnWXqgNBnZjNjbROhDJe/liqd3HPQLsN0VZe2sdiNZkgs+lawkpxiPRsXXjkp0ltY5FypGawBbMxnFy7LyUWz5bar+BT94WZYAlpijrIlOUNfOCG0XE7Zc+zcZ8Wy4Ws73QLR2pKApnryWFXo5PllU/3scAvAU8hNk4WC5Tewfy674vZPe8oiictydVuhSXXNl3E3uR8BhwvynKOsxmiSxyc2b4ZAn+0KFD/m+//Xa59NtCQ0Prb9my5baWYkxxug3/XYyrndvkfuTffxjaszNd2zSjR7sWTH7pOZISE9Pej7l2jQnPP0WX+5vQvV0LZkw3Z3uunX9upn/kg3Rv14LuD97LX7vUSXh+XrGUPh1a06NdC3q0a8G8zz7O9hzTokbT86GWPNn3UWJj1NFkiqIwclAvTtk0HWFYUB4G/sZszH6lHqlQS11BMjw8PGL79u23vbRqRqtWrSr+/ffflwB1XLvtcnyNi7lI7n/v2Unv9q3ocn8Tnuz7KBfOnc1yv/17dzO4W3ua16rM6GEDbnjv159X0evh++jToTXdH7yXj956jazmKXE4HIweNoDe7Vvx4lODcDrV+V6Sk5IY2rMzMdeuZTrmZhTfLMGnFwqsNkVZp5qirD7/YdPzyQR/5MiRgLlz55a79Z63Zk90FD8SHRuRmOIKSb2Rcsq/WDEmvP42KzZs57u1f5CYkMBXs2amvT/55ecIr9uAlb/vZPmvfzJw2IgszxN9/hyvjhnB6zNmsfzXP1n880aq11Snvq5YOZRPF3zPsl//ZN7y1Xy3YC47/vwj0zmOHDzAyePHWLpuC01atGLVssUALPu/+TRt2ZqqpuqZjvFR5YBVmI0zMBsDbrm3VKjMmTOn3Pjx488dPHjwQLNmzRJvfcStORwO1q9fX/ynn34yJjtc/v9Fx4XHJuW8Cc7tdjPx+eGMNU9n5e87ad32Yd6ZOjHLfctVqMDYKdN5ecobmd67t/UDadPQLln9O39u2sD61dZM+23Z+CslSpbiu7V/ULyEkc2e5WDnzHyHfkOeSpu5MheKSiXFZOD/TFHWPHswLOy8OsEvXbq0RERERJ2wsLCIpk2b1t61a1cxgOeff76azWYrFh4eHvHggw+mrS++ZMmSUg0bNgwPDQ2tP27cuEqp20+ePOnXuXPnu+vXr18nLCws4oUXXqgMcN6eVCEirEbYu69P9uv/SDtefTHrBJydu6rXIKxOPUBd+arePY3Slm48efwYB/7ew6Dhz6btn9XSrQBL5n9Jp669uLuWmtT9AwLS1n1v1PTetOOKlzBiqlkr7RrpGQwGHCnJuN1uEhPUteAvXjjPzyuWMuipZzPt7+MEMApYh9lYZNvnvM2QIUOq7ty5M2TatGmhjRo1CofsvwNWrVpVPDw8PCL12B07dhQLDQ2tD2oNX/HixRuOGDEiNCIios706dPLz58/v9zyH34oc0/DhvVnvjs9VwngwN970fv50axlawB6DRzCxnWrSU7KPPlfhUqh1G/UOG1t9fSCQ4qnLe2cnJyEIyU5y9Xb/PwMJCWqa0EkJSZgMPhz+N/9HD96hA5duucm9KKoL7ChqPSy99oEf+bMGb9hw4bd/fXXX9sOHz584IknnrjYp0+fGm63m48++uikyWRKOnjw4IH169enrbl47do1/d69ew/u3Lnz31mzZlU4fvy4AaB///7Vn3322eh9+/b9+88//xzYs2dP8IdzvqoVHZtUBcB+9SrfrFzH9I8+v+14ExLiWfbtAtq0V2uHjx05SIVKobw+cQz9Orfh6f49+Hf/31kee/TIIZKTkhj+WDf6dGjN9FfHkZCQedrso4cP8veuHdzbOvMQcFONWjRt0Zp+nR7gzMkTRPbowztTJzLmlWn4+RXZgQCtgE2YjTdfCksqFL7++utT9erVS7BYLKf27Nlz8GbfAbcSFxenr1u3btKBAwf+nTx5cvRjg4fER3bvq1+yZhPPjB6Xq7jOnz2dNk87qIk6OKT4DQu/5NTendvo+VBL2jYKo1nL+2nbIXNrUov72xIcUpze7VsRUqIEze67n3enTWL81Om5vl4R1QzYYYqyNtQ6kPzmtQl+48aNwWFhYYmp1XQjRoy4Eh0dbUhN2lkZNGjQFYBKlSo5q1SpknL48OGAmJgY3datW0u89NJL1cLDwyPq168fceLU6ZDDR46WSD3u0d6P5Wod5IwcKSmMG/kELe5vS7tOjwDgdLnYv3cXHR/tybc/bWDQUyN4fkg/HA5HpuNdTie7tm/h3Vlf882q9cTYrzHrPcsN+1w4d4bRwwYwaXr2C1Q8N24SS9Zs4t3ZX7P19w1UrBxK5arVeHXMs4wZPphly5YVxUxfF/gTszHz8nxSoXY73wGp/Pz8lBEjRlx2K4o4eSWhmhM/Y2Foim7YpDlL121hzbb9HNi3l93btmTaR6fTMeXtmXy39g8mW2bw7def07ZDZ5xOF1HPPcmY4YPTVo3MmULwwQteFeAPU5S1m9aB5Kci9YUeGBiY9miv1+sVh8ORttjO7t27/zUEFNMfvxRfK8nhuuHBJyg4JMvzHT18kAnPPwWoN+bEN97NtI/D4WDsyCcoV74i46deT8qVKlehfMVKadV6rdo+jNORwrnTp6hW/e4bzlExtAq169ZPa1vr1LUnX37yQdr70efPMfyx7jz1wsu0f+TWf69xsTHM++wjZn2zlC8//oAm995HZI8+9Gvf0jCkfaO01eOKkCqoJfmumO2btA5GunMGg0FJX5JPv847QLFixdwIne7YxfgaCSnOEplOkE6M3c6TfdQH88pV72LGFwtveL9i5SqcO3N9gaX4uFjiYmMoV+H2a4FLlylLqwcfZq11xU2XYj17+iSb1v/CrIXfM+nFEfQcMISI+vcwsGt7lv/6Z46udet1Ln1WMLDMFGWdYLNEvqV1MPnBa0vwbdq0iT98+HDgjh07igHMmTOnVIUKFRzVq1d3lCxZ0hUbG5ujVZ2MRqO7WbNmMRNfmVTlv+i48CSHKyi7tZgzqhEWntYpJqvk7nQ6Gf/sMIwlSzH5rRk31AJENGhIcEhxDv+7H1DXblcUhYqVM5e+O3frxY4tm0hJTgbgj9/WUdvTtn/xwnmGP9aNoSNG8Wjvx3LykZk5fSpPjx5HYGAQiQkJCCEQQuB0OkRKFjUIRUQpYC1mo2zE9BI3+w6oXbt28tmzZwPOnj3rB/DVV19lmm3y2MW4WqnJPTikOLExMRl3AaCE0Zh2n2dM7qDey06Hg+1b1GfD7xd+zQMPdSSgWO4elI//dzhtvfb4uFg2/bqWsDo3r1h6e8oExk55A51Op97LCIROR1IWTXhSlgRgMUVZP9Q6kPxwB+PgtR23WrlyZecXX3xx7PHHH6/udDqF0Wh0LV68+KhOp6N58+YJYWFhibVq1apbtWrV5PTt8FlZsGjxmVFjxtTu0qa57k7WYs5ozcpl/PrzSsLq1KVvx/uB6yV9IQSvfzCLqeNGk5yUiL9/AO99Nh//ALXzzbODezPypYnUvacRDZs0p037TvTt9AA6nY4aYeFMmq6W4D99bzrnzpxm0dzZLJo7G4D+TzxDt74Dsoxpz46tJCUl0eL+tgD0e/xJxj/3JF/NmkmPHj0dxhLF/e/oQ3u3YsD3mI3PYrbP1jqYQqkQjVe/2XeAyWRyjBw58nzTpk3rlC1b1vHQQw+lrTLocit6IXT6RIcrrWruwY6PsGrZYvp0aM2Dnbrkqh1ep9Px5oef8VrUiyQnJ1O+QkXemHn9zyf9vWw7eoSn+nUjKTGB5KQkHm5alyefe5G+jz/JmpXLWbNyOX5+frhcLh6O7EqPxwZne92fln9HWEQ9atauA8ATI0czbfwoHA4HT40am4vfpCgqvehv5nlTlFUHPG+zRPrM78Or14PPC0kOV8Cxi/G1nW53kV/u0UvXg88vZsz2qVoHoSVfvO+dLrf+6MX42slOV5EZKnUzQbhTqhiuJR12lL5pM0VhkGE9+Py6zCzgWV9J8l5bRZ8XZHKXbsKM2The6yCkvON0ufXHLsaHyeQu3cQI4FOtg8grRTbBJzlc/scuxYfJ5C7dhAWz8Wmtg5DunMut6I5diq+V5HQFaR1L4VN0e9ll4xlTlPUdrYPICzlN8G4gy2kTvVGy02U4fim+ttPlLsrtzXkq7U/DR/5G0vkUs7Gf1kFIt8/lVnTHLsbVSnK4bqv5ydf53B2bN142RVknax3Encppgr+mKIozJSXF6xOi0+3W2S4l1HLI5J6nUtyA24neEat1KHlNB8zHbGyvdSBS7imKwonL8dXTd6iTpByaaoqyjtY6iDuR0170l9xu98YLFy5EGgwGh06n88qHPkVROGNPuispRbbBZcWBQyS5c/+/1q3ARXsSQdG78UvJeqiRlzOg9q5vhdme9XSDUqF0zp5UWS7tfAuyhv5m3jNFWY/YLJGZFwXwAjlK8I0bN3bv2rVrcmJiYv2jR4+Ww0v/JGKT3aUTnYp8ks9Goj7FL9Ztv/WOmSjoEq9Q7dDXCN+t8CsO/ITZeC9m+2mtg5Fu7Up8SqlLccmVbr1n0aYU4ZluckAHfGOKsjazWSIPax1MbuV4HHzjxo3P7Nq1q5Xb7a6Wm+MKizf/uDr4fJxzgtZxFGaPGnYcHKVb3CDXB7pd+CdGo1Nyt9qeFwoFrJiNrTHbfbKq4lb+Da+TL+vB1zn47x2Nrz906JD/ihUrjOPGjbsIEJ/sDKoXXvPuGV98Q3jd+nkTZA5tXLea91+fjNvlomZ4BK+9/wkhxTOPQnO73bw1JYo/1v+CEIIBTz7DY0OGp72/7qcfmfW+Ja3v00dfLya0arUbzhFz7RovDh/EtSuX+V+zFrzy5nsAXLl8ibHPDGH2ouUYDLfoRyzz+60YgR9MUdbmNkukV7VB5ipRN27cOAW46aQxhZEpyvoIIIc83cI1/dWkYgafGMOenxoAXwK9tQ5Eui51iehx48ZdTHG6/U5cTqiZF3nL6XTmajGmhPg4zGNfYO53q6heM4w3J41lzsx3GDPptUz7Wpct4diRQ/z4+07iYmLo2+l+mrZoTc3adfh3/9989PbrfP7tCspXrER8XCw6febJOa0/LKFpy9Y8M3ocT/Z9lCMHD1ArPIJ3p73CqAlTbp3cpZyqAywwRVm7e9MYeZ8fJmeKslYHFlIEPqtUYHphNg6/9W5SXsvJEtHtO3Wulzr89defVzKoa3s6tbyHOTOvTyd9KfoCY0cMpf8j7ej5UEs+fvv1tPc6tWjAB29O4XaWiP7jt3WE121A9ZphAPQdPIyfVyzLct81K5fR47HB6PV6jKVK0aFLd1avWArA/DkfM+ipkZSvqLYwBIcUJzAw8wi/1KVj3W43jpRkDP7+bP5tHSWMJWnwv6Y5ilmRRfic6oq6przX8OmkZ4qyGoBvUatYJCkvzcBsjLj1blJeyckS0Ws270r48Ktv04q6sTF2FqxYy6JV65n32YdcOHcWgEkvjqTv4CdZtOpXFq/+nX/+3svaVT+kXet2l4g+d+Y0lar1yBZEAAAgAElEQVRcX324ctVqXIo+j9OZufnq3JnTVK5yfZnZylWqce6s2r3j2JFDnD9zmid6RdKn4/18/M4buFyZZ2+L7NGHU7bj9O14P81btaF8xUp8/tF7PD9uUq7ilnJsiinK+qjWQeSU17Wl59KbqGv/SlJeCwQWYzY2xWz3iWlcC7uslocdN25ctbTlYYXOz57ouGFRmc7degFQqnQZQquZOHPqBMWNRrZv3siVS9Fp+yXEx2M7er318U6XiL5TLqeTg//8zacLvsetuBn1RH+WLPjyhjZ6gKCgYN77bF7az++YJzJ05ChO2o7z5cfvA/DUCy9RO6Jg+yH4MIFaVd/cZok8qHUwt+KzCd4UZe0IvKR1HJJPqwe8D4zUOpCizuXGD50+U4Ozf8D1Fd30Or1aCvZ0Wluw4pdsV3y73SWiK4VWYeumDWk/nz11krLlK2bZjl8ptApnT5/insZqGeTs6ZNUqqyW/iuGVqFdxy4UC1RH9Lbr+Ah/7d6RKcGnt2/PLq5cvsgDD3VkSI9OvDHzMxRFYfKYkcz9PvtRXrKKPtdKAN+ZoqyNbZbIFK2DuRmfrKI3RVkrAfOR/UOl/DdCLjFbMLJbHtZkMjncxUpUiI3N2cCGoOAQmrZszdxPZ6Rty6slou9r045/9//F8f/UEVWL539Jx0d7ZHmuhyO7sez/5uNyubBfvcqalcvp0EX9U+rctRd//r4et9uN0+nkz99/o3ZEvWzjcjgczJhu5uXJbwCQmJiAEKDTCRLk0rH5oR4wUesgbsVXS/BfA+W0DkIqMr7EbNyJ2S6HIOSj7JaHvZzgKHdXWERwjbBwerRrQZVqJj786v9ueq43P5zDu9NeoUe7FuTlEtHBIcUxvz2T0U8OxOV0UrN2HV774PraJX06tObjeUsoX7ESj/Tsyz9/7abL/Y0RCAY99Sy1POu/d+zak3/3/02Pdi3Q6XT8r1kLBjzxTLbXnTf7Q7r07EeZcuUBGPnSBJ59vC8AY165+aKIXtMlvPCZaIqyLrVZIvdpHUh2crRcrDcxRVkHoZbepVx6TP/r9umGL2WfhdvzB9AGsz3f1rEsaN6wXGySw+X/X3RcXbei+GRtZH4Lwp1SwT8+6XhKFgP1C5kCWi42t3YC99oskYUmoPR86qYwRVnLoLaJSlJBa4Vsiy9QiqJw+mpCdZnc74xvFfEKXBNgjNZBZMfXboz3gLJaByEVWVMxG8vcejcpL0THJpdPSJGLyNwpmeDv2FRTlLWW1kFkxWcSvCnK+iDwuNZxSEVaKSDzlGVSnktyuAIuxibfWYO55CH7It+hQOBLU5S10P0ifSLBm6KsxYDPtI5DkoDhmI25n89fypWz1xKryqp5qRBpTSFsovOVG+QloKbWQUgSoAdmah2EL4tNcoTEJTvl7JR5RJFF+LzyhinKWkrrINLz+gTv6Vg3Tus4JCmdNpiNvbQOwledtydVufVeUs7J/J5HjBSyXOQL4+Anos4sJEmFyTuYjat8bRrb+vPq58tysfse35ej5WKvxqeUTHS4gvMjhqJKdrLLUy+YoqwzbJbIC1oHAl5egjdFWasCz2odhyRlwQS8rHUQvkRRFC7EJsmOdXlMJvg8FQS8onUQqbw6wQNTgQCtg5CkbEzAbKyodRC+4lJcStkUpzvryeNzadb7Ft42T8j1cRvW/sQ7ZnWG0h1//kGfDq2z3C8hPo57qhaq5tibEJw4fpTB3drT5f4m9I98kP8O/Zvt3su+XUCX1o2JvK8RU8eNwuFw5Oi99KZFjabnQy15su+jxMbYAfUBbuSgXpyyHc/bj1fwnjZFWatpHQR4cYI3RVnrAIO1jkOSbiIIeF7rIHyB262Ii7HJlXO6f1bLs+aFNu07M9b8Zr6cWysK8FrUi/TsP4SVv+9k6MhRTB6TdcXo6ZMn+PSdN/lq6U+s+mM3ly9Gs/Sbr2/5XnpHDh7g5PFjLF23hSYtWrFq2WIAlv3ffJq2bE1VU/V8+ZwFyB+YonUQ4MUJHvUXqL/lXpKkrWcwG4O0DsLbRccml3e63YZ7qpbi47dfp0/H++lyfxOsy5ek7XNP1VJ8+t50+kc+yIcWdf71ebM/ov8j7ejb6QFGDOzF2dMn0/Y/f/YMT/Z9lK5tmvH80H5cu3oFyFy6/7+v5/Dqi+oIqBVLFjF62IAsY/xu4Vd0ad2YPh3vZ8Hns275mRwOB29MfIku9zdh4KMP8+60SQzr/QgAUc89yU/LvwNg8bwvaHx3+bRFY57s+yi7tm7mzKmTtKp7F5++N51+ndvwSKv/sWn92hz/TlNFX7yoO/D3XiJ79AHgoc6Pcv7cGU4eP5Zp33U/reCB9h0pW74CQgh6DxrKzz8uveV76RkMBhwpybjdbhIT4jEY/Ll44Tw/r1jKoKd8psX1cVOUNUzrILwywZuirNUB2UtZ8galgSFaB+HNXG5Fdzk+uVLaBiFYsvp3Zi34Hsur4zlz6nrS1un1LLKuZ8yk1/hp+XfYjv3HghVrWfzzRjp378Wbr1zvFrF7+59YPvqcFRu2U7FSKB9apt12jEcOHmDW+xbmfm9lyerfSU5KvOUxS7/5mpO2Yyz79U++WvoTRw7+k/Ze81Zt2PrHRgD+3LSBug0asmvrZhITEzh8YD8NPEvMxsbEEFanLt/+tIEJr73NO1Nz3/x7+vRZUbZ8hbQlbYUQVKxchXNnT2fa99yZ01QOrZr2c+Uq1Th/5vQt30vPVKMWTVu0pl+nBzhz8gSRPfrwztSJjHllWpbL6nopPXD7f1B5xCsTPOq4d1l6l7zFi5iN3nqvae5yfHIZl1tJu997PDYIgCp3mWjcvCW7t21J27d73+ul69/W/sTWPzbwWOc29OnQmq9nfci5dAmn9YPtKVu+AgA9Bwxh6x8bbjvG7Vs2cV+bhyhXQe1y0WfwE7c8Ztvm34ns3geDwYDBYKBLr35p793b+gG2b96Iy+Xi2JFDDHrqWbZu2sjubX9Sr+H/MBgMAAQEFKNdpy4ANGjclNMnct9+rUUnu+fGTWLJmk28O/trtv6+gYqVQ6lctRqvjnmWMcMHs/rHZRpElef6eJqSNeN1j0umKGtpYKjWcUhSLtQEHgV+0DoQb6MoClfiU8rfdKd0w7gDg65PTa8oCsOefZFeA4bk6FrCcyK93g+X6/riYClJyTkPOPVcIvdjy9MfUym0Kgb/AH5a/h0R9e+h+X0P8PlH76HX62h+3wNp+/kH+Kcdp9frb4g7vcHd2pOUmIjBP4BvVq674b3QKqHKpegLOJ1O/Pz8UBSF82dPU6ly5ukGKoVW4VS6h4izp09SMbTKLd/LTlxsDPM++4hZ3yzly48/oMm99/1/e3ceZ0dZ53v8U51OyNodQjohIUsFhwsqmxMElN0rGqirLGIEcUZxA1wYxIUaB7TFcahxHUcERgUccESRYQSmBAYENeKoGBBZdQjUBUm6O52kk066O336nHP/qIo3hk46yzn1q+X7fr36hS9z0vVNOud863nqqafwzlzKW994HCeefAoTJ03a4e/POAf4EIZ3euWu4IH3Ei9eEsmTj1KAgt/Z+9UbZcNgpW3blfO33/JdLrzE58UXnufhX/83H++8ctTfe9IbT+XGb3ydk089jfa996ZSqfDM75/i5QfHOwn//IF7WbO6h306ZnHbzTdy1HFxcc53F7Hs/v+iWq0yPLyZ++66E3f/HW+UeeRrj+P6r3+F3p5uZs6azQ9uumHMP9uRxxzHj354K6ecHl9tvPPW7//Zrx997Alc/aV/4P1/8wnapk+ntXU894a385Vv/duY33tbN/5w+9fmOzo66i8/+FDC227htKVv574f3cHsfeeyYNH+L3nt6095M+868xQu/IjPPh2z+MFNN7DkzWeO+Wvb89UrP8P5F3+CSZMmMzgwgOM4OI7DSKVCpTKc94IH+CvXD/0o8PotDp6rgnf9cBwZ3O9XZCccS2f7q+lc/5B1kDzpHWX0Xq1WWbrkeAYHBrj0ioD95o9+R5J3xlL61q3jvW+Lp7BHqlVOX3runwr+L498Df6H30dP1yoWLNqfz375agBef8qbuDe8ndNPOorZc+Zy0CsPYWhwx9fUDzjoFVzwkUs57y2nMmnKFP73kjeN+Wc769zz+J+nn+TM1x3NtPbpvPLQw1nd3fWnXz/quBO55abrOTo58Tj62BO47eYbOfAVB4/5vXdFHce5PPgKl1/yQb511ZeZOnUaV3zpqj/9eufHL+LEk5dw4htOZd5Clws/6vPOM5YAcMRrjuWsc+MJ1R392mgeeeiXDA0N8ZrjTwLg7He+l0s/9F5uuOar/J8z38a0tkLsRjyN+CFoV431wmZw6vX8bHPg+uFpFGAUlFXnjPvxr68cf92R1jkK7Pt0rj977Jdlw/Llyw9qbW29+4ADDtg4efLk1Hfk21ypTvh9d/8hW/9/h83fm2WPR7S1F+LDn00b+5kydRqVSoVPXvR+Xn7IYbz7AxendvzJ1IanTRiudA9PzPzugPWRYXpW/pHOB3p4sX/0SxEZ9XQUeCbX4vO28Ef3vUuenUVn+/yxXyYAvZuGZ1pnaLb3n3MGS994HGedfAxTpk7j7eedn3qGHI3x8uog1w+PtThwbqbok6f0eNY5RPbAOOAc4PPWQbKuXq+zfqDykoJ/9IV1FnF225re1Vx47kuvQx993IlcctlnX7LgLW11J56iNw1RDu8Gfp72QXNT8MBb0ba0kn95KvgaxGWbtr7ByvSRWm186gdusH1mdnDLPcusYxRKLZ8zDm91/fCiKPA2pnnQPE3Rv8M6gEgDHE5n+4HWIXZSX71eHxkeHp6Q+oEHKjPSPmYZOeTnYTP16gjVWo1NwzXrKLtjKrA07YPmYgTv+uFCwOQahkgTnAN0WofYCb21Wu2n3d3d3vjx4ystLS2pdEGtXqd/00BbnhYA51XVqTqVeq2lPpLxWfp6ncEN6/hd1xD9w7n9d3E2cH2aB8xFwQNv58+2sxDJtbeRg4JfvHhxbfny5Z8aHBw8ZMWKFR2k9B4crtYn9Q3VtFNlCiZQdVpbauMGMn81pM66gRG+93h/bmYcRnGC64dT05ymz0vBn2EdQKSBDqKz/X/Ruf4P1kHGsnjx4heXL19+bK1WW0BKnxeffmDNZes310Z/oos01Jyhtd3zpq7d9NDIX5g/GGVHqjXoHagykuN2J37K3OtJ8VbvzBe864czgcXWOUQa7M3AF61D7IzFixcPA8+kdbwnfxCO/pB1abyBwUprdaDyYi1X95XnmUeKBZ+HRXZvIB85RXbFadYBssj1w8OB0bemk6ao1sfpckh6Tk3zYHkoziXWAUSa4LV0tndYh8igN1sHKBUHp0Kr1jelZ67rh69K62CZLnjXDx3iEbxI0bQAJ1qHyCAVfMqqtGS6BwootQ3bsv6DfRUw2zqESJMcZR0gS1w/3A+tt0ndCOOy3gNFk9o0fdZ/sK+3DiDSRCr4P3fC2C+RhnKgSouuwafrqGTxeNNlveD1AShFtpjO9szfyZKiI6wDlI0D9YpG8GlrAY5P60BZpje8FNkk4FDrEBmi6XkDVRW8hcPTOEhmf7CuH3ag22Wk+DRLBbh+2EK85kbS5OBU65qiN5DKv/XMFjzwausAIilQwccOBKZZhyijEXQfvIFyj+DR9LyUgwo+pul5I1pFb2Ke64f7NPsgWf7BquClDA6ks326dYgM0PvdglbRW2r6KD7LBX+IdQCRFDio3EB/ByYc6nVtdGOm6dfhM/mDdf2wFZhvnUMkJftbB7CULLBL5ZqkbMuhphG8ldKO4BcC+kcnZTHPOoCxhcAU6xCl5NSp0qK9GGyUtuAXWQcQSVHZC34/6wAl5mgVvZkDXT9s6t99Vgu+1FOWUjplL7i51gFKS4vsLLUCTd2yNqsFrxG8lEnZR/AqeEN1LbKzNKuZ3zyrP1gVvJSJCl5MaHreXFOflprVgm/qWY1IxrTR2T7VOoQhFbyRqqPRu7FSFny7dQCRlJV5FK+CN1LT9Lw1FbxICajgJXU1TdFbK+U1eBW8lM2+1gEMqeCNVB2toDemEbxICYy3DmDB9cOJ6ClyZnSLnLlyFbzrh5Mo6YedlJpjHcDIROsAZVbTCN5a6abodTYvUh46mTekEby5vZr5zbNY8GUdyUi5lfXfvQre0AjjtA+9raZ2cBYLvmodoKx66tMnVOrjnq/XGbTOUkIqeEmdpujNNbWDs3j2NmIdoKx+XFt8+AGbbwKgnY3r5zmre12ne/0iZ9XgopaukflOj7Mv6ybs7fRPm8TmvcdR63AcfUA3SFkLXgVjSNvUmitdwWsEnwHrmdq+vj61/Yl6smvwqD+Ven0m63vnO6vXuk7XhkUtq4Zcp7s631ndMstZt1c7m6ZNYvOMFuodjpPJ2aIsKWvB6/0u0iRZLHiN4HPDcXqZPrO3Pn3mI/UDoDb6q1qoVfdlbdd8p2et29K1cX+na/NCp6s2z+kd1+H0TWxjoG0vKvs41Gc4TmmLrqx/br3fpcyGm/nNs1jwOqMvmBot41Yyc9+V9Zn7/qr6iu2+bjwjw3OcNT0Lne6+RU7XxkXOquGFTnd9rrOmdaazfvI0BtsmUOlwHNpSjC/Npfe7lNnmZn7zLBZ8BahT3hFNaVVonfB8ffa85+uz5y3j0O2+bhKbB+Y6vb1bTgT2d1ZWFjg9zHHWjN/H6Z8yhcHp46l2OA6TU4y/p7Yz/1F4GsFLmZWr4KPAq7t+uA6YYZ1FsmmQvSavqO+3YEV9vwU7et00Nm2YF58IrF/krBpY5HSNLGjpYQ5r9trb2Th1MkNbFgpOSCv7DvRaBzCywTqAiKFyFXyiBxW87KF+prQ9VZ/S9lR94Q5fN4MNa+c7q9csdLo27N+yatB1uqrzndXObGfdXtPZOG0SwzNa4hOBZq74Xt3E751ZUeANu364Fr3fpZyaeoKb5YI/yDqElMNa2masrbfNeLT+su1OlDvUarPo61kQLxTsX+R0DblOV22es7qlw+mb2M5A20SGZzjUZ+7mQsGePfpD5NsqVPBSTn9s5jfPcsGLZEadlpZuZszqrs+Y9VB1++eerYxU5jhrVy9weta58ULBza7TXZ/r9LZ2OOsnTWOgbQKVmS0O07f5raUcwSe6gFdahxAx8GIzv7kKXqSBRmgd/0J91twX6rPmPsjB233dXgwPzXV6e1ynu+9lzsq+yz539boUY2ZNl3UAESMawYsUzWYmTHyuPnfBc/W5Cx7gVc9eZh3I1irrACJGmjqCz+ruYk39Q4tkzPPWAYxpBC9l1dQRfFYL/hnrACIpesE6gDEVvJRVKQv+D9YBRFL0tHUAY5qilzLqiwJvoJkHyGTBR4G3EthonUMkJY9ZBzAWWQcQMdDU0TtktOATT1kHEElJ2Qv+OWC9dQiRlP3fZh8gywX/uHUAkRT0k8IbPcuiwKsDv7XOIZKyh5t9ABW8iK3Hk4Iru6Z/2IlkzK+bfYAsF/xy6wAiKSj79PwWKngpm4eafYAsF/yvgWHrECJN9qh1gIxQwUuZvBAFXnezD5LZgo8CbxC96aX4llkHyIingabeMiSSIU2fnocMF3zi59YBRJqoF601ASAKvBqazZDyaPr0PKjgRSz9TAvs/oxm7KQsVPDAg4A+AKWoHrAOkDGpTFuKGKsDv0njQJku+CjwetE2nlJcP7EOkDH3oBN6Kb6no8DbkMaBMl3wiR9ZBxBpgtXAE9YhsiRZVaxRvBRdap2Wh4L/oXUAkSa4V9ffR/Wf1gFEmiy1TstDwf8C6LEOIdJgt1oHyKg7rQOINFEPcaelIvMFn9w+o7N6KZKNwF3WIbIoCrxHgResc4g0yZ1Jp6Ui8wWf0DS9FEkYBd6QdYgM0wm9FFWqXZaXgr8X2GQdQqRBND2/Y5qmlyLaSNxlqclFwSejHb3ppQgG0J0hY7kfndBL8dwdBd7mNA+Yi4JPfMs6gEgDhFHgac/1HUg+BO+xziHSYKlfas5Twd8PPGsdQmQPfdM6QE582zqASAMNA2HaB81NwSf3DF9nnUNkDzwD3GcdIid+BKy0DiHSILdFgdeX9kFzU/CJG4AR6xAiu+labW6zc6LAq6JRvBTHtRYHzVXBR4G3CoNpDpEGGCI+QZWddx3am17y76ko8H5qceBcFXziX6wDiOyG70eBt9Y6RJ5EgfcsWmwn+WfWWXks+LuBx6xDiOyia6wD5NQ/WwcQ2QMbMbzUlLuCT65hXmmdQ2QX/CwKvF9Zh8ipu4E/WIcQ2U3XR4G33urguSv4xC3EK5JF8uAz1gHyKjmhv8o6h8huqAFftQyQy4JPVtj+o3UOkZ2wLAq8+61D5NwNQK91CJFddHuyjsRMLgs+cSPwR+sQImPQ6H0PRYG3EfgH6xwiu8h8EJrbgo8Cbxj4gnUOkR34eRR4P7YOURBXA89bhxDZSf+ehXU3uS34xLXACusQItuh0XuDJPvT6+9T8qAC/K11CMh5wSej+E9Y5xAZxX9FgadtaRvrX4GnrEOIjOEbUeD9j3UIyHnBA0SBdxvwE+scIlupABdZhyiaZHHt5dY5RHagnwzNNOW+4BMfIb4lQSQLvhoF3u+tQxRRFHj/DjxknUNkO74QBd5q6xBbFKLgo8D7LdrnW7JhFXCFdYiC+6R1AJFRrAK+ZB1ia4Uo+MTfARusQ0jpXRoFXr91iCJL1jZoj3rJmk9HgTdgHWJrhSn4KPC6gUusc0ip/QL4jnWIkriAeJ9vkSx4HLjeOsS2ClPwAFHgXQfcZZ1DSmkQeI+e956OKPAi4FLrHCLACPDOZBFophSq4BPvA/qsQ0jp+FHgPW0domSuQXfQiL3PRYH3sHWI0RSu4KPAe5F4Vb1IWu4DvmYdomyS2ZL3AJuss0hpPQz8vXWI7SlcwQNEgfdtILTOIaXQB5ynqXkbycM8tKpeLGwG/joKvBHrINtTyIJPvA/osQ4hhffBKPD00CNbXwOWWYeQ0vlUFHhPWIfYkcIWfBR4q4CzgcwtfJDCuDkKvO9ahyi7ZPbk3cQLHUXS8Avgi9YhxlLYggeIAu8BNH0nzfEE8SyRZEAUeM8AH7POIaUwQLxqPvO7pxa64AGiwPs8cJt1DimUDcCZUeBpcVeGRIF3NXCddQ4pvIuSE8rMK3zBJ84DtDe4NEIN+Kso8P5gHURG9QHi6VORZvinZL+VXChFwUeBtwE4E+18JXvusijw7rAOIaNLHiH9FkALH6XR7iJnl4Gcer08d/e4frgEuBNotc4iufRvUeC9wzqEjM31wyOIV9ZPtM4ihfAk8JpksJgbpRjBbxEF3t3A+dY5JJfuJV6pLTkQBd5v0CJIaYw1wJvyVu5QsoIHiALveuBT1jkkV34JnJFM/0pORIH3HTL2+E7JnQrxgtpnrYPsjtIVPEAUeJ8F/tk6h+TCY8CpWjGfW5eiB1DJ7rswCryfWYfYXaUs+MTFwE3WISTTVgBviAJvnXUQ2T3JE77OQjvdya77Qp5WzI+mVIvstuX64TjiZ/j+tXUWyZyVwLFR4D1nHUT2nOuH04gfCnSkdRbJhauiwPuwdYg9VeYR/Jaz+3cRP3ZSZIvngONV7sURBV4/sAR41DqLZN61wEXWIRqh1CP4rbl++EXgo9Y5xNwTxNPyK62DSOO5fjiTeCR/mHUWyaRvAe8vytMhSz2C31oUeB8DPmudQ0z9injkrnIvqCjweoHXET/HW2Rr11CgcgeN4F/C9cOPAZ8HHOsskqr7gNO1Wr4cXD+cDtyDrslL7AtR4H3COkSjaQS/jSjwvki8ra0+6Mvje4Cnci+PKPD6gJOJT+yk3D5dxHIHjeC3y/XDw4DbgYXWWaRpasAno8D7R+sgYsP1w1bgn4APWmeR1FWAD0WB9w3rIM2igt8B1w87gP8AjrHOIg23DjgnCrx7rIOIPdcPLwC+hp5TURbdwFuiwHvQOkgzqeDH4PrhBOLFF9qHvDgeJ77evsI6iGSH64cnAbcCM6yzSFP9hnjr6cI/cVAFv5NcP3wX8Rn+VOMosmduBc6LAk+PDpaXcP3wZcAdwCuss0hT3ES8Un7IOkgaVPC7IHnzfxetvM2jfuDi5GFDItvl+mEbcDNwqnUWaZgq8PEo8L5iHSRNWkW/C5Ip3WOAzxEv0JJ8WAYcpnKXnZE8FvRNxPtijBjHkT23Fnhj2codNILfba4fHgd8B1hgnUW2axi4DPhSFHg6IZNd5vrhEcC/oin7vLqHeEr+eesgFlTwe8D1w6lAJ/A3aPVt1jwCvCsKvN9ZB5F8c/1wL+LR/EfRrGde9AGXRIF3g3UQSyr4BnD98BDilfa6nc7eGuDvgG9q1C6N5Prha4FvAwcYR5EduwO4IAq8VdZBrKngG8T1Q4f4yXSfB2bapimlKvAvwOVR4K21DiPF5PrhZOBK4MNoO+us6QUuigLvZusgWaGCbzDXD2cQT9ufD0ywTVMay4APR4GnR4FKKlw/PJH4saIHGkeR2C3Eu9Kttg6SJSr4JnH9cAFwOfGoXtfnm+O3wGeiwPuhdRApH9cPxwHvIT6hn2ObprQeA/42CrzQOkgWqeCbLLl3vhN4O1qg0ygPA1dEgXe7dRCRZNr+EuDjQJtxnLJYAXwK+J7W2myfCj4lrh++nHjx11JgvHGcvFpOPGK/0zqIyLZcP5xJPGt3Abo81ywrgSuA66LA0x4FY1DBp8z1wznEHwDnA7ON4+RBlXhV7DVR4N1rHUZkLK4f7g/8PXA2WojXKGuAALiqLNvMNoIK3kjyEJulxKtxtfXtS60Evkl8u9uL1mFEdpXrhwcDFwPnAhON4+RVL/B14MvJDoOyC1TwGZDslvUO4sIv82KdKnA/8erkOzQFJ0WQPHb6AuADwL7GcfJiOXAV8TV2jdh3kwo+Q1w/bAFOIJ7aewuwj22iVNSAB4HvA7dGgddtnEekKZJZu9OJL+AiN04AAAIrSURBVM+dhKbvtzVI/LTHa6PA+4V1mCJQwWeU64etwMnEHwhLKNae90PAA8B/EI/UVepSKq4fHgC8j3j6fq5xHGu/Aa4Dbo4Cb711mCJRwedEsgr/DcRn/scDe9sm2iVDwH8DPwV+AvwyCrzNpolEMiDZAfMI4LTk62DbRKmoAr8E/hO4Mwq8J4zzFJYKPoeSqfxDiT8YDgdeBRwGTLHMlagBzwKPE9+v/lPgVyp0kbEl+2ZsKftjgHG2iRqmD7gbCIG7osBbY5ynFFTwBZGU/l8Ql/0hwELiaf0FwH40/t77NcQr3V8EniQu9MeAJ6PAG2jwsURKJ7mv3gNeB7yaeFvcvGyWVSX+XLiHeKT+oBbNpk8FXwJJ+e9LXPaziUf6W39NTf7rAJuTr6Ft/ncvcaGvBLo0IhdJl+uH04C/JJ65e3Xy35eZhooNEZ/cP7LV1++iwBs0TSUqeBGRvHL9cG/ioj+YeKZu66+5NO7++w1AN9CV/PcF4mdBPAI8pdF5NqngRUQKKnm65ZbCnwNMIt5Gd8vXOOJ1M9Wtvvr5/0XeBXRrNJ5PKngREZECysuCDREREdkFKngREZECUsGLiIgUkApeRESkgFTwIiIiBaSCFxERKSAVvIiISAGp4EVERApIBS8iIlJAKngREZECUsGLiIgUkApeRESkgFTwIiIiBaSCFxERKSAVvIiISAGp4EVERApIBS8iIlJAKngREZECUsGLiIgU0P8DZwTsZ8dN+88AAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 52,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.plotly.v1+json": {
|
|
"config": {
|
|
"plotlyServerURL": "https://plot.ly"
|
|
},
|
|
"data": [
|
|
{
|
|
"domain": {
|
|
"x": [
|
|
0,
|
|
1
|
|
],
|
|
"y": [
|
|
0,
|
|
1
|
|
]
|
|
},
|
|
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
|
|
"labels": [
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"gasdev",
|
|
"fftma2",
|
|
"covariance",
|
|
"ran2",
|
|
"cov_value",
|
|
"fourt",
|
|
"cgrid",
|
|
"length",
|
|
"maxfactor",
|
|
"prebuild_gwn",
|
|
"build_real",
|
|
"clean_real"
|
|
],
|
|
"marker": {
|
|
"colors": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#EF553B",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#ab63fa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#ab63fa",
|
|
"#636efa",
|
|
"#636efa"
|
|
]
|
|
},
|
|
"name": "",
|
|
"parents": [
|
|
"",
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"Py_kgeneration",
|
|
"fftma2",
|
|
"gasdev",
|
|
"covariance",
|
|
"fftma2",
|
|
"",
|
|
"",
|
|
"",
|
|
"fftma2",
|
|
"",
|
|
""
|
|
],
|
|
"type": "treemap",
|
|
"values": [
|
|
47.638534,
|
|
35.573628,
|
|
26.105192999998817,
|
|
12.06057,
|
|
12.036319,
|
|
7.93339000000048,
|
|
4.906137000000049,
|
|
0.016257,
|
|
0.003691,
|
|
0.0027419999999999996,
|
|
0.00091,
|
|
0.000599,
|
|
0.00051,
|
|
0.000403
|
|
]
|
|
}
|
|
],
|
|
"layout": {
|
|
"legend": {
|
|
"tracegroupgap": 0
|
|
},
|
|
"template": {
|
|
"data": {
|
|
"bar": [
|
|
{
|
|
"error_x": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"error_y": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "bar"
|
|
}
|
|
],
|
|
"barpolar": [
|
|
{
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
}
|
|
},
|
|
"type": "barpolar"
|
|
}
|
|
],
|
|
"carpet": [
|
|
{
|
|
"aaxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"baxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"type": "carpet"
|
|
}
|
|
],
|
|
"choropleth": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "choropleth"
|
|
}
|
|
],
|
|
"contour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "contour"
|
|
}
|
|
],
|
|
"contourcarpet": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "contourcarpet"
|
|
}
|
|
],
|
|
"heatmap": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmap"
|
|
}
|
|
],
|
|
"heatmapgl": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmapgl"
|
|
}
|
|
],
|
|
"histogram": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "histogram"
|
|
}
|
|
],
|
|
"histogram2d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2d"
|
|
}
|
|
],
|
|
"histogram2dcontour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2dcontour"
|
|
}
|
|
],
|
|
"mesh3d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "mesh3d"
|
|
}
|
|
],
|
|
"parcoords": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "parcoords"
|
|
}
|
|
],
|
|
"pie": [
|
|
{
|
|
"automargin": true,
|
|
"type": "pie"
|
|
}
|
|
],
|
|
"scatter": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter"
|
|
}
|
|
],
|
|
"scatter3d": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter3d"
|
|
}
|
|
],
|
|
"scattercarpet": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattercarpet"
|
|
}
|
|
],
|
|
"scattergeo": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergeo"
|
|
}
|
|
],
|
|
"scattergl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergl"
|
|
}
|
|
],
|
|
"scattermapbox": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattermapbox"
|
|
}
|
|
],
|
|
"scatterpolar": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolar"
|
|
}
|
|
],
|
|
"scatterpolargl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolargl"
|
|
}
|
|
],
|
|
"scatterternary": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterternary"
|
|
}
|
|
],
|
|
"surface": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "surface"
|
|
}
|
|
],
|
|
"table": [
|
|
{
|
|
"cells": {
|
|
"fill": {
|
|
"color": "#EBF0F8"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"header": {
|
|
"fill": {
|
|
"color": "#C8D4E3"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"type": "table"
|
|
}
|
|
]
|
|
},
|
|
"layout": {
|
|
"annotationdefaults": {
|
|
"arrowcolor": "#2a3f5f",
|
|
"arrowhead": 0,
|
|
"arrowwidth": 1
|
|
},
|
|
"autotypenumbers": "strict",
|
|
"coloraxis": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"colorscale": {
|
|
"diverging": [
|
|
[
|
|
0,
|
|
"#8e0152"
|
|
],
|
|
[
|
|
0.1,
|
|
"#c51b7d"
|
|
],
|
|
[
|
|
0.2,
|
|
"#de77ae"
|
|
],
|
|
[
|
|
0.3,
|
|
"#f1b6da"
|
|
],
|
|
[
|
|
0.4,
|
|
"#fde0ef"
|
|
],
|
|
[
|
|
0.5,
|
|
"#f7f7f7"
|
|
],
|
|
[
|
|
0.6,
|
|
"#e6f5d0"
|
|
],
|
|
[
|
|
0.7,
|
|
"#b8e186"
|
|
],
|
|
[
|
|
0.8,
|
|
"#7fbc41"
|
|
],
|
|
[
|
|
0.9,
|
|
"#4d9221"
|
|
],
|
|
[
|
|
1,
|
|
"#276419"
|
|
]
|
|
],
|
|
"sequential": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"sequentialminus": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
]
|
|
},
|
|
"colorway": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#FF6692",
|
|
"#B6E880",
|
|
"#FF97FF",
|
|
"#FECB52"
|
|
],
|
|
"font": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"geo": {
|
|
"bgcolor": "white",
|
|
"lakecolor": "white",
|
|
"landcolor": "#E5ECF6",
|
|
"showlakes": true,
|
|
"showland": true,
|
|
"subunitcolor": "white"
|
|
},
|
|
"hoverlabel": {
|
|
"align": "left"
|
|
},
|
|
"hovermode": "closest",
|
|
"mapbox": {
|
|
"style": "light"
|
|
},
|
|
"paper_bgcolor": "white",
|
|
"plot_bgcolor": "#E5ECF6",
|
|
"polar": {
|
|
"angularaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"radialaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"scene": {
|
|
"xaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"yaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"zaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
}
|
|
},
|
|
"shapedefaults": {
|
|
"line": {
|
|
"color": "#2a3f5f"
|
|
}
|
|
},
|
|
"ternary": {
|
|
"aaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"baxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"caxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"title": {
|
|
"x": 0.05
|
|
},
|
|
"xaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
},
|
|
"yaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
}
|
|
}
|
|
},
|
|
"title": {
|
|
"text": "Time treemap"
|
|
}
|
|
}
|
|
},
|
|
"text/html": [
|
|
"<div> <div id=\"d5169320-a173-4c90-abbf-ab16fdb31b03\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d5169320-a173-4c90-abbf-ab16fdb31b03\")) { Plotly.newPlot( \"d5169320-a173-4c90-abbf-ab16fdb31b03\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"prebuild_gwn\", \"build_real\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [47.638534, 35.573628, 26.105192999998817, 12.06057, 12.036319, 7.93339000000048, 4.906137000000049, 0.016257, 0.003691, 0.0027419999999999996, 0.00091, 0.000599, 0.00051, 0.000403]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
|
|
" \n",
|
|
"var gd = document.getElementById('d5169320-a173-4c90-abbf-ab16fdb31b03');\n",
|
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|
" var display = window.getComputedStyle(gd).display;\n",
|
|
" if (!display || display === 'none') {{\n",
|
|
" console.log([gd, 'removed!']);\n",
|
|
" Plotly.purge(gd);\n",
|
|
" observer.disconnect();\n",
|
|
" }}\n",
|
|
"}});\n",
|
|
"\n",
|
|
"// Listen for the removal of the full notebook cells\n",
|
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|
"if (notebookContainer) {{\n",
|
|
" x.observe(notebookContainer, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
"// Listen for the clearing of the current output cell\n",
|
|
"var outputEl = gd.closest('.output');\n",
|
|
"if (outputEl) {{\n",
|
|
" x.observe(outputEl, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
" }) }; }); </script> </div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 64"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 60,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Executing file log_64-aa\n",
|
|
"Executing file log_64-ab\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>count</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>sum</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>32.278779</td>\n",
|
|
" <td>32.278779</td>\n",
|
|
" <td>32.278779</td>\n",
|
|
" <td>-199.3</td>\n",
|
|
" <td>-199.3</td>\n",
|
|
" <td>-199.3</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>415.639768</td>\n",
|
|
" <td>415.639768</td>\n",
|
|
" <td>415.639768</td>\n",
|
|
" <td>415.639768</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>32.749276</td>\n",
|
|
" <td>32.749276</td>\n",
|
|
" <td>32.749276</td>\n",
|
|
" <td>-281.6</td>\n",
|
|
" <td>-281.6</td>\n",
|
|
" <td>-281.6</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>329.579564</td>\n",
|
|
" <td>329.579564</td>\n",
|
|
" <td>329.579564</td>\n",
|
|
" <td>329.579564</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>30.472359</td>\n",
|
|
" <td>30.472359</td>\n",
|
|
" <td>30.472359</td>\n",
|
|
" <td>85.3</td>\n",
|
|
" <td>85.3</td>\n",
|
|
" <td>85.3</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>86.059132</td>\n",
|
|
" <td>86.059132</td>\n",
|
|
" <td>86.059132</td>\n",
|
|
" <td>86.059132</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>30.505800</td>\n",
|
|
" <td>30.505800</td>\n",
|
|
" <td>30.505800</td>\n",
|
|
" <td>80.9</td>\n",
|
|
" <td>80.9</td>\n",
|
|
" <td>80.9</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>85.894170</td>\n",
|
|
" <td>85.894170</td>\n",
|
|
" <td>85.894170</td>\n",
|
|
" <td>85.894170</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>2.395994</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>8.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-61.2</td>\n",
|
|
" <td>262144.0</td>\n",
|
|
" <td>0.011277</td>\n",
|
|
" <td>0.000909</td>\n",
|
|
" <td>0.000193</td>\n",
|
|
" <td>242.610944</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>25.100000</td>\n",
|
|
" <td>8.433333</td>\n",
|
|
" <td>0.100000</td>\n",
|
|
" <td>2.3</td>\n",
|
|
" <td>0.4</td>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.066393</td>\n",
|
|
" <td>0.050588</td>\n",
|
|
" <td>0.042309</td>\n",
|
|
" <td>0.151763</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.572549</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-7.1</td>\n",
|
|
" <td>156816.0</td>\n",
|
|
" <td>0.000575</td>\n",
|
|
" <td>0.000221</td>\n",
|
|
" <td>0.000193</td>\n",
|
|
" <td>34.674709</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.527507</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>2.7</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-17.8</td>\n",
|
|
" <td>333450.0</td>\n",
|
|
" <td>0.000691</td>\n",
|
|
" <td>0.000218</td>\n",
|
|
" <td>0.000190</td>\n",
|
|
" <td>74.079918</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.001935</td>\n",
|
|
" <td>0.001935</td>\n",
|
|
" <td>0.001935</td>\n",
|
|
" <td>0.001935</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>2.2</td>\n",
|
|
" <td>2.2</td>\n",
|
|
" <td>2.2</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.002618</td>\n",
|
|
" <td>0.002618</td>\n",
|
|
" <td>0.002618</td>\n",
|
|
" <td>0.002618</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.4</td>\n",
|
|
" <td>0.4</td>\n",
|
|
" <td>0.4</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.001551</td>\n",
|
|
" <td>0.001551</td>\n",
|
|
" <td>0.001551</td>\n",
|
|
" <td>0.001551</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.003504</td>\n",
|
|
" <td>0.003504</td>\n",
|
|
" <td>0.003504</td>\n",
|
|
" <td>0.003504</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.001141</td>\n",
|
|
" <td>0.000827</td>\n",
|
|
" <td>0.000668</td>\n",
|
|
" <td>0.002481</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>4.0</td>\n",
|
|
" <td>0.000198</td>\n",
|
|
" <td>0.000195</td>\n",
|
|
" <td>0.000193</td>\n",
|
|
" <td>0.000780</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" cpu memory \\\n",
|
|
" max mean min max median min \n",
|
|
"function \n",
|
|
"Py_kgeneration 32.278779 32.278779 32.278779 -199.3 -199.3 -199.3 \n",
|
|
"generate 32.749276 32.749276 32.749276 -281.6 -281.6 -281.6 \n",
|
|
"fftma2 30.472359 30.472359 30.472359 85.3 85.3 85.3 \n",
|
|
"covariance 30.505800 30.505800 30.505800 80.9 80.9 80.9 \n",
|
|
"gasdev 100.100000 2.395994 0.000000 8.0 0.0 -61.2 \n",
|
|
"fourt 25.100000 8.433333 0.100000 2.3 0.4 -0.2 \n",
|
|
"cov_value 100.100000 0.572549 0.000000 3.0 0.0 -7.1 \n",
|
|
"ran2 100.100000 0.527507 0.000000 2.7 0.0 -17.8 \n",
|
|
"build_real 0.000000 0.000000 0.000000 0.0 0.0 0.0 \n",
|
|
"prebuild_gwn 0.000000 0.000000 0.000000 2.2 2.2 2.2 \n",
|
|
"clean_real 0.000000 0.000000 0.000000 0.4 0.4 0.4 \n",
|
|
"cgrid 0.000000 0.000000 0.000000 0.0 0.0 0.0 \n",
|
|
"length 0.000000 0.000000 0.000000 0.0 0.0 0.0 \n",
|
|
"maxfactor 0.000000 0.000000 0.000000 0.0 0.0 0.0 \n",
|
|
"\n",
|
|
" time \n",
|
|
" count max mean min sum \n",
|
|
"function \n",
|
|
"Py_kgeneration 1.0 415.639768 415.639768 415.639768 415.639768 \n",
|
|
"generate 1.0 329.579564 329.579564 329.579564 329.579564 \n",
|
|
"fftma2 1.0 86.059132 86.059132 86.059132 86.059132 \n",
|
|
"covariance 1.0 85.894170 85.894170 85.894170 85.894170 \n",
|
|
"gasdev 262144.0 0.011277 0.000909 0.000193 242.610944 \n",
|
|
"fourt 3.0 0.066393 0.050588 0.042309 0.151763 \n",
|
|
"cov_value 156816.0 0.000575 0.000221 0.000193 34.674709 \n",
|
|
"ran2 333450.0 0.000691 0.000218 0.000190 74.079918 \n",
|
|
"build_real 1.0 0.001935 0.001935 0.001935 0.001935 \n",
|
|
"prebuild_gwn 1.0 0.002618 0.002618 0.002618 0.002618 \n",
|
|
"clean_real 1.0 0.001551 0.001551 0.001551 0.001551 \n",
|
|
"cgrid 1.0 0.003504 0.003504 0.003504 0.003504 \n",
|
|
"length 3.0 0.001141 0.000827 0.000668 0.002481 \n",
|
|
"maxfactor 4.0 0.000198 0.000195 0.000193 0.000780 "
|
|
]
|
|
},
|
|
"execution_count": 60,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_64-aa', 'log_64-ab'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 128,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgyUlEQVR4nOzdd3wT5R/A8c+TLtpSwt4jrFJaEJAlS1BAhLrYIqIoLnCjQl0Yd39OcCIqguIARWYFFFSmyBAR2QKVveleGff749JaSkoHbS9Jv+/XK6+Su8vdNyGX7z3jnkdpmoYQQgghvJvJ6ACEEEIIcekkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoYtyQSk1QykVb3QcApRSvZRSmlKql9GxCOFL/I0OQIjiUkoVdtziq0o1ECGE8ABKxnIX3kopdWueRbcBfYFReZb/BJwFTJqmZZZFbCJ/SikTEAhkaZrmNDoeIXyFJHThM5RS7wH3a5qmjI5FXEgpVQFJ4kKUGmlDF+VC3jZ0pZTF1Y77uFLqfqXUfqVUmlLqR6VUA6V7Vil1WCmVrpRaoJSq6ma//ZVSq5VSqUqpZKVUnFIqqpAxVVZKva2UildKZbqO9blSqnqubWoqpT5VSp1QSmUopbYqpW7Ps59Lfi+uGBYrpa5RSv3pOtYOpdSgPNtVVUq9oZTappRKUUolKaWWKKXa5Nkuu538ZqXUS0qpI0AaUMldG7pSqrlSaq5S6rjr2IeVUt8opcy5tvF3vY99rs8rXin1ilIqKJ/30l0ptcG1v/1KqdvybBeglHpOKbXXtc0ZpdQapVTfwvz/CeFppA1dlHcj0at/3wWqAhOAOcDPQC/gf0Az4EHgDeDO7BcqpUYBM4FlwEQgBBgLrFFKtdM0LT6/gyqlKgKrgZbAdOAPoDpwA1AfOK2UCgZ+dR3/PeAAMBSYoZSqrGnalJJ6Ly7NgdnAVNf7ugP4Vil1raZpP7m2aQLcBHzriqcWcC+wUikVqWna0Tz7fBbIch0vyPXvvJ9FIPpnGOSK/ThQD7gOqAwkujb9BLgd+A54E+gMPOn6DAfm2W0z13afut7Lna7PbbOmadtd21hdr/8E2ABUAjoAl6M30wjhXTRNk4c8fOKBnvS0fNbNAOJzPbcAGnASMOda/opr+Z+Af67lXwGZQJDreUXgHDAtz3FqAQl5l7uJ53nXcQa6WZfdFPawa5uRudYFAOuAZCCsJN6La1m8a9tBuZZVAo4Cf+RaFoTeFyF3vBYgA3g217Jerv3tA4LzbJ+9rpfreVvX8yEX+bzauLb5OM/y113Lr3LzXnrkWlbDFeMbuZb9CSw2+nsrD3mU1EOq3EV5962maYm5nv/u+jtL0zR7nuWB6CVH0DvfVQa+VkpVz34ADte2BfWsHwxs1TRtXt4VmqZld2wZgF5a/TrXOhvwDvoFRc8Sei/ZjgI58WialgR8DrRTStV2LcvUXG3gSik/pVQ1IAXYjV6yzWumpmnpbpbnlh1zP6VUSD7bDHD9fSvP8jddf6PzLN+hadrqXO/llCvGJrm2SQCilFLNC4hPCK8gCV2UdwfzPM9OLofyWV7F9Tc7CfwMnMrzuAaoWcBxmwJ/F7BNI2CvdmEnsp251udW3PeS7Z9cFxPZ9rj+WkDvoa6UelQptRe9lH8a/T1fBpi50AE3y86jadoB9ER9F3pTwzJXX4Dc+2sEOIF/8rz2OHpiLuizAL1GJfd7noR+UbbH1SfgdaXUZQXFK4SnkoQuyjtHEZdn96DPPndGoZfW8z5uLKkAi6C476UonkJPvquAW4F+6O93O+5/TwoqnQOgadpj6BcFrwDB6LUQ25VS9fNuWsg4C3zPmqatQr+wuhP94uou4A+l1F2FPIYQHkU6xQlRPPtcf09qmra8mK9vVcA2/wKXKaVMeUrpEbnWl6RmSimVp5Qe7vob7/o7BPhF07QxuV+olKqMXlovNk3TtgHbgJeUUl2BtcB9wDPo79WEXjOSXUOBUqoWeim7WJ+Fpmlngc+Az1wdFVehd5b7pLjvQwijSAldiOJZBiQBTymlAvKuVErVKOD1c4E2Sqm8vbNRSmWXIn8AagPDc63zR++lngKsLF7o+apLrt7iSqlK6IP1/Omq2ga95HteyV4pNZQL2+MLTSlVyfW+ctuGXsWefUvaD66/j+TZbrzrb1wxjlst93NN01LQq/SD3L9CCM8mJXQhikHTtCSl1FjgC/Rq2m/Q25IbonfQWgs8cJFdvI5e2v1WKTUd2Ix+q9kN6KXSrcA09FvCZiil2qOXkocA3YBHNE1LLuG3tQf4VCnVETiBXhVdC/32tWyLgUlKqc/Qe9u3Rr9dbv8lHPdq4D2l1LeuGPzRmzIc6Bc+aJq2VSk1E7jHVRuwEuiEfhvbfE3TfinGcXcopX5F/+zPot+yNgT9bgkhvI4kdCGKSdO0r5RSR4EY4An0kt0R9PvLPyvgtSlKqR7ot68NRE9MJ4EVwGHXNumuwVdiXesroffUvkPTtBkl/47Yi176fx1ogd6hbbimactybfMKEArcgl5z8Af6BUzsJRx3K3qNx/XoJf0017L+mqatz7XdXegXDqPRP7PjwKvon2FxvIN+AXUN+v/dv+jV+68Xc39CGEqGfhVCoPRR9P7WNO06o2MRQhSPtKELIYQQPkASuhBCCOEDJKELIYQQPkDa0IUQQggfICV0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQjeYUsqilNKUUo8bHYunU0r1cn1WvYyORQghPI0kdDeUUqNdiSP7kaGU2qOUek8pVcvo+HydUmqcUmq00XEIIYpPKfWUUuomo+MoT/yNDsDDTQIOABWA7sBYYIBSqpWmaWmGRubbxgGngRl5lq8CgoGssg5ICFFkTwHfAfMNjqPckIR+cUs0Tdvk+vcnSqkzwHjgRuBr48LyHkopBVTQNC39UvelaZoTyLj0qIQQRaGUMgGBmqbJ+efBpMq9aH52/W3sqop/NO8GSqmurnUjinsQpZumlMpSSg3KtfwypdRKpVS6UuqwUuoZpdQdruNZ8uyjv1JqtVIqVSmVrJSKU0pF5dlmhlIqRSlVTyk13/XvU0qpN5RSfnm2NSmlHlFKbXc1QZxQSn2klKqSZ7t4pdRipVQ/pdQmIB2417XuDqXUz0qpk0qpTKXUDqXU2LyvB6KAnrmaPH51rXPbhq6UGqqU2uz6XE4rpWYppeoV970KUdpc3+VNrnNpn1LqXqWUVSml5dnu1lzf7bNKqW+UUg3ybPOrUupvpVSkUuoXpVSaUuqIUmqCm+MGKaWeV0r94zoHDymlXlNKBeXZTnM1MY5USm0HMoFrXeseV0qtU0qdccW1WSk1JO/rgVDg9lzn8Yxc6+sppaa7fkcyXb8rd17ix1ruSQm9aJq6/p4B1gIjgbfzbDMSSAYWFOcAruQyHRgODNQ0Lc61vB7wC6ABrwKpwF3oJ1refYwCZgLLgIlACHpzwRqlVDtN0+Jzbe7n2u534HGgD/AYsA/4MNd2HwGjgc+Ad4DGwANAO6VUN03TbLm2bYFeg/ER8DGw27V8LLAdWAjYgeuBD5RSJk3T3ndt8wjwLpACvOxaduIin1d2TBuBJ4FawMNAN9d7TSjGexWi1Cil2gFLgWPAc+jfy0nAqTzbPQ28CMwBPgFqAA8Cq9x8t6u49vm9a/shwP+UUts0TVvi2p8J/dzrDkwDdgKtgUeBcOCmPKFeDQwD3kNvAot3LX/YtZ8vgUDgZuBbpdR12b9XwChXzBtcxwL9PEPp/ZDWo/+Wved63/2BT5VSlTRNm1zQZyjyoWmaPPI80BOXBvQGqgP10RPsaSANqAfc49omItfrAtC/nDOKcCyLaz+Po19gfeM6xjV5tnsHcAJtcy2rin5xoQEW17KKwDlgWp7X1wISci9Hb6PWgGfzbPsHsCnX8+6u7W7Js12/vMvRT3oN6OfmvQa7WbYU2Jdn2d/Ar2627eXad69cn/cJYBt6tX72dtGu7Z4v6nuVhzxK+4GeDFOBurmWNQNs+k+yBtAI/aL3qTyvbeXa7qlcy351fbdH5VoWiH7B8F2uZbcCDqB7nn3e63p911zLNNe2kW7iD87zPMB1Dq7IszzF3W8heqI/ClTLs/xr12/UBb8T8ijcQ6rcL245eoI+hJ5oU9BLzUfQr4Iz0Evk2fqhXwDMKsaxAoFvgeuAAZqm/Zhn/bXAb5qm/Zm9QNO0s+hXybn1BSoDXyulqmc/0E/O34Gr3Bx7ap7nq4EmuZ4PBRKBn/LsczP6Z5J3nwc0TVuW9yBarnZ0pZTZtY+VQBOllNlNXAXpANQEPtByte1peilhF3piz6ug9ypEqXHVwPUB5muadjR7uaZp/wBLcm06CL1JdE6ec+44sJcLz7kUcv3uaJqWhV46znse7wR25dlndlNi3n2u1DRtR973kOc8rgKY0c+jywvx/hUwGFjkepo7jmWufRW4H+GeVLlf3P3AHvQr5RPAbk3vmIWmaQlKqUXALcCzru1HAkf47wQpiifRS9f9NU371c36RsBvbpb/k+d5c9ff/GJIyvM8Q9O0U3mWnUOvwsu9TzNwMp991szz/IC7jZRS3YDngS7ozQC5mdEvGoqikevvbjfrdqHXLORWmPcqRGmqiX6nRt7zljzLmgMKPXm7Y8vz/LDmKubmcg64LM8+W5Knaj9PbLnldx5fBzwDtAVyt73nPb47NdALHPe4HoWJQxSSJPSL26D918vdnc+BoUqpruhVTjeglxadxTjWMvRS+ASl1K9a8XuTZte6jEK/ms/Lnue5o5D7PMn5tRG55f2BuKBHu1KqKbACPdGOR6/1yAIGoLfhlUVtUWHeqxCewISeIPvj/nubkud5ft9tlWef29DPP3cO5Xnu7jzugd5ksAr99tJj6BcXd6AXbgqSfZ7PQu/n485fhdiPcEMS+qVZip7MRqJXZ4cAXxRzX+vRq4MXo3cwGahpWu7k+y96O1teeZftc/09qWna8mLGktc+9GrCtVrxbz+7Hv1q/gZN0w5mL1RKuWsCKMyVPuifCeid8PLWSLTItV4IT3ESvamuoHN5H3oyPqBp2p4SOvY+oA16W3dhz7G8BqPH30/TtJwOuUqpO9xs6+4Yp9A7DfuV4O+TcJE29EvgSrhfo/cEHQ1s0zSt2FeXri/4zegl9S9cvVKzLQO6KKXaZi9QSlXlwlLzMvRq9aeUUgF5j6GUqlGM0Oag98R9Nu8KpZS/UqpyIfaRXYLIKTG42s3d/RCkolfLFWQT+g/kfblvu1FK9UevWozL74VCGEHTNAd635yblFJ1s5crpZqhl8azfY9+zjznancm17ZKKVWtGIefg96h9+68K5RSwUqp0ELsw4GeqHNu9VT6LbM3udn2gvPY9f7nAoOVUq3cxFGc3yfhIiX0S/c58BB6h5KJl7ozTdPmu652P0dPzPe6Vr2G3kv1J6XUu/x329pB9N7umuv1SUq/t/sL4A+l1DfoV8UN0TuJrUW/3awoMa1USn0EPOm6oPgRvZqtOXpHm4fRR4S6mB/Rq9gXufZVEf2H5SRQJ8+2m4GxSqln0NsVT2qadkGfAE3TbEqpiei3ra1USn3Nf7etxXPhLYVCeAIrcA2wVin1IXpyfAD97o62AJqm7XN9/18FLEqp+egl28bAQPRbwd4o4nG/QC98THXVjK11HTvCtbwf+kXyxcShV9kvVUp9hd7efT/6eXpZnm03A32UUuPRe7Uf0DTtdyAG/ffyd6XUx8AO9N+wy9FrAqsW8X2JbEZ3s/fEB//dttahkNv/jX7lWq8Yx7K4jvV4nuVjXctfz7WsLXrbVQZ6e1cM+n2pGlArz+t7oTcJJKC3hf2Dnvja59pmBpDiJiYrrttn8iy/G/2ET0O/2PgL+B9QJ9c28cDifN7r9cBWVzwHgAnoJfSc2+5c29VCb3pIcq37Ndd7yrltLdf2w9BvP8tAv41vVt7/i6K+V3nIozQf6Pd4/4E+jsQ/wBj0BJ2eZ7tB6D3IU1yPnej3bofn2uZX4G83x5gBxOdZFuA67/52nS9nXef0JKBSru004L18Yr8TvbNwhiue0e7OI/Rmr5Wu3wuNXLewoV8IvIdeIMlCb4tfDtxt9P+NNz+U68MVl0AptQU4q2labwOOPRm9FF9R06uzhBBeyFUKj9I0rXlB2wrhjrShXyKlVAf0kvPnZXCs4DzPq6H3Zl8jyVwI7+HmXG6OfsfHr4YEJHyClNCLydWhoz360KHVgSZarlvNXANIFNTBI0XTtLy3n1zsmH+in/A70aulxwB1gd6apq0qSvxCCOMopY6hV4nvRx9PYSz6XSDtNE3L795zIS5KOsUV3xD0dqfdwAjtwvvGG5DPwAy5PI/e9lRYP7iOmz3s7B/AGEnmQnidpcAIoDZ6O/pv6MO5SjIXxSYl9FKilMqeQ/1i9muatr8s4hFCCOHbJKELIYQQPkA6xQkhhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QOKNLDM5s2bK6KPTCYXAqK4nMDR9u3bF3qEPGEsOe9FPuRc9jCFvg998+bNV5hMpqkmk8lMrjmthSgizel0Jjqdzvvat2+/3uhgxMXJeS8uQs5lD1OohL558+aKJpNpTeXKlWvVrFnzrFJKRqPxcFkOp3+W3Rlkd2gBDqfm79A0P4dT83fqf/2cTvwdaCZNQ6H/UKtmpuM2pdn9wfX/q0xOTH52lMmByd+u/9vPgcnPril/O34BNvyDMlGFL7hpmqZOnjxZNSEh4YTT6ewuV/eeS8577+R0amQ5nEE2hzPAoeHvdGomu6b5O534OZ2an0PT/J2app/3GtTwT8sMdSYHARoq5+fAgcnPgSnAhsnPppkC7Pj52/TfgQA7Ssm57IEKW+Ve12QymWvWrHk2NDQ0vVQjEkWSnuUISrc5QjJtjgqZdmeFLLuzQpbDWcGpaXmybPaJ6uImBwf7K5QTkz5MPIDDDxwBgF655swnCL/ADPyDMvCvkI5/hXQCgtMJCM5EmdwmgJo1a55NSkoyO53OuujzKgvPJOe9B7M5nP6pmfaQTLsz59y36Yk88MKtVZ6//z0N8sMRrGUFX/CSi53zJj8bpgBbrQp+tlRHeoMa2z+OZtH3C7EmyvfEQIVN6CZAyRW6sTRNIzXLEZKSaQ9Ly7RXTLc5KjqcmvET7DiyKuDIqkBmcuVcSzX8K6QRWDGZoLBkgsJSMPk5AVzfI4W0yXo6Oe89hKZppGU5QlIz7aFpWY6K6TZHqM3hDDIsIKcjAKcjwGTX8LMlYz618RvAjtW8HdgEbHQ9tmFNtBkWZzlT7GRgiYlrX5KB5BYfG725tPbtbVIz7SFJ6TZzapYjLMPmCL2w5O2xFPaMUOwZoaSdrg1oBASnElgxGS0wEzRpj/VCpXXeyzl/oXSbIygx3VY5JcNu9pJz3x9o43qMcS3LxGreCCwA5mFN3GdUcOWBp39BvNbixYvDvvvuu0pFfZ2maSSm28IOnU1ruONo0mX7TqW0PJWSWTctyx7m1DTT2l9XMKxfj5xHn/YtGd6/Z87rF377NYP7dNXXX3slq3/+0e1xnE4nrz//NAOvvoIhfbsxZtj17N3/b876/70/g8heg2nb92auuO42Nmz52+1+pn8zn8heg2l3zQj+2LYzZ/mk1z/kq3lLcm+qsKVXJPVUHVPSYUtg+skGLVbfPxmreRBWc4Wifk5ClLSNGzdWqFevXuuyOt6oUaMaRkRERGY/goKCLre++HKDw+fS6u86ltRq74nkVgdPnKvfr3uHsCHXdM/3t3reN7MY3Kcrl1uqM+uTD91us3/vbjo3r8tr1ifdrj+XkMRVQ+6hde9hjHvy1Zzlp86co9eQu7HZil3IDkKfdfJ14B+s5m1YzS9iNV9e3B2K/BlfXeulbDYbAQEB+a7/+eefwxISEvyGDBmSVNC+NE0jOcMelpBuq5qcYat8sWr0br16061X75znD4weTscuPQBIPHeO2EkTWbhyI9Vr1uKPDb8x/p7b+PXPC6dY/vXHJfy56XfmLFtNQEAA06a8wVOvTvH/7qP/8effu/lg5hy2//IdFUNDmDU3jgee+R8b4r64YD8vTv6Ev3/+ls1/7eCVd6bz3cevs333Pv7auZcXnhh7sTet/O0p/YB+QBJW8wLgG+AnqaIT5cEXX3xxECA5wxa6c9+/Na5s3zr4yughNc+mZuVsM/lVK207dGb71j/y3U/kZW14/cPP+PT9t92ut9lsvDDxEa6+NjrffXw57weu6taBSY/ew9VD7+HvXf/QKqIZ461vEvvkgxf9rSuiVq7HM1jNB4H5rscqrImOkjpIeeXVJfRZs2ZVbtKkSVSLFi0ix44dW69KlSptdu/eHQiwbdu2oF69ejVr1apVy/Dw8MhXXnmlRvbrlFLtY2Jiardu3bplvXr1Wk+ZMqVa9rqCXvfoo4/WbdWqVcsHHnig/oYNG4Lbt2/fIjIysmXTpk2jJkyYUAdg3bp1wZ9//nmNefPmVY2IiIh8/PHH6wDMnTu3Uvv27VtERUW1bN26dcv5CxeZjydm1Np9PLlV/JnU8IS0rOpFaRM/efwYG9as4rrBwwFwak69nT1V72yanJRIrTp13b5WKYUtK5OszAz9NSlJ1K9TS8tZZ7eTmqb3b0lISqZ+nZpu9+PnZyIjI5PUtAwCAwNwOp08an2TKS88Xti3AVAJGAXEAcewmqdhNXcqyg5E+XCxc/6ee+6p36pVq5YRERGRHTp0aLF169YggJSUFBUdHd2kadOmUS1atIjs1q1b8+z9jR8/vm6jRo1aRUVFtfziiy+q5j5W3vN10aJFYQBdu3Zt/tlnn1XJ3m7x4sVhLVu2jCzK+8iyOwOOJ6bX3nUsKerA6dSIr76cVa1rz6upXrNWzjbrV//KyePHGDBw6EX31SKyNU2at8CUz90mH01+jb7X3UTDxk3z3UeAvz9p6Rk4nU4ys2wEBgSw9Je1VKlciSvaX1aUt1YUDYGHgJ+Bo1jNsVjNjUvrYOWB15bQjxw54v/AAw9Yfvnll13t2rXLmDJlSrWEhAR/ALvdzogRI5p88cUXB9q1a5eRnJxsat++fUS3bt1Se/bsmQYQFBSkbdu2beeWLVsqdO/eveW4cePOKKUKfJ2fn5/2999/7wQ4d+6cac2aNXuCg4O1lJQU1bFjx5b9+vVL6t27d+ptt912KiEhwW/69OmHAHbs2BH44osv1v3555/3BISEBW/cur328BuubbZk3VYCg4rXt2Xht1/R/eq+VKuuX3NUqVqNZ159k5v798JcuTIZGRlM+3qe29f27HstG39bzdWXRxBasSI1a9dh/fcfOQC/NlHhPHr3SBpfcT1VK1ciKCiQVXM/cbuf155+mL4jxhFWMYSP/vc0H8ycQ3Tv7jSq7/5CohCqAXcDd2M1/wa8DXwvV+/iYuc8gNVqPV63bt3DANOmTavywAMPNFy9evXe77//3pyYmOi3b9++7QAnTpzwA/jmm2/MCxcurLJly5YdlStXdg4cODAnmeQ+X6tWrer8+++/g6666qoWBw8e3Hbbbbed+fzzz6vdcccd5wCmT59e7dZbbz1dUPyappGQZqt8Ni2relqm3Zy7p+H82V8y/pkXcp4nJSby9ivP8cEX37F/7+5if2Z/bdnEX39s5KOv5jH17f/lu92tg6O5/eFJtLtmBDdd24t6dWoy5vHn+eGLd4t97CKqCUwEnsBqXgZ8CMRhTcyvn71ww2sT+q+//hraokWLtHbt2mUAPPDAA2eeeOKJRgBbt26t8M8//wSPGDGiSfb2qampfn/99VdwdmIeM2bMGYB27dpl+Pn5aQcPHgxISEjwK+h1Y8eOzTlx09LSTHfccUeDHTt2BCulOH78eODmzZtDevfunZo33gULFlT+9+DB4K7dr2yLUgpAKRPHjh6m0UWunPOjaRrzZ3/JxBdic5YlJyXy5acf8eWi5TRp3oJff1rCo3eNYv4vvxMQeP6dLNu3buGf3Tv5aeMOKoaFMeVVK/dNeMH/q/de4sDBI3z/w8/8s3YBdWvX4L3PvmH42BjWzJ9+QRyDBvRm0AC9CeDQkeMsWLaSpV++x1Ovvsu+fw/TzNKAl2MeKPL7c+nievyL1fwe8DHWxMTi7kx4t4ud8wALFy6sNHXq1Jqpqal+TqeTxMREf4AOHTqkTZw4scKtt97asGfPnslDhgxJBFi+fHnYjTfeeLZq1apOgLFjx54aM2ZMRde+zP/++29Q165dI7L3r5Tin3/+Cbz11lvPPfnkkw3+/fffgMqVKzt+/vnnyh988MGh/OJ2apo6k5JV7UxKZu0sNz3T//h9HWkpKfS4+pqcZa8++wR3PTCeatVrFDuhp6en8crTj/PG1JnZPzn5Cg0J5ruPX895/uhzbzBx3Gj+iT/EK+/o5/0zD99Fm6jwYsVSBCagv+uxD6t5MvAZ1sQLflPFhbw2oV+MpmlUqlTJvmvXrh35bRMSEpJzgezn56fZ7XZVmNeZzeacK8bx48fXq1atmn379u07AgICuOaaa5pmZGScd+Y4NU2dTsmsnur0r9PlyqtNse+5L+lm27dnF08+eDcAbTt05qmX33C73ab1a8nMzKRrz//a09ev/pWwSmaaNG8BQK++/bE+/iBHjxy64KJh0dxv6NS1B5XMZgCuHzKCB0feaAKY+8MKWrdsRt3aesn/juE38uAzr5GVZSMwMP+2tIefe523nhvPr+s2cfTEaWZP/R+3PzyJX9Zu5KpuHS/6vgvQCL1TzXNYzZ8Bb2NNPHApOxS+Ze/evYETJ05suG7dup1RUVGZv//+e3CfPn1aAERGRmbt2rVr++LFi8N++umnSs8991z9rVu3XnCO5056mqbRvXv3pEWLFrn9ng0YMODcxx9/XLVGjRr2Ll26JNWuXfuCGqQnn3yqzrz582tg8vN/+Emryt33Jbd538zi+qE34+fnl7Psz43r+XPjet566VkyMzNJTDjHDT07snDlxkJ/JofjD3D8yGHuHn49oF/wO50aSYkJvPS2+85zABu2/M3JM+e4ru+V9Bh4J1+88xKapjH60edYmU9NXSlpCrwLPI/VPBV4F2vi8bIMwNt4bRt6r169Unfv3h2S3U724YcfVrPZbAqgTZs2GRUrVnTkbhv/+++/g7Kr2vJT1NclJCT4169fPysgIICtW7cGrV27NqdXe1hYmCMhOTVk9/HkVscTMxpecWVv//VrVrJn53+9xbdtufBOnabhEcxZtpo5y1bnm8wB5n3zBTcOHXHej0D9hhZ279jG6ZMnANi6eQN2h53adepd8Pr6DS1sWLcaW5beAWfVimVEtWimATRpWI+1G7eSkpoGwOKfVhHepNFFk/nsBcto2awxrVs2JzU9g+zfRpNJ5eynBFQEHgR2YTVPwWquXlI7Fp7vYuf8uXPn/Pz9/bWGDRvanE4nkydPzun0sW/fvgClFCNHjkycOnXqYU3T2L9/f2Dfvn2TFy5cWPXcuXMmp9PJ1KlTc75P119/fdLatWsr/f777zkDrvzyyy8h2f++6667Tn/11VfVZ82aVf2OO+44r7rd7nD6HUlIrzfygYm15vy0LmDOstX5JvOU5CR++mEhNw2/9bzlS377K+fxv/c/pWnzFkVK5gDNW0bx69Z/cvYzcsxYbho+8qLJ3GazMfHld3jrufEApKbp53IJn8dFVRV4Cr3E/jxWc6hRgXi6YpfQjb5vtF69evZ33nknfuDAgc0CAwO1nj17JoWEhDirVavmCAgIYNGiRf88+OCDDd5///1aTqdTValSxT5nzpz9QL5tsUV93aRJk46OHj26yddff12tUaNGmVdccUWSpmmcSs6s3q3/4Jqz594aOLBPN67ufz33PTKB2Hc/5sWY8WSkp2Gz2YiIak1BJXZ3kpMSWbFkMXN/Wnve8pat23D3g49x98034u/vj5+/P69/8BlBFfS7wqxPPESvvtfS65oB3Hz7XRz4Zw9D+/XA39+fajVq8cVrz9qAwIH9r2bj1h106H8rQYEBhIYE89X7L+cbz7mEJN6fOYcfv/oAgGt7deWTr+ZxWZ9hNG5Qj2uv6lrk91iAQPTONKOxml9DL7Eb9mtTnhh53l/snG/RokXWDTfccDYiIiKqSpUq9gEDBiRkv27z5s3BkyZNqq9pGg6HQw0ZMuRs586d0zt37pz++++/h7Zt2zayYsWKjt69eydu2LABgFatWmVOnz59/7333tsoPT3dZLPZVFRUVNpVV111AOCqq65K8/Pz499//w0aNGhQEui1caeSM2ucTsmsU9jOrUsXfk9k6zZFanY7efwYD9w+jDnLVgOwYM5XvPf6yyQlJvDLj3HM/Og93vnsa1q2Knpnttc//JzbhkZTq4Zepnnh8fsYMOohfd0zjxR5fyUsBJgE3IPV/CwwXdrYz1fYsdwj/P39lzZv3jwlJCQkowziKpRz586ZqlSp4gT44osvKj/33HP19u/fv92oeJLSbWFHE9MbZtmdXnlfdWv/w1nKaXMzbGTJyrBrHDhyisZrH6NCSr5Nj0VxFLCin+DSea6EeOJ572nnfE5cqVmVTyRl1HfXRu7pGgcmpYTZz1QszmtL4Vwuim3AE1gTl5X1gT2VV7eh/+9//6s5b968qk6nU1WsWNHx+eefG9KummV3BhxNSK+flGGrWvDWohTUBaYBj2I1j8eauNTogETp8JRzPltqpj3kWGJ6g7QsR7ESorgkrYGlWM0/Ao9jTdxmdEBG8+oSutE0TeNkcmatU8mZdb1gWMYCeXEJPa/PgUewJp4rjZ2XF3Le58/h1ExHE9Lrn0vLqlHw1p7Ni0vouTmAz4AJ5fm89/okZJTkDFvonhPJkSeSMur7QjL3MbcBO7CaBxkdiPA9CWlZ5t0nkqN8IZn7ED/gLuAvrGb3PRDLAUlEReTUNHX4XFr9A6dTIzLtzgunHBSeojYwF6v5W6xm98PcCVEEdofT798zqZaDZ9Oa2d1OUSo8QH3gJ6zmyeVxjghJ6EWQlmUP3nsipeXZ1KxaBW8tPMQQ9NL6SKMDEd4rMd0WtudESlRiuq1awVsLgyngYWATVnNbg2MpU5LQC+lkUkaNfadSW2baHVIq9z7VgFlYzbPkHlZRFJqmcTQhve6/Z1LD7U5nic1QIspEFPA7VnMMVnO5yHXF7+VuNZfafOhYEz1mbmS7w+l38GyaJSXTXtnoWMQlGwm0w2oeijUx39EAxUWU1nnvQed8NpvD6f/vmbTGaVn2Ik+DLDxGIPAqEI3VPAprYrzB8ZQqr75qyZ55KSIiInLDhg3BeZ+/9tprl9RpJT3LXmHvyZSWuZP5yePHuG/kYG7o2ZEhfbsx/p7bOHumwHkZLpCZkcEjY0Zy/ZUdGHpNd+69ZSAHD+zPWf/Ju29yQ8+OtG1YlZ+XxuW7n7TUFO4bOZielzWle1Sj89bt3bmdOwYP4MZenRjUuwuTHnuAjPR0t/uZ980sIq+8IaAQ85p7u0hgA1bzzUYHIkrO7t27A/Oe7/Xq1Wu9bt26YtWoJWfYQveeSIksajIv6Jxr06AKg/t0ZVi/Hgzr14M/fl/ndj8Z6ek8/ch9DOrdhUG9u/DQHSPO+53Zu3M7Y4Zex01XdeamqzqzfMkit/t5IeYRBvfpyl3DbyA5SZ8GQdM0xo0awqH4cjV6cnfgT6zmPkYHUpq8OqFPmzatxsSJE4/t2rVrR6dOndJzPz958qT/9OnTi53QE9OyKu07lRphyzNQhJ+fH/c8/DgLV27ku5/WUr9hI95+aVKxjjF45O0sXLmRb39cQ69r+vP8hIdy1nXu3osPPv+W9p0vPsqav38Ad4x7mI++nn/BusAKFXjypddY8OsGvv1xDelpaXz24RS3+5n2zutsWPKNbcoLj+dMxpA9r/ktA/sX6/15sFDga6zm/5WXqjhft3fv3qBLOd9zO5GUUTP+dFoLu9MZYLfbi/Tawpxzn81dkjO88+X5nN/ffTmDjPR05i5fx/crfqNajZrMnPoOoE+68vBdI7n/iaeZ/8vvzF2+jss7dblgH3t37eDggf3MXb6ODl26s/j72QB8//XndOzagwaWcjdTqRlYgtU8xuhASovX/piNHj26waZNmyq+8MIL9dq1axeR9/mDDz7YMD4+vkJERETk1Vdf3Qz0K/aHHnqobrt27SJq16592WuvvVZjypQp1dq2bRtRr1691tOmTasC+gl9y8iRzYf37+U3pG83Hrh9WM746NVq1Dzv5GndrgNHDx8scvxBFSrQ4+prciaEuKxdx/P207pde+o3shS4n8CgIDp3u5KwSuYL1jVq3JTwlq0A/UKkVZt2HD3kPlY/kx8ZmZc8r7m3mQD8gNVc2ehAROHMnTu3UmRkZMvw8PDIjh07tti8eXMFAHfnO8CcOXOqZJ/fEyZMqJO9/ODBg/4DBgxo0rp165bh4eGRDz30UF1N0zh4JrXR5VHhDd56ZZK65brePPvo2CLFV5Rz7mKUUmSkp2G32bDb7aSlplDTNSfDkvnfcVm7Djm/Q35+flStduG0BgEBAdiyMnE6naSnpRIQEMipE8dZsmAuo+6+v8gx+Qh/4BOs5lexmi8+BZ0X8tqEPmPGjEOtWrVKi42NPbRly5ZdeZ+/++67By0WS8auXbt2/Pzzz/9kvy41NdVvy5Ytu5YvX7570qRJDY4cORL4559/7vrqq6/2TZw4seHBs2mNTiRlNHjC+ipf//AL3/20lnaduvDh27EXxOBwOPhmxsf0umbAJb+fL6dPLZH95CctLZXvv/ki32M88vTzXDP8noDY9z9j0qN3l8S85t6iH7AKq7lOgVsKQx05csR/zJgxTWbMmBG/Z8+eHXfeeeepYcOGNXU6neR3vickJPj9+eefuzZt2rTzww8/rHXgwIEAgFtuuaXx/ffff3Lbtm07t2/fvmPLli2hU6bNaJmQbqsOkHjuHF8uWs6r735c7HjzO+fuGXEjQ6/pzuvPP01amvtZQYeMHE1IaBhXtWvO1e3CSUlOYsRofRbGfXt2ExAYxAOjhzOsXw+efuQ+t81+lqbN6dilBzf378mRg/8SPWgYrz//FOOffgF/f68eJLQkxADf+NqtbV6b0IvrlltuOQv65AuBgYHOESNGnAPo0rVbZlJSkv/BY6eqg34VPGLAVQzq3YV5X3/B7u1/n7cfTdN4+enHCDNXZuSY+y4ppk/efZND8Qd4KKZ4VfcFsWVlMWHcnXS58ip697/O7TZ9+l/PHz99a1s59xNCg4NZsGwlD9wxnKdefZfh903k6dj3SiU2D9EaWIvVXPSJ6UWZWblyZWh4eHh6p06d0gHGjh179uTJkwHZSdqdUaNGnQWoU6eOvX79+ll79uwJSkpKMq1fv77SY4891jAiIiKydevWUf8eOhz2zz/7cmZTu2HoiALnEL+Y/M65pev/4psffmXm/GWcO3s63+a631b9jKY5WbF5Nys27yKskpkP3ngFAIfDzu9rfuXZV99m9tJV1Kxdh5efesztfh6Y8Axzlq3mjakzWL/qV2rXrUfdBg15dvz9jL/nNpYu/L7Y79EHDANW+NKsjeUuoQcHB+fMzuPn56eFhIQ4bQ6n34Ez6eFKKRwOO39s+I2vpn/Ee5/P4fsVv/H4pJfIyjx/5MvYSRM5cfQIr38wHZPJ/cd4203XMKxfD0Zen38/jJlT32XFksW8//m3BAeH5LtdcdlsNp4Ydyc1atZm4vMX1jK4425e88PHTvLL2qJN3+hlGgNrsJqLPkWV8Fh5z3ebzZYz3PUff/yx889t2/+Z/8sGtXjNFnXPw/81L4WEuh8Jdd+eXTkd2l552n1z1MXOuTr1Guj7Dwll+G1j+GPDb2738d1XM7m6XzRBFSoQEBjIgIFD2fibPrtanbr16di1B7Xq1EUpRfTAYfz1x6aLfg4pyUnM/Ohdxj72JLM++ZAOV3TjtQ+m89GU10nPp6NsOdEVWI/V3MLoQEqCzyb0ypUrO5KTky86/zmA3an57z+V2iLT7sjJpkmJCYRWrEjlKlWxZWXx3ZczzntN7KSJHIrfz9sfzyIgMP8Boz6f/yNzlq3my0XL3a+f9j5LFs7lo6/mUcl8YRv4pbLb7Uy8fwzmylWY9L/JhSpxlNG85p6qNrASq7mb0YGIC/Xq1St1z549wRs3bqwAMG3atCq1atWyNW7c2FbY8x3AbDY7O3XqlPTk08802HcqpWWWwxl08vgxThw7UuBrm4ZH5HRoe+rlNy5Yf7FzLikhgfR0/RxyOp0sWzSPiHymOK3f0MJvq35B0zQ0TWP1ih9p2qIlANdcfxPbt24hJTkJgDW//ESLyKiLxj3l1ee595EJBAeHkJ6WhlIKpRR2m42sLFuB79vHNQV+w2ruaHQgl+oS7kP3vPtGc+vcuXNaeHh4evPmzaMaNGiQmbtdLRd1LDmrSc0wx3k92bv16kPc999yY8+OmKtU5YruPTl5/BgAWzau5+vPptG4WTi33qCXvOs2aMTkT2YVKb4Tx47w5ovPUL+hhbuGXw9AQGBQTvKfNuUNvp31GefOnuaf3Tt59dkJzF66kqrVqvP+G69Qo1Ztho26E4Ahfbtx7uwZUpKT6dsxio5du/PKlI9Ytuh7VixZRHjLKIZfeyUAbTt0dvtDBHA2IbGs5zX3RJWBH7Gah2BN9Kn79UqEged93bp17Z988sn+22+/vbHdbldms9kxe/bsfSaTqbDne44vvvrm6MPjH29x41VXKKUUwSGhPBv7FrVcHc+K62Ln3IF9e3gx5lE9kToctGx1GROt/5Xg779tKOMee4qoNu0Y+2gML8Q8wqA++jnXuGlzno19G9BL+WMeeJTbbuqHyWSiZu06TPrf5Hxj2rJxPRkZGXS58ioAbr79LiY+cBeffTiF6wYNx2yuBPYzl/S+fUAV9PO+N9bEP4wOprjK7WxrWXZnwP5TKeFZDu+cu7w0+NBsayXBBgzBmrjQ6ECM4ovnPUB6liNo/+mUCIdTK/c9w8BnZlsrKWeBq7EmbjU6kOLw2Sr3i8m0OwL2nUppIclcXEQAei/YHkYHIkpOhs0RdOB0agtJ5iIfVYHlWM2tjA6kOMpdQrc7nH4HTqeG5x0wRgg3goGF0lHON2TaHIEHTsuY7KJA1dGr371u5J1yldCdmqYOnE5tlmWXkrkotMrAUm88uUuAE9A0TfP6ATiy7E7//fqFvEx7WoJyWmwL0XTrZeqgJ3Wvmnq53FQ76aNApVnSbY5itRWJci375O6GNfGk0cGUoaNOpzPx5MmTtWrWrHlWKeWVv9pOp8ahhPTGWXaplXMnU9lNAY6i/9dqGpxKdaAykwjIKPp8Fl6gGfrFfC+siUlGB1MY5SahH01Ir5eUYatqdBzCa3ndyX2p2rdvn7J58+b7EhISpiYlJZnR55n2OomZzuqZdq3kB3nwEQ6/NL9gp/sR6wqiMpOo/+eb+Dl8ps9kXu2A77Ga+2FNdBgdTEGKndBbz2xdatOnbrt9W4neGnMyOaPGmdSs2iW5T1EutQNmYzVHY010Fri1D2jfvv36zZs3d3c6nXXxwia6F1adve90muNho+PwZE8HzfnrajYU/R5sTSMg47QvJ/NsvYGXgCeNDqQgPllC3717d+CCBQvMEyZMOJWQllXpRGJGw/5dLuPtT74kIqp1mcaycvlS3nppEk6Hg2YRkbz41vtUDLtwRkan08n/nothzc8/oZRi5F33MWL0PQWuyy0pIYFH7xlFwtkzXN6pC0+/8iYAZ8+c5on7RjP1q3kEBEh/oEt0LfAs8LzRgZSV9u3bpwB7jI6jqCwxcUOAhwrcsJyzZRxNq+DnE7eclaaJWM2/efptrF53xV0Y2VMpZtocgUfOpTcpqYa/ok6lmJaagvWJh5j8ySwWrd5MjVq1mTbldbfbxn0/h/17d7Nw1Sa+XLSCmVPf5Z/dOwtcd94+5s+hY9cezF2+jgP79rJ31w4A3njhaR5+8jlJ5iVnElZzP6ODEPmzxMRdDszES5sJhMdRwEys5iZGB3IxXp3QC5pKsU2bNlH3j745ZzjIFUsWMerGa+jftQ3Tpvw3Wtrpkyd4Yuwd3HJdbwb36cp7r72Us65/l8t4+5XnKM5Uimt+WU5E1GU0bhYOwPDbxrBkgfvJEJYt+p5BI27Dz88Pc5Uq9Lt+IEsXzC1wXW7+/gFkpKfhdDqxZWUSEBjI2l+WU8lcmcsu9/pRDT2JCfgSq7mh0YGIC1li4sKAbwFpNxclqTIw15NnaPPahF7gVIpNmjrm/LjG9M5nX+e8JjkpkS8W/MhXi39m5kfvcOLYUQCeeXQcw2+7i68Wr2D20lVs/+tPflw8P+d1xZ1K8diRw9SpXz/ned0GDTl98rjbkv6xI4epW7/Bf9vWb8ixo4cLXJdb9KBhHIo/wPBrr6Rz917UrF2Hj999kwcnPFOkuEWhVAO+xWqW26A8zweAR5ekhNdqC7xvdBD58do2dHdTKU6YMKHhgQMHAjLsVESZLnhvA24aAkCVqtWo19DCkUP/EmY2s2HtSs6e/u9upLTUVOL3/TcU9KVOpVhWQkJCefOjmTnPX7c+xR3jHuZg/AE+fe8tAO5+6DFaRJZtPwIf1gmYDIwzOA7hYomJuxW41eg4hE+7E6t5LdbE6UYHkpfXJvT82JxaQLINtz3aA4P+qynxM/nhcDhyBkT4YsFPBFVwX5NysakUn3zwbsD9pCd16tVn/epfc54fPXSQ6jVr4+9/4cdep159jh4+RJv2nfRtDx+kTt36Ba7Lz7Ytmzl75hQ9+1zL6EH9eXnKR2iaxqTx45j+XdxFXyuKZCxW869YE+cYHUh5Z4mJa4JeOheitL2P1fwH1sQ/jQ4kN6+tcs9vKkVTpZoNQiqGmZKTC3ercEhoRTp27cH0DybnLCupqRS79erNzr+3cuAfvYPw7M8/5dobBrndV9/om/j+689xOBwknjvHskXz6Hf9wALXuWOz2Zj8qpXHJ70MQHp6GkrpU6CmpRXvflNxUe9hNVc3OojyzBIT5w98BYQZHYsoFyqg96PxqJ7GxS6hl/S94kXlbirFjz//6lyGzVmnecsomoZHMKh3F+o3tJC7Hd2dV96ZxhsvPM2g3l0oyakUQyuGYX1tCo/cdSsOu51mLVry4tv/FSCG9evBezPnULN2Ha4bPJztW//g+ivbo1CMuvt+mrfU5zi+2Dp3Zk59h+sH30y1GvqoheMee5L7bx8OwPiny83dVmWpBjAFGGl0IOXYM0Bno4MQ5Uok8DjwqtGBZPOZ6VOz7M6APSeSo5ya5lfw1sIdmT71kl2HNVHaM8qYJSauBfAXIB0Ui2FKwLsrb/T7rafRcXipdKAV1sT9RgcCXlzlnteRhPQGksyFwaZiNUuVb9n7AEnmwhjBwHtGB5HNJxL6ubQsc3KGrYrRcYhyrz7wmtFBlCeuXu1XGx2HKNf6YzUPNToIKHxCd4I+Y5mncTg107GEjEZGxyEKz4enXAS4F6v5SqODKA8sMXGVgTeNjkMIYApW84Vjepexwib0BE3T7FlZWR5XrXU0Ib2e3en0qJ6G4uKynIDTjp8t2ehQSoNCv6XFJ2q/PNyrgFfNVy18Vh3gZaODKGwv99NOp3PliRMnogMCAmwmk8kjilZZdmfguaT0GhoeEY7Xy9CcSpVyqdmpwanEDEJO/oF/ls/OQtoKGIU+lrgoBZaYuLbAhTMUCWGccVjNn2NN3GhUAIVK6O3bt3du3rx5Unp6eut9+/bVwEMmPEjMdNbItGseEYsvCDCdNSmttKf81TCln6Xh7hko374QewGr+RusiZlGB+KjXsJH+gAJn2FCv321q1EBFPo+9Pbt2x9xzYvcsCivKy3fbE+OWHcow/1MJ6JYlgQ9dSKQrLqlehCng8D0k5i0os1c54Uaog8J+7bRgfgaS0xcFyDa6DiEcKMLVnNvrIkrjDh4kRJz+/bts4B/CtywDAz+Nu4tPKSmwFcEZ8XbA1Rpl9DLlaexmj/FmuizbQsGecXoAIS4iGcBQxK6V1ZZWWLiegD9jY5DiAJUAyYYHYQvscTE9QF6GR2HEBfRE6u5hxEH9sqEjgcNtSdEAR7Faq5jdBA+xPCexEIUwrNGHNTrErolJq4v0M3oOIQopBDgUaOD8AWWmLho9ClrhfB0fbGay/y76nUJHflxFN7nLqzmEKOD8AGPGR2AEEVQ5qV0r0rorkkYrjU6DiGKqApwm9FBeDPXfedXGR2HEEVwHVZzu7I8oFcldOBBpGe78E4PYTXLd7f4pGZOeKNnyvJgXpPQLTFxZuB2o+MQophaAtcYHYQ3ssTEVQeGGx2HEMVwE1Zz/bI6mNckdGAMUNHoIIS4BA8bHYCXGgMEGR2EEMVgAkaX5cE8niUmzg+9ul0Ib3YtVnMLo4PwJpaYOBNwn9FxCHEJ7iyr5javSOhAX8BidBBCXCIF3Gt0EF7mSuTcF96tMWXUodNbEvooowMQooQMk85xRXKz0QEIUQLuKIuDeHxCt8TEVQRuMjoOIUpIPaC70UF4A0tMnD8wxOg4hCgBN2E1B5f2QTw+oaMncxmUQ/gS6bFdOH3Rx8MXwttVBK4v7YN4Q0IfZnQAQpSwwVjN3nDuGW2E0QEIUYJK/fvs0T8qlpi4Ssi9u8L31AZ6Gh2EJ7PExFVAmtqEb+mP1Vy5NA/g0QkdvYpC7j8Vvkiq3S/uGiDM6CCEKEFBQO/SPIA3JHQhfNFgrGY/o4PwYFIzJ3zR1aW5c49N6JaYOEUpv3khDFQdmQr0YvoYHYAQpaB8JnSgNVDD6CCEKEWlWv3mrSwxcfUBGVFP+KIIrOY6pbVzT07oUjoXvk4Sunt9jQ5AiFJUaqPGeXJClx874bM0DS1VC6rR/ckZ0unzQlLdLnxZqSV0/9La8aVwTcZypdFxCFFSNA0tg8C9W7Wmxxc6ugQucXQKP0elKKAr8IvR8XkYuZgXvqzUap89MqEDHYFKRgchRHFpGs50gvb+6Wx6fJGzS/ASR6fmCYSFA+F5Nu2OJPQclpi4pkAto+MQohQ1wWpuhDXx35LesacmdBnrWngVTcOZRtCeP53NTixwdg1e5ugYnkjFFhTcuUu+6+drZ3QAQpSBq4AZJb1TT03obY0OQIiL0TQcqVTYs8XZ/ORCZ5eQZY4O4UlUjAAiirirK0ojPi8mCV2UB10pRwm9tdEBCJGbK4Hv3uwMP7XQ0TXkR2f78GRCWwItL3HXlSwxcQ3iY6MPlUScPqCt0QEIUQZK5bZMj0volpi4AIpeyhGiRGka9hSCd292Nj+9wNEt9Cdn+/AUQiJL6XBRgCR0nZTQRXmQty9NifC4hI6ezAONDkKUL9kJfKOzxekFjm6hy52Xt0glOKqMDh8FLC2jY3ksS0xcTaDUBt0QwoPUxmquhDUxqSR36okJ/TKjAxC+T9OwJROya6Ozxdn5jm4Vf3a2K8sEnpdRx/U0bYwOQIgyFA5sKskdSkIX5YKmYUsiZNcGZ8uz8x3dKv7ibBuRRgVP6atRWlX53qa50QEIUYZaUA4SupRWxCXTNLISCd31uzPi3HxH90q/Otu2SCfIUxJ4XpLQdQ2MDkCIMlTi7eiemNAbGh2A8D6aRmYCobvXOyPPzXd0q7TS2SYigyBvqe0Jk57ugJz7onwp8Z7unpjQpVOMKJCewCvu/M0ZmTjf0d280nlZRCaB3pLA3amL9HSXhC7KE98uoVti4gKBakbHITyPppFxjrBd65yRCfMd3aqsdl7WIpPAtkbHVYJkuFOpchfli28ndPTSuTI6CGE8TSP9LGG71jpbJc13dKu8xtk6IouAtkbHVYrKdUK3xMSZgHpGxyFEGQrFaq6ANTGjpHboiQldlEOaRtoZKu1e62yVON/RreoaZ+sIG/7laZCRcp3Qgdp43u+REKWtIuCzCb2u0QGIsqFppJ7GvGuNs1XKPEf3Kr85o8pbAs+rptEBGMxsdABCGKAicLqkduZpCV1K6D5K00g9hXnXaudlyfMd3ar/5oxsYce/vdFxeZDyXkIPMToAIQxQsSR35mkJvYrRAYiSoWmknKTyrlWOy1LnO7tXW+9sGeHATxJ4/sp7Qg81OgAhDBBWkjvztIQebHQAong0jeQTVNm90nFZynxn9xobnBEtHPh1MDouL1KiJ7YXkoQuyiOfLqFLQvcSmkbScarsXulomzbP0a3GRi2ihROTJPDiMxkdgMEkoYvyyKcTegWjAxDuaRqJx6i251dHm7T5jm41N2ktwp2YOhodlw/xMzoAg0kbuiiPfDqhe1o85ZamkXiUart/cbRNn+/oXnOz1ryFJgm8NJX3hC4X86I88uk29PL+o2aoP7Wm8bscDQ/Mc3SvvUVr1lzD1MnomMqR8v7dtxsdQHn1lO2u9u/YBx2sTEpaFZWcWUWlZFYl2V5VJTuqkOysolKopFIJI82/Iun+ISozsAJZQQHYK/jjDDHhrAiEKiWDghVDiV7IelpCL+/tiIYammW90ugYyrHyntBLbHANUTSpBFfcp9XTq3614u1D4XRWJD3ZrNJSK5GaVkWlZFQhObOqSs6qqpLsVUhxVFbJVCYVs0o1VSTNL1RlBlQgMygIW4UAHMF+OEMVWkWlCCzBt+fpSvR772kJvZhfJyG8niR04bU0TKZkQisla6GVoMYl/ZIHYssKIy3ZrFJTK5OSXlmlZFRVyVlVSbZVUcmOqiQ7K6sUzaxSTWGkmXLXGgRir+CPI9SEMxSo6AW1BmkluTNPS+jJRgcghEHK+8VsptEBCM+QRUDgGczVzmhmfaKuYp8ZmhZKRrKZ1FSzSk2rrFLSq5KcWUUlZ1Uh2VFVJTuqqGStMilUUmkqjHT/UJUREExmoF5rYK/gqjUIU4qgEnuD50svyZ15WkJPMjoAIQySYnQABpMSuihhSqUSHJZKcNhRrfolXTIHYM8KIy2lkkpNrUxqehWVnN2kYKuikh1VSHFW0ZsUVCWVagolwy9EZWTXGgT74wjxwxkChCl1XtOyJHQhfFB5r52ShC48lg3/wLNUqnpWq1QVuKRagxAyUs2kpZhValogtoSFJRal5yX0RKMDEMIg5f1iNtXoAIQofUqlERyaRnDoMa0alPCFvKf1Ki/vP2qi/EowOgCDHTM6ACEMcK4kdyYJXQjPUGJTKHqpk8i96KL8OVuSO/O0hJ5gdABCGKRcJ/T42GgNOG50HEKUocT42OgSLcR6WkI/YnQAQhjklNEBeAA5/0V5El/SO/S0hH4IsBkdhBAGiDc6AA9w1OgAhChDB0p6hx6V0ONjo53Av0bHIYQB9hodgAeQErooT+JLeoceldBd9hkdgBBlzI6U0EEu5kX54tsldJf9RgcgRBk7EB8bLT28YafRAQhRhiShC+GDpLpdt8PoAIQoQyVeGy0JXQjjSULXxSMjxonyIQ3YXdI79cSEvt3oAIQoY5LQybkXfZvRcQhRBrbGx0Y7SnqnnpjQ9yADzIjy5W+jA/AgW4wOQIgysKk0dupxCd11lV4qb1YID2QHNhodhAeRhC7Kg/KR0F1+NzoAIcrI1vjY6DSjg/Agcu6L8mBzaexUEroQxlpndAAeZhvlfFx74fNSKaVbND01oW8wOgAhyshvRgfgSVxNbiuNjkOIUrTBNSpqifPIhB4fG30CGTVKlA9SQr/QL0YHIEQpWlZaO/bIhO4iP3TC1x2Nj42WC9cLSUIXvqxcJvRSe9NCeIjVRgfgieJjo3cAJ4yOQ4hScBzYWlo79/SErhkdhBClaJHRAXgwKaULX/Sjq59IqfDYhB4fG30c+NPoOIQoJXbgB6OD8GALjQ5AiFKwtDR37rEJ3SXO6ACEKCWr42OjzxkdhAdbBGQYHYQQJcgJ/FiaB/D0hL7A6ACEKCXy3b6I+NjoFGCJ0XEIUYJWxsdGnynNA3h0Qo+Pjd4EHDY6DiFKgST0gn1rdABClKBZpX0Aj07oLvONDkCIErYtPjY63uggvMAiIN3oIIQoARnAd6V9EG9I6DONDkCIEjbP6AC8gVS7Cx+yKD42Oqm0D+LxCd1V7f6X0XEIUUI05CK1KL42OgAhSsCXZXEQj0/oLp8ZHYAQJWRVfGz0fqOD8CILgGNGByHEJThDGd2i6i0JfRaQZXQQQpSA6UYH4E3iY6NtwDSj4xDiEnzt+h6XOq9I6PGx0aeRUbWE90ugDDrG+KBp6APxCOFtnMA7ZXUwr0joLlKyEd5uZnxsdJrRQXib+Njoo8jdLsI7LY6Pjd5bVgfzpoS+DJlSVXi3qUYH4MXeNzoAIYrh7bI8mNck9PjYaAfwptFxCFFMP8XHRu8yOghvFR8b/Suw3eg4hCiCLa7vbZnxmoTu8glwyugghCiGl40OwAe8YnQAQhRBmZbOwcsSenxsdDow2eg4hCii1fGx0SuNDsIHfAPsNDoIIQrhCPr3tUx5VUJ3eR8o9RF3hChBLxodgC+Ij412Ai8YHYcQhfBiWd2qlpvXJfT42OhE4EOj4xCikH6Pj43+yeggfMgcYIfRQQhxEXuBT404sNcldJe3kbmShXd4yegAfImrlP680XEIcRHPxMdGGzJuglcm9PjY6BPAe0bHIUQBtsTHRi82Oggf9C2wzegghHBjMwZO++uVCd3lJaTHu/BsTxodgC+Kj43WgMeMjkMIN2Jc309DeG1Cd7WlP2N0HELkY2F8bPQyo4PwVa5+CXONjkOIXJbHx0YvNzIAr03oLp8AW40OQog8MoFHjQ6iHHgUSDU6CCHQJw970OggvDqhuzrIyA+n8DRvyBSppS8+NvoQMmCP8AyvesJIkF6d0AHiY6N/AeYZHYcQLoeREc3K0pvAHqODEOXaLuBVo4MAH0joLo8D6UYHIQTwhMyoVnbiY6OzgAeMjkOUWxpwb3xsdKbRgYCPJHRX9eazRschyr0V8bHRZT7cY3nn6iD3sdFxiHLp0/jY6FVGB5HNJxK6y9vAb0YHIcqtBOAOo4Moxx5FH6FLiLJyHJhgdBC5+UxCd3WQuxMZQU4Y4wFXJy1hgPjY6FRgFGDICF2i3NGA2+Njo88ZHUhuPpPQAVy9DGOMjkOUO7PjY6O/NDqI8i4+Nvp3ZKhdUTbejo+N/tHoIPLyqYTu8g4gk2GIsnIEGGt0ECLHS8B6o4MQPm0zHjoKpNI0w0apKzWWmLi6wF9ANaNjET5NA64xenQocT5LTFwT9B/dygaHInxPInC5p44z4YsldOJjo48CNwMOo2MRPm2yJHPP4/qxlfNflIY7PDWZg48mdADXD620p4vSshIP6+Eq/uMaR3+i0XEIn/K/+Nhojx7EzGcTOkB8bPQbwNdGxyF8zmFgmFFzHovCiY+NfhP43Og4hE/4Dg9tN8/NpxO6y13IBC6i5GQAg+Jjo08aHYgolHuA340OQni19cAoI6dFLSyfT+iuYTgHAmeNjkV4PQ0YHR8bvdHoQEThuIbkHAgcNToW4ZUOADfGx0Z7xfgmPp/QAeJjow8AQ9GnuBOiuJ6Pj42ebXQQomjiY6OPAf0AjxoERHi8BCDam2rjykVCB4iPjf4ZGIn0fBXFMyM+Nvp5o4MQxRMfG/03EA3IxDmiMLKb1nYaHUhRlJuEDhAfG/0depuax7eFCI8yB70vhvBi8bHRv6FXv3vEzFjCY2WgV7P/YnQgRVWuEjpAfGz0dOAxo+MQXmMRcGt8bLTU7PgA13CdQwCb0bEIj5QJDPTEYV0Lo9wldID42Oi3gReNjkN4vJ+AofGx0fLj70PiY6MXow88I7cdityyk/lSowMpLp8c+rWwLDFxU4CHjI5DeKTVwLWuuySED7LExEWjN6eEGB2LMFwWejL/wehALkW5LKFni4+Nfhh4zeg4hMdZj967VZK5D4uPjY4D+iC938u7VOAmb0/mUM4TOkB8bPRE4HGko5zQxQG942Ojk40ORJQ+V0e5Huiz5ony5zjQMz42eonRgZSEcp/QIWeIyDuQNrXy7lP03q1SMi9H4mOjtwNdgd1GxyLK1A7givjY6M1GB1JSynUbel6WmLjr0NvUgo2ORZS5F+NjoycZHYQwjiUmrjowH+hmcCii9P2Cfp95gtGBlCQpoefi6v16DfoIQaJ8cAD3STIX8bHRp4GrgPeMjkWUqi/QO7wmGB1ISZMSuhuWmLhw9Cv1lgaHIkpXMvqkCwuMDkR4FktM3CjgI6S2zpdkAY/Fx0b77AWbJPR8WGLiwtCnXrzJ4FBE6fgbGBIfGy3tpsItS0xcG+B7oInRsYhLth99ymOfaS93R6rc8+Hq5TwIeBoZ/93XfA50lmQuLiY+Nnor0AHw+tuZyrnvgMt9PZmDlNALxRIT1wv4GqhtcCji0mQAD8XHRn9sdCDCu1hi4u4DXgcqGh2LKDSfr2LPSxJ6IVli4moDM9CnYRTeZz96FfsWowMR3skSE9cYmA70MjgUUbANwF3xsdHbjA6kLElCLyJLTNydwFuA2ehYRKF9CoyPj41OMjoQ4d0sMXEKeBB4FRky1hOlAs8A78THRjuNDqasSUIvBktMXH1gGtDf6FjERR0C7o6PjV5mdCDCt1hi4poDnwBXGh2LyPEjcG98bHS80YEYRRL6JbDExI0G3gYqGxuJyMMJTAWelFK5KE2WmLih6G3rjYyOpRw7jd5W/rnRgRhNEvolssTE1QPeBQYaHYsA9NvR7nGN0S1EqbPExFVAnw8iBgg1OJzyJA29QPWaXLjrJKGXEEtM3JXAm+i3uYiydwp4AfhI5i8XRrDExNUFYoFbAWVwOL7MAXwGPBcfG33U6GA8iST0EuTqMHML8ArQ0OBwyotU9E6Kr8sMacITWGLi2gJPAYORsT5K2kIgJj42eqfRgXgiSeilwFUF9yh6FVwlg8PxVXb03uvW+Njo40YHI0Relpi4CPTfgJGAv8HheDMHMBd4Iz42eqPRwXgySeilyBITVwN4GBgHVDE4HF/hRB+O89n42OhdRgcjREEsMXEWYCL6FM1BxkbjVVLRL9rfLs8914tCEnoZsMTEVQTGoJfapTds8aSgt5tNjo+N3m90MEIUlSUmriYwGrgLaG5sNB7tGHpH46nxsdHnjA7Gm0hCL0OWmDh/YDjwBNDG4HC8xRH0k/sjX5zuUJQ/rr42PYG70dvZpdSuN6HFoV+0x8XHRtsNjscrSUI3iCUmrg/6lfpNyAntzm/A+8Ac6bUufJUlJq4qMAoYAXSi/PWO3wB8CcyOj40+YXQw3k4SusFcJ/RI4Dbklrfd6Cf3V/Gx0fuMDkaIsuS67e1G9Iv8q4AAQwMqHTZgLbAE+D4+Nvofg+PxKZLQPYglJq4F+m1vNwPhBodTVk4A3wCz4mOjNxkdjBCewBITZwYGANejJ3dvnunxKHoC/wFYLoPAlB5J6B7KEhPXDLgWfbz4q4BgYyMqUX+jn9xLgNXxsdEy37wQF+G62O8JdAeuwHM71TmBHehV6RuBteVtxjMjSUL3Aq772q9ET+79gAi8q63tCPCz67E8Pjb6sMHxCOHVLDFx1dCb6Fq6HhGuvzXKMIyzwD7gH+AP9CS+OT42OrUMYxC5SEL3Qq7quMuB9ugndXugKZ6R5I8BW4A/XX//kNvMhCgbrj45LYHG6Mm9ppu/FdFHsPNz88gAElyPxFx/z6HPXrgfPYnvj4+NTiyTNyUKTRK6j7DExFVGT/It0O91bwRYXH9rU7LJ/iz6yX0IOAzEA1uBLdJTVQghjCEJvRywxMQFoY8tXxcwux6V0GeGquB6BKL3QE1Hv0rP+/csevI+HB8bnVbGb0EIIUQBJKELIYQQPkBmAhJCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhcFUkpZlFKaUmq00bEIUZ4opToqpdYppVJd52BbpdS1Sqk/lVIZrmWVjY5TeAZ/owMQQghxIaVUAPAtkAE8CqQBh4BVwHbgfiATSFVKPQXs0DRtvkGxVgPuBK4HWgIBwC7gbU3TZhsRU3kkCV0IITxTU6ARcLemaZ8AKKWuBcKAZzVNW569oSuhfwfMNyBOgC7Ay8APwEuAHRgMfKOUitQ07TmD4ipXJKELIYRnqun6m1DAMk+wHWiuadq/2QuUUh8Ay4GJSqnXNE1LNSy6ckLa0D2cUqqXUmqTq71sn1LqXqWUVSml5drmDqXUz0qpk0qpTKXUDqXUWDf76qCUWqaUOq2USldKHVBKTc+zTWWl1AylVKJSKkEpNROonE9sEUqp75RSZ13xbVJK3ZDneJpS6nY3r+3nWnfdpXw+QvgipdQMYKXr6beuc+VXYKZr2UbXshmu34JQ4HbXMs31erJ/K5RS4UqpWa7z+pRS6kWla6CUWqCUSlJKHVdKPZYnjkCl1AtKqc2u16YqpVYrpa7KvZ2maQdyJ3PXMg29xiAIaFKiH5BwS0roHkwp1Q5YChwDngP8gEnAqTybjkW/Ql6IXtV1PfCBUsqkadr7rn3VBH50vTYW/QrfAgzKdTwFLAC6A1OBncBA/vsRyR1bFLAWOOLaXyowDJivlBqsado8TdM2KaX2u5bn3cdw4BywrIgfixDlwUfo59ZTwDvARuAEsBu4B/134ACwD70U/AmwAZjmev2+PPubjX4+xwDRwDPAWeBe4GdgIjASeEMptVHTtFWu11UC7gK+Bj5Gr+4fAyxTSnXSNO3PAt5Hbdff04V/66LYNE2Th4c+0BN0KlA317JmgA3XBbBrWbCb1y4F9uV6fhOgAR0ucrwbXds8kWuZH3onHA0YnWv5cuAvICjXMoWe5PfkWvYKkAVUybUsED2Zf2r0ZywPeXjqA+jlOu+G5Fo22t15DKQAM9zsw+ra/qNcy/zQO9c5gYm5lldG73g3I8+2gXn2WRk4XtD5C1RFvwhZZfRnWV4eUuXuoZRSfkAfYL6maUezl2ua9g+wJPe2mqal53qdWSlVHb26rolSyuxaleD6e52r96w7A9BL+B/m2rcDeDdPbFWBq4E5QJhSqrrrmNXQS9zNlVL1XJvPRu/xOijXLq5B/1GQ3q9ClI1Psv/hOqc3oV+Af5preQJ6DUCT3NtqmpYFoJQyuc59f9frL8/vYEopE/Al+nn+YAm+D3ERktA9V00gGPjHzbrzlimluimlliulUtET9yn0kjFAdkJfCcxFr7o/7Wo3u0MpFZRrV42AY5qmpeQ53u48z5uh/xi86DpW7sfzueJH07St6LevDM/1+uHoVXA/u33nQoiSdjDP80QgQ9O0vFXhiUCV3AuUUrcrpf5Cv33uDPp5Hs1/vy3uvAtcC9zl+g0QZUDa0L2cUqopsAI9aY5Hr0rLQi9tP4rrok3T68CGKKWuQG9j7wdMBx5TSl3hJolfTPaF4Bvk3wae+6JjNvC0qxSfDNwAfK1pmr0IxxRCFJ+jkMtAv1jX/6HUrcAM9M5trwMnXa97Ev22ugtfrNRzwDggRtO0L4odsSgySeie6yT6FXEzN+tyL7sevRfpDZqm5VyF5+2Fmk3TtPXAevQEewt6tdjN6FVy/wK9lVIV8yT4Fnl2s9/116bluhf2Imaj1wwMRm9TqwR8U4jXCSEKRyt4k2IZgn6+D3IVCgBQSj3vbmOl1P3o7faTNU37XynFJPIhVe4eytXOtRy4SSlVN3u5UqoZ0D/XptlX2bmvqs3AHbn3p5Sq4urFntufrr/Z1e4/oF/kjc31Oj/ytIFpmnYS+BW4VylVJ2/sSqkaebbfCWxDr2ofjt5rf1Xe1wkhii2VfG4vvUTufl86ow8kcx6l1HD0HvlfotcWijImJXTPZkXvQLZWKfUheo/TB4C/gbaubX5Er2JfpJT6CKgI3I1ews+dbG8Hximl5qHf0hLm2i4JPZEDLELvpR6rlLIAO9A7s7lrK7sfWANsU0p9jH4VXwv9RK8PtMmz/WzgBfRah081TXMW6ZMQQlzMZqCPUmo8cBQ4oGna7yWw38XovwHzlFJxQGPgPvTfhorZGymlOgGfo7exrwBG5ik/rNM0bT+iVElC92Capm1WSvVHb6t+Eb19fBL6WMkRrm12K6WGoA+3+Ab67SQfondcyT1ozEqgE3r1ei30zi8bgJGaph1w7cvpGhhmMnArejXeQuAxYEue2HYopTqgV6WPRu/hftK13Qtu3s5sV4whSO92IUraePR70F9C70w7EyiJhD4D/V7ye9H73exA/20Yin5bXbZI9NtRa3D+7062O/ivqU6UEpWrWUR4CaXUfCBK07TmRscihBDCM0gbuodTSgXned4cvQf7r4YEJIQQwiNJCd3DKaWOoVd77Ue/T3wseie2dpqm7TUwNCGEEB5E2tA931JgBHo7VibwG/CUJHMhhBC5SQldCCGE8AHShi6EEEL4AEnoQgghhA+QhC6EEEL4AEnoQgghhA+QhC6EEEL4AEnoQgghhA+QhC6EEEL4gCINLLN58+aKQF3kQqC8cAJH27dvn1LglsJnyXkvPID8FhVCoQeW2bx58xUmk2mqyWQyk2tuXOHTNKfTmeh0Ou9r3779eqODEWVPznvhIeS3qBAKldA3b95c0WQyralcuXKtmjVrnlVKyfByXkLTNGwOLcDmcAbYnFqgze4McDi1AKeGApSGpjRQmoaq6Zdiq+BMCwT0RcqknUrK9E8+ezw5/Nd7pgRmnj0BnAWOAfuxJp4y9M2JUiXnvXdxOjVlc2oBdoczwO7U/B1Ozd/u1PztDs3foWkBDqfm79A0P/TzHUBVwGFroI4FpvhXST1mCw02KeVUgFI4TQqHv8lk8/dTNn+Tsvn7mWwBfsoW4Kds/iaToyzfm6Zp6uTJk1UTEhJOOJ3O7lJSd6+wVe51TSaTuWbNmmdDQ0PTSzUiUWQ2h9M/PcsRnOVwBmbZnUE2hzMwy+EMsju0QLtDC9DQcpWsFPkVtIJMzpRgZ0ZozgINalbQSMMZ4vQPeYXMs+e/wGpOQp80Zp/r7x5gM7ANa6K9RN+kMIKc9x4qw+YITMtyhKZnOULSbY6QTLsjxOHU3Pye5zrf3Zz6JmUiWKGy/P3BGeDnBL/c67Oc6JXdkPsfKKWcASZlC/AzZVYI9EsNDfRLDQ3yTw3wM5XaeV+zZs2zSUlJZqfTWRf9t0bkUdiEbgKUXKF7BpvD6ZecYQ9LzbSHpWXZwzLtzuCCX1U8SuX9x3kqAW1dj9wysJq3Aptcjw1YE3eUUoii9Mh57wEybY7A1CxHaHqWPSTd5gzNtDlCXCXtElPU/2BN00xZDi0oy+EMSs2yVzrjWh7gZ8oKDvBLCQ70Sw3Rk3yaqYS+P67voUL6cuSr+LOtWc3tSzCOPPtO3Fxq+/ZCNofTLyXDHpaSaQ9Ly3KEZdodpZbAS0gFoLProbOajwM/AsuAn6S63jtZYuJK5byPj42Wc95F0zRSMu2hSen2ysmZtspZdmeFUjycAtBKqHuEzeEMtDmcVZMybFX1nSstKMCUFhbkn2gOCTgXEuifUSIHEm755JXO7t27A1977bUauZfVq1ev9bp168o8Ee7duzfw6quvbmaxWFo1bdo06uWXX66Zve7pp5+u3bRp06iIiIjINm3aRPzyyy8hoJ/QCWlZlQ6dTWuw+3hy5M5jSW3n/fBT0/5Xda85oGen4IFXX8HWzRsAyEhP5+lH7mNQ7y4M6t2Fh+4Ywdkzp93G8kLMIwzu05W7ht9AclIi2ccaN2oIh+IPlPZHURu4DfgSOIHVvAmr+eVSvTAUogRFREREnjt3rlR+Mx1OzXQuNavyv2dSLTuOJbU5cDo14kxqZu2iJvO///yD2wf2Y+g13RnWrwe/r12Vs+7fA/u495aBDL2mOwN7d2Hpwu9z1uUuQiecO8uwfj1yHtdf2YHLLdVJPHcOgGfH38+Qvt0Y1q8Ht0Rfze9rVrqNZfvWLQzt113179Ex9NPPZtT952RK1K5jSVFffrew8c23jGxalPclCscn50Pfu3dv0PTp02tMmDChREuBNpuNgICAQm/vdDq56aabmj722GPH77zzznMAhw4d8gdYt25d8GeffVZj586d281ms/ODDz6o+tDDD1uWrvw9MTHdVs3udOYc6OTxYzw7fizvf/4tTZq3ICszk4wM/UL3uy9nkJGeztzl61BK8fyEh5k59R0effqF82LZu2sHBw/sZ+7ydUyd/BqLv5/NiNH38P3Xn9Oxaw8aWBoD5y79QyocBbR3PZ7Cat4DfA18hTVR2saER8k+73ft2lWizUYOp2Y6m5pVNSnDVjkty1FJ07RLKiZrmsajd4/ixbfe54oevYjf/w/3jriJBb9upEJwMJPGj+PGYSMZNOI2zp45zS3RV9G1U0ea1T2/hF65SlXmLFud83zm1HfZ9PtazFWqAPDEc69QyWwGYOfff3HPzTey8q99mEznX+tM/2AyE5+PpeVlbRnStxs3DB1BUkpqhbdej60wZfrX7DyW1LpikH+COSTgXFiQf4py36wnisCrS+hz586tFBkZ2TI8PDyyY8eOLTZv3lwB4MEHH2wYHx9fISIiIvLqq69ulr39nDlzqrRt2zaiXr16rSdMmFAne/nBgwf9BwwY0KR169Ytw8PDIx966KG62evq1avXeuzYsfVat27dcvDgwY2LEt/ChQvDAgMDtexkDtCgQQM7gFIKu92uEhKT/E+nZFY7eja5bs16jYLPpGbWzp3MAeZ8/in9bxxCk+YtAAgMCso5oZRSZKSnYbfZsNvtpKWmULNOvQtiCQgIwJaVidPpJD0tlYCAQE6dOM6SBXMZdff9RXlbpSEceA7Y7Sq5j8dqrlHQi0T5s3z58tD27du3aNGiRWR4eHjkrFmzKgOsWrUqpF27dhHh4eGRrVu3bvnjjz+GAtx8882NJk2aVCv79bt27QqsXr16m8zMTLVgwYKwtm3bRrRs2TKyWbNmUW+//Xb17O0GDx5sGTp0qKVDhw4twsPDowCUUu1Pnz7tB3DPPffUb9WqVcuIiIjIDh06tNi6dWtQ9muVUu1jYmJqt27dumW9evVaT5kypVr2uj/++KNC9x5XRoRHtGzbMqpVuynvvd8oNdNuPnXiuHpi7B3ccl1vBvfpynuvvVTkzybh3FnOnT3NFT16AWBp0oywSmbW/LocgN07ttP9qr4AVK1WnfCWrVi8YJ4fXLzKfd7sWQwcPirnefZvD0BKclK+r/P39ycjPZ2szEz8THqT/4dvxzJyzH1UMpuxOZyB59KyasafTm2x81jSZUcS0utl2h2FLzGJC3htQj9y5Ij/mDFjmsyYMSN+z549O+68885Tw4YNa+p0Onn33XcPWiyWjF27du34+eef/8l+TUJCgt+ff/65a9OmTTs//PDDWgcOHAgAuOWWWxrff//9J7dt27Zz+/btO7Zs2RI6ffr0KtmvO3v2rP/WrVt3Lly4sEj10n///Xdw1apVbdddd12Tli1bRvbt27fpjh07AgFaX95Rjb5nXFZEixato5o3scz8eGpQzAv/c7uffXt3k5mRwT0jbmJYvx68+uwE0tJSARgycjQhoWFc1a45V7cLJyU5iRGj775gH5amzenYpQc39+/JkYP/Ej1oGK8//xTjn34Bf3+PqqhpD7wJHMJqnoHVfLnRAQnPcOLECb/hw4c3e/nll4/s3r17x86dO3f07ds3OSMjQw0fPrzpM888c3TPnj073njjjUO33HJLs8TERNOYMWNOf/311zmJ+qOPPqo+cODAM0FBQVrXrl3TNm3atGvnzp071q5du+v111+vs2/fvpyE8tdff4X89NNPew8cOLA9byxWq/X433//vXPXrl077rnnnpMPPPBAw9zrg4KCtG3btu1cvHjx3qeeeqphRmaW6ejZlOoDhwyNvH74baHfLf/N77uf1tI3+kYAnnl0HMNvu4uvFq9g9tJVbP/rT35cPL9In0+VqtWoUbMWyxbNA/Tq9/j9/3D00EEAIlu3IW7eHAAO/xvP1s0bOHJYX6flc+vLn5t+JykxgSv79Dtv+eRXrUR3a8f4u0fx5rTPLyidA9z7yAQ+ee8t7hs5iEeffoFd27dx5OC/9BlwwwXb2p1awJmUzNp7jidftv9UStPEdFulwo6RIv7jUb/kRbFy5crQ8PDw9E6dOqUDjB079uyECRMaZidpd0aNGnUWoE6dOvb69etn7dmzJ6hatWqO9evXV3rssccCHnvsMQDS0tJMu3btymm7uvPOO8+4+8IWxG63q/Xr11dauXLlzg4dOmTE/u+1mkOH39zi+5/WOvbt3x+8bMkPLFq9mZq16/D1jGlMuP9OZn6/9IL9OOx2Nm9Yx7Sv5hMcGsqkx+7nwzdjeezZF/lt1c9ompMVm3djMpl4dvw4PnjjFR6Y8MwF+3lgwjM5y39Z9gO169ajboOGPDv+flJTkhl5w9X+d9zQs8jvs5QEAbcDt2M1rwPeBb6T2+HKr19++aVi48aNM6699toUAD8/P2rVquXYsGFDsMlkYvDgwUkA/fr1S6lWrZpt/fr1If369Uux2+2sXLkypEePHmlz5sypNn/+/L0AJ06c8B85cqTlwIEDFfz8/LSEhAT/LVu2BDdt2tQGcOONN56rUqWK010sCxcurDR16tSaqampfk6nk8TExPN+S8eMGXMGILLVZU4/f3+19q9/LktMSvTLysyk/01DcrarUrUaaWmpbFi7krOnT+YsT0tNJX7fPxTV5E+/ZPIrz/Pp+2/TNDyCdh2vwM91wf7i2x/y5ovPMKxfD+rUa0Cnbj3x99PX5VdCn/fNLK4fPPyCi/5HnrTyyJNW1q/+lckvP8fMeUsJCAw8b5smzVvw2dwfAHA4HNw3chAvT57Kkvnf8dMPCwmtGMYTk16mUuXKOa/RgJRMe+WUTHvlQH9TRrXQoBPVKgaeKame8r7OaxN6cQQHB+ecnH5+fprNZssZWOePP/7YGRIS4vZLExYW5nYQhc2bN1cYOXJkE4COHTumfPHFFwdzr2/UqFFWy5Yt09q2u9x2NCG97tWDbq311JMxppT0DFb8sJDmEZHUrK3X/N84bCSxz07ElpV1wYlRu159WkS1zvni979xMJ++/zYA3301kwE3DiGogn79MWDgUD59762Lfg4pyUnM/OhdPvxyLp++9zYdruhG9KBh3HLNFYE39+1McHBpdqotlq6uxxtYza8BH2FNzDQ4JuHBcrfH3nLLLWc+/vjj6klJSeeqVKli79ixYwbAPffc0+iaa65JXLp06T6TyURkZGTL9PT0nCv3ihUruj3v9+7dGzhx4sSG69at2xkVFZX5+++/B/fp06dF7m38Aiv4x59JrZ+cbqvm5+dPlt2e/21mrt+gLxb8lHMe5+exe2/nUPx+AKZ9s4DKVaqet75FZGs+nPVdzvObrupMs/AIAOo1aMhb0z7PWTf21iE0u7KHliuE86SlpvDj4vl8tXhFvvFc0aMXrz47gb27dhB5Wdt8t5v1yYf0jb6RMLOZae+8wbc/rmHx3NnM+vRDxj32pNvXZNmdFY4lpjc6mZxRr2po4MmKfs7EfA8gAC+ucu/Vq1fqnj17gjdu3FgBYNq0aVVq1apla9y4sa1y5cqO5OTkQt2naTabnZ06dUp65plnctrU4+PjA3JXveWnffv2Gbt27dqxa9euHXmTOcCNAwcmHz9xMnjllt2tT6dk1lm14kdT4+YtCAgIoF4jC1s2/U5aqj7g0arly2jUpNkFyRxgwE1D2LhuNVmZeg5b88tyWrRsBUD9hhZ+W/ULmqahaRqrV/xI0xYtLxr3lFef595HJhAcHEJ6WhpKKZRS2Ox2lWWzFfS2jVQPmAL8g9U8Fqv5wg9L+KzevXun/Pvvv0FLly6tCHqp78SJE36XXXZZhtPpZN68eZUAfvrpp9DTp08HXHHFFWkAd99995m4uLgqU6dOrTFq1KicW0ASExP9LBZLpslkYsmSJRV3794dUpg4zp075+fv7681bNjQ5nQ6mTx5cs6dKzaH0x8g/kx6ZFK6rVruPGlp2pwKwSEsmf9fwj139gwhoRXp2LUH0z+YnLP85PFjnDh25IJjv/nRTOYsW82cZasvSOYAp04cz/n33K9mEhwcQqduVwJw5tRJnE69TLP21xXs37uLGwcOdQBobgaaWLpoHuGRUTRuFp6zzGazcfDA/pzn27Zs5uzpU9RvaMnv4+LwwX9Zv/pXht56R05fH6UUJpOJtNTUfF+XzeHU/E8lZ9Y9cCY9PM3mrHQi1S7t7Pm4hPvQjb1XvG7duvZPPvlk/+23397Ybrcrs9nsmD179j6TyUTnzp3TwsPD05s3bx7VoEGDzNzt6O58++23B8aNG9egefPmUUopLTg42Dl16tR/s6veisrp1NTJ5MxaZ9JU7WdiJ/vdf/swNE2jYlglXnvvEwB6X3sd27f+wYjoqwkMDCQ4JITYdz/O2cf9tw1l3GNPEdWmHW07dKbXNf0Z3r8nJpOJpuERPPOqXkIf+2gML8Q8wqA+XQFo3LQ5z8a+nW9sWzauJyMjgy5XXgXAzbffxcQH7uKzD6dw8+AbbeZKYd6QJOsDHwATsZpfBGZKVXzZMPJ+8Ro1aji++eabfU888USDhx56yGQymZg0adKRW265JXH27Nn7Hn744YYTJ06sHxQUpH355Zf7zGazE8BisdjatGmTumLFisozZ878N3t/L7300pFHHnmkYWxsbN2oqKi0yy67rODsAnTq1Cn9hhtuOBsRERFVpUoV+4ABAxIAjiak1z2bmlUL3LdJ+/v7M+XTL3n12Yl88t5bmEwmht02hqG33sEr70zjjReeZlDvLiilCA4J5dnYt6jlpoPrxcz9aiZx874FTaNxs3De/uSLnNqKlcuXMv39yZj8/KhRqzbvzZxDhWD9Tt4flizxW7zsZ6yvv5Ozr/nffMGgEbeft3+73caz48eSnJSEv78/wSEhvPHRzPOqzfN67bkYJlhfQSlFWCUzA24awpC+3QgOCeW1D6YX+r1pmuaXkqVViV2TsGTcD3FPAN/Ex0ZLVXwuhR3LPcLf339p8+bNU0JCQmRggHxomsbZ1KyqJ5Mz69kcTm9IjOdpFnguJcSeUDH3sgy7xoEjp2i89jEqpBwyKrSC7AXGY01cbHQgvkTO+4I5NU2dSs6scTols477oVc9W4hyZDZTB4OO+NVLO2MLLFQNhVE0exYnjx7G+stJjiQ7ADYAj8XHRq8xODSP4bVV7p4mOcMWuvdkSsSRhPTG3pjMvVxzYBFW8w9YzeEFbi1ECTiTkll19/HkVieSMhp4YzLPTSupoeLKVidgtSUm7ntLTFxzo4PxBJLQL5HN4fSLP53a+MDp1IgMmyO04FeIUtQf2IbV/CJWs8f17BO+IcvuDNh/KqWpL128e3m99UBguyUm7k1LTJynD4tdqiShX4LEdFulvSdSorLHLRYeIRB4BtiO1XyV0cEI33ImJbPq3hPJUSmZ9spGx1ISsovl7jrFeZkAYDzwhyUmroPRwRhFEnoxOJ2aOnQ2rcG/Z1Kb5x3VTXiMJsAKrOa3sJqDCtxaiItwlcqbHUlIb1zSM50ZScvz1wdEAL9ZYuKes8TEeXUzSHFIQi+itCx78N6TyS3PpWXVLHhrYTAFPApsxmpua3AswkvlKpWbC97au+SU0DWvL6Hn5g9YgXWWmLgWBWzrUyShF5KmaZxIyqi571Rqy9Kcf1yUiijgd6zmJ7Ga5TsvCiXL7vT3xVK5O06v7BNXoI7AFktM3IOWmDiffIN5FbtKorTmRQbPmxs5y+4MOHg2zZKWZa9kdCyi2AKBV4C+WM3DZT72Yiqt6W4NHtcir5RMe8jBM2nNfL1JLVeVu68mvGDgHeB6S0zc6PjY6KNGB1SapLSCPita69atWzZt2jSqWbNmUffdd199h0Mf9fFcalblvSeTIwuTzA8f/JebB/RiWL8eDOrdhcfvG01SQgKgD6N438jB9LysKd2jGl10P9/M+JjBfbrm7OfL6R/lrPty+kcM6t2FwX26MqRvNxZ/P9vtPmw2G4+MGcnQa7rz6N2jsNv1cVcyMzK4Y/CAnLjKoauATTLpi3eaNWtW5SZNmkRFREREbtiwocRqyhYvXhz23XffVQK9iv3A6dSIoiTzv7ZsYug13bn+yg7cNfwGThxznzeWLJibc14P6t2FmR+9l7Nu429r6NSsznlzkWekp7vdzwsxjzC4T1fuGn4DyUn6iKiapjFu1BAOxRd+Dqn/OsX5bELP1hfYYImJ8+nz3mcSuu0ShiytVq2affbs2fv27du3/a+//tqxcePG0Pfee6/a4XNp9Q+dS2ta2HtMa9aqzYy5S5izbDXfr/iNGrVq8+HbsQD4+wdwx7iH+ejr+QXuJ3rQMOYuX8ecZav5fP4yPv/oXXb+/RcAzcIjmDlvKXOXr+O9mbN53fqU2xN43coVVKpchW9/XENYJTNrXVMoTpvyOjePvvuiIzuVAw2BtVjNowrcUniUadOm1Zg4ceKxXbt27ciemOlS2Ww2fv7557AffvjBfORcWr0jCemNizI3udPp5KkH7+EJ66ssWrWJHlf15fXnn3K7be269fjgi+/4fsVvzJy3lG+/mM7G3/4bF8XStFnO0K5zlq3OGcktt727dnDwwH7mLl9Hhy7dcy7qv//6czp27UEDS5FmeQbgEqdi9xb1gFWWmLibjA6ktHh1QldKtX/00UfrtmrVquUDDzxQf8OGDcHt27dvERkZ2bJp06ZRuec8Hz9+fN3o6OgmV199dbOmTZtGXXHFFeEnTpzwA+jWrVt6ZGRkFkBISIgWFRWVvjf+SK3sYRwLKzAoKOcEdDgcOeOkZ6/r3O1KwioV3K8m9zbpaWk5pWuAzt175qyvXbc+1WrU5LibMZ/9/QPISE8DICM9jYCAQPbs/JsD+/bS7/qBRXlbvqoC8DlW82Ss5nLXG9YbjR49usGmTZsqvvDCC/XatWsXATB37txKkZGRLcPDwyM7duzYYvPmzRVAL3FHREREZr9248aNFerVq9caYPfu3YFhYWFtx44dWy8yMrLlq6++WvPzzz+vMX/Bghq9u3euPXXya0WKa8dff+Ln70+nrj0AGHLraFYuX0pmxoWD67XreAXVa+o/K2GVzFiaNc+Z3rSwAgICsGVl4nQ6SU9LJSAgkFMnjrNkwVxG3X1/kfaVncedvl9CzxYKzLXExE0wOpDS4NUJHfRZ0/7++++dH3300eHmzZtnrlmzZs+OHTt2bt26dceiRYuqrFixImewlz///DP0q6++OrBv377t1atXt0+ePLlG3v3F/3sw8IclS6t369O/WNV5tqwshvXrQc82TTl4YB9jx8cU6339FLeAgb270L9rG2675wFatrrsgm3Wr/6VpMREotq0u2BdlyuvIrRiGEOv6U7FSpXo1O1K3njhGSY+/2qx4vFhDwNxWM0yKJCHmzFjxqFWrVqlxcbGHtqyZcuuI0eO+I8ZM6bJjBkz4vfs2bPjzjvvPDVs2LCm2ROQXExKSopfVFRUxo4dO3ZOePLpxGG3jWHAwGFqzrLV3PdI0X7rjx89TJ16DXKeh1YMI7Ri2HkTpbizb88u/tq8kSt6/Ddl8aF/4xnevye3RF/N7JmfuH2dpWlzOnbpwc39e3Lk4L9EDxrG688/xfinX7hgmtMCuUaI89KR4orLBPzPEhP3iSUmzqf6SHh9Qh87dmzO7ElpaWmmESNGWMLDwyPbt2/f8ujRo4GbN2/OGZ+4Z8+eibVr13YAdO7cOWX//v3n3Z988vSZgOtuuDFq9NiHlbskWRgBgYHMWbaaX/7Yg6VZc777ckax9tM3+kbmrfiNBb9uJG7eHOL37T1v/d6d25n02P289sGnhIRcmItMJhPPvTaFb39cw6TYyXwz42Ou6jcAu91BzAN3Mf6e2/h97apixeaDrgF+xmquZnQgovBWrlwZGh4enp5d9T527NizJ0+eDDhw4ECBP9L+/v7a2LFjzySm28L+OZnSUkOVaS3NiWNHeGTMSJ559b8JWFq2uowfN/zN7CUrefuTL/h21mcsWzTP7esfmPAMc5at5o2pM1i/6ldq161H3QYNeXb8/Yy/5zaWLvy+SPH4aC/3gowBllli4qoYHUhJ8fqEnj2jEsD48ePrVatWzb59+/Ydu3fv3tG5c+fkjIyMnG9qhQoVcsZP8PPz0+x2e866E6fPVLimX/9Wva6JNt12j/tqq317duV0Vnnl6ccvGldAYCA3DRvJ4rnuO60VVr0GDWndrj0rly87L44H77iZ5994j8s7dSlwH0cPH2T1zz8x/La7eP+Nlxk8cjQvvvU+sZMmXlJsPqYTsBqruUGBWwqPFxAQoOUuqeee5xygQoUKzqQMR+WDZ9KaOwu4JS0pMTHnvH/krlsvWF+7bn2OHflv4qLUlGRSkpOoUau22/2dPH6Me0YM5O6HHuea627KWV4xrFJOc1qtOvXof+Ng/tjw20XfZ0pyEjM/epexjz3JrE8+pMMV3Xjtg+l8NOX1fDvUuVMOOsXl5yrgd0tMXDOjAykJXp/Qc0tISPCvX79+VkBAAFu3bg1au3ZtoW4zO376TMi11w6I7HpVH9M9D+efqJuGR+R0Vnnq5TcuWH/08EHSXe3WTqeTHxcvILxlVJHfx749u3L+ffbMaTasXZ2zn/17d/PA7cN4NnZyzhSoBXntuSd54rmXMZlMers+CmUykZFWqNkiy5OW6J3lIowORBSsV69eqXv27AneuHFjBYBp06ZVqVWrlq1x48a2Fi1aZB49ejTo6NGj/gCfffbZ+bUvSqnD59KbaK5W5NCKYSQnJbk9TiWzOee8n/zJrAvWR17WFrvNxoZ1qwH4btYMeva5lqAKF04ncOrEce4ZcRN3jH2YG4aOuGBd9kVIakoyq1YsIyLqwqa23Ka8+jz3PjKB4OCQnD47SinsNhs2W9ZFX5ubjw0sU1TN0TvLef0gNMWuZvK0e8UBJk2adHT06NFNvv7662qNGjXKvOKKK9yfobkkZ9hCX3nt7fC/t/6h0tPT+HnJIkCv8r77oYuXwvPas3M77732EqAn9Jat2zDxhf/lrB/Stxvnzp4hJTmZvh2j6Ni1O69M0W9JG9avB+/NnEPN2nX4cvpUtmxYT0BAAJqmceuY+3KS9/+eiyE5OYkpr1qZ8qoVgIeftNKtV2+3Mf0w71vCI1vRrEVLAO4c9wgvTHwYm83G3Q8/UaT3V040ANZgNffFmrjF6GA8jgfdL163bl37J598sv/2229vbLfbldlsdsyePXufyWTCYrHYxo0bd7xjx44tq1evbuvTp09i9usSMxxVlFImLdeAp1dfex2Lv5/NsH49uLr/9UVqRzeZTLzyzke8GPMomZmZ1KxVm5enTM1Zf/9tQxn32FNEtWnHB2++yrEjh/lq+lS+mq5vc8ud93HT8JEsX7KQOV98hr+fH3aHg2uib+Sm4SPzPe6WjevJyMjI+W24+fa7mPjAXXz24RSuGzS8UB1ws5WjTnH5qQP8aomJ6xUfG73b6GCKq1zPh56QlmU+dC69iaZpPlVTUVxePB96aTgN9MSauMPoQIzii+f96ZTMakcT0i1Gx+EpQkyOzKYcDNrmLPqtbmXNzXzopeE4cFV8bPSuArf0QOU2kSWm28IOnU1vKslc5KM68BNWc1OjAxEl40xKZlVJ5ufTi+XKh+ZmuWS1gV8sMXFeed6Xy2SWnmWvcOhsWlON8jGagii2uugztklHOS93NjWrytGEdM8vhhpDEvr5agPLLTFx9Y0OpKgKm9CdgFaU0ZM8VZbd6R9fiJ6tQpfTIlOIphkf1QhYjtVcpEGGhOdITLdVOnIuvXG5/QYXREkJ3Q0L8JMlJq660YEURWE7xR11Op2JJ0+erFWzZs2zyku/AE6nxqGE9MZZdmeg0bF4okzlMJkc//3XahqcSnWgMpMIyDh9kVf6vHBgCVZzd6yJaUYHIwovPcsRdOhsWhOpjbsY+WjyEYF+n/qV8bHRXnFLUKESevv27VM2b958X0JCwtSkpCQzXvoNSMxw1sh0aCEFb1k+aX6pfkHO8/OVykyi/p9v4ufwiT5Rl6Id+lCxQ7EmeuUFbXljdzj9/j2TKrVxBZPvc/4uBz4DhhkdSGEU+ra19u3br9+8eXN3p9NZFy9se5/069knEjIcdxodhyd7M2j6XxHs6JizQNMIyDgtyfw/g4EXgGeNDsQoOyNalsr0qS137SzR2+E0TePfM2lNshzOoIK3Lu+8s8a1DA21xMRNjI+N/l/BmxqrSPeht2/fPgXYU0qxlBpLTNy9gCTzAmgZh9Ir+JWrW9OK4xms5h1YE782OhDxn927dwcuWLDAPGHChFMAh8+lN7iyfWSltz/5koio1mUay8rlS3nrpUk4HQ6aRUTy4lvvUzHswjGunE4n/3suhjU//4RSipF33ceI0fcA+jTJc7+ckTNQzOixD3HdoOEX7MNms/HEfaM5cuhf6jdqzOsffoa/vz+ZGRncN3IQUz79quCZFcv1mDKF9oolJm5LfGz0j0YHcjFeV9IuKktMXD/gvQI3FKLwpmM1dzI6CPGfvXv3Bk2fPr0GwKnkzOrn0rJqlsR+c890WBhpqSlYn3iIyZ/MYtHqzdSoVZtpU153u23c93PYv3c3C1dt4stFK5g59V3+2b0TKNtpkjWpci8ME/C1JSbOo++U8OmEbomJaw3M4RJGxBPCjQrAXKzmqkYHUt7kN13qgw8+2DA+Pr5CRMuWrYYOuqlR9vYrlixi1I3X0L9rG6ZN+W+45tMnT/DE2Du45breDO7TNWeER4D+XS7j7Vee45brevPso2OLFN+aX5YTEXUZjZuFAzD8tjEsWeB+opRli75n0Ijb8PPzw1ylCv2uH8jSBXOBsp4mWarcC6kqMM8SE+ex/bB8NqG7PvTvgEKN5y5EEdUH3M9vKUrFxaZLfffddw9aLJbMuSvW+73z2X+tIclJiXyx4Ee+WvwzMz96hxPHjgLwzKPjGH7bXXy1eAWzl65i+19/8uPi+TmvSzx3ji8XLefVdz8uUozHjhymTv3/bl+u26Ahp08ed1vSP3bkMHXr/zfEQd36DTl29PAF25X+NMlS5V4EbfDg896XS66vo99uJERpGYjVfB/WxKkFbyoulbvpUidMmNAwZ7pUk3+gw3n+yI8DbhoCQJWq1ajX0MKRQ/8SZjazYe1Kzp4+mbNdWmoq8fv+yXl+w9ARKA9oWy7sNMnZZn3y4XnTJGdlZTH89rvo3O3K/A+ipMq9iEZYYuI2xcdGv2V0IHn5ZEK3xMRdC4wzOg5RLryF1bwaa+J2owMpz9LsmFHqghrHwKD/ZjzzM/nhcDhyBkn6YsFPbmdEAwgJreh2+b49u3jywbsBaNuh8wWzLtapV5/1q3/NeX700EGq16yNv/+FP7V16tXn6OFDtGmvd8c4evggder+V7ov7jTJH876jmceHcvgkaOJbN2GW2+8hnkr8p2GVWlS5V4csZaYuJ/iY6O3GR1Ibj5X5W6JiasKTDc6DlFuBAPfYDW7zwyixOQ3XWrd+g0VFcJqJCcXOLkioCfrjl17MP2DyTnLTh4/xgk3bdR5FTSFcrdevdn591YO/KPfDDT780+59oZBbvfVN/omvv/6cxwOB4nnzrFs0bycdu+ymiZZz+SS0IshAPjUEhPnUWMc+GIJfSr6VHhClJVWwMvAY0YHUtpK+n7xonA3Xeo333yz70hipqVZRJSpaXgEg3p3oX5DC7nb0d155Z1pvPHC0wzq3QWlFMEhoTwb+xa16tS7pBhDK4ZhfW0Kj9x1Kw67nWYtWvLi2x/krM89TfJ1g4ezfesfXH9lexSKUXffT/OWUYBMk+wlOgKPAhde2RmkUNOnegtLTNxAwH2XUlGgrwNeWtXFb8dFGtvERTiAjr40h7o3TJ96MjmjxvHEjIZGx+GtQk2OrEb+p+07smp5bM/tbGU0fWpRpQOt42Oj9xkdCPhQlbslJq4Scr+5MI4fMA2r2aOq4HxZhs0ReDIp0+tmxPI8xnf+82LBwCeWmDiP+BB9JqEDsejTXQphlA7AA0YHUR5omsbhc2mNnZrmS79hhpCBZS5ZL+Buo4MAH0nolpi4bsB9RschBPAiVrOUGkvZ6ZSs6mlZDvdd0UUReUTh0tu9ZomJM7xA6fUJ3RIT5w9MQ76VwjOEAe8YHYQvczg108nkjEvrvSZySPG8RJiBDwrcqpR5fUIHbgcijQ5CiFwGYjX3NDoIX3UyKaOWw6n54h06RtCkLFRibrTExBl63nt1QneVzp82Og4h3Hgdq1l+KUuYzeH0P5OaVdvoOHyJDCxTol4qeJPS4+1XubcDHj37jSi3OgLDgNlGB1KSWs9sXSrzoW+7fVuh7m8/nphRRzrCCQ/W3RITd218bPRSIw7utSeGlM6FF3gRq9nbL5o9RobNEZiQZqthdBy+RpMq95L2olEH9tqEjpTOhedrDow2OghfcTwxo56GViLZZ8zQ6/h5aVyRX/f+G68QN28OAB++Fctr1ifdbrdy+VLGDL3ukmIsK5pSrFy+lBt7deL6Hu159O5RpOQzjK7T6eTVZycQ3a0d13W/nK9nTCvUutySEhIYM+x6BvfpystP/Te44tkzpxkz9DpsNlvJvsGy18E1yFmZ88qELqVz4UWelVL6pUvNtAcnZdgKPf+8u+lKS8L9jz9F9MBhpbJvoySlpGJ94iEmfzKLRas3U6NWbaZNed3ttnHfz2H/3t0sXLWJLxetYObUd/ln984C1523j/lz6Ni1B3OXr+PAvr3s3bUDgDdeeJqHn3yOgICA0nuzZecFS0xcmedXr0zoSOlceI+G6G3p4hIcT8qoD9CmQRXee+0lhl17Jddf2SGntJy97oM3X+WW6Kt5J/Z5UlOSeX7Cw9xyXW+G9O3GCxMfwZaVlbP972tXckv01VzX/XLeeOEZsofBzlt6f+ze21kw5ysAnn10HLM++fCC+Gw2Gy8/9RjX92jPLdf1ZuO6NQW+p1MnjnPvLYMYePUV3HvLICaMu5MP34oFoE+HSE4ePwbAE2Pv4LabrgEgKzOTK1s3ISszkwVzvuKeETcx8f4xDO7TlREDruLwv/FF+lwBlv74i39E1GU0bqbPNj38tjEsWeB+BO1li75n0Ijb8PPzw1ylCv2uH8jSBXMLXJebv38AGelpOJ1ObFmZBAQGsvaX5VQyV+ayyzsWOX4P1QoYXtYH9bqELqVz4YV8ftKW0pSWZQ9OzbRXylmgFHOWruLDL74j9tmJHDl0MGeVyc+Pr+J+ZvwzL/Lmi89yeacufLV4Bd/+uAan08mX0/+bun7/3t3MnL+Mb39aw+b1a1ky/7tixzj3yxnE7/+H71f8xszvl7Dz760FvuZ/z8XQpn1H5v28npcnf8im9Wtz1nXufiW/r1mJ0+lk946/SU5OJiU5iS0b19OydVsCg4IA2L71Dx6cOIm5y9fRuUdPpn84ucixHzpyVNWp/99YSHUbNOT0yeNuazmOHTlM3foN/tu2fkOOHT1c4LrcogcN41D8AYZfeyWdu/eiZu06fPzumzw44Zkix+7hni/r2di8sSpQSufC21yO1XwV1sRfjA7EG51KzqyZ+/mgEaMAqN/IQvvOXfnj93XUa6DPzzJw+Mic7X5eFsfWzRv44uP3AcjIyMDk918Z5vrBNxMQEEBAQADRg4axfs1KBgwcWqwYf1+7St9fYCAANw0fyfxvZl38NWtWMv6ZFwCoXrMWV/bul7Puiu69WL/mV5qGR9AishVVq9dg029r2PrHRjp3/2/+pMsu70T9ho0AaHN5p3zbrS+mrO9ZCwkJ5c2PZuY8f936FHeMe5iD8Qf49L23ALj7ocdoEdm6jCMrcc2BocA3ZXVAr0roUjoXXuxxQBJ6EdkcTv+kDHu1i26Uq5tccEiu0WA1jTenfY6lSbNCHUspfUd+/v44nf/N5pWZWfSJ5rL3VdzXdO7ekymxL9CkeQs6d+9Jteo1Wb9mJX9t3sjTr7yZs12Qq6QOYPIz4XBTqt63ZxdPPqgPNd62Q+cL5nGvX7+ec+mqjTnPjx46SPWatfH3vzA91KlXn6OHD9GmfSd928MHqVO3foHr8rNty2bOnjlFzz7XMnpQf16e8hGapjFp/Dimf1f0Tose6H4koedrIFI6F96pP1ZzS6yJF/YS8iKFvV+8pJxOyayhaef3bF8w5yvGjo/hyKGD/LHhN56wvur2tVf1i+azD6bwbOzb+Pv7k5SQQMK5szRs3ASAuHlz6H/TEBx2Oz/M/45Rd40FoIGlMdu2bKLPgBs4fPBf/ty4nr4DbrxonFd075mzPzQtp839Yjp1u5KF337NfY9O5Mypk6xasYwhI0cDULN2HcIqVeK7WZ/x8TcLqVy1Kq+/8BRpKSm0bN2mwH3n1jQ8gjnLVue7vl/vqxyPPfU8B/7ZQ+Nm4cz+/FOuvWGQ2237Rt/E919/zjXX3URKUhLLFs3j3c++KXCdOzabjcmvWnnt/U8BSE9PQyn9wiYtLbVI79GDdbfExF0WHxv9V1kczNsS+siCNxHCIyngQWCc0YF4C03TOJd64X3nDoeDYddeSXpaGhNfiM2pbs/riedeZvKrzzOsXw9MJhN+/v48+tTzOQm9cbNwbh94LUkJ5+h1zQCuvXEwAHfc9zATxt3J4D5daRoeQau2HQqMddAtt/PP7p0MuvoKwsyVubxTF3Zu+/Oir5lgfZVnx49j4NVXUKNWbVq3bU9YJXPO+s7de7JqxTLqN7IAUL1GTapHXYbJVLJdnyqGVcL62hQeuetWHHY7zVq05MW3/xuWfFi/Hrw3cw41a9fhusHD2b71D66/sj0Kxai776d5yyiAi65zZ+bUd7h+8M1Uq6G3qIx77Enuv13vRzb+6ef/396dR8lR1msc/1Z3TwYSoC9bIAEujcoiKosBZQsBBEXrirjAlUUwIgjiOYKK9L0sVkS0vHoVLyKrCgqKooBAAyJb1LAlQxLCkkSWIiQBAiSpLDPJbH3/qIkSyDrpql8tz+ecOfMHk6pnmOl5+q2q931b+j0aOxP4UhInclY82Zl2tXpjc+AVYIh1lrz6bdt3/rp/+emD1/6VMkgLgBF44XLrIOuio6Njt0qlcvfOO++8ZOjQoet/3XkDLejsrr40v3Ol6+V77rA5f3syYLNqdXX/LDOWdXVRaWujUqmwcMF8PnfUEVz8f1eyx95rfwPRKsNKfd1bVbq6X+zeJPU71zV7u5k3dzbeA/OYs7hv7f8gPZYCIwPfXfXk/hbK0gj9GFTmkm2bA0cBN1kHyYL5S7tzvSrcrOA5zj/rDJrNJj09PRx70imJlvkK2RjSZdowoqmr18R9oiwVui63Sx58HhX6Wi3v7Wtburz3bcPwqS8tsIgzaH+7/x4u/f7bVwL9wplnc+RRn1rjve2kaOnXRHwBFXqkVm/sAIy2ziHSAh/Bq26LF75iHWQd9APNtz6UloT5S7vX/GR7Row+7MOMPuzD1jHWKDMj9GYTaNKfmcAr2b9Wb+wW+O70OE+SiUIHjkOb9ko+lIETgR+u7QtTYG5/f384b968bYYPHz7fcZLbZnPh4s4tmr39SZ2usPpKfc7yZm+p2du99i+21GzS27mIxcv6WNCV2d+LzwP1OE+QlULX5XbJk+PIQKGPGjVqSUdHx+kLFy68YtGiRVUSelPd36T8RmffxtkciGVLu9PnLCz1lsO+9rV/sakmi5f1cfmkhSzry+xvxqeJudBT/5R7rd54LzDNOkcR6Cn3RG2PF86xDrEuOjo6NgFGktBS0f6EBZ+du7j3W0mcq+h2bM6b/cEhz772+54D9rbOsib9TVjQ1Z/lMl9hl8B3/xHXwbMwQtfoXPLIBdZ/nU4Do0aNWgLMTOp8E29q7JfUuYpuSH9Xzxtt4fI5fZmaBpZlHwN+EtfBU705S63ecIDjrXOIxCAbm2UnrFZvbAocap2jKBya9FBOdQ/kzMfiPHjaf5B7EW0/KZI3h+NVN7YOkUJHovUmEtXdbNMDx8kZU6s3hsZ18LQX+v7WAURisjFwmHWIFFrzounSUk2cZjeVtPdAnrQDH4rr4Gn/QarQJc+OtA6QJgO7KcZ6SVJWFl1yV6EnLLbf8bT/IPVwjOTZgdYBUuaDRMvjSoI0Qk/cR+M6cGp/kLV6Y2tg3TYyFsmmPfCqw6xDpMgHrAMUUQ+VsnWGgtmxVm/sHseBU1voaHQu+VcmGpVKZJR1gKJxQE+524jl6lyaf5AqdCmCA6wDpEjyW40J3c22NPdAXu0Zx0HT/IPUA3FSBCp0/jn/fBfrHEXTdBx6KeuSe/L2iuOgqSz0Wr1RBva1ziGSAF2JioxCGzAlzqHp6B66iT0GFk5rqVQWOvBeYBPrECIJ2ByvOsI6RArocruRbhW6hU2BnVp90LQWui63S5HsZh0gBVToBppAL+Us7OmRR3u1+oBpLXRNX5EiUaGr0E04NOlpah66kZY/GJfWH+Q7rQOIJKjQhT7wQJxe8wYcHHoot1nnKKjCFLo2ZJEiKXSho9e7GYemnnK3s1erD5i6Qq/VGyVgO+scIgkqeqGPtA5QVE0crRRnZ8davdHSnQVTV+jACECXgKRItsOrpvG1mBQVuqE+XXK3NLyVB0vjH5EdrAOIJKwMbGkdwpAK3YiDnnI3lvtC3946gIiBbawDGNItNiNNB3pU6JZyX+hbWQcQMdDSF3bGaIRupI9SCRyt0Gcn94Ve5EuPUlxFHqGr0I306Ql3ayp0kRzSCF0S191sU6HbUqGL5NAW1gEsDGxQsa11jqLSA3HmVOgiOdTS+agZshGapmqml5IK3VbuC127rEkRFbXUivpGJhV6HV1yN9bSAWwaC73bOoCIgaIWelG/71TopaT//7Za+oYqjYW+3DqAiIGijlRVKIb6dA/dWkunDKrQBYDdneC53UvBv1nnKLCiFpsKxZAWlTHX0kJP4w9ThZ6QEv19J5Tvm3hW5Q/tWzqL97bOU3BFLfSmdYBi06IyeZLGQl9mHSDvhrPgtfPabnjKLT2ya8Xp3886jwDFfXakzzqAiKGWvqFNY6FrhB6T0aUnpl1Y+dWidzlz93UcDrHOIyvpsg5gRIUuRdbSvlOh59xGLO86o3LbpFPLd2491Fn+Pus8slqd1gGMqNClyFp6RVqFnlPvcOa+OK5yXXBgadqeJYfR1nlkrZZYBzCiW2xSZLkfoesFPkgO/f1HlyZ0nNt2o7MNC0Y5DjtaZ5J1FloHsBD47tJavbEUGGadRcSARuiysipLFp5buXHqMeXxO7U5ffta55FBKWShD3gFeKd1CBEDb7TyYGksdI3Q19H7nZnTv9127evvcYJRjsMY6zyyQV63DmBIhS5F9VIrD5bGQn/VOkCatdHbPbZ898SvVG6tbuZ0vtc6j7RMS1/YGfOKdQARI7NbebA0FvoM6wBptB2vvXxh269mHl56fPey0zzQOo+0nApdpHhyX+gzrQOkyUdKE6ecV7lh2Q7OvH0dhxHWeSQWi/DChdYhDKnQpajyfck98N3FtXpjLjDSOouVYXQtPqvyx8mfK/9lu42cnr2s80jsijw6B3jZOoCIkdyP0CG67F64Qn+38+Jz32775Zx9nJl7Ow4HW+eRxBS90DVClyJaFPjuolYeMM2Ffqh1iCSU6O87vnzfxLP/tUGKnvYtnsA6gLG51gFEDLR0dA7pLvRc24qFr53XdsNTHy89vIs2SCm8J60DGHsG6CW9f49E4tDyQk/jfuiQ40I/qDTtyXuGnDNhYvuXq58sTzik4vQX7taCvM1U6wCWAt9dBky3ziGSsGdbfcC0viPOVaFvxPKu0yu3Tzq13NhqmLNcc8flzZoUvNAHTAb02pAimdjqA6a10AOiJWDbjXNskJ2cubPGVa574aDStD20QYqsxgt44WLrECnwOPA56xAiCXqs1QdMZaEHvttfqzeeBd5jnWX9NZvRBim/bW4bbZDy79aJJNU0Oo9Mtg4gkqBFxHCbKZWFPuApMlToVZYsPKfyu6nHlh+sDXH69rHOI5mhQo9MJrr94FgHEUlAR+C7/a0+aFofigO4zzrAutjb+ceM24ac97cp7acNObFy35ghTp+2LJX1McE6QBoMzMd9zjqHSEIejeOgaR6h320dYHUq9PaMLf954lcqt2xadTrfB+xqnUkyqRsV+ptNBt5lHUIkAS2/fw4pHqEHvjuLlE1lGcnrL1/R9qPxM9pPXnhe2w0HDJS5yGA9ihd2WYdIkQ7rACIJiaXQ0zxCh2iUvpt1iCNKk6acX7l+2b878/bRBinSQvdbB0iZB6wDiCRgbuC7c+I4cBYK/SyLEw+ja8lXKzc/flL5npHaIEViogJb2USidd23tQ4iEqPYbrOl9pL7gPFAopckd3NmPf/7IePGP9l+Sv9plcbBGzk9uqcncegCHrEOkSaB7zaBO61ziMTstrgOnOpCH1gScnzc54k2SLn30Untpz9+d3v9HR8ozRjjOGwW93ml0B7AC5dbh0ihO6wDiMSohxh/x9N+yR2iy+5HxnHgLQlfP6/thqeOKj20c8Xp/2Ac5xBZjT9YB0ipv5CDVSJFVuOBwHcXxnXwVI/QB7R8+tqBpSef+vOQb06Y1H7Gpp8q/32MNkiRhPUAt1qHSKPAd5eQwFU5ESO3xHnw1I/QA9+dUas3XgB22pDjtNO97PTy7ZNOqzS2HOYsy8wKdJJL9+OFC6xDpNjtwIetQ4i0WBP4U5wnSH2hD7gbOGMw/7DmvPzSuMp1z40uTduj5DQPanEukcHQ5fY1uwO41DqESIs9Evjuy3GeIAuX3AFuWL8vbzY/UZow6aH2rzz2wJCvbzem/MQhJae5RTzRRNZLLzFfdsu6wHcD4EnrHCItFvvrPhOFHvjuBODptX3dZiwJL6r8YvzM9pNf/MmQy/YZ6cz/gONk43uUwrgHL3zDOkQG/MY6gEiLxV7oWbnkDnA18ONV/Ye9nGdnjGu7dt4ezvOjHIcxCecSWR9XWgfIiGuBi4CycQ6RVpgS+O6zcZ8kS6PXXxNNZwGiDVJOKd/50NT2U6fd2n7hrnuWnh/tOAw1zCeyNrOBhnWILBi416hFZiQvEnkjn5lCD3z3DeDmEbzxys/aLnlwRvvJCy5ou/6AqrNUG6RIVlyDF/ZZh8iQa6wDiLTAEtb7ObDBydIld37R9j+XHlqacozjcIh1FpH11Et020jW3Z1EVzW2tw4isgGuD3x3cRInyswIHeCwi8Y/7Dh6+lUy6Q68cK51iCwJfLcXuMI6h8gGujypE2Wq0Af8xDqAyCBcYh0go67iTc/OiGTMA4HvPpHUybJY6L8FYtlLViQmf8cLtZzpIAS++xpwo3UOkUH6UZIny16hRztU+dYxRNbDd6wDZNwl1gFEBmE6Cc9qyV6hR65Go3TJhol44Z+tQ2RZ4LtTgJutc4isp0sC320mecJsFrpG6ZIdF1sHyInzAU35k6x4kWhxpERls9AjVxNNaRFJqyeA26xD5EHgu88QLS4lkgXnB76b+MOc2S30aJT+PesYImtQxwsTveSWcx7QbR1CZC0eJ6GFZN4qu4UeuQaYaR1CZBXuwgvvsg6RJ4HvvojmpUv6nZP0vfMVsl3oXtgNfNU6hshb9AJfsw6RUxcTLaUpkkZ3Bb57v9XJs13oAF54N7pPKelyOV443TpEHgW+Ow9NY5N06gO+aRkg+4UeORutJiXpMJ/oXq/E54eA9pSXtLku8F3TpcnzUehe+DzRi1zE2gV44XzrEHkW+G4IfMM6h8ibdAIXWIfIR6FHvgsE1iGk0P5OghsxFFngu9cCd1vnEBnw3cB3zTdfyk+he2EnMBbQNCGxsBz4oqapJepUYJF1CCm8R0nJQmf5KXQAL3wQ7cYmNr6FF86wDlEkge/ORpfexVYXcHLgu6lYxTBfhR75L6JF8UWS8jDwA+sQRRT47tXAvdY5pLDqge+m5o18/grdC5cBJxHNBRaJWydwMl7Ybx2kwL6I5qZL8u4HLrUO8Wb5K3QAL5xI9JCcSNy+hBf+wzpEkQ2sIFe3ziGFsggYa7Ui3Orks9Aj3yZ6ByUSlyvxwuutQwgAPwMesA4hhXFW4LuzrEO8VX4L3Qv7gP8EUvc/XXKhAy07nBoDI6Xj0A6MEr/bA9/9pXWIVclvoQN44evAp9EqctJaC4DPDOz4JykR+O6rwNHAMuMokl/PEU2PTqV8FzqAF04CzrSOIbnRBE7CCwPrIPJ2ge92EM1PF2m1EPh44LupXXY4/4UO4IU/B66yjiG5cC5eeId1CFm9wHevB/7XOofkSh9wbOC7z1gHWZNiFHrkTLRUpGyYn+KFmm+eDecC91iHkNz4auC7qf99Kk6he2Ev8BngMesokkm3oofgMmNg5a7PEt3zFNkQlwW+e5l1iHVRnEIH8MKlgAvMtI4imfIIcLwWj8mWwHcXAJ9Ai87I4N1Dht7IO81mqubFJ8Or1oCHgBHGSST9ZgIHDsyYkAyq1RuHA3cA7dZZJFOmA/sNbNebCcUaoa8QPaH8UaLpRyKrMxM4VGWebYHv3gscA/RYZ5HMeAn4WJbKHIpa6ABeOBU4FNAfa1mVGURlbr7HsWy4wHdvB04EdNtE1mYOcGjguy9YB1lfxS10WFHqY4BXrKNIqqjMcyjw3d8TLQqiUpfVeZmozDP5MGWxCx3AC58GDkZLRkpkOnAIXviydRBpvcB3f0W0G2Mq9q+WVJlLVOaZ3WxJhQ4M7JZ1MBAYJxFbHURlris2ORb47g3ACWiLZfmXABidpr3NB0OFvoIXvgAcSPRHXYrnNmAMXviqdRCJX+C7vyOap95tnUXMTQcOCnz3eesgG0qF/mbRPdODgVuso0iiLgU+ObBOgRRE4Lt/JHowdp51FjEzGTg48N051kFaoZjz0NfGqzrA94iWj5T86ge+jhdeYh1E7NTqjR2JrtDsYZ1FEnUTMDbw3dy8kVehr4lXHQtcCbRZR5GWC4GT8cI/WQcRe7V6YxPgeqKV5STf+oHzAt/1rYO0mgp9bbzqgcDvgO2so0jLTAaOwQszOTVF4lGrNxzgu0DdOovEZiFwXOC7udyoS4W+LrzqVsCvgSOto8gGuxw4Gy9cbh1E0qlWb5wIXIOWis2bp4CjA9991jpIXFTo6yq6r34O8B10CT6LFgOn4YU3WgeR9KvVG/sBfwRGWmeRlrgFOCnw3Vxv1KNCX19edRTwG2AX6yiyzh4CxuKF2mVP1lmt3tgc+ClwvHUWGbReYBxwceC7uS87FfpgeNWhRL8kZwNl4zSyep3AfwOXautTGaxavfEp4Apga+sssl6mAl8IfPdx6yBJUaFvCK/6fuBq4P3WUeRt7gdOxQszv1iE2KvVG1sTzXj5pHUWWatu4CLg+4HvFmqHPRX6hvKqZaKR+jhgqHEaiaajnQtchRfql1taqlZvnEC0ENHm1llklR4jGpU/ZR3Eggq9VbzqTsCP0TxWK73AVcC3tH+5xKlWb4wkegr+o9ZZ5J+6gAuASwLfLezGOyr0Vovmrf8A2N86SoHcCXwDL3zGOogUR63eOJpoRcndjKMU3YPAqXmejrauVOhx8aqfJlqkQk/Dx2ca0dKtf7EOIsVUqzfKwCmAB4ywTVM4U4DzA99tWAdJCxV6nLxqBfgi0cpTOxqnyZNpROsB/EFPr0sa1OqNYcDXiNaq2NQ4Tt7NAC4EbirCVLT1oUJPQlTsxxK92PeyDZNpjwLfB27VA2+SRgNPw18IfAktQNVqs4gePr6uyPfJ10SFnjSvegTwTeBw6ygZ0Q/cBfwALxxvHUZkXdTqjXcRPaT1WWCIcZysexW4GLgy8F3tX78GKnQrXnVPosvxxwNbGKdJo9nAL4Cf44WzrMOIDEat3hgBfBk4HdjKOE7WPA1cBlwb+G6ndZgsUKFb86rtwNHAWOAIoGSax1Yf0CBarOcuvFCX1SQXavXGxsAJwBloIao16SPam/6nge/ebx0ma1ToaeJVdwBOJFqNah/AsQ2UiF6iaSc3A7fgha/YxhGJV63e2IfoHvtxwDDjOGnxLPBLovvjc6zDZJUKPa286kjg40QL1RxGvrZy7ALuISrx2/HCBcZ5RBJXqzc2A/6D6ArdkRTv6fj5wO1ERf5XPbG+4VToWeBVNyG6HH8IcBCwJ9naFKab6An18QMfD+GFuicmMqBWb7QDHyIq96OAbUwDxWcq0W21BvConlZvLRV6FkUFvz9RuR8E7E261paeBTwBdBAV+MN44TLbSCLZUKs3SsB+RFfnPgHsaptog3QC9xIV+J2B7842zpNrKvS88KrbArsD7x74vDvRKnXbEM9ofikwh+hp9BlEBT4NeBIvDGM4n0gh1eqN4cC+b/lI61auLxCt4DaZgatyge8uN01UICr0vIt2g9sWGAkMH/jYimhnuPZVfEBU1p1v+twJLAbmEhX4HLxwYWLfg4ispFZv7MjKBb8b0Zv3pGbJ9BJNK5tCVN6TgSmB7+rNvCEVuohIDtTqjQrRevLbAduv4vNwYCOihW7aBz6XiBZvWvHRBywgWsxlTR+zNfJOHxW6iIhIDhR5ERMREZHcUKGLiIjkgApdREQkB1ToIiIiOaBCFxERyQEVuoiISA6o0EVERHJAhS4iIpIDKnQREZEcUKGLiIjkgApdREQkB1ToIiIiOaBCFxERyQEVuoiISA6o0EVERHJAhS4iIpID/w/ZIgveuw85VwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 129,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.plotly.v1+json": {
|
|
"config": {
|
|
"plotlyServerURL": "https://plot.ly"
|
|
},
|
|
"data": [
|
|
{
|
|
"domain": {
|
|
"x": [
|
|
0,
|
|
1
|
|
],
|
|
"y": [
|
|
0,
|
|
1
|
|
]
|
|
},
|
|
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
|
|
"labels": [
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"fftma2",
|
|
"covariance",
|
|
"gasdev",
|
|
"fourt",
|
|
"cov_value",
|
|
"ran2",
|
|
"build_real",
|
|
"prebuild_gwn",
|
|
"clean_real",
|
|
"cgrid",
|
|
"length",
|
|
"maxfactor"
|
|
],
|
|
"marker": {
|
|
"colors": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#00cc96",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#636efa",
|
|
"#00cc96",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa"
|
|
]
|
|
},
|
|
"name": "",
|
|
"parents": [
|
|
"",
|
|
"Py_kgeneration",
|
|
"Py_kgeneration",
|
|
"fftma2",
|
|
"generate",
|
|
"fftma2",
|
|
"covariance",
|
|
"gasdev",
|
|
"",
|
|
"fftma2",
|
|
"",
|
|
"",
|
|
"",
|
|
""
|
|
],
|
|
"type": "treemap",
|
|
"values": [
|
|
173.93129,
|
|
137.192987,
|
|
36.737828,
|
|
36.638978,
|
|
101.71883800005251,
|
|
0.09082599999999999,
|
|
15.471843000005594,
|
|
31.86060899999753,
|
|
0.00317,
|
|
0.001027,
|
|
0.000707,
|
|
0.001641,
|
|
0.001153,
|
|
0.000372
|
|
]
|
|
}
|
|
],
|
|
"layout": {
|
|
"autosize": true,
|
|
"legend": {
|
|
"tracegroupgap": 0
|
|
},
|
|
"template": {
|
|
"data": {
|
|
"bar": [
|
|
{
|
|
"error_x": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"error_y": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
},
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "bar"
|
|
}
|
|
],
|
|
"barpolar": [
|
|
{
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
},
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "barpolar"
|
|
}
|
|
],
|
|
"carpet": [
|
|
{
|
|
"aaxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"baxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"type": "carpet"
|
|
}
|
|
],
|
|
"choropleth": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "choropleth"
|
|
}
|
|
],
|
|
"contour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "contour"
|
|
}
|
|
],
|
|
"contourcarpet": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "contourcarpet"
|
|
}
|
|
],
|
|
"heatmap": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmap"
|
|
}
|
|
],
|
|
"heatmapgl": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmapgl"
|
|
}
|
|
],
|
|
"histogram": [
|
|
{
|
|
"marker": {
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "histogram"
|
|
}
|
|
],
|
|
"histogram2d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2d"
|
|
}
|
|
],
|
|
"histogram2dcontour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2dcontour"
|
|
}
|
|
],
|
|
"mesh3d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "mesh3d"
|
|
}
|
|
],
|
|
"parcoords": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "parcoords"
|
|
}
|
|
],
|
|
"pie": [
|
|
{
|
|
"automargin": true,
|
|
"type": "pie"
|
|
}
|
|
],
|
|
"scatter": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter"
|
|
}
|
|
],
|
|
"scatter3d": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter3d"
|
|
}
|
|
],
|
|
"scattercarpet": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattercarpet"
|
|
}
|
|
],
|
|
"scattergeo": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergeo"
|
|
}
|
|
],
|
|
"scattergl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergl"
|
|
}
|
|
],
|
|
"scattermapbox": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattermapbox"
|
|
}
|
|
],
|
|
"scatterpolar": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolar"
|
|
}
|
|
],
|
|
"scatterpolargl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolargl"
|
|
}
|
|
],
|
|
"scatterternary": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterternary"
|
|
}
|
|
],
|
|
"surface": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "surface"
|
|
}
|
|
],
|
|
"table": [
|
|
{
|
|
"cells": {
|
|
"fill": {
|
|
"color": "#EBF0F8"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"header": {
|
|
"fill": {
|
|
"color": "#C8D4E3"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"type": "table"
|
|
}
|
|
]
|
|
},
|
|
"layout": {
|
|
"annotationdefaults": {
|
|
"arrowcolor": "#2a3f5f",
|
|
"arrowhead": 0,
|
|
"arrowwidth": 1
|
|
},
|
|
"autotypenumbers": "strict",
|
|
"coloraxis": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"colorscale": {
|
|
"diverging": [
|
|
[
|
|
0,
|
|
"#8e0152"
|
|
],
|
|
[
|
|
0.1,
|
|
"#c51b7d"
|
|
],
|
|
[
|
|
0.2,
|
|
"#de77ae"
|
|
],
|
|
[
|
|
0.3,
|
|
"#f1b6da"
|
|
],
|
|
[
|
|
0.4,
|
|
"#fde0ef"
|
|
],
|
|
[
|
|
0.5,
|
|
"#f7f7f7"
|
|
],
|
|
[
|
|
0.6,
|
|
"#e6f5d0"
|
|
],
|
|
[
|
|
0.7,
|
|
"#b8e186"
|
|
],
|
|
[
|
|
0.8,
|
|
"#7fbc41"
|
|
],
|
|
[
|
|
0.9,
|
|
"#4d9221"
|
|
],
|
|
[
|
|
1,
|
|
"#276419"
|
|
]
|
|
],
|
|
"sequential": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"sequentialminus": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
]
|
|
},
|
|
"colorway": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#FF6692",
|
|
"#B6E880",
|
|
"#FF97FF",
|
|
"#FECB52"
|
|
],
|
|
"font": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"geo": {
|
|
"bgcolor": "white",
|
|
"lakecolor": "white",
|
|
"landcolor": "#E5ECF6",
|
|
"showlakes": true,
|
|
"showland": true,
|
|
"subunitcolor": "white"
|
|
},
|
|
"hoverlabel": {
|
|
"align": "left"
|
|
},
|
|
"hovermode": "closest",
|
|
"mapbox": {
|
|
"style": "light"
|
|
},
|
|
"paper_bgcolor": "white",
|
|
"plot_bgcolor": "#E5ECF6",
|
|
"polar": {
|
|
"angularaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"radialaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"scene": {
|
|
"xaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"yaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"zaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
}
|
|
},
|
|
"shapedefaults": {
|
|
"line": {
|
|
"color": "#2a3f5f"
|
|
}
|
|
},
|
|
"ternary": {
|
|
"aaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"baxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"caxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"title": {
|
|
"x": 0.05
|
|
},
|
|
"xaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
},
|
|
"yaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
}
|
|
}
|
|
},
|
|
"title": {
|
|
"text": "Time treemap"
|
|
}
|
|
}
|
|
},
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Qd0VWW6h/H/aSkEQu8iKiBWUMeGvQ4Odh07FtSLMuLYZxzFXkFFHR0cC/beO/auiAUFRZTBhoAU6YS0U+76dkgEpOSEvCd77zxZ6651heTb3/d7z+jDdp9jJJPJZMQXAggggAACCCCAAAIImAtEiG9zYy6AAAIIIIAAAggggIAnQHzzQkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAggg4Mv43vuIczR95pzVTmeb3hvp0P120flX3aHXHr1enTu0YZoIIIAAAggggAACCPhawJfx/em4b1VeXlkDd/F196hl86Y6a+BhNb/WvFmRipsV6eOx32i/vfqoqElBg0AffNJFOvPkQ7Vrny0a5PpcFAEEEEAAAQQQQCA4Ar6M7xX59jv2fLVv20ojh//DV7KlZeXart8g3XLV31cZ35WVSSUScV/tm80ggAACCCCAAAIINIxAoOP7hdc/Wu6xk0tvuFfjvvle5556uIb951FNmTZTHdu31vmDj1Hrls105U0PatIPv6hNq+Y64+RD1W/P7WvUp06frRtuf1xjvvhGpaXlWq9LBw04sp8O+PMOK53Mp19+qxPOvLbm9woL8vXZK7dryNCR+mbSTzr56H119b8f0q59euuq80/2vu+RZ9/0/m/KtFkqKizQTtttrnNPPUJtW7fIah/7Hnu+dtp2c3Vo10oPPPGa5i9crI17dNXQC0/R2K//p//e/5xmzp6nbut11uXnDdBG3df11nd/WLjpzif19odfaPac+Wpe3FTbbrmRzjn1CLVv09L7nqdffl8XDRuph24dopvuelJfffuDErGYdt9xSw0587gG+zcMDfM/D66KAAIIIIAAAgjUr0Co4vvKmx/Qi6+P1o7bbKYhZx6raCSqQecP19RfZ6vH+uvo0nNPULs2LXXZDffq1Xc/1dtP3Og9ujJvwSIdNGCIWjZvpovOOk7t2rTQS29+rFtGPq1rLhi40gBPJlP6bPx3OunsYRo25FTtuO1malHcVJcNv0/vjh6ndTu108D++6lzx7bquk573f7AC7rl7qc1+MSDte+e23txfMWN9yudyeipuy5XXiJe630ceMKFWrR4if6636468ah+mj7jNx39tyu8fzvgIvzCM/rL3XE/6Zxhcn8oeHjERd6r5oJr79JbH4zV0AsHqlvXzpo1Z54uH36/mhYV6sFbL/S+5/nXPtK/rr5DG3brosvOPUEbd+/qnfPMi2/V7jtsqWsvHFi/r0BWQwABBBBAAAEEGpFA6OL7kWfeXO4NmPc/8aqG/ucR79GQPXbcyhvtJ19M1ICzhnp3d7fYrLsXxv8e+ZSeu/cqdV+vc834T/3ncE2dPksvPvD7He5lXxsTvvtRh59ymUZcc2bNYyfuDwBuD4/cdpF6bdzN+/byikrtfNDp3t3q4ZeeVrPEVxN/0JGDLtd1Fw9Svz22q/U+XHyXlVfolYeHKRKJeOsNvvBmvTd6nN5/9hY1Ly7yfu3We57RXQ+/pC9eu9P7vpm/zfOifJ2ObWv28OBTr+uaWx7SmJdu8yK8+t8muIA/+uC9ar7PGbq79h+/OEIF+XmN6H8iHBUBBBBAAAEEEKg/gdDF97OjPvAe/6j+evaVD3ThtXdp1ENDtW7n9t4vfzt5ig49+WKNuPYs7bp9b+/uuPu1t5+8aTnZ6nB3QduqRbM/qK8qvh9/7m19+cZIRaNVYfz1tz/qiFMv02XnDvDuVi/7tf2+g7Tf3jt4d+pruw8X3+7TXdz+q7/cXe2PP5ugt568sebX7n/yNQ299WHPw90Bnzt/kfdIyqfjvtP8BYuUSqW9PxgsLimt+QNLdXw/9t9LtNlG69es9cyo971Hap65+0ptuME69fcKZCUEEEAAAQQQQKARCYQuvke9OUYfPn/rH+L7rSeGe49lLBffS+9Y9x98lb6cMFmJeGy50btHQtzjJasKzlXF94p7GP35BJ18znWKx2OKLr1TXX2hymRKe+28lW66/HTVdh8uvtdft6NuunzwcvE9dvwk72549Vd1fH866r8qyM9X/8FX6pfps3Tx2cdr057re4+6vPTGaA0b8egf4vvF+6/xrlH9NeqtMTr38tu8R1h6b1J1R58vBBBAAAEEEEAAgewEiO8+W+hv/7pJk3+cqtuHnbNSvU4d2ig/L/GH36ttfE+Y9JMOH3ipzht0pPcGzBW/mhTme38wqO0+6hLfv86cqwNOuEBX/vMkHfyXnWu2cMeDL+jmu576Q3y7Z8C33KxHzfc9+dK7uuS6e/T8vVer23qdsnuV8d0IIIAAAggggAACngDx3WcL3fnQi/rPvc/qjcdu8D4Jpfpr1m/zVZCf8N6UubKv6vj+z9Vnarcdqj7n2z3zveKd74rKpHY6cLAO2mcnXfD3/sst9cPP0707zO6Z7Nruoy7xPen7qTpm8JW69aozvE8ucV/urr77nHK3h1cfuc57Frz6sZOzBx6mk47et2avlw+/T8+9+qFGvzjCu2POFwIIIIAAAggggED2AsR3ny1qPmWkS6d2OvuUw9ShXWt9N3mK90ZE99zzsm+SXJbYfTxh36PPU/9D9/buJnfr2klDRzzyh/h2P+Pe1Hnb/c/p7FMO954zr6is1BMvvKNHn3tbT9xxqXp261LrfdQlvlPpjPY6/Gz13qS796kvCxeV6N8jn1anDq29N4hed9GpXpS/8f7n3sc3urvbfzv+IG2+8Qb6fPwkXXr9Pdp/7x102XkDsn+V8RMIIIAAAggggAACngDxvfS/TOlCevgdj3v/xcwlpeXe51733X1bnXbCQSt95KT69ePezPnK25/I/Rc3n777Cu8TRla88139vct+zndBXsJ77nrQ8Qdq6949a16OtdlHXeK7SWGB3vt4vK677VHvE1zcRyAO7L+/9tl9Ww0461q5O+MX/P0Y77l0F993Xn+e7n3sFX3+1Xfe53zvtcvWGnLGsSoo4JNO+HsHAggggAACCCBQV4FAxHddD8fPZS9Q/djJsp8Ok/0q/AQCCCCAAAIIIIDAygSIb14XywkQ37wgEEAAAQQQQAABOwHi2842kCsT34EcG5tGAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8W00w+dfSRutzLIIIIAAAggggICtQDQi7dc3anuRRro68W00eBffz49KGa3OsggggAACCCCAgJ3AQf1ixLcRL/FtBEt8G8GyLAIIIIAAAgiYCxDfdsTEt5Et8W0Ey7IIIIAAAgggYC5AfNsRE99GtsS3ESzLIoAAAggggIC5APFtR0x8G9muKr6jUemOGxNKJqsunM5IM2dl9OTzKU34NlOn3ey9W1SdOkZ03yPBeMZ8x+2i+nBM1RtS/z4wrk/GpvXxZ7xBtU7D54cQQAABBBAwECC+DVCXLkl8G9muKb7PuySpefMzcjG+Va+oTjg6pguuqNTCRdlvyE/xHYlImdX8GcL9/g1XJHT2kErvoE0KpcqkVFn1l3whgAACCCCAgA8EiG+7IRDfRra1je/qy1/yj7ieezmt/feJ6uU30vr8y6o7wb03i+qgflFdNmzprfKV7HfZ+G7ZIqJ/nRnTnQ+k9NOUjE44Kqbu60c0+zdp0g8ZtWkl3f1QSu3bRXTcETE1L5bKy6WHn0rp+x8z6tI5ohOPiWn8hIx6dIt4v//wk7/fld/3z1H12SYqZaSJkzJ67JmUkinp1mEJvfx6SvvsGdN5F1eqY4eIjj08piZNqsLarfHt/zI67eSYttgsql9nZnTTbSn1PzxWc+d76y2iOuAvUcWi0oJF0v2PpTRjZkZ77RrVOp0iSiSktm0i3u+PuDulOXPr9m8KjEbOsggggAACCIRGgPi2GyXxbWSbbXxfdn7ce/SkY/uIum8Q0YiRVY+QDDg6phmzMhr1xqofy6iO70eeTOmfZ8T1+jtVj3HstmNU2/0pqutuTaq4WUQXnBXThO8y3uMpF58X1zsfpPXe6LTWWzeiwSfHdP5lSS/K3R8E/n1HUl9PzGjbraLac5eorrkpqS02j+qQ/ar+fxfsg06MeUH95rtp3XxNQh98nPbO4O58X3ReXG++k9ZHn6a17Z+iOmCfqIZclVTTIun6yxM69ZyqW93Vj51M+j6jS/8Z15XXJzXrt4x22SGqnbeP6qrhSe2xs4vymC65tlILFsqL+sVLpGdeDMZjNkYvMZZFAAEEEEDATID4NqMV8W1kW9v4jsUkd8f36L/G9K8rKpWXiOjqIXGdc3GlF7jDr0zoqhuSmj1n1Xd5q+M7P0+aMUs1ny8+8PiYvv+pKo7dl4vWaEx64ZW0rrggrsH/qKx5RGTIOXE98VxKi0uk88+M6/R/VsWxu+P894Ex/ePS5B/+INBr04j67hHTdbckddPVCS/Yf/ipap95CXl3xNNpeXfPh12a0ClnV64yvhNxacteUW8N9+Xuct92fUKnn1+pPltHtclGEd16Z1Vs77lrVF27RHT3g8S30cuXZRFAAAEEGrkA8W33AiC+jWzXFN81b7hMS9NnZPTYsyn97/uqcD13cFyjP017j1X89YCYrrxh1Y+cuO938b3/PjHF45K7+/3+x1Wxffbf4vrok9/fzLjv3lG1aRPRux+mdcFZce+Z8+qv/PyIHni86jGPMwe5R0eqrtm5Y6Tmr91d6g3Wi6i8vOrn3PPq7hn1K66viu9rbkxq5uyq33N3zHffOSr3hwv3mIh7nGXgWauO71YtpQ7tlw/qEdcldOnQpDbbOOJd964HqmLb3Qlf9q+NRsiyCCCAAAIINFoB4ttu9MS3ke2a4rv6DZcru/zOfaLe3XD3uIkL8NfeXv0ngbj47r1pVI8+k9I5p8W9WHc/N2hATN9Ozujt96t+3j1f7WL4+VFpXX5+3LurvOLXsrG9Ynwff1RM03/NeI+1rPjl4vvq4VWPjLRsHtHVF8V1+XVJ79lu9xz60Eviq41vd+d7q95R3Xx7VfTn5Ukuvt3d+R22XT62iW+jFy3LIoAAAgggsFSA+LZ7KRDfRrZrE9/uTYruMQ332Il75nnuvNW/sXDZN1z22zuqTTaM6oYRSfXdI6pNekZ1421JtSiO6MJzYvpqYtUz3+6Z7FffSuuTz9Nq1lQ66pCY7nsspTatfr/TvWJ8uzdKujeEusdMysrlPZedSsn72MBl49sF/Hmnx3XuxZXeYyeH7Bfz9nLaeZWKxaWbr054j7WUV/z+zPd3kzPeHwjcXXQX8O45c/cHkKH/rnrmmzvfRi9UlkUAAQQQQGAlAsS33cuC+DayXZv4dlsa/H8xNSuKeG9uXNPXsvHtHgVxj5S4x1bcmx0HHhdX507StOnS1OkZ75nr+x79/dNOWrWo+qzx199O650P08s9ZrJifLu/do+uuDvR7g76zNnSPQ+nNH9BZrn4dt93Yv+YenaLqGSJ9PhzKR24T8x7TMWdxz0Os+46Ee8u9/59f/+0kz9tEdWB7tNOYtLcedL9j6a8Z92J7zW9Avh9BBBAAAEE6leA+K5fz2VXI76NbNf2v3DpPgbwl2kZvf3B2v3HZ5b93G33iSHujZDuE0n4QgABBBBAAAEEViVAfNu9NohvI9u1ie9OHSI6a1BMF1+TVGlZ3TfoHhM57KCqzwh3Ef6vM+Pe895jx69d0Nd9R/wkAggggAACCARBgPi2mxLxbWRb1/g+dP+Y3H9+3f0HZr78qiqSO7SL6G8nxVa6U/eGxtvuXvmdbPeYx9GHxtR7s4j37PVnX1b9Z+xX91+gNOJgWQQQQAABBBAIkADxbTcs4tvItq7xbbQdlkUAAQQQQAABBGotQHzXmirrbyS+syar3Q8Q37Vz4rsQQAABBBBAwH8CxLfdTIhvI1vi2wiWZRFAAAEEEEDAXID4tiMmvo1siW8jWJZFAAEEEEAAAXMB4tuOmPg2siW+jWBZFgEEEEAAAQTMBYhvO2Li28iW+DaCZVkEEEAAAQQQMBcgvu2IiW8j25XFt/uP3PCFAAIIWAg8PyqlXXeIqnnziMXyrLmCgPPmC4EwCxDfdtMlvo1sVxXff150r9EVWRYBBBqrwBedjtTIxxNefB/c+g3F501rrBQ5OXekX3+ddgF/yMkJNhdpMAHi246e+DayXV18lz1xt9FVWRYBBBqbQN5eB2rcpqctF9/JO65obAw5O2+kabEKbnmW+M6ZOBdqKAHi206e+DayJb6NYFkWAQSWEyC+c/uCIL5z683VGk6A+LazJ76NbIlvI1iWRQAB4rsBXwPEdwPic+mcChDfdtzEt5Et8W0Ey7IIIEB8N+BrgPhuQHwunVMB4tuOm/g2sg1LfI+vjKpzLKPW0YyRFMsigMDaCGTz2MmdSxJ6vyKu04sqtCQjjVySp775Se2Zn9T8dEQbxdNrs5Wany3NSHcsydOXlVHFI/Ku8deCZL2s3dCLEN8NPQGunysB4ttOmvg2sg1KfLt/1EZXYzB0cZ4OLkhqw3r6h7IRN8si0GgFsonvAfMLdFmzCq0bS+v6xXnaNJHWX/KTerEsLpfGB9VTII9cktDCTESnNanQgkxEFyzK11lFFdokBH8fIb4b7f/UGt3BiW+7kRPfRrZ1ie9ny+J6pTyu5pGM9s5P6emyuEY0L/N26P7/dyvich9utXk8peObVCou6YT5BTqmMKmPK2OamYpoj/ykDln6D9CxlTE9VOr+oRpR+2hag5pUqmU04/2D9udUVD+lItoqkdaRhZW6b0lCn1bG5O5vbxpP69SiCr1QFtfjpQm1imZ0bJNKbZeo2tPK9mHEyLIIILAGgdrG93WL87z/jXeMZdQjltYnlTE1iWS8/72PrYwqFpF2z0tpx7yU/lOS0BaJtCYmo1qciWhgkwrv7xu/pqPaNJ7SyU0qvV29WxHTU2UJpTJSm2hGfy+q8P4t2WeVMXWNpdV26b8xc3+I3yaR0h75wf9sbOKb/0k2FgHi227SxLeRbbbxPS0V0ZBF+bqxuFxNoxm5f1BOS0V1a/My7x+YD5cmdFWzchVEMrph6R2rfvlJnTi/wAv1oworNTcd0WkLCnRvi1KVZiI6c2G+Ll96l8uF9LfJqM5rWqFR5XE9WRrX1cXlar/0H5QPlSY0rFmZXN3/a2G+d7fb/UP47IX5OrVJpXfne3X7MGJkWQQQqKf4dsscP79Aw4vLvUAetjhP2+eltEteSu5Otfs1d+d7Siqq87y/d5SrZzytm0vyNCUV0bXNyr0/nJ+0oFD/Li5TIiINXFCgG4vLvL+P3L4k4d0cGLg0zKu37R5BOWNhgS5pWu49whb0L+I76BNk/7UVIL5rK5X99xHf2ZvV6ieyje/Xy+Pe85Eujt3XhxUxPVKa8OJ7REmeOsXSNf9K2N3Rfr4srkublXvxfVGzCq0fq3pW090JH1Zc7t2x+qAipguXrleWcb9XqIdbluq18rg+r4zW/J77x2F5RipY+t+McP8QdXes3B30ZeN7dfuoFQrfhAAC9S5Q2zvf2cT3pYvydHeLqn/r9mhpQosy0v8tjerTFxTo7KZVf89xYV249O8b7u83b1fEdVHT8pozVmSk60vy1COe1mH19EhLvQNmuSDxnSUY3x5YAeLbbnTEt5FttvHtHueYmY5qUJOq+P4uGdUtJXlefF+zOE//S0Zr4thltns0ZWhxVXy7O9gdlv7r3eq//qQipsfLEiqO/H6nyb3B6qbicu8RFbf+GUVV13LPZj6wJKGp6Yh352pWOuI9B3roCvG9un0YMbIsAgisQcAivq9dnFfzyJt79Mxl+HGFVY+auLvY7vGSDWJp77G0L5NV7xopSUe8R08ublYV3yWZiNw6m8XTOmLpz4ZhmMR3GKbIGWojQHzXRqlu30N8181tjT+VbXy7Z70nJKM6Z2kQf1RR9aiJi+/bluR5b5DaN/+PnxawqvielIzq44qY/rH0zveyG3bXcr/v/gHqvtyd7mQmokFFFd6bL9312kXTf4jv1e1jjSB8AwIImAg0VHz/morombK492hbUSSj9ypieqc87sV3ZUa6fHG++uSl5B6PC9MX8R2maXKW1QkQ33avD+LbyDbb+J6cjHp3uG9qXu69CerqxfneGyhdfLs3Lz1RWvWYiftXvG+UxxWPZLRbXmqVd74LJe+RkSuLy9UxmpFb3/3D8cQmld6bOpeN7xtK8rRhLK39C5L6KRX1njffIS+lYworvWc/3Rs6t0ikVrsPI0aWRQCBNQjUR3zfuyThPcPt/jfvnvmuzZ1v92/j3KNy5zet8O5yu/eiuDvkVzcr1xNlce+jC6sfVQnTEInvME2TsxDfDfMaIL6N3LONb7eN+0sT3nPa7nlr9yYo9+kCtyzzaSfvVMS9TxVwz3//beknl6zqzrd7DKX6007KMxEVRjI6qUml9zm+K8Z39SMu7vN43acgbJOX0oiShAYXVXqfiPJ8WcJ7Q6cTpW1/AAAgAElEQVR7FMU9HrOyfRgxsiwCCOQgvt3n+V9fkq8/JVLem61rE9/u71Pu+xanI96bNY8urNSwkjztkZfy/qA/Lx1Z7mNM/5yf1AkrvBkziMMlvoM4NfZcFwHufNdFrXY/Q3zXzinr76pLfLuns5e+d8l7BOXB0oSuWfr8ZNYb4AcQQKBRCGRz57tRgBgfkvg2BmZ53wgQ33ajIL6NbLONb/emx8ELCryPE+wSS3ufcOLuVg8IwZ0iI2KWRQABScR3bl8GxHduvblawwkQ33b2xLeRbbbx7bbhnuV2j3W4TzNxnyQwqKhSzZb5tBKjrbIsAggEWID4zu3wiO/cenO1hhMgvu3siW8j27rEt9FWWBYBBEIsQHzndrjEd269uVrDCRDfdvbEt5Et8W0Ey7IIILCcAPGd2xcE8Z1bb67WcALEt5098W1kS3wbwbIsAggQ3w34GiC+GxCfS+dUgPi24ya+jWyJbyNYlkUAAeK7AV8DxHcD4nPpnAoQ33bcxLeRLfFtBMuyCCBAfDfga4D4bkB8Lp1TAeLbjpv4NrIlvo1gWRYBBIjvBnwNEN8NiM+lcypAfNtxE99GttnEd8FhJxrtgmWDJpD85kslJ4wN2rbZbwMK1OYNl+57oi1bN+Aug3vpsifuXm7zxHdwZ8nOsxMgvrPzyua7ie9stLL43mzj+4f8E7JYnW8No0DHDUuUeOxC4juMwzU8U23j+6n9++oHVRjuJHxL/7Plxio7ri/xHb7RcqJaCBDftUCq47cQ33WEW9OP1SW+v3k+taZl+f0QC+x5bhnxHeL5Wh0tm/g+bvqHVtsI3bqt4vma1vMI4jt0k+VAtRUgvmsrlf33Ed/Zm9XqJ4jvWjHxTcsIEN+8HOoiQHzXRW3NP0N8r9mI7wi3APFtN1/i28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyDYo8X3PL4fp8E63qSjWxkiCZWsrQHzXVorvW1YgqPG9xb0faWbvdfTrluv6cqDEty/HwqZyKEB822ET30a2xLcRbIiXJb5DPFzDowUxviOZjGJlSaUTUaXjMUOdui9NfNfdjp8MhwDxbTdH4tvItj7j+8sFj2vC4pdUGG2ujZv9RV8seExHd75XUkYfzbtTPy35WFJaHQt6adfWZyiqmMYtfEoTF41SRmkVxlpqjzbnqTjeQb+Ufq4P596mSCSqHkW7a9zCp2vufE8p/URj5t2rtJJqFu+g3VqfqXgkX/dPPUb9O9+nglhzT+vDubcrHsnTdi0HGOk1zmWJ78Y597U9dX3Ed7uvp6n7q98oVp7U3G5tNfHQrZSOR9X+q2na4I2JiqTSKm9WoG8P2VLlTQu0y1Uv64N/7aOKonxv+z1fGKdUPKbJ+2ymDV8ar7bf/CoX2PM2aKtvDt1KmWhEve8brZIOxer4+c/65tA/qcvo72vufHccO0Xrv/WtIumMyloUasIR26iseaHW/XCymv66UNFkSoVzShRJpzW+//Yqa9lE8dJKbfz0WDWfMlep/Li+27+35vZo551ho+e+9H49E43qlx27aep262fNTHxnTcYPhEyA+LYbKPFtZFtf8T2v8hc9N+NcHd7pvyqINtOrs6/Q/MqpOqrzSP1cOkZj5t2jQzv+W1JEz8w4U1sUH651CrfUo9NO1jGd71MiWqjvFr+uZKZcmzTrp4emHq9dW5+pLoV/0jeLXtIHc0fomHXuU0QxPTZ9oA7scL1aJbpq/MKnNaP8G/257RC9POsidWuyi3o23dvTenjaCd6vt8nrbqTXOJclvhvn3Nf21Gsb3/kLy7TdzW/q08G7e8Hb+4HRmt+1tWZs0UXb3/ymPhm8u5a0bqrOn/yozp/+pE9O211b3v2hZvZaR9O37uptf6ehr2hc/+1VsLBU3UdN0Ji/7+79PWnb/7ytH3fr6UV2rwc/Vt7ico09aSelEzFVP3byW88O2vnqURp99l4qbVWkjZ/+wv2oJh68pbp89L0X/6PP2ksVzQq08TNfqKJJnr7vu6l6Pj9OmUhEk/bvpeJf5mmruz/Qexf2U/dXJihRUqEJh2+tRGmFtr3lLY0/ro8Wday6eVDbL+K7tlJ8X1gFiG+7yRLfRrb1Fd/fLHpZU8vGerHrviaXvKtP59/vxbe7812ZKVMiUuj93ntzblGzeDttXnywHph6jLZrMUAbFO2kgmix9/vzK3/RMzPO1oAuT3h/ncpU6K4pB6n/OvdrWtk4TS55R/3aXeH9XmWmVPdOOVwnd33Oi/efSz9R37YX6beKyXp99jVLr2+E10iXJb4b6eDX8thrG9/uTnS7CdM17rg+3k5ilSkvajt8McX79S9P2MH7dXf3eY8hz+mdS/dXu6+mqe23MzTu2O3VbNp89Xp4jD48r6/7W5JilUml8uLez7iQdnepf9y9p3o9OEYL12mhn3br6f3ess98u7vV7u61++ow7hd1+uxnL9JdfLeaPKtmb10+/F7F0+Z5Yb3j0Fc0/tjttahTC+/nEqWVqixMaMdhr+rro7bRgi6tvF/v8fJX3n5+2GvjrKSJ76y4+OYQChDfdkMlvo1s6yu+3SMmC5MzvMdJ3NfM8ol667frvfgtSy3Q6Pkjvah2X4uSM7VZs/21VfOj9FvF9/piweNeuLfN21C7tj5dS1Lz9OZvQ5c+slJ18JFTDtaRne/0ov6z+Q+pMFYV6u6rPF2iIzrdoWgkpkemnaTj1nlIYxc85j3Ksm2L443kGu+yxHfjnf3anHxt47vre5PUdMZCL2iX/Vrv7e9UNHvRcr+++0XPacyZe6qyMM+L3PeG9NP6b38npTPe3ei8knL1ePlrFc1aqIwiKpxXol926KYf99jIi+85G7bXtG3X8y5THd/uDru7u9160kzv193jJGUtmmjsyVXx3fyXufr6iG2831v2r91ePj6r6m75sl+7X/y8kgUJZWIR75ejybRm9FrHu0OezRfxnY0W3xtGAeLbbqrEt5FtfcX3hEUvanrZeO3d9gJvp9+XvKdP5t/nxbe7051SpfdsdkRRvTvnZu/Ot4vv6q90JqnPFzysORU/aruWJ+rZZe58u7vbd0851Lvz7a7xw5IP1LftxSsVeXHmhepVfKD3mIt7frx13gZGco13WeK78c5+bU6+tvHt7nx3GD9VXwzY0duGu4Mcq0iq1aSZav/1tJpfd3fEXfC+fdkB3l3qre76QFN26q7uo77WhCO38R7rcHe6o6l0zXPemzw1VqXuznd1fPdsr2nbLB/f7nnw9d76Tp+duquShQl1/GKKOn4+ZY3x7e58f3X0dlrYpaW37yazF6msZZH63Pi6xh/j7ohn95jJijMgvtfmVcnPhkGA+LabIvFtZFtf8T27YpJennWJjuh0u/IiTbz/f1Fyhhffr8++Su3zN1av4kM0p+IHvTr7SnVrsrPWa9JH4xY+qT3b/EOxSJ4mlbyp70veV9+2Q/TAtGO1R+tzvWe+3ZsyXUwfs869iiqux38dpIPa36DmiU5y1520+C3t2OpUT8g9/vJL2eeaVzlFR3a600itcS9LfDfu+df19Gsb3/kLS9Vn+Bv69G+7akmbZtr8kU+0sHML7yMA+9z4hj45veqZb3fX2b0B87NTdvG22nnMj2ozaaaKZi7UR+f+2fs1d3d7QddW+nnnHmr26wL1euBjzdy8syb/ZbOqO98riW93p7v1/2bqy+N38MJ/84fGeG+a/PS03VZ759u9qTJamdbEQ7dU0+kLtNVd7+v9pc98uz8oTDxoS+8Nmj1Gfa0ZW67rnSmbL+I7Gy2+N4wCxLfdVIlvI9v6im+3vdHz7tL3Je+qabytehTtoa8WPqsjO99V8whKLBJX2/yeWr+wj96eM1y7tzlHv5Z95d3Jdm+kbBJr6T220jKxrvfJKB/Nu917Xnyjpn29qHZvsmwWb6/qTztxb850b9TcqdUgdcjf1BNyj7g8MLW/tmh+uLZpcayRWuNelvhu3POv6+nXNr7ddduPn6pur32jeHlSc7q3q/m0E/dsd7eln3biHgWZeMiWNY95uEdMdr7qZe8Z7u//vIm3/eY/z9Fmj3+mdCyqhV1aadYmHbXpk597j664u9kri2/3KErve0d7b44sb16oyftsqt73f6xpW3f13mS5qsdOXKhv/NRYtfh5jveYyXcH9NKcHu1rPu3E/br79JTZG3XQpP16KROLZkVMfGfFxTeHUID4thsq8W1kW5/xnfGenqx6ftE9HvLxvLt1SMebjHbOsg0lQHw3lHywr1sf8R1sAZvdE982rqwaHAHi225WxLeRbX3Ft7vj/PD0E3Vwh+Fqmeiqd+bcqESkiXZsdYrRzlm2oQSI74aSD/Z1iW+b+RHfNq6sGhwB4ttuVsS3kW19xbfb3sTFo7xPLnGfMtImr5v3Od3VHx9otH2WbQAB4rsB0ENwSeLbZojEt40rqwZHgPi2mxXxbWRbn/FttEWW9ZkA8e2zgQRkO8S3zaCIbxtXVg2OAPFtNyvi28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3g04tsGl/i2cWXV4AgQ33azIr6NbIlvI9gQL0t8h3i4hkcjvm1wiW8bV1YNjgDxbTcr4tvIlvg2gg3xssR3iIdreDTi2waX+LZxZdXgCBDfdrMivo1s6yO+NzkgZrS7Py477+eMfh2Xztn1uNAfBYhvXhV1EVib+D6l7SbqmCiqy2X/8DOXTv+0XtbxyyLEt18mwT4aSoD4tpMnvo1s6yu+R22fNNrh78tuF40p8oiIb3Pp1V+A+G7gAQT08msb38MrMmpSMmetTj+3595qPeGhtVrDbz9MfPttIuwn1wLEt5048W1kW5/xfcOsCqNdVi37eIdC4ttUuHaLE9+1c+K7lheol/j+6M66sxa11tx9ryS+6y7ITyLgSwHi224sxLeRLfFtBBviZYnvEA/X8GjEtw0ud75tXFk1OALEt92siG8jW+LbCDbEyxLfIR6u4dGIbxtc4tvGlVWDI0B8282K+DayJb6NYEO8LPEd4uEaHq0+4/uDKeUqjEcUiUrzStPac/0C/Tg/qbmlaf1vTlLN8iNqXxTTrJKU/tQpz/v/xWMnhtNlaQQaToD4trMnvo1siW8j2BAvS3yHeLiGR6vP+F52mxlJsxan1Cw/qiaJyKpPQHwbTpelEWg4AeLbzp74NrI1j+9MRoqs5h+IK5yr3aiHVThlsver5R26aMaBA2q+gzdcGr0IslyW+M4SjG/3BKziu9a8xHetqfhGBIIkQHzbTYv4NrK1iO/iLz9Si8/eUbqgUDMOOlGt331Bid9mKFZeqsUb9tKc3Q5Ux6fv8k6UbFqsov99rVn9jlZ5+3W87531l6O83+s+9Az9OPgKpYqKvb8mvo1eBFkuS3xnCca3E9+GrwGe+TbEZelACBDfdmMivo1sLeK72Vdj1HLMm5py8gWKpNNq+dGrmrvTXxRJpdTjylM06ZK71OGZkapo28n7dff9Rd9P8EK9+qtg6g/q8MJ9+mnQZTW/RnwbvQiyXJb4zhKMbye+DV8DxLchLksHQoD4thsT8W1kaxXfRT984z0y4uK77auPKVayUJlY3Lsj/u1VD3jxXbJhby3adGsVTRqn5uNGa/php3qndOHeZPJXmnHoQKUKmhDfRrOv67LEd13lGvfP8diJzfyJbxtXVg2OAPFtNyvi28jWLr4nasaBJ6jpd+PU8sNX9MuJ/1R80Xz1uGqQJl77yCrju/2LD3iPorhHU1b84s630Ysgy2WJ7yzB+HbufBu+BohvQ1yWDoQA8W03JuLbyNY6vl1wd7lnqMo6dlWyuKUKpv2k0vV7Kj5/zh/ufM/doa/Wv3WISrpvVnPamf2OUXnHdb2/Jr6NXgRZLkt8ZwnGtxPfhq8B4tsQl6UDIUB8242J+DaytYhvo60S31awWa5LfGcJxrcT34avAeLbEJelAyFAfNuNifg2siW+jWBDvCzxHeLhGh6NZ75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3g04tsGl/i2cWXV4AgQ33azIr6NbIlvI9gQL0t8h3i4hkcjvm1wiW8bV1YNjgDxbTcr4tvIlvg2gg3xssR3iIdreDTi2waX+LZxZdXgCBDfdrMivo1siW8j2BAvS3yHeLiGRyO+bXCJbxtXVg2OAPFtNyvi28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3i0eonv0SPrvsMmLTV33yvVesJDdV/Dhz9JfPtwKGwppwLEtx038W1kS3wbwYZ4WeI7xMM1PNraxveILjuv9e7mly8mvtdakQUQ8JcA8W03D+LbyJb4NoIN8bLEd4iHa3i0tYlvw20FfmnufAd+hBxgLQWI77UEXM2PE99GtsS3EWyIlyW+Qzxcw6MR3za4xLeNK6sGR4D4tpsV8W1kS3wbwYZ4WeI7xMM1PBrxbYNLfNu4smpwBIhvu1kR30a2xLcRbIiXJb5DPFzDoxHfNrjEt40rqwZHgPi2mxXxbWRLfBvBhnhZ4jvEwzU8WjbxPeDXjwx3Eq6lm8fyNK3nESo7ru9yB4s0LVbBLc/qtAsi4Towp0FgBQHi2+4lQXwb2RLfRrAhXpb4DvFwDY9W2/gu+L9zDHcRzqUrykuJ73COllPVQoD4rgVSHb+F+K4j3Jp+jPhekxC/v6IA8c1roi4CtYnvuqzLz6xcgDvfvDIaiwDxbTdp4tvIlvg2gg3xssR3iIdreDTi2xB3JUsT37n15moNJ0B829kT30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a29RnfRlusWXa7aEyRR6Rfx6WtL8X6qxEgvnl51EWA+K6LWt1/JtK0WAW3PKvTLojUfRF+EoEACBDfdkMivo1s6yu+jbb3h2Xn/ZwhvnOFvYrrEN8NPICAXp74zu3giO/cenO1hhMgvu3siW8j2/qIb6OtsaxPBYhvnw7G59sivnM7IOI7t95creEEiG87e+LbyJb4NoIN8bLEd4iHa3g04tsQdyVLE9+59eZqDSdAfNvZE99GtsS3EWyIlyW+Qzxcw6MR34a4xHducbmarwSIb7txEN9GtsS3EWyIlyW+Qzxcw6MR34a4xHducbmarwSIb7txEN9GtnWJb6OtsGxABDpuWKLEYxcqOWFsQHbMNv0gQHzndgo8dpJbb67WcALEt5098W1km218G22DZQMmkPzmS+I7YDNr6O0S37mdAPGdW2+u1nACxLedPfFtZJtNfBttgWURQKARCBDfuR0y8Z1bb67WcALEt5098W1kS3wbwbIsAggsJ0B85/YFQXzn1purNZwA8W1nT3wb2RLfRrAsiwACxHcDvgaI7wbE59I5FSC+7biJbyNb4tsIlmURQID4bsDXAPHdgPhcOqcCxLcdN/FtZLu6+Da6JMsigEAjFfii05Ea+XhCu+4Q1cGt31B83rRGKpGbY0f69ddpF0RyczGugkADCRDfdvDEt5HtSuN7n6jR1eqwbIR/cNRBrX5/JJNZ/XrMqH69Q77a86NSXnw3b87/tnMxaufNFwJhFiC+7aZLfBvZriy+jS7FsggggAACCCCAQL0KEN/1yrncYsS3kS3xbQTLsggggAACCCBgLkB82xET30a2xLcRLMsigAACCCCAgLkA8W1HTHwb2RLfRrAsiwACCCCAAALmAsS3HTHxbWTr4psvBBBAAAEEEEAgiALRiLRfXx99UEQQEVexZ+I7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RK3tljYAAAEGSURBVMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIoH/B/v8IgO/C/w6AAAAAElFTkSuQmCC",
|
|
"text/html": [
|
|
"<div> <div id=\"759e27e4-2463-4adb-bac3-407f3dc33a7c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"759e27e4-2463-4adb-bac3-407f3dc33a7c\")) { Plotly.newPlot( \"759e27e4-2463-4adb-bac3-407f3dc33a7c\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\",\"labels\":[\"Py_kgeneration\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"fourt\",\"cov_value\",\"ran2\",\"build_real\",\"prebuild_gwn\",\"clean_real\",\"cgrid\",\"length\",\"maxfactor\"],\"marker\":{\"colors\":[\"#636efa\",\"#EF553B\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#00cc96\",\"#FFA15A\",\"#19d3f3\",\"#636efa\",\"#00cc96\",\"#636efa\",\"#636efa\",\"#636efa\",\"#636efa\"]},\"name\":\"\",\"parents\":[\"\",\"Py_kgeneration\",\"Py_kgeneration\",\"fftma2\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"\",\"fftma2\",\"\",\"\",\"\",\"\"],\"values\":[173.93129,137.192987,36.737828,36.638978,101.71883800005251,0.09082599999999999,15.471843000005594,31.86060899999753,0.00317,0.001027,0.000707,0.001641,0.001153,0.000372],\"type\":\"treemap\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
|
|
" \n",
|
|
"var gd = document.getElementById('759e27e4-2463-4adb-bac3-407f3dc33a7c');\n",
|
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|
" var display = window.getComputedStyle(gd).display;\n",
|
|
" if (!display || display === 'none') {{\n",
|
|
" console.log([gd, 'removed!']);\n",
|
|
" Plotly.purge(gd);\n",
|
|
" observer.disconnect();\n",
|
|
" }}\n",
|
|
"}});\n",
|
|
"\n",
|
|
"// Listen for the removal of the full notebook cells\n",
|
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|
"if (notebookContainer) {{\n",
|
|
" x.observe(notebookContainer, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
"// Listen for the clearing of the current output cell\n",
|
|
"var outputEl = gd.closest('.output');\n",
|
|
"if (outputEl) {{\n",
|
|
" x.observe(outputEl, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
" }) }; }); </script> </div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 128"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 133,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Executing file log_128-aa\n",
|
|
"Executing file log_128-ab\n",
|
|
"Executing file log_128-ac\n",
|
|
"Executing file log_128-ad\n",
|
|
"Executing file log_128-ae\n",
|
|
"Executing file log_128-af\n",
|
|
"Executing file log_128-ag\n",
|
|
"Executing file log_128-ah\n",
|
|
"Executing file log_128-ai\n",
|
|
"Executing file log_128-aj\n",
|
|
"Executing file log_128-ak\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>sum</th>\n",
|
|
" <th>count</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>-14.1</td>\n",
|
|
" <td>-14.1</td>\n",
|
|
" <td>-14.1</td>\n",
|
|
" <td>1530.896938</td>\n",
|
|
" <td>1530.896938</td>\n",
|
|
" <td>1530.896938</td>\n",
|
|
" <td>1530.896938</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>14.870018</td>\n",
|
|
" <td>14.870018</td>\n",
|
|
" <td>1530.896938</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>3.2</td>\n",
|
|
" <td>3.2</td>\n",
|
|
" <td>3.2</td>\n",
|
|
" <td>1198.768697</td>\n",
|
|
" <td>1198.768697</td>\n",
|
|
" <td>1198.768697</td>\n",
|
|
" <td>1198.768697</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>12.167592</td>\n",
|
|
" <td>12.167592</td>\n",
|
|
" <td>1198.768697</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>-2.8</td>\n",
|
|
" <td>-2.8</td>\n",
|
|
" <td>-2.8</td>\n",
|
|
" <td>332.127615</td>\n",
|
|
" <td>332.127615</td>\n",
|
|
" <td>332.127615</td>\n",
|
|
" <td>332.127615</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>24.482971</td>\n",
|
|
" <td>24.482971</td>\n",
|
|
" <td>332.127615</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>-20.8</td>\n",
|
|
" <td>-20.8</td>\n",
|
|
" <td>-20.8</td>\n",
|
|
" <td>330.818047</td>\n",
|
|
" <td>330.818047</td>\n",
|
|
" <td>330.818047</td>\n",
|
|
" <td>330.818047</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>24.492196</td>\n",
|
|
" <td>24.492196</td>\n",
|
|
" <td>330.818047</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>-81.6</td>\n",
|
|
" <td>7.4</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000081</td>\n",
|
|
" <td>0.016966</td>\n",
|
|
" <td>0.000428</td>\n",
|
|
" <td>891.863931</td>\n",
|
|
" <td>2097152.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.000428</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>0.5</td>\n",
|
|
" <td>1.2</td>\n",
|
|
" <td>0.6</td>\n",
|
|
" <td>0.336843</td>\n",
|
|
" <td>0.525952</td>\n",
|
|
" <td>0.422136</td>\n",
|
|
" <td>1.266409</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>19.065517</td>\n",
|
|
" <td>26.290476</td>\n",
|
|
" <td>0.422136</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>-9.6</td>\n",
|
|
" <td>2.7</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000102</td>\n",
|
|
" <td>0.000870</td>\n",
|
|
" <td>0.000124</td>\n",
|
|
" <td>140.268295</td>\n",
|
|
" <td>1132300.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.000124</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>-12.9</td>\n",
|
|
" <td>4.8</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000078</td>\n",
|
|
" <td>0.002555</td>\n",
|
|
" <td>0.000107</td>\n",
|
|
" <td>282.561512</td>\n",
|
|
" <td>2668394.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>100.100000</td>\n",
|
|
" <td>0.000107</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>-0.0</td>\n",
|
|
" <td>-0.0</td>\n",
|
|
" <td>-0.0</td>\n",
|
|
" <td>0.021324</td>\n",
|
|
" <td>0.021324</td>\n",
|
|
" <td>0.021324</td>\n",
|
|
" <td>0.021324</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.100000</td>\n",
|
|
" <td>0.100000</td>\n",
|
|
" <td>0.021324</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>17.0</td>\n",
|
|
" <td>17.0</td>\n",
|
|
" <td>17.0</td>\n",
|
|
" <td>0.008650</td>\n",
|
|
" <td>0.008650</td>\n",
|
|
" <td>0.008650</td>\n",
|
|
" <td>0.008650</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.100000</td>\n",
|
|
" <td>0.100000</td>\n",
|
|
" <td>0.008650</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>14.6</td>\n",
|
|
" <td>14.6</td>\n",
|
|
" <td>14.6</td>\n",
|
|
" <td>0.007677</td>\n",
|
|
" <td>0.007677</td>\n",
|
|
" <td>0.007677</td>\n",
|
|
" <td>0.007677</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.007677</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.001930</td>\n",
|
|
" <td>0.001930</td>\n",
|
|
" <td>0.001930</td>\n",
|
|
" <td>0.001930</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.001930</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000410</td>\n",
|
|
" <td>0.000424</td>\n",
|
|
" <td>0.000418</td>\n",
|
|
" <td>0.001254</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000418</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.000117</td>\n",
|
|
" <td>0.000119</td>\n",
|
|
" <td>0.000118</td>\n",
|
|
" <td>0.000354</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>0.000118</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" memory time \\\n",
|
|
" min max median min max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration -14.1 -14.1 -14.1 1530.896938 1530.896938 1530.896938 \n",
|
|
"generate 3.2 3.2 3.2 1198.768697 1198.768697 1198.768697 \n",
|
|
"fftma2 -2.8 -2.8 -2.8 332.127615 332.127615 332.127615 \n",
|
|
"covariance -20.8 -20.8 -20.8 330.818047 330.818047 330.818047 \n",
|
|
"gasdev -81.6 7.4 0.0 0.000081 0.016966 0.000428 \n",
|
|
"fourt 0.5 1.2 0.6 0.336843 0.525952 0.422136 \n",
|
|
"cov_value -9.6 2.7 0.0 0.000102 0.000870 0.000124 \n",
|
|
"ran2 -12.9 4.8 0.0 0.000078 0.002555 0.000107 \n",
|
|
"build_real -0.0 -0.0 -0.0 0.021324 0.021324 0.021324 \n",
|
|
"prebuild_gwn 17.0 17.0 17.0 0.008650 0.008650 0.008650 \n",
|
|
"clean_real 14.6 14.6 14.6 0.007677 0.007677 0.007677 \n",
|
|
"cgrid 0.0 0.0 0.0 0.001930 0.001930 0.001930 \n",
|
|
"length 0.0 0.0 0.0 0.000410 0.000424 0.000418 \n",
|
|
"maxfactor 0.0 0.0 0.0 0.000117 0.000119 0.000118 \n",
|
|
"\n",
|
|
" cpu \n",
|
|
" sum count min max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration 1530.896938 1.0 14.870018 14.870018 1530.896938 \n",
|
|
"generate 1198.768697 1.0 12.167592 12.167592 1198.768697 \n",
|
|
"fftma2 332.127615 1.0 24.482971 24.482971 332.127615 \n",
|
|
"covariance 330.818047 1.0 24.492196 24.492196 330.818047 \n",
|
|
"gasdev 891.863931 2097152.0 0.000000 100.100000 0.000428 \n",
|
|
"fourt 1.266409 3.0 19.065517 26.290476 0.422136 \n",
|
|
"cov_value 140.268295 1132300.0 0.000000 100.100000 0.000124 \n",
|
|
"ran2 282.561512 2668394.0 0.000000 100.100000 0.000107 \n",
|
|
"build_real 0.021324 1.0 0.100000 0.100000 0.021324 \n",
|
|
"prebuild_gwn 0.008650 1.0 0.100000 0.100000 0.008650 \n",
|
|
"clean_real 0.007677 1.0 0.000000 0.000000 0.007677 \n",
|
|
"cgrid 0.001930 1.0 0.000000 0.000000 0.001930 \n",
|
|
"length 0.001254 3.0 0.000000 0.000000 0.000418 \n",
|
|
"maxfactor 0.000354 3.0 0.000000 0.000000 0.000118 "
|
|
]
|
|
},
|
|
"execution_count": 133,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_128-aa', 'log_128-ab', 'log_128-ac', 'log_128-ad', 'log_128-ae', 'log_128-af', 'log_128-ag', 'log_128-ah', 'log_128-ai', 'log_128-aj', 'log_128-ak'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 134,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjLUlEQVR4nOzdd3wT5R/A8c+TdNABYa8ywi5lKFZAliwRoS5AQZy4UHCjQl0Yd91bEf0piIKigIwqKKBMkaEge4e9oXtl3O+PS2spLR20vST9vl+vWHu58b3Qy/eecc+jNE1DCCGEEL7NZHQAQgghhLhwktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktBFhaCUmqSUshsdhwClVC+llKaU6mV0LEL4kwCjAxCipJRSRR23uHeZBiKEEF5AyVjuwlcppW7Ns+h2oB9wW57lvwGnAZOmaZnlEZsomFLKBAQBWZqmuY2ORwh/IQld+A2l1EfAA5qmKaNjEedSSlVCkrgQZUba0EWFkLcNXSll9bTjPqGUekAptUcplaaU+lUp1VDpnlNKHVRKpSulZiulquez3wFKqWVKqVSlVLJSKl4p1aaIMVVVSr2rlLIrpTI9x/paKVUz1zq1lVL/U0odU0plKKU2KKXuyLOfCz4XTwzzlFJXKqXWe461RSk1OM961ZVSbymlNiqlUpRSSUqpX5RSF+VZL7ud/Cal1MtKqUNAGlAlvzZ0pVQLpdQMpdRRz7EPKqW+U0pZcq0T4DmP3Z7Py66UelUpFVzAuXRXSq327G+PUur2POsFKqWeV0rt9KxzSim1XCnVryj/fkJ4G2lDFxXdLejVvx8C1YGxwHRgMdALeB1oDjwEvAXclb2hUuo2YDKwABgHhAKjgOVKqQ6aptkLOqhSKhxYBrQGvgT+BmoC1wINgJNKqRDgD8/xPwL2AjcCk5RSVTVNe7+0zsWjBfA9MMFzXncCPyilrtI07TfPOk2B64EfPPHUAe4DliilojRNO5xnn88BWZ7jBXv+P+9nEYT+GQZ7Yj8KRABXA1WBRM+qXwB3AD8CbwOdgac8n+GgPLtt7lnvf55zucvzua3TNG2zZx2bZ/svgNVAFeBS4BL0ZhohfIumafKSl1+80JOeVsB7kwB7rt+tgAYcByy5lr/qWb4eCMi1fCqQCQR7fg8HzgAT8xynDpCQd3k+8bzgOc6gfN7Lbgp7xLPOLbneCwRWAslA5dI4F88yu2fdwbmWVQEOA3/nWhaM3hchd7xWIAN4LteyXp797QZC8qyf/V4vz+8Xe36/4Tyf10WedT7Ps/xNz/Le+ZxLj1zLanlifCvXsvXAPKP/buUlr9J6SZW7qOh+0DQtMdfvf3l+fqNpmjPP8iD0kiPone+qAtOUUjWzX4DLs25hPeuHABs0TZuV9w1N07I7tgxEL61Oy/WeA/gA/YaiZymdS7bDQE48mqYlAV8DHZRSdT3LMjVPG7hSyqyUqgGkANvRS7Z5TdY0LT2f5bllx9xfKRVawDoDPT/fybP8bc/PmDzLt2iatizXuZzwxNg01zoJQBulVItC4hPCJ0hCFxXd/jy/ZyeXAwUsr+b5mZ0EFgMn8ryuBGoXctxmwKZC1mkM7NTO7US2Ndf7uZX0XLLtynUzkW2H56cV9B7qSqnHlFI70Uv5J9HPuT1g4Vx781l2Fk3T9qIn6nvQmxoWePoC5N5fY8AN7Mqz7VH0xFzYZwF6jUrucx6PflO2w9Mn4E2lVPvC4hXCW0lCFxWdq5jLs3vQZ187t6GX1vO+riutAIuhpOdSHE+jJ9+lwK1Af/Tz3Uz+3yeFlc4B0DTtcfSbgleBEPRaiM1KqQZ5Vy1inIWes6ZpS9FvrO5Cv7m6B/hbKXVPEY8hhFeRTnFClMxuz8/jmqYtLOH2bQtZZx/QXillylNKj8z1fmlqrpRSeUrpLT0/7Z6fNwC/a5p2d+4NlVJV0UvrJaZp2kZgI/CyUqorsAK4H3gW/VxN6DUj2TUUKKXqoJeyS/RZaJp2GvgK+MrTUXEpeme5L0p6HkIYRUroQpTMAiAJeFopFZj3TaVUrUK2nwFcpJTK2zsbpVR2KfJnoC4wLNd7Aei91FOAJSULvUD1ydVbXClVBX2wnvWeqm3QS75nleyVUjdybnt8kSmlqnjOK7eN6FXs2Y+k/ez5+Wie9cZ4fsaX4Lg1cv+uaVoKepV+cP5bCOHdpIQuRAlompaklBoFTEGvpv0OvS25EXoHrRXAg+fZxZvopd0flFJfAuvQHzW7Fr1UugGYiP5I2CSlVDR6KfkGoBvwqKZpyaV8WjuA/ymlOgLH0Kui66A/vpZtHjBeKfUVem/7duiPy+25gOP2AT5SSv3giSEAvSnDhX7jg6ZpG5RSk4GRntqAJUAn9MfYftI07fcSHHeLUuoP9M/+NPojazegPy0hhM+RhC5ECWmaNlUpdRiIBZ5EL9kdQn++/KtCtk1RSvVAf3xtEHpiOg4sAg561kn3DL4S53m/CnpP7Ts1TZtU+mfETvTS/5tAK/QObcM0TVuQa51XgTDgZvSag7/Rb2DiLuC4G9BrPK5BL+mneZYN0DRtVa717kG/cRiB/pkdBV5D/wxL4gP0G6gr0f/t9qFX779Zwv0JYSgZ+lUIgdJH0dukadrVRscihCgZaUMXQggh/IAkdCGEEMIPSEIXQggh/IC0oQshhBB+QEroQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhG4wpZRVKaUppZ4wOhZvp5Tq5fmsehkdixBCeBtJ6PlQSo3wJI7sV4ZSaodS6iOlVB2j4/N3SqnRSqkRRschhCg5pdTTSqnrjY6jIgkwOgAvNx7YC1QCugOjgIFKqbaapqUZGpl/Gw2cBCblWb4UCAGyyjsgIUSxPQ38CPxkcBwVhiT08/tF07S1nv//Qil1ChgDXAdMMy4s36GUUkAlTdPSL3Rfmqa5gYwLj0oIURxKKRMQpGmaXH9eTKrci2ex52cTT1X8Y3lXUEp19bw3vKQHUbqJSqkspdTgXMvbK6WWKKXSlVIHlVLPKqXu9BzPmmcfA5RSy5RSqUqpZKVUvFKqTZ51JimlUpRSEUqpnzz/f0Ip9ZZSypxnXZNS6lGl1GZPE8QxpdRnSqlqedazK6XmKaX6K6XWAunAfZ737lRKLVZKHVdKZSqltiilRuXdHmgD9MzV5PGH571829CVUjcqpdZ5PpeTSqlvlFIRJT1XIcqa5295reda2q2Uuk8pZVNKaXnWuzXX3/ZppdR3SqmGedb5Qym1SSkVpZT6XSmVppQ6pJQam89xg5VSLyildnmuwQNKqTeUUsF51tM8TYy3KKU2A5nAVZ73nlBKrVRKnfLEtU4pdUPe7YEw4I5c1/GkXO9HKKW+9HyPZHq+V+66wI+1wpMSevE08/w8BawAbgHezbPOLUAyMLskB/Akly+BYcAgTdPiPcsjgN8BDXgNSAXuQb/Q8u7jNmAysAAYB4SiNxcsV0p10DTNnmt1s2e9v4AngCuAx4HdwKe51vsMGAF8BXwANAEeBDoopbppmubItW4r9BqMz4DPge2e5aOAzcAcwAlcA3yilDJpmvaxZ51HgQ+BFOAVz7Jj5/m8smNaAzwF1AEeAbp5zjWhBOcqRJlRSnUA5gNHgOfR/y7HAyfyrPcM8BIwHfgCqAU8BCzN52+7mmefMz3r3wC8rpTaqGnaL579mdCvve7ARGAr0A54DGgJXJ8n1D7AUOAj9CYwu2f5I579fAsEATcBPyilrs7+vgJu88S82nMs0K8zlN4PaRX6d9lHnvMeAPxPKVVF07T3CvsMRQE0TZNXnhd64tKAvkBNoAF6gj0JpAERwEjPOpG5tgtE/+OcVIxjWT37eQL9Bus7zzGuzLPeB4AbuDjXsuroNxcaYPUsCwfOABPzbF8HSMi9HL2NWgOey7Pu38DaXL9396x3c571+uddjn7Ra0D/fM41JJ9l84HdeZZtAv7IZ91enn33yvV5HwM2olfrZ68X41nvheKeq7zkVdYv9GSYCtTPtaw54NC/kjWAxug3vU/n2batZ72ncy37w/O3fVuuZUHoNww/5lp2K+ACuufZ532e7bvmWqZ51o3KJ/6QPL8Heq7BRXmWp+T3XYie6A8DNfIsn+b5jjrne0JeRXtJlfv5LURP0AfQE20Keqn5EPpdcAZ6iTxbf/QbgG9KcKwg4AfgamCgpmm/5nn/KuBPTdPWZy/QNO00+l1ybv2AqsA0pVTN7Bf6xfkX0DufY0/I8/syoGmu328EEoHf8uxzHfpnknefezVNW5D3IFqudnSllMWzjyVAU6WUJZ+4CnMpUBv4RMvVtqfppYRt6Ik9r8LOVYgy46mBuwL4SdO0w9nLNU3bBfySa9XB6E2i0/Ncc0eBnZx7zaWQ63tH07Qs9NJx3ut4K7Atzz6zmxLz7nOJpmlb8p5Dnuu4GmBBv44uKcL5K2AIMNfza+44Fnj2Veh+RP6kyv38HgB2oN8pHwO2a3rHLDRNS1BKzQVuBp7zrH8LcIj/LpDieAq9dD1A07Q/8nm/MfBnPst35fm9hednQTEk5fk9Q9O0E3mWnUGvwsu9TwtwvIB91s7z+978VlJKdQNeALqgNwPkZkG/aSiOxp6f2/N5bxt6zUJuRTlXIcpSbfQnNfJet+RZ1gJQ6Mk7P448vx/UPMXcXM4A7fPsszV5qvbzxJZbQdfx1cCzwMVA7rb3vMfPTy30AsdIz6socYgikoR+fqu1/3q55+dr4EalVFf0Kqdr0UuL7hIcawF6KXysUuoPreS9SbNrXW5Dv5vPy5nnd1cR93mcs2sjcsv7BXFOj3alVDNgEXqiHYNe65EFDERvwyuP2qKinKsQ3sCEniAHkP/fbUqe3wv621Z59rkR/frLz4E8v+d3HfdAbzJYiv546RH0m4s70Qs3hcm+zr9B7+eTn3+LsB+RD0noF2Y+ejK7Bb06OxSYUsJ9rUKvDp6H3sFkkKZpuZPvPvR2trzyLtvt+Xlc07SFJYwlr93o1YQrtJI/fnYN+t38tZqm7c9eqJTKrwmgKHf6oH8moHfCy1sj0SrX+0J4i+PoTXWFXcu70ZPxXk3TdpTSsXcDF6G3dRf1GstrCHr8/TVNy+mQq5S6M5918zvGCfROw+ZS/H4SHtKGfgE8CXcaek/QEcBGTdNKfHfp+QO/Cb2kPsXTKzXbAqCLUuri7AVKqeqcW2pegF6t/rRSKjDvMZRStUoQ2nT0nrjP5X1DKRWglKpahH1klyBySgyedvP8vghS0avlCrMW/Qvy/tyP3SilBqBXLcYXtKEQRtA0zYXeN+d6pVT97OVKqebopfFsM9Gvmec97c7kWlcppWqU4PDT0Tv03pv3DaVUiFIqrAj7cKEn6pxHPZX+yOz1+ax7znXsOf8ZwBClVNt84ijJ95PwkBL6hfsaeBi9Q8m4C92Zpmk/ee52v0ZPzPd53noDvZfqb0qpD/nvsbX96L3dNc/2SUp/tnsK8LdS6jv0u+JG6J3EVqA/blacmJYopT4DnvLcUPyKXs3WAr2jzSPoI0Kdz6/oVexzPfsKR/9iOQ7Uy7PuOmCUUupZ9HbF45qmndMnQNM0h1JqHPpja0uUUtP477E1O+c+UiiEN7ABVwIrlFKfoifHB9Gf7rgYQNO03Z6//9cAq1LqJ/SSbRNgEPqjYG8V87hT0AsfEzw1Yys8x470LO+PfpN8PvHoVfbzlVJT0du7H0C/TtvnWXcdcIVSagx6r/a9mqb9BcSif1/+pZT6HNiC/h12CXpNYPVinpfIZnQ3e2988d9ja5cWcf1N6HeuESU4ltVzrCfyLB/lWf5mrmUXo7ddZaC3d8WiP5eqAXXybN8LvUkgAb0tbBd64ovOtc4kICWfmGx4Hp/Js/xe9As+Df1m41/gdaBernXswLwCzvUaYIMnnr3AWPQSes5jd5716qA3PSR53vsj1znlPLaWa/2h6I+fZaA/xvdN3n+L4p6rvORVli/0Z7z/Rh9HYhdwN3qCTs+z3mD0HuQpntdW9Ge3W+Za5w9gUz7HmATY8ywL9Fx3mzzXy2nPNT0eqJJrPQ34qIDY70LvLJzhiWdEftcRerPXEs/3hUauR9jQbwQ+Qi+QZKG3xS8E7jX638aXX8rz4YoLoJT6BzitaVpfA479HnopPlzTq7OEED7IUwpvo2lai8LWFSI/0oZ+gZRSl6KXnL8uh2OF5Pm9Bnpv9uWSzIXwHflcyy3Qn/j4w5CAhF+QEnoJeTp0RKMPHVoTaKrletTMM4BEYR08UjRNy/v4yfmOuR79gt+KXi19N1Af6Ktp2tLixC+EMI5S6gh6lfge9PEURqE/BdJB07SCnj0X4rykU1zJ3YDe7rQdGK6d+9x4QwoYmCGXF9DbnorqZ89xs4ed/Ru4W5K5ED5nPjAcqIvejv4n+nCuksxFiUkJvYwopbLnUD+fPZqm7SmPeIQQQvg3SehCCCGEH5BOcUIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+IFiDSyzbt26cPSRyeRGQJSUGzgcHR1d5BHyhLHkuhcFkGvZyxT5OfR169ZdZjKZJphMJgu55rQWopg0t9ud6Ha774+Ojl5ldDDi/OS6F+ch17KXKVJCX7duXbjJZFpetWrVOrVr1z6tlJLRaLycw+U2Z7ncwQ6XFuR2a2anWzO73QS4NLfZ5dYC3Bpmt4ZJQ1OahgJUc/Mxh3I7A8Dz76uUhsnsRJmdmMwuTAEOlNmFyezUTAFOTIEOAoKyUEUvuGmapo4fP149ISHhmNvt7i53995Lrnvf5HC5A7Kc7mCHWwt0uzWzU9PMbjdmt1szuzQtwO3WzG4NE54LvVZAWkYVV0IlQL/mQUOZ3J7r3okp0Ik5wKGpAAfmACf6te/UQK5lL1PUKvf6JpPJUrt27dNhYWHpZRqRKJZMhysoLcsVmul0Vcp0uitlOt2VHE53JZemmc9eM7twZf7v1zzlrUoBKJNbM+vDxGdzBQJ65Zo73xA0zEGZBFRKJ6BSOoEh+iugUiYq/wJd7dq1TyclJVncbnd99HmVhXeS695LaZpGhsNdKS3LGZp93Wc53ZUcLnewW9Py3GGrs3/mufaDAsyZIdnXeV7Z170zn/dMAY46QeasVGdKSP1/3r6Tub/PwZa478LOTFyIoiZ0E6DkDt1YmqaRluUKSc10Vk7NcoWnZ7nCnW53/hdi+VG4sirhyqpEZlK1XIvdBASnExSeTHDlJIKrpGAyaQCevyOFtMl6O7nuvYTLrZlSMp1haVnO8LQsV1iGwxXucue9aS9nbmegyeUINDvTCE3a9QHwATbLCWAdsNbzWoMt8bChcVYgJZ5tzRobH12ageRmj4tZV1b79jVpWc5KSemOqqmZrsrpDleY+5ySt7fSTDgzwnBmhJF2si4ojcCQFILDk9CCM42OTpRMWV33cs2fTdM0UrNcoUnpjqopGU5LhtMVanRMRVQLuMrz0tkse4A5wE/AcmyJLkMiqwCkhFRG5s2bV/nHH3+sUtztNE0jOcMRfvBMWsOtR5La7jqe0uZ4cmZEapazilvTzCv+WMTQ/j1yXldEt2bYgJ4528/5YRpDruiqv3/V5Sxb/Gu+x9mwbnXOPgb17cKLsY+SkZmV8/7/pv1Ei27X0azrtdz75Es4HI5893Pf2Jdp13cofW4cSWJScs45DLj1QXbbD+Q+M4UjrTIpxyNMifubBqUfb9hq2QPvYbMMxmYJLu7nJERpW7NmTaWIiIh25XW82267rVFkZGRU9is4OPiS5196pfG+U6mNtx5Jar/nRErrgycS6g24vGPo0P49Ct3fnp3b6dyiPm/YnspZ5na7ee25scR068DV3S9h2qSJ+W57JiGJ3jeMpF3foYx+6rWc5SdOnaHXDfcWeP0XUVPgUeAP4Bg2yyRsluuxWXzlJsVnSEIvocL+wBcvXlz5559/thR1f8kZjrADp9Mabj2S3H7vydRWp1Ozajtc7nMSXbdefZm+YFnOK7JdewZefyMAiWfOEDd+HJ9NncX0BcuIffF1nhvzQL7HaxnVlm/nLWb6gmXM+G0Fp0+e5JOvppkB9u4/xHNvfsKyWf9j14rZHDtxionfzjxnH5u27WLn3v1sXDSdXl0vZcqMeAC+mDqL3l0vpZm1YcEnrLlNAc6U/sAM4Cg2yxfYLL2xWeRvUlQIU6ZM2b9169Ytq/7+99CkH+dlKmVSPWNuqJmY7qjpdGuBAO+9ZuPiSzsXui+Hw8GL4x6lz1UxZy2PnzmdPTu3M2fpWr6du4jJEz5k1/at52z/7ayf6d3tUjYums62XXvZtG0XAGNsbxP31EMEBpZay14N4A5gFnASm2U2Nsud2Cw1SusAFZlPf3l+8803VZs2bdqmVatWUaNGjYqoVq3aRdu3bw8C2LhxY3CvXr2at23btnXLli2jXn311VrZ2ymlomNjY+u2a9eudURERLv3338/54+psO0ee+yx+m3btm394IMPNli9enVIdHR0q6ioqNbNmjVrM3bs2HoAK1euDPn6669rzZo1q3pkZGTUE088UQ9gxowZVaKjo1u1adOmdbt27VrPnjPXcjwpo9b2o0lRe0+mRp5Jy6pdnDbx40ePsHr5Uq4eMgwAt+bWq+pS9c6myUmJ1KlXP99tQ0JCcy5SR1YWmRkZKE8nth/jF3Jtv57UrV0TpRT333YD035acM4+AgMCyMxy4Ha7SU1LJygwkCPHTjDtp/mMGXlrUU8DoCpwN7AY2I/N8hY2S4fi7EBUDOe75keOHNmgbdu2rSMjI6MuvfTSVhs2bAgGSElJUTExMU2bNWvWplWrVlHdunVrkb2/MWPG1G/cuHHbNm3atJ4yZUr13MfKe73OnTu3MkDXrl1bfPXVVzn9RebNm1e5devWUcU5jwyHK/jQmfSIrUeS2+8/ndb8u6nfVO3asw81a9fJWWfVsj84fvQIAwfdWOj+PnvvDfpdfT2NmjQ7a/mCuTMZPPx2zGYzlmrV6H/NIObPnnHO9oEBAaSlZ+B2u8nMchAUGMj831dQrWoVLotuX5xTK44Q4FrgS+AQNstUbJbLy+pgFUGJ29CNdujQoYAHH3zQ+vvvv2/r0KFDxvvvv18jISEhAMDpdDJ8+PCmU6ZM2duhQ4eM5ORkU3R0dGS3bt1Se/bsmQYQHBysbdy4ces///xTqXv37q1Hjx59SilV6HZms1nbtGnTVoAzZ86Yli9fviMkJERLSUlRHTt2bN2/f/+kvn37pt5+++0nEhISzF9++eUBgC1btgS99NJL9RcvXrwjKKxKpTXrN9UZeu1VzX9ZuYGg4JLVOM/5YSrd+/SjRk39nqNa9Ro8+9rb3DSgF5aqVcnIyGDitFkFf4YH9vPo3TdzYJ+dHn2uZPSdN7kA8/5DR2ncoF7OetaG9dl/6Og527dqbqV310u5pP/NtGjSiOfHjOSuMS/w5nOPEhBQ4j+tCOBx4HFslr+At4GZ0u4mznfNA9hstqP169c/CDBx4sRqDz74YKNly5btnDlzpiUxMdG8e/fuzQDHjh0zA3z33XeWOXPmVPvnn3+2VK1a1T1o0KAm2fvKfb1Wr17dvWnTpuDevXu32r9//8bbb7/91Ndff13jzjvvPAPw5Zdf1rj11ltPFha/W9PU6dSs6mdSs2qmO1zhud/76ftvGfPsizm/JyUm8u6rz/PJlB/Zs3P7eff77z9r+ffvNXw2dRYT3n39rPeOHDpI/Qb/1ZTVb9CIf/9Ze84+bh0Swx2PjKfDlcO5/qpeRNSrzd1PvMDPUz4s7LRKSzAwHBiOzbIF+Az4ClticnkF4A98toT+xx9/hLVq1SqtQ4cOGQAPPvjgqcDAQA1gw4YNlXbt2hUyfPjwppGRkVEdO3aMTE1NNf/7778h2dvffffdpwA6dOiQYTabtf379wcWZbtRo0blXLhpaWmm4cOHW1u2bBkVHR3d+vDhw0Hr1q3Lt11o9uzZln3794d07X75RZde0qH1qLtuq66UiSOHD5bo/DVN46fvv2XQTf+VhJOTEvn2f5/x7dyFzF+1EdubH/DYPbfhyMrKdx8RDRvxw6/LWfz3NhxZmcyMX1jsv4eXxz3A+t++44eJb/Db0r9oWL8O1gb1ufOx5xly7xN8P/vckn0xdAamAzuwWR7CZgm7kJ0J33a+ax5gzpw5VS6++OLIFi1atHn99dfrb926NRTg0ksvTdu9e3elW2+9tdHnn39eLSgoSANYuHBh5euuu+509erV3SaTiVGjRp3ItS/Lvn37grt27RoZGRkZdcMNNzRTSrFr166gW2+99cz69evD9u3bF5iYmGhavHhx1ezvk/y43JrpWFJGnW1HktsdTki35k3mf/+1krSUFHr0uTJn2WvPPck9D47JuVkvSHp6Gq8+8wTjX38/p4atJMJCQ/jx8zfZsPB7XnhiFM++/jHjRo9gl/0AN44cy40jx7Jhc7k9YRoFvA8cxGZ5G5ulUXkd2Nf5bAn9fDRNo0qVKs5t27ZtKWid0NDQnC8Cs9msOZ1OVZTtLBZLztPYY8aMiahRo4Zz8+bNWwIDA7nyyiubZWRknHVVaZrGqdSsGqnugPpdLu9jivvoi/PGvnvHNp566F4ALr60M0+/8la+661dtYLMzEy69uybs2zVsj+oXMVC0xatAOjVbwC2Jx7i8KEDNM5TFXfWZxEWTv9rBzN15temW67rR6OIuuy2/3ejYT9wmEYRdc8bd1JyCm9N+JoFUz/mtQ+/oudl0dw6ZCAX9buJa6/sSUhIpfNuX4imwAeADZtlAvAhtsRzqwxEhbVz586gcePGNVq5cuXWNm3aZP71118hV1xxRSuAqKiorG3btm2eN29e5d9++63K888/32DDhg3nXOO5E6KmaXTv3j1p7ty5e/M73sCBA898/vnn1WvVquXs0qVLUt26dc+pQYp96un6P82eXQtlCnjkKRvdevXNb1fM+u4brrnxJszm/x5gWb9mFevXrOKdl58jMzOTxIQzXNuzI3OWrDlr24P2vRw9dJB7h10D6Df1brdGUmICL7/7KfUiGnD44AEuiu4EwOGD+6lXv8F5P8vV/2zi+KkzXN3vcnoMuospH7yMpmmMeOx5lsw4//dXKasCjAEexmaZCbyCLfHf8gzA1/hsCb1Xr16p27dvD81uJ/v0009rOBwOBXDRRRdlhIeHu3K3jW/atCk4u6qtIMXdLiEhIaBBgwZZgYGBbNiwIXjFihU5vdorV67sSkhODd12NLnt4YR062WX9w1YtXwJO7Zuytl+4z/nPqnTrGVkToe3gpI5wKzvpnDdjcPP+hJo0MjK9i0bOXn8GKD3ZHe6nNStF3HO9vv37snp2OfIymLx/HjatW6hAQwZ2Jc5vy3h6PGTaJrGhCk/ctN1V56zj9xiX/2Q8Y+NJDQkhNS0dJRSKKVwOJxkXVgP2dyqA08DdmyWT7BZapfWjoX3O981f+bMGXNAQIDWqFEjh9vt5r333sv529i9e3egUopbbrklccKECQc1TWPPnj1B/fr1S54zZ071M2fOmNxuNxMmTKiZvc0111yTtGLFiip//fVXTu3c77//nlP7ds8995ycOnVqzW+++abmnXfeeVZ1e5bTHXDgdFrDWx8cV2f6rysCpi9YVmAyT0lO4ref53D9sLP7nPzy5785r9c//h/NWrQ6J5kDtGjdhj827MpZ95a7R3H9sFt4+d1PAegXcz0zp32Ny+Ui8cwZFsydRf9rBhX4GTscDsa98gHvPD8GgNS0DJQCk0mRkppW4HZlLAAYCvzj6SF//juSCqzEJXSjnxuNiIhwfvDBB/ZBgwY1DwoK0nr27JkUGhrqrlGjhiswMJC5c+fueuihhxp+/PHHddxut6pWrZpz+vTpe4AC22KLu9348eMPjxgxoum0adNqNG7cOPOyyy5L0jSNkymZNboNGFL7+xm3Bg26oht9BlzD/Y+OJe7Dz3kpdgwZ6Wk4HA4i27SjsBJ7fpKTEln0yzxm/LbirOWt213EvQ89zr03XUdAQADmgADe/OQrgivppWPbkw/Tq99V9LpyIKtXLmXql59hNptxulx07nY5z40Z6QLMTRs34IXH76fb9XcB0KtLNPfdOqTAeFasWU96Rgb9Lr8MgAdGDGX4A0/z+ieTuG1IDJYqlYt9joUIBkYBt2KzvAa8iy0xo7QPIs5l5HV/vmu+VatWWddee+3pyMjINtWqVXMOHDgwIXu7devWhYwfP76Bpmm4XC51ww03nO7cuXN6586d0//666+wiy++OCo8PNzVt2/fxNWrVwPQtm3bzC+//HLPfffd1zg9Pd3kcDhUmzZt0nr37r0XoHfv3mlms5l9+/YFDx48OAnA7dbUseSMOqdSsuqdO1pb/ubPmUlUu4vOW4OW1/GjR3jwjqFMX7Cs0HWvHjKMzRv+5prLo1Eobrv3AVq0blPg+m9++jW33xhDnVp6mebFJ+5n4G0P6+89+2iRYywjJvQe8kOxWd4D4rAlJhkbkncp6ljukQEBAfNbtGiREhoa6jVfnGfOnDFVq1bNDTBlypSqzz//fMSePXs2GxVPSqYz9HBCeuMMh88MAnGWtgEHs0xuR1BZHyfDqbH30AmarHicSikHCt+gcPvQS+7TsCXKqGalxBuve2+75kGvnj+dmlX9eHJmhMPlLvPrp7Q1DEpNqeY8Hl74mucqg2u5OE4ALwKfYUsstWpAX+bTbeivv/567VmzZlV3u90qPDzc9fXXX+fb3lXWHC53wOGE9IjEdEfNwtcWZaAx8C3wCDbLGGyJKwrbQPgmb7nmsyVnOMKPJGY09NWbeB9XC/gQvY39KWyJ5z6PV8H4dAndaJqmcSI5s9aJ5MyIcydD8T0+XELPaxrwELbEAnsei8LJdV8wp8ttPpSQ3jAx3eHzA6L4cAk9r6XAndgS9xgdiFF8tlOc0VIznaE7jqVEHU3KaOQPydzPDAc2Y7Nca3Qgwv+cTs2qtv1Yclt/SOZ+5nJgAzbLSKMDMYok9GLSNI0jCen19pxIjcx0ukIK30IYpA4wG5tlMjZLkYfgFaIgDpc7YO/J1KYHz6Q1dbk1n26u9GPhwGfYLPOwWc7/rK0fkoReDBkOV/DO4ymRJ1Iy62toJR/FQZSn24FN2Cznf+5OiPNISMuy7DiW3CY5w1Gt8LWFF4hBv+5vMDqQ8iQJvYhOpmTW2HU8JSrD4ZLRynxPA2ABNssEGW1OFIemaRw8k9Zg/+m05lIq9zk1gB+wWb7BZqlqdDDloeR/oDZLmc2Hji3Ra+ZGdrk104HTaY2TMhzVC19beLn7gB7YLIOwJZbbOJZ+payuey+65rNlOd2B+06lNs07VKvwObcAPbFZbsWWuMToYMqST5fQs2deioyMjFq9enVI3t/feOON8w+EXIgMhyto1/HkyNzJ/PjRI9x/yxCu7dmRG/p1Y8zI2zl9qtB5Gc6RmZHBo3ffwjWXX8qNV3bnvpsHsX/vf50zv/jwba7t2ZGLG1Vn8fz48+7ryKEDPHTnTVzbsyOD+lzG1K/+m/N40oQPGNy3C4P6XMaj99xKUmJivvuY9d03tLn82sAOVw7n743/Ta84/s1PmTrrl2KfnxeLAtZgs1xndCCi9Gzfvj0o7/UeERHRbuXKlSXq55KU7gjfeTw5qrjJfOfWzdw5ZCDX9erE4L5dGP/4g2Skp+e8f1HDagy5oitD+/dgaP8e/P3XygL3tfbPFdwc04dBnut3w7rVOe9NfP8tYrp1IKZbBz58/aV8t3c4HDx69y3ceGV3Hrv3NpxOJ6B/99w5ZCBJCQnFOTVf1wD4DZvlbqMDKUs+ndAnTpxYa9y4cUe2bdu2pVOnTum5fz9+/HjAl19+WeKEnpThCN99IqV1ptN91heC2Wxm5CNPMGfJGn78bQUNGjXm3ZfHl+gYQ265gzlL1vDDr8vpdeUAXhj7cM57nbv34pOvfyC6c9fz7kPTNB679zauGXITc5asYdbiVfS/+noA/lz6O7OnT2XK7F+ZtXgVUe0u5qM38r/4J37wJn/98p3j/Ref4NUPvgRg8/bd/Lt1JzcPGlCi8/NiVYBZ2CwvYrNIXwg/sHPnzuALud5zO5qYUXffqdRWLrcWkJ0EiyqoUiWeevkNZv+xmh9+XU56Whpfffr+Wet8NeOXnOGdLyng+j5+9AjPjRnFy+99yqxFf/L9L0to0lyfo2HdqhX8MmcGP/y2nFmLV7FyyWKWLjp3EqSVSxZRpWo1fvh1OZWrWFjxx0IAJr7/JjeNuJcqVasW69z8QCDwBTbLG9gsPp37CuKzJzVixIiGa9euDX/xxRcjOnToEJn394ceeqiR3W6vFBkZGdWnT5/moN+xP/zww/U7dOgQWbdu3fZvvPFGrffff7/GxRdfHBkREdFu4sSJ1QBOJGfWHD785lZDr+oVcEO/bjx4x9Cc8dFr1KrNJZ265MTRrsOlHD64v9jxB1eqRI8+V+ZMCNG+Q8ez9tOuQzQNGlsL3c9fy5cQFBTElZ4knh0jwI4tm+jQ8TLCwvWhV3v06ce8mdPz3Y/ZZCYjM5PUtAyCggJxu908Znub9198otjn5iMU8Bx6G5sMCuIjZsyYUSUqKqp1y5Ytozp27Nhq3bp1lQDyu94Bpk+fXi37+h47dmzOnMD79+8PGDhwYNN27dq1btmyZdTDDz9c361pyn4ytUl025YR77z6PDdf3ZfnHhtVrPgaN2lGy9ZtAf3mv+1FHTh8oPjfD9O//h8DrrshZ6KloOBgqnge1lgwdxZXDx5KaGgYQcHBXD/sFn7JZ47zgIBAMtL18dcz0tMIDAxix9ZN7N2987zjuVcATwIz/PG699mEPmnSpANt27ZNi4uLO/DPP/9sy/v7hx9+uN9qtWZs27Zty+LFi3dlb5eammr+559/ti1cuHD7+PHjGx46dCho/fr126ZOnbp73LhxjQ6cTmt4JDG98ZO215j28+/8+NsKOnTqwqfvxp0Tg8vl4rtJn9PryoEXfD7ffjmhRPvZvXM71arXZOzouxh61eU8es+tHNxnB6B1+4tZtfwPTh4/hqZpxM/6gdSUZBLPnDlnP48+8wL9h40MjPv4K8Y/di+fTJ5OTN/uNG5Q/0JPzdsNAZZhs5w7g43wKocOHQq4++67m06aNMm+Y8eOLXfdddeJoUOHNnO73RR0vSckJJjXr1+/be3atVs//fTTOnv37g0EuPnmm5s88MADxzdu3Lh18+bNW/7555+wDyZOzmleSzxzhm/nLuS1Dz8vcbxpaanM/G7KOdf1yOHXceOV3XnzhWdIS0vNd9vdO7eTmZHByOHXM7R/D157bmzOukcOH6R+RK45zhs24uihc6dh7nJ5b8LCK3Pjld0Jr1KFTt0u560Xn2XcC6+V+Jz8yPXo171ffcH5bEIvqZtvvvk06JMvBAUFuYcPH34GoGu37hlJSUkB+46cqA3wy08/Mnxgbwb37cKsaVPYvnnTWfvRNI1Xnnmcypaq3HL3/RcU0xcfvs0B+14eji1+1b3L6WT1ymWMfORJps9fSteefXhy1J0AdOragztGPshDI27i1mv7Ua2GPg6GOeDccXCuGHAN6377wbFkxheEhYQwe8ESHrxzGE+/9iHD7h/HM3EfXdA5erlLgFXYLC2NDkQUbMmSJWEtW7ZM79SpUzrAqFGjTh8/fjwwO0nn57bbbjsNUK9ePWeDBg2yduzYEZyUlGRatWpVlccff7xRZGRkVLt27drsO3Cw8q5du3JKbNfeOPyC5hd3ZGUxdvRddLm8N30HXJ2zfP6qf/nu5z+Y/NMCzpw+WWBzncvpZN3qlbz16SS+nbeYpMQEPn373ELF+ZhMJp5/431++HU54+Pe47tJn9O7/0CcThexD97DmJG389eKpSU+Rz9wCbAam6WD0YGUlgqX0ENCQnLmMzebzVpoaKjb5dZM9tNpLZRSuFxO/l79J1O//IyPvp7OzEV/8sT4l8nKPHvky7jx4zh2+BBvfvIlJlP+H+Pt11/J0P49uOWaKwqMZ/KED1n0yzw+/voHQkKKXwNUL6IBkW3a0bxVa0CfXWnrpg05U6MOu+Mepv38O9/OXUjHLt2pU68+4ZWrnG+XPPL8m7zz/Bj+WLmWw8dO8v2E1zl45Di/rzh3+kY/0gBYgs1S8FRUwufkvd4dDkfOcNd///331vUbN++e9ftq07zl/6iRj/zXvBQaln9fuN07tuV0aHv1mfyboxwOB0+Ovotatesy7oWzk3A9T8k6NDSMYbffzd+r/8x3H3UjGtCjz5VUqVqVwMBABlw3hH//0a+/evUbcPjQf8OsHj6wn7oR559R9PDB/Sxb/BvDbr+Hj996hSG3jOCldz4mbvy4825XAUSgl9T9YlRJv03oVatWdSUnJxc6JKvLrZn3nEhpmZ71X2/WpMQEwsLDqVqtOo6sLH78dtJZ28SNH8cB+x7e/fwbAoMKHvr8659+ZfqCZXw7d2H+70/8mF/mzOCzqbNy2seKq1vvKzh29DDHjhwGYPni32jSohWBgXqh5cSxowCkp6fx8VuvMWLUI+fd3/ezF9C6eRPatW5Baro+FzIYPh9yeakL/OFPd+z+pFevXqk7duwIWbNmTSWAiRMnVqtTp46jSZMmjqJe7wAWi8XdqVOnpKeeea7R7hMpkQ6XO+j40SMcO3Ko0G2btYzM6dD29CtvnfO+0+lk3AN3Y6lajfGvv3dWKT8pIYF0T5u22+1mwdxZRLZtn+9xBl5/A2tWLiMrMxOA5b8vpJWnbb7f1dczb+Z00tJSycrM5Kfvv+WqawefN+43nn+KJ59/BZPJRHpaGgqFMpnIKKDKv4IJQ29T9/lBaC7gOXTve240t86dO6e1bNkyvUWLFm0aNmyYmbtdLRd1JNnRpFbls4dw7dbrCuJn/sB1PTtiqVady7r35PjRIwD8s2YV076aSJPmLbn1Wr3kXb9hY9774ptixXfsyCHefulZGjSycs+wawAIDArOSf4T33+LH775ijOnT7Jr+1Zee24s389fQvUaNfn4rVepVacuQ2+7i9DQMJ599R0eGjEMTdMIr1yFN3LNsX7/LYNxaxrOrCxihgxj+Ih7C4zpdEIiH0+ezq9TPwHgql5d+WLqLNpfMZQmDSO4qvf5e9z7iZrAYmyWq7Al/mV0MF7HwOu+fv36zi+++GLPHXfc0cTpdCqLxeL6/vvvd5tMpqJe7zm+/va7I48+/kTL63pfppRShISG8VzcO9Spd2FdKRbMncmiX+bSsnUbhl11OQAXX9qZp195i727d/BS7GMopXC6XLRu255xtv9K8A/cfiOjH3+aNhd14OJLO9PrygEMG9ATk8lEs5aRPPvauwB07NKd/tcM4oZ+3QDof80gel5xVYEx/TzrB1pGtc2pxbtr9KO8OO4RHA4H9z7y5AWdrx8JAKZhs4At8UejgympCjvbmsPlDthzIrWljMf+Hz+aba00JAMx2BKXGR2IUfzxugdIy3JW2ntSfyzN6Fi8gR/NtlYanMBNvjoVq99WuZ+Pw+UO2H0ipZUkc3EelYH52Cx9jA5ElJ4MhyvYfjK1pSRzUYAA4DtslqsLXdMLVbiE7nJrpr0nU5tnOd2VjI5FeL1Q4CdslouNDkRcuAyHK2jPidRWTrdWYK94IdCT+g/YLD2NDqS4KlRC1zQN+6nUpjLBiiiGykA8NkvDQtf0P25A0zTfn1kwy+kO3HsytZXT7ZZkXopyWmyL0HTrYyoBc8p0zpIyUKGqnQ6cTm+cmumUubFFcdUHfsZm6Y6tgMHw/dNht9udePz48Tq1a9c+rZTyyW9tt1vjQEJ60yynu8z7h/iiLOU0ZbiK/0+raXAi1YXKTCIwo/jzWfiAKujNbt18ZTKnCpPQjySk10tIz6ppdBzCZ7VFf7RlALZEh9HBlIfo6OiUdevW3Z+QkDAhKSnJgj5crs9JzHDXynRp0l+mAFnmDHO4O7lE26rMJBqsfxuzy2/6TOZVE73ZrRO2xBSjgylMiRN6u8ntyqwqYuMdG0v10ZiTKZk1TqRk+tUQf8IQfYEvgDuMDqS8REdHr1q3bl13t9tdHx9sonthyekHT6W7HjA6Dm82MujXjcPUr5cWe0NNIzDjpD8n82ytga+AG40OpDB+WULfvn170OzZsy1jx449kZzhCD+SkNF4QJf2vPvFt0S2aVeusSxZOJ93Xh6P2+WieWQUL73zcb4jtbndbl5/Ppbli39DKcUt99zP8BEjC30vt6SEBB4beRsJp09xSacuPPPq2wCcPnWSJ+8fwYSps3IGnBEldjs2ix1b4vNGB1JeoqOjUwCfqHLMzRobPxQYbXQc3i4t4Hh6pQC/eOSsLN2AzfIktsQ3jQ7kfHzujrsosqdSzHK6Aw6cTm+qUTqdeoo7lWJaagq2Jx/mvS++Ye6yddSqU5eJ7+f/9xA/czp7dm5nztK1fDt3EZMnfMiu7VsLfe+sffw0nY5dezBj4Ur27t7Jzm1bAHjrxWd45KnnJZmXnuewWWKMDkIUzBobHw1MwkebCYRXes3bH2P16YRe2FSK7du3bzf6jmE5WWzRL3O57borGdD1Iia+/9+wjSePH+PJUXdy89V9GXJFVz564+Wc9wZ0ac+7JZxKcfnvC4ls054mzfU5P4bdfje/zJ6Z77oL5s5k8PDbMZvNWKpVo/81g5jvmRLxfO/llj1dotvtxpGVSWBQECt+X0gVS1XaX9KxWLGL81LAJJmhzTtZY+MtwAxA2s1FaTKjP6PutU+8+GxCL3QqxabNXNN/XW764KtpOdskJyUyZfavTJ23mMmffZAz/vmzj41m2O33MHXeIr6fv5TN/67n13k/5WxX0qkUjxw6SL0G/02aUL9hI04eP5pvSf/IoYPUb5BrSsQGjThy+GCh7+UWM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4sVtyiSmsC32Cw+ew35sQlAY6ODEH6pFvAjNkuw0YHkx2fb0PObSnHs2LGN9u7dG5jpIhRlOufcBl6vj71frXoNIhpZOXRgH5UtFlavWMLpk8dz1ktLTcW++7+hoC90KsXyEhoaxtufTc75/U3b09w5+hH22/fyv4/eAeDehx+nVVT59iPwYz2B54AXjA5E6Kyx8bcDNxkdh/BrnYAPgPuMDiQvn03oBXG6tYCkLOrl915Q8H+Dw5lNZlwuV86ACFNm/0ZwpfwHjzvfVIpPPaRPdpI9AUNu9SIasGrZHzm/Hz6wn5q16xIQcO7HXi+iAYcPHuCi6E76ugf3U69+g0LfK8jGf9Zx+tQJel5xFSMGD+CV9z9D0zTGjxnNlz/Gn3dbUSzPYbP8ji2xQk8s7Q2ssfHNgI+MjkNUCCOxWRZhS5xudCC5+Wx1YUFTKQZYatcPDa9sTk5OKtJ+QsPC6di1B19+8l7OstKaSrFbr75s3bSBvbv0DsLff/2/Aqc57BdzPTOnfY3L5SLxzBkWzJ1F/2sGFfpefhwOB++9ZuOJ8a8A+tSpSulToKbJdImlzYxe9V7D6EAqMmtsfAAwFX1kPyHKwwfYLNWMDiK3EpfQS/tZ8eLKbyrFL6dMO5Ga5W7YonUbmrWMZHDfLjRoZCV3O3p+Xv1gIm+9+AyD+3ahNKdSDAuvjO2N93n0nltxOZ00b9Wal979JOf9of178NHk6dSuW4+rhwxj84a/uebyaBSK2+59gBat2wCc9738TJ7wAdcMuYkatWoDMPrxp3jgjmEAjHlGaofLQANgIjDE6EAqsPHoVaFClJc6wJvAPUYHks1vpk91utzm7ceS28osSiUn06desGuwJc4zOoiKxhob3xrYAMhzmSUwLmDaslEBc3sYHYeP0oDe2BKXGB0I+HCVe16HEtIbSDIXBvsAm0UelSp/nyDJXBhDAROxWbxi9k6/SOiJ6Y7KiekOGaddGK0JIM8IliNrbPytQC+j4xAVWku85LovakJ3gz79qLdxuzV1OCFdnjn1IX485SLAE9gskUYHURFYY+OrAuf2RhWi/I3FZmlrdBBFTegJmqY5s7KyvG76waNJGfUcLrdXPuQv8pflBtxOzI6SzfDk5YKAj40OooJ4Bb1jkhBGCwQ+N3qgqaK2OZ90u91Ljh07FhMYGOgwmUxeUbRyuNzmk4npdbyx5sAXZWhuZSrjz9KtwYnEDEKP/01AVtEeLfRBfbBZbsaWONXoQPyVNTa+A3C/0XEIkctlwAjgS6MCKFIvd4B169ZFmEymWSaTqRZeMuFBcqa7erpTk+dOS0l90xmnSXOWccdCDVP6aZqsfo6gjJNleyhjHQGaYUtMNzoQf2SNjf8ZGGB0HP5AermXqr1AK2yJDiMOXuQv7+jo6EOeeZEbFWe7shK/M7XRgt1p8ohQKfol+JljQWSW7YQjbhdB6ccxacWbuc4H1QNGAe8YHYi/scbGd0WSufBOTYA7gC+MOHixEnN0dHQWsKvQFcvBkB/iX0AeVSlVlbLsjiDl94m2PI3FZvlUSuml7uXCVxHCME9js0w2opTuk4+tWWPjLwVuNDoOIQpRB72ULkqJNTa+D9Db6DiEOI/sUnq588mEDryKl7TjC1GIsTLYTKl6yegAhCiCZ7BZyr0G2ecSujU2/mKgn9FxCFFEUkovJdbY+KuArkbHIUQRWNF7vJcrn0vowBijAxCimKSUXjrGGh2AEMVQ7qV0n0ro1tj4esBNRschRDHVAUYaHYQvs8bGX4S0nQvf0phyLqX7VEIHHkR6tgvfNNroAHzco0YHIEQJPFyeB/OZhG6NjQ8B7jM6DiFKqCU2Sy+jg/BF1tj4GsBwo+MQogTaYrOUW78Pn0no6I8B1DA6CCEugFS7l8ydgMzXIHxVuRVEfSmhP2h0AEJcoMHYLHJTWgzW2HiF1MwJ3zYUm6VaeRzIJxK6ZyCZNkbHIcQFCsagASd82OVAc6ODEOICVAJuLo8D+URCR74Ehf+41+gAfIw81SL8wW3lcRCvT+jW2PhA5KIW/iMSm0VmtioCa2x8ADDE6DiEKAWdsVlalvVBvD6ho48KV9PoIIQoRbcbHYCP6APUMjoIIUrJrWV9AF9I6MOMDkCIUnY1NovMRVA4ufaFP7mlrA/g1QndGhsfDFxvdBxClLK6QEejg/Bm1tj4IGCQ0XEIUYqaYrO0LssDeHVCB/oCVYwOQogycI3RAXi5fkC5POojRDkq04nFvD2hX2l0AEKUkWuNDsDLXWV0AEKUgQqd0GWaVOGv2mOzNDI6CC/W1+gAhCgDvcpyBjavTejW2PgIIMroOIQoQ1Ltng9rbHx9oEzbGoUwSDhwWVnt3GsTOlI6F/5Pqt3z18foAIQoQ2WW2yShC2Gcy8uy+s2HSXW78GcVK6F7JmS4wug4hChjlYAORgfhhSShC3/WEZulalns2CsTOnr7WW2jgxCiHHQxOgBvYo2NbwI0NDoOIcqQGehdFjv21oQebXQAQpSTrkYH4GUuMToAIcpB57LYaUBZ7LQUXGx0AEKUBZemThyl+t417lbpC13RlVe620T+bXRQ3uUiowMQohyUyRNcktCFKCOaRsoZwnf/626asNh9SfDv7osbHdBq1yfPhCPW2Pjq9riY0waF6W0koYuKQBK6EN5K03CmEbxrh9bwxBJ3e7XQdUndzZq1qYapKAnqEmBhWcfoIyShi4qgCTZLCLbE9NLcqdcldGtsfCOgutFxCHE+WZp53z6t7qEV7jbOhe7o6mvcrZpnEhQJRJZgd5LQAWtsfFWgsdFxCFEOTOjfFf+U5k69LqEjj/EIL+PW273ta9wt0xa6osOXuds1TaByY0ov+bQopf34Oimdi4okigqQ0NsbHYCouDSN1ATCd+nt3h2Cf3df3HC/VieCPO3epaxJGe7bl8hwr6IiKfV2dG9M6FajAxAVQ552bxa7OtTdpDVp6i5au3dpalrOx/NW8vy5qEjalPYOvTGhNzA6AOGfsjTz/v1anYO52r2bZRBc0nbv0tTQGhsfYI+LcRoch9Hk2hcVSYUooctdurhgbk2dOEY1+xp3q7SFrkvCl7rbN02gciPAG6csDUD/u99rdCAGk2tfVCRNsVlM2BLdpbVDb0zocpcuiiWfdu8G+7U6DSjbdu/S1hRJ6HLti4rEDFQBEkprh16V0K2x8VWAykbHIbyXpuFMJ3j3Dq3B8SXu9mqR65I6BrV7lzbpGCcJXVQ8VfHXhI5UuYk8HJp5/z6t9sE/3W0cv7mjq692RzbPILgV0Mro2EpZHaMDMJI1Nr4GEGJ0HEKUs6qluTNvS+gRRgcgjOPW1MljVNu7zt0ybaHrkrAl7vZNz1DFW9u9S1sVowMwWE2jAxDCAFVLc2feltBrGB2AKB96u3fY7o3upmcWuzsE/e6+uNE+rW4EFfeLvaI3NYUaHYAQBqhamjvztoQeZnQAovTp7d5Be3ZqDY7p7d7RdTbq7d4yiNB/KnoJXarbRUVUtTR35m0JPdzoAMSFc2jmA/u12gf/dEdl6e3erZulE9wSaGl0bF6soid0KaGLiqhqae7M2xK6lNB9jFtTp45Rdc86/XnvsKXudk1OY2mIdHAsroqe0KWELiqiqqW5M29L6EFGByAKpmmkJRK2a6O7yZnf3R2CFrsvbmjX6jVA+j6Uhoqe0KWELiqiqqW5M29L6IFGByB0moYrg6DdO7WIY0vd7Vnoiq7zr9a0mbR7l5lKRgdgMCmhi4rIXJo7k4Qucvzlbr1vv1Zr30J3dLVV7qjm0u5drhxGByAqpnedN3Sa5Ox/PExlZISRkRmm0h3hpDsqk+4IV+nOcNJdlVW6O5x0d7hKJ4x0wsgkVGWYQsg0VSLLVEk5AoJwBAbiDAjEFWTGFWxGC1K4QxSEKEWw0efppUr1uve2hC4MdJvjqZ5Gx1CBZRkdgMHSjQ6gosoiMPgY1WujeRZo5129RBRudwhZ6SFkZoSpjIxQMjPDSM8KV+mOcDKywlWaqzLpznCV7gonXatMuham0rUwMlSYylAhZKoQssyVVFZAMI4A/cbBGRSAK8iMO8iEVkmhhaDfPJhK/wzKTKle996W0NOMDkAIg0hCF35Lw2RKo1JYGpXCTmmW3G+UuiAcWSFkpoeSmR6qMrLC9VqHrHAyHOGkOcJVurOyXtvgrkyaO0xlaOFkqDDSCVH6jUMImeZg5TAH4QwMxBkYkFPr4A42oVVCv3EojT5ffl1CTzU6ACEMIgldiFKQRWBQFoFBiYRbyrLWwYTbFUJmegiZ6WEqIyuMjIwwMjy1DunZNw6ucJXmDifDFU46epNFhhaqMk2hZJgStPCT3UoxJknoQngHSehC+BA3JnMqIeGphISfzH3DULybh1n2UozJ29oaUowOQAiDVPSELs1toiJKLs2deVtClxK6qKgyjQ7AYFJCFxWRJHQh/NApowMw2EmjAxDCAKdLc2feltBL9W5FCB9y3OgAjGSPizmB1FKIiudAae7M2xL6QaMDEMIgFTqhexwyOgAhypnfJ3SX0UEIYYAjRgfgBSShi4ok0R4XU6odwb0qodvjYpzIF5uomEr1Tt1HSQ2dqEhK/Zr3qoTusc/oAIQwgCR0SeiiYin1v3dJ6EIYzwEcNToILyA3NaIikRK6EH5olz0uxm10EF5gh9EBCFGOdpb2Dr0xoduNDkCIcrbR6AC8xCajAxCiHK0v7R16Y0LfbHQAQpSzf40OwBvY42IOAWeMjkOIcrKhtHfojQl9PSDVj6IikYT+H6mtEBXBEXtcTKmPPeF1Cd0eF5MKbDM6DiHKkSSx//xtdABClIP1ZbFTr0voHuuMDkCIcpJkj4uxGx2EF5GELiqC9WWxU29N6GuNDkCIciKl87PJtS8qglJvPwfvTehSQhcVxRqjA/Ay25Bx7YX/W1YWO/XWhL4e6RgnKobFRgfgTexxMRrymQj/ts0eF3O4LHbslQnd0zFuvdFxCFHGXMASo4PwQouMDkCIMlRmf99emdA9FhodgBBlbK09LibJ6CC8kJTQhT8rs9wmCV0I40jiyoc9LmYPMmKk8E8u4I+y2rk3J/RlQIbRQQhRhiShF0yq3YU/+tseF5NQVjv32oRuj4vJAH43Og4hykgmsMLoILzYAqMDEKIM/FaWO/fahO4xz+gAhCgjS+1xMelGB+HFfgbSjA5CiFL2Q1nu3NsTerzRAQhRRr43OgBv5nnSRW7ohT/Zbo+LWV+WB/DqhG6Pi9mHDAUp/E8WMNPoIHyA3PQIf1Lmf89endA9phgdgBCl7Fd7XIxME1q4n4Fko4MQopR8V9YH8IWEPhVwGh2EEKVISp5F4OkYO9voOIQoBRvtcTFby/ogXp/QPXPGSo9X4S/SkSRVHHLzI/xBmZfOwQcSusfXRgcgRCn52R4XI9XIRTcfKJNxr4UoJy7gm/I4kK8k9DlAotFBCFEKpE9IMdjjYpzABKPjEOICzLbHxewvjwP5REL3tKWV6fN7QpSDA8ijWCUxEf3JACF80YfldSCfSOgecpcufN0Ee1yMy+ggfI09LuYYckMvfNNGe1zMH+V1MJ9J6Pa4mHWU4aD2QpSxTOALo4PwYeVWyhGiFJXr363PJHSPN40OQIgSmup5YkOUgD0u5i9gjdFxCFEMZ4Bvy/OAvpbQfwE2Gx2EECXwjtEB+AH5DIUvmWiPiynX+Qh8KqHb42I04C2j4xCimH61x8VsMjoIPzAduaEXviEZA3KVTyV0j6nIc6nCt7xkdAD+wB4X4waeNzoOIYrgfXtczMnyPqjPJXR7XEwW8J7RcQhRRL/Y42KWGx2EH5kJ/GN0EEKcxxkMqkn2uYTu8TFSShfeTwOeNjoIf+JpdhtvdBxCnMfb9rgYQwZC88mE7uloIBe18HY/lPX8xxWRPS5mHrDK6DiEyMcJ4H2jDu6TCd3jK2Cj0UEIUQAn8JzRQfgxqfkQ3ug1e1xMilEH99mE7ukgM9boOIQowGR7XMwOo4PwV/a4mN/Re70L4S02Ax8ZGYDPJnQAe1zMfOA3o+MQIo804AWjg6gAHkN/PEgIbzDKHhfjMDIAn07oHk8CbqODECIXmz0u5oDRQfg7e1zMYeQxNuEdJtvjYpYZHYTPJ3R7XMwG4HOj4xDCYwPwrtFBVCAfoH/mQhjlDHrB0nA+n9A9xgFHjA5CVHhu4F7PHN6iHHhmrxuN/oigEEZ4yh4Xc8LoIMBPErrnmb8HjY5DVHgf2+NiZAKRcmaPi1mJPme6EOXtT7yohtgvEjqAPS5mJvCj0XGICusg8IzRQVRgY4DtRgchKpRU4HbPE1dewW8SusdoQKaoFEZ40B4XIz2uDeIZbOpmwNBexqJCGWOPi9lldBC5+VVC97Rj3G90HKLCmWiPi5ltdBAVnT0u5m/gWaPjEBXCHHtcjNc18/hVQgewx8XMQh9FTojysBF4xOggRI43gcVGByH82kHgTqODyI/fJXSPB4B/jQ5C+L1UYJg9LibD6ECEzjN5y+3AaaNjEX7JBdxsj4vxyr8vv0zo9riYdGAIYMiMN6LCeNAeF7PV6CDE2exxMYfQ29NdRsci/M7T3jCATEH8MqEDeDor3I48nyrKxhR7XMwko4MQ+bPHxSwAHjc6DuFXJtvjYt4wOojz8duEDmCPi5kDePU/gPBJ29CfqBBezB4X8z5e9Iyw8GkrgJFGB1EYv07oHs8AvxsdhPAbp4CrjZwiURTLA8ASo4MQPs0ODLLHxWQZHUhhlKb5f420NTa+FrASaG50LMKnZQFXeHMbmjiXNTa+BrAGaGJ0LMLnJAPd7HExG40OpCgqQgk9+/n0/sBRo2MRPu1eSea+xx4Xcwq4Gun5LorHCQz3lWQOFSShA9jjYvYAA4Ako2MRPulZe1zM10YHIUrGHhezBf36l6YSURQu4FZ7XEy80YEUR4VJ6AD2uJj1wPVAprGRCB/zqT0u5hWjgxAXxh4Xsxq4FpBxA8T5aMBd9riY740OpLgqVEIHsMfF/A7chj7VpRCFmYbM5Oc3PNf/YOSmXhTsfl+tjatwCR3AHhfzA/IlLQr3DXCbN82mJC6cPS7mF/SBp7y+17Iod4944xjtRVUhEzqAPS7mU+BepKQu8jcZuMMeFyOjjfkhT9voECDd6FiEV9CAJ+xxMR8YHciFqBCPrZ2PNTb+JmAKEGB0LMJrfIneo11u9vycNTa+KzAXqG50LMIwDuBue1zMFKMDuVAVPqEDWGPjrwGmA5WMjkUY7nPgPs8kH6ICsMbGtwbmA42MjkWUuxTgBs9QwT5PErqHNTa+DzAHCDM6FmGY94AxkswrHmtsfAR6Um9rdCyi3BwDYuxxMeuMDqS0SELPxRob3wWYh1S/VTRO4CF7XMwEowMRxrHGxluA2UBPo2MRZW4ncJVnfBK/UWE7xeXHHhfzJ9AZ2G50LKLcJKLfpUsyr+DscTGJ6CNKfmZ0LKJM/QZ09bdkDlJCz5c1Nr4qept6P4NDEWVrD/pEKzKnuTiLNTb+NmACEGp0LKLUaMDLgM1fO7xKQi+ANTbeDMQBTxgdiygTK4Dr7XExJ40ORHgna2x8O2AG0MLoWMQFO40+lOsvRgdSliShF8IaGz8U/TEm6SznP94HxtnjYmS0MHFe1tj4KsAkYJDBoYiSWwPcaI+L2Wd0IGVNEnoRWGPjo4CpwEVGxyIuyHHgTntczM9GByJ8izU2/iH0GjupgvcdbvSb91hfmMu8NEhCLyJrbHwQ8AIwFulM6It+RR/5TabQFSVijY1vBvwP6QXvC7ajT7Cy0uhAypMk9GKyxsZ3A74GmhodiyiSLOBp4B15vlxcKGtsvAJGA68jzXDeyAW8A4y3x8VUuFn1JKGXgDU2Phx4F7jH6FjEef2LXsX+t9GBCP9ijY1vAnwB9DE6FpFjM3qpfLXRgRhFEvoFsMbGXw18BDQ2OhZxljT05pF37HExTqODEf7JU1q/BXgVaGhwOBVZEvAa8G5F7+gqCf0CWWPjQ4AngVggxOBwBMSjj/q21+hARMXg+Q54HBgHhBscTkXiAiYCz9vjYk4YHYw3kIReSqyx8Y2AN4GhRsdSQe0CHvVMiylEubPGxtdFH7jkTqTjbFn7GXjSHhezxehAvIkk9FJmjY3vif6ohDziVj5OoHdQ+qiiV7cJ72CNjW+PntivBpTB4fib1cCz9riY34wOxBtJQi8DnlHmbkXvXd3S4HD81Wn0GpEP7XExqUYHI0Re1tj4tujV8DcBAQaH4+t+BeLscTG/Gx2IN5OEXoassfEm9Cr4p4F2BofjLxLQH0t5zx4Xk2xwLEIUyhob3xh9COm7kX42xeFCH3o3zh4X84/RwfgCSejlwNMb9jrgGeBSg8PxVSeAT9F7siYYHIsQxWaNja+F/gz7XUAjg8PxZonAN+g37buMDsaXSEIvZ9bY+P7Aw8BVSMeZovgT+AT4QdrIhT/w1Nz1RU/sg4BgYyPyGiuAz9Gv9TSjg/FFktANYo2NtwIj0S/qOsZG43XS0cfO/1iq2oQ/s8bGV0N/lv0uoIPB4RhhLzAFmCKl8QsnCd1g1tj4AGAAMAK4Bgg0NCDjaOil8e/RL+4zBscjRLmyxsY3Rf8OuBbogX9+F2jAOmAuMFdu2EuXJHQvYo2Nr4H+qMu1wJX4/yAVbvRqth+BGfa4mEMGxyOEV7DGxlvQm+WuRb/hr2ZsRBckDViInsTj7XExRwyOx29JQvdS1tj4YPR2tmvR79rrGxtRqclAT+IzgZky+5kQ5+dpc2+LXmrvDnTBu4eb3gesQq9x+xNYX1GmLzWaJHQf4OklH41+QXdFv6AjDA2q6DKBtcASYBGwsiLOgiREabLGxtcGOgGXoI910RJoAVQtxzDS0Edo3OF5rQP+lBK4cSSh+yhrbHxD/kvuXYA2GD+dYxqwFdiCPtPZSmCd9E4Xonx4Ho3LTu6NgRoFvMIoeBS7dOAU+uBNuX+eAvYDO9ET+GGZkti7SEL3I9bY+ProF3L2qzn/XdhVSuEQbvSL+rjntR89eW/2/LTLBS6EEMaQhF5BWGPjg4CanldV9ARfBf1OXUNP1q5cr+zfE9CT9zHgpD0uxlXOoQshhCgCSehCCCGEH5CRyoQQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0EWhlFJWpZSmlBphdCxCVCRKqY5KqZVKqVTPNXixUuoqpdR6pVSGZ1lVo+MU3iHA6ACEEEKcSykVCPwAZACPAWnAAWApsBl4AMgEUpVSTwNbNE37yaBYawB3AdcArYFAYBvwrqZp3xsRU0UkCV0IIbxTM6AxcK+maV8AKKWuAioDz2matjB7RU9C/xH4yYA4AboArwA/Ay8DTmAI8J1SKkrTtOcNiqtCkYQuhBDeqbbnZ0Ihy7zBZqCFpmn7shcopT4BFgLjlFJvaJqWalh0FYS0oXs5pVQvpdRaT3vZbqXUfUopm1JKy7XOnUqpxUqp40qpTKXUFqXUqHz2dalSaoFS6qRSKl0ptVcp9WWedaoqpSYppRKVUglKqclA1QJii1RK/aiUOu2Jb61S6to8x9OUUnfks21/z3tXX8jnI4Q/UkpNApZ4fv3Bc638AUz2LFvjWTbJ810QBtzhWaZ5tif7u0Ip1VIp9Y3nuj6hlHpJ6RoqpWYrpZKUUkeVUo/niSNIKfWiUmqdZ9tUpdQypVTv3OtpmrY3dzL3LNPQawyCgaal+gGJfEkJ3YsppToA84EjwPOAGRgPnMiz6ij0O+Q56FVd1wCfKKVMmqZ97NlXbeBXz7Zx6Hf4VmBwruMpYDbQHZgAbAUG8d+XSO7Y2gArgEOe/aUCQ4GflFJDNE2bpWnaWqXUHs/yvPsYBpwBFhTzYxGiIvgM/dp6GvgAWAMcA7YDI9G/B/YCu9FLwV8Aq4GJnu1359nf9+jXcywQAzwLnAbuAxYD44BbgLeUUms0TVvq2a4KcA8wDfgcvbr/bmCBUqqTpmnrCzmPup6fJ4t+6qLENE2Tl5e+0BN0KlA/17LmgAPPDbBnWUg+284Hduf6/XpAAy49z/Gu86zzZK5lZvROOBowItfyhcC/QHCuZQo9ye/ItexVIAuolmtZEHoy/5/Rn7G85OWtL6CX57q7IdeyEfldx0AKMCmffdg863+Wa5kZvXOdGxiXa3lV9I53k/KsG5Rnn1WBo4Vdv0B19JuQpUZ/lhXlJVXuXkopZQauAH7SNO1w9nJN03YBv+ReV9O09FzbWZRSNdGr65oqpSyetxI8P6/29J7Nz0D0Ev6nufbtAj7ME1t1oA8wHaislKrpOWYN9BJ3C6VUhGf179F7vA7OtYsr0b8UpPerEOXji+z/8VzTa9FvwP+Xa3kCeg1A09zrapqWBaCUMnmu/QDP9pcUdDCllAn4Fv06f6gUz0OchyR071UbCAF25fPeWcuUUt2UUguVUqnoifsEeskYIDuhLwFmoFfdn/S0m92plArOtavGwBFN01LyHG97nt+bo38ZvOQ5Vu7XC7niR9O0DeiPrwzLtf0w9Cq4xfmeuRCitO3P83sikKFpWt6q8ESgWu4FSqk7lFL/oj8+dwr9Oo/hv++W/HwIXAXc4/kOEOVA2tB9nFKqGbAIPWmOQa9Ky0IvbT+G56ZN0+vAblBKXYbext4f+BJ4XCl1WT5J/HyybwTfouA28Nw3Hd8Dz3hK8cnAtcA0TdOcxTimEKLkXEVcBvrNuv4/St0KTELv3PYmcNyz3VPoj9Wdu7FSzwOjgVhN06aUOGJRbJLQvddx9Dvi5vm8l3vZNei9SK/VNC3nLjxvL9RsmqatAlahJ9ib0avFbkKvktsH9FVKhedJ8K3y7GaP56dDy/Us7Hl8j14zMAS9Ta0K8F0RthNCFI1W+ColcgP69T7YUygAQCn1Qn4rK6UeQG+3f0/TtNfLKCZRAKly91Kedq6FwPVKqfrZy5VSzYEBuVbNvsvOfVdtAe7MvT+lVDVPL/bc1nt+Zle7/4x+kzcq13Zm8rSBaZp2HPgDuE8pVS9v7EqpWnnW3wpsRK9qH4bea39p3u2EECWWSgGPl16g/L5fOqMPJHMWpdQw9B7536LXFopyJiV072ZD70C2Qin1KXqP0weBTcDFnnV+Ra9in6uU+gwIB+5FL+HnTrZ3AKOVUrPQH2mp7FkvCT2RA8xF76Uep5SyAlvQO7Pl11b2ALAc2KiU+hz9Lr4O+oXeALgoz/rfAy+i1zr8T9M0d7E+CSHE+awDrlBKjQEOA3s1TfurFPY7D/07YJZSKh5oAtyP/t0Qnr2SUqoT8DV6G/si4JY85YeVmqbtQZQpSeheTNO0dUqpAeht1S+ht4+PRx8rOdKzznal1A3owy2+hf44yafoHVdyDxqzBOiEXr1eB73zy2rgFk3T9nr25fYMDPMecCt6Nd4c4HHgnzyxbVFKXYpelT4CvYf7cc96L+ZzOt97YgxFercLUdrGoD+D/jJ6Z9rJQGkk9Enoz5Lfh97vZgv6d8ON6I/VZYtCfxy1Fmd/72S7k/+a6kQZUbmaRYSPUEr9BLTRNK2F0bEIIYTwDtKG7uWUUiF5fm+B3oP9D0MCEkII4ZWkhO7llFJH0Ku99qA/Jz4KvRNbB03TdhoYmhBCCC8ibejebz4wHL0dKxP4E3hakrkQQojcpIQuhBBC+AFpQxdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8QLEGllm3bl04UB+5Eago3MDh6OjolELXFH5LrnvhBeS7qAiKPLDMunXrLjOZTBNMJpOFXHPjCr+mud3uRLfbfX90dPQqo4MR5U+ue+El5LuoCIqU0NetWxduMpmWV61atU7t2rVPK6VkeDkf4XZrOFxaUJbLFehwa0FOlxbodGmBGpoJUJqG0vS/A1XHnJJVSUsL0rdUmobJdSI5MzD51JGUVkvumxCYeeYYcAZ9vuU9wEFsiTKvuZ+S6963uN0aTrcW6HS7A5wu9J9uLcDl1gJd+s8Al4YZNDTPtR+qXI4IjgSB0o6a6mSmuQMDlcKtFG6TQjMrkyPArBwBZpUVaFKOQLMpK8hscphM5fu3oGmaOn78ePWEhIRjbre7u5TU81fUKvf6JpPJUrt27dNhYWHpZRqRKLZMpysoI8tVKdPlDnY4taAslzvY4XIHOVzuYJdby/NvrCiooBVs1twhzszQ3MtqV9JIU4S4AsKeC8w8c86hsVns6Ml9N7ADWAf8gy1R/k58n1z3XirT6QpMy3SFpTtcoekOV2imwxXqdGuB566Z63rP59I3mZQzBEyggQo0uwj4bx+a5+UGHNkLXIALs0k5A82mrECzygoKMKeHBZlTw4IDUgLNJlfpn62udu3ap5OSkixut7s++neNyKOoCd0EKLlD9w6ZTldgSoazckqms0palquyw+UOKqtjKZX3f84SDLTyvHJzYbNsAdYAa4HV6EleSvO+Ra57L5DldAemZjrD0hyusIwsV2iG0xV67o36hXMXcJHnRy/xuwIyHISCs+opz/IgsykzJMicEhoUkBIWbE4NCTSnq6Lv9rw8f4cK6ctRoJL/Udgs0aUYR559J64rs337oCynOyA5w1ElNdNVOTXLWdnhcgcbHVMhzEA7z+suz7LT2CyLgF+BBdgSDxgVnCg5a2x8mVz39rgYueY9NE0jNcsVmpTuqJqc4aya6XSFlMdx3dqF95HIcrmDs9LdwYnpjhoAJqVclQLNqWHB5uSqIUEJIUHmjAuPVBTEL+90tm/fHvTGG2/Uyr0sIiKi3cqVK8vlwsht586dQX369GlutVrbNmvWrM0rr7xSO/u9Z555pm6zZs3aREZGRl100UWRv//+eyiA262p06lZVQ+cTmu07WhSm4+/mnpRl46XNLny8s41r+7ZKfjD118iu+/DL7NnMLR/Dwb37cLgvl2Y/NlHBcbyYuyjDLmiK/cMu5bkpERA//IYfdsNHLDvLdPPAagO3Ah8DuzHZtmKzfIeNksPbBbpbCW8XmRkZNSZM2fK5DvT7dZUQlqWZf+ptMZbjyS333MipfXJlMx6xU3mm9b/zR2D+nPjld0Z2r8Hf61YmvPevr27ue/mQdx4ZXcG9e3C/DkzyV0Hn7uEnpWZyavPPsk1PaIZckVXnnp4ZM56cePHMaBLey5qWI1tmzcWGMuyxb9yfZ/LzFf16Fjlp7k/R+w8ntxm29GkNnHvfNDsyXGxDYpzXqJo/HI+9J07dwZ/+eWXtcaOHXuiNPfrcDgIDMynmaoAbreb66+/vtnjjz9+9K677joDcODAgQCAlStXhnz11Ve1tm7dutlisbg/+eST6g8/8oj15z9WpSSmO6q7Nc2cvZ/LevSkd/+BmEwmHFlZ3DF4AFHtO9B3wNXUrR/BJ1N+pGbtOiQnJTJ8YG+i2l9Mxy7dz4pl57Yt7N+7hxkLVzLhvTeYN/N7ho8YycxpX9Oxaw8aWpug93crN5Ge1yPoCf57YBq2xH/KMwghCpN93W/btm1Lae7X5dZMZ9KyqiWlO6qlZrkqa5p2QTcLmqbx2L238dI7H3NZj17Y9+zivuHXM/uPNVQKCWH8mNFcN/QWBg+/ndOnTnJzTG+6d+5I03r69m7tv4T+/msvoJRiztK1KKU4efxYznH6DbyWO0c9zIjBA84bzydvvcbHX08HYMy9t9OtV1+OHDlaacaPP1T6bOosth1NslSpFHjGEhJ4Jiw4QPpolAKfLqHPmDGjSlRUVOuWLVtGdezYsdW6desqATz00EON7HZ7pcjIyKg+ffo0z15/+vTp1S6++OLIiIiIdmPHjq2XvXz//v0BAwcObNquXbvWLVu2jHr44YfrZ78XERHRbtSoURHt2rVrPWTIkCbFiW/OnDmVg4KCtOxkDtCwYUMngFIKp9OpziQmBhxPzqh1+HRKRO2IxiFn0rJq5U7mAGHhlTGZ9H+qzMwMHFmZZLdLdeh4GTVr1wGgchUL1uYtOHxg/zmxBAYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HinNaZaER8CTwt6fkPh6bJcLooIT3WbhwYVh0dHSrVq1aRbVs2TLqm2++qQqwdOnS0A4dOkS2bNkyql27dq1//fXXMICbbrqp8fjx4+tkb79t27agmjVrXpSZmalmz55d+eKLL45s3bp1VPPmzdu8++67NbPXGzJkiPXGG2+0Xnrppa1atmzZBkApFX3y5EkzwMiRIxu0bdu2dWRkZNSll17aasOGDTnNYEqp6NjY2Lrt2rVrHRER0e7999+vkf3e33//Xal7jx6RLSOjLm7dpm2H9z782JqS6bScOHbU9OSoO7n56r4MuaIrH73xcrE/m4Qzpzlz+iSX9egFgLVpcypXsbD8j4UAbN+yme69+wFQvUZNWrZuy9zZs3K+azRPcT0tLZVZ33/DQ2Ofzfmeyf6OAYi+rBt16hV+eQYEBpKRnk56WhqBQXpB6M0XnubRp2wEBASQ5XRXOpmSWW/3iZSobUeS2h5OSK+X5XQXvcQkzuGzCf3QoUMBd999d9NJkybZd+zYseWuu+46MXTo0GZut5sPP/xwv9Vqzdi2bduWxYsX78reJiEhwbx+/fpta9eu3frpp5/W2bt3byDAzTff3OSBBx44vnHjxq2bN2/e8s8//4R9+eWX1bK3O336dMCGDRu2zpkzp1j10ps2bQqpXr264+qrr27aunXrqH79+jXbsmVLEEDbDpeaR4wc7WjdKrJdu5bNGk3+/NOg2BdfL3Bf69f+xZArutK7Q0s6db2c3v0HnrPO7h3b+HfdGi7r0fOc96zNWtCxSw9uGtCTQ/v3ETN4KG++8DRjnnmRgACvqqiJBF4A7Ngs07FZehgdkPAOx44dMw8bNqz5K6+8cmj79u1btm7duqVfv37JGRkZatiwYc2effbZwzt27Njy1ltvHbj55pubJyYmmu6+++6T06ZNy0nUn332Wc1BgwadCg4O1rp27Zq2du3abVu3bt2yYsWKbW+++Wa93bt35ySUf//9N/S3337buXfv3s15Y7HZbEc3bdq0ddu2bVtGjhx5/MEHH2yU+/3g4GBt48aNW+fNm7fz6aefbpSZmaUOn06pOeiGG6OuGXZH2I8LV5p//G0F/WKuA+DZx0Yz7PZ7mDpvEd/PX8rmf9fz67yfivX5VKteg1q167Bg7ixAr36379mVc4Mf1e4i4mfpJeaD++xsWLeaQwf255TKXZ4S+sF9e7FUrcoXH73D8IG9GTF4AH8tX1KsWAAee9rGs4+N5rkxDzDm2ZdYsnA+NWrWpl2Hc7thZLncwSdTMutvP5rcbu/J1KbJGY7wYh9Q+G6V+5IlS8JatmyZ3qlTp3SAUaNGnR47dmyj7CSdn9tuu+00QL169ZwNGjTI2rFjR3CNGjVcq1atqvL4448HPv744wCkpaWZtm3bVil7u7vuuutUdgm5OJxOp1q1alWVJUuWbL300ksz4l5/o86Nw26KnPHbcteePXsrLfjlZ+YuW0ftuvWYNmkiYx+4i8kz5+e7r4sv7cyMhSs5feokj4+8nb//Wkn0Zd1y3j925BCP3n0Lz772ToF3zw+OfZYHxz4LwO8LfqZu/QjqN2zEc2MeIDUlmVuu7RNw57Xn3gwYJAC9zf1GbJYNwEfAt/I4XMX1+++/hzdp0iTjqquuSgEwm83UqVPHtXr16hCTycSQIUOSAPr3759So0YNx6pVq0L79++f4nQ6WbJkSWiPHj3Spk+fXuOnn37aCXDs2LGAW265xbp3795KZrNZS0hICPjnn39CmjVr5gC47rrrzlSrVi3fJzPmzJlTZcKECbVTU1PNbrebxMTEs75L77777lMAUe3au8wBAWr5xl3tExMTA7IyMxlw/Q0561WrXoO0tFRWr1jC6ZPHc5anpaZi372L4nrvf9/y3qsv8L+P36VZy0g6dLwMs+eG/aV3P+Xtl55laP8e1ItoSKduPXPe8zyhpgBcTheHDx6gWYtIHn3KxtZN/3L/zYOYuehPatSqXeCx87qkc1e+navXDqSmJPPA7UP55Jsf+eaLT1m/9i+q16zFk+NfITDov4d0NDSVnOGolpzhqBYcYE6vGR50tHpY0OnS6inv73w2oZdESEhIzsVpNps1h8ORM7DO33//vTU0NDTfx3MqV66c77OV69atq3TLLbc0BejYsWPKlClTzqrrbty4cVbr1q3T2l98ievA6bRGvQfdWvPpp2JVanpm4KKf59AiMoradfWa/+uG3kLcc+NwZGWd9QeeV/UaNenepx+/xs/OSejHjx5h5PBB3PvwE1x59fWFfg4pyUlM/uxDPv12Bv/76F0uvawbMYOHcvOVlwXd1K8zISGVCt1HObsIvTNdHDbL28CH2BJlYAlRoNwJ4Oabbz71+eef10xKSjpTrVo1Z8eOHTMARo4c2fjKK69MnD9//m6TyURUVFTr9PT0nDv38PDwfK/7nTt3Bo0bN67RypUrt7Zp0ybzr7/+CrniiivOenQzIDjYvO9UakRSurOG2RygshzOgr9rPd9BU2b/RnCl8197j993BwfsewCY+N1sqlarftb7raLa8ek3P+b8fn3vzjRvGQlARMNGvDPx65z3Rt16Ay0u7+H5zst5JIy6EQ0wmUwMHHQjAK3btieiYWN2bttSrISe2wevv8S9Dz3OqePH+f3Xn/nf9Ll88vZrxM/6geuH3ZLvNplOV8ihhPQmx5MzI6qHBR0LM2nJJTp4BeKzVe69evVK3bFjR8iaNWsqAUycOLFanTp1HE2aNHFUrVrVlZycbC5sHwAWi8XdqVOnpGeffTanTd1utwfmrnorSHR0dMa2bdu2bNu2bUveZA5w7fWDUo4ePx6ydP32tmfSsmotW/yratKiFYGBgUQ0tvLP2r9IS9Xz0tKFC2jctHm+yXzvrh243fq9SGpKMssW/UrL1m0AOHHsKCOHX8+dox7h2huHF+WUef+1F7jv0bGEhISSnpaGUgqlFA6nU2U5HEXah0FqAK8Ce7BZnsRmCS1sA+E/+vbtm7Jv377g+fPnhwO4XC6OHTtmbt++fYbb7WbWrFlVAH777bewkydPBl522WVpAPfee++p+Pj4ahMmTKh12223nczeX2JiotlqtWaaTCZ++eWX8O3btxfp7+nMmTPmgIAArVGjRg632817772Xk+UcLrcZYO+pjDaJ6Y6aGlrOnYW1WQsqhYTyy0//Jdwzp08RGhZOx649+PKT93KWHz96hGNHDp1z7Lc/m8z0BcuYvmDZOckc9O+DbDOmTiYkJJRO3S4H4NSJ4znfIyv+WMSendu4bvCN+k2LUjmFnWrVa9CpW09WLlkEwMH9+zh0YB9Nmrcsysdzjn//XkNKchLdel9Benpqzs2WyWQiLS210O0dLnfQsaSMhntPp7VKc7irnEl3VaiCaHFcwHPoxj4rXr9+fecXX3yx54477mjidDqVxWJxff/997tNJhOdO3dOa9myZXqLFi3aNGzYMDN3O3p+fvjhh72jR49u2KJFizZKKS0kJMQ9YcKEfdlVb8XldLtNx5My655OU3Wefe0904N3DEXTNMIrV+GNj74AoO9VV7N5w98Mj+lDUFAQIaGhxH34ec4+Hrj9RkY//jRtLurAgrmzWDB3FgEBAbhcLvrFXMfg4bcD8Mnbr3Hk0EGmfjmBqV9OAODmu+4v8K73nzWryMjIoMvlvQG46Y57GPfgPXz16fvcNOQ6h6VK5TIbpKYU1QLeAB7HZnkD+FSq4suHkc+L16pVy/Xdd9/tfvLJJxs+/PDDJpPJxPjx4w/dfPPNid9///3uRx55pNG4ceMaBAcHa99+++1ui8XiBrBarY6LLrooddGiRVUnT568L3t/L7/88qFHH320UVxcXP02bdqktW/fvvDsAnTq1Cn92muvPR0ZGdmmWrVqzoEDByYAHElIr3cqNasOgJbPM90BAQG8/79vee25cXzx0TuYTCaG3n43N956J69+MJG3XnyGwX27oJQiJDSM5+IKbj4ryIypk4mf9QNoGk2at+TdL6bkJNAlC+fz5cfvYTKbqVWnLh9Nnk5IiP5U3Oz5f/D1r+uwvfkBAM+99g7PP/kQ771qw2Qy8Vzcu9Spp/cVfjH2UZYt+o1TJ44x6tYhhIWFM2/53/nG43A4eO9VG299NhmAlq3b0qCRlcF9u1Cteg3e/fybIp+b262ZU7K0ai8tOzPvnnnxj9njYmYV68OpAIo6lntkQEDA/BYtWqSEhobKwAAF0DSNkylZNY8nZ0SUxUhOZa150JmUUGfCWZ1RMpwaew+doMmKx6mU4rVjwRwExmJLnGZ0IP5ErvvCuTVNnUzOrHkiJbO+L17z4SZXZlP2B2sqwLHR1dCre5hrziyOHz6I7ffjHEp2ASwBxtjjYvK/m6iAfLbK3dskpTsq7ziWEnUkMb2xL17YPq4BMBWbZRk2y8VGByMqhtOpWdW2H01uezQpo5HPX/O+ObxvT2CNNTZ+kjU2vn6ha1cAktAvUKbDFbTnREoz+6nUluU1RKMoUHdgLTbLB9gsVYwORvgnh8sdsPdkatODZ9KaluU8CuWpFEZ9NYoJuAPYYY2Nf94aG+91PXrLkyT0C3AqJbP6zuMpUSmZzqpGxyJymIGHgG3YLNcYHYzwL6dSM6vtOJbcJjnDUa3wtX1ATh73yRJ6bmGADVhrjY2/2NhQjCMJvQScbrfJfjK1yaGE9CZ5R3UTXqMeMAeb5QtslspGByN8W5bTHbD3ZEqzQ2fSm/p89Xo+NN+scs9PG+Ava2z8WGtsfIXLbxXuhC9USoYzbOexlDZJGY5znxkR3uhuYIOMOCdKSq+JS26TnOHPNXF+k9ABgoDXgd+tsfGNjQ6mPElCLyJN0ziSkF5v78nUVv7SblaBNAH+wGZ5E5vF26eeFV7C4XIH7DmR0uxQQnoTfyyV5+bDbejnczmwwRobf6vRgZSXEv+RltW8yOB9cyNnOl1B+0+lNUl3uGR8Yd9lAp4ALsdmGYIt8aDRAfkkm6VsrnuDx7XIKzXTGbL/dFrzCnPz7j9V7nlZgCnW2PirgVH2uJhynVKyvEkJHX1WtHbt2rVu1qxZm+bNm7e5//77G7hc+gBKp1Ozqu08lhJVlGR+cP8+bhrYK2d+8ifuH0FSQgIAaakp3H/LEHq2b0b3NoXXAi38eQ5DruiaM8/5Ic8EC6dPneShO2/ihn7duL53Z559bBQZ6eeOqeJwOHj07lu48cruPHbvbTidTgAyMzK4c8jAnLgqoE7AOmyWy40ORBTfN998U7Vp06ZtIiMjo1avXl1qT5XMmzev8o8//lgF9Gt+78nUyOIk83//WcuNV3bnmssv5Z5h13LsyOF811v0yzxu6NeNof17MKjPZXz4+ktkjwWSkZ7OM4/en3PNP3zncE6fOpnvfl6MfZQhV3TlnmHXkpyUCOi1iKNvu4ED9uLMIaVl/9dfE3q2YcB6a2x8e6MDKUt+k9AdFzBkaY0aNZzff//97t27d2/+999/t6xZsybso48/rrnvVKr14Jm0pkXt+Fa7Tl0mzfiF6QuWMXPRn9SqU5dP340DICAgkDtHP8Jn034qdD9bN/3Lh2+8zKffzGDmoj+ZMvtXqtfUJ4z64sO3aWRtxo+/rWDGwpWcOnGC2dO/PWcfK5csokrVavzw63IqV7GwwjOF4sT33+SmEfdSpWrVIn46fqk2sAib5RGjAxHFM3HixFrjxo07sm3bti3ZEzNdKIfDweLFiyv//PPPlkMJ6fU913yRvxvdbjdPPzSSJ22vMXfpWnr07sebLzyd77qX9eiZM3Tr9PlL+XPZHyyeHw/Aj99OIiM9nRkLV+ZMhDJ5wgfn7GPnti3s37uHGQtXcmmX7syb+T0AM6d9TceuPWhoLdYszwBo/pMKzqcRsNwaG3/+idx9mE//Kyqloh977LH6bdu2bf3ggw82WL16dUh0dHSrqKio1s2aNWuTe87zMWPG1I+JiWnap0+f5s2aNWtz2WWXtTx27JgZoFu3bulRUVFZAKGhoVqbNm3Sd9gP1UtMd9Qo6Nj5CQoOppJnKEWXy5UzTnr2e527XU7lKpZC9/P1xI+47d7RORO3hIVXJiREH2ZaoUhLTcHtduPIyiIjPS1nSMbcAgICyUhPAyAjPY3AwCB2bN3E3t076X/NoOKclr8KAN7DZpmCzSLjB/iAESNGNFy7dm34iy++GNGhQ4dIgBkzZlSJiopq3bJly6iOHTu2WrduXSXQS9yRkZFR2duuWbOmUkRERDuA7du3B1WuXPniUaNGRURFRbV+7bXXan/99de1fpo9u1bfbp3qTXjvjWLFteXf9ZgDAujUVe93ecOtI1iycD6ZGecOrhcWXpnsmRszMzNwZGXmfEcopchIT8PpcOB0OklLTaF2PkO/BgYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HihV7Nn8vnudSGZhrjY0fZXQgZcGnEzros6Zt2rRp62effXawRYsWmcuXL9+xZcuWrRs2bNgyd+7caosWLQrLXnf9+vVhU6dO3bt79+7NNWvWdL733nu18u5vj31fpZ9/mV+ze9+rStR25sjKYmj/HvS8qBn79+5m1JjYYu9jz87tHD10kLtuiGHoVZfz0ZuvkN0EMPKRJ9lv30OfS1rRu0NLmrRoSa8rz50bvcvlvQkLr8yNV3YnvEoVOnW7nLdefJZxL7xWktPyZ7cCv2Gz+MdzxX5s0qRJB9q2bZsWFxd34J9//tl26NChgLvvvrvppEmT7Dt27Nhy1113nRg6dGiz7AlIziclJcXcpk2bjC1btmwd+9QziUNvv5uBg4aq6QuWcf+jY4sV19HDB6kX0TDn97DwyoSFVz5ropTc1q/9iyFXdKV3h5Z06no5vfvr1+8Nt4wgNKwyvTu0oE+HlqQkJzF8xL3nbG9t1oKOXXpw04CeHNq/j5jBQ3nzhacZ88yLBASUtFuU37ah58cMfGKNjX/H3x5t8/mTGTVqVE4jU1pammn48OHWli1bRkVHR7c+fPhw0Lp163JmUOrZs2di3bp1XQCdO3dO2bNnz1k9no+eOBl87XXXR40Y9Yhqc1GHEsUTGBTE9AXL+P3vHVibt+DHbycVex8up5Ntm//lkyk/MmnmL2xYt5rpU/4HwPw5M2jWohWL1m1j4dot7Nuzm5nTvj5nHyaTieffeJ8ffl3O+Lj3+G7S5/TuPxCn00Xsg/cwZuTt/LViaYnO0Q91A5ZhsxRvJgxhqCVLloS1bNkyPbvqfdSoUaePHz8euHfv3kLHJA8ICNBGjRp1KindUXn3iZTWGqrcerFffGlnZixcyYK/NrFl43r+/mslAH8uXYymuVm0bjuL1m2jchULn7z1ar77eHDss0xfsIy3Jkxi1dI/qFs/gvoNG/HcmAcYM/J25s+ZWcRo9NoBrWLON/4YMMMaG+83szb6fELPnlEJYMyYMRE1atRwbt68ecv27du3dO7cOTkjIyPnL7VSpUo5d6Fms1lzOp057x09firkqgED2/S6MkbdPjL/aqvdO7YxtH8PhvbvwavPPHHeuAKDgrh+6C3Mm/F9sc+pbkQD+g64lkohIYSGhtH3qqv59++1AHz/9f8YOOhGzGYzYeGV6TfwWtasXHbe/R0+uJ9li39j2O338PFbrzDklhG89M7HxI0fV+zY/FgbYCU2S6TRgYgLFxgYqOUuqeee5xygUqVK7uRMl2Xf6bQWLvf5+8gkJSbmXPeP3nPuE1B16zfgyKH/Ji5KTUkmJTmJWnXqnjfG6jVq0r1PP36Nnw3Aj1Mn06d/DMGVKhEYFMTAQTey5s/zX9spyUlM/uxDRj3+FN988SmXXtaNNz75ks/efzPfzrIF8dPH1oriemCJNTb+/P9YPsLnE3puCQkJAQ0aNMgKDAxkw4YNwStWrCjSeN5HTpwOGzBwYOuuva5QIx8pOFE3axmZ06Hl6VfeOuf9wwf3k+5pt3a73fw6b3bOvOXFMfC6G/hz6WLcbjdOp5M/l/5Oq6i2ADRoZGXFH/o8xQ6Hg5VLFtO8Vevz7u+N55/iyedfwWQy6e36KJTJREYR5iKuYBoBy7FZOhsdiChcr169Unfs2BGyZs2aSgATJ06sVqdOHUeTJk0crVq1yjx8+HDw4cOHAwC++uqrs/vDKKUOnE5vpmn6fOVh4ZVJTkrK9zhVLJac6/69L86d7jOq/cU4HQ5We26sf/xmEj2vuIrgSucOK753146cOclTU5JZtujXnO+IBo2s/Ln0dzRNQ9M0li36lWaFXNvvv/YC9z06lpCQ0Jw+O0opnA4HDkfWebfNTdMqbEIHuBR9dLmmRgdyoUpczeRtz4oDjB8//vCIESOaTps2rUbjxo0zL7vssvyv0FyS0h3hr775TotNG/5W6elpLP5lLgD9Yq7j3ofPXwrPa8fWzXz0xsuAntBbt7uIcS++nvP+Df26ceb0KVKSk+nXsQ0du3bn1fc/A2Bo/x58NHk6tevW46rrhrB1078M7tsFk8nEJZ26cMtd9wMw9oU4Xn5qDEOu6Irb7ab9JR259Z7RBcb086wfaBnVNifp3zX6UV4c9wgOh4N7H3myWOdXQdRA7wF/FbbE5UYH43W86Hnx+vXrO7/44os9d9xxRxOn06ksFovr+++/320ymbBarY7Ro0cf7dixY+uaNWs6rrjiisTs7ZIynFWVUiYtV1ewPlddzbyZ3zO0fw/6DLimWO3oJpOJVz/4jJdiHyMzM5PaderyyvsTct5/4PYbGf3407S5qAML5s5iwdxZBAQE4HK56BdzHYOH3w7AqMdieTH2UQZf0RWAJs1a8FzcuwUe9581q8jIyKDL5b0BuOmOexj34D189en7XD14WJE64GZz++9z6EXVCH1kuV72uJjiPPfnVSr0fOhn0rKqHjyT3lSr4Len2Xx4PvSykAxcgS1xtdGBGMUfr/tTKZnVDyWkF/+5Lj8VbnZlNtX2BycH1EjZm1XFqwfOymc+9LKwD+hpj4vZV1YHKEt+VeVeHKdSMqsfPJ3WTJK5KEBlYD42y0VGByJKx+nUrGqHJZnnkT2wjHwNejRGL6k3LHRNL1QhE3pSuqPy4YQMa0WvYxKFqob+SNv5GzKF1zuTmlX10Jn0JnLN508S+lmaAL9aY+NrGh1IcRU1obsBzR9Ks+kOV/CB02nNNHz/XMpDTotMEZpm/FQt9Db1ZkYHIkomKd1R+eCZ9KZyzRes8Cf3K5xIYL41Nt6npl4uaqe4w263O/H48eN1ateufVr5aAcKl9ttOnA6o5nT7ZY5zPORqVwmk+u/f1pNgxOpLlRmEoEZ+Y8pXUHUA+KxWbpgS/TryR38TYbDFXzgjNzAF0ZK6PmKBmZbY+MH2ONiMo0OpiiKlNCjo6NT1q1bd39CQsKEpKQkC/jkv746k+Gq7XBRMWZPKgHNnGoOdqedtUxlJtFg/duYXX7RJ+pCtAJ+8PR+dxodjCic0+022U+lNi/sOXMhCf08egP/Qx9R0usV+bG16OjoVevWrevudrvr44Nt788sPvVScpb7BqPj8GZvB3/5byRbOuYs0DQCM05KMv9PX+Aj4H6jAzHK1sjWZTJ9auttW0v1cThN09h3Kq1pltN97sPg4hxuKuZQcUV0izU2/i97XMyHRgdSmGI9hx4dHZ0C7CijWMqMNTb+cUCSeSG0jAPplcwV6tG0krgPm2UrtsT3jQ5E/Gf79u1Bs2fPtowdO/YEwKGE9AaXXxJlefeLb4ls065cY1mycD7vvDwet8tF88goXnrnY8IrnzvGldvt5vXnY1m++DeUUtxyz/0MHzESgKWLFvDJ26+xa/tWht52F2Nt+c/BkJSQwGMjbyPh9Cku6dSFZ159G9CnWX7y/hFMmDqLwMBCR8KVEnrh3rbGxv9tj4tZYXQg5+NzJe3issbGXwMUb/okIc7vbWyWq4wOQvxn586dwV9++WUtgJMpmTVOp2bVKY39Op3Fa11JS03B9uTDvPfFN8xdto5adeoy8f038103fuZ09uzczpyla/l27iImT/iQXdu3AtCoSTNeeOtDRtz30HmPF//TdDp27cGMhSvZu3snO7dtAeCtF5/hkaeeL1IyB3D7ZK+ochUI/GCNja9X6JoG8uuEbo2NvwiYip+fpyh3ZmCKTOZS/gqaLvWhhx5qZLfbK0W2bt32hsHXW7PXX/TLXG677koGdL2Iie//N1zzyePHeHLUndx8dV+GXNE1Z4RHgAFd2vPuq89z89V9ee6x4s2yufz3hUS2aU+T5i0BGHb73fwyO/+JUhbMncng4bdjNpuxVKtG/2sGMX/2DACsTZvTKqod5kJmT8ueJlmfTjmTwKAgVvy+kCqWqrS/pON5t81NqtyLpB4w3RobX7S7JAP4baKzxsbXBuYCXj36kfBZNYFvsFn89hryNuebLvXDDz/cb7U2yZyxaJX5gy+n5WyTnJTIlNm/MnXeYiZ/9gHHjhwG4NnHRjPs9nuYOm8R389fyuZ/1/PrvJ9ytks8c4Zv5y7ktQ8/L1aMRw4dpF6DBjm/12/YiJPHj+Zb0j9y6CD1G/w3fkn9Bo04cvhgsY4XM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4u1H00SelF1B86dyMNLlNuUgQb4AvDJ0X6Ez+gFPAu8aHAcFUJ+06WOHTu2Uc50qSZzkMutnXWDNfB6vetMteo1iGhk5dCBfVS2WFi9YgmnTx7PWS8tNRX77l05v19743CUD+S40NAw3v5scs7vb9qe5s7Rj7Dfvpf/ffQOAPc+/Ditos7fj8AtT/UVx8PW2PjV9riYb40OJC+/TOjW2PgRwDVGxyEqhPHYLL9jSzz/PJeiTKU5qYJS59SWBAX/18ndbDLjcrlyBkmaMvu3fGdEAwgNy79ib/eObTz10L2APq953lkX60U0YNWyP3J+P3xgPzVr1yUgn6rzehENOHzwABdFd9LXPbifevUbnLNeUW38Zx2nT52g5xVXMWLwAF55/zM0TWP8mNF8+WP8ebd1++ajyEaaaI2NX2ePi9lmdCC5+V11oWcM3veMjkNUGGbgW2yW6kYH4u8Kmi61fsNGEFy5VnJyoZMrAnqy7ti1B19+8l7OsuNHj3DsyKFCty1sCuVuvfqyddMG9u7SHwb6/uv/cdW1g/PdV7+Y65k57WtcLheJZ86wYO4s+l8zqEjnkJfD4eC912w8Mf4VANLT01AKTCZFWhGmSdY0H6iO8C6hwBfW2Hiv+tz8sYT+P6Do8wYKceEaAm8DdxodSFkr7efFi6Og6VIPJ2Ram7duY27WMpLBfbvQoJGVD76adt59vfrBRN568RkG9+2CUoqQ0DCei3uHOvUurJ9jWHhlbG+8z6P33IrL6aR5q9a89O4nOe/nnib56iHD2Lzhb665PBqF4rZ7H6CFZ270v5Yv4dnHRpOakoymafwWP4dnXnmTXlcOzPe4kyd8wDVDbqJGrdoAjH78KR64YxgAY555odC4pVNciXQD7gMmFLZieSnS9Km+whobfz/wqdFx+KppgS8v7WLecrnRcfiwvtgSFxsdRGnxhelTTyRn1jySmN7Y6Dh8VbjZmdlUOxC8SzVypLnMXtt7G8pt+tTiSgJa2+NiDhsdCPhRlbvn+cDXjY5DVGifYbPIyGTlJNPhCjqWlCEdX0uBW6rcS6oK8LHRQWTzm4SO3m5+7nBMQpSf5sB4o4OoCDRN48CZdKtb0/zpO8wwUuV+Qa63xsYPMToI8JOEbo2N7w8MNToOIYAnsFnKd6zRCuhkSlbNtCynT01t6c3cMvbrhfrQGhtf1eggfD6hW2PjKwGfFLqiEOUjEOnHUabcbk2dSM6sb3Qc/kSq3C+YVzT5+nxCB54GmhodhBC5dMNmkcmAysix5Iw6Trfbqztw+Rp5Dr1U3GuNje9sZAA+ndCtsfE1gDFGxyFEPl7HZgkyOgh/43C5zadSsuoaHYc/0cB/HnUylgJeMjIAX38O/TEgzOgghMhHU/R50z8wOpDS1G5yuzKZD33jHRuL9Hz7saSMem5NM5dFDBWX0pASemnpZ42N726Pi1luxMF9toRujY23AA8aHYcQ5/EMNotMDlRKMh2uoDNpjtpGx+F3lJISeukyrJTuswkdeAgZEU54t9rAo0YH4S+OJGXU17TSmUXk7huvZvH8849vnp+P33qV+FnTAfj0nTjesD2V73pLFs7n7huvvqAYy4/Sliycz3W9OnFNj2geu/c2UgoYRtftdvPac2OJ6daBq7tfwrRJE4v0Xm5JCQncPfQahlzRlVeefjxn+elTJ7n7xqtxOByle3rlr5c1Nr63EQf2yYRujY0PQ74ohW94DJtFmoUuUFqWMyQp3VGjqOvnN11paXjgiaeJGeRfT8gmp6Zpticf5r0vvmHusnXUqlOXie+/me+68TOns2fnduYsXcu3cxcxecKH7Nq+tdD3ztrHT9Pp2LUHMxauZO/unezctgWAt158hkeeep7AQL/o71j4eLtlwCcTOnrbZJEvbiEMVB242+ggfN3RxIwIgIsaVuOjN15m6FWXc83ll+aUlrPf++Tt17g5pg8fxL1AakoyL4x9hJuv7ssN/brx4rhHcWRl5az/14ol3BzTh6u7X8JbLz5L9jDYeUvvj993B7OnTwXgucdG880X5z6V6HA4eOXpx7mmRzQ3X92XNSsLb0I9cewo9908mEF9LuO+mwczdvRdfPpOHABXXBrF8aNHAHhy1J3cfv2VAGRlZnJ5u6ZkZWYye/pURg6/nnEP3M2QK7oyfGBvDu6zF+tzVcDPi5aryDbtadK8JQDDbr+bX2bPzHf9BXNnMnj47ZjNZizVqtH/mkHMnz2j0PdyCwgIJCM9DbfbjSMrk8CgIFb8vpAqlqq0v6RjseL3Yj2ssfH9yvugPpfQPc+dP17oikJ4jzHYLL7eAdUw6VmuSimZzv+a15Ri+vylfDrlR+KeG8ehA/tz3jKZzUyNX8yYZ1/i7Zee45JOXZg6bxE//Loct9vNt1/+N4/Gnp3bmfzTAn74bTnrVq3gl59+LHGMM76dhH3PLmYu+pPJM39h66YNhW7z+vOxXBTdkVmLV/HKe5+ydtWKnPc6d7+cv5Yvwe12s33LJpKTk0lJTuKfNato3e5igoKDAdi84W8eGjeeGQtX0rlHT7789L1ix77/0FHqNfhv2tb6DRtx8vjRfGs5jhw6SP0G/422W79BI44cPljoe7nFDB7KAftehl11OZ2796J23Xp8/uHbPDT22WLH7uVeLO8D+lxCRy/t1DM6CCGKoTFwo9FB+KoTKZlndYQbPPw2ABo0thLduSt//7Uy571Bw27J+f/FC+KZNOEDhvbvwbCrLufv1X+y374n5/1rhtxEYGAgISGhxAweyqrlS0oc418rlur7CwoiMCiI63PFUeA2y5fkrFezdh0u79s/573Luvdi1fI/2LbpX1pFtaVT1x6s/XM5q5b/Qefu/82f1P6STjRopM9Nc9ElnYpdQjdCaGgYb382mR9+Xc7ox5/i4zde4c7Rj7Dfvpcn7h/BE/ePYPuWjUaHWRous8bGDyjPA/pUqcEaGx8IjDU6DiFK4Eng/HN6inM4XW5zYmFt57m6yYWE5nqoQNN4e+LXWJs2L9KxlGewNHNAAG73f7N5ZWYWf6I5VYKB13Jv07l7T96Pe5GmLVrRuXtPatSszarlS/h33RqeefXtnPWCPSV1AJPZhCufUvXuHdt46qF7Abj40s7nzOPeMKK+e/bS9Tm/Hz6wn5q16xIQcG56qBfRgMMHD3BRdCd93YP7qVe/QaHvFWTjP+s4feoEPa+4ihGDB/D/9u49zq7x3uP4Z83smUmjslEicd1KXI6DkEgpoieUsIi79mhVo7QhPagWmxarVbXUOQelF1WltJVSdTub0qLiWhIiTYO4rURCJHJZucwlc9nnjzUhZZLJJHvv37p836/XvCavZGatb5id736etdbzXH7tDZTLZS4590x+/ce+37QYQ2cDD9bqZIkqdOArwDbWIUTWwZ54+YPwwkesg6yPtX1evFLeX9a2WfkjG7Dce8fvOePcInPensULzz3Ded4VPX7vfxzqcvPPruVi/2pyuRxLFi9m8aKFbLNdtLBk6e47OOzo4+ns6OCBe/7IyaedAcDWhe34x4uTOPjwMcyeNZMpzz/L5w8/ao0599n/wA+OR7n8wTX3NRmx30juu/N2xn3rAhbMn8fERx7i+C99FYCBgwaz4YAB/PG3N3PjhPvYaJNNuOoHF9G8bBm77LZHr8de1fY77swdDz2x2j8ffdDIzvHfvYK3Xp/BdjvsyB9uvYnRY47t8Ws/7x7Nn26/lUOOOJplS5bw0P13c93NE3r9s560t7dzzRUeP/7pTQC0tDTjONEbm+bm5X36O8bYIYVi6dOB777Z+5euv6QV+nesA4ish68DiS70WiqXyyxqbt/so7/f2dnJiaNH0tLczAU/8Nly657f45936eVcc8X3OfHQA6irq6M+l+NbF33/g0LfbocdOeWY0SxZvIjPHXI4o4+KNswaO+5szj/zVI47+LNsv+PO/PvQ4b1mPfakU3j91Zc5dtQ+bJjfiL1G7MvL/5iyxu8537uCi889k2NG7cNmmw9it6HD2HDAh7cKfGb/A5n4yENstW0BgE03G8imu+5OXV1lr5RuOGDDsvfjaznntC/T2dHBDjvtwmVXf7g9xomHHsD1v7mDgYMGc8RxX+CfL73AkSOH4eBw8unjGbLLrgBr/LOe/OYXP+HI477IpzaLrqic+e0LGX/KFwA497smN4lXgwN8A7igJidbeWdn3BWKpT2BF6xzpNntDT+cuG/99JG9f6WsozZgMF64yDrI2pg8efLOuVzuz0OGDFnWv3//vs87r6fFzSsGzFrYPGTV39tj6415YlrAgHzyl6BobWkh19BALpdj8aKFnDzm81z+kxvYfc/e30BUyob1HW1b1S/sfHnFwP41O+k6KnesYN47s/Eem8ecpZ29f0N8vA9sFfhuW7VPlKQR+hesA4ispybgS8D11kGSYOHyFR8bnafJrOANvnfOGZTLZdrb2znxK1+raZl/SCvFVdmmwNHAH6p9oiQVerpWc5CsGosKvVcrOroalrd1bPTR33/p7URMbnzgiUcf5rorP74S6Knjv8XoMceu8dp2rWgr9Jo4BRV6pFAs7Q1sZ51DpAL2wsvvjhdOtQ6yFrqAcqWWW+2LhctXbJKGYeMBow7hgFGHWMdYo3JSRujlMlCmKxlpP+qQQrE0OPDdd6t5kkQUOppul3T5KsnY9vedrq6ucN68eZsPHDhwoVPDTTwWL23epNzRVavTZVZnV6fT0tVVV+5Y0fsXWyqX6WhewtLWTha1JPLnoh74MtDzmroVEvtCLxRLDlqUQ9LlWBJQ6MOGDVs2efLkcYsXL/7FkiVL8tRoi82uMvULmjv7J3MglixNTmfd8rqW+nmdS62j9KLM0tZOfj5pMa2dif3JqHqhx/4u90KxtC/wdK9fKOtNd7nX1FC8sPf1QWNg8uTJnwS2oEYrS/746UXHz17SYbYFZZZs77wTjGt8aP55bWNjvYh6VxkWtXQlucxX2jrw3Y+vh1shsR+ho+l2SaejgEQU+rBhw5YBM2p1vr/fWfpMrc6VdZ8sN7e3Ns5tntOeqMfAkmw08KtqHTzWa7l3T7cfb51DpArGWAeIo+6tkQ+2zpEVDtBGKrYrTYrR1Tx4rAsd2B/Y0jqESBXshZfXz/bHHQL0sw6RJa00Jn4eO0EOLhRLVZsZj3uhH2cdQKRKHOAI6xAxtOZF06Xi2sqNehC9dvLAPtU6eNwLfT/rACJVNMo6QJwUiqV69CanpspAC43WMbKmatPusS30QrHUCOxunUOkivSG9V/tCax5q1SpKIcyrTTGtgdSKnuFTlTmeusoabYlXr5gHSJGRlgHyKI2GjTlXlt7FYqlgdU4cJwLPdbPRYpUyP7WAWLEYmeSzGspN6nQa8sBDqrGgVXoIrZU6B9SoRtopbHeOkMG7VmNg8a50PXilixQoQOFYqk/8G/WObLGwaGVhjj3QFpV5f6wWP6P1ItbMmQXvLyeu45GLBop1pjj4LSWm2LZAym3WzUOGtf/kXpxS1bUATtbh4gBzcgZKEd3uSdhCfC02aJQLFX8iY64Frqun0uWaDZKhW6mlQYNnmxUfNo9roWuF7dkiQpdb+LNtJZ1U5yRzBS6XtySJZku9EKx1A/Y0TpHFjk4tGnK3Ur6C717hbgh1jlEaijThU60AZOehTbQvduaCt1GxW+Mi12hA4PRi1uyZXu8fBxfi7WiXeeMlIFWFbqVXbu3CK+YOP4jMtg6gEiN5YBNrUMYUqEbKVNmRblBS2zb6A9sXMkDxrHQt7AOIGJgkHUAQ3rNG9KUu6mKvpGPY6FrhC5ZlOWfe43QjUQ3xTU0WOfIsNQXut6tSxZleYSuQjfiUKadXJN1jgzbrJIHi2OhZ/laomSXRuhiYgW6hm4o9SP0vHUAEQObWwcwpEI30uHk6rqoi2MPZIUKXSSF+lsHMJTl2QlTreR0/dxW6gt9gHUAEQOZ3HGtUCzVA7qGa6S9rFXijKX+GrpG6JJFWS01Xb81pDvczWmELpJCKnSpuRXk9N/f1gaVPFgcCz2OmUSqLauFrhGioXYVeqrEsTyXWwfIooEsmr9D3ZyKvluUPslqoesarqE2PbJmrVzJg8XxxbTMOkCW7Oq89fqVDTe+u6sTjHAchlnnybCsbkjUZR0gy8p6ZC1VVOgZdUTdM5MvabiVgU44DNjBOo/QZh3AiApdskwjdFk3jbS3nZm79/lx9fdv3s9p12g8XrJa6J3WAUQMVfR1r0LPgE0IF1zacOu0I+qe/bd6p7y/dR7pUYt1ACMaoUuWVfR1r0JPsZ2cWW9d2XDj7D2cN4Y7Dgda55E1WmodwMhyomnHrN5DINmmQpc1O7Tu+Slew2/aB7FwuOOwnXUeWSuZLPTAdzsKxdJC4FPWWUQMqNDl43J0tH+9vvTcN3P3bNrfaRtqnUf6LLQOYGguKnTJpor2nQo94fIsW3xJw20vHV335E71Tnk/6zyyzt6xDmDoPWBX6xAiBmZX8mAq9ITa3pkz02+4ceZwZ8YwXR9PhTnWAQzNtQ4gYmRWJQ8Wx0LP5LXEtTWq7oWpP2i4pXVL3h/uOGxrnUcqJsuF/p51ABEjqS/0iv4F06Cezo6x9X9+7pzcXRt90mnd3TqPVEVFp94SRiN0yarUF/o/rAPExYYsDy/M3T7lxPq/7ZBzuj5rnUeqphUvXGgdwpAKXbJoBRX+2Y/dOr6B784H5lnnsLStM3f27Q0/nDi16fS6k3KPHphzura0ziRVleXpdtCUu2TT7MB3U7/0K8A0YJR1iFrbr27atMtzNy3b1nlvb8dhK+s8UjOvWAcw9rZ1ABEDFb+8rEI3VkdX55fr//r8d3J3bDDAad7NOo+YyPplphlAK9DPOohIDWWq0FNtA1qWnZ+b8MJJ9Y9u1+B07mOdR0xlutC7V4ubBgy3ziJSQzMrfUAVeo1t5cx/5/LcTa+NrJs61HEYaZ1HYiG1P+998CIqdMmWKZU+YJwLPVUbNoxwXp7+o4ZfLd7eeXeE47CFdR6JjQ50DR2iQhfJkmcrfcBYFnrgu0sLxdIsSPbCKQ5dXV+sf2zS+bkJ/TZ2luv5cenJq3jhCusQMaBClyyZHfhuxZd7jmWhd5tGQgv9E7Q1n5u7c9Ip9Q9v0+h0jLDOI7E2yTpATEwl2hs9do/SilTB36tx0Di/eBJ3XXEwC+be1HDV4/9sGtt2eu6BkY1OR8E6k8Te49YB4iDw3WbgVescIjVS8el2iPcIfYp1gLU11Hn9Vb/hxvd3ct4eoY1SpI8mWgeIkReBXaxDiNRA5gr9L0AnUG8dpGfl8nF1T0y6qOF3DZ9ylg4FdrJOJIkzBy98wzpEjEwCTrIOIVJlHcDkahw4toUe+O6CQrH0NHCAdZZV9aOt5azc3ZO+Vv/Alk1Ox97WeSTRNN3+rx62DiBSA1MD322pxoHjfA0d4D7rACsNZNH8nzdc/fj0plObz8zdd0CT0/Fp60ySeJpuX0Xgu/8EAuscIlVWlRviIP6Ffq91gN2cN18rNV745N+bxg84rP75A+uc8qesM0lqPGIdIIZK1gFEquzP1TpwrAs98N3XMLrz9ci6pyc/13TG5Pubvjdk17qZ+zsOTRY5JLWm4YWvW4eIIRW6pNkyqnhpKbbX0FdxH3BeLU7USHvbmbl7nxtXf/+gfk77sFqcUzLrbusAMfUosBzYwDqISBU8EPhua7UOHusRereqX0ffhHDBTxqu+9vLTV9dck7uTwf0c9qHVPucknl/sg4QR4HvtqFLEZJed1Xz4EkYoT8NvA9sWukD7+zMetNvuHHOHs4bwx2Hz1X6+CKrEeCFU6xDxFgJGGMdQqTCWoEHqnmC2I/QA9/tosLX1Q6te37KM03ffP7BxuJ2Q+veOMBx+EQljy/SC023r5muo0saPRz47rJqniD2hd5tvafdc3S0j6+/56npTWNfvaHx6qGDnYV7O056dnOTRLnTOkCcBb47hyotvCFiqOqX2ZIw5Q7RXYFt0Pc7zfMsW3xJw20vHV335E71Tnm/ykcT6ZPpeOEz1iES4FZAN6ZKWrRTg/vBEjFC756m+GNfvmd7Z87MOxu9iVOavt5wXP0TB9Y75UFViifSF7+yDpAQvyV6Ey+SBo8Fvruo2idJRKF3u35tvmhU3QtTn2w667m/Np639d51M0Y6jh5/kdhYQTTylF4EvrsQuMc6h0iF3FyLkySm0APffZbV7B1dT2fHafWlp6c1nTr9143/vftWzvsjHCc5fzfJjLvxwgXWIRLkJusAIhXwHlV+XG2lpFxDX+mnrPJOZ0OWhxflfj/lhPrHh+Scrs8a5hJZG5pu75u/Aq8DO1gHEVkPvwp8t70WJ0raKHYCsGBbZ+7s2xt+OHFq0+l1/5l77MCc07WFdTCRXsxAC6b0SeC7ZeBn1jlE1kMncEOtTuaUy+Vanasinr9k7/OHOzN+5Dhx3SddpEen4YWaQu6jQrGUB+agpWAlme4KfPf4Wp0saSN09q6bcZvj0GGdQ6QP5gC3WYdIosB3Q6I73kWS6KpanixxhY4Xvote4JIs/4MXrrAOkWDXAF3WIUT66KnAd6u293lPklfokStBo3RJhAXAL61DJFngu6+gN/GSPP9d6xMms9C98DXgFusYImvhOrxwuXWIFLiU6Dl+kSR4mRqsDPdRySz0iEe0e41IXC0ArrUOkQaB7wbAjdY5RNbS+d0bi9VUcgvdC+cQPZcuEleX4YWLrUOkyA+BZusQIr14NPDd/7M4cXILPfIjILQOIdKD19Az1BUV+O5c4CfWOUTWoAv4jtXJk13oXrgQgxsPRNbCBXhhTVaHypgfA4utQ4isxm8D333R6uTJLvTI/wBvWYcQWcUTeOHd1iHSqHvHKr2JlzhqAb5rGSD5he6FLcB46xgi3crAt61DpNw1wLvWIUQ+4n8D351tGSD5hQ7ghQ/Sx/3SRarkF3jh89Yh0izw3eXAmdY5RFbxHuBbh0hHoUfOBpZah5BMewcoWofIgsB37wHusM4h0u3iwHeXWYdIT6F74TvAxdYxJNPG44VLrENkyDeB961DSOb9hZhsjZyeQo9cD9R07VyRbhPwwnusQ2RJ4LvzgbOsc0imLQLGdm/1ay5dhe6FncCX0NS71NY8otGi1Fjgu7cD91rnkMwaH/juHOsQK6Wr0AG88A30j6vUThkYixcusA6SYWegZ9Ol9iZ0v6GMjfQVOoAX3gpMsI4hmXAVXviAdYgsC3z3XeBc6xySKXOI4ZMW6Sz0yDhgpnUISbWnMV5IQiKB794M3G+dQzKhDJzavchRrKS30L0wBE4CtPymVMMC4It4YYd1EPnAycAM6xCSej8LfPdh6xA9SW+hA3jh08B/WceQ1CkDp+CFb1sHkQ8FvhsCRwF6dFCqZSpwvnWI1Ul3oQN44Q1o1yuprMvwwpJ1CPm4wHdfIRqpx+IxIkmVucARge/Gdgvf9Bd65GzgMesQkgq/wwsvtQ4hqxf47n3A961zSKq0AGMC3431rFw2Cj26znkC8KZ1FEm0J4BTrUPIWvkBcI91CEmFMnBy4Lux36MhG4UOdD8nfCTRyj4ifTUDOBovXGEdRHrXvXLXV4Dp1lkk8b4b+O5d1iHWhlMuZ+xSk5ffh2jt3U9aR5HEWADsgxe+bh1E+qZQLA0hWg56Y+sskki3BL471jrE2srOCH0lL3wWOBpoM04iyRACh6nMkynw3deAwwDznbAkcSYC37AO0RfZK3QAL3wEOBHQM8SyJkuB0drfPNkC3/070eW2FusskhivAMcGvpuoS2zZLHQAL7wP+Cp6vEV6toxoZP6sdRBZf4Hv/g04DkjUP9Bi4hXgPwLfTdz+DNktdAAv/B0wFui0jiKx0gy4eOFT1kGkcgLffRD4Alo9UlZvZZnPtQ6yLrJ3U1xPvPzRRJu5NBknEXvLgDF4odYtSKlCsTQGuBNotM4isfIq8Lmkljmo0D/k5UcR7ausu9+z6z3gcLzwBesgUl2FYskF7kJv4iUyBTg08N151kHWR7an3FflhY8Co4geUZLsmQHsqzLPhsB3S0Trvi+1ziLmniaaZk90mYMK/V9FdzOPBALjJFJbzwL74YVvWQeR2gl89yFgP7TNcpY9DHw+8N3F1kEqQYX+UV44HRiO1n7PivuAUXjh+9ZBpPYC3/0HMIJolCbZcgNwZJw3W+krXUNfHS+fA/4Xbb+aVl1E631fhhd2WYcRW4ViqQm4kWinNkm3NmB84Ls3WQepNBV6b7z8WODn6OaZNFkIfAkv/LN1EImXQrF0IXA54FhnkaqYDRwX+O5z1kGqQYW+NqL13/8AbGMdRdbbJOB4vFDXTaVHhWLpGOA2YAPrLFJRE4ET0nDz2+roGvraiFYLG0r0mIsk1y+B/VXmsiaB794N7E/05IOkw3XAQWkuc9AIve+8/GnA1eh59SR5FzgdLyxZB5HkKBRL/YErgfFoCj6pWoBxge/eah2kFlTo68LLfxr4DdG7eIm33wH/hRcusg4iyVQolg4Cfo0uuSXNROC07h33MkGFvq68fB3RHfCXARsap5GPmweMwwvvtg4iyVcolgYA1xJt6CTxtgS4ALgh8N1MFZwKfX15+cFEj7d90TqKANHueTcDF+jZcqm07nXgfwlsbp1FevR/wBmB7862DmJBhV4pXv4g4KfATtZRMuwZ4Cy8cJJ1EEmvQrG0KdFr/UTrLPKB+cDZge/ebh3Ekgq9krx8I3AuUATyxmmyZA7RFNvv8UL9QEtNFIqlA4CrgM9YZ8m43xOVeeZn5FTo1eDlNwHOA84C+hunSbNlwDWAjxcuN84iGVUolk4ArgC2t86SMX8Dvhf47lPWQeJChV5NXn4QcBHwDbT3ciUtJ5ryvErXySUOCsVSA3AGcDGwqXGctHuWqMgfsQ4SNyr0WvDy2wAXAl9BI/b1EQLXA9eoyCWOCsVSnuiS29nAJ4zjpM2LwMXdW99KD1TotRRNxX+DaKGKLY3TJMmbRDsj3YAXhtZhRHpTKJa2Ar4NfA091rq+pgOXAndl7TG0vlKhW4h2cjsBOIdo60b5uC7gAeBnwEPaEU2SqPv59dOJRuxbG8dJmieJZuTuDHxXr/+1oEK35uX3Ar4M/CcwyDhNHLwL3EI0Gtea65IKhWIpBxwDjANGGceJs+VEqzv+NPDdqdZhkkaFHhdevh44mKjcjyFbOz29R7TxzR3AExqNS5oViqWdiC69nQJsYhwnLp4leiM/IfBdXVZbRyr0OPLyGwCHAYcDo4HBtoGqYi5wL9G2tI+rxCVruu+MH0X0Bv4osjdDNwuYANwS+O7L1mHSQIUed17eAfYgKvfDgH2BetNM62Yp8DjwV+ARvHCacR6R2CgUSw6wD1G5HwPsYJuoKtqBp4jujXkg8N1/GudJHRV60kSj9+FEL/7PdH9sYZqpZ28RPWYymWgBiOfwwg7TRCIJUSiW/p2o2I8EhgINpoHW3bvAg0Ql/pfAd5cY50k1FXoaePmtgL2BnYEhwI7dnwdW+cxloqnzAHiDqMCjDy9cXOVzi2RCoVjqB+xJ9ETMyo84juBXED1iNgV4CXg88N0XTRNljAo9zbx8nuiFvxXR7lCbE61itXH3xwCi6fu6Hj4vJ1rIZUn355W/fo+owGcCM/HCtpr9fUQEgEKxtAnRm/gRRDN22xE9FrdRjSK8T1TaU7o/vwS8HPhue43OLz1QoYuIpEShWNqA6A381t2fV/31RkAT0K/7c1P3t5VX+dxOtHPZvDV8vBf47vzq/22kr1ToIiIiKVBnHUBERETWnwpdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEUUKGLiIikgApdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEU+H/hwjDTOC9PBwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 4 Axes>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 135,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"application/vnd.plotly.v1+json": {
|
|
"config": {
|
|
"plotlyServerURL": "https://plot.ly"
|
|
},
|
|
"data": [
|
|
{
|
|
"domain": {
|
|
"x": [
|
|
0,
|
|
1
|
|
],
|
|
"y": [
|
|
0,
|
|
1
|
|
]
|
|
},
|
|
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
|
|
"labels": [
|
|
"Py_kgeneration",
|
|
"generate",
|
|
"fftma2",
|
|
"covariance",
|
|
"gasdev",
|
|
"fourt",
|
|
"cov_value",
|
|
"ran2",
|
|
"build_real",
|
|
"prebuild_gwn",
|
|
"clean_real",
|
|
"cgrid",
|
|
"length",
|
|
"maxfactor"
|
|
],
|
|
"marker": {
|
|
"colors": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#00cc96",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#636efa",
|
|
"#00cc96",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa",
|
|
"#636efa"
|
|
]
|
|
},
|
|
"name": "",
|
|
"parents": [
|
|
"",
|
|
"Py_kgeneration",
|
|
"Py_kgeneration",
|
|
"fftma2",
|
|
"generate",
|
|
"fftma2",
|
|
"covariance",
|
|
"gasdev",
|
|
"",
|
|
"fftma2",
|
|
"",
|
|
"",
|
|
"",
|
|
""
|
|
],
|
|
"type": "treemap",
|
|
"values": [
|
|
1530.896938,
|
|
1198.768697,
|
|
332.127615,
|
|
330.818047,
|
|
891.8639310001546,
|
|
1.266409,
|
|
140.26829500008319,
|
|
282.56151199981946,
|
|
0.021324,
|
|
0.00865,
|
|
0.007677,
|
|
0.00193,
|
|
0.001254,
|
|
0.000354
|
|
]
|
|
}
|
|
],
|
|
"layout": {
|
|
"autosize": true,
|
|
"legend": {
|
|
"tracegroupgap": 0
|
|
},
|
|
"template": {
|
|
"data": {
|
|
"bar": [
|
|
{
|
|
"error_x": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"error_y": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
},
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "bar"
|
|
}
|
|
],
|
|
"barpolar": [
|
|
{
|
|
"marker": {
|
|
"line": {
|
|
"color": "#E5ECF6",
|
|
"width": 0.5
|
|
},
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "barpolar"
|
|
}
|
|
],
|
|
"carpet": [
|
|
{
|
|
"aaxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"baxis": {
|
|
"endlinecolor": "#2a3f5f",
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"minorgridcolor": "white",
|
|
"startlinecolor": "#2a3f5f"
|
|
},
|
|
"type": "carpet"
|
|
}
|
|
],
|
|
"choropleth": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "choropleth"
|
|
}
|
|
],
|
|
"contour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "contour"
|
|
}
|
|
],
|
|
"contourcarpet": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "contourcarpet"
|
|
}
|
|
],
|
|
"heatmap": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmap"
|
|
}
|
|
],
|
|
"heatmapgl": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "heatmapgl"
|
|
}
|
|
],
|
|
"histogram": [
|
|
{
|
|
"marker": {
|
|
"pattern": {
|
|
"fillmode": "overlay",
|
|
"size": 10,
|
|
"solidity": 0.2
|
|
}
|
|
},
|
|
"type": "histogram"
|
|
}
|
|
],
|
|
"histogram2d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2d"
|
|
}
|
|
],
|
|
"histogram2dcontour": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "histogram2dcontour"
|
|
}
|
|
],
|
|
"mesh3d": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"type": "mesh3d"
|
|
}
|
|
],
|
|
"parcoords": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "parcoords"
|
|
}
|
|
],
|
|
"pie": [
|
|
{
|
|
"automargin": true,
|
|
"type": "pie"
|
|
}
|
|
],
|
|
"scatter": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter"
|
|
}
|
|
],
|
|
"scatter3d": [
|
|
{
|
|
"line": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatter3d"
|
|
}
|
|
],
|
|
"scattercarpet": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattercarpet"
|
|
}
|
|
],
|
|
"scattergeo": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergeo"
|
|
}
|
|
],
|
|
"scattergl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattergl"
|
|
}
|
|
],
|
|
"scattermapbox": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scattermapbox"
|
|
}
|
|
],
|
|
"scatterpolar": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolar"
|
|
}
|
|
],
|
|
"scatterpolargl": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterpolargl"
|
|
}
|
|
],
|
|
"scatterternary": [
|
|
{
|
|
"marker": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"type": "scatterternary"
|
|
}
|
|
],
|
|
"surface": [
|
|
{
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
},
|
|
"colorscale": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"type": "surface"
|
|
}
|
|
],
|
|
"table": [
|
|
{
|
|
"cells": {
|
|
"fill": {
|
|
"color": "#EBF0F8"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"header": {
|
|
"fill": {
|
|
"color": "#C8D4E3"
|
|
},
|
|
"line": {
|
|
"color": "white"
|
|
}
|
|
},
|
|
"type": "table"
|
|
}
|
|
]
|
|
},
|
|
"layout": {
|
|
"annotationdefaults": {
|
|
"arrowcolor": "#2a3f5f",
|
|
"arrowhead": 0,
|
|
"arrowwidth": 1
|
|
},
|
|
"autotypenumbers": "strict",
|
|
"coloraxis": {
|
|
"colorbar": {
|
|
"outlinewidth": 0,
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"colorscale": {
|
|
"diverging": [
|
|
[
|
|
0,
|
|
"#8e0152"
|
|
],
|
|
[
|
|
0.1,
|
|
"#c51b7d"
|
|
],
|
|
[
|
|
0.2,
|
|
"#de77ae"
|
|
],
|
|
[
|
|
0.3,
|
|
"#f1b6da"
|
|
],
|
|
[
|
|
0.4,
|
|
"#fde0ef"
|
|
],
|
|
[
|
|
0.5,
|
|
"#f7f7f7"
|
|
],
|
|
[
|
|
0.6,
|
|
"#e6f5d0"
|
|
],
|
|
[
|
|
0.7,
|
|
"#b8e186"
|
|
],
|
|
[
|
|
0.8,
|
|
"#7fbc41"
|
|
],
|
|
[
|
|
0.9,
|
|
"#4d9221"
|
|
],
|
|
[
|
|
1,
|
|
"#276419"
|
|
]
|
|
],
|
|
"sequential": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
],
|
|
"sequentialminus": [
|
|
[
|
|
0,
|
|
"#0d0887"
|
|
],
|
|
[
|
|
0.1111111111111111,
|
|
"#46039f"
|
|
],
|
|
[
|
|
0.2222222222222222,
|
|
"#7201a8"
|
|
],
|
|
[
|
|
0.3333333333333333,
|
|
"#9c179e"
|
|
],
|
|
[
|
|
0.4444444444444444,
|
|
"#bd3786"
|
|
],
|
|
[
|
|
0.5555555555555556,
|
|
"#d8576b"
|
|
],
|
|
[
|
|
0.6666666666666666,
|
|
"#ed7953"
|
|
],
|
|
[
|
|
0.7777777777777778,
|
|
"#fb9f3a"
|
|
],
|
|
[
|
|
0.8888888888888888,
|
|
"#fdca26"
|
|
],
|
|
[
|
|
1,
|
|
"#f0f921"
|
|
]
|
|
]
|
|
},
|
|
"colorway": [
|
|
"#636efa",
|
|
"#EF553B",
|
|
"#00cc96",
|
|
"#ab63fa",
|
|
"#FFA15A",
|
|
"#19d3f3",
|
|
"#FF6692",
|
|
"#B6E880",
|
|
"#FF97FF",
|
|
"#FECB52"
|
|
],
|
|
"font": {
|
|
"color": "#2a3f5f"
|
|
},
|
|
"geo": {
|
|
"bgcolor": "white",
|
|
"lakecolor": "white",
|
|
"landcolor": "#E5ECF6",
|
|
"showlakes": true,
|
|
"showland": true,
|
|
"subunitcolor": "white"
|
|
},
|
|
"hoverlabel": {
|
|
"align": "left"
|
|
},
|
|
"hovermode": "closest",
|
|
"mapbox": {
|
|
"style": "light"
|
|
},
|
|
"paper_bgcolor": "white",
|
|
"plot_bgcolor": "#E5ECF6",
|
|
"polar": {
|
|
"angularaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"radialaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"scene": {
|
|
"xaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"yaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
},
|
|
"zaxis": {
|
|
"backgroundcolor": "#E5ECF6",
|
|
"gridcolor": "white",
|
|
"gridwidth": 2,
|
|
"linecolor": "white",
|
|
"showbackground": true,
|
|
"ticks": "",
|
|
"zerolinecolor": "white"
|
|
}
|
|
},
|
|
"shapedefaults": {
|
|
"line": {
|
|
"color": "#2a3f5f"
|
|
}
|
|
},
|
|
"ternary": {
|
|
"aaxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"baxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
},
|
|
"bgcolor": "#E5ECF6",
|
|
"caxis": {
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": ""
|
|
}
|
|
},
|
|
"title": {
|
|
"x": 0.05
|
|
},
|
|
"xaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
},
|
|
"yaxis": {
|
|
"automargin": true,
|
|
"gridcolor": "white",
|
|
"linecolor": "white",
|
|
"ticks": "",
|
|
"title": {
|
|
"standoff": 15
|
|
},
|
|
"zerolinecolor": "white",
|
|
"zerolinewidth": 2
|
|
}
|
|
}
|
|
},
|
|
"title": {
|
|
"text": "Time treemap"
|
|
}
|
|
}
|
|
},
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Qd4VGXah/H/tDQIvSOiYsEKdrHXxcW+rrr2+rFiWfuuvVfsZXFtiL1gg1WxIVbArrhIESxIR6SGlMnMfNd7QmJA0CTkmTnn5M51fdenkLznfX/PrN4ez4yRTCaTEV8IIIAAAggggAACCCBgLhAhvs2NuQACCCCAAAIIIIAAAp4A8c0LAQEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIICAL+N7nyPO08w58393Otv26qlD999VF153v954+hZ17dSOaSKAAAIIIIAAAggg4GsBX8b3J19NVHl5sgbu8psfVuuWzXVO/8Nqfq1lcTO1KG6msZ9/o/337qNmRQU5gT7k5Mt09imHarc+vXNyfS6KAAIIIIAAAgggEBwBX8b3ynz7H3uhOrZvo4du+6evZEvLyrV9vwG6+7p/rDa+k8lKJRJxX+2bzSCAAAIIIIAAAgjkRiDQ8f3fN0ev8NjJlbcO0VffTNX5px6ugf9+WtNmzFHnjm114RlHq23rYl17x+Oa/N1Patempc465VD122uHGvXpM+fp1vue1UdffKPS0nKt062TTvxbPx34px1XOZlPvpyoE86+seb3Cgvy9elr9+nSmx7SN5N/0ClH7afr73pCu/XppesuPMX7vqdeGun937QZc9WssEA7b7+5zj/1CLVv26pe+9jv2Au183abq1OHNnps6BtauHipNt6gu2665O/6/H/f6j+PDtOceQvUY52uuvqCE9Vz/bW99d0/LNzxwHMa9eEXmjd/oVq2aK7ttuyp8049Qh3btfa+54VX39dlAx/SE/dcqjsefE5fT/xOiVhMe+y0pS49+7ic/RuG3PzPg6sigAACCCCAAAKNKxCq+L72zsf08ptjtNO2m+nSs49VNBLVgAtv0/RZ87TBumvpyvNPUId2rXXVrUP0+rufaNTQ271HVxYsWqKDT7xUrVsW67JzjlOHdq30ysixuvuhF3TDxf1XGeCVlSl9Om6STj53oAZeeqp22m4ztWrRXFfd9ojeHfOV1u7SQf2P2V9dO7dX97U66r7H/qu7B7+gM046RPvttYMXx9fc/qjSmYyef/Bq5SXidd7HQSdcoiVLl+mv+++mk47sp5mzf9ZRp13j/dsBF+GXnHWM3B33k88bKPcPBU8Ousx71Vx844N6+4PPddMl/dWje1fNnb9AV9/2qJo3K9Tj91zifc/wN0brouvv14Y9uumq80/Qxut398559uX3aI8dt9SNl/Rv3FcgqyGAAAIIIIAAAk1IIHTx/dSLI1d4A+ajQ1/XTf9+yns0ZM+dtvJG+/EXE3TiOTd5d3d7b7a+F8Z3PfS8hg25Tuuv07Vm/Kf+6zZNnzlXLz/26x3u2q+N8ZO+1+F/v0qDbji75rET9w8Abg9P3XuZtti4h/ft5RVJ7XLwmd7d6tuuPL1mia8nfKe/DbhaN18+QP323L7O+3DxXVZeodeeHKhIJOKtd8Yld+q9MV/p/ZfuVssWzbxfu+fhF/Xgk6/oizce8L5vzs8LvChfq3P7mj08/vybuuHuJ/TRK/d6EV79bxNcwB91yN413+cM3V37sS8PUkF+XhP6nwhHRQABBBBAAAEEGk8gdPH90ogPvMc/qr9eeu0DXXLjgxrxxE1au2tH75cnTpmmQ0+5XINuPEe77dDLuzvufm3Uc3esIFsd7i5o27Qq/o366uL72WGj9OVbDykarQrj/038XkecepWuOv9E72517a8d9hug/ffZ0btTX9d9uPh2n+7i9l/95e5qj/10vN5+7vaaX3v0uTd00z1Peh7uDvgvC5d4j6R88tUkLVy0RKlU2vsHg6UlpTX/wFId38/85wpt1nPdmrVeHPG+90jNi4Ov1YbrrdV4r0BWQgABBBBAAAEEmpBA6OJ7xMiP9OHwe34T328Pvc17LGOF+F5+x/qYM67Tl+OnKBGPrTB690iIe7xkdcG5uvheeQ9jPhuvU867WfF4TNHld6qrL5SsTGnvXbbSHVefqbruw8X3umt31h1Xn7FCfH8+brJ3N7z6qzq+PxnxHxXk5+uYM67VTzPn6vJzj9emG63rPeryyltjNHDQ07+J75cfvcG7RvXXiLc/0vlX3+s9wtJrk6o7+nwhgAACCCCAAAII1E+A+O7TW6dddIemfD9d9w08b5V6XTq1U35e4je/V9f4Hj/5Bx3e/0pdMOBv3hswV/4qKsz3/sGgrvtoSHzPmvOLDjzhYl37r5N1yJ93qdnC/Y//V3c++Pxv4ts9A77lZhvUfN9zr7yrK25+WMOHXK8e63Sp36uM70YAAQQQQAABBBDwBIjvPr31wBMv699DXtJbz9zqfRJK9dfcnxeqID/hvSlzVV/V8f3v68/W7jtWfc63e+Z75TvfFclK7XzQGTp435118T+OWWGp736c6d1hds9k13UfDYnvyVOn6+gzrtU9153lfXKJ+3J39d3nlLs9vP7Uzd6z4NWPnZzb/zCdfNR+NXu9+rZHNOz1DzXm5UHeHXO+EEAAAQQQQAABBOovQHz36V3zKSPdunTQuX8/TJ06tNWkKdO8NyK6555rv0myNrH7eMK+R12gYw7dx7ub3KN7F9006KnfxLf7GfemznsfHaZz/36495x5RTKpof99R08PG6Wh91+pjXp0q/M+GhLfqXRGex9+rnptsr73qS+Ll5TorodeUJdObb03iN582alelL/1/mfexze6u9unHX+wNt94PX02brKuvOVhHbDPjrrqghPr/yrjJxBAAAEEEEAAAQQ8AeJ7+X+Z0oX0bfc/6/0XM5eVlnufe913j+10+gkHr/KRk+rXj3sz52ujPpb7L26+MPga7xNGVr7zXf29tT/nuyAv4T13PeD4g7RNr41qXo512UdD4ruosEDvjR2nm+992vsEF/cRiP2POUD77rGdTjznRrk74xf/42jvuXQX3w/ccoGGPPOaPvt6kvc533vvuo0uPetYFRTwSSf8tQMBBBBAAAEEEGioQCDiu6GH4+fqL1D92EntT4ep/yr8BAIIIIAAAggggMCqBIhvXhcrCBDfvCAQQAABBBBAAAE7AeLbzjaQKxPfgRwbm0YAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxbTTD4a+lG2/lTEaKRH5db+U/b7wrsRICCNRHIBv/28zGNepzZr4XAQSahIDLjgP6RpvEWbN9SOLbSNzF9/ARKaPVWRYBBBBAAAEEELATOKhfjPg24iW+jWCJbyNYlkUAAQQQQAABcwHi246Y+DayJb6NYFkWAQQQQAABBMwFiG87YuLbyJb4NoJlWQQQQAABBBAwFyC+7YiJbyPb1cV3NCrdf3tClZVVF05npDlzM3pueErjJ2YatJt9do+qS+eIHnkqGM+Y77R9VB9+VPWG1H/0j+vjz9Ma+2kjvkG1QYr8EAIIIIAAAghUCxDfdq8F4tvI9o/i+4IrKrVgYUYuxrfaIqoTjorp4muSWryk/hvyU3y7d0e7D2dY3Zf7/VuvSejcS5PetxQVSslKKVn1p3whgAACCCCAgA8EiG+7IRDfRrZ1je/qy1/xz7iGvZrWAftG9epbaX32ZdWd4F6bRXVwv6iuGrj8Vvkq9ls7vlu3iuiis2N64LGUfpiW0QlHxrT+uhHN+1ma/F1G7dpIg59IqWOHiI47IqaWLaTycunJ51Oa+n1G3bpGdNLRMY0bn9EGPSLe7z/53K935ff7U1R9to1KGWnC5IyeeTGlypR0z8CEXn0zpX33iumCy5Pq3CmiYw+PqaioKqzdGhO/zej0U2LqvVlUs+ZkdMe9KR1zeKzmzvc2vaM68M9RxaLSoiXSo8+kNHtORnvvFtVaXSJKJKT27SLe7w8anNL8Xxr2bwqMRs6yCCCAAAIIhEaA+LYbJfFtZFvf+L7qwrj36EnnjhGtv15Egx6qeoTkxKNimj03oxFvrf6xjOr4fuq5lP51VlxvvlP1GMfuO0W1/dZR3XxPpVoUR3TxOTGNn5TxHk+5/IK43vkgrffGpLXO2hGdcUpMF15V6UW5+weBu+6v1P8mZLTdVlHttWtUN9xRqd6bR/WX/av+2AX7gJNiXlCPfDetO29I6IOxae8M7s73ZRfENfKdtEZ/ktZ2W0d14L5RXXpdpZo3k265OqFTz6u61V392MnkqRld+a+4rr2lUnN/zmjXHaPaZYeorrutUnvu4qI8pituTGrRYnlRv3SZ9OLLwXjMxuglxrIIIIAAAgiYCRDfZrQivo1s6xrfsZjk7vge9deYLromqbxERNdfGtd5lye9wL3t2oSuu7VS8+av/i5vdXzn50mz56rm88X7Hx/T1B+q4th9uWiNxqT/vpbWNRfHdcY/kzWPiFx6XlxDh6W0tES68Oy4zvxXVRy7O87/6B/TP6+s/M0/CGyxaUR994zp5rsrdcf1CS/Yv/uhap95CXl3xNNpeXfPB16Z0N/PTa42vhNxacstot4a7svd5b73loTOvDCpPttEtUnPiO55oCq299otqu7dIhr8OPFt9PJlWQQQQACBJi5AfNu9AIhvI9s/iu+aN1ympZmzM3rmpZS+nVoVruefEdeYT9LeYxV/PTCma29d/SMn7vtdfB+wb0zxuOTufr8/tiq2zz0trtEf//pmxv32iapdu4je/TCti8+Je8+cV3/l50f02LNVj3mcPcA9OlJ1za6dIzV/7u5Sr7dOROXlVT/nnld3z6hfc0tVfN9we6XmzKv6PXfHfI9donL/cOEeE3GPs/Q/Z/Xx3aa11KnjikE96OaErrypUpttHPGu++BjVbHt7oTX/nOjEbIsAggggAACTVaA+LYbPfFtZPtH8V39hstVXX6XPlHvbrh73MQF+Bujfv+TQFx899o0qqdfTOm80+NerLufG3BiTBOnZDTq/aqfd89XuxgePiKtqy+Me3eVV/6qHdsrx/fxR8Y0c1bGe6xl5S8X39ffVvXISOuWEV1/WVxX31zpPdvtnkO/6Yr478a3u/O9Va+o7ryvKvrz8iQX3+7u/I7brRjbxLfRi5ZlEUAAAQQQWC5AfNu9FIhvI9s1iW/3JkX3mIZ77MQ98/zLgt9/Y2HtN1z22yeqTTaM6tZBleq7Z1SbbBTV7fdWqlWLiC45L6avJ1Q98+2eyX797bQ+/iyt4ubSkX+J6ZFnUmrX5tc73SvHt3ujpHtDqHvMpKxc3nPZqZS8jw2sHd8u4C84M67zL096j538Zf+Yt5fTL0gqFpfuvD7hPdZSXvHrM9+TpmS8fyBwd9FdwLvnzN0/gNx0V9Uz39z5NnqhsiwCCCCAAAKrECC+7V4WxLeR7ZrEt9vSGf8XU3GziPfmxj/6qh3f7lEQ90iJe2zFvdmx/3Fxde0izZgpTZ+Z8Z65fuTpXz/tpE2rqs8af3NUWu98mF7hMZOV49v9uXt0xd2JdnfQ58yTHn4ypYWLMivEt/u+k46JaaMeEZUsk54dltJB+8a8x1TcedzjMGuvFfHuch/Q99dPO9m6d1QHuU87iUm/LJAefTrlPetOfP/RK4DfRwABBBBAoHEFiO/G9ay9GvFtZLum/4VL9zGAP83IaNQHa/Yfn6n9udvuE0PcGyHdJ5LwhQACCCCAAAIIrE6A+LZ7bRDfRrZrEt9dOkV0zoCYLr+hUqVlDd+ge0zksIOrPiPcRfhFZ8e9570/H7dmQd/wHfGTCCCAAAIIIBAEAeLbbkrEt5FtQ+P70ANicv/5dfcfmPny66pI7tQhotNOjq1yp+4NjfcOXvWdbPeYx1GHxtRrs4j37PWnX1b9Z+x/779AacTBsggggAACCCAQIAHi225YxLeRbUPj22g7LIsAAggggAACCNRZgPiuM1W9v5H4rjdZ3X6A+K6bE9+FAAIIIIAAAv4TIL7tZkJ8G9kS30awLIsAAggggAAC5gLEtx0x8W1kS3wbwbIsAggggAACCJgLEN92xMS3kS3xbQTLsggggAACCCBgLkB82xET30a2xLcRLMsigAACCCCAgLkA8W1HTHwb2a4qvt1/5Kbmc/7cB29Xf1V/9l9j/Zpb161Zez2//drvuWdj73Wde2PPpj7rrTy/uu6Z72tSAsNHpLRpz4h6rBttUufO9WF/np/R6I/5bybkeg5c306A+LazJb6NbFcX339aMsToiiyLAAJNTWDGpofphvsKvPg+ZefJSkwc29QIcnLeZId1NXT6rsR3TvS5aLYEiG87aeLbyPb34rts6GCjq7IsAgg0FYF4r+0055CrVojv1DX9m8rxc3rO2OnXEN85nQAXz4YA8W2nTHwb2RLfRrAsiwACngDxnbsXAvGdO3uunD0B4tvOmvg2siW+jWBZFgEEiO8cvwaI7xwPgMtnRYD4tmMmvo1siW8jWJZFAAHiO8evAeI7xwPg8lkRIL7tmIlvI9uwxPe4ZFRdYxm1jWaMpFgWAQQaIlCfx07erYjpoWV56ptfqbVi6Zo//lthUqMrYtolL9WQLazyZ54ri+uN8riSGalXIq1TiypUUOvDnRrtQjlciPjOIT6XzpoA8W1HTXwb2QYlvt0HZf3eB5TdtDRPhxRUasM4H6ll9FJhWQQaJFCf+L5laZ42TaT15/xK1f7j71NRPVka1yXNKxq0h5V/aGxFTE+XJXRF83IVRjK6uSRfG8dT+mtBZaOs75dFiG+/TIJ9WAoQ33a6xLeRbUPi+6WyuF4rj6tlJKN98lN6oSyuQS3LvB26P363Ii53A2nzeErHFyUVl3TCwgIdXVipscmY5qQi2jO/Un9Z/je6z5MxPVEaV6Ui6hhNa0BRUq2jGb1cFtePqah+SEW0VSItd/frkWUJfZKMyd3f3jSe1qnNKvTfsrieLU2oTTSjY4uS2j5RtadV7cOIkWURQGA1AnWNb/e/2ZfKEiqKZNQ5mtHUVNT7Y3e3+/2KmEoyEW0QS+u4oqT+XZJQ70RaEyqjWpqJqH9RhffXi1npqDaNp3RKUdLbjbuT/nxZQqmM1C6a0T+aVXj/dsytXZmRNlr+D+vuZ13gn9msceLeLy8G4tsvk2AflgLEt50u8W1kW9/4npGK6NIl+bq9RbmaRzO6eWmeZqSiuqdlmRfFT5YmdF1xuQoiGd26/C5Wv/xKnbSwwAv1IwuT+iUd0emLCjSkValKMxGdvThfVxdXaO1Y2gvpiZVRXdC8QiPK43quNK7rW5SrYzSjT71IT2hgcZlc3V+0ON+7271TXkrnLs7XqUVJ78737+3DiJFlEUBgDePb/fjApXnaIS+lXfNSK/yxu1M9siLm3fmelorqAu+vGeVePN9ZkqdpqYhuLC73/qH85EWFuqtFmRIRqf+iAt3eosz768d9yxLeTYH+y8O89nZvWJqnbRNp7Z3PnW9eyAgETYD4tpsY8W1kW9/4frM8ri+TVXHsvj6siOmp0oQX34NK8tQlltbBte5oDy+L68rici++Lyuu0LqxqsdC3J3wgS3KvTtXHyz/m6r79bKM+71CPdm61Hse87NktOZfNbu/sZZnVPNcpvubaftoxruDXju+f28fRowsiwACWYzvK5fkaXCrqn/b9nRpQksy0v8tj+ozFxXo3OZVf60pzUiFy5/jdn+dGVUR12XNy1fY6dCyuCYkY7qsuNyL8zB9cec7TNPkLKsTIL7tXhvEt5FtfePb/avhOemoBhRVxfekyqjuLsnz4tvdPfq2MloTxy6z3aMpN7Woim93B7vT8jdEVv/5xxUxPVuWUIvIr2+UXJaR7mhR7j2i4tY/a/m/Cl6cieixZQlNT0e8v0nOTUe8Z0MPXSm+f28fRowsiwACWYzvG5fm1Tzq5h45cxl+XGHVoyZnLS7wHi9ZL5b2Hkf7srLq3SIl6Yj36MnlxVXx7f6K8/CyhGalIzq/WYXyw1bekohv/mfZFASIb7spE99GtvWNb/es9/jKqM5bHsTuEwjcoyYuvu9dluc9OrLfKv7V7erie3JlVO5fKf9zFW+kctdyv+/+Ruq+3J3uykxEA5pVeG++dNfrEE3/Jr5/bx9GjCyLAAI+i+9ZqYheLIt7j7Q1i2T0XkVM75THa+L7kdKE9wic++tLLKTTI75DOliOtYIA8W33giC+jWzrG99TKqPeHe47WpZ7b4a6fmm+9wZKF9/umeyhpVWPmbh/1ftWeVzxSEa756VWe+e7UPIeGbm2Rbn3Jiu3vvub5ElFSe9NnbXj+9aSPG0YS+uAgkr9kIp6z5vvmJfS0YVJ7xlQ94bO3onU7+7DiJFlEUDAML7d+zjcG72vLS7XT6mo6nLn2/1bOPeI3IXNK7w3a7r3oLg75NcXl+ubyqgeWpbwHn0La3i7cRDf/M+yKQgQ33ZTJr6NbOsb324bj5YmvOe03fPW7o1R7pMC7q71aSfvVMS9Txdwz3+ftvyTS1Z359s9hlL9aSflmYj3sV8nFyXVM57+TXxXP+KSB1X3AAAgAElEQVQSj8j71INt81IaVJLQGc2S3ieiDC9LeG/odI+iuMdjVrUPI0aWRQABw/hemI7ooiX5co+yuTdd1iW+3V+f3PctTUe8Tzg5qjCpgSV52jMvpfnpiPcJKrXDu1ss7T0iF6Yv4jtM0+QsqxMgvu1eG8S3kW1D4ts9K1n9eKR7BOXx0oRuWP4cpdE2WRYBBAIqUNePGgzo8Xy9beLb1+Nhc40kQHw3EuQqliG+jWzrG9/uTY9nLCrwPk7Q3Slynyzi7lafuIqP7zLaMssigECABIjv3A2L+M6dPVfOngDxbWdNfBvZ1je+3Tbcs9zusQ73r4DdJwoMaJZUca1PKzHaKssigEAABYjv3A2N+M6dPVfOngDxbWdNfBvZNiS+jbbCsgggEEIB4jt3QyW+c2fPlbMnQHzbWRPfRrbEtxEsyyKAgCdAfOfuhUB8586eK2dPgPi2sya+jWyJbyNYlkUAAeI7x68B4jvHA+DyWREgvu2YiW8jW+LbCJZlEUCA+M7xa4D4zvEAuHxWBIhvO2bi28iW+DaCZVkEECC+c/waIL5zPAAunxUB4tuOmfg2siW+jWBZFgEEiO8cvwaI7xwPgMtnRYD4tmMmvo1s6xPfBYedZLQLlg2aQNnQwUHbMvvNkUBd3nDpvie+4WY52mE4LpueN0sV74xY4TDEdzhmyyl+X4D4tnuFEN9GtvWN7+/yTzDaCcsGRWC9Ht+q7KqTg7Jd9pljgbrG9//+73S9nlqw2t1m5P7bulVfkZr/xm7DD1ff9dz3N8Z1G77j1f/kpipQvxeHEd8WuKzpewHi225ExLeRbUPi+5vhKaPdsKzfBTr0jGi7P08lvv0+KB/trz7x3eenN3y08+BsZWiXXYjv4IyLnTayAPHdyKC1liO+jWyJbyPYkC5LfId0sIbHIr4NcZcvTXzbG3MF/woQ33azIb6NbIlvI9iQLkt8h3Swhscivg1xiW97XK7gewHi225ExLeRLfFtBBvSZYnvkA7W8FjEtyEu8W2PyxV8L0B8242I+DayDUp8P/zTYTq8y71qFmtnJMGydREgvuuixPfUFghqfPceMlpzeq2lWVuu7fuB8tiJ70fEBg0FiG87XOLbyJb4NoIN6bLEd0gHa3isIMZ3JJNRrKxS6URU6XjMUKdxlia+G8eRVYIpQHzbzY34NrJtzPj+ctGzGr/0FRVGW2rj4j/ri0XP6KiuQyRlNHrBA/ph2VhJaXUu2EK7tT1LUcX01eLnNWHJCGWUVmGstfZsd4FaxDvpp9LP9OEv9yoSiWqDZnvoq8Uv1Nz5nlb6sT5aMERpVao43km7tz1b8Ui+Hp1+tI7p+ogKYi09rQ9/uU/xSJ62b32ikV7TW5b4bnozX9MTN0Z8N5uzWJs8/7kKFpaqtG0zjT9sa5W2aabmsxdr4xe/UKKkXOl4VFP7bqp5G3fWdveM0g+7b6S5m3Xxtt9h/Ex1f2eyPjl9d3X+fJrWfXuiIumMyloVavwR26qsZaF6PTJGJZ1aqPNnP+qbQ7dWtzFTa+58t5i+QD3ddUqTXoxPPKiXFvRor+JZi7TJs5/q5407q9X3Pyt/SZkmHdhL8zfsqHhpUhu/8LlaTvtFqfy4Jh3QS79s0EGx8kr1HPal9+uZaFQ/7dRD07dfd42Yie814uOHAy5AfNsNkPg2sm2s+F6Q/EnDZp+vw7v8RwXRYr0+7xotTE7XkV0f0o+lH+mjBQ/r0M53eZ/Q++Lss9W7xeFaq3BLPT3jFB3d9RElooWatPRNVWbKtUlxPz0x/Xjt1vZsdSvcWt8seUUf/DJIR6/1iCKK6ZmZ/XVQp1vUJtFd4xa/oNnl3+hP7S/Vq3MvU4+iXbVR8308rSdnnOD9eru89Y30mt6yxHfTm/manniN4zsj7XDnW/pun000d9Mu6v7uZLWZOk9fnrijdrj9LX2/V0/N7tVNLtC3HfSuPvxnX3X99Afvz8cfvo23/U2f/VRLOrfUrK27a5frR2jMuXt78b7xC1+4vyRpwiFbaovHxypvabk+P3lnpRMx1X7sZPu739a0ndbXrK3WVqevftJ6b03U6PP2UfM5i7X9nSP15Qk7esHd8avpWnv0VH0yYDdtNPwrZSIRTT5gC7X4aYG2GvyB3rukn9Z/bbwSJRXe3hKlFdru7rc17rg+3v4a+kV8N1SOnwuDAPFtN0Xi28i2seL7myWvanrZ517suq8pJe/qk4WPevHt7nwnM2VKRAq933tv/t0qjnfQ5i0O0WPTj9b2rU7Ues12VkG0hff7C5M/6cXZ5+rEbkO9P09lKvTgtIN1zFqPakbZV5pS8o76dbjG+71kplRDph2uU7oP8+L9x9KP1bf9Zfq5YorenHfD8usb4TXBZYnvJjj0NTzymsZ3wYJl2uHOkXrnygO8nURSaUVTaeUtKfd+fdRVB3oB7b62HfSOd8d7aacW2u7fo/TeJft5v77rta/oo7P28u5wuzvP7k60+3Ih3eXTH73g3uLxj7R4rVbez7uv2vEdTaaUiUWViUa8u9s73/iaRl53sBff2wx6V+9cVbW35rMWqfcjY/TBhftqp5te07hjd9CSLq2833N3zZOFCe008HX978httahbG+/XN3j1a6Xy4vpu740bLE18N5iOHwyBAPFtN0Ti28i2seLbPWKyuHK29ziJ+5pTPkFv/3yLF79lqUUas/AhL6rd15LKOdqs+ABt1fJI/VwxVV8setYL9/Z5G2q3tmdqWWqBRv580/JHVqoO/tC0Q/S3rg94Uf/pwidUGKsKdfdVni7REV3uVzQS01MzTtZxaz2hzxc94z3Ksl2r443kmuayxHfTnPuanHpN49s98uHC2AVt7S/32MbmT368wq/3fni05m3WRTO2XUfb3zXSe9Qjms6oxxvfeHej3bPc6701QW0nz/GWco+GlLUq0uenVMW3u3s9Y7t1vN+rHd/ujrZ7DCWSyiiSTnuPm4y8/hAvvrd86EO9f/GfvZ+p/ed7XDZMY8+pusNe+2uPy4ersiChTKzqnxiilWnN3mIt7w55Q7+I74bK8XNhECC+7aZIfBvZNlZ8j1/ysmaWjdM+7S/2djq15D19vPARL77dne6Ukt6z2RFF9e78O7073y6+q7/SmUp9tuhJza/4Xtu3Pkkv1brz7e5uD552qHfn213ju2UfqG/7y1cp8vKcS7RFi4O8x1zc8+Nt89YzkmuayxLfTXPua3LqNY1vd+e7z+1veXeX3WMc7q534S8lSkejVXfEl/+626O72/39nj29577dc93xsqQXt+45cffYiLvTvc7bk/TpqbupsjChzl9MU+fPpv0a3xt19MK9dnz/0qO9dhr4hj76x54q6VCs/EWl2vmm1/4wvt2d76+P2l6Lu7X21iuat0RlrZupz+1vatzR7o54wx8zWXkexPeavEL52aALEN92EyS+jWwbK77nVUzWq3Ov0BFd7lNepMj74yWVs734fnPedeqYv7G2aPEXza/4Tq/Pu1Y9inbROkV99NXi57RXu38qFsnT5JKRmlryvvq2v1SPzThWe7Y933vm270p08X00WsNUVRxPTtrgA7ueKtaJrrIXXfy0re1U5tTPSH3+MtPZZ9pQXKa/tblASO1prss8d10Z9/Qk69pfCsj9bnjLf246waauXV3rf3hFLWdNEdfnLiTF+Xf77mRZvfupuKZi7TVg+9r9AV9vcc7in5eqs2f/Ejxskp9euquKm9RqG6jp6rtt3P05fE7eo+BbP7ER95jKO6NmN6d71XEt3tsZOv739P7F/XzHjtxz2x3f3+y3r76IBX9UrLaO9/uTZXRZFoTDt1SzZfv7f3lz3zHkilNOHhL7y76BiP+p9lbrq3FXaseT2nIF/HdEDV+JiwCxLfdJIlvI9vGim+3vTELHtTUknfVPN5eGzTbU18vfkl/6/pgzSMosUhc7fM30rqFfTRq/m3ao915mlX2tXcn272RsijW2ntspXVibe+TUUYvuM97Xrxn875eVLs3WRbHO6r6007cmzPdGzV3bjNAnfI39YTcIy6PTT9GvVserm1bHWuk1nSXJb6b7uwbevI1jm/3OMds92knn8ndBV/WvniVn3aSSsT0bb/NvU8Uqf5yd8Yr8+PenW73lVdSrl5DxnhvdCxvWagp+26qXo+O1YxtuqvZvKWrjG/3Od/uDZutv/9ZycI8fbvf5t6jK+7TUib8ZcvVxreL+42f/1ytfpzvPWYy6cAtNH+DjjWfduJ+3a0xr2cnTd5/C++Z8oZ+Ed8NlePnwiBAfNtNkfg2sm3M+M4oo8jydz65x0PGLhisv3S+w2jnLJsLAeI7F+rBvmZjxHewBex3T3zbG3MF/woQ33azIb6NbBsrvt0d5ydnnqRDOt2m1onuemf+7UpEirRTm78b7ZxlcyFAfOdCPdjXJL7t50d82xtzBf8KEN92syG+jWwbK77d9iYsHeF9con7lJF2eT28z+mu/vhAo+2zbJYFiO8sg4fgcsS3/RCJb3tjruBfAeLbbjbEt5FtY8a30RZZ1kcCxLePhhGQrRDf9oMivu2NuYJ/BYhvu9kQ30a2xLcRbEiXJb5DOljDYxHfhrjLlya+7Y25gn8FiG+72RDfRrbEtxFsSJclvkM6WMNjEd+GuMS3PS5X8L0A8W03IuLbyJb4NoIN6bLEd0gHa3gs4tsQl/i2x+UKvhcgvu1GRHwb2RLfRrAhXZb4DulgDY9FfBviEt/2uFzB9wLEt92IiG8jW+LbCDakyxLfIR2s4bGIb0Nc4tselyv4XoD4thsR8W1k2xjxvcmBMaPd/XbZipKMpoxMZ+16XGhFAeKbV0R9BdYkvvu26KY+zTvV95Kr/f4rZ37SaGv5aSHecOmnabCXbAsQ33bixLeRbWPF94gdKo12+Ouy7RRRr5FR4ttcevUXIL5ziB/QS69pfD/dYj21mj1hjU8/bp3t1GvKy2u8jh8XIL79OBX2lC0B4ttOmvg2sm3M+L51boXRLquWvaFDPvFtKvzHixPff2zEd6wo0Cjx/fp1a8basafG7XAC8b1mivw0Ar4UIL7txkJ8G9kS30awIV2W+A7pYA2Plc34XlSe1uKyjLq1XOlROOLbcMIsjUBuBYhvO3/i28iW+DaCDemyxHdIB2t4rMaM789mVaisMqNUWsqLSZ2ax9QsL6qv51SoeX5UyyoySmekVgURjZuT1DFbNFM8Kon4NpwwSyOQWwHi286f+DayJb6NYEO6LPEd0sEaHqsx4/vL2RValqwK7AVlae2/YaEikoZPKlWX4pjmlqQUj0aUiMmL9H17FCrivoH4NpwwSyOQWwHi286f+DayJb6NYEO6LPEd0sEaHqsx43vlbX47v1LRiNSjTfz3T0B8G06YpRHIrQDxbedPfBvZmsd3JqOqW091+yr++iO1/eBVpfKLFE0lNf3os5Uqau79MG+4rJuh5XcR35a64VzbMr7rLEZ815mKb0QgaALEt93EiG8jW4v4bvHlaLX6dJTSBUWac8BxavPBCOXNm6VIZYVK19lI8/b+qzq/8KB3IhfWRVPHa17fw1Wy/ubq+PJjmrfPX5XOL1SnYUNU1nVdLdxmN+LbaP71XZb4rq8Y3098278G+KhBe2Ou4F8B4ttuNsS3ka1FfLu7123GvKEf+1+mSDqt1h++pl926ef98YZXnqxJVw1Wp5cGK9m2o+bvur+aT/xCLcaN0czDT6s5ZaxsmdZ+4DpNP/YcJVu1I76N5l/fZYnv+orx/cS3/WuA+LY35gr+FSC+7WZDfBvZWsV3sylfa/Yhp3jB3f6NZxRbuliZWFytPxqpidc/po7Dhqhk/c20ZPPtVfTdBLUZ/ZqmH3OOd8rCad+q/RvPau5+x6isc/eak/PYidGLoB7LEt/1wOJbPQHi2/6FQHzbG3MF/woQ33azIb6NbO3i+3+afcjJaj7pK7X54FVNO/kixZYt9e58T7zhCXUc/sgq47t4/Kdq+fn7mnnEaUrn5a9wauLb6EVQj2WJ73pg8a3Ed5ZeA8R3lqC5jC8FiG+7sRDfRrbW8R1fslDdBt+osi7rKFXcUnlzZ6qiQ1dFS0tWGd89Lz5Gpd03VCae8E68uFcfLdxmd++PiW+jF0E9liW+64HFtxLfWXoNEN9ZguYyvhQgvu3GQnwb2VrEt9FWiW8r2HqsS3zXA4tvJb6z9BogvrMEzWV8KUB8242F+DayJb6NYEO6LPEd0sEaHotnvg1xly9NfNsbcwX/ChDfdrMhvo1siW8j2JAuS3yHdLCGxyK+DXGJb3tcruB7AeLbbkTEt5Et8W0EG9Jlie+QDtbwWMS3IS7xbY/LFXwvQHzbjYj4NrIlvo1gQ7os8R3SwRoei/g2xCW+7XG5gu8FiG+7ERHfRrbEtxFsSJclvkM6WMNjEd+GuMS3PS5X8L0A8W03IuLbyJb4NoIN6bLEd0gHa3gs4tsQl/i2x+UKvhcgvu1GRHwb2RLfRrAhXZb4DulgDY9FfBviEt/2uFzB9wLEt92IiG8jW+LbCDakyxLfIR2s4bEaJb5H3rJmO2y7rsbtcIJ6TXl5zdbx6U/zUYM+HQzbyooA8W3HTHwb2RLfRrAhXZb4DulgDY+1pvE9fL0/NcruJi6dQ3w3iiSLIOAvAeLbbh7Et5Et8W0EG9Jlie+QDtbwWGsS34bbCtXS3PkO1Tg5TD0FiO96gtXj24nvemDV51uJ7/po8b3EN6+B+goQ3/UVq//3E9/1N+MnwiNAfNvNkvg2siW+jWBDuizxHdLBGh6L+DbEXb408W1vzBX8K0B8282G+DayJb6NYEO6LPEd0sEaHov4NsQlvu1xuYLvBYhvuxER30a2xLcRbEiXJb5DOljDY9UnvveeMcpwJ+FdekinHdTvxWGqeGfECoeMnX6Nhk7fVaM/Tof38JysyQsQ33YvAeLbyJb4NoIN6bLEd0gHa3isusZ3/j9vMNxF+JdOPnAL8R3+MXPCVQgQ33YvC+LbyJb4NoIN6bLEd0gHa3isusS34eWb9NLc+W7S428yhye+7UZNfBvZEt9GsCFdlvgO6WANj0V8G+L+wdLEd+7suXL2BIhvO2vi28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28i2MePbaIs1y7ZTRL1GRjVlZNr6Uqy/GgHim5dGfQWI7/qKNd73x06/RkOn76rRH/PXzMZTZSW/CRDfdhMhvo1sGyu+jbb3m2UrSjLEd7awV3Ed4juH+AG9NPGdu8ER37mz58rZEyC+7ayJbyPbxohvo62xrA8FiG8fDsXnWyK+czcg4jt39lw5ewLEt5018W1kS3wbwYZ0WeI7pIM1PBbxbYj7B0sT37mz58rZEyC+7ayJbyNb4tsINqTLEt8hHazhsYhvQ1ziO3e4XNk3AsS33SiIbyNb4tsINqTLEt8hHazhsYhvQ1ziO3e4XNk3AsS33SiIbyPbhsS30VZYNiAC6/X4VmVXnRyQ3bLNXAsQ37mbAI+d5M6eK2dPgPi2sya+jWzrG99G22DZgAmUDR0csB2z3VwJEN+5kpeI79zZc+XsCRDfdtbEt5FtfeLbaAssiwACIRYgvnM3XOI7d/ZcOXsCxLedNfFtZEt8G8GyLAIIeALEd+5eCMR37uy5cvYEiG87a+LbyJb4NoJlWQQQIL5z/BogvnM8AC6fFQHi246Z+DayJb6NYFkWAQSI7xy/BojvHA+Ay2dFgPi2Yya+jWx/L76NLsmyCCDQxARmbHqYbrivQJv2jOiUnScrMXFsExPIzXGTHdbV0Om7avTH6dxsgKsikAUB4tsOmfg2sl1dfBtdjmURQKCJCgwfkfLiu8c6kV8FIhEpk5Gq/39tm1X93sq/9kd/7tZb3ff80e9V76X2zwdwdj/PzxDfAZwbW667APFdd6v6fifxXV+xOn7/quK7jj/KtyGAAAIIIIAAAjkVIL7t+IlvI1vi2wiWZRFAAAEEEEDAXID4tiMmvo1siW8jWJZFAAEEEEAAAXMB4tuOmPg2siW+jWBZFgEEEEAAAQTMBYhvO2Li28jWxTdfCCCAAAIIIIBAEAXce6IP6BsN4tZ9v2fi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggHVUwz8AAAF/SURBVAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HuB/weMQ6kSWZOVxAAAAABJRU5ErkJggg==",
|
|
"text/html": [
|
|
"<div> <div id=\"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\")) { Plotly.newPlot( \"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\",\"labels\":[\"Py_kgeneration\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"fourt\",\"cov_value\",\"ran2\",\"build_real\",\"prebuild_gwn\",\"clean_real\",\"cgrid\",\"length\",\"maxfactor\"],\"marker\":{\"colors\":[\"#636efa\",\"#EF553B\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#00cc96\",\"#FFA15A\",\"#19d3f3\",\"#636efa\",\"#00cc96\",\"#636efa\",\"#636efa\",\"#636efa\",\"#636efa\"]},\"name\":\"\",\"parents\":[\"\",\"Py_kgeneration\",\"Py_kgeneration\",\"fftma2\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"\",\"fftma2\",\"\",\"\",\"\",\"\"],\"values\":[1530.896938,1198.768697,332.127615,330.818047,891.8639310001546,1.266409,140.26829500008319,282.56151199981946,0.021324,0.00865,0.007677,0.00193,0.001254,0.000354],\"type\":\"treemap\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
|
|
" \n",
|
|
"var gd = document.getElementById('03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0');\n",
|
|
"var x = new MutationObserver(function (mutations, observer) {{\n",
|
|
" var display = window.getComputedStyle(gd).display;\n",
|
|
" if (!display || display === 'none') {{\n",
|
|
" console.log([gd, 'removed!']);\n",
|
|
" Plotly.purge(gd);\n",
|
|
" observer.disconnect();\n",
|
|
" }}\n",
|
|
"}});\n",
|
|
"\n",
|
|
"// Listen for the removal of the full notebook cells\n",
|
|
"var notebookContainer = gd.closest('#notebook-container');\n",
|
|
"if (notebookContainer) {{\n",
|
|
" x.observe(notebookContainer, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
"// Listen for the clearing of the current output cell\n",
|
|
"var outputEl = gd.closest('.output');\n",
|
|
"if (outputEl) {{\n",
|
|
" x.observe(outputEl, {childList: true});\n",
|
|
"}}\n",
|
|
"\n",
|
|
" }) }; }); </script> </div>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 256"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 94,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"Executing file number 1 out of 10\n",
|
|
"Executing file number 2 out of 10\n",
|
|
"Executing file number 3 out of 10\n",
|
|
"Executing file number 4 out of 10\n",
|
|
"Executing file number 5 out of 10\n",
|
|
"Executing file number 6 out of 10\n",
|
|
"Executing file number 7 out of 10\n",
|
|
"Executing file number 8 out of 10\n",
|
|
"Executing file number 9 out of 10\n",
|
|
"Executing file number 10 out of 10\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"df = analyze(['log_256-aa', 'log_256-ab', 'log_256-ac'])\n",
|
|
"df"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 96,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"text/html": [
|
|
"<div>\n",
|
|
"<style scoped>\n",
|
|
" .dataframe tbody tr th:only-of-type {\n",
|
|
" vertical-align: middle;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe tbody tr th {\n",
|
|
" vertical-align: top;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr th {\n",
|
|
" text-align: left;\n",
|
|
" }\n",
|
|
"\n",
|
|
" .dataframe thead tr:last-of-type th {\n",
|
|
" text-align: right;\n",
|
|
" }\n",
|
|
"</style>\n",
|
|
"<table border=\"1\" class=\"dataframe\">\n",
|
|
" <thead>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
|
|
" <th colspan=\"5\" halign=\"left\">time</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th></th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>median</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>count</th>\n",
|
|
" <th>max</th>\n",
|
|
" <th>mean</th>\n",
|
|
" <th>min</th>\n",
|
|
" <th>sum</th>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>function</th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" <th></th>\n",
|
|
" </tr>\n",
|
|
" </thead>\n",
|
|
" <tbody>\n",
|
|
" <tr>\n",
|
|
" <th>Py_kgeneration</th>\n",
|
|
" <td>7421.6</td>\n",
|
|
" <td>7421.6</td>\n",
|
|
" <td>7421.6</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>1226.822575</td>\n",
|
|
" <td>1226.822575</td>\n",
|
|
" <td>1226.822575</td>\n",
|
|
" <td>1226.822575</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>generate</th>\n",
|
|
" <td>6691.7</td>\n",
|
|
" <td>6691.7</td>\n",
|
|
" <td>6691.7</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>959.799368</td>\n",
|
|
" <td>959.799368</td>\n",
|
|
" <td>959.799368</td>\n",
|
|
" <td>959.799368</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fftma2</th>\n",
|
|
" <td>872.0</td>\n",
|
|
" <td>872.0</td>\n",
|
|
" <td>872.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>267.021516</td>\n",
|
|
" <td>267.021516</td>\n",
|
|
" <td>267.021516</td>\n",
|
|
" <td>267.021516</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>covariance</th>\n",
|
|
" <td>870.5</td>\n",
|
|
" <td>870.5</td>\n",
|
|
" <td>870.5</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>247.512194</td>\n",
|
|
" <td>247.512194</td>\n",
|
|
" <td>247.512194</td>\n",
|
|
" <td>247.512194</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>gasdev</th>\n",
|
|
" <td>8.7</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-13.5</td>\n",
|
|
" <td>16777216.0</td>\n",
|
|
" <td>0.001358</td>\n",
|
|
" <td>0.000033</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>564.182445</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>fourt</th>\n",
|
|
" <td>11.5</td>\n",
|
|
" <td>-1.4</td>\n",
|
|
" <td>-16.2</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>8.429829</td>\n",
|
|
" <td>6.378454</td>\n",
|
|
" <td>5.015006</td>\n",
|
|
" <td>19.135362</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cov_value</th>\n",
|
|
" <td>0.7</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-13.9</td>\n",
|
|
" <td>8855600.0</td>\n",
|
|
" <td>0.000437</td>\n",
|
|
" <td>0.000002</td>\n",
|
|
" <td>0.000001</td>\n",
|
|
" <td>21.579349</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>ran2</th>\n",
|
|
" <td>0.9</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>-0.8</td>\n",
|
|
" <td>21359556.0</td>\n",
|
|
" <td>0.000381</td>\n",
|
|
" <td>0.000002</td>\n",
|
|
" <td>0.000000</td>\n",
|
|
" <td>45.002553</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>build_real</th>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>-0.2</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.151968</td>\n",
|
|
" <td>0.151968</td>\n",
|
|
" <td>0.151968</td>\n",
|
|
" <td>0.151968</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>prebuild_gwn</th>\n",
|
|
" <td>6.5</td>\n",
|
|
" <td>6.5</td>\n",
|
|
" <td>6.5</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.108160</td>\n",
|
|
" <td>0.108160</td>\n",
|
|
" <td>0.108160</td>\n",
|
|
" <td>0.108160</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>clean_real</th>\n",
|
|
" <td>127.2</td>\n",
|
|
" <td>127.2</td>\n",
|
|
" <td>127.2</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.095267</td>\n",
|
|
" <td>0.095267</td>\n",
|
|
" <td>0.095267</td>\n",
|
|
" <td>0.095267</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>cgrid</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>1.0</td>\n",
|
|
" <td>0.000160</td>\n",
|
|
" <td>0.000160</td>\n",
|
|
" <td>0.000160</td>\n",
|
|
" <td>0.000160</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>length</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>3.0</td>\n",
|
|
" <td>0.000043</td>\n",
|
|
" <td>0.000034</td>\n",
|
|
" <td>0.000021</td>\n",
|
|
" <td>0.000102</td>\n",
|
|
" </tr>\n",
|
|
" <tr>\n",
|
|
" <th>maxfactor</th>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>0.0</td>\n",
|
|
" <td>5.0</td>\n",
|
|
" <td>0.000002</td>\n",
|
|
" <td>0.000002</td>\n",
|
|
" <td>0.000001</td>\n",
|
|
" <td>0.000008</td>\n",
|
|
" </tr>\n",
|
|
" </tbody>\n",
|
|
"</table>\n",
|
|
"</div>"
|
|
],
|
|
"text/plain": [
|
|
" memory time \\\n",
|
|
" max median min count max mean \n",
|
|
"function \n",
|
|
"Py_kgeneration 7421.6 7421.6 7421.6 1.0 1226.822575 1226.822575 \n",
|
|
"generate 6691.7 6691.7 6691.7 1.0 959.799368 959.799368 \n",
|
|
"fftma2 872.0 872.0 872.0 1.0 267.021516 267.021516 \n",
|
|
"covariance 870.5 870.5 870.5 1.0 247.512194 247.512194 \n",
|
|
"gasdev 8.7 0.0 -13.5 16777216.0 0.001358 0.000033 \n",
|
|
"fourt 11.5 -1.4 -16.2 3.0 8.429829 6.378454 \n",
|
|
"cov_value 0.7 0.0 -13.9 8855600.0 0.000437 0.000002 \n",
|
|
"ran2 0.9 0.0 -0.8 21359556.0 0.000381 0.000002 \n",
|
|
"build_real -0.2 -0.2 -0.2 1.0 0.151968 0.151968 \n",
|
|
"prebuild_gwn 6.5 6.5 6.5 1.0 0.108160 0.108160 \n",
|
|
"clean_real 127.2 127.2 127.2 1.0 0.095267 0.095267 \n",
|
|
"cgrid 0.0 0.0 0.0 1.0 0.000160 0.000160 \n",
|
|
"length 0.0 0.0 0.0 3.0 0.000043 0.000034 \n",
|
|
"maxfactor 0.0 0.0 0.0 5.0 0.000002 0.000002 \n",
|
|
"\n",
|
|
" \n",
|
|
" min sum \n",
|
|
"function \n",
|
|
"Py_kgeneration 1226.822575 1226.822575 \n",
|
|
"generate 959.799368 959.799368 \n",
|
|
"fftma2 267.021516 267.021516 \n",
|
|
"covariance 247.512194 247.512194 \n",
|
|
"gasdev 0.000000 564.182445 \n",
|
|
"fourt 5.015006 19.135362 \n",
|
|
"cov_value 0.000001 21.579349 \n",
|
|
"ran2 0.000000 45.002553 \n",
|
|
"build_real 0.151968 0.151968 \n",
|
|
"prebuild_gwn 0.108160 0.108160 \n",
|
|
"clean_real 0.095267 0.095267 \n",
|
|
"cgrid 0.000160 0.000160 \n",
|
|
"length 0.000021 0.000102 \n",
|
|
"maxfactor 0.000001 0.000008 "
|
|
]
|
|
},
|
|
"execution_count": 96,
|
|
"metadata": {},
|
|
"output_type": "execute_result"
|
|
}
|
|
],
|
|
"source": [
|
|
"merge_dfs(dfs)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plot_analysis(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"plot_treemap(df)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## Function call repetitive times analysed"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 194,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"functions_repeated = {\n",
|
|
" \"gasdev\":[\"idum\", \"idum2\", \"iy\"],\n",
|
|
" \"cov_value\": [\"di\", \"dj\", \"dk\"],\n",
|
|
" \"ran2\": [\"idum\", \"idum2\", \"iy\"],\n",
|
|
"}\n",
|
|
"\n",
|
|
"def get_data_from_file(file_name):\n",
|
|
" data = {\n",
|
|
" \"gasdev\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
|
|
" \"ran2\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
|
|
" \"cov_value\": {\"di\":[], \"dj\": [], \"dk\": []}\n",
|
|
" }\n",
|
|
"\n",
|
|
" with open(file_name) as log_file:\n",
|
|
" lines = log_file.readlines()\n",
|
|
" for line in lines:\n",
|
|
" if np.any([f in line for f in functions_repeated.keys()]) and \"RESULT = in progress\" in line:\n",
|
|
" split_line = line.split()\n",
|
|
" function_name = get_function_name(split_line[2])\n",
|
|
" params = functions_repeated[function_name]\n",
|
|
" for p in params:\n",
|
|
" idx_value = split_line.index(p) + 2\n",
|
|
" data[function_name][p].append(float(split_line[idx_value].rsplit(\",\")[0]))\n",
|
|
" #print(split_line)\n",
|
|
" return data\n",
|
|
"\n",
|
|
"def get_repeteated_data(filenames):\n",
|
|
" data_total = {}\n",
|
|
" for f in filenames:\n",
|
|
" data = get_data_from_file(f)\n",
|
|
" data_total = {**data_total, **data}\n",
|
|
" return data_total"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 248,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def distribution(data,f, p, plt):\n",
|
|
" values = data[f][p]\n",
|
|
" if np.isnan(values).all(): return # TODO: Pasa algo raro con gasdev iy en 32\n",
|
|
" plt.set_title(f\"{p}\")\n",
|
|
" plt.hist(values, bins=60, alpha=1, edgecolor = 'black', linewidth=1)\n",
|
|
" plt.grid(True)\n",
|
|
" plt.set_ylabel(\"Number of repetitions\")\n",
|
|
" plt.set_xlabel(\"value\")\n",
|
|
"\n",
|
|
"def plot_distributions(data, f):\n",
|
|
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
|
|
" fig.suptitle(f\"Distribution in params for {f}\")\n",
|
|
" params = list(data[f].keys())\n",
|
|
" for i in range(2):\n",
|
|
" for j in range(2):\n",
|
|
" if 2*i + j < len(params):\n",
|
|
" distribution(data, f,params[2*i + j], axs[i, j])\n",
|
|
" \n",
|
|
" \n",
|
|
" fig.delaxes(axs[1, 1])\n",
|
|
" fig.tight_layout(pad=3.0)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 245,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"def plot_reapeated_data_distribution(data):\n",
|
|
" for f in functions_repeated.keys():\n",
|
|
" plot_distributions(data,f)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 8"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 234,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGD0lEQVR4nO3deZgkVZn3/e+vm2KzaRAX0FFAQR0EBURxxwW7wWWcEXV0dB5FfHR0UF9EH1zGBbcBNxAVx9FBEAXFGR0cRWRTBBUZZREQUUTZF1ntxqabkjrvHxGlSXZWV2VU1JKV38915ZWZJyIj7ozKvOvOEyciUkpBkiRpuhbNdQCSJGlhsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKhQY0kOSjIrp2RNckaSMzqePz1JSfKiWVr/0UmumI11da13m/p97jPb6x4WSdZL8pEkVycZS3LCXMc0W2bzO6zhYFEhAJLsU//zGr+tTnJdkpOTvCnJJi2t54F1Itu5jeW1aT7Hphm1L/D/gP8CXgkcNrfhSINrvbkOQPPOe4DfASPAlsDTgU8AByR5finlwo55Pwgc0ufyHwi8F7gCuKCP1y3vcz1NrCu21zA3RfiVwEbA6Byse1g8E7i2lPLmuQ5EGnQWFep2UinlZx3PD07yTODbwP8k2b6UcidAKeVPwJ9mMpgkG5dSVpVS7prJ9UymlDIn/9RLdcW/1XOx7ulIsiFwVyllbK5jmYL7A7e3tbAki4D1SykD93eTpsvdH5pUKeV7wAeArYF/HG/vtT82ybIkP0xye5I7kvwqyb/W054O/LSe9aiOXS371NPPSHJxkl2TnJlkFfCvHdPO6BHe4iT/muSGJH9M8j9JHtwV0xVJju5+YecypxDbWmMqktwrycfrffFr6vf61iTpmq8k+XSSv6vf35okv0iyV4/30x3jWmMq6ljuSPJXSU6oH9+U5GNJFk9hmVck+XaS5UkuqHd1XZJk7675Nq+XeVG9jhVJTkqyU9d84+NbXprkg0muBVYBSxss4++TvDfJtUlWJvmvJJsm2SDJJ5L8vl7OUUk26FrGhJ+9dW1b4BnADh1/86fX0/v9+748yS+ANcCEf9ski+rvznVJViX5fpJHdn9Op7rt6nnfWH+mViW5LcnPkrysa56nJPlp/fe+PMk/rSPGf0xybpI7k9ya5Kvp+F7V7/eOJBv3eO1XUn0fJ/0sauGxp0JT9SWqf/DLgc/3miHJDlQ9GhdS7UZZA2wHPLme5Zd1+/uBzwFn1e0/7ljMfYCTgK8CXwZunCSufwEK8GGqX5z7A6cl2Xm8R2WKphLbn9X/WP6H6h/SkVS7S/YEPgr8FdDdlf4UYG/gM8BK4E3A15NsVUq5pY84xy0GTgbOAd4KPAt4C3A58G9TeP3DgOOBzwJfBF4F/GeSvUopp9bzPBT4O+A/qXaJbQH8E/CDJI8spVzXtcx3A3cBHwM2qB8/ss9lvAO4k2q32nbAG6l2/YwB9wYOAp4A7FMv7/0wpc9eLzcB/4fqM7SkXjfALxv8fZ8J/D3waeBmql1oEzkYOBD4FtXfcKf6fsOu+aa0/ZO8Bvgk1ZiQw+vlPBp4PHBcPc+jgFPq93wQVe5/Hz2+X0n+hepHxNeA/wDuR/V3ODPJLqWU26k+O/sBz63jG3/txsDfAEeXUu5exzbQQlVK8eYNqiRdgMeuY57bgfM6nh9E3UNfP9+/XsZ917GMx9bz7NNj2hn1tH+aYNoZHc+fXs97DbBJR/uL6/Y3dbRdQZXkJlvmumI7Grii4/nf1vP+S9d8/0n1D3DbjrZC9U+us+3RdfsbJvm7bNMdUx1LAd7dNe95wM+m8Le+on793h1tS4Hruv6+GwCLesSzunPdHX+Ly4GNuubvdxkXASMd7cfV2/M7Xcv4cdffY9LP3jq2xxnAxV1t/f597wYeOYV1bUFVJP13V/t76+Uc3dE21W13Qnf8Pdb731TF2lYdbdtT7b4sHW1b123v7Hr9jnXc76yfh+q7919d841//57a79/B28K4uftD/bgDWNdRILfX93+bar9yE2uAo/qY/5hSysqO5/8FXA88p+H6p+o5VP9IPtnV/nGqhPvsrvbTSimXjz8p1YDXFVS/Rpv6bNfzs/pY3nVU/2jG41kBHAPskmTLum1NqcdEJFmc5D5Un4FfAY/pscwvlq7eoQbLOKbcc/zKOVTb8wtd850DPDjJeG/r7fX9dD57nfr9+/6glHLJFJa7B1UvwWe62j/VPWMf2+524EFJHtdrhfVuiD2BE0opV3Us/5dUPSSd9qbaLf61JPcdvwE3AJdR9dxQSilUBdZzkizpeP1LgGuBH064BbSgWVSoH0uouu4ncjzwI6ou0xvr/bB/32eSv7b0Nyjzss4ndbL7DdUvupm0NXBdV0ED1W6U8emdrmJtt1F16TexupRy0zSW95t6W3X6dX2/Dfx53/+bk1xGVezdTNV9/mhg0x7L/F13Q4NldG+nP9T3V/doX9SxjDY+e536/fuu9d7XsVyoPqN/Vkq5lerv92d9bLsPUxUb/5vksiRHJOnc7XM/qiOI7vFdqf2q6/nDqIqmy+p1dd62p9rFOO74ernPr+NdQlWM/WePz5aGhEWFpiTJg6gS2W8mmqf+lbo71f79L1Elv+OBU/sYtNXPOIipmijBzeZAson2L2eC9qbLa9M7gUOBM6kG6O4JLAN+Qe/c0etv1+8yJnpf69x+LX32pmMmPrdT2nZ1j8MjgJdS9RC8EPhhkvc1WOciqu/LXvW6um9/HtxZSvkJ1a60v6+b/oaqyDi+wXq1QDhQU1P1f+r77u7Se6i7a0+vbwckeSfwIapu09OY+B98Uw/rfFIPsNuOasDeuNuAzXq8dmvgtx3P+4ntSuBZSTbp+jX71x3T57PtkqTrF+XD6/sr6vsXAd8vpby684VJNqP61TwVbSxjSqbw2evHTP19x1+3HR29G/Wuje5epilvu1LKH6n+mR+fZH3gG8C/JDmYqpfhTrq+K7VHdD2/nKpQ+10p5dc95u/2NeD/S7KUatfHFXWxoSFlT4Umleo8Fe+mSoLHrmO+zXs0X1Dfjx/+98f6frOWwntF7nm2zxcBD6A6gmTc5cAT6mQLQJLnAfc49LTP2L5D1dPxhq72N1MVJyet9Yr55YHAC8af1P8UXgFcUEq5oW6+m66elCQvpjr6YaraWMakpvjZ68dM/X1PpxoI+fqu9u71wBS3XV2Q/Fm9+/CS+rUjpToK42Tg75Js1fG67al6Pzp9o17ve+sCvXM96V4XVSGzAdWZSPeiKjI0xOypULdnJ/lrqs/GFlSHyi2j+oX1/LLuE/q8J8nuwIn1/PcH/plqlPj4wK3LqQaWvS7JSqp/5OeUUqa6T7rbrVRdvUfV8e5PtYum87DX/6AqNr6b5GvAtlTdyZffc1F9xfYt4PvAh5JsA/yc6nDbvwU+0Tkoc576NXBkPbjvRqpTVW9BdWjpuG9T/U2Pojra4lHAy7ln785k2ljGVEzls9ePGfn7llJuTHI48JYk/wN8l+qQ0mdT9T509hxNddudkuQGqjElN1KNfXgDcGJHL8t7qf7pn5XkM1Tf7zdS7Up5dEd8lyd5F9Vhr9ukug7KSuAhVEXo56gOGR6f/7wkv6HqEdoAd31org8/8TY/bvzlkNLx2xqqoyhOoTqnwiY9XnMQ9zwc7ZlUh7ddW7/+WqpDAh/W9brnUyWzUToOl6THoX0drzmD3oeUvpTq/Bk3Up1w6dt0HDbXMf8BVP9gVlP9k9m1e5mTxHY0HYcw1m1LqPZ5X0t1ToZfU50zIl3zFeDTPWK6gh6HunbNs01nHB2x3DHZ32Mdy7yi3k7Lqf5ZrqYagPiirvk2oPoHcl29bX9IdY6Iif4WL+qxrmktgwkOdR5/r9SHkDLFz946Pltrfe6m+/ddx/oWU51f4/p6m5xOtVvlZuDfGmy71wI/qF+/mqqo/giwtGu9uwM/q7fP5VTjI3p+ZqiOAjmLagDoHfXn49PAw3vM+8F6G1zWT87xtjBvKcVButIwSXVm0ItLKc+b61hUqcdJ3Aa8q5TyoTkOR2rMMRWSNIuSbNSjef/6/ozZi0Rqn2MqJGl2vSTVtVy+Q7Vr4SnAPwCnlFJ+NJeBSdNlUSFJs+tCqiNADqQ6PfqNVNfseNdcBiW1wTEVkiSpFY6pkCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCoUE9J9klSkmwzyXxXJDl6dqKSNEjMI8PHokKSNLSS7JHkC0l+nWRVkt8m+Y8kD5jr2AZRSilzHYPmoSSLgRFgTVnHhyTJFcAZpZR9Zik0SQNiEPJIkp8BmwP/CVwGPBR4A7AK2LmUcsNsxzTI1pvrADQ/lVLuBu6e6zgkDa4BySMHAD8spYyNNyT5LvADquLiXXMV2CBy94d66t4Xmsq7klxTdxF+P8kOPV53UJK1fpH02rda70f9dpKnJ/lZkjuTXJTk6fX0vevnq5Ocm2SXmXq/kto3CHmklHJmZ0Ex3gbcCmw//a0wXCwqNFXvBz4A/Bz4f8BvgVOAe01zudsBxwHfAt4B3Bv4VpKXA4cBXwbeC2wLfC2Jn1lpcA1EHkmyBFgC3DzNuIaOuz80qST3Aw4ETgT+ZnzfaJIPAe+c5uIfATyplHJ2vcxLgJOBzwN/XUq5qm6/Dfh3YHfgjGmuU9IsG7A8sj+wPnD8NOMaOv7q01Q8i+oL9qmuwVafaGHZl4wngto59f33xhNBV/tDW1inpNk3EHkkye5UvRpfK6V8r4XYhopFhaZi6/r+ss7GUspNwG3TXHbnF55Syh/qh1d3zTfefu9prk/S3Jj3eSTJXwP/DVwM/N9pxjSULCrUtokOG1s8QftEI8Mnak9/4UgaQLOeR5I8mGp8xx+A55RSVq4zQvVkUaGpuLK+f1hnY72PtLviv62etllX+9ZIGmbzNo8kuQ9VQbEBsGcp5fqZWM8wsKjQVJwGjAJvTNJZ4e/fY97L6/vdxxuS3At45YxFJ2kQzMs8Ui/3O8BfUfVQXDbJS7QOHv2hSZVSbkryMapDtb6d5DvALsCzWfuQq1Oo9m8emeSjVN2P+wI3AVvNXtSS5pN5nEeOBXYDvgBsn6Tz3BR3lFJOaHl9C5pFhabqXcBq4HXAM6hGUS+nOjzsz0opo0leAHyG6nj0G6hGd98GHDWL8Uqaf+ZjHtm5vt+3vnW6Ejih5fUtaF77Q5IktcIxFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRV9FxVJ9krylI7n+yW5IMlxSTyFsqRGzC3S4GvSU/FRYClAkkcBH6c6cchDgEPbC03SkDG3SAOuyXkqHgJcUj9+IfDtUso7kzyGKgEMnPrsbg8EPNe7BtUmwHVlsI8RN7dI809fuaVJUXEXsHH9+FnAMfXjW6l/ZQygBwLXzHUQ0jQ9CLh2roOYBnOLND9NObc0KSp+CBya5EdUpzZ9Sd3+cAb3y7MS4Oqrr2bp0rVz1+joKKeccgrLly9nZGRk1oMbdG6/6Zls+61YsYIHP/jBMPi/hs0t6ovbb3pmIrc0KSreQHXq1BcBry+ljFcvzwa+22B588bSpUsn/OJvvPHGLF261A9uA26/6Rmi7WduUV/cftMzE9uv76KilHIV8Lwe7W9uJSJJQ8ncIg2+RhcUS7II2A64P11HkJRSzmwhLklDyNwiDba+i4okTwCOA7YG0jW5AItbiEvSkDG3SIOvyXkqPgv8DNgR2By4d8dt8/ZC00Lz85//nKuuumquw9D8ZW5RI+aW+aPJ7o+HAS8qpfym7WC0MF1zTTVwf/fdd6cQfnXpL9lqq63mOCrNQ+YW9cXcMv806ak4h2qfpzQlt9xyCwBLd9ub1Xeu4uabb57jiDRPmVvUF3PL/NOkp+JTwMeTbAlcBIx2TiylXNhGYFp4Fi+931yHoPnN3KJGzC3zR5Oi4uv1/Rc62grVwCoHU0lqytwiDbim1/6QpLaZW6QB1+TkV1fORCCShpu5RRp8TU9+tS2wP7B93XQJcHgp5fKW4pI0hMwt0mDr++iPJHtSfdF3Ay6sb48HfpFkWbvhSRoW5hZp8DXpqTgEOKyU8vbOxiSHAB8GTm0jMElDx9wiDbgm56nYHjiyR/sXgEdOLxxJQ8zcIg24JkXFTcDOPdp3Bn4/nWAkDTVzizTgmuz++DzwuSQPBX5ctz0ZeBtwaFuBSRo65hZpwDUpKj4ArATeAhxct10HHAR8sp2wJA0hc4s04Jqcp6IAhwGHJdmkblvZdmCShou5RRp8jc5TMc4vvKSZYG6RBtOUiook5wF7lFJuS3I+1Xn4eyqlPKat4CQtbOYWaWGZak/FN4E1HY8n/OJLUh/MLdICMqWiopTyvo7HB81YNJKGirlFWlianKb7t0nu06N9syS/bScsScPG3CINviYnv9oGWNyjfQPgQdOKRtIw2wZzizTQpnz0R5LndzzdM8kfOp4vBvYAftdWYJKGg7lFWjj6OaT0hPq+AF/smjYKXEF10hpJ6scJ9b25RRpwUy4qSimLAJL8DnhcKeXmGYtK0tAwt0gLR5Mzaj5kJgKRNNzMLdLgm+rJr94EfK6Usrp+PKFSiufolzQl5hZpYZlqT8WbgWOB1fXjiRS88I+kqTO3SAvIlA4pLaU8pJRyS8fjiW4PbRpIkrcnKUk+0dG2YZIjktyS5I4kX0+yRdfrtkpyYpJVSX6f5KNJpnVNE0mzw9wiLSxNTn71niQb92jfKMl7mgSR5HHAPwEXdk06DPgb4MXA04AHAt/oeN1i4ERgfeBJwCuBfYD3N4lD0twxt0iDr8nJr94LLOnRvnE9rS9JllB1f74GuK2jfVPg1cABpZTvlVLOBV4FPCnJE+rZlgOPBP6xlHJBKeUk4N3AfknW7zcWSXPK3CINuCZdeaH3RX92Am5tsLwjgBNLKacleVdH+67ACHDaeEMp5dIkVwFPBH5S319USrmx43UnA/8G7ACc3/MNJBtQnaVv3CYAo6OjjI6OrjX/eFuvaZrc2NgYABuOLGajjTZibGzMbdmHyT5/C2hbmlvUF3PL9MxEbunnjJq3UX3hC/DrJJ1f/sVUvzA+28/Kk7wUeAzwuB6TtwTuKqXc3tV+Yz1tfJ4be0ynY55e3kGPXz6nnHIKG2+8Vu/rn5166qnrWKQmc+grngqveCrXXnst11577VyHM3Am+vytWrVqliNpl7nF3DJd5pbpaTO39NNTsT/VL4kvUH1pOk+lexdwRSnl7KkuLMmDgcOBZaWU1X3E0YaDgUM7nm8CXLN8+XKWLl261syjo6OceuqpLFu2jJGRkdmKccE4//zzuf766zngmLO4/qTPcOaZZ7LTTjvNdVgDY7LP34oVK+Ygqlbtj7nF3NKAuWV6ZiK39HNGzS/Cn89696NSyp/6Xts97QrcHzgvyXjbYmD3JG8A9gTWT7JZ1y+KLYAb6sc3ALt1LXeLjmk9lVLWAGvGn4+vf2RkZJ1f7Mmmq7dFi6qhO6tH7+bOO+9k0aJFbscGJvr8Dfq2NLeYW5oyt7SjzdzS90DNUsoPgK2TfDDJV5LcHyDJs5Ps0MeiTgceBezccfsZ1cCq8cejVBcTol7HI4CtgPFfLWcDjxqPobYMWAFc0udbkzSHzC3S4Ot7oGaSpwEnAT8Cdgf+Bfg91WCqVwMvmspySikrgYu7lv1H4JZSysX18yOBQ5PcSvVl/hRwdinlJ/VLTqH6gn8pyYFU+zo/CBxR/2KQNCDMLdLga3JI6SHAu0opy6j2d477HvCE3i9p7M3At4GvA2dSdTvuPT6xlHI38DzgbqpfFl8GjgEaHdMuaU6ZW6QB1+SQ0kcBL+vR/nvgvtMJppTy9K7nq4H96ttEr7kSeM501itpXjC3SAOuSU/F7cADerTvAngsj6SmbsfcIg20JkXFV4EPJ9mS6rjyRUmeDHyMqntQkpowt0gDrklR8U7gUuBqqpPSXEK1T/LHVAOZJKkJc4s04PoeU1FKuQt4TZIPADtSffnPL6Vc1nZwkoaHuUUafI0v41tKuSrJ1fXjXufrl6S+mVukwdVk9wdJXp3kYmA1sDrJxUn+b7uhSRo25hZpsDU5+dX7gQOoTxZTNz8ROCzJVqUUj+OW1DdzizT4muz+eD3wmlLKVzra/ifJhVTJwC++pCbMLdKAa7L7Y4Tq3PndzmUaYzQkDT1zizTgmhQVX6L6RdHttVQX7JGkJswt0oBrWv2/OslyYPziO4+nusLfMUkOHZ+plHLANOOTNFzMLdIAa1JU7AicVz/etr6/ub7t2DGfh4JJ6oe5RRpwTU5+9YyZCETScDO3SIOv0XkqAJJsl2TPJBvVz9NeWJKGlblFGlx9FxVJ7pPkdODXwHf4y1UFj0zy8TaDkzQ8zC3S4GvSU3EYMEo1eGpVR/vxwF5tBCVpKJlbpAHXZKDmcmDPUso1Xb2SlwFbtxKVpGFkbpEGXJOeintxz18R4zYH1kwvHElDzNwiDbgmRcVZwCs6npcki4ADge+3EpWkYWRukQZck90fBwKnJ3kssD7wEWAHql8TT24xNknDxdwiDbi+eypKKRcDDwd+CHyTqsvyG8AupZTL2w1P0rAwt0iDr6+eiiQjwHeB15VSPjQzIUkaNuYWaWHoq6eilDIKPHqGYpE0pMwt0sLQZKDml4FXtx2IpKFnbpEGXJOBmusB+yZ5FnAu8MfOiV49UFJD5hZpwE33KqUP75rm1QMlNWVukQacVymVNC+YW6TB1/gqpZIkSZ0sKiRJUissKiRJUissKiRJUiumVFQkOS/JvevH70my8cyGJWkYmFukhWWqPRXbU52HH+C9wJKZCUfSkDG3SAvIVA8pvQA4KskPgQBvTXJHrxlLKe9vKTZJC98FmFukBWOqRcU+wPuA51GdhObZwJ96zFcAv/iSpmofzC3SgjGloqKU8ivgpQBJxoA9Sim/n8nAJC185hZpYWlyRk2PGJHUOnOLNPiaXPuDJNsC+1MNsgK4BDi8lHJ5S3FJGkLmFmmw9f3LIMmeVF/03YAL69vjgV8kWdZueJKGhblFGnxNeioOAQ4rpby9szHJIcCHgVPbCEzS0DG3SAOuyT7M7YEje7R/AXjk9MKRNMTMLdKAa1JU3ATs3KN9Z6CvUdtJ3pHkp0lWJvl9khOSPKJrng2THJHkliR3JPl6ki265tkqyYlJVtXL+WiSRuNFJM0Zc4s04Jp8OT4PfC7JQ4Ef121PBt4GHNrnsp4GHAH8tI7lX4FTkjyylPLHep7DgOcCLwb+AHwa+Ea9TpIsBk4EbgCeBDwAOAYYBd7Z4P1JmhvmFmnANSkqPgCsBN4CHFy3XQccBHyynwWVUvbqfJ5kH6pfJLsCZybZFHg18LJSyvfqeV4F/DLJE0opPwGWU3WNPquUciNwQZJ3Ax9OclAp5a4G71HS7DO3SAOu790fpXJYKeVBwKbApqWUB5VSDi+llGnGs2l9f2t9vyswApzWsf5LgauAJ9ZNTwQuqr/0404GlgI7TDMeSbPE3CINvmntGyylrGwrkCSLgE8APyqlXFw3bwncVUq5vWv2G+tp4/Pc2GM6HfN0r2sDYIOOpk0ARkdHGR0dXWv+8bZe0zS5sbExADYcWcxGG23E2NiY27IPk33+FuK2NLdoKswt0zMTuWU+DTg6AtgReMosrOsdVFdEvIdTTjmFjTee+MrLp57qEW3TcegrngqveCrXXnst11577VyHM3Am+vytWrVqliMZOOaWBc7cMj1t5pZ5UVQk+TTVBYV2L6Vc0zHpBmD9JJt1/aLYop42Ps9uXYvcomNaLwdzz4FfmwDXLF++nKVLl6418+joKKeeeirLli1jZGRkKm9JHc4//3yuv/56DjjmLK4/6TOceeaZ7LTTTnMd1sCY7PO3YsWKOYhqMJhbFjZzy/TMRG6Z06IiSYBPAS8Anl5K+V3XLOdSjbTeA/h6/ZpHAFsBZ9fznA38S5L7d1yIaBmwgursfGsppawB1nTEAcDIyMg6v9iTTVdvixZVQ3dWj97NnXfeyaJFi9yODUz0+XNbrs3cMhzMLe1oM7f0NVAzyUiS05M8rO819XYE8I/Ay4CVSbasbxsBlFL+QHUynEOTPCPJrsBRwNn16GyAU6i+4F9KslN9qt8PAkfUX3BJ85y5RVoY+uqpKKWMJnl0i+t/fX1/Rlf7q4Cj68dvBsaofk1sQDX6+p87Yro7yfOAf6P6ZfFH4IvAe1qMU9IMMrdIC0OT3R9fpjq+++2TzTiZUkqmMM9qYL/6NtE8VwLPmW48kuaUuUUacE2KivWAfZM8i2q/5B87J5ZSDmgjMElDx9wiDbgmRcWOwHn144d3TZvuCWokDS9zizTg+i4qSinPmIlAJA03c4s0+JpcpRSAJNsl2XN8NHXGj52SpGkwt0iDq++iIsl9kpwO/Br4DtWV+wCOTPLxNoOTNDzMLdLga9JTcRjVSWO2AjrP4Xk8sFfPV0jS5Mwt0oBrMlBzObBnKeWarl7Jy4CtW4lK0jAyt0gDrklPxb2456+IcZvTcXpaSeqTuUUacE2KirOAV3Q8L/WlhQ8Evt9KVJKGkblFGnBNdn8cCJye5LHA+sBHgB2ofk08ucXYJA0Xc4s04PruqSilXEx1YpofAt+k6rL8BrBLKeXydsOTNCzMLdLga3Tp8/oKfx9qORZJQ87cIg22RkVFkntTXfhn+7rpEuCoUsqtbQUmafiYW6TB1uTkV7sDVwBvAu5d394E/K6eJkl9M7dIg69JT8URVCejeX0p5W6AJIuBz9TTHtVeeJKGiLlFGnBNDindDvj4+JceoH58aD1Nkpowt0gDrklRcR5/2d/ZaXvg59MLR9IQM7dIA25Kuz+SPLrj6SeBw5NsB/ykbnsCsB/w9nbDk7SQmVukhWWqYyouAArQeUL+j/SY7ziqfaKSNBUXYG6RFoypFhUPmdEoJA0rc4u0gEypqCilXDnTgUgaPuYWaWFpevKrBwJPAe5P12DPUsonW4hL0hAyt0iDre+iIsk+wL8DdwG3UO0PHVeoBltJUl/MLdLga9JT8QHg/cDBpZSxluORNLzMLdKAa3Keio2Br/qll9Qyc4s04JoUFUcCL247EElDz9wiDbgmuz/eAXw7yV7ARcBo58RSygFtBCZp6JhbpAHXtKjYE/hV/bx7MJUkNWFukQZck6LiLcC+pZSjW45F0nAzt0gDrsmYijXAj9oORNLQM7dIA65JUXE48Ma2A5E09Mwt0oBrsvtjN+CZSZ4H/IK1B1Pt3UZgkoaOuUUacE2KituBb7QchyTdjrlFGmh9FxWllFfNRCCShpu5RRp8TcZUSJIkraXJBcV+xzqOGS+lPHRaEUkaSuYWafA1GVPxia7nI8AuwF7AR6cbkKSh9Ymu5+YWacA0GVNxeK/2JPsBj512RJKGkrlFGnxtjqk4CXhhi8uTJDC3SAOjzaLiRcCtLS5PksDcIg2MJgM1z+eeg6kCbAncD/jnluKSNGTMLdLgazJQ84Su52PATcAZpZRLpx2RpGF1Qtdzc4s0YJoM1HzfTAQyXfVgrv9H9cvm58AbSyn/O7dRSZoqc4s0+BbEya+SvAQ4FHgf8BiqL/7JSe4/p4FJGmjmFqk/Uy4qkowluXuS259mMth1OAD4fCnlqFLKJcDrgFXAvnMUj6QpMrdIC0c/uz9esI5pTwTexBz0fCRZH9gVOHi8rZQyluS0Oq5er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaBoy5xdxiblkouaWU0vgGPAL4b+BPwBeBraezvIYxPJBqxPgTu9o/ApwzwWsOql/jzdtCuv3VbH//ZvB7bW7x5m3+3KacW5oc/UGSB1LtY3wlcDKwcynl4ibLmiMHU+0n7bQ5Ex8LvwlwDfAgYOB/Fs4Bt9/0TGX7bQJcN2sRzRBzi/rk9pue1nNLX0VFkk2BdwJvBC4A9iilnNXPMmbAzcDdwBZd7VsAN/R6QSllDbCmq3nFRCtIMv5wZSllwvnUm9tveqa4/QZ6u5pb/G404fabnpnILf0M1DwQ+C3wPOAfSilPmgdfekopdwHnAnuMtyVZVD8/e67ikjQ15hZp4Ui9H3DyGZMx4E7gNKrqvadSyt7thDZ19WFfXwT+CfhfYH/g74G/LqXc2MLylwJ/ADa1Gu6f2296Fvr2M7cs3L/tTHP7Tc9MbL9+dn8cQzVgY94ppRyf5H7A+6lOUHMBsFcbX/raGqr9vN3dmpoat9/0LPTtZ25ZuH/bmeb2m57Wt9+UeyokSZLWZUGcUVOSJM09iwpJktQKiwpJktQKiwpJktQKi4oekmye5NgkK5LcnuTIJEsmec0ZSUrX7bOzFfNcS7JfkiuSrE5yTpLdJpn/xUkuree/KMlzZivW+aif7Zdknx6ftdWzGa+aMbf0z9wyPbOdWywqejsW2AFYRnVCnt2Bz03hdZ8HHtBxO3CmApxP+r08dJInAV8BjgR2AU4ATkiy46wEPM80vLz2Cu75Wdt6puNUK8wtfTC3TM+c5Ja5vnDQfLsB21MdM//Yjra9gDHgget43RnAJ+Y6/jnaZucAn+54vgi4Fnj7BPMfD3y7q+0nwGfn+r0MyPbbB7h9ruP21vff2dzS/zYzt8zu9pt2brGnYm1PpNqoP+toO43qi//4SV778iQ3J7k4ycFJNp6xKOeJjstDnzbeVkoZq5/3vDx03X5aV9vJ65h/wWq4/QCWJLkyydVJvplkhxkOVdNnbumDuWV65iq3NLpK6QK3JfD7zoZSyp+S3FpPm8hxwJVUV3N7NPBhqss3z/qphWfZfYHFQPcZBm8E/nqC12w5wfzr2r4LVZPt9ytgX+BCYFPgrcCPk+xQSrlmpgLVtJlb+mNumZ45yS1DU1QkOQR42ySzbd90+aWUzv2iFyW5Hjg9yballMubLlfqVko5m44LWiX5MfBLqutTvHuu4hpW5hYtFG3klqEpKoCPA0dPMs9vqS5pfI9BLEnWAzZngssdT+Cc+n47YCF/8fu+PHTd3s/8C1mT7XcPpZTRJOdTfdY0+8wtM8PcMj1zkluGZkxFKeWmUsqlk9zuoqrSNkuya8fLn0m1rc7pufDedq7vr2/nHcxPpdnloc/unL+2bB3zL1gNt989JFkMPIoF/lmbr8wtM8PcMj1zllvmenTqfLwBJwHnAbsBTwZ+DRzXMf2vgEuB3ern21J1De0KbAM8n+oXxA/m+r3M0vZ6CbAaeCVVN++/A7cBW9TTjwEO7pj/ScAo8BaqfXsHAXcBO871exmQ7fceYDnwUKrDxL5CdenwR871e/E26d/a3NLf9jK3zO72m3ZumfM3PR9vVN2RxwErqa41/wVgScf0bagODXt6/fzBwA+AW+o/4GXAR4Clc/1eZnGbvYFqMNkaql9dj++YdgZwdNf8L6YaFLQGuBh4zly/h0HZfsBhHfPeAJwI7DLX78HblP7O5pb+t5m5ZZa2Xxu5xUufS5KkVgzNmApJkjSzLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCo0o5JckWT/uY5D0sJibpmfLCokSVIrLCokSVIrLCo0oSSvTXJdfbnczvZvJvlCkm3rxzcmuSPJT5M8ax3L2yZJSbJzR9tmddvTO9p2THJSvcwbk3wpyX1n4C1KmgPmloXLokLr8p/AfYBnjDck2RzYCzgWWAJ8B9gD2AX4LvCtJFs1XWGSzYDvAecDj63XtQXwtabLlDTvmFsWqPXmOgDNX6WU25KcBLwMOL1ufhFwM/D9UsoY8POOl7w7yQuA5wOfbrjaNwDnl1LeOd6QZF/g6iQPL6X8uuFyJc0T5paFy54KTeZY4IVJNqifvxz4aillLMmSJB9L8ssktye5A9geaPxrAtgJeEbdPXlHvcxL62nbTmO5kuYXc8sCZE+FJvMtIMBzk/wUeCrw5nrax4BlwFuB3wB3Av8FrD/Bssbq+3S0jXTNs6Re59t6vP76foOXNG+ZWxYgiwqtUylldZJvUP2K2A74VSnlvHryk4GjSyn/DZBkCbDNOhZ3U33/AKr9mgA7d81zHvBC4IpSyp+m/QYkzUvmloXJ3R+aimOB5wL71o/HXQbsnWTnJDsBx7GOz1Qp5U7gJ8Dbk2yf5GnAB7tmOwLYHPhKksfVo8D3THJUksUtvidJc8/cssBYVGgqvgfcCjyC6ss97gDgNuDHVN2KJ1P9GliXfal6yM4FPgG8q3NiKeU6ql8pi4FTgIvq+W7nL12ckhYGc8sCk1LKXMcgSZIWAHsqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywq1Kok+yQpSbaZ61gkSbPLokKSJLUipZS5jkELSJLFwAiwpvjhkqShYlEhSZJa4e4PtapzTEWSLya5OclIj/lOSfKruYhRkjQzLCo0k74E3AfYs7MxyZbAM4Evz0VQkqSZYVGhmfQ94BrgH7va/4Hqs2dRIUkLiEWFZkwpZQw4Fnh+kk06Jr0c+HEp5XdzE5kkaSZYVGimHQNsBLwAIMkjgF2pdo1IkhYQiwrNqFLKJcC5/GUXyD8CdwFfm7OgJEkzwqJCs+EY4JlJHgC8DDixlHLbHMckSWqZRYVmw1eAAhwOPBQHaErSgmRRoRlXSrkJ+C7wYuB24MQ5DUiSNCMsKjRbjqnvv1ZKWTOnkUiSZoRFhVpVSjm6lJJSyhVdk+6q7931IUkLlNf+0KxI8m1ge2A7LzQmSQvTenMdgBa2JC8FHg08F/j/LCgkaeGyp0IzKkkB7gCOB15XSvnTHIckSZohfRcVSfYC7iil/LB+vh/wGuASYD/PPyBJ0nBqMlDzo8BSgCSPAj4OfAd4CHBoe6FJkqRB0mRMxUOoeiUAXgh8u5TyziSPoSouJEnSEGpSVNwFbFw/fhZ/Of/ArdQ9GIMmSYAHAivnOhapoU2A6xwIK2kuNSkqfggcmuRHwG7AS+r2hwPXtBXYLHsggxu7NO5BwLVzHYSk4dWkqHgD8BngRcDrSynjSezZVKdiHkQrAa6++mqWLl27s2V0dJRTTjmF5cuXMzIyMuvBDTq33/RMtv1WrFjBgx/8YLCnTdIc67uoKKVcBTyvR/ubW4loDi1dunTComLjjTdm6dKl/lNswO03PW4/SYOi0cmvkiwCtgPuT9cRJKWUM1uIS5IkDZi+i4okTwCOA7YG0jW5AItbiEuSJA2YJuep+CzwM2BHYHPg3h23zdsLTQvNz3/+c6666qq5DkOSNEOa7P54GPCiUspv2g5GC9M111QH1uy+++4Uwq8u/SVbbbXVHEclSWpbk56Kc6jGU0hTcssttwCwdLe9WX3nKm6++eY5jkiSNBOa9FR8Cvh4ki2Bi4DRzomllAvbCEwLz+Kl95vrECRJM6hJUfH1+v4LHW2FatCmAzUlSRpSTa/9IUmSdA9NTn515UwEIkmSBlvTk19tC+wPbF83XQIcXkq5vKW4JEnSgOn76I8ke1IVEbsBF9a3xwO/SLKs3fAkSdKgaNJTcQhwWCnl7Z2NSQ4BPgyc2kZgkiRpsDQ5T8X2wJE92r8APHJ64UiSpEHVpKi4Cdi5R/vOwO+nE4wkSRpcTXZ/fB74XJKHAj+u254MvA04tK3AJEnSYGlSVHwAWAm8BTi4brsOOAj4ZDthSZKkQdPkPBUFOAw4LMkmddvKtgOTJEmDpdF5KsZZTEiSpHFTKiqSnAfsUUq5Lcn5VNf46KmU8pi2gpMkSYNjqj0V3wTWdDyesKiQJEnDaUpFRSnlfR2PD5qxaCRJ0sBqcpru3ya5T4/2zZL8tp2wJEnSoGly8qttgMU92jcAHjStaCRJ0sCa8tEfSZ7f8XTPJH/oeL4Y2AP4XVuBSZKkwdLPIaUn1PcF+GLXtFHgCqoTYkmSpCE05aKilLIIIMnvgMeVUm6esagkSdLAaXJGzYfMRCCSJGmwTfXkV28CPldKWV0/nlApxet/SJI0hKbaU/Fm4Fhgdf14IgUvKiZJ0lCa0iGlpZSHlFJu6Xg80e2hTQNJ8vYkJcknOto2THJEkluS3JHk60m26HrdVklOTLIqye+TfDTJtK5pIkmS+tfk5FfvSbJxj/aNkrynSRBJHgf8E3Bh16TDgL8BXgw8DXgg8I2O1y0GTgTWB54EvBLYB3h/kzgkSVJzTU5+9V5gSY/2jetpfUmyhGrXymuA2zraNwVeDRxQSvleKeVc4FXAk5I8oZ5tOfBI4B9LKReUUk4C3g3sl2T9fmORJEnNNdlNEHpfUGwn4NYGyzsCOLGUclqSd3W07wqMAKeNN5RSLk1yFfBE4Cf1/UWllBs7Xncy8G/ADsD5Pd9AsgHVGUDHbQIwOjrK6OjoWvOPt/WapsmNjY0BsOHIYjbaaCPGxsbcln2Y7PPntpQ0X/RzRs3bqIqJAvw6SWdhsZiq9+Kz/aw8yUuBxwCP6zF5S+CuUsrtXe031tPG57mxx3Q65unlHfToVTnllFPYeOO19uz82amnnrqORWoyh77iqfCKp3Lttddy7bXXznU4A2eiz9+qVatmORJJ6q2fnor9qXopvkD1D7nzNN13AVeUUs6e6sKSPBg4HFhWSlndRxxtOBg4tOP5JsA1y5cvZ+nSpWvNPDo6yqmnnsqyZcsYGRmZrRgXjPPPP5/rr7+eA445i+tP+gxnnnkmO+2001yHNTAm+/ytWLFiDqKSpLX1c0bNL8Kfz6j5o1LKn6a57l2B+wPnJRlvWwzsnuQNwJ7A+kk26+qt2AK4oX58A7Bb13K36JjWUyllDbBm/Pn4+kdGRtZZNEw2Xb0tWlQN3Vk9ejd33nknixYtcjs2MNHnz20pab7oe6BmKeUHwNZJPpjkK0nuD5Dk2Ul26GNRpwOPAnbuuP2MatDm+ONRqguVUa/jEcBWwHiPyNnAo8ZjqC0DVgCX9PnWJEnSNPQ9UDPJ04CTgB8BuwP/AvyeaqDmq4EXTWU5pZSVwMVdy/4jcEsp5eL6+ZHAoUlupSoUPgWcXUr5Sf2SU6iKhy8lOZBqHMUHgSPq3ghJkjRLmhxSegjwrlLKMqqxFOO+Bzyh90saezPwbeDrwJlUuzT2Hp9YSrkbeB5wN1WvxZeBY4BG58uQJEnNNTmk9FHAy3q0/x6473SCKaU8vev5amC/+jbRa64EnjOd9UqSpOlr0lNxO/CAHu27AB4nKEnSkGpSVHwV+HCSLanOWbEoyZOBj1HtepAkSUOoSVHxTuBS4GqqE15dQjXe4cdUgyQlSdIQ6ntMRSnlLuA1ST4A7EhVWJxfSrms7eAkSdLgaHyJ8FLKVUmurh/3uhaIJEkaIk12f5Dk1UkuBlYDq5NcnOT/thuaJEkaJE1OfvV+4ADqE1HVzU8EDkuyVSnFc0RIkjSEmuz+eD3wmlLKVzra/ifJhVSFhkWFJElDqMnujxGq63J0O5dpjNGQJEmDrUlR8SWq3opur6W6GJgkSRpCTXsWXp1kOTB+Ya/HU1099Jgkh47PVEo5YJrxSZKkAdGkqNgROK9+vG19f3N927FjPg8zlSRpiDQ5+dUzZiIQSZI02BqdpwIgyXZJ9kyyUf087YUlSZIGTd9FRZL7JDkd+DXwHf5yxdIjk3y8zeAkSdLgaNJTcRgwSjUwc1VH+/HAXm0EJUmSBk+TgZrLgT1LKdd07fG4DNi6lagkSdLAadJTcS/u2UMxbnNgzfTCkSRJg6pJUXEW8IqO5yXJIuBA4PutRCVJkgZOk90fBwKnJ3kssD7wEWAHqp6KJ7cYmyRJGiB991SUUi4GHg78EPgm1e6QbwC7lFIubzc8SZI0KPrqqUgyAnwXeF0p5UMzE5IkSRpEffVUlFJGgUfPUCySJGmANRmo+WXg1W0HIkmSBluTgZrrAfsmeRZwLvDHzolemVSSpOE03auUPrxrmlcmlSRpSHmVUkmS1IrGVymVJEnqZFEhSZJaYVEhSZJaYVEhSZJaMaWiIsl5Se5dP35Pko1nNixJkjRoptpTsT3VNT4A3gssmZlwJEnSoJrqIaUXAEcl+SEQ4K1J7ug1Yynl/S3FJkmSBshUi4p9gPcBz6M6wdWzgT/1mK8AFhWSJA2hKRUVpZRfAS8FSDIG7FFK+f1MBiZJkgZLkzNqesSIJElaS5Nrf5BkW2B/qgGcAJcAh5dSLm8pLkmSNGD67nVIsidVEbEbcGF9ezzwiyTL2g1PkiQNiiY9FYcAh5VS3t7ZmOQQ4MPAqW0EJkmSBkuT8RHbA0f2aP8C8MjphSNJkgZVk6LiJmDnHu07Ax4RIknSkGpSVHwe+FyStyV5an17O/Dv9bQpS/KOJD9NsjLJ75OckOQRXfNsmOSIJLckuSPJ15Ns0TXPVklOTLKqXs5HkzQahCpJkppp8o/3A8BK4C3AwXXbdcBBwCf7XNbTgCOAn9ax/CtwSpJHllL+WM9zGPBc4MXAH4BPA98AngyQZDFwInAD8CTgAcAxwCjwzr7fnSRJaqTJeSoK1T/6w5JsUretbLLyUspenc+T7EO1C2VX4MwkmwKvBl5WSvlePc+rgF8meUIp5SfAcqqxHM8qpdwIXJDk3cCHkxxUSrmrSWySJKk/09pF0LSYWIdN6/tb6/tdgRHgtI51XprkKuCJwE/q+4vqgmLcycC/ATsA53evJMkGwAYdTZsAjI6OMjo6ulZQ4229pmlyY2NjAGw4spiNNtqIsbExt2UfJvv8uS0lzRepOh7mXpJFwP8Am5VSnlK3vQw4qpSyQde8/wt8v5TytiSfA7YupezZMX1j4I/Ac0opJ/VY10FUV1u9h+OOO46NN/aq7hosq1at4mUvexnApqWUFXMdj6ThNZ8GMx4B7Ag8ZRbWdTBwaMfzTYBrli9fztKlS9eaeXR0lFNPPZVly5YxMjIyC+EtLOeffz7XX389BxxzFtef9BnOPPNMdtppp7kOa2BM9vlbscI6QtL8MC+KiiSfproC6u6llGs6Jt0ArJ9ks1LK7R3tW9TTxufZrWuRW3RMW0spZQ2wpmP9AIyMjKyzaJhsunpbtKg6yGj16N3ceeedLFq0yO3YwESfP7elpPmir0NKk4wkOT3Jw9pYeSqfBl4APLOU8ruuWc6lOopjj47XPALYCji7bjobeFSS+3e8bhmwgup04pIkaRb01VNRShlN8ugW138E8DLgb4GVSbas2/9QSrmzlPKHJEcChya5lapQ+BRwdn3kB8ApVMXDl5IcCGwJfBA4ou6RkCRJs6DJya++THWYZxteT3XExxnA9R23l3TM82bg28DXgTOpdmnsPT6xlHI31a6Tu6l6Lb5MdZ6K97QUoyRJmoImYyrWA/ZN8iyq3RN/7JxYSjlgqgsqpWQK86wG9qtvE81zJfCcqa5XkiS1r0lRsSNwXv344V3T5sfxqZIkadY1OaPmM2YiEEmSNNiajKkAIMl2SfZMslH9fNJdGZIkaeHqu6hIcp8kpwO/Br5DdQEvgCOTfLzN4CRJ0uBo0lNxGNW5I7YCVnW0Hw/s1fMVkiRpwWsyUHM5sGcp5ZquPR6XAVu3EpUkSRo4TXoq7sU9eyjGbU7Hqa8lSdJwaVJUnAW8ouN5qa8weiDw/VaikiRJA6fJ7o8DgdOTPBZYH/gIsANVT8WTW4xNkiQNkL57KkopF1Od9OqHwDepdod8A9illHJ5u+FJkqRB0ejS56WUPwAfajkWSZI0wBoVFUnuTXVRse3rpkuAo0opt7YVmCRJGixNTn61O3AF8Cbg3vXtTcDv6mmSJGkINempOILqRFevry87TpLFwGfqaY9qLzxJkjQomhxSuh3w8fGCAqB+fGg9TZIkDaEmRcV5/GUsRaftgZ9PLxxJkjSoprT7I8mjO55+Ejg8yXbAT+q2JwD7AW9vNzxJkjQopjqm4gKgAJ0X+/hIj/mOoxpvIUmShsxUi4qHzGgUkiRp4E2pqCilXDnTgUiSpMHW9ORXDwSeAtyfrsGepZRPthCXJEkaMH0XFUn2Af4duAu4hWqsxbhCNZBTkiQNmSY9FR8A3g8cXEoZazkeSZI0oJqcp2Jj4KsWFJIkqVOTouJI4MVtByJJkgZbk90f7wC+nWQv4CJgtHNiKeWANgKTJEmDpWlRsSfwq/p590BNSZI0hJoUFW8B9i2lHN1yLJIkaYA1GVOxBvhR24FIkqTB1qSoOBx4Y9uBSJKkwdZk98duwDOTPA/4BWsP1Ny7jcAkSdJgaVJU3A58o+U4JEnSgOu7qCilvGomApEkSYOtyZgKSZKktTS5oNjvWMf5KEopD51WRJIkaSA1GVPxia7nI8AuwF7AR6cbkCRJGkxNxlQc3qs9yX7AY6cdkSRJGkhtjqk4CXhhi8uTJEkDpM2i4kXArS0uT5IkDZAmAzXP554DNQNsCdwP+OeW4pIkSQOmyUDNE7qejwE3AWeUUi6ddkSSJGkgNRmo+b6ZCESSJA22BXPyqyT7Jbkiyeok5yTZba5jkiRpmEy5qEgyluTuSW5/mslg1xHbS4BDgfcBjwF+Dpyc5P5zEY8kScOon90fL1jHtCcCb2Luej4OAD5fSjkKIMnrgOcC+wKHzFFMkiQNlSkXFaWUb3a3JXkE1T/tvwGOBd7TXmhTk2R9YFfg4PG2UspYktOoip1er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaJGkuNDn6gyQPpNrV8ErgZGDnUsrFbQbWh/sCi4Ebu9pvBP56gte8A3hvd+NDHvKQdiNTT6997WvnOoSFahNgxVwHIWl49VVUJNkUeCfwRuACYI9SylkzENdMO5hqDEanzZn45F2bANcADwL8Wdg/t9/0TGX7bQJcN2sRSVIPUy4qkhwIvA24AfiHXrtD5sjNwN3AFl3tW1DFupZSyhpgTVfzhL/wkow/XFlK8Zdgn9x+0zPF7ed2lTTn+umpOAS4E/gN8Mokr+w1Uyll7zYCm6pSyl1JzgX2oD4xV5JF9fNPz2YskiQNs36KimO45+m555NDgS8m+Rnwv8D+wL2Ao+YyKEmShkk/R3/sM4NxTEsp5fgk9wPeT3UdkguAvUop3YM3m1pDNTC1e5eJpsbtNz1uP0kDIaXM184HSZI0SBbMabolSdLcsqiQJEmtsKiQJEmtsKiQJEmtsKjoIcnmSY5NsiLJ7UmOTLJkkteckaR03T47WzHPtX4vPZ/kxUkuree/KMlzZivW+aif7Zdknx6ftdWzGa8k9WJR0duxwA7AMuB5wO7A56bwus8DD+i4HThTAc4n/V56PsmTgK8ARwK7UJ207IQkO85KwPNMv9uvtoJ7fta2nuk4JWkyHlLaJcn2wCXA40opP6vb9gK+AzyolNLz+gpJzgAuKKXsP0uhzhtJzgF+Wkp5Q/18EXA18KlSylqXnk9yPHCvUsrzOtp+QrX9XjdLYc8bDbbfPsAnSimbzWackjQZeyrW9kTg9vGConYaMAY8fpLXvjzJzUkuTnJwko1nLMp5ouPS86eNt5VSxurnPS89X7ef1tV28jrmX7Aabj+AJUmuTHJ1km8m2WGGQ5WkSTW69PkCtyXw+86GUsqfktxaT5vIccCVVFeKfDTwYeARwKxeC2UONLn0/JYTzL+u7btQNdl+vwL2BS4ENgXeCvw4yQ6llGtmKlBJmszQFBVJDqG6yuq6bN90+aWUzjEXFyW5Hjg9yballMubLlfqVko5Gzh7/HmSHwO/BP4JePdcxSVJQ1NUAB8Hjp5knt9SXS79HgPkkqwHbM4El1KfwDn1/XbAQi4q+r70fN3ez/wLWZPtdw+llNEk51N91iRpzgzNmIpSyk2llEsnud1F9QtwsyS7drz8mVTb6pyeC+9t5/r++nbewfxUb7PxS88D97j0/NkTvOzszvlry9Yx/4LVcPvdQ5LFwKNY4J81SfPfMPVUTEkp5ZdJvgt8PsnrgBHg08BXx4/8SPJXwOnAK0op/5tkW+BlVEeI3EI1puIw4MxSyoVz8T5m2TovPZ/kGODaUso76vkPB36Q5C3AicBLgccCr53luOeLvrZfkvcAPwF+A2wG/D+qQ0r/Y7YDl6ROFhW9vZyqkDid6qiPrwNv6pg+QjUIc/zojruAZ/GXfwZX16/54OyEO7emcOn5rai24/j8P07yMqrt86/AZcDflVIuntXA54l+tx9wb6pzomwJ3EbV0/GkUsolsxa0JPXgeSokSVIrhmZMhSRJmlkWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZpRSa5Isv9cxyFJmnkWFZIkqRUWFZIkqRUWFZpQktcmua6+amZn+zeTfCHJtvXjG5PckeSnSZ61juVtk6Qk2bmjbbO67ekdbTsmOale5o1JvpTkvjPwFiVJLbKo0Lr8J3Af4BnjDUk2B/YCjgWWUF2ZdQ9gF+C7wLeSbNV0hUk2A74HnE915dK9gC2ArzVdpiRpdniVUk2olHJbkpOoLut+et38IuBm4PullDHg5x0veXeSFwDPp7rKaxNvAM4vpbxzvCHJvsDVSR5eSvl1w+VKkmaYPRWazLHAC5NsUD9/OfDVUspYkiVJPpbkl0luT3IHsD3Vpbqb2gl4Rr3r4456mZfW07adxnIlSTPMngpN5ltAgOcm+SnwVODN9bSPAcuAtwK/Ae4E/gtYf4JljdX36Wgb6ZpnSb3Ot/V4/fX9Bi9Jmj0WFVqnUsrqJN+g6qHYDvhVKeW8evKTgaNLKf8NkGQJsM06FndTff8AqjETADt3zXMe8ELgilLKn6b9BiRJs8bdH5qKY4HnAvvWj8ddBuydZOckOwHHsY7PVCnlTuAnwNuTbJ/kacAHu2Y7Atgc+EqSx9VHmOyZ5Kgki1t8T5KklllUaCq+B9wKPIKqcBh3AHAb8GOqXRYnU/U0rMu+VD1k5wKfAN7VObGUch1VD8hi4BTgonq+2/nL7hNJ0jyUUspcxyBJkhYAeyokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIr/n8Z6N6Kx6fSjgAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAI2CAYAAAD5FUpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO2UlEQVR4nO3deZxcVZ338c+3Q5N0CAHCvu8wKAoMiCCIIrKNqCOi+ERHWcZdGRZHkFE2HUFH2QT1kYdFlCg6aFQUQRBkNQYIu2BEtkAIhAAdkk7SSf+eP+6tpFKpXqr6nq7u29/361Wvqjp16pzfvVV9+lf3nnuvIgIzMzOzVNpaHYCZmZmVm5MNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDVuJpDMkDclpZSXdIumWqudvlxSSjhii/q+Q9ORQ9FXT71b5ch411H2PFpJWk/RNSc9I6pE0tdUxjXRVf59vb3UsNvI42SgxSUflg0PltkjSc5Kul3ScpDUL6meTPEnZtYj2ijScY7OkjgH+E/hf4GPAea0Nx2x0W63VAdiQOA14AmgHNgLeDpwPnCjpPRHxQFXdrwHnNNj+JsDpwJPAfQ2876AG+2lGX7F9nNYk3E8BHUB3C/oeLd4BPBsRJ7Q6EDNzsjFaXBcRd1c9P1vSO4BrgV9L2ikiugAiYimwNGUwksZHxMKIWJKyn/5EREv+2Ud29cNFreh7MCSNA5ZERE+rYxmADYBXimpMUhuwekSMuM/NbDjwbpRRKiL+CHwV2BL4SKW83pwNSQdKul3SK5Jek/SYpK/nr70dmJ5Xvbxql81R+eu3SHpI0u6SbpW0EPh61Wu31AlvjKSvS3pe0gJJv5a0eU1MT0q6ovaN1W0OILZV5mxIWkPSt/N9/YvzZf2CJNXUC0kXSfrXfPkWS3pY0iF1lqc2xlXmbOSxvCZpU0lT88cvSvqWpDEDaPNJSddKOkjSffkus0ckHV5Tb1Le5oN5H52SrpO0S029yv75D0n6mqRngYXAxCba+KCk0yU9K2m+pP+VtJaksZLOl/RC3s7lksbWtNHrd6+vdQvsD7y+6jN/e/56o5/vhyU9DCwG+vxsJR0q6U/5MnZKmi5pck2dD0i6R1KXpLmSfixp06rXv5D3vWWd9s+WtETSOn3FkdfdI2/nY3VeOzh/7bD8+ZaSvpuviy5JL0n6uaStBtBPv3+HVWVjJZ0p6e/5un9G2byasbXvt/Lxlo3R7Udk//gPAi6pV0HS68m2gDxAtjtmMbAdsE9e5a95+VnAD4Db8vI7q5pZF7gO+CnwY2BOP3H9FxDAN8h+oR4P3Chp18oWmAEaSGzL5f9wfk32j+pSst0uBwP/A2wK1G6S3xc4HPguMB84DrhG0hYR8VIDcVaMAa4HpgFfAN4JnAQ8DnxvAO/fHrga+D7wQ+Bo4OeSDomIP+R1tgH+Ffg52a61DYFPAn+S9LqIeK6mza8AS4BvAWPzx69rsI0vAV1ku+e2Az5PtgupB1gHOAPYCzgqb+8sGNB3r54XgX8j+w5NyPsG+GsTn+87gA8CFwFzyXbF1aUscbwMeBg4m2yrym5kCcqUqjqXkyXAXyJbb/8B7CNpt4h4BfgZ8M283/+p6eaDwA0R8XIfyw9ARNwt6R/5e35Y8/KRwMtk3zWANwFvIfv7nAVsBXwauCX/PBf2119/lG0Z+jXZ38wPyP4230C2zncg+z5ZmUWEbyW9kQ3eAezRR51XgHurnp9BvqU/f3583sZ6fbSxR17nqDqv3ZK/9sleXrul6vnb87qzgDWryj+Qlx9XVfYkcMUA2uwrtiuAJ6uevzev+1819X5O9o9x26qyIPvnV132xrz8c/18LlvVxpTHEsBXaureC9w9gM/6yfz9h1eVTQSeq/l8xwJtdeJZVN131WfxONBRU7/RNh4E2qvKp+Tr83c1bdxZ83n0+93rY33cAjxUU9bo57sMeN0A+loL6AT+DIyreU35fTtZkv1gdR3gXXlfZ9ash7tr2nlTXu/fGlgHXydLDtepKludLNG4tKqso85796rtr+rzfHsTf4cfydfnvjX1Ppm3+ZZGP2PfRtbNu1HsNaCvo1Jeye/fm/86acZisl90A3VlRMyvev6/wGzgX5rsf6D+hWxAvLCm/NuAgENrym+MiMcrTyKbaNtJtvWgWd+veX5bA+09B/yyKp5O4EpgN0kb5WWLI59zIWmMpHXJvgOPAf9cp80fRs3WpCbauDJWnh8zjWx9XlZTbxqwuaTKFtdX8vvBfPeqNfr5/ikiHhlAuweS/Q2dEzVzOiKisktyD7KtdN+trhMRvwUeJUs6Kq4Gdpe0bVXZkWR/R78aQDzV7bSTbX2rOAhYO3+tEsPyz1dSe/55/p1s/df7PJvxAbKtGY9KWq9yA/6Yv75/Qf3YMOVkwyaQ7QLozdXAHcD/A+ZI+mm+D76R786z0dhk0JnVT/IB++9kv55T2hJ4ribRgWyQrLxe7ek6bbxMtmugGYsi4sVBtPf3qn9uFX/L77eCbHO2pBMkzST75zWXbNfDG8l+odd6oragiTZq19Or+f0zdcrbqtoo4rtXrdHPd5Vl70UlKXion74hS8hqPVrTd2VLy5GwfPfeB8gmencOMCYi4v687SOrio8k+7wq/+SR1CHpLEnPsPLnuTb1P89mbA+8Pm+3+lb5fm5QUD82THnOxigmaTOyweTvvdWJiC5J+5H98ngX2T7oI4E/SjooIpYNoKtG5lkMVG8nHhtD9ut1KPTWj3opb7a9Ip1KNjH4MrL5GPPI/rGdT/0fH/U+u0bb6G25+lx/BX33BiPF97ZfEfGcpNvI5lt8nWyXxhbAyU00dzXwX/lWhPnAe4CfRHbUWcV3yOb3nA/cRZb0Bdkcjv4Su4H+HbaR7UI6sZf6tYmnlYyTjdHt3/L76/uqlG8yvym/nSjpVOC/yf4J3EjvA06ztq9+kv+y245somDFy2S/vGptCfyj6nkjsT0FvFPSmjW/fv+p6vXhbDtJqtm6sUN+/2R+fwRwc0QcW/1GSWuT/aIdiCLaGJABfPcakerzrexK25neE/dK2ztStVWhqqy276uB70rakSzBWgj8ponYriY7z8z7yeaMTCRLIqodQba77KRKgbLDnNceQPsD/Tt8HNgFuKnO1jcbBbwbZZRSdp6Nr5BtKr6qj3qT6hTfl99XDllbkN+vXVB4H9XKZzc9AtiY7IiWiseBvSStXinID+Vb6RDZBmP7Hdkvss/VlJ9AlrRct8o7hpdNgPdVnkiaCHwUuC8ins+Ll1Gz5UXSB8iOxhioItro1wC/e41I9fneQLbV4Ev5P+nl8kQZ4G7gBeBT1Yd6SjoU2An4bU2b15Ct5/9Dtgvl2ohYQIMi4q9kWxSOzG+zgVtrqq3yeZIdMdTvIdcM/O/wZ2Tfj4/XNpDvxlljAH3ZCOYtG6PDoZL+iezz3pDskL4DyX5Nvad2UluN0/JN2b/N628AfIbsiJHb8zqPk00m+5Sk+WT/4KdFxED3edeaB9wu6fI83uPJfjFWH577/8iSkN9L+hnZfvOPsOJXZkUjsf0GuBn47/wcA/eTTah7L3B+9WTQYepvwKWS3kT2K/YYsvV3dFWda8k+08vJjnp4A/BhVv4V2p8i2hiIgXz3GpHk842ITkknkH0np0uaQvaLfxdgPPCxiOiWdDLZROk/SfoJKw59fZKa06lHxAuSbibb7bAmVRM6m3A12eHEi8iOQqk9Kdu1wL9JehV4BNib7LDrgRy+PdC/wx+R7Rb6vqT9yebijCHbqvRBskOQ78bKq9WHw/iW7saKQ18rt8Vkv2xuIDsnxJp13nMGKx/6+g5gKvBs/v5nyQ5d3L7mfe8hO8dAN1WHdVLnEMSq99xC/UNfP0S2r3oO2ebja4Et6rz/RLJ/PIvI/vnsXttmP7FdQdWhlnnZBODcfDmXkP0D/wL5IYxV9QK4qE5MT1LnUMCaOltVx1EVy2v9fR59tPlkvp4OIvsnuohs4uMRNfXGkp0z47l83d5ONiegt8/iiDp9DaoNejkku7Ks5Ie6MsDvXh/frVW+d4P9fPvp891k/0QXks17mAZ8qKbOB8kOZ15E9s/8x8CmvbT373kcndQcUttgXNuxYgzYp87ra5PNv3mRbAvN78l27az0XabOoa8N/h22A18km0i7iOxHxd1k51CZ2Ozy+TYybpVjwM1sBFN2JtSHIuKwVsdiZlbLczbMzMwsKc/ZMDMbQSR10P/5L+ZFiy90aFbNyYaZ2chyJP2fkXd/snkTZsOC52yYmY0gkjYmOxtnX+6JAVywzWyoONkwMzOzpDxB1MzMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw1rGUlnSIqq509KuqKFIZnZCOSxZPhzsmFmZmZJrdbqAMyq7Aj0tDoIMxvxPJYMM042bNiIiMWtjsHMRj6PJcOPd6PYkJC0r6TpkhZJelzSJ+vU8X5WM+uTx5KRyVs2LDlJbwBuAF4EziD73p0JzGlhWGY2wngsGbmcbNhQOAsQ8NaIeBpA0jXAgy2NysxGGo8lI5R3o1hSksYABwNTK4MDQET8Fbi+ZYGZ2YjisWRkc7Jhqa0PdAAz67z22BDHYmYjl8eSEczJhpmZmSXlZMNSexHoArav89qOQxyLmY1cHktGMCcbllRELCPbn/qvkraolEvaiWz/q5lZvzyWjGxONmwonJ7f3ybpZEn/BdwMPNzCmMxs5PFYMkI52bDkIuIBsl8eL5IdunYM2aDxy1bGZWYji8eSkUsR0X8tMzOzEULSM8D1EfHvrY7FMt6yYWZmpSGpHVgXmNvqWGwFn0HUzMxKQdLBwIfIzsdxU4vDsSrejWJmZqUg6WZgO+B7EfH1VsdjKyTZjSLpEEn7Vj3/rKT7JE2RtE6KPs2sfDyWWCMiYv+I2NyJxvCTas7G/wATYflV+r4N/A7YGjg3UZ9mVj4eS8xKINWcja2BR/LH7weujYhTJf0z2UBhZjYQHkvMSiBVsrEEGJ8/fidwZf54HvmvlOFEkoBNgPmtjsUssTWB52LkTNYaMWOJxxEbZRoaS1IlG7cD50q6A9gTODIv3wGYlajPwdiE4RmXWQqbAc+2OogBGkljiccRG20GPJakSjY+B3wXOAL4dERUgjkU+H2iPgdjPsAzzzzDxImt/7HU3d3NDTfcwEEHHUR7e3urw2mIY2+NgcTe2dnJ5ptvDiPrl/dIGkuG1TgC5f9OD1dlj72ZsSRJshERTwOH1Sk/IUV/RZk4ceKwGCS6u7sZP348EydOHJFfVMc+9EZy7H0ZiWPJcBlHYGR/Lxx7a6SKPdlJvSS1kR3vvAE1R71ExK2p+jWzcvFYYjbyJUk2JO0FTAG2BFTzcgBjUvRrZuXiscSsHFJt2fg+cDfwLmA22aAwoj399NPMnZudan+99dZjiy22aEkbQ9HeYJbvhRdeAGDWrFlsvfXWhcQDw2d9Dbd1Xmmjst5LyGNJojbqtTec/s48lrQmnp6enqbj6FNEFH4DFgDbpWg7UbwTgXj11VejnqeeeirGdYwPsoEuxnWMj6eeeqpu3d400saSJUti6tSpsWTJkkLaazS+wSxfR0dHTJ06NdaZtG5h8RS9fL211996H27rvLqNynr/xz/+0WvdV199tRL7xBgGf3cDuY2ksaS/cSRi+I8lQ/F3NtA2PJYUF08jbaQaS1KdQXQa2T7WUpg7dy6Luhay7mEnse5hJ7Goa+HyLHIo2xiK9tba+8hBLd+kQz4PMGyXbzh+hs2u8+o2Ju55OAAvvfRS0/EMUx5LErRRr73BfA+LjM1jSWvjqaz3oseSVLtRvgN8W9JGwINAd/WLEfFAon6Tal9382HRRsr2xqy1waDe3z5p04IiydsbhutruK1zgDET1y8gkmHJY0nCNqoV8T2sKGT5PJYMeVvt625O+2q1U6OKkSrZuCa/v6yqLMgmeHlSl5kNlMcSsxJIeW0UM7PB8lhiVgKpTur1VIp2zWx08VhiVg4pT+q1LXA8sFNe9AhwQUQ8nqpPMysfjyVmI1+So1EkHUw2IOwJPJDf3gw8LOnAFH2aWfl4LDErh1RbNs4BzouIU6oLJZ0DfAP4Q6J+zaxcPJaYlUCq82zsBFxap/wy4HWJ+jSz8vFYYlYCqZKNF4Fd65TvCpT2vMpmVjiPJWYlkGo3yiXADyRtA9yZl+0DnAycm6hPMysfjyVmJZAq2fgqMB84CTg7L3sOOAO4MFGfZlY+HkvMSiDVeTYCOA84T9Kaedn8FH2ZWXl5LDErh2Tn2ajwwGBmRfBYYjZyFTZBVNK9ktbJH8/In9e9NdjuppJ+LOklSV2SHpS0R9XrknSWpNn56zdK2r6o5TKzoeWxxKx8ityy8StgcdXjGGyD+YBzB3AzcCjZzPTtgZerqn0ROA74GPAE2T7e6yW9LiIWDTYGMxtyHkvMSqawZCMizqx6fEZBzZ4MPBMRR1eVPVF5IElkpzH+WkT8Ki/7KDAH+FfgpwXFYWZDxGOJWfmkOl35PyStW6d8bUn/aKCp9wB3S/q5pBfyTaofr3p9a2Aj4MZKQUS8CkwD9m4yfDMbJjyWmJVDqgmiWwFj6pSPBTZroJ1tgE+THU//deBNwIWSlkTED8kGB8h+fVSbU/XaKiSNzWOpWBOgu7ub7u7uVer39PTQ0dHBuNUEQEdHBz09PXXr9qaRNiplfbVfREx122sfM6jlG1t0PEPYXn/rfbit89o2Ks97a6PZOFtsK4bpWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoO7KsGJLekz+cSrbf89Wql8cABwAHRsSOA2xvCXB3RLylquxC4E0Rsbekt5Dth90kImZX1fkZ2VFzR/bS7hnA6bXlU6ZMYfz48QMJzWzEWbhwIZMnTwZYKyI6Wx1PX0bCWOJxxEarpsaSiCjsBvTkt2VVjyu3xcBjwGENtPcU8P9qyj4NPJs/3oZs8tiuNXX+RHYJ6t7aHQtMrLptCsTcuXNjyZIlq9ymT58eHR0dsdWxF8RWx14QHR0dMX369Lp1e7s10saCBQti6tSpsWDBgkLaayS+Td59/KCWb8dPXhhTp06NSZMmFRJP0cvXV3v9rffhts6r29jm8JNi6tSpMW3atF7rzp07N/K/l4lF/t2nuI2EsaTRcWS4jyWD+R6mWD6PJUO/zrc69oLl673osaTQ3SgR0QYg6QmyXwxzB9nkHUDtL5cdyAYOyCZ4PU/2K+e+vO+JZJeg/l4fcS5mxWx3srlh0N7eTnt7+yr129ra6OrqYtHSbCtQV1cXbW1tdev2ppk2eounqJjqtdfRvWxQy7e44HiKXr6BtJfye1CvvWbX+UoxdS9b/ry3NpqNsxVGwljS6DgCw3ssGcz3cDCx9daGx5Li4xloG5WyIseSVGcQ3bqgps4D7pR0KvAzYE/gE/mNiAhJ5wNfljSTFYerPUe2+dXMRjCPJWblUFiyIek44AcRsSh/3KuIGNA1DSJiuqT3kV0T4TSyAeD4iLiqqto3gTWAHwBrA7cDh4SPizcbkTyWmJVPkVs2TgCuAhblj3sTNHABpYi4Fri2j9eDbPA4baBtmtmw5rHErGSKPKnX1vUem5k1wmOJWfmkOqnXaZJWOfZLUock/2owswHxWGJWDkmSDbJjzyfUKR9PnePSzcx64bHErARSJRui/sWTdgHmJerTzMrHY4lZCRR66Kukl8kGhgD+Jql6kBhD9gvl+0X2aWbl47HErFyKPs/G8WS/RC4j28RZfYrhJcCTEXFXwX2aWfkcj8cSs9Io+gyiP4TlZ/27IyKWFtm+mY0OHkvMyiXJnI2I+BOwpaSvSfqJpA0AJB0q6fUp+jSz8vFYYlYOqQ59fRvwINl1BQ5nxWzyXYAzU/RpZuXjscSsHFIdjXIO8OWIOJBs/2rFH4G9EvVpZuXjscSsBFIlG28Aflmn/AVgvUR9mln5eCwxK4FUycYrwMZ1yncDnk3Up5mVzyt4LDEb8VIlGz8FviFpI7Lj5Nsk7QN8C7gyUZ9mVj4eS8xKIFWycSrwKPAM2YSuR4BbgTuBryXq08zKx2OJWQkUfVIvACJiCfBxSV8FdiYbJGZExMwU/ZlZOXksMSuHJMlGRUQ8LemZ/HG96xuYmfXLY4nZyJZqNwqSjpX0ELAIWCTpIUn/nqo/MysnjyVmI1+SLRuSzgJOBL4DVK5fsDdwnqQtIuK0FP2aWbl4LDErh1S7UT4NfDwiflJV9mtJD5ANGh4gzGwgPJaYlUCq3SjtwN11yu8h8TwRMysVjyVmJZAq2fgR2S+SWp8ArkrUp5mVj8cSsxJI+cvgWEkHAX/On78Z2AK4UtK5lUoRcWLCGMxs5PNYYjbCpUo2dgbuzR9vm9/PzW87V9XzIWxm1hePJWYlkOqkXvunaNfMRhePJWblkOw8GwCStpN0sKSO/LlS9mdm5eSxxGxkS5JsSFpX0k3A34DfseKqjZdK+naKPs2sfDyWmJVDqi0b5wHdZJO4FlaVXw0ckqhPMysfjyVmJZBqguhBwMERMatma+dMYMtEfZpZ+XgsMSuBVFs21mDlXyEVk4DFzTYq6RRJIen8qrJxki6W9JKk1yRdI2nDZvsws2HFY4lZCaRKNm4DPlr1PCS1AV8Ebm6mQUlvAj4JPFDz0nnAu4EPAG8DNgF+0UwfZjbseCwxK4FUu1G+CNwkaQ9gdeCbwOvJfo3s02hjkiaQnS3w48CXq8rXAo4FJkfEH/Oyo4G/StorIv5crz0zGzE8lpiVQKrzbDwkaQfgc8B8YALZL4SLI2J2E01eDPw2Im6U9OWq8t3Jrp1wY1Xfj0p6muzKkHUHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdats+4o6ODnp6eunV700gblbK+2i8iprrttY8Z1PKNLTqeIWyvv/U+3NZ5bRuV57210WycrTScx5JGxxEY5mPJIL6HzcTWXxseS4qLp5E2Kuu96LFEEcWeeE9SO/B74FMRMbOA9j4E/BfwpohYJOkW4L6IOF7SZODyiBhb856/ADdHxMm9tHkGcHpt+ZQpUxg/fvxgQzYblhYuXMjkyZMB1oqIzlbH05/hPpZ4HLHRqqmxJCIKvwEvAtsX0M7mwBzgjVVltwDn548nA4vrvO8vwDf6aHcsMLHqtikQc+fOjSVLlqxymz59enR0dMRWx14QWx17QXR0dMT06dPr1u3t1kgbCxYsiKlTp8aCBQsKaa+R+DZ59/GDWr4dP3lhTJ06NSZNmlRIPEUvX1/t9bfeh9s6r25jm8NPiqlTp8a0adN6rTt37twgO633xBR/96NtLGl0HBnuY8lgvocpls9jydCv862OvWD5ei96LEk1Z+PHZPs/TxlkO7sDGwD3Vh32NgbYT9LngIOB1SWtHRGvVL1vQ+D53hqNiMVUzWSvtN3e3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbPFhu1Y0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklTJxmrAMZLeCdwDLKh+MQZ+dcabgDfUlF0OPAp8A3iG7IQ/BwDXAEjakewEQHc1G7yZDRseS8xKYCiu+rpDzWsDniQSEfOBh6rLJC0AXoqIh/LnlwLnSpoHdALfAe4Kzx43KwOPJWYlUIarvp4A9JD9GhkLXA98Zgj7N7NEPJaYlUOqLRvJRMTba54vAj6b38zMBsRjidnQSXqJeTMzMzMnG2ZmZpaUkw0zMzNLqrBkQ9K9ktbJH58myafQM7OGeSwxK58it2zsRHY5aMhO4TuhwLbNbPTwWGJWMkUejXIfcLmk2wEBX5D0Wr2KEXFWgf2aWbnch8cSs1IpMtk4CjgTOIzsZDuHAkvr1AvAA4SZ9eYoPJaYlUphyUZEPAZ8CEBSD3BARLxQVPtmNjp4LDErn1RnEPVRLmY2aB5LzMoh2RlEJW0LHE822QvgEeCCiHg8VZ9mVj4eS8xGviS/GiQdTDYg7Ak8kN/eDDws6cAUfZpZ+XgsMSuHVFs2zgHOi4hTqgslnUN2Oec/JOrXzMrFY4lZCaTaH7oTcGmd8suA1yXq08zKx2OJWQmkSjZeBHatU74r4FnlZjZQHkvMSiDVbpRLgB9I2ga4My/bBzgZODdRn2ZWPh5LzEogVbLxVWA+cBJwdl72HHAGcGGiPs2sfDyWmJVAqvNsBHAecJ6kNfOy+Sn6MrPy8lhiVg7JzrNR4YHBzIrgscRs5PLZ+czMzCwpJxtmZmaWlJMNMzMzS6rwZENSu6SbJG1fdNtmNnp4LDErj8KTjYjoBt5YdLtmNrp4LDErj1S7UX4MHJuobTMbPTyWmJVAqkNfVwOOkfRO4B5gQfWLEXFion7NrFw8lpiVQKpkY2fg3vzxDjWvRaI+zax8PJaYlUCqM4jun6JdMxtdPJaYlUPSQ18lbSfpYEkd+XOl7M/MysljidnIliTZkLSupJuAvwG/AzbOX7pU0rcbaOdLkqZLmi/pBUlTJe1YU2ecpIslvSTpNUnXSNqwuKUxs1bxWGJWDqm2bJwHdANbAAuryq8GDmmgnbcBFwN7AQcC7cANktao6evdwAfy+psAv2g6cjMbTjyWmJVAqgmiBwEHR8Ssmq2dM4EtB9pIRKw0mEg6CngB2B24VdJaZIfFTY6IP+Z1jgb+KmmviPjzoJbCzFrNY4lZCaRKNtZg5V8hFZOAxYNod638fl5+vzvZL5QbKxUi4lFJTwN7A3UHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdaNth1dHTQ09NTt25vGmmjUtZX+0XEVLe99jGDWr6xRcczhO31t96H2zqvbaPyvLc2mo2zxYbtWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoovijxyT9DrgnIr4iaT7ZWQCfAn4KtEXEEU202Qb8Glg7IvbNyyYDl0fE2Jq6fwFujoiTe2nrDOD02vIpU6Ywfvz4RkMzGxEWLlzI5MmTAdaKiM5WxzMQw3ks8Thio1VTY0lEFH4jOzZ+DnAd2a+PnwOPAM8D2zbZ5veAJ4HNqsomA4vr1P0L8I0+2hoLTKy6bQrE3LlzY8mSJavcpk+fHh0dHbHVsRfEVsdeEB0dHTF9+vS6dXu7NdLGggULYurUqbFgwYJC2mskvk3effyglm/HT14YU6dOjUmTJhUST9HL11d7/a334bbOq9vY5vCTYurUqTFt2rRe686dOzfIzk0xMcXf/WgbSxodR4b7WDKY72GK5fNYMvTrfKtjL1i+3oseS1KdZ+MhSTsAnwPmAxPIJlpdHBGzG21P0kXAYcB+ETGr6qXngdUlrR0Rr1SVb5i/1lt8i6naBFvZF9ze3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbOVhvNY0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklRzNoiIV4H/Hkwb+bH03wHeB7w9Ip6oqXIP2Uz1A4Br8vfsSDZz/a7B9G1mw4PHErORL1myIWkdstndO+VFj5DtE53X+7tWcTHZ5s33AvMlbZSXvxoRXRHxqqRLgXMlzQM6yQaUu8Kzx81KwWOJ2ciX6qRe+5HtEz0OWCe/HQc8kb82UJ8mmzV+CzC76nZkVZ0TgGvJfo3cSrbJ8/BBLYCZDQseS8zKIdWWjYvJTrrz6YhYBiBpDPDd/LU3DKSRiOj3lMQRsQj4bH4zs3LxWGJWAqnOILod8O3K4ACQPz43f83MbCA8lpiVQKpk415W7F+tthNwf6I+zax8PJaYlUBhu1EkvbHq6YXABZK2Y8WZ9/Yi2zx5SlF9mln5eCwxK58i52zcR3aSj+p9o9+sU28K2T5YM7N67sNjiVmpFJlsbF1gW2Y2enksMSuZwpKNiHiqqLbMbPTyWGJWPilP6rUJsC+wATUTUSPiwlT9mlm5eCwxG/mSJBuSjgL+L7AEeIls/2tFkE36MjPrk8cSs3JItWXjq8BZwNkR0ZOoDzMrP48lZiWQ6jwb44GfenAws0HyWGJWAqmSjUuBDyRq28xGD48lZiWQajfKl4BrJR0CPEh26eblIuLERP2aWbl4LDErgZTJxsHAY/nz2kldZmYD4bHErARSJRsnAcdExBWJ2jez0cFjiVkJpJqzsRi4I1HbZjZ6eCwxK4FUycYFwOcTtW1mo4fHErMSSLUbZU/gHZIOAx5m1Uldhyfq18zKxWOJWQmkSjZeAX6RqG0zGz1ewWOJ2YiXJNmIiKNTtGtmo4vHErNySDVnw8zMzAxIdyG2J+jjGPiI2CZFv2ZWLh5LzMoh1ZyN82uetwO7AYcA/5OoTzMrn/NrnnssMRuBUs3ZuKBeuaTPAnuk6NPMysdjiVk5DPWcjeuA9w9xn2ZWPh5LzEaQoU42jgDmDXGfZlY+HkvMRpBUE0RnsPKkLgEbAesDn0nRp5mVj8cSs3JINUF0as3zHuBF4JaIeDRRn2ZWPlNrnnssMRuBUk0QPTNFu33JJ4z9J9mvnvuBz0fEX4Y6DjMrjscSs3IoxUm9JB0JnAucCfwz2QBxvaQNWhqYmY0oHkvM0ig02ZDUI2lZP7elRfaZOxG4JCIuj4hHgE8BC4FjEvRlZol5LDErl6J3o7yvj9f2Bo6j+ARndWB34OxKWUT0SLox79PMRh6PJWYlUmiyERG/qi2TtCNwDvBu4CrgtCL7BNYDxgBzasrnAP9U7w2SxgJjq4rWBJg3bx7d3d2r1O/s7GTcuHHopScAGDduHPfccw+dnZ20tbXR09MDsPxxvbKZM2cOuI2lS5eycOFCbrvtNtra2hpq77XXXlul7kAeV9obM39Ov8tX7/Fjjz2WxTPvKRYuXL+pNqrXXSPrq8j1X1nvq622WlNtDOU6X6mN1+awcOFCOjs7eemll1b5DgPMnz+/bvlwNBLGkkbHERjYWDLQz3wgf/s9PT0DHksG8z2sPF4+Dgzi73b58jUxljT7t9/M31xf6x+aG0uaGb8Hs87rtaH2MSxcuH7xY0lEJLkBmwCXAEuA3wA7J+wngL1ryr8JTOvlPWfk7/HNt9F42zTV3/1oGkvwOOKbbwMeSwo/GkXSWsCpwOeB+4ADIuK2ovupMhdYBmxYU74h8Hwv7zmbbBJYtUkMn5MErQnMAjYDRs7P0Yxjb42Bxr4m8NyQRDRII2AsGe7jCIyO7/RwNBpib2gsKTTZkPRF4GSyP8z/E3U2hRYtIpZIugc4gPyYfElt+fOLennPYmBxTXFnwjAbIqnycH5EDJu4BsKxt0YDsY+I5RoJY8lwH0dg1Hynh51REntDy1X0lo1zgC7g78DHJH2sXqWIOLzgfs8FfijpbuAvwPHAGsDlBfdjZkPDY4lZiRSdbFxJth9nSEXE1ZLWB84iOxHPfcAhEVE70cvMRgaPJWYlUvTRKEcV2V6DfV9EL7tNRqDFZCcVqt1EOxI49tYYybGvwmNJYUby98Kxt0aS2JXPqjYzMzNLohSnKzczM7Phy8mGmZmZJeVkw8zMzJJysmFmZmZJOdkYBiRtJelSSU9I6pL0uKQz8wtD9fW+WyRFze37QxDvZyU9KWmRpGmS9uyn/gckPZrXf1DSv6SOsU4MX5I0XdJ8SS9Imppfa6Ov9xxVZ/0uGqqYa2I5o04sj/bznpavdxtaHkvSG8ljSSvHEScbw8M/kX0WnwReD5xAdmnrrw/gvZcAG1fdvpgoRgAkHUl24qMzgX8G7geul7RBL/XfAvwEuBTYjezMjFMl7ZwyzjreBlwM7AUcCLQDN0hao5/3dbLy+t0yZZD9eLgmln17qziM1rsNLY8l6Y30saQ140irL7LkW68XhfpP4B/91LkFOH+I45oGXFT1vA14Fjill/pXA9fWlP0Z+H6L1+/6ZCeN2q+POkcBr7T6u5DHcgZwXwP1h+V6923obx5Lki/HiBlLWjmOeMvG8LUWA7ug04clzZX0kKSzJY1PFVC+KXZ34MZKWUT05M/37uVte1fXz13fR/2hslZ+3986niDpKUnPSPqVpNenDqwP20t6TtI/JF0laYs+6g7X9W5Dz2NJWiNtLGnJOFL4VV9t8CRtR3alyy/0U3UK8BTZlffeCHwD2BEo+noRFesBY4DaUzfPIdt8W89GvdTfqNjQBk7ZxbXOB+6IiIf6qPoYcAzwANmA8gXgTkmvj4hZyQNd2TSyX0ePkW36PB24TdLOEVHvyozDbr3b0PNYktYIHEtaNo442UhI0jlkV67sy04RsXyCjqRNgd8DP4+IS/p6Y0T8oOrpg5JmAzdJ2jYiHm827lHgYmBn+thXCRARdwF3VZ5LuhP4K9n+8K+kDLBOLNdVPX1A0jSyfw4fJNufaiXmsWTYGlFjSSvHEScbaX0buKKfOv+oPJC0CXAzcCfwiSb6m5bfbwekGCDmAsuADWvKNyS7FHg9zzdYPylJFwGHke1fbegXRUR0S5pBtn5bKiJekfS3PmIZVuvdBs1jyTD7TpdhLBnKccRzNhKKiBcj4tF+bktg+a+QW4B7gKPz/ZeN2jW/n13IAtTIY70HOKBSlm9GPICqrL3GXdX1cwf2UT8JZS4C3ge8IyKeaKKNMcAbSLR+G4xlArBtH7EMi/VuxfBYAgyT73SZxpIhHUdaPTvWtwDYFJhJNhFnU7L9YRsBG9XUeRTYM3++Ldnmt92BrYD3kP0C+VPiWI8EFgEfA3YC/i/wMrBh/vqVwNlV9d8CdAMnke2LPQNYAuw8xOv4u8ArZIetbVR166iqUxv7acBBwDZkh+b9BOgCXteC78i38ti3ytfpH4AXgfWH83r3bci/Jx5L0q/jETuWtHIcafkfh2/LD4uKereqOlvlZW/Pn28O/Al4Kf+DnQl8E5g4BPF+jmw/32Kyza1vrnrtFuCKmvofIJuQtBh4CPiXFqzjuusXOKq32IHzqpbzeeC3wG4t+o78lGzy3mJgVv582+G+3n0b8u+Jx5L0MY/YsaSV44gvMW9mZmZJec6GmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNG3KSnpR0fKvjMLORzWPJyOFkw8zMzJJysmFmZmZJOdmwhkj6hKTn8is0Vpf/StJlkrbNH8+R9Jqk6ZLe2Ud7W0kKSbtWla2dl729qmxnSdflbc6R9CNJ6yVYRDMbAh5LRhcnG9aonwPrAvtXCiRNAg4BrgImAL8juyzxbsDvgd9I2qLZDiWtDfwRmAHskfe1IfCzZts0s5bzWDKKrNbqAGxkiYiXJV0HTAZuyouPAOYCN0dED3B/1Vu+Iul9ZJetvqjJbj8HzIiIUysFko4BnpG0Q0T8rcl2zaxFPJaMLt6yYc24Cni/pLH58w8DP42IHkkTJH1L0l8lvSLpNWAnoOlfI8AuwP75Zs/X8jYfzV/bdhDtmllreSwZJbxlw5rxG0DAuyRNB94KnJC/9i3gQOALwN+BLuB/gdV7aasnv1dVWXtNnQl5nyfXef/sRoM3s2HDY8ko4WTDGhYRiyT9guxXyHbAYxFxb/7yPsAVEfFLAEkTgK36aO7F/H5jsv2oALvW1LkXeD/wZEQsHfQCmNmw4LFk9PBuFGvWVcC7gGPyxxUzgcMl7SppF2AKfXzPIqIL+DNwiqSdJL0N+FpNtYuBScBPJL0pn6V+sKTLJY0pcJnMbOh5LBkFnGxYs/4IzAN2JBsEKk4EXgbuJNtceT3Zr4m+HEO2le0e4Hzgy9UvRsRzZL9yxgA3AA/m9V5hxaZTMxuZPJaMAoqIVsdgZmZmJeYtG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYUNO0hmSoup5SLqolTGZmVk6TjbMzMwsKScbZmZmlpSTDTMzM0vKyYYlJWlfSdMlLZL0uKRPDvB9X5bUI+nzqWM0M7O0Vmt1AFZekt4A3AC8CJxB9n07E5jTz/u+BpwKfDIiLkkcppmZJeZkw1I6CxDw1oh4GkDSNcCDvb1B0reAE4CjI+KHQxKlmZkl5d0oloSkMcDBwNRKogEQEX8Frq//Fl0E/AfwEScaZmbl4S0blsr6QAcws85rjwH/UlP2UWAC8OmI+Eni2MzMbAh5y4YNF3eQzeX4nKRJrQ7GzMyK42TDUnkR6AK2r/PajnXK/g4cBGwC/F7SmgljMzOzIeRkw5KIiGVkczP+VdIWlXJJO5HN5aj3ngfIdq/sBPxGUsdQxGpmZmk52bCUTs/vb5N0sqT/Am4GHu7tDRHxZ+C9wF7A/0pqTx+mmZml5GTDksm3VBxMtkvlLOAYsgTkl/2874/AB8l2q/xIkr+nZmYjmCKi/1pmZmZmTfIvRjMzM0vKyYaZmZkl5WTDzMzMkmo42ZB0iKR9q55/VtJ9kqZIWqfY8MzMzGyka2bLxv8AE2H5VT2/DfwO2Bo4t7jQzMzMrAyauTbK1sAj+eP3A9dGxKmS/pks6TAzMzNbrplkYwkwPn/8TuDK/PE88i0eI40kkZ0me36rYzFLbE3gufAx72Y2hJpJNm4HzpV0B7AncGRevgMwq6jAhtgmjNzYzRq1GfBsq4Mws9GjmWTjc8B3gSPILgdeGbQOBX5fVGBDbD7AM888w8SJq26c6e7u5oYbbuCggw6ivb2cZ88u+zJ6+aCzs5PNN98cvAXPzIZYw8lGRDwNHFan/IRG25K0H/CfwO7AxsD7ImJq1esCzgQ+DqxNdhnyT0fEzKo6k4DvAO8GeoBrgP+IiNcajWfixIm9Jhvjx49n4sSJpfxHBeVfRi+fmVnrNLNlg/xaFdsBG1BzREtE3NpAU2sA9wOXAb+o8/oXgeOAjwFPAF8Frpf0uohYlNe5iixRORBoBy4HfgBMbiAOMzMzS6ThZEPSXsAUYEtANS8HMGagbUXEdcB1ebu1/Qg4HvhaRPwqL/soMAf4V+Cn+eXKDwHeFBF353U+D/xO0hci4rkGF8/MzMwK1sx5Nr4P3A3sDEwC1qm6TSouNLYGNgJurBRExKvANGDvvGhv4JVKopG7kWx3ypsLjMXMzMya1MxulO2BIyLi70UHU2Oj/H5OTfmcqtc2Al6ofjEilkqaV1VnFZLGAmOritaEbL93d3f3KvUrZTNmzKCtrY11112XzTbbbOBL0oRZs2bx0ksvAQxJf9XLuP766yfvD4Z2Gcv8Gc6aNYsXX3wRoO73t6Kv18zMUmr4EvOS/gh8MyIKPfJEUlA1QVTSW8gmhG4SEbOr6v0MiIg4UtKpwMciYseatl4ATo+I7/XS1xnA6bXlU6ZMYfz48au+wawEFi5cyOTJkwHWiojOVsdjZqNHM1s2vgN8W9JGwIPASj+XIuKBIgIDns/vNwRmV5VvCNxXVWeD6jdJWo1sd87z9O5sVj61+prArIMOOqju0SgzZsxg9uzZnDRlGou6lzHv99/h1ltvZZdddmlkeQbs/vvvZ7/99mPSIZ8HSN4frFjG/7j4l7xw+8+S9zfUy1jWz7DSzwb7fpALPvs+Nt54Y3bbbbe6dTs7nV+YWWs0k2xck99fVlUWZJNFG5og2o8nyBKGA8iTC0kTyeZiVLZY3AWsLWn3iLgnL3sH2VyUab01HBGLgcWV55XJqe3t7XUPG2xry6a2LFtzI5YtDbq6umhra0t2iGFbWxtdXV0sm7gJQPL+Kn0CdI9bZ8j6G8plLOtnWOmne9w6y5/31ocPiTWzVmn22iiFkDSB7BDa5W1L2hWYFxFPSzof+LKkmaw49PU5YCpARPxV0u+BSyR9iuzQ14uAn/pIFDMzs+GhmZN6PVVg/3sAN1c9r+za+CFwFPBNsnNx/IDspF63A4dUnWMD4MNkCcZNrDip13EFxmhmZmaD0OxJvbYlOwfGTnnRI8AFEfF4I+1ExC2seq6O6tcDOC2/9VZnHj6Bl5mZ2bDV8Hk2JB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+AfyhiMDMzMysHJo5g+hOwKV1yi8DXje4cMzMzKxsmkk2XgR2rVO+KzVn8zQzMzNrZjfKJcAPJG0D3JmX7QOczMonyjIzMzNrKtn4KjAfOInsTJyQnfviDODCYsIyMzOzsmjmPBsBnAecJ2nNvGx+0YGZmZlZOTR1no0KJxlmZmbWnwElG5LuBQ6IiJclzSC7BkpdEfHPRQVnZmZmI99At2z8ihUXLvsVfSQbZmZmZtUGlGxExJlVj89IFo2ZmZmVTjOnK/+HpHXrlK8t6R/FhGVmZmZl0cxJvbYCxtQpHwtsNqhozMzMrHQGfDSKpPdUPT1Y0qtVz8cABwBPFBWYmZmZlUMjh75Oze8D+GHNa93Ak2Qn+jIzMzNbbsDJRkS0AUh6AnhTRMxNFpWZmZmVRjNnEN06RSBmZmZWTgM9qddxwA8iYlH+uFcR4eujmJmZ2XID3bJxAnAVsCh/3JvAF2MzMzOzKgM9qdfW9R6bmZmZ9aeZk3qdJml8nfIOSacVE5aZmZmVRTMn9TodmFCnfHz+mpmZmdlyzSQbov6F2HYB5g0uHDMzMyubAScbkl6WNI8s0fibpHlVt1eBPwA/KzpASU9Kijq3i/PXb6nz2veLjsPMzMya08h5No4n26pxGdnukurTlS8BnoyIu4oLbbk3sfK1WHYmS2x+XlV2CVA9X2RhgjjMzMysCY2cQfSHsPwMondExNJkUa3c74vVzyWdAjwO/KmqeGFEPD8U8ZiZmVljmjmD6J8kbSvpaGBb4D8i4gVJhwJPR8TDhUeZk7Q68BHg3IionjfyYUkfAZ4HfgN8NSJ63bohaSzZVWor1gTo7u6mu7t7lfo9PT0AjF1NAHR0dNDT01O3bhF6enro6Ohg3BD1V+kTYFz7mCHrbyiXsayf4fJ+2scsf95bHyk/TzOzvmjl/9kDeIP0NuA64A5gP2CniPhHvsVhj4g4ovgwl/f9QWAKsEVEPJeXfQJ4CngOeCPwDeAvEXF4H+2cQZ0jZ6ZMmcL48asc1WtWCgsXLmTy5MkAa0VEZ6vjMbPRo5lk4y7g5xFxrqT5wC55srEn8IuI2CxFoHnf1wNLIuLdfdR5B3ATsF1EPN5LnXpbNmbNnTuXiRMnrlJ/xowZzJ49m5Ove5rFS4M5U07h1ltvZZdddhnU8vTm/vvvZ7/99mPDyecAJO8PVizjiVfexuzrvpu8v6FexrJ+hpV+Nj70M5z70bey8cYbs9tuu9Wt29nZyXrrrQdONsxsiDW8GwV4AzC5TvkLwHqDC6d3krYE3gn0usUiNy2/345sbscqImIxsLiqbQDa29tpb29fpX5bW3bQzuKlwaKlQVdXF21tbXXrFqGtrY2uri4WLc0SwdT9VfoEWNS9bMj6G8plLOtnuLyf7mXLn/fWR8rP08ysL82cZ+MVYOM65bsBzw4qmr4dTZbQ/Lafervm97MTxmJmZmYD1Eyy8VPgG5I2IjvnRpukfYBvAVcWGVyFpDayZOOH1UfB5BNVvyJpd0lbSXpPHsOtEfFAiljMzMysMc0kG6cCjwLPkJ22/BHgVuBO4GvFhbaSdwJbkJ3jo9qS/LUb8pi+DVwD9Dqnw8zMzIZWM4e+LgE+LumrZCfYmgDMiIiZRQdX1ecNZCcUqy1/Bnhbqn7NzMxs8JqZIApARDwt6Zn8cWOHtJiZmdmo0cxuFCQdK+khYBGwSNJDkv692NDMzMysDBresiHpLOBE4DtA5VooewPnSdoiIk7r9c1mZmY26jSzG+XTwMcj4idVZb+W9ABZAuJkw8zMzJZrZjdKO3B3nfJ7GMQcEDMzMyunZpKNH5Ft3aj1CeCqwYVjZmZmZdPslohjJR0E/Dl//may82BcKencSqWIOHGQ8ZmZmdkI10yysTNwb/542/x+bn7buaqeD4c1MzOzpk7qtX+KQMzMzKycmjrPBoCk7SQdLKkjf77KGT7NzMzMGk42JK0r6Sbgb8DvWHEF2EslfbvI4MzMzGzka2bLxnlAN9mE0IVV5VcDhxQRlJmZmZVHMxNEDwIOjohZNXtOZgJbFhKVmZmZlUYzWzbWYOUtGhWTgMWDC8fMzMzKpplk4zbgo1XPQ1Ib8EXg5kKiMjMzs9JoZjfKF4GbJO0BrA58E3g92ZaNfQqMzczMzEqg4S0bEfEQsANwO/Arst0qvwB2i4jHiw3PzMzMRrqGtmxIagd+D3wqIv47TUhmZmZWJg1t2YiIbuCNiWIxMzOzEmpmguiPgWOLDsTMzMzKqZkJoqsBx0h6J3APsKD6RV/p1czMzKoN9qqvO9S85iu9mpmZ2Up81VczMzNLqumrvg4FSWdIiprbo1Wvj5N0saSXJL0m6RpJG7YyZjMzM1vZsE42cg+TXVm2ctu36rXzgHcDHwDeBmxCds4PMzMzGyaambMx1JZGxPO1hZLWIjsqZnJE/DEvOxr4q6S9IuLPQxynmZmZ1TESko3tJT0HLALuAr4UEU8DuwPtwI2VihHxqKSngb2BXpMNSWOBsVVFawJ0d3fT3d29Sv2enh4Axq6WXeW2o6ODnp6eunWL0NPTQ0dHB+OGqL9KnwDj2scMWX9DuYxl/QyX99M+Zvnz3vpI+XmamfVFEf0fQCLpXuCAiHhZ0mnAtyKi3pVfiw1OOhSYADxGtgvldGBTsiNi3g1cHhFja97zF+DmiDi5j3bPyNtayZQpUxg/fnxh8ZsNJwsXLmTy5MkAa0VEZ6vjMbPRY6DJRhewfUTMkrQM2DgiXkge3apxrA08BZwIdNF8slFvy8asuXPnMnHixFXqz5gxg9mzZ3PydU+zeGkwZ8op3Hrrreyyyy6DX6g67r//fvbbbz82nHwOQPL+YMUynnjlbcy+7rvJ+xvqZSzrZ1jpZ+NDP8O5H30rG2+8Mbvttlvdup2dnay33nrgZMPMhthAd6PcB1wu6XZAwBckvVavYkScVVBs9dp+RdLfgO2APwCrS1o7Il6pqrYhsMocj5p2FgOLK8+lbFN3e3s77e3tq9Rva8vm0S5eGixaGnR1ddHW1la3bhHa2tro6upi0dIsEUzdX6VPgEXdy4asv6FcxrJ+hsv76V62/HlvfaT8PM3M+jLQZOMo4EzgMLITdx0KLK1TL4BkyYakCcC2wI/Izl7aDRwAXJO/viOwBdncDjMzMxsGBpRsRMRjwIcAJPWQzd9IvhtF0reA35DtOtmELOFZBvwkIl6VdClwrqR5QCfwHeAuH4liZmY2fDRzBtGhPDfHZsBPgHWBF4Hbgb0i4sX89ROAHrItG2OB64HPDGF8ZmZm1o+mDn2VtC1wPLBTXvQIcEFEPF5QXABExIf6eX0R8Nn8ZmZmZsNQw1spJB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+QXaUiJmZmRnQ3LVRdgIurVN+GfC6wYVjZmZmZdNMsvEisGud8l2BIT/Rl5mZmQ1vzexGuQT4gaRtgDvzsn2Ak4FziwrMzMzMyqGZZOOrwHzgJODsvOw54AzgwmLCMjMzs7Jo5jwbAZwHnCdpzbxsftGBmZmZWTkM6hLzTjLMzMysP0N5NlAzMzMbhZxsmJmZWVJONszMzCyphpINSe2SbpK0faqAzMzMrFwaSjYioht4Y6JYzMzMrISa2Y3yY+DYogMxMzOzcmrm0NfVgGMkvRO4B1hQ/WJEnFhEYGZmZlYOzSQbOwP35o93qHktBheOmZmZlU0zZxDdP0UgZmZmVk5NH/oqaTtJB0vqyJ+ruLDMzMysLBpONiStK+km4G/A74CN85culfTtIoMzMzOzka+ZLRvnAd3AFsDCqvKrgUOKCMrMzMzKo5kJogcBB0fErJo9JzOBLQuJyszMzEqjmS0ba7DyFo2KScDiwYVjZmZmZdNMsnEb8NGq5yGpDfgicHMhUZmZmVlpNJNsfBH4hKTrgNWBbwIPAfsBJxcYG5K+JGm6pPmSXpA0VdKONXVukRQ1t+8XGYeZmZk1r+FkIyIeIjuZ1+3Ar8h2q/wC2C0iHi82PN4GXAzsBRwItAM3SFqjpt4lZEfFVG5fLDgOMzMza1IzE0SJiFeB/y44lnr9rHR0i6SjgBeA3YFbq15aGBHPp47HzMzMGtdUsiFpHbKLse2UFz0CXB4R84oKrBdr5fe1/XxY0keA54HfAF+NiHqTWAGQNBYYW1W0JkB3dzfd3d2r1O/p6QFg7GrZ0TcdHR309PTUrVuEnp4eOjo6GDdE/VX6BBjXPmbI+hvKZSzrZ7i8n/Yxy5/31kfKz9PMrC+KaOxyJpL2I/uH/ipwd168O7A28O6IuLWXtw5KPgn118DaEbFvVfkngKeA54A3At8A/hIRh/fR1hnA6bXlU6ZMYfz48QVHbjY8LFy4kMmTJwOsFRGdrY7HzEaPZpKNB4G7gE9HxLK8bAzwXeAtEfGGwqPM+vgecCiwb0TM6qPeO4CbgO16m0PSy5aNWXPnzmXixImr1J8xYwazZ8/m5OueZvHSYM6UU7j11lvZZZddBrNIvbr//vvZb7/92HDyOQDJ+4MVy3jilbcx+7rvJu9vqJexrJ9hpZ+ND/0M5370rWy88cbstttudet2dnay3nrrgZMNMxtizexG2Q44opJoAETEMknnsvIhsYWRdBFwGLBfX4lGblpVnHWTjYhYTNU5QSonJ2tvb6e9vX2V+m1t2TzaxUuDRUuDrq4u2tra6tYtQltbG11dXSxamiWCqfur9AmwqHvZkPU3lMtY1s9weT/dy5Y/762PlJ+nmVlfmjn09V5WzNWothNw/+DCWZkyFwHvA94REU8M4G275vezi4zFzMzMmjOgLRuS3lj19ELgAknbAX/Oy/YCPgucUmx4XAxMBt4LzJe0UV7+akR0Sdo2f/13wEtkczbOA26NiAcKjsXMzMyaMNDdKPcBAVRfDOWbdepNIbsgW1E+nd/fUlN+NHAFsAR4J3A82fk+ngGuAb5WYAxmZmY2CANNNrZOGkUvIkL9vP4M2Ym/zMzMbJgaULIREU+lDsTMzMzKqdmTem0C7AtsQM0k04i4sIC4zMzMrCQaTjbyU4b/X7L5Ei+RzeWoCLIJpGZmZmZAc1s2vgqcBZwdET0Fx2NmZmYl08x5NsYDP3WiYWZmZgPRTLJxKfCBogMxMzOzcmpmN8qXgGslHQI8CKx0KcmIOLGIwMzMzKwcmk02DgYey5/XThA1MzMzW66ZZOMk4JiIuKLgWMzMzKyEmpmzsRi4o+hAzMzMrJyaSTYuAD5fdCBmZmZWTs3sRtkTeIekw4CHWXWC6OFFBGZmZmbl0Eyy8Qrwi4LjMDMzs5JqONmIiKNTBGJmZmbl1MycDTMzM7MBa+ZCbE/Qx/k0ImKbQUVkZmZmpdLMnI3za563A7sBhwD/M9iAzMzMrFyambNxQb1ySZ8F9hh0RGZmZlYqRc7ZuA54f4HtmZmZWQkUmWwcAcwrsD0zMzMrgWYmiM5g5QmiAjYC1gc+U1BcZmZmVhLNTBCdWvO8B3gRuCUiHh10RGZmZlYqzUwQPTNFIGZmZlZOpTmpl6TPSnpS0iJJ0yTt2eqYzMzMrIFkQ1KPpGX93JamDLaP2I4EzgXOBP4ZuB+4XtIGrYjHzMzMVmhkN8r7+nhtb+A4Wrel5ETgkoi4HEDSp4B3AccA57QoJjMzM6OBZCMiflVbJmlHsn/m7wauAk4rLrSBkbQ6sDtwdqUsInok3UiWBNV7z1hgbFXRmgDz5s2ju7t7lfqdnZ0sXLgQzXsKdS9j3Lhx3HPPPXR2dtLW1kZPTw/A8sf1yhp5/NhjjzFu3Dj00hMA/fZXRN8zZ85kwoQJjHltTkP9Ndv3zJkz6y7ja6+9Nqh111scleXr6zMc7OdW3UZvy1f0d6bSz5jX5rBw4UI6Ozt56aWXVvkOA8yfP79uuZlZaoro9TInvb9J2oRsl8XHgOuBL0XEQwXH1kgszwJviYi7qsq/CbwtIt5c5z1nAKcPWZBmw8tmEfFsq4Mws9GjoaNRJK0FnAp8HrgPOCAibksQV2pnk83xqDaJ3k9KtiYwC9gMKOvPw7Ivo5dvRb3nhiQiM7PcgJMNSV8ETgaeB/5Pvd0qLTIXWAZsWFO+IVmsq4iIxcDimuLO3jqQVHk4PyJ6rTeSlX0ZvXzLlW7ZzWz4a2TLxjlAF/B34GOSPlavUkQcXkRgAxURSyTdAxxAfsIxSW3584uGMhYzMzNbVSPJxpWsfJry4eRc4IeS7gb+AhwPrAFc3sqgzMzMrLGjUY5KGMegRMTVktYHziK7Tst9wCERMaegLhaTTYit3fVSJmVfRi+fmVmLNHU0ipmZmdlAleZ05WZmZjY8OdkwMzOzpJxsmJmZWVJONszMzCwpJxsDUNbL10v6kqTpkuZLekHS1Px6N6Uk6RRJIen8VsdSJEmbSvqxpJckdUl6UNIerY7LzKzCyUY/Sn75+rcBFwN7AQcC7cANktZoaVQJSHoT8EnggVbHUiRJ6wB3AN3AocDrgJOAl1sZl5lZNR/62g9J04DpEfG5/Hkb8AzwnYgo1eXr83OVvEB2AbtbWx1PUSRNAO4FPgN8GbgvIo5vaVAFkXQOsE9EvLXVsZiZ9cZbNvpQdfn6GytlEdGTP697+foRbq38vrcL0o1UFwO/jYgb+6058rwHuFvSz/NdYTMkfbzVQZmZVXOy0bf1gDFA7ZlI55CdqbQ08i025wN3RMRDLQ6nMJI+RLb760utjiWRbYBPAzOBg4HvARf2du0iM7NWaOgS81ZqFwM7A/u2OpCiSNocuAA4MCIWtTqeRNqAuyPi1Pz5DEk7A58Cfti6sMzMVvCWjb41fPn6kUjSRcBhwP4RMavV8RRod2AD4F5JSyUtJZsUe1z+fExrwyvEbOCRmrK/Alu0IBYzs7qcbPQhIpYAlcvXAytdvv6uVsVVFGUuAt4HvCMinmh1TAW7CXgDsGvV7W7gKmDXiFjWqsAKdAdQe7jyDsBTLYjFzKwu70bpX5kvX38xMBl4LzBfUmUeyqsR0dW6sIoREfOBleafSFoAvFSieSnnAXdKOhX4GbAn8In8ZmY2LPjQ1wGQ9DngP1lx+frjImJaS4MqgKTePvyjI+KKoYxlqEi6hRId+gog6TDgbGB74Ang3Ii4pLVRmZmt4GTDzMzMkvKcDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknGzbkJD0p6fhWx2FmZkPDyYaZmZkl5WTDzMzMknKyYQ2R9AlJz+VXv60u/5WkyyRtmz+eI+k1SdMlvbOP9raSFJJ2rSpbOy97e1XZzpKuy9ucI+lHktZLsIhmZlYwJxvWqJ8D6wL7VwokTQIOIbt0+wTgd8ABwG7A74HfSNqi2Q4lrQ38EZgB7JH3tSHZVU7NzGyY8yXmrSER8bKk68guTX9TXnwEMBe4OSJ6gPur3vIVSe8D3gNc1GS3nwNmRMSplQJJxwDPSNohIv7WZLtmZjYEvGXDmnEV8H5JY/PnHwZ+GhE9kiZI+pakv0p6RdJrwE5A01s2gF2A/fNdKK/lbT6av7btINo1M7Mh4C0b1ozfAALeJWk68FbghPy1bwEHAl8A/g50Af8LrN5LWz35varK2mvqTMj7PLnO+2c3GryZmQ0tJxvWsIhYJOkXZFs0tgMei4h785f3Aa6IiF8CSJoAbNVHcy/m9xuTzckA2LWmzr3A+4EnI2LpoBfAzMyGlHejWLOuAt4FHJM/rpgJHC5pV0m7AFPo43sWEV3An4FTJO0k6W3A12qqXQxMAn4i6U35ES8HS7pc0pgCl8nMzBJwsmHN+iMwD9iRLKGoOBF4GbiTbNfH9WRbJvpyDNlWtnuA84EvV78YEc+RbTEZA9wAPJjXe4UVu2HMzGyYUkS0OgYzMzMrMW/ZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpbU/wdabBSQeYxMGgAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKt0lEQVR4nO3deZwcdZ3/8dd7whASkgBRuVRuwQAaEMWDBVFIAgq6oq4u7o/L1YUFWUCXaxURUUAlARHWleVULl0UVw5JADEogRUIlxwicoYQjhCSmGvCfH5/VLVUOj0z3dXV01PT7+fj0Y/u+lZ19adruj/z6apvfUsRgZmZmVmzutodgJmZmQ0PLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKmxQSDpZ0qAM3yrpVkm3ZqZ3lxSSPjVIr3+xpCcH47WqXnez9H0eNNiv3SkkrSHpO5KekdQr6Zp2x2Q2lLiosIZJOij951W5LZP0nKQbJR0paWxBr7NxWozsUMT6ijSUY7OWOgT4d+B/gAOBae0NpziS3p4WTPdKWiRprqTrJL273bFZeazR7gCs1E4CngC6gQ2B3YGzgGMkfSwi7s8seypweoPr3xj4OvAkcG8Dz5vc4Ovk0V9sX6A9BftTwCigpw2v3Sk+DMyJiKPbHUgL/DPweeBq4DxgHeBfgDsk7RURN7UzOCsHFxXWjBsi4q7M9GmSPgxcC/yvpAkRsRQgIlYCK1sZjKTREbEkIla08nUGEhFt+aceydUBl7XjtZshaS1gRUT0tjuWOqwPLChqZZK6gDUjoq6/myQBa1W+VwW7Ajg5IhZnXu9C4GHgZMBFhQ3Ihz+sUBFxC/BNYFPgnyrttfpUSJok6XeSFkhaLOlRSd9O5+0O/CFd9KLMoZaD0vm3SnpQ0k6SZkpaAnw7M+/WGuGNkPRtSc9L+quk/5X01qqYnpR0cfUTs+usI7bV+lRIWlvSmemx+OXpe/1K+k8iu1xI+oGkv0/f33JJf5S0V433Ux3jan0q0lgWS3qzpGvSxy9K+p6kEXWs80lJ10qanO4WXybpIUn7VS03Pl3nA+lrLJR0g6SJVctV+rd8VtKpkuYAS4BxOdbxD5K+LmlOurv+fyStI2mkpLMkvZCu5yJJI6vW0ednr79tC3wI2C7zN989nd/o3/dzkv4ILAf6/Ntmtv8USXcBS0n2HiDpYEm3pO9zefp3OayfdfydpP9L/4Z/kXRAdrmIuDtbUKRtLwO3ARP6itEsy3sqrBV+TPIPfjJwfq0FJG1HskfjfpLDKMuBrYBd0kUeTttPAX5EktgAbs+s5g3ADcCVwE+AeQPE9R9AAGeQ/OI8CrhJ0g4N/vKrJ7a/Sf+x/C/JP6QLSA6XTAG+C7wZqN6V/nfAfiS7oBcBRwJXS9okTfKNGgHcCNwJfAXYE/gy8Djwn3U8/23AVcAPgUuAg4GfKdklPiNdZgvg74GfkRwS24Dkn99vJW0bEc9VrfNrwArge8DI9PG2Da7jBJJ/sqeTfHa+RHLopxdYj+TX9fuAg9L1nQJ1ffZqeRH4fySfoTHpawM8nOPv+2HgH4AfAC+RHELrzzYkexH+i+T79Gjafhjwx/S1VwL7AudJ6oqIc6vWsRVJP5ALSP6GhwAXS7o7Iv44wOtvmMZpNrCI8M23hm4kSTqAd/ezzALgnsz0yaR76NPpo9J1vLGfdbw7XeagGvNuTef9Sx/zbs1M754u+ywwNtP+6bT9yEzbk8DFdayzv9guBp7MTH88XfY/qpb7Gck/wC0zbUHyTy7b9s60/YgB/i6bVceUxhLA16qWvQe4q46/9ZPp8/fLtI0Dnqv6+44EumrEsyz72pm/xePAqKrlG13HA0B3pv3ydHteX7WO26v+HgN+9vrZHrcCD1a1Nfr3fQ3Yts7Xq2z/KTXmjarR9mvg8T7WsWum7U3pdv3eAK+/a/oeTml0W/nWmTcf/rBWWQz0dxbIgvT+40qOK+exHLiogeUvjYhFmen/AeYCH8n5+vX6CMk/ku9XtZ8JCNi7qv2miHi8MhFJh9eFJHsD8vph1fRtDazvOeAXmXgWApcCO0raMG1bHmmfCEkjJL2B5DPwKPCuGuu8JKr2DuVYx6Wxav+VO0m254VVy90JvFVSZc/sgvS+mc9eVqN/399GxEMNrP+JiLixujG7/dLDPm8EfgtsIWmdqsUfiojbMs99kWS79vkZkLQ+SaH2BPCdBuK1DuaiwlplDMmu+75cBfwe+G9gnqQr02PkjXwm50RjnTIfy05ERAB/Jvk13EqbAs9VFTSQHEapzM96usY6XiHZpZ/HsvSfSN71/TndVll/Su83g6TDoaSjJT1GUuy9RHLI4J0kZxFUe6K6Icc6qrfTq+n9MzXauzLrKOKzl9Xo33e19z6AmstL2kXSTZL+SlIovUjar4jVt1dDnylJa5McIhoLfDyq+lqY9cVFhRVO0ltIktqf+1om/ZW1G8nx/R+T/OO4CpihOjoQplrRA76vAbrqjakIr/XRrj7a866vSCcCU4GZJB10pwCTSI7518oztf52ja6jr/fV7/Yr6LPXjEY/t6stL2lL4GbgjcAxwEdJtlVl3Izq7VX3Z0rSmsDPSbbLxyPiwQbjtQ7mjprWCv8vvV9tl21Wuqv75vR2jKQTgW+RdHi7ib7/wef1tuxE2sFuK5IOexWvAOvWeO6mwF8y043E9hSwp6SxVb9m356ZP5RtJUlVeyu2Tu+fTO8/BfwmIj6ffaKkdam/k18R66hLHZ+9RrTj77svSR+Uj0XE3/ZCSPpQMytN99ZcCuwB/ENE/LapKK3jeE+FFUrJOBVfI9lle1k/y42v0Xxvel85/e+v6f26BYV3gFYd7fNTwEYkZ5BUPA68L/21BoCkfYBVTj1tMLbrSfZ0HFHVfjRJcXLDas8YWjYGPlGZkDQOOAC4NyKeT5tfo+pXr6RPk5z9UK8i1jGgOj97jWjH37ey5+Fv2yvtR3Fwk+s9B/gM8K8R8fMm12UdyHsqrBl7S3o7yedoA5JT5SaR/DL7WPQ/oM9JknYDrkuXXx/4V5IzNH6XLvM4ybHiQyUtIvlHfmdENHpMumI+8DtJF6XxHkVyiCZ72ut/kxQbv5b0U2BLkl3xj6+6qoZi+xXwG+BbkjYD7iM53fbjwFnZTplD1J+ACyS9h+S03UNItl/2H9i1JH/Ti0jOtngH8DlW3bszkCLWUY96PnuNaMffdzrJabi/kvRfJH2YvgC8QFIoN0zSUSTbYRawRNI/VS3yi4j462pPNMtwUWHNOCW9X0HyD/sBkn/UF9XotFbtf0k6+R1Cclz4JZKe61+PiFchGZlS0oHAaSRnL6xB8o8sb1HxbZLjxCeQdEC7meQX2ZLKAhFxo6QvkxynPgu4C9iHpCc/meXqji0ieiV9jGR7fSZd7kmSa0icWb38EPQYyRgQ3yUZM+EJ4DNVZyR8G1gb2J/kPd5Dcpy/kaHZi1hHPQb87DWiHX/fiHhUyQXyTiUZ6+N5kjFHXmT1s1/qtUN6//70Vm1zXt9DZ1aTVu/UbWaWUDIy6IMRsU+7YzGzoc99KszMzKwQLirMzMysEC4qzMzMrBDuU2FmZmaF8J4KMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCqtJ0kGSQtJmAyz3pKSLBycqMysT55HO46LCzMw6lqQ9JF0o6U+Slkj6i6T/lrRRu2MrI0VEu2OwIUjSCKAbWB79fEgkPQncGhEHDVJoZlYSZcgjku4CxgM/Ax4DtgCOAJYAO0TE84MdU5mt0e4AbGiKiNeA19odh5mVV0nyyDHA7yKit9Ig6dfAb0mKi6+2K7Ay8uEPq6n6WKgSX5X0bLqL8DeStqvxvJMlrfaLpNax1fQ46rWSdpd0l6Slkh6QtHs6f790epmkuyXt2Kr3a2bFK0MeiYiZ2YKi0gbMByY0vxU6i4sKq9cpwDeB+4B/B/4CTAfWbnK9WwGXA78CTgDWA34l6XPANOAnwNeBLYGfSvJn1qy8SpFHJI0BxgAvNRlXx/HhDxuQpDcBxwLXAftWjo1K+hZwYpOr3wb4QETMStf5EHAjcD7w9oh4Om1/BfgvYDfg1iZf08wGWcnyyFHAmsBVTcbVcfyrz+qxJ8kX7JyqzlZnFbDuhyqJIHVnen9LJRFUtW9RwGua2eArRR6RtBvJXo2fRsQtBcTWUVxUWD02Te8fyzZGxIvAK02uO/uFJyJeTR8+U7VcpX29Jl/PzNpjyOcRSW8HfgE8CPxzkzF1JBcVVrS+Thsb0Ud7Xz3D+2pXY+GYWQkNeh6R9FaS/h2vAh+JiEX9Rmg1uaiwejyV3r8t25geI62u+F9J561b1b4pZtbJhmwekfQGkoJiJDAlIua24nU6gYsKq8dNQA/wJUnZCv+oGss+nt7vVmmQtDZwYMuiM7MyGJJ5JF3v9cCbSfZQPDbAU6wfPvvDBhQRL0r6HsmpWtdKuh7YEdib1U+5mk5yfPMCSd8l2f14CPAisMngRW1mQ8kQziOXATsDFwITJGXHplgcEdcU/HrDmosKq9dXgWXAocCHSHpRTyY5PexvIqJH0ieA80jOR3+epHf3K8BFgxivmQ09QzGP7JDeH5Lesp4Crin49YY1X/vDzMzMCuE+FWZmZlYIFxVmZmZWCBcVZmZmVggXFWZmZlaIhosKSXtJ+rvM9OGS7pV0uSQPoWxmuTi3mJVfnj0V3wXGAUh6B3AmycAhmwNTiwvNzDqMc4tZyeUZp2Jz4KH08SeBayPiREnvIkkApZOO7rYx4LHerazGAs9Fuc8Rd24xG3oayi15iooVwOj08Z7Apenj+aS/MkpoY+DZdgdh1qS3AHPaHUQTnFvMhqa6c0ueouJ3wFRJvycZ2vQzafvWlPfLswjgmWeeYdy41XNXT08P06dPZ/LkyXR3dw96cGXn7decgbbfwoULeetb3wrl/zXs3GIN8fZrTityS56i4giSoVM/BRwWEZXqZW/g1znWN2SMGzeuzy/+6NGjGTdunD+4OXj7NaeDtp9zizXE2685rdh+DRcVEfE0sE+N9qMLicjMOpJzi1n55bqgmKQuYCtgfarOIImImQXEZWYdyLnFrNwaLiokvQ+4HNgUUNXsAEYUEJeZdRjnFrPyy7On4ofAXcBHgbkkX3azAd13332sv/76bLLJJu0OxYYm5xbL5b777qOrq4s3vvGNzi9tlqeoeBvwqYj4c9HB2PD07LNJx/3ddtuNQDz6yMP+4lstzi3WkGxuWbp0KWuNGu380mZ5RtS8k+SYp1ldXn75ZQDG7bwfy5Yu4aWXXmpzRDZEObdYQyq5ZfxeX+IN+3zZ+WUIyLOn4hzgTEkbAg8APdmZEXF/EYHZ8DNi3JvaHYINbc4tlkv3+Dfz2kofLRsK8hQVV6f3F2bagqRjlTtTmVlezi1mJZf32h9mZkVzbjEruTyDXz3VikDMrLM5t5iVX97Br7YEjgImpE0PAWdHxOMFxWVmHci5xazcGj77Q9IUki/6zsD96e29wB8lTSo2PDPrFM4tZuWXZ0/F6cC0iDg+2yjpdOAMYEYRgZlZx3FuMSu5PONUTAAuqNF+IbBtc+GYWQdzbjEruTxFxYvADjXadwBeaCYYM+tozi1mJZfn8Mf5wI8kbQHcnrbtAhwHTC0qMDPrOM4tZiWXp6j4JrAI+DJwWtr2HHAy8P1iwjKzDuTcYlZyecapCGAaME3S2LRtUdGBmVlncW4xK79c41RU+AtvZq3g3GJWTnUVFZLuAfaIiFckzSYZh7+miHhXUcGZ2fDm3GI2vNS7p+KXwPLM48IuByfpzSTnoO8NjAb+DBwcEXel8wV8A/gCsC7we+CwiHgss47xJFc43BfoJbkw0b9FxOKi4jSzlnBuMRtG6ioqIuIbmccnF/XiktYj+SL/huSL/yLwNuCVzGLHAkcCBwJPkHTmulHSthGxLF3mMmAjYBLQDVwE/AjYv6hYzax4zi1mw0vDfSok/QV4T0S8XNW+LnBPRGzRwOqOA56JiIMzbU9k1imS6wCcGhG/TNsOAOYBfw9cKWkCsFcaU+UXyJeA6yV9JSKea+wdmlk7OLeYlV+ejpqbASNqtI8E3tLguj5G8svgZ8AHgTnAeRFxfjp/c2BD4KbKEyLiVUl3Au8HrkzvF1S+9KmbSHZVvhf4RfWLShqZxlsxFqCnp4eenp7Vgqy01ZpnA+vt7QVgre4RjBo1it7eXm/LBgz0+RtG23IznFusAZXcMnINATi/NKgVuaXuokLSxzKTUyS9mpkeAexB5pdAnbYADiMZ2ObbwHuA70taERGXkHzpIfn1kDUvM29Dqkbbi4iVkuZnlql2AvD16sbp06czevToPoOdMcOXHmjG1AN2hQN2Zc6cOcyZM6fd4ZROX5+/JUuWDHIkxXJucW5p1hl7b5I82PcK55cciswtjeypuCa9D+CSqnk9wJMkg9Y0ogu4KyJOTKdnS9oeOLTGaxTpNFYdoW8s8OzkyZMZN27cagv39PQwY8YMJk2aRHd3dwvDGp5mz57N3LlzOebS25h7w3nMnDmTiRMntjus0hjo87dw4cI2RFWoa9J75xZrSCW3HHfD0yxfGcy7/Hjnlwa0IrfUXVRERBeApCdIjjG+1PCrrW4uyaWOsx4GPpk+fj693yBdlsz0vZll1s+uQNIawPjM81cREct5vcc5yeFV6O7u7veLPdB8q62rK7nEzLKe11i6dCldXV3ejjn09fkr+7Z0bnFuyauSW5avDJatDOeXnIrMLQ1fUCwiNi/oSw9J7+xtqtq2Bp5KHz9B8uXdozJT0jiS45mz0qZZwLqSdsqs48Mk7+3OguI0sxZzbjErv3oHvzoS+FFELEsf9ykiGhmjfxpwu6QTgZ8COwNfTG9EREg6C/iqpMd4/bSv50h3mUbEw5J+DZwv6VCS075+AFzp3tlmQ5tzi9nwUu/hj6NJztdelj7uS9DAhX8i4g+SPkFyHPIkki/2URFxWWax7wBrk5wbvi7wO2CvzHnkAJ8j+bLfzOsD1PSboMxsSHBuMRtG6h38avNaj4sQEdcC1/YzP0iSwkn9LDMfD0ZjVjrOLWbDS8N9KiSdJGm1c6MkjZLU55fTzKw/zi1m5ddwUUFyDvaYGu2jqXF+tplZnZxbzEouT1Ehal/0ZyIwv7lwzKyDObeYlVwjI2q+QvKFD+BPkrJf/hEkvzB+WGx4ZjbcObeYDR+NjKh5FMkviQtJdkVmh9JdATwZEbNqPM/MrD9H4dxiNiw0MqLmJfC3Ue9+HxErWxaVmXUM5xaz4SPPiJq/BTaVdKqkKyStDyBpb0nbFR6hmXUE5xaz8stzSukHgQdIhrPdj9d7a08EvlFcaGbWSZxbzMovz9kfpwNfjYhJJMc7K24B3ldIVGbWiZxbzEouT1HxDuAXNdpfAN7YXDhm1sGcW8xKLk9RsQDYqEb7jsCcpqIxs062AOcWs1LLU1RcCZwhaUOS88q7JO0CfA+4tMjgzKyjOLeYlVyeouJE4BHgGZKOVA8BM4HbgVOLC83MOoxzi1nJNTL4FQARsQL4gqRvAtuTfPlnR8RjRQdnZp3DucWs/BouKioi4mlJz6SPa43Xb2bWMOcWs/LKc/gDSZ+X9CCwDFgm6UFJ/1xsaGbWaZxbzMqt4T0Vkk4BjgHOASrj8b8fmCZpk4g4qcD4zKxDOLeYlV+ewx+HAV+IiCsybf8r6X6SZOAvvpnl4dxiVnJ5Dn90A3fVaL+bJvpomFnHc24xK7k8RcWPSX5RVPsicFlz4ZhZB3NuMSu5vNX/5yVNBu5Ip98LbAJcKmlqZaGIOKbJ+Mysszi3mJVYnqJie+Ce9PGW6f1L6W37zHI+FczMGuHcYlZyeQa/+lArAjGzzubcYlZ+ucapAJC0laQpkkal0youLDPrVM4tZuXVcFEh6Q2Sbgb+BFzP61cVvEDSmUUGZ2adw7nFrPzy7KmYBvSQdJ5akmm/CtiriKDMrCM5t5iVXJ6OmpOBKRHxbNVeyceATQuJysw6kXOLWcnl2VOxNqv+iqgYDyzPG4ik4yWFpLMybWtJOlfSy5IWS7pa0gZVz9tE0nWSlkh6QdJ3JXmgHLPyaUluAecXs8GSp6i4DTggMx2SuoBjgd/kCULSe4B/Ae6vmjUN2Bf4NPBBYGPg55nnjQCuA9YEPgAcCBwEnJInDjNrq8JzCzi/mA2mPBX3scDNkt5N8mX7DrAdya+JXRpdmaQxJKPlfQH4aqZ9HeDzwP4RcUvadjDwsKT3RcQdJLtLtwX2jIh5wL2SvgacIenkiFiR4/2ZWXsUmlvA+cVssOUZp+JBSVsDRwCLgDEk1f25ETE3RwznAtdFxE2Svppp34nkWgA3ZV77EUlPk1y58I70/oH0C19xI/CfJMlodq0XlDQSGJlpGgvQ09NDT0/PastX2mrNs4H19vYCsFb3CEaNGkVvb6+3ZQMG+vwNl23ZgtwCg5xfnFsGVyW3jFwj6YPj/NKYVuSWhooKSd3Ar4FDI+JbDb/a6uv7LPAu4D01Zm8IrIiIBVXt89J5lWXm1ZhPZplaTgC+Xt04ffp0Ro8e3eeTZsyY0c8qbSBTD9gVDtiVOXPmMGfOnHaHUzp9ff6WLKnVDaFcis4t6TrbkV+cW9rgjL03SR7se4XzSw5F5paGioqI6JH0zoZfpQZJbwXOBiZFxLIi1tmA04CpmemxwLOTJ09m3Lhxqy3c09PDjBkzmDRpEt3d3YMV47Axe/Zs5s6dyzGX3sbcG85j5syZTJw4sd1hlcZAn7+FCxe2IapiFZlboK35xbllEFVyy3E3PM3ylcG8y493fmlAK3JLnj4VPyE5Fnl8judm7QSsD9yTOX1sBLCbpCOAKcCaktat+jWxAfB8+vh5YOeq9W6QmVdTRCwn05u88vrd3d39frEHmm+1dXUl/YGX9bzG0qVL6erq8nbMoa/P3zDalkXlFmhTfnFuGVyV3LJ8ZbBsZTi/5FRkbslTVKwBHCJpT+Bu4K/ZmQ1cPfBm4B1VbRcBjwBnAM+QDISzB3A1gKRtSAbGmZUuPwv4D0nrR8QLadskYCHwUAPvyczar6jcAs4vZm3R7FVKt66aV/fVAyNiEfBgtk3SX4GXI+LBdPoCYKqk+SRf5HOAWWnPbIDpJF/uH0s6luQ456kkHbuaOq/dzAZdIbkFnF/M2mWoX6X0aKCX5JfESJKe1/+aieU1SfuQ9MaeRfLL5hLgpEGM0cwK0IarlDq/mBVsSI0MFxG7V00vAw5Pb3095yngI62NzMzKzvnFrPVyX/rczMzMLMtFhZmZmRXCRYWZmZkVoq6iQtI9ktZLH58kqe+h4czM6uTcYja81LunYgLJZYkhGYJ2TGvCMbMO49xiNozUe/bHvcBFkn4HCPiKpMW1FowIXxbYzOp1L84tZsNGvUXFQcA3gH1IBqHZG1hZY7kA/MU3s3odhHOL2bBRV1EREY8CnwWQ1AvskRm21swsF+cWs+Elz4iaPmPEzArn3GJWfrlG1JS0JXAUSScrSMbHPzsiHi8oLjPrQM4tZuXW8C8DSVNIvug7A/ent/cCf5Q0qdjwzKxTOLeYlV+ePRWnA9Mi4vhso6TTSS4pPKOIwMys4zi3mJVcnmOYE4ALarRfCGzbXDhm1sGcW8xKLk9R8SKwQ432HQD32jazvJxbzEouz+GP84EfSdoCuD1t2wU4DphaVGBm1nGcW8xKLk9R8U1gEfBl4LS07TngZOD7xYRlZh3IucWs5PKMUxHANGCapLFp26KiAzOzzuLcYlZ+ucapqPAX3sxawbnFrJw8gp2ZmZkVwkWFmZmZFcJFhZmZmRWioaJCUrekmyW9rVUBmVnncW4xGx4aKioiogd4Z4tiMbMO5dxiNjzkOfzxE+DzRQdiZh3PucWs5PKcUroGcIikPYG7gb9mZ0bEMUUEZmYdx7nFrOTyFBXbA/ekj7eumhfNhWNmHcy5xazk8oyo+aFWBGJmnc25xaz8cp9SKmkrSVMkjUqnVVxYZtapnFvMyqvhokLSGyTdDPwJuB7YKJ11gaQzG1zXCZL+IGmRpBckXSNpm6pl1pJ0rqSXJS2WdLWkDaqW2UTSdZKWpOv5rqSmhiA3s8Hl3GJWfnn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYWXs5t5iVXJ6KezIwJSKerdor+RiwaSMriohVEoWkg4AXgJ2AmZLWITnFbP+IuCVd5mDgYUnvi4g70ni2BfaMiHnAvZK+Bpwh6eSIWJHjPZrZ4HNuMSu5PEXF2qz6K6JiPLC8uXBYJ72fn97vRPIL46bKAhHxiKSngfcDd6T3D6Rf+oobgf8EtgNmV7+IpJHAyEzTWICenh56enpWC6rSVmueDay3txeAtbpHMGrUKHp7e70tGzDQ528YbUvnFmtIJbeMXCMpQp1fGtOK3JKnqLgNOAD4WjodkrqAY4Hf5FgfAOk6zgJ+HxEPps0bAisiYkHV4vPSeZVl5tWYT2aZaicAX69unD59OqNHj+4zxhkzZvQ5zwY29YBd4YBdmTNnDnPmzGl3OKXT1+dvyZJa/4dLybnFcjlj702SB/te4fySQ5G5JU9RcSxws6R3kxxr/A5J1T4e2CXH+irOJTlP/e+aWEe9TgOmZqbHAs9OnjyZcePGrbZwT08PM2bMYNKkSXR3dw9CeMPL7NmzmTt3LsdcehtzbziPmTNnMnHixHaHVRoDff4WLlzYhqhawrnFGlLJLcfd8DTLVwbzLj/e+aUBrcgtecapeFDS1sARwCJgDEnnpnMjYm7DEQCSfgDsA+wWEc9mZj0PrClp3apfFBuk8yrL7Fy1yg0y82q9h+VkdqdWjt92d3f3+8UeaL7V1tWV9Ade1vMaS5cupaury9sxh74+f8NlWzq3DI+/42Cq5JblK4NlK8P5Jacic0uuU6Mi4lXgW3mem5Wef34O8Alg94h4omqRu0l6g+8BXJ0+ZxuS3uGz0mVmAf8haf2IeCFtmwQsBB5qNkYzGzzOLWbllquokLQeSc/pCWnTQ8BFETG/72fVdC6wP/BxYJGkynHKVyNiaUS8KukCYKqk+SRf5nOAWWnvbIDp6ev/WNKxJMc6TyX5ddNs5y4zG0TOLWbllmfwq92AJ4EjgfXS25HAE+m8RhxG0iv7VmBu5vaZzDJHA9eS/JqYSbLbcb/KzIh4jWT35mskvyx+AlwKnNRgLGbWRs4tZuWXZ0/FuSSD0RyWfukqg8Scl857R70riogBh9+NiGXA4emtr2WeAj5S7+ua2ZDk3GJWcnlG1NwKOLPypYe/VfRT03lmZnk4t5iVXJ6i4h5eP96ZNQG4r7lwzKyDObeYlVxdhz8kvTMz+X3gbElbkYw6B8n4+ocDxxcbnpkNZ84tZsNLvX0q7gUCyB6n/E6N5S4nOSZqZlaPe3FuMRs26i0qNm9pFGbWqZxbzIaRuoqKtAe0mVmhnFvMhpe8g19tTDKO/vpUdfaMiO8XEJeZdSDnFrNya7iokHQQ8F/ACuBlkuOhFUHS2crMrCHOLWbll2dPxTeBU4DTIqK34HjMrHM5t5iVXJ5xKkYDV/pLb2YFc24xK7k8RcUFwKeLDsTMOp5zi1nJ5Tn8cQJwraS9gAdILh/8NxFxTBGBmVnHcW4xK7m8RcUU4NF0urozlZlZHs4tZiWXp6j4MnBIRFxccCxm1tmcW8xKLk+fiuXA74sOxMw6nnOLWcnlKSrOBr5UdCBm1vGcW8xKLs/hj52BD0vaB/gjq3em2q+IwMys4zi3mJVcnqJiAfDzguMwM1uAc4tZqTVcVETEwa0IxMw6m3OLWfnl6VNhZmZmtpo8FxR7gn7OGY+ILZqKyMw6knOLWfnl6VNxVtV0N7AjsBfw3WYDMrOOdVbVtHOLWcnk6VNxdq12SYcD7246IjPrSM4tZuVXZJ+KG4BPFrg+MzNwbjErjSKLik8B8wtcn5kZOLeYlUaejpqzWbUzlYANgTcB/1pQXGbWYZxbzMovT0fNa6qme4EXgVsj4pGmIzKzTnVN1bRzi1nJ5Omo+Y1WBNKstDPXv5P8srkP+FJE/F97ozKzejm3mJXfsBj8StJngKnAN4B3kXzxb5S0flsDM7NSc24xa0zdRYWkXkmvDXBb2cpg+3EMcH5EXBQRDwGHAkuAQ9oUj5nVybnFbPho5PDHJ/qZ937gSNqw50PSmsBOwGmVtojolXRTGlet54wERmaaxgLMnz+fnp6e1Zbv6elhyZIl3Hbbbayxxhr09vYC0NXVtdrjWm2dPv+xxx5jzJgxjFg8j7XWWou7776bhQsXDpn4hvr83t5elixZwssvv0x3d/dqn89Fixat1lYyzi115JbsY89fNbdo/lOo57W/5ZfFixcPifiG+vyW5JaIyH0DtgF+AawELgE2bWZ9OWPYmKTH+Pur2r8D3NnHc05On+Obb8Pp9ubB/v618Hvt3OKbb0PnVnduyXP2B5I2JjnGeCBwI7BDRDyYZ11tchrJcdKs8fR9LvxY4FngLUDpfxa2gbdfc+rZfmOB5wYtohZxbrEGefs1p/Dc0lBRIWkd4ETgS8C9wB4RcVsj62iBl4DXgA2q2jcAnq/1hIhYDiyval7Y1wtIqjxcFBF9Lme1efs1p87tV+rt6tzi70Ye3n7NaUVuaaSj5rHAX4B9gH+MiA8MgS89EbECuBvYo9ImqSudntWuuMysPs4tZsOH0uOAAy8o9QJLgZtIqveaImK/YkKrX3ra1yXAvwD/BxwF/APw9oiYV8D6xwGvAuu4Gm6ct19zhvv2c24Zvn/bVvP2a04rtl8jhz8uJemwMeRExFWS3gScQjJAzb3AXkV86VPLSY7zVu/WtPp4+zVnuG8/55bh+7dtNW+/5hS+/ereU2FmZmbWn2ExoqaZmZm1n4sKMzMzK4SLCjMzMyuEiwozMzMrhIuKGiSNl3SZpIWSFki6QNKYAZ5zq6Souv1wsGJuN0mHS3pS0jJJd0raeYDlPy3pkXT5ByR9ZLBiHYoa2X6SDqrxWVs2mPFafs4vjXFuac5g5xYXFbVdBmwHTCIZkGc34Ed1PO98YKPM7dhWBTiUNHp5aEkfAK4ALgB2BK4BrpG0/aAEPMTkvLz2Qlb9rG3a6jitMM4vdXJuaU5bcku7Lxw01G7ABJJz5t+dadsL6AU27ud5twJntTv+Nm2zO4EfZKa7gDnA8X0sfxVwbVXbHcAP2/1eSrL9DgIWtDtu33L9rZ1fGttezi2Du/2azi3eU7G695Ns1LsybTeRfOnfO8BzPyfpJUkPSjpN0uiWRTlEZC4PfVOlLSJ60+mal4dO22+qaruxn+WHrZzbD2CMpKckPSPpl5K2a3GoVgznlzo5tzSnXbkl11VKh7kNgReyDRGxUtL8dF5fLgeeIrma2zuBM0gu3zzoQwsPsjcCI4DqEQbnAW/v4zkb9rF8f9t3uMqz/R4FDgHuB9YBvgLcLmm7iHi2VYFaIZxf6ufc0py25JaOKSoknQ4cN8BiE/KuPyKyx0QfkDQXuFnSlhHxeN71mlWLiFlkLmgl6XbgYZLrU3ytXXF1MucXGw6KyC0dU1QAZwIXD7DMX0guabxKJxZJawDj6eNyx324M73fChjOX/qGLw+dtjey/HCWZ/utIiJ6JM0m+axZezi/FM+5pTltyS0d06ciIl6MiEcGuK0gqdLWlbRT5ukfJtlWd9ZceW07pPdzi3kHQ1Pkuzz0rOzyqUn9LD9s5dx+q5A0AngHw/yzNpQ5vxTPuaU5bcst7e6dOhRvwA3APcDOwC7An4DLM/PfDDwC7JxOb0mya2gnYDPgYyS/Hn7b7vcySNvrM8Ay4ECSXbz/BbwCbJDOvxQ4LbP8B4Ae4Mskx/ZOBlYA27f7vZRk+50ETAa2IDlN7AqSS4dv2+734ltdf2/nl/q3lXPL4G6/pnNL29/0ULyR7Iq8HFhEcq35C4ExmfmbkZwWtns6/Vbgt8DL6R/wMeA7wLh2v5dB3GZHkHQkW07yi+u9mXm3AhdXLf9pkk5By4EHgY+0+z2UZfsB0zLLPg9cB+zY7vfgW91/a+eXxraXc8sgbb8icosvfW5mZmaF6Jg+FWZmZtZaLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qrKUkPSnpqHbHYWbDi3PL0OSiwszMzArhosLMzMwK4aLC+iTpi5KeSy+Xm23/paQLJW2ZPp4nabGkP0jas5/1bSYpJO2QaVs3bds907a9pBvSdc6T9GNJb2zBWzSzNnBuGb5cVFh/fga8AfhQpUHSeGAv4DJgDHA9sAewI/Br4FeSNsn7gpLWBW4BZgPvTl9rA+CneddpZkOOc8swtUa7A7ChKyJekXQDsD9wc9r8KeAl4DcR0Qvcl3nK1yR9AvgY8IOcL3sEMDsiTqw0SDoEeEbS1hHxp5zrNbMhwrll+PKeChvIZcAnJY1Mpz8HXBkRvZLGSPqepIclLZC0GJgA5P41AUwEPpTunlycrvORdN6WTazXzIYW55ZhyHsqbCC/AgR8VNIfgF2Bo9N53wMmAV8B/gwsBf4HWLOPdfWm98q0dVctMyZ9zeNqPH9uo8Gb2ZDl3DIMuaiwfkXEMkk/J/kVsRXwaETck87eBbg4In4BIGkMsFk/q3sxvd+I5LgmwA5Vy9wDfBJ4MiJWNv0GzGxIcm4Znnz4w+pxGfBR4JD0ccVjwH6SdpA0Ebicfj5TEbEUuAM4XtIESR8ETq1a7FxgPHCFpPekvcCnSLpI0ogC35OZtZ9zyzDjosLqcQswH9iG5MtdcQzwCnA7yW7FG0l+DfTnEJI9ZHcDZwFfzc6MiOdIfqWMAKYDD6TLLeD1XZxmNjw4twwzioh2x2BmZmbDgPdUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFRYoSQdJCkkbdbuWMzMbHC5qDAzM7NCKCLaHYMNI5JGAN3A8vCHy8yso7ioMDMzs0L48IcVKtunQtIlkl6S1F1juemSHm1HjGZm1houKqyVfgy8AZiSbZS0IfBh4CftCMrMzFrDRYW10i3As8A/VbX/I8lnz0WFmdkw4qLCWiYieoHLgI9JGpuZ9Tng9oh4oj2RmZlZK7iosFa7FBgFfAJA0jbATiSHRszMbBhxUWEtFREPAXfz+iGQfwJWAD9tW1BmZtYSLipsMFwKfFjSRsD+wHUR8UqbYzIzs4K5qLDBcAUQwNnAFriDppnZsOSiwlouIl4Efg18GlgAXNfWgMzMrCVcVNhguTS9/2lELG9rJGZm1hIuKqxQEXFxRCginqyatSK996EPM7Nhytf+sEEh6VpgArCVLzRmZjY8rdHuAGx4k/RZ4J3AR4F/c0FhZjZ8eU+FtZSkABYDVwGHRsTKNodkZmYt0nBRIWkvYHFE/C6dPhz4AvAQcLjHHzAzM+tMeTpqfhcYByDpHcCZwPXA5sDU4kIzMzOzMsnTp2Jzkr0SAJ8Ero2IEyW9i6S4MDMzsw6Up6hYAYxOH+/J6+MPzCfdg1E2kgRsDCxqdyxmOY0FnnNHWDNrpzxFxe+AqZJ+D+wMfCZt3xp4tqjABtnGlDd2s4q3AHPaHYSZda48RcURwHnAp4DDIqKSxPYmGYq5jBYBPPPMM4wbt/rOlp6eHqZPn87kyZPp7u4e9ODKztuvOQNtv4ULF/LWt74VvKfNzNqs4aIiIp4G9qnRfnQhEbXRuHHj+iwqRo8ezbhx4/xPMQdvv+Z4+5lZWeQa/EpSF7AVsD5VZ5BExMwC4jIzM7OSabiokPQ+4HJgU0BVswMYUUBcZmZmVjJ5xqn4IXAXsD0wHlgvcxtfXGg23Nx33308/fTT7Q7DzMxaJM/hj7cBn4qIPxcdjA1Pzz6bnFiz2267EYhHH3mYTTbZpM1RmZlZ0fLsqbiTpD+FWV1efvllAMbtvB/Lli7hpZdeanNEZmbWCnn2VJwDnClpQ+ABoCc7MyLuLyIwG35GjHtTu0MwM7MWylNUXJ3eX5hpC5JOm+6oaWZm1qHyXvvDzMzMbBV5Br96qhWBmJmZWbnlHfxqS+AoYELa9BBwdkQ8XlBcZmZmVjINn/0haQpJEbEzcH96ey/wR0mTig3PzMzMyiLPnorTgWkRcXy2UdLpwBnAjCICMzMzs3LJM07FBOCCGu0XAts2F46ZmZmVVZ6i4kVghxrtOwAvNBOMmZmZlVeewx/nAz+StAVwe9q2C3AcMLWowMzMzKxc8hQV3wQWAV8GTkvbngNOBr5fTFhmZmZWNnnGqQhgGjBN0ti0bVHRgZmZmVm55BqnosLFhJmZmVXUVVRIugfYIyJekTSb5BofNUXEu4oKzszMzMqj3j0VvwSWZx73WVQ0StKbSca32BsYDfwZODgi7krnC/gG8AVgXeD3wGER8VhmHeNJrp66L9BLctGzf4uIxUXFaWZmZv2rq6iIiG9kHp9c1ItLWo+kSPgNSVHxIvA24JXMYscCRwIHAk+QdBS9UdK2EbEsXeYyYCNgEtANXAT8CNi/qFjNzMysfw33qZD0F+A9EfFyVfu6wD0RsUUDqzsOeCYiDs60PZFZp0iuMXJqRPwybTsAmAf8PXClpAnAXmlMlb0bXwKul/SViHiusXdoZmZmeeTpqLkZMKJG+0jgLQ2u62Mkex1+BnwQmAOcFxHnp/M3BzYEbqo8ISJelXQn8H7gyvR+QaWgSN1EchjkvcAvql9U0sg03oqxAD09PfT09KwWZKWt1jwbWG9vLwBrdY9g1KhR9Pb2els2YKDPn7elmQ0VdRcVkj6WmZwi6dXM9AhgDzJ7Geq0BXAYyaBZ3wbeA3xf0oqIuISkoIBkz0TWvMy8DakayTMiVkqan1mm2gnA16sbp0+fzujRo/sMdsYMX9akGVMP2BUO2JU5c+YwZ86cdodTOn19/pYsWTLIkZiZ1dbInopr0vsALqma1wM8STIgViO6gLsi4sR0erak7YFDa7xGkU5j1dE/xwLPTp48mXHjxq22cE9PDzNmzGDSpEl0d3e3MKzhafbs2cydO5djLr2NuTecx8yZM5k4cWK7wyqNgT5/CxcubENUZmarq7uoiIguAElPkPRfeKmA159Lchn1rIeBT6aPn0/vN0iXJTN9b2aZ9bMrkLQGMD7z/FVExHJeP5uFpOsGdHd391s0DDTfauvqSi4xs6znNZYuXUpXV5e3Yw59ff68Lc1sqGj4gmIRsXlBBQUkZ35sU9W2NfBU+vgJksJgj8pMSeNI+krMSptmAetK2imzjg+TvLc7C4rTzMzMBlDv4FdHAj+KiGXp4z5FRCPX/5gG3C7pROCnwM7AF9MbERGSzgK+KukxXj+l9DnSwzER8bCkXwPnSzqU5JTSHwBX+swPMzOzwVPv4Y+jScaCWJY+7kvQwEXFIuIPkj5B0sfhJJKi4aiIuCyz2HeAtUnGnVgX+B2wV2aMCoDPkRQSN/P64Ff9Fj9mZmZWrHoHv9q81uMiRMS1wLX9zA+SguOkfpaZjwe6MjMza6uG+1RIOknSauddSholqc9//GZmZja8NVxUkIzvMKZG+2hqjP1gZmZmnSFPUSFqX1BsIjC/uXDMzMysrBoZUfMVkmIigD9JyhYWI0j2Xvyw2PDMzMysLBoZUfMokr0UF5Ic5sgO070CeDIiZtV4npmZmXWARkbUvAT+NqLm7yNiZcuiMjMzs9LJM6Lmb4FNJZ0q6QpJ6wNI2lvSdoVHaGZmZqWQ55TSDwIPkAyVvR+vnwkyEfhGcaGZmZlZmeQ5++N04KsRMYmkL0XFLcD7ConKzMzMSidPUfEO4Bc12l8A3thcOGZmZlZWeYqKBcBGNdp3BOY0FY2ZmZmVVp6i4krgDEkbkoxZ0SVpF+B7wKVFBmdmZmblkaeoOBF4BHiGpJPmQ8BM4Hbg1OJCMzMzszJpZPArACJiBfAFSd8EticpLGZHxGNFB2dmZmbl0XBRURERT0t6Jn1c61ogZmZm1kHyHP5A0uclPQgsA5ZJelDSPxcbmpmZmZVJw3sqJJ0CHAOcA1Su9fF+YJqkTSLipALjMzMzs5LIc/jjMOALEXFFpu1/Jd1PUmi4qDAzM+tAeQ5/dAN31Wi/myb6aJiZmVm55Skqfkyyt6LaF4HLmgvHzMzMyirvnoXPS5oM3JFOvxfYBLhU0tTKQhFxTJPxmZmZWUnkKSq2B+5JH2+Z3r+U3rbPLOfTTM3MzDpInsGvPtSKQMzMzKzcco1TASBpK0lTJI1Kp1VcWGZmZlY2DRcVkt4g6WbgT8D1vH7F0gsknVlkcGZmZlYeefZUTAN6SDpmLsm0XwXsVURQZmZmVj55OmpOBqZExLNVRzweAzYtJCozMzMrnTx7KtZm1T0UFeOB5XkDkXS8pJB0VqZtLUnnSnpZ0mJJV0vaoOp5m0i6TtISSS9I+q4kD8JlZmY2yPIUFbcBB2SmQ1IXcCzwmzxBSHoP8C/A/VWzpgH7Ap8GPghsDPw887wRwHXAmsAHgAOBg4BT8sRhZmZm+eX5RX8scLOkd5P8M/8OsB3JnopdGl2ZpDEkI3F+Afhqpn0d4PPA/hFxS9p2MPCwpPdFxB0kh2K2BfaMiHnAvZK+Bpwh6eSIWJHj/ZmZmVkODe+piIgHga2B3wG/JDkc8nNgx4h4PEcM5wLXRcRNVe07kVxn5G/tEfEI8DTJVVFJ7x9IC4qKG4FxJIWOmZmZDZKG9lRI6gZ+DRwaEd9q9sUlfRZ4F/CeGrM3BFZExIKq9nnpvMoy82rMJ7NMrdcdCYzMNI0F6OnpoaenZ7XlK2215tnAent7AVirewSjRo2it7fX27IBA33+vC3NbKhoqKiIiB5J7yzihSW9FTgbmBQRy4pYZwNOAL5e3Th9+nRGjx7d55NmzJjRypiGvakH7AoH7MqcOXOYM2dOu8Mpnb4+f0uW1Oo3bWY2+PL0qfgJSV+H45t87Z2A9YF7MqemjgB2k3QEMAVYU9K6VXsrNgCeTx8/D+xctd4NMvP6chowNTM9Fnh28uTJjBs3brWFe3p6mDFjBpMmTaK7u3vAN2armj17NnPnzuWYS29j7g3nMXPmTCZOnNjusEpjoM/fwoUL2xCVmdnq8hQVawCHSNoTuBv4a3ZmA1cmvRl4R1XbRcAjwBnAMySDbO0BXA0gaRuSQbdmpcvPAv5D0voR8ULaNglYCDzU1wtHxHIyp79Wipru7u5+i4aB5lttXV1J151lPa+xdOlSurq6vB1z6Ovz521pZkNFs1cp3bpqXt1XJo2IRcCD2TZJfwVeTjuDIukCYKqk+SSFwjnArPTMD4DpJMXDjyUdS9KP4lTg3LRwMDMzs0Ey1K9SejTQS7KnYiTJmR3/monlNUn7AP9Jstfir8AlwEmDGKOZmZmRb09Fy0TE7lXTy4DD01tfz3kK+EhrIzMzM7OB5L70uZmZmVmWiwozMzMrhIsKMzMzK0RdRYWkeyStlz4+SVLfI0SZmZlZR6p3T8UEkmt8QDIS5ZjWhGNmZmZlVe/ZH/cCF0n6HSDgK5IW11owInzZcTMzsw5Ub1FxEPANYB+SAa72BlbWWC4AFxVmZmYdqK6iIiIeBT4LIKkX2CMzLLaZmZlZrhE1fcaImZmZrSbXiJqStgSOIunACcn1N86OiMcLisvMzMxKpuG9DpKmkBQROwP3p7f3An+UNKnY8MzMzKws8uypOB2YFhHHZxslnU5yyfIZRQRmZmZm5ZKnf8QE4IIa7RcC2zYXjpmZmZVVnqLiRWCHGu07AD4jxMzMrEPlOfxxPvAjSVsAt6dtuwDHAVOLCszMzMzKJU9R8U1gEfBl4LS07TngZOD7xYRlZmZmZZNnnIoApgHTJI1N2xYVHZiZmZmVS65xKipcTJiZmVmFR8c0MzOzQrioMDMzs0K4qDAzM7NCNFRUSOqWdLOkt7UqIDMzMyunhoqKiOgB3tmiWMzMzKzE8hz++Anw+aIDMTMzs3LLc0rpGsAhkvYE7gb+mp0ZEccUEZiZmZmVS56iYnvgnvTx1lXzorlwzMzMrKzyjKj5oVYEYmZmZuWW+5RSSVtJmiJpVDqt4sIyMzOzsmm4qJD0Bkk3A38Crgc2SmddIOnMBtd1gqQ/SFok6QVJ10japmqZtSSdK+llSYslXS1pg6plNpF0naQl6Xq+K6mpIcjNzMysMXn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYmZlZE/L8mp8MTImIZ6uOeDwGbNrIiiJilSJE0kHAC8BOwExJ65Ccvrp/RNySLnMw8LCk90XEHWk82wJ7RsQ84F5JXwPOkHRyRKzI8R7NzMysQXmKirVZdQ9FxXhgeXPhsE56Pz+934lk78VNlQUi4hFJTwPvB+5I7x9IC4qKG4H/BLYDZle/iKSRwMhM01iAnp4eenp6Vguq0lZrng2st7cXgLW6RzBq1Ch6e3u9LRsw0OfP29LMhoo8RcVtwAHA19LpkNQFHAv8Jm8g6TrOAn4fEQ+mzRsCKyJiQdXi89J5lWXm1ZhPZplqJwBfr26cPn06o0eP7jPGGTNm9DnPBjb1gF3hgF2ZM2cOc+bMaXc4pdPX52/Jklo1vpnZ4MtTVBwL3Czp3ST9GL5DskdgPLBLE7GcSzIGxt81sY56nQZMzUyPBZ6dPHky48aNW23hnp4eZsyYwaRJk+ju7h6E8IaX2bNnM3fuXI659Dbm3nAeM2fOZOLEie0OqzQG+vwtXLiwDVGZma0uzzgVD0raGjgCWASMIek4eW5EzM0ThKQfAPsAu0XEs5lZzwNrSlq3am/FBum8yjI7V61yg8y8Wu9hOZlDNZW+Id3d3f0WDQPNt9q6upL+wMt6XmPp0qV0dXV5O+bQ1+fP29LMhopcp11GxKvAt5p98XRsi3OATwC7R8QTVYvcTXKmyR7A1elztiE582RWusws4D8krR8RL6Rtk4CFwEPNxmhmZmb1yVVUSFqP5KyMCWnTQ8BFETG/72fVdC6wP/BxYJGkSh+IVyNiaUS8KukCYKqk+SSFwjnArPTMD4Dp6ev/WNKxJP0oTiXZc9Jsx1EzMzOrU57Br3YDngSOBNZLb0cCT6TzGnEYyRkftwJzM7fPZJY5GriWZE/FTJJDGvtVZkbEaySHTl4j2WvxE+BS4KQGYzEzM7Mm5NlTcS7JQFeHpf/QKwNQnZfOe0e9K4qIAYf2johlwOHpra9lngI+Uu/rmpmZWfHyjKi5FXBmpaCAv+0tmJrOMzMzsw6Up6i4h9f7UmRNAO5rLhwzMzMrq7oOf0h6Z2by+8DZkrYiGdESkmt3HA4cX2x4ZmZmVhb19qm4Fwgg2wfiOzWWu5ykv4WZmZl1mHqLis1bGoWZmZmVXl1FRXp2hZmZmVmf8g5+tTHJNTrWp6qzZ0R8v4C4zMzMrGQaLiokHQT8F7ACeJmkr0VFkHTkNDMzsw6TZ0/FN4FTgNMiorfgeMzMzKyk8oxTMRq40gWFmZmZZeUpKi4APl10IGZmZlZueQ5/nABcK2kv4AGSS5P/TUQcU0RgZmZmVi55i4opwKPpdHVHTTMzM+tAeYqKLwOHRMTFBcdiZmZmJZanT8Vy4PdFB2JmZmbllqeoOBv4UtGBmJmZWbnlOfyxM/BhSfsAf2T1jpr7FRGYmZmZlUueomIB8POC4zAzM7OSa7ioiIiDWxGImZmZlVuePhVmZmZmq8lzQbEn6Gc8iojYoqmIzMzMrJTy9Kk4q2q6G9gR2Av4brMBmZmZWTnl6VNxdq12SYcD7246IjMzMyulIvtU3AB8ssD1mZmZWYkUWVR8Cphf4PrMzMysRPJ01JzNqh01BWwIvAn414LiMjMzs5LJ01HzmqrpXuBF4NaIeKTpiMzMzKyU8nTU/EYrAjEzM7NyGzaDX0k6XNKTkpZJulPSzu2OyczMrJPUXVRI6pX02gC3la0Mtp/YPgNMBb4BvAu4D7hR0vrtiMfMzKwTNXL44xP9zHs/cCTt2/NxDHB+RFwEIOlQ4KPAIcDpbYrJzMyso9RdVETEL6vbJG1D8k97X+Ay4KTiQquPpDWBnYDTKm0R0SvpJpJip9ZzRgIjM01jAebPn09PT89qy/f09LBkyRJuu+021lhjDXp7ewHo6upa7XGttk6f/9hjjzFmzBhGLJ7HWmutxd13383ChQuHTHxDfX5vby9Llizh5Zdfpru7e7XP56JFi1ZrMzNrhzxnfyBpY5JDDQcCNwI7RMSDRQbWgDcCI4B5Ve3zgLf38ZwTgK9XN26++ebFRmY1ffGLX2x3CMPVWGBhu4Mws87VUFEhaR3gROBLwL3AHhFxWwviarXTSPpgZI2n78G7xgLPAm8B/LOwcd5+zaln+40Fnhu0iMzMaqi7qJB0LHAc8Dzwj7UOh7TJS8BrwAZV7RuQxLqaiFgOLK9q7vMXnqTKw0UR4V+CDfL2a06d28/b1czarpE9FacDS4E/AwdKOrDWQhGxXxGB1SsiVki6G9iDdGAuSV3p9A8GMxYzM7NO1khRcSmrDs89lEwFLpF0F/B/wFHA2sBF7QzKzMyskzRy9sdBLYyjKRFxlaQ3AaeQXIfkXmCviKjuvJnXcpKOqdWHTKw+3n7N8fYzs1JQxFDd+WBmZmZlMmyG6TYzM7P2clFhZmZmhXBRYWZmZoVwUWFmZmaFcFFRg6Txki6TtFDSAkkXSBozwHNulRRVtx8OVszt1uil5yV9WtIj6fIPSPrIYMU6FDWy/SQdVOOztmww4zUzq8VFRW2XAdsBk4B9gN2AH9XxvPOBjTK3Y1sV4FDS6KXnJX0AuAK4ANiRZNCyayRtPygBDzGNbr/UQlb9rG3a6jjNzAbiU0qrSJoAPAS8JyLuStv2Aq4H3hIRNa+vIOlW4N6IOGqQQh0yJN0J/CEijkinu4BngHMiYrVLz0u6Clg7IvbJtN1Bsv0OHaSwh4wc2+8g4KyIWHcw4zQzG4j3VKzu/cCCSkGRugnoBd47wHM/J+klSQ9KOk3S6JZFOURkLj1/U6UtInrT6ZqXnk/bb6pqu7Gf5YetnNsPYIykpyQ9I+mXkrZrcahmZgPKdenzYW5D4IVsQ0SslDQ/ndeXy4GnSK4U+U7gDGAbYFCvhdIGeS49v2Efy/e3fYerPNvvUeAQ4H5gHeArwO2StouIZ1sVqJnZQDqmqJB0OslVVvszIe/6IyLb5+IBSXOBmyVtGRGP512vWbWImAXMqkxLuh14GPgX4GvtisvMrGOKCuBM4OIBlvkLyeXSV+kgJ2kNYDx9XEq9D3em91sBw7moaPjS82l7I8sPZ3m23yoiokfSbJLPmplZ23RMn4qIeDEiHhngtoLkF+C6knbKPP3DJNvqzporr22H9H5uMe9gaEq3WeXS88Aql56f1cfTZmWXT03qZ/lhK+f2W4WkEcA7GOafNTMb+jppT0VdIuJhSb8Gzpd0KNAN/AC4snLmh6Q3AzcDB0TE/0naEtif5AyRl0n6VEwDZkbE/e14H4Os30vPS7oUmBMRJ6TLnw38VtKXgeuAzwLvBr44yHEPFQ1tP0knAXcAfwbWBf6d5JTS/x7swM3MslxU1PY5kkLiZpKzPq4GjszM7ybphFk5u2MFsCev/zN4Jn3OqYMTbnvVcen5TUi2Y2X52yXtT7J9vg08Bvx9RDw4qIEPEY1uP2A9kjFRNgReIdnT8YGIeGjQgjYzq8HjVJiZmVkhOqZPhZmZmbWWiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwprKUlPSjqq3XGYmVnruagwMzOzQrioMDMzs0K4qLA+SfqipOfSq2Zm238p6UJJW6aP50laLOkPkvbsZ32bSQpJO2Ta1k3bds+0bS/phnSd8yT9WNIbW/AWzcysQC4qrD8/A94AfKjSIGk8sBdwGTCG5MqsewA7Ar8GfiVpk7wvKGld4BZgNsmVS/cCNgB+mnedZmY2OHyVUutTRLwi6QaSy7rfnDZ/CngJ+E1E9AL3ZZ7yNUmfAD5GcpXXPI4AZkfEiZUGSYcAz0jaOiL+lHO9ZmbWYt5TYQO5DPikpJHp9OeAKyOiV9IYSd+T9LCkBZIWAxNILtWd10TgQ+mhj8XpOh9J523ZxHrNzKzFvKfCBvIrQMBHJf0B2BU4Op33PWAS8BXgz8BS4H+ANftYV296r0xbd9UyY9LXPK7G8+c2GryZmQ0eFxXWr4hYJunnJHsotgIejYh70tm7ABdHxC8AJI0BNutndS+m9xuR9JkA2KFqmXuATwJPRsTKpt+AmZkNGh/+sHpcBnwUOCR9XPEYsJ+kHSRNBC6nn89URCwF7gCOlzRB0geBU6sWOxcYD1wh6T3pGSZTJF0kaUSB78nMzArmosLqcQswH9iGpHCoOAZ4Bbid5JDFjSR7GvpzCMkesruBs4CvZmdGxHMke0BGANOBB9LlFvD64RMzMxuCFBHtjsHMzMyGAe+pMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQvx/oSgccolv38QAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"data = get_repeteated_data(['log_8-aa'])\n",
|
|
"plot_reapeated_data_distribution(data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 16"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 235,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUjElEQVR4nO3deZxcVZn/8c+3QxMSkoDoEGQ0gKAMsgTEDXAQwQQQcFzAcdSfRhwdFFQWh8UFEHEQVEAFdVQ2HUAcUVABs4AY1MBIEgRkx7AkhLCEkMQsdOjn98e5BTeV6nTV7dtdXVXf9+tVr6o699Stp27fOv3Uueeeq4jAzMzMrAxdzQ7AzMzM2ocTCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLK0zSqZKGZOpWSTdKujH3fB9JIenQIXr/iyU9NBTvVfW+W2efc8pQv3enkLSBpLMkPSqpV9JVzY5pqAzld9g6hxMLA0DSlOwfWOW2StJjkqZK+oyksSW9z5ZZY7ZrGesr03COzQbV4cB/Aj8HPgKc09xwzFrbBs0OwIadk4F5QDewBbAPcC5wrKR3RsTtubqnA19rcP1bAqcADwG3NfC6yQ2+TxHri+3jNCcRfxgYBfQ04b07xb7Agog4ptmBmLUDJxZW7bqIuDX3/AxJ+wK/AX4laYeIWAkQEWuANYMZjKTREbEiIp4bzPfpT0Q05R97pKsErmrGew+EpI2A5yKit9mx1GFzYElZK5PUBWwYES33dzMrgw+FWL8i4gbgK8BWwIcq5bWOz0qaJOkPkpZIWi7pXkn/lS3bB/hzVvWi3GGXKdnyGyXdKWl3STMlrQD+K7fsxhrhjZD0X5Iel/R3Sb+S9MqqmB6SdHH1C/PrrCO2dcZYSNpY0jezY/Ors8/6OUmqqheSzpP0ruzzrZb0V0kH1Pg81TGuM8Yii2W5pH+UdFX2+ElJ35A0oo51PiTpN5ImS7otO+x1l6T3VNXbLFvnHdl7LJV0naSJVfUq413eL+l0SQuAFcC4Aut4n6RTJC2QtEzSzyVtImmkpHMlPZGt5yJJI6vW0ee+t75tC7wN2DH3N98nW97o3/eDkv4KrAb6/NtK6sq+O49JWiHpd5JeW72f1rvtsrqfzvapFZKekXSrpA9U1XmLpD9nf+8HJf3HemL8kKTZklZKWizpp8p9r7LPu1zS6BqvvVzp+9jvvmjtyT0WVq+fkP7JTwZ+WKuCpB1JPRu3kw6prAa2A/bKqtydlZ8G/AC4KSv/U241LwWuA34K/A+wqJ+4vgAEcCbpl+fRwAxJu1Z6VupUT2wvyP65/Ir0T+kC0qGT/YGvA/8IVHervwV4D/BdYBnwGeBKSRMi4ukG4qwYAUwFbgE+B7wdOA54EPheHa9/NXAF8H3gEuCjwP9KOiAipmd1XgW8C/hf0uGx8cB/AL+X9NqIeKxqnV8CngO+AYzMHr+2wXWcBKwkHWLbDvg06TBQL/AS4FTgzcCUbH2nQV37Xi1PAv+PtA+Nyd4b4O4Cf999gfcB5wFPkQ6n9eUM4Hjg16S/4cTsfqOqenVtf0kfB75NGiPyrWw9uwBvAi7L6uwMTMs+86mktv/L1Ph+SfoC6YfEz4AfAf9A+jvMlLRbRCwh7TtHAgdl8VVeOxo4BLg4Ip5fzzawdhYRvvkGqaEO4PXrqbMEmJN7fipZb332/OhsHS9bzzpen9WZUmPZjdmy/+hj2Y255/tkdecDY3Plh2Xln8mVPURq6Ppb5/piuxh4KPf8X7K6X6iq97+kf4Lb5sqC9I8uX7ZLVn5UP3+XratjymIJ4EtVdecAt9bxt34oe/17cmXjgMeq/r4jga4a8azKv3fub/EgMKqqfqPruAPozpVflm3Pa6vW8aeqv0e/+956tseNwJ1VZY3+fZ8HXlvHe40nJUq/rCo/JVvPxbmyerfdVdXx13jfX5IStgm5sh1IhzIjV7ZVVvb5qtfvlMX9+ey5SN+9n1fVq3z//rnRv4Nv7XPzoRBrxHJgfWeHLMnu/0XpOHMRq4GLGqj/44hYlnv+c2Ah8I6C71+vd5D+mXy7qvybpEb3wKryGRHxYOVJpEGwS0m/Sov6ftXzmxpY32OkfzaVeJYCPwZ2k7RFVrY6sjESkkZIeilpH7gXeF2NdV4SVb1EBdbx41h7PMstpO15YVW9W4BXSqr0ui7J7gey7+U1+vf9fUTcVcd69yP1Fny3qvw71RUb2HZLgFdIekOtN8wOSewPXBURj+TWfzeppyTvPaRD5D+T9LLKDXgcuJ/Ug0NEBCnJeoekMbnX/yuwAPhDn1vA2p4TC2vEGFI3fl+uAP5I6j5dlB2XfV+DDf2CaGyg5v35J1mD9wDpl91g2gp4rCqpgXRIpbI87xHW9Qype7+IVRHx5ADW90C2rfLuy+63hhfGAhwj6X5SwvcUqSt9F2CTGuucV11QYB3V2+nZ7P7RGuVduXWUse/lNfr3Xeezr2e9kPbRF0TEYtLf7wUNbLszSQnH/0m6X9L5kvKHgP6BdGbRWt+VzL1Vz19NSpzuz94rf9uBdLix4opsve/M4h1DSsj+t8a+ZR3EiYXVRdIrSI3ZA33VyX6t7k063v8TUgN4BTC9gYFcjYyLqFdfjdxQDi7r63iz+igvur4yfR44G5hJGrS7PzAJ+Cu1245af7tG19HX51rv9itp3xuIwdhv69p2Wc/D9sD7ST0F7wX+IOnLBd6zi/R9OSB7r+rbCwM+I+Jm0mG192VFh5ASjSsKvK+1EQ/etHr9v+y+uut0LVnX7fXZ7VhJnwe+SupCnUHf/+SLenX+STbobjvSIL6KZ4BNa7x2K+BvueeNxPYw8HZJY6t+1f5Tbvlwtp0kVf2yfE12/1B2fyjwu4j4WP6FkjYl/XquRxnrqEsd+14jBuvvW3ndduR6ObLDHNW9TXVvu4j4O+kf+hWSNgR+AXxB0hmk3oaVVH1XMttXPX+QlKzNi4j7atSv9jPgs5LGkQ6DPJQlHNbB3GNh/VKax+JLpIbw0vXU26xG8W3ZfeXUwL9n95uWFN6HtfasoIcCLyedWVLxIPDmrMEFQNLBwFqnpTYY27WkHo+jqsqPISUo163ziuFlS+DdlSfZP4YPA7dFxONZ8fNU9ahIOox0VkS9ylhHv+rc9xoxWH/f60mDIz9ZVV79PlDntsuSkhdkhxLvyl7bHensjKnAuyRNyL1uB1IvSN4vsvc9JUvS8++j6vciJTMjSTOWHkBKNKzDucfCqh0o6Z9I+8Z40ml0k0i/tN4Z65/052RJewPXZPU3Bz5FGj1eGcz1IGmw2RGSlpH+md8SEfUeo662mNTte1EW79GkwzX5U2J/REo4fivpZ8C2pK7lB9deVUOx/Rr4HfBVSVsDfyGdivsvwLn5gZrD1H3ABdmAv0Wkaa3Hk047rfgN6W96EeksjJ2BD7J2L09/ylhHPerZ9xoxKH/fiFgk6VvAcZJ+BfyWdLrpgaReiHwPUr3bbpqkx0ljTBaRxkIcBVyT6205hfSP/yZJ3yV9vz9NOqyySy6+ByV9kXRK7NZK101ZBmxDSkR/QDqduFJ/jqQHSD1DI/FhEAOfbupbuvHi6aaV22rS2RXTSHMujK3xmlNZ+1S1fUmnvi3IXr+AdLrgq6te905Sg9ZD7lRKapz2l3vNjdQ+3fT9pPk1FpEmZfoNuVPqcvWPJf2TWUX6R7N79Tr7ie1icqc3ZmVjSMfAF5DmbLiPNKeEquoFcF6NmB6ixmmwVXW2zseRi2V5f3+P9azzoWw7TSb9w1xFGpR4aFW9kaR/Io9l2/YPpDkk+vpbHFrjvQa0Dvo4DbryWclOL6XOfW89+9Y6+91A/77reb8RpPk3Fmbb5HrSIZangO8V2HafAH6fvX4VKbE+CxhX9b57A7dm2+dB0niJmvsM6eyQm0iDQpdn+8d5wGtq1D092wb3N9Lm+Na+N0V48K5ZJ1GaQfTOiDi42bFYko2beAb4YkR8tcnhmA2Ix1iYmQ0hSaNqFB+d3d84dJGYDQ6PsTAzG1r/qnTtl2tJhxneAvwbMC0i/tjMwMzK4MTCzGxo3U46M+R40lTqi0jX+PhiM4MyK4vHWJiZmVlpPMbCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwuomaYqkkLR1P/UeknTx0ERlZq3E7Uj7c2JhZmaWI2k/SRdKuk/SCkl/k/QjSS9vdmytQBHR7BisRUgaAXQDq2M9O46kh4AbI2LKEIVmZi2iFdoRSbcCmwH/C9wPvAo4ClgB7BoRjw91TK1kg2YHYK0jIp4Hnm92HGbWulqkHTkW+ENE9FYKJP0W+D0pwfhiswJrBT4UYnWrPjaq5IuS5mfdhb+TtGON150qaZ1fJrWOtWbHVX8jaR9Jt0paKekOSftky9+TPV8labak3Qbr85pZ+VqhHYmImfmkolIGLAZ2GPhWaG9OLGwgTgO+AvwF+E/gb8A0YOMBrnc74DLg18BJwEuAX0v6IHAO8D/AKcC2wM8keT82a10t0Y5IGgOMAZ4aYFxtz4dCrBBJ/wAcD1wDHFI5Virpq8DnB7j67YE9I2JWts67gKnAD4F/iohHsvJngP8G9gZuHOB7mtkQa7F25GhgQ+CKAcbV9vxLz4p6O+lL9p2qAVjnlrDuuyqNQeaW7P6GSmNQVf6qEt7TzIZeS7QjkvYm9W78LCJuKCG2tubEworaKru/P18YEU8Czwxw3fkvPRHxbPbw0ap6lfKXDPD9zKw5hn07IumfgF8CdwL/PsCYOoITCxsKfZ1SNqKP8r5GjPdVrsbCMbMWNOTtiKRXksZ7PAu8IyKWrTdCA5xYWHEPZ/evzhdmx0yrM/9nsmWbVpVvhZl1smHbjkh6KSmpGAnsHxELB+N92pETCytqBtADfFpSPtM/ukbdB7P7vSsFkjYGPjJo0ZlZKxiW7Ui23muBfyT1VNzfz0ssx2eFWCER8aSkb5BO4/qNpGuB3YADWfd0rGmk450XSPo6qSvycOBJYMLQRW1mw8kwbkcuBd4IXAjsICk/d8XyiLiq5PdrK04sbCC+CKwCjgDeRhpdPZl06tgLIqJH0ruB75LOV3+cNOr7GeCiIYzXzIaf4diO7JrdH57d8h4Grir5/dqKrxViZmZmpfEYCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMytNw4mFpAMkvSX3/EhJt0m6TJKnVjazQty2mLWHIj0WXwfGAUjaGfgmaSKRbYCzywvNzDqM2xazNlBkHottgLuyx+8FfhMRn5f0OlIj0HayGeG2BDxPvA1XY4HHorXPH++4tgXcvtiw13DbUiSxeA4YnT1+O/Dj7PFisl8bbWhLYH6zgzDrxyuABc0OYgA6sW0Bty82/DXUthRJLP4AnC3pj6QpT/81K38N7fvlWAbw6KOPMm7cuu1bT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhJa/xdvJ7YtsJ72xd+Vxnh7NWaw2pYiicVRpClVDwU+GRGVLOZA4LcF1tcyxo0b12diMXr0aMaNG+eduQ7eXo3poO3VsW0L1G5fOuhvXwpvr8YM1vZqOLGIiEeAg2uUH1NKRGbWkdy2mLWHQhchk9QFbAdsTtWZJRExs4S4zKwDuW0xa30NJxaS3gxcBmwFqGpxACNKiMvMOozbFrP2UGQei+8DtwI7AZsBL8ndNisaiKQTJYWkc3NlG0k6X9LTkpZLulLS+KrXTZB0jaQVkp6Q9HVJG1TV2UfSHEmrJT0gaUrROK08f/nLX5gzZw6PPPJIs0Ox4WFQ2hZw+9Jp3LY0V5FDIa8GDo2IB8oKQtIbgP8Abq9adA5wEHAY8CxwHvALYK/sdSOAa4DHgT2Bl5NOUesBPp/V2Sar833gg8B+wI8kLYyIqWV9Bqvf/PlpgP/ee+/NypUr2WjUaO69524mTJjQ5MisyUpvW8DtSydx2zI8FOmxuIV0DLQUksYAlwIfB57JlW8CfAw4NiJuiIjZwEeBPbMuU4DJwGuBD0XEbRFxHfAl4EhJG2Z1jgDmRcRxEXF3RJwH/BzwgLAmefrppwHY7IBP89KDj2PVyhU89dRTTY7KhoFS2xZw+9Jp3LYMD0V6LL4DfFPSFsAdpOz9BRFR/augP+cD10TEDElfzJXvDnQDM3LrvkfSI8AewM3Z/R0RsSj3uqnA94AdgblZnRmsbSpwbl8BSRoJjMwVjYV0ak5PT8869StltZbZunp7ewEYs/kr6F4TrBg1it7eXm+/PvS3f7XRdiu7bYEWb1/ctjTGbUtjBqttKZJYXJndX5grC9Jgq4YGWEl6P/A64A01Fm8BPBcRS6rKF2XLKnUW1VhOHXXGSRoVEStrvPdJwCnVhdOmTWP06NE1qifTp0/vc5mt68wDs+7JQy5nwYIFLFjQypNGDr6+9q8VK1YMcSSDprS2BdqrfXHb0hi3LY0pu20peq2QAZP0SuBbwKSIWFXGOkt0Bmtf9GgsMH/y5Ml9TpA1ffp0Jk2a5ElZ6jB37lwWLlzICdc9wuo1waLLTmTmzJlMnDix2aENS/3tX0uXLm1CVIOilLYF2qd9cdvSGLctjRmstqXIBFkPF3qnde1OOld9TroGD5B+kewt6Shgf2BDSZtW/aoYTxpMRXb/xqr1js8tq9yPr1FnaR+/JoiI1cDqyvNKfN3d3ev9cve33JKurjS0Z/WaYNWaYOXKlXR1dXnb9aOv/atdtluJbQu0WfvitqU+bluKKbttKTJ4E0nbSvqOpBnZ7duStm1wNdcDOwO75m63kgZaVR73kEZZV953e2ACMCsrmgXsLGnz3HonAUt58SqJs/LryNWZhZkNKyW1LeD2xaxpikyQtT/wK+A24I9Z8V7AXyUdEhF1HQyMiGXAnVXr/jvwdETcmT2/gHRRosWkL/N3gFkRcXP2kmmkL/hPJB1POt55OnB+9qsA0mlgR0k6i3Tsdl/gfaTTzMxsmCirbQG3L2bNVGSMxdeAcyLixHyhpK8BZwJljjI6BuglDeoaSRpt/anKwoh4XtLBpFHas4C/A5cAJ+fqzJN0EOmc9c+SrpL47z7H3GzYGcq2Bdy+mA2KIonFDqSMvNqFwNEDCSYi9ql6vgo4Mrv19ZqHgXf0s94bgd0GEpuZDbpBa1vA7YvZUCkyxuJJ0jHKarsCTwwkGDPraG5bzNpAkR6LHwI/kPQq4E9Z2V7ACax9CpWZWSPctpi1gSKJxVeAZcBxpPOxAR4DTgW+XU5YZtaB3LaYtYEi81gEaaDSOZLGZmXLyg7MzDqL2xaz9lCkx+IF/tKb2WBw22LWuupKLCTNAfaLiGckzSXN219TRLyurODMrL25bTFrP/X2WFzNi1PQXs16vvxmZg1w22LWZupKLCLiy7nHpw5aNGbWUdy2mLWfhuexkPQ3SS+tUb6ppL+VE5aZdRq3LWbtocgEWVuTrhJYbSTwigFFY2adbGvctpi1vLrPCpH0ztzT/SU9m3s+gnSFv3llBWZmncFti1l7aeR006uy+yBdiCevB3iINLGNmVkjrsru3baYtYG6E4uI6AKQNA94Q0Q8NWhRmVnHcNti1l6KzLy5zWAEYmadzW2LWXuod4KszwA/iIhV2eM+RYTn9DezurhtMWs/9fZYHANcCqzKHvcl8MWCzKx+blvM2ky9E2RtU+uxmdlAuG0xaz9FJsg6WdLoGuWjJJ1cTlhm1mnctpi1hyITZJ0CjKlRPjpbZmZWhNsWszZQJLEQtS8UNBFYPLBwzKyDuW0xawONzLz5DOlLH8B9kvINwAjSL43vlxuembU7ty1m7aWReSyOJv2iuJDULZmfdvc54KGImFVeaGbWIY7GbYtZ26j7UEhEXBIRFwNvA76bPa/cLi/yxZf0SUm3S1qa3WZJOjC3fCNJ50t6WtJySVdKGl+1jgmSrpG0QtITkr4uaYOqOvtImiNptaQHJE1pNFYzGxxuW8zaS8NjLCLi98BWkk6XdLmkzQEkHShpxwZXNx84EdgdeD1wA3B1bj3nAIcAhwFvBbYEflF5saQRwDXAhsCewEeAKcBpuTrbZHV+B+wKnAv8SNL+DcZqZoPIbYtZeyhyuulbgTuANwHv4cVR3BOBLzeyroj4dURcGxH3R8R9EfEFYDnwZkmbAB8Djo2IGyJiNvBRYE9Jb85WMRl4LfChiLgtIq4DvgQcKWnDrM4RwLyIOC4i7o6I84Cfs/7JeMxsiLltMWsPDV8rBPga8MWIOFvSslz5DcBRRQPJfiEcBmwMzCL90ugGZlTqRMQ9kh4B9gBuzu7viIhFuVVNBb4H7AjMzerMYG1TSb8u+oplJDAyVzQWoKenh56ennXqV8pqLbN19fb2AjByAwEwatQoent7vf360N/+1Ubbre3bliyeutsXty2NcdvSmMFqW4okFjsDH6hR/gTwskZXJmln0pd9I9IvindHxF2SdgWei4glVS9ZBGyRPd4ie169nDrqjJM0KiJW1gjrJGqcNz9t2jRGj15n/p4XTJ8+vc9ltq4zD5yQHhxyOQsWLGDBggXNDWiY62v/WrFixRBHMmg6oW2BAu2L25bGuG1pTNltS5HEYgnwcmBeVfluQJG/3r2k45ObAIcCl2Rdos10BnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoltD+bQs00L64bWmM25bGDFbbUiSx+ClwpqTDSOedd0naC/gG8ONGVxYRzwEPZE9nS3oD8FngCmBDSZtW/bIYDzyePX4ceGPVKsfnllXux9eos7SvXxQRsRpYXXkupW617u7u9X65+1tuSVdXGtqzek2wak2wcuVKurq6vO360df+1Ubbre3bliyuhtsXty31cdtSTNltS5GZNz8P3AM8ShpcdRcwE/gTcHqhKNaNaSQwG+gB9qsskLQ9MIHUvUl2v3Nl9HhmErA0i6tSZz/WNim3DjMbHty2mLWBhnsssl8BH5f0FWAnUgMwNyLub3Rdks4ArgMeIXUHfgDYB9g/Ip6VdAFwtqTFpC/0d4BZEXFztopppC/5TyQdTzrmeTpwfvarANKMfUdJOos0Ac++wPuAgxqN18wGj9sWs/ZQ5FAIABHxiKRHs8e15vevx+akLs6Xk2bbu530xa+MJDkG6AWuJP3SmAp8KhfD85IOJo3UngX8HbgEODlXZ56kg0jnrX+WdH77v0fE1IIxm9kgctti1toKJRaSPkb6Yr46e34/cG5E/KiR9UTEx/pZvgo4Mrv1Vedh4B39rOdG0gAwMxvG3LaYtb6GEwtJpwHHknUdZsV7AOdImhARJ/f5YjOzPrhtMWsPRXosPgl8PCIuz5X9StLtpAbBX34zK8Jti1kbKHJWSDdwa43y2QxgzIaZdTy3LWZtoEhi8RPSL4tqnwAuHVg4ZtbB3LaYtYGivwI+JmkyaU59SBcNmgD8WNILM8pFxLEDjM/MOovbFrMWVySx2AmYkz3eNrt/KrvtlKtX9DQxM+tMblvM2kCRCbLeNhiBmFlnc9ti1h6KjLEAQNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGtJM9sBXCDpm2UGZ2adw22LWXso0mNxDukCPhOA/MXarwAOKCMoM+tIblvM2kCRwZuTSXPuz6/qobwf2KqUqMysE7ltMWsDRXosNmbtXxMVmwGra5SbmdXDbYtZGyiSWNwEfDj3PCR1AccDvyslKjPrRG5bzNpAkUMhxwPXS3o9sCFwFrAj6VfFXiXGZmadxW2LWRtouMciIu4EXgP8Abia1H35C2C3iHiw3PDMrFO4bTFrDw31WEjqBn4LHBERXx2ckMys07htMWsfDfVYREQPsMsgxWJmHcpti1n7KDJ483+Aj5UdiJl1PLctZm2gyODNDYDDJb0dmA38Pb/QVx00s4Lctpi1gYFe3fQ1Vct81UEzK8pti1kb8NVNzWxYcNti1h4KX93UzMzMrFpTEwtJJ0n6s6Rlkp6QdJWk7avqbCTpfElPS1ou6UpJ46vqTJB0jaQV2Xq+LmmDqjr7SJojabWkByRNGYKPaGZN4LbFrHma3WPxVuB84M3AJKAbmCZp41ydc4BDgMOy+luSJs0BQNII4BrSTH17Ah8BpgCn5epsk9X5HbArcC7wI0n7D8qnMrNmc9ti1iRFBm+WJiLWuhRyluk/AewOzJS0Cen0sw9ExA1ZnY8Cd0t6c0TcTLoi4muBt0fEIuA2SV8CzpR0akQ8BxwBzIuI47K3ulvSW4BjgKmD/kHNbEi5bTFrnroSC0lzgP0i4hlJJwPfiIhaVyEcqE2y+8XZ/e6kXxozKhUi4h5JjwB7ADdn93dkX/yKqcD3SNcZmJvVmcHappJ+XaxD0khgZK5oLEBPTw89PT3r1K+U1Vpm6+rt7QVg5Abp0tijRo2it7fX268P/e1frbzdOq1tgcbaF7ctjXHb0pjBalvq7bHYgTRv/zPAKcD3qX1548KyqxieC/wxu2YAwBbAcxGxpKr6omxZpc6iGsupo844SaMiYmXVspNIn3Mt06ZNY/To0X1+hunTp/e5zNZ15oET0oNDLmfBggUsWLCguQENc33tXytWDMb/4SHTaW0LFGhf3LY0xm1LY8puW+pNLG4DLpL0B0DA5yQtr1UxIk6rVV6H80nnsb+l4OvLdAZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRVmtvorLYFGmhf3LY0xm1LYwarbak3sZgCfBk4mDRRzYHAmhr1gtzApnpJOi9b994RMT+36HFgQ0mbVv2yGJ8tq9R5Y9Uqx+eWVe7H16iztNYviohYDazOxQdAd3f3er/c/S23pKsrjRlevSZYtSZYuXIlXV1d3nb96Gv/avHtNoUOalugWPvitqU+bluKKbttqSuxiIh7gfcDSOolHRN9otA75ih9o74DvBvYJyLmVVWZDfQA+wFXZq/ZHpgAzMrqzAK+IGnzXEyTgKXAXbk676ha96TcOsysCdy2mLWfIjNvlnmK6vnAB4B/AZZJqhy3fDYiVkbEs5IuAM6WtJj0hf4OMCsbtQ0wjfQl/4mk40nHPE8Hzs9+GUA6bnuUpLOAC4F9gfcBB5X4WcxsANy2mLWHQqebStoWOJo08ArSl+9bEfFgg6v6ZHZ/Y1X5R4GLs8fHAL2kXxUjSSOuP1WpGBHPSzqYNFJ7FunCRZcAJ+fqzJN0EOm89c8C84F/jwifDmY2jLhtMWt9DScW2cQvvyINuvpjVrwX8FdJh0RE3cOXI0J11FkFHJnd+qrzMOt2R1bXuRHYrd7YzGxouW0xaw9Feiy+BpwTESfmCyV9DTgT8HlRZlaE2xazNlDkmOYOwAU1yi8kzVJnZlaE2xazNlAksXiSNCd+tV1JU+aamRXhtsWsDRQ5FPJD4AeSXgX8KSvbCziBtSd9MTNrhNsWszZQJLH4CrAMOI40gxzAY8CpwLfLCcvMOpDbFrM2UGQeiyCdWnWOpLFZ2bKyAzOzzuK2xaw9DOiy6f7Sm9lgcNti1rrKnOnOzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmncdti1n7aCixiIgeYJdBisXMOpTbFrP2UeRQyP8AHys7EDPreG5bzNpAkdNNNwAOl/R2YDbpUsIviIhjywjMzDqO2xazNlAksdgJmJM9fk3VshhYOGbWwdy2mLWBIjNvvm0wAjGzzua2xaw9FD7dVNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGuBl2eLLpD0zTKDM7PO4bbFrD0U6bE4B+gBJgArcuVXAAeUEZSZdSS3LWZtoMjgzcnA/hExv6qH8n5gq1KiMrNO5LbFrA0U6bHYmLV/TVRsBqweWDhm1sHctpi1gSKJxU3Ah3PPQ1IXcDzwu1KiMrNO5LbFrA0USSyOBz4h6TpgQ+As4E5gb+CERlYkaW9Jv5b0mKSQ9K6q5ZJ0mqSFklZKmlF9LQFJm0m6VNJSSUskXSBpTFWdXSTdJGmVpEclHV/gc5vZ4HLbYtYGGk4sIuJO0uQ1fwCuJnVf/gLYLSIebHB1GwN/AY7sY/nxwGeAI4A3kWbimyppo1ydS4EdgUnAwaRG6AeVhZLGAdOAh4Hdgf8ETpX0iQZjNbNB5LbFrD0UGbxJRDwLfHWgbx4R1wHXAVSfqp6du340cHpEXJ2VfRhYBLwL+KmkHUijxd8QEbdmdT4NXCvpcxHxGPBB0q+fwyPiOeCvknYFjiXXSJhZ87ltMWt9hRILSS8hXSxoh6zoLuCiiFhcVmDANsAWwIxKQUQ8K+kWYA/gp9n9ksoXPzMD6CX9CvllVmdm9sWvmAqcIOklEfFM9RtLGgmMzBWNBejp6aGnp2edQCtltZbZunp7ewEYuUFq8EeNGkVvb6+3Xx/627/aabu1e9sCjbUvblsa47alMYPVtjScWEjaG/g18CxQ+dJ9BjhZ0iERMbNQJOvaIrtfVFW+KLdsC+CJ/MKIWCNpcVWdeTXWUVlW68t/EnBKdeG0adMYPXp0nwFPnz69z2W2rjMPnJAeHHI5CxYsYMGCBc0NaJjra/9asaLWiRStp0PaFijQvrhtaYzblsaU3bYU6bE4nzRhzScj4nkASSOA72bLdi4UyfByBnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoOqFtgQbaF7ctjXHb0pjBaluKJBbbAYdWvvgAEfG8pLNZ+1SxgXo8ux8PLMyVjwduy9XZPP8iSRuQznt/PFdnfNW6x+eWrSMiVpM7b75yjLa7u3u9X+7+llvS1ZXGDK9eE6xaE6xcuZKuri5vu370tX+10XZr+7YFirUvblvq47almLLbliKnm87hxeOfeTuQRmGXZR7py7lfpSAbhf0mYFZWNAvYVNLuudftS/pct+Tq7C0pv4UmAff2dQzUzJrCbYtZG6irx0LSLrmn3wa+JWk74Oas7M2k07pObOTNs3PCt8sVbZONql4cEY9IOhf4oqT7SY3BV4DHgKsAIuJuSb8FfijpCKAbOA/4aTZqG+Ay0vHMCySdCewEfBY4ppFYzax8blvM2k+9h0JuAwLIn7d1Vo16l5GOkdbr9aw9o17luOMlwJTsPTYmnbq1Ken89gMiYlXuNR8kfeGvJ43YvpI04At4YbT3ZNIx2tnAU8BpEeHTwcya7zbctpi1lXoTi20G480j4kbWblCqlwdwcnbrq85i4AP9vM/twD8Xi9LMBpHbFrM2U1diEREPD3YgZtZ53LaYtZ+iE2RtCbyFNGp6rQGgEfHtEuIysw7ktsWs9RWZIGsK8N/Ac8DTpOOjFUEagGVm1hC3LWbtoUiPxVeA04AzIqK35HjMrHO5bTFrA0XmsRhNOuXKX3wzK5PbFrM2UCSxuAA4rOxAzKzjuW0xawNFDoWcBPxG0gHAHcBalz+LiGPLCMzMOo7bFrM2UDSx2B+4N3tePcDKzKwIty1mbaBIYnEccHhEXFxyLGbW2dy2mLWBImMsVgN/LDsQM+t4blvM2kCRxOJbwKfLDsTMOp7bFrM2UORQyBuBfSUdDPyVdQdYvaeMwMys47htMWsDRRKLJcAvSo7DzGwJblvMWl7DiUVEfHQwAjGzzua2xaw9FBljYWZmZlZTkYuQzWM955RHxKsGFJGZdSS3LWbtocgYi3OrnncDuwEHAF8faEBm1rHOrXrutsWsBRUZY/GtWuWSjgReP+CIzKwjuW0xaw9ljrG4DnhvieszMwO3LWYtpczE4lBgcYnrMzMDty1mLaXI4M25rD3ASsAWwD8AnyopLjPrMG5bzNpDkcGbV1U97wWeBG6MiHsGHJGZdaqrqp67bTFrQUUGb355MAIZCtkgsP8k/Qr6C/DpiPi/5kZlZuC2xaxddMwEWZL+FTgb+DLwOtKXf6qkzZsamJm1NLctZmurO7GQ1Cvp+X5uawYz2AE6FvhhRFwUEXcBRwArgMObG5ZZZ3PbYtZeGjkU8u71LNsD+AzDtAdE0obA7sAZlbKI6JU0gxR7df2RwMhc0ViAxYsX09PTU12dnp4eVqxYwU033URXVxddXV309va+cA8MadlQv1+jcd17772MGTMGLX4Y9TzPRhttxOzZs1m+fHlHbJtGX7NmzRpWrFjB008/TXd39zr737Jly9YpazEd07Zkr6m7fRmqtqWs9TQ7hsFoW9pl2wxp2xIRhW/A9sAvgTXAJcBWA1nfYN2ALUmjzfeoKj8LuKVG/VOz+r751kq3f2z2d63E72xbti1uX3xr0VtDbUuRs0KQtCXpeOJHgKnArhFxZ5F1DVNnkI6Z5m1G3+fSjwXmA68AWv7n4xDw9mpMPdtrLPDYkEU0SDqgbYHG2hd/Vxrj7dWYQWlbGkosJG0CfB74NHAbsF9E3NTIOprkKeB5YHxV+Xjg8erKEbEaWF1VvLSvlUuqPFwWEX3Ws8TbqzF1bq+W3o6d0rZAY+2LvyuN8fZqzGC1LY0M3jwe+BtwMPBvEbFni3zxiYjngNnAfpUySV3Z81nNisvM3LaYtRtlx/z6ryj1AiuBGaQMvaaIeE85oZUrOyXsEuA/gP8DjgbeB/xTRCwa4LrHAc8CmzhL7p+3V2PafXu5bVnvutv6b182b6/GDNb2auRQyI9JgzhaUkRcIekfgNNIk9jcBhww0C9+ZjXpuHB196bV5u3VmHbfXm5b+tbuf/uyeXs1ZlC2V909FmZmZmb9GZbnhpuZmVlrcmJhZmZmpXFiYWZmZqVxYmFmZmalcWJRkKTNJF0qaamkJZIukDSmn9fcKCmqbt8fqpiHkqQjJT0kaZWkWyS9sZ/6h0m6J6t/h6R3DFWsw0Ej20vSlBr70aqhjNcGj9uW9XPb0phmtC1OLIq7FNgRmESa2Gdv4Ad1vO6HwMtzt+MHK8BmafQy0pL2BC4HLgB2A64CrpK005AE3GQFL7u9lLX3o60GO04bMm5b+uC2pTFNa1uafRGfVrwBO5DOu399ruwAoBfYcj2vuxE4t9nxD8H2uQU4L/e8C1gAnNhH/SuA31SV3Qx8v9mfZZhurynAkmbH7dug7AtuW9a/fdy2DO72KqVtcY9FMXuQNv6tubIZpC//m/p57QclPSXpTklnSBo9aFE2Qe4y0jMqZRHRmz2veRnprHxGVdnU9dRvGwW3F8AYSQ9LelTS1ZJ2HORQbWi4bemD25bGNLNtKXR1U2ML4Il8QUSskbQ4W9aXy4CHSVeK2wU4k3R56GE5VXFBLwNGANWzDi4C/qmP12zRR/31bct2UWR73QscDtwObAJ8DviTpB0jYv5gBWpDwm1L39y2NKZpbYsTixxJXwNO6KfaDkXXHxH546R3SFoIXC9p24h4sOh6rbNExCxyF7iS9CfgbtK1Kr7UrLisb25brBWU1bY4sVjbN4GL+6nzN9LlkNca/CJpA2Az+rhUch9uye63A9rly9/wZaSz8kbqt5Mi22stEdEjaS5pP7LhyW3LwLltaUzT2haPsciJiCcj4p5+bs+RMrpNJe2ee/m+pO15S82V17Zrdr+wnE/QfFHsMtKz8vUzk9ZTv20U3F5rkTQC2Jk22o/ajduWgXPb0pimti3NHrXaqjfgOmAO8EZgL+A+4LLc8n8E7gHemD3fltSVtDuwNfBO0i+J3zf7swzCtvlXYBXwEVL37n8DzwDjs+U/Bs7I1d8T6AGOIx37OxV4Dtip2Z9lmG6vk4HJwKtIp5BdTrrs+Gub/Vl8K2V/cNvS97Zx2zK426uUtqXpH7xVb6SuycuAZaTr2V8IjMkt35p02tg+2fNXAr8Hns7+0PcDZwHjmv1ZBmn7HEUaTLaa9EvrTbllNwIXV9U/jDRwaDVwJ/COZn+G4bq9gHNydR8HrgF2a/Zn8K20fcFty/q3j9uWQdpeZbUtvmy6mZmZlcZjLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4sbMhJekjS0c2Ow8zai9uW4cGJhZmZmZXGiYWZmZmVxomFNUTSJyQ9ll1+N19+taQLJW2bPV4kabmkP0t6+3rWt7WkkLRrrmzTrGyfXNlOkq7L1rlI0k8kvWwQPqKZNYHblvbhxMIa9b/AS4G3VQokbQYcAFwKjAGuBfYDdgN+C/xa0oSibyhpU+AGYC7w+uy9xgM/K7pOMxt23La0iQ2aHYC1loh4RtJ1wAeA67PiQ4GngN9FRC/wl9xLviTp3cA7gfMKvu1RwNyI+HylQNLhwKOSXhMR9xVcr5kNE25b2od7LKyIS4H3ShqZPf8g8NOI6JU0RtI3JN0taYmk5cAOQOFfFcBE4G1ZV+XybJ33ZMu2HcB6zWx4cdvSBtxjYUX8GhBwkKQ/A/8MHJMt+wYwCfgc8ACwEvg5sGEf6+rN7pUr666qMyZ7zxNqvH5ho8Gb2bDltqUNOLGwhkXEKkm/IP2a2A64NyLmZIv3Ai6OiF8CSBoDbL2e1T2Z3b+cdJwTYNeqOnOA9wIPRcSaAX8AMxuW3La0Bx8KsaIuBQ4CDs8eV9wPvEfSrpImApexnv0sIlYCNwMnStpB0luB06uqnQ9sBlwu6Q3Z6PD9JV0kaUSJn8nMms9tS4tzYmFF3QAsBrYnfcErjgWeAf5E6mKcSvpVsD6Hk3rPZgPnAl/ML4yIx0i/VkYA04A7snpLeLG708zag9uWFqeIaHYMZmZm1ibcY2FmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYYNK0hRJIWnrZsdiZmaDz4mFmZmZlUYR0ewYrI1JGgF0A6vDO5uZWdtzYmFmZmal8aEQG1T5MRaSLpH0lKTuGvWmSbq3GTGamVl5nFjYUPoJ8FJg/3yhpC2AfYH/aUZQZmZWHicWNpRuAOYDH6oq/zfSvujEwsysxTmxsCETEb3ApcA7JY3NLfog8KeImNecyMzMrCxOLGyo/RgYBbwbQNL2wO6kwyRmZtbinFjYkIqIu4DZvHg45EPAc8DPmhaUmZmVxomFNcOPgX0lvRz4AHBNRDzT5JjMzKwETiysGS4HAvgW8Co8aNPMrG04sbAhFxFPAr8FDgOWANc0NSAzMyuNEwtrlh9n9z+LiNVNjcTMzErjxMIGVURcHBGKiIeqFj2X3fswiJlZG/G1QqwpJP0G2AHYzhcnMzNrHxs0OwDrLJLeD+wCHAR81kmFmVl7cY+FDSlJASwHrgCOiIg1TQ7JzMxK1HBiIekAYHlE/CF7fiTwceAu4EjPR2BmZta5igze/DowDkDSzsA3gWuBbYCzywvNzMzMWk2RMRbbkHonAN4L/CYiPi/pdaQEw8zMzDpUkcTiOWB09vjtvDgfwWKynox2I0nAlsCyZsdi1oexwGMeDGtmzVYksfgDcLakPwJvBP41K38NML+swIaZLWnfz2bt4xXAgmYHYWadrUhicRTwXeBQ4JMRUWnIDiRN09yOlgE8+uijjBu3bqdMT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhLco2Zmw0DDiUVEPAIcXKP8mFIiGsbGjRvXZ2IxevRoxo0b53+UdfD2aoy3l5m1kkITZEnqArYDNqfqzJKImFlCXGZmZtaCGk4sJL0ZuAzYClDV4gBGlBCXmZmZtaAi81h8H7gV2AnYDHhJ7rZZ0UAknSgpJJ2bK9tI0vmSnpa0XNKVksZXvW6CpGskrZD0hKSvS9qgqs4+kuZIWi3pAUlTisZp5fnLX/7CnDlzeOSRR5odipmZlaTIoZBXA4dGxANlBSHpDcB/ALdXLTqHdE2Jw4BngfOAXwB7Za8bAVwDPA7sCbycdPprD/D5rM42WZ3vAx8E9gN+JGlhREwt6zNY/ebPTyfY7L333qxcuZKNRo3m3nvuZsKECU2OzMzMBqpIj8UtpPEVpZA0BriUNC34M7nyTYCPAcdGxA0RMRv4KLBndjgGYDLwWuBDEXFbRFwHfAk4UtKGWZ0jgHkRcVxE3B0R5wE/B9p+sOlw9fTTTwOw2QGf5qUHH8eqlSt46qmnmhyVmZmVoUhi8R3gm5KmSNpd0i75W4H1nQ9cExEzqsp3B7qBF8oj4h7gEWCPrGgP4I6IWJR73VTSRF075upUr3tqbh3WJN2b/SPdL31ls8MwM7MSFTkUcmV2f2GuLEgDORsavJldQvt1wBtqLN4CeC4illSVL8qWVeosqrGcOuqMkzQqIlbWiGskMDJXNBbSaX89PT3rBFopq7XM1tXb2wvAyA3S2N9Ro0bR29vr7deH/vYvbzczG06KXitkwCS9EvgWMCkiVpWxzhKdBJxSXTht2jRGjx5do3oyffr0wYyp7Zx5YDam4pDLWbBgAQsWeNLI9elr/1qxYsUQR2Jm1rciE2Q9XNJ7706aB2NOuhQHkHo79pZ0FLA/sKGkTat6LcaTBmuS3b+xar3jc8sq9+Nr1Flaq7cicwZrX6l1LDB/8uTJfU6QNX36dCZNmuQJjOowd+5cFi5cyAnXPcLqNcGiy05k5syZTJw4sdmhDUv97V9Lly5tQlRmZrUVnSBrW+BoYIes6C7gWxHxYAOruR7YuarsIuAe4EzgUdLZHfuRHX6RtD0wAZiV1Z8FfEHS5hHxRFY2CVjKi1dgnQW8o+p9JuXWsY6IWA2srjyvJD7d3d3rTRz6W25JV1ca2rN6TbBqTbBy5Uq6urq87frR1/7l7WZmw0mRCbL2B34F3Ab8MSveC/irpEMioq7jARGxDLizat1/B56OiDuz5xeQLni2mJQsfAeYFRE3Zy+ZRkogfiLpeNJ4itOB87PkANJppkdJOos0LmRf4H2k01jNzMysREV6LL4GnBMRJ+YLJX2N1NNQ5kCDY4BeUo/FSNLZHJ+qLIyI5yUdDHyP1APxd+AS4ORcnXmSDiLNifFZ0lVK/91zWJiZmZWvSGKxA+kXf7ULSYdHCouIfaqerwKOzG59veZh1j3UUV3nRmC3gcRmZmZm/Ssyj8WTwK41yncFnqhRbmZmZh2iSI/FD4EfSHoV8KesbC/gBNY+k8LMzMw6TJHE4ivAMuA40mmZAI8BpwLfLicsMzMza0VF5rEI0kDIcySNzcqWlR2YmZmZtZ5C81hUOKEwMzOzvLoSC0lzgP0i4hlJc0nXBKkpIl5XVnBmZmbWWurtsbiaF2eivJr1JBZmZmbWuepKLCLiy7nHpw5aNGZmZtbSGp7HQtLfJL20Rvmmkv5WTlhmZmbWiopMkLU16Sqk1UYCrxhQNGZmZtbS6j4rRNI7c0/3l/Rs7vkI0lVI55UVmJmZmbWeRk43vSq7D9KFvvJ6gIdIk2aZmZlZh6o7sYiILgBJ84A3RMRTgxaVmZmZtaQiM29uMxiBmJmZWeurd4KszwA/iIhV2eM+RYSvF2JmZtah6u2xOAa4FFiVPe5L4AuRmZmZdax6J8japtZjMzMzs7wiE2SdLGl0jfJRkk4uJywzMzNrRUUmyDoFGFOjfHS2zMzMzDpUkcRC1L4I2URg8cDCMTMzs1bWyMybz5ASigDuk5RPLkaQejG+X254ZmZm1koamcfiaFJvxYWkQx75Kb2fAx6KiFnlhWZmZmatpu5DIRFxSURcDLwN+G72vHK7vEhSIemTkm6XtDS7zZJ0YG75RpLOl/S0pOWSrpQ0vmodEyRdI2mFpCckfV3SBlV19pE0R9JqSQ9ImtJorGZmZta/hsdYRMTvga0knS7pckmbA0g6UNKODa5uPnAisDvweuAG4Orces4BDgEOA94KbAn8ovJiSSOAa4ANgT2BjwBTgNNydbbJ6vwO2BU4F/iRpP0bjNXMzMz6UeR007cCdwBvAt7Di2eITAS+3Mi6IuLXEXFtRNwfEfdFxBeA5cCbJW0CfAw4NiJuiIjZwEeBPSW9OVvFZOC1wIci4raIuA74EnCkpA2zOkcA8yLiuIi4OyLOA37O+if6MjMzswKKnBXyNeCLETGJNLai4gbgzbVf0j9JIyS9H9gYmEXqxegGZlTqRMQ9wCPAHlnRHsAdEbEot6qpwDhgx1ydGaxtam4dZmZmVpKGL0IG7Ax8oEb5E8DLGl2ZpJ1JicRGpN6Kd0fEXZJ2BZ6LiCVVL1kEbJE93iJ7Xr2cOuqMkzQqIlbWiGkkMDJXNBagp6eHnp6edT5DpazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpwUSSyWAC8H5lWV7wYsKLC+e0ljHzYBDgUuyQ63NNNJ1Jjsa9q0aYwevc6koy+YPn36YMbUds48cEJ6cMjlLFiwgAULiuw+naOv/WvFihVDHImZWd+KJBY/Bc6UdBhpTosuSXsB3wB+3OjKIuI54IHs6WxJbwA+C1wBbChp06pei/HA49njx4E3Vq1yfG5Z5X58jTpLa/VWZM4Azs49HwvMnzx5MuPGjVunck9PD9OnT2fSpEl0d3f3sUqrmDt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7PaiiQWnwfOBx4lTYx1V3Z/GXB6CTF1kQ5DzAZ6gP2AKwEkbQ9MIB06Ibv/gqTNI+KJrGwSsDSLq1LnHVXvMSm3jnVExGpgdeW5lLrsu7u715s49Lfckq6uNLRn9Zpg1Zpg5cqVdHV1edv1o6/9y9vNzIaThhOLrIfh45K+AuxEOitkbkTc3+i6JJ0BXEcakDmWNHZjH2D/iHhW0gXA2ZIWk5KF7wCzIuLmbBXTSAnETyQdTxpPcTpwfpYcQJoN9ChJZ5Em99oXeB9wUKPxmpmZ2foV6bEAICIekfRo9rjWtUPqsTnp8MnLSTN53k5KKioHk48Bekk9FiNJZ3N8KhfD85IOBr5H6oH4O3AJcHKuzjxJB5HmxPgsae6Mf4+IqQVjNjMzsz4USiwkfYz0T//V2fP7gXMj4keNrCciPtbP8lXAkdmtrzoPs+6hjuo6N5IGl5qZmdkgajixkHQacCzZYYmseA/gHEkTIuLkPl9sZmZmba1Ij8UngY9HxOW5sl9Jup2UbDixMDMz61BFZt7sBm6tUT6bAYzZMDMzs9ZXJLH4CanXotongEsHFo6ZmZm1sqI9DB+TNBmonPb5JtL8Ej+W9MLEUhFx7ADjMzMzsxZSJLHYCZiTPd42u38qu+2Uq1f0FFQzMzNrUUUmyHrbYARiZmZmra/IGAsAJG0naX9Jo7LnKi8sMzMza0UNJxaSXirpeuA+4FrSrJkAF0j6ZpnBmZmZWWsp0mNxDuniYBOA/PWarwAOKCMoMzMza01FBm9OJl3PY37V0Y/7ga1KicrMzMxaUpEei41Zu6eiYjNylxo3MzOzzlMksbgJ+HDueUjqAo4HfldKVGZmZtaSihwKOR64XtLrgQ2Bs4AdST0We5UYm5mZmbWYhnssIuJO4DXAH4CrSYdGfgHsFhEPlhuemZmZtZKGeiwkdQO/BY6IiK8OTkhmZmbWqhrqsYiIHmCXQYrFzMzMWlyRwZv/A3ys7EDMzMys9RUZvLkBcLiktwOzgb/nF/qKpmZmZp1roFc3fU3VMl/R1MzMrIP56qZmZmZWmsJXNzUzMzOr1tTEQtJJkv4saZmkJyRdJWn7qjobSTpf0tOSlku6UtL4qjoTJF0jaUW2nq9L2qCqzj6S5khaLekBSVOG4COamZl1lGb3WLwVOB94MzAJ6AamSdo4V+cc4BDgsKz+lqQJuQCQNAK4hjQL6J7AR4ApwGm5OttkdX4H7AqcC/xI0v6D8qnMzMw6VJHBm6WJiLUus571IjwB7A7MlLQJ6dTWD0TEDVmdjwJ3S3pzRNxMutrqa4G3R8Qi4DZJXwLOlHRqRDwHHAHMi4jjsre6W9JbgGOAqYP+Qc3MzDpEXT0W2SGEl2SPT5Y0epDi2SS7X5zd707qxZhRqRAR9wCPAHtkRXsAd2RJRcVUYBzpGiaVOjNY29TcOszMzKwE9fZY7EC6JsgzwCnA96l96fTCsiukngv8MbseCcAWwHMRsaSq+qJsWaXOohrLqaPOOEmjImJlVSwjgZG5orEAPT099PT0rBN7pazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpzUm1jcBlwk6Q+AgM9JWl6rYkScVqu8DueT5sh4S8HXl+kkUgK1lmnTpjF6dN+dNdOnTx/MmNrOmQdOSA8OuZwFCxawYMGC5gY0zPW1f61YUWqOb2Y2IPUmFlOALwMHkybBOhBYU6NekBs0WS9J52Xr3jsi5ucWPQ5sKGnTql6L8dmySp03Vq1yfG5Z5X58jTpLq3srMmcAZ+eejwXmT548mXHjxq1Tuaenh+nTpzNp0iS6u7trfUTLmTt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7Pa6kosIuJe4P0AknqB/SLiiYG+uSQB3wHeDewTEfOqqswGeoD9gCuz12wPTABmZXVmAV+QtHkupknAUuCuXJ13VK17Um4da4mI1cDqXJwAdHd3rzdx6G+5JV1daWjP6jXBqjXBypUr6erq8rbrR1/7l7ebmQ0nRWbeLPMU1fOBDwD/AiyTVBkT8WxErIyIZyVdAJwtaTEpWfgOMCs7IwRgGimB+Imk40njKU4Hzs8SBEhjQo6SdBZwIbAv8D7goBI/i5mZWccrdLqppG2Bo0mDOiH9Y/9WRDzY4Ko+md3fWFX+UeDi7PExQC+px2Ik6WyOT1UqRsTzkg4Gvkfqgfg7cAlwcq7OPEkHkebE+CwwH/j3iPCppmZmZiVqOLHIJpX6FWlA5x+z4r2Av0o6JCLqHsEYEaqjzirgyOzWV52HWfdQR3WdG4Hd6o3NzMzMGlekx+JrwDkRcWK+UNLXgDMBnxphZmbWoYqMl9gBuKBG+YWkGTDNzMysQxVJLJ4kXW+j2q6k6bjNzMysQxU5FPJD4AeSXgX8KSvbCziBted+MDMzsw5TJLH4CrAMOI40kRTAY8CpwLfLCcvMzMxaUZF5LIJ02uY5ksZmZcvKDszMzMxaz4Aum+6EwszMzPLKnEXTzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmZmatq6HEIiJ6gF0GKRYzMzNrcUUOhfwP8LGyAzEzM7PWV+R00w2AwyW9HZhNukz5CyLi2DICMzMzs9ZTJLHYCZiTPX5N1bIYWDhmZmbWyorMvPm2wQjEzMzMWl/h000lbSdpf0mjsucqLywzMzNrRQ0nFpJeKul64D7gWuDl2aILJH2zzODMzMystRTpsTgH6AEmACty5VcAB5QRlJmZmbWmIoM3JwP7R8T8qqMf9wNblRKVmZmZtaQiPRYbs3ZPRcVmwOqBhWNmZmatrEhicRPw4dzzkNQFHA/8rpSozMzMrCUVORRyPHC9pNcDGwJnATuSeiz2KjE2MzMzazEN91hExJ2kibH+AFxNOjTyC2C3iHiwkXVJ2lvSryU9JikkvatquSSdJmmhpJWSZlRfAE3SZpIulbRU0hJJF0gaU1VnF0k3SVol6VFJxzf6uc3MzKx/RXosiIhnga+W8P4bA38BLiQlJ9WOBz4DfASYB3wFmCrptRGxKqtzKemU10lAN3AR8APgAwCSxgHTgBnAEcDOwIWSlkTED0r4DGZmZpYplFhIegnpQmQ7ZEV3ARdFxOJG1hMR1wHXZeusfg8BRwOnR8TVWdmHgUXAu4CfStqBdIrrGyLi1qzOp4FrJX0uIh4DPkg6ZHN4RDwH/FXSrsCxpATEzMzMStJwYiFpb+DXwLPArVnxZ4CTJR0SETNLim0bYAtSTwOQekok3QLsAfw0u19SSSoyM4Be4E3AL7M6M7OkomIqcIKkl0TEMzU+40hgZK5oLEBPTw89PT3rBFopq7XM1tXb2wvAyA1SMjlq1Ch6e3u9/frQ3/7l7WZmw0mRHovzSZNhfTIingeQNAL4brZs55Ji2yK7X1RVvii3bAvgifzCiFgjaXFVnXk11lFZtk5iAZwEnFJdOG3aNEaPHt1nwNOnT+9zma3rzAMnpAeHXM6CBQtYsGBBcwMa5vrav1asqHX2t5lZcxRJLLYDDq0kFQAR8byks1n7NNRWdgZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRlZlZbkcRiDmlsxb1V5TuQBmKW5fHsfjywMFc+HrgtV2fz/IskbUA69fXxXJ3xVesen1u2johYTW6yr8r4j+7u7vUmDv0tt6SrK52MtHpNsGpNsHLlSrq6urzt+tHX/uXtZmbDSV2JhaRdck+/DXxL0nbAzVnZm4EjgRNLjG0e6R//fmSJRHaGx5uA72V1ZgGbSto9ImZnZfuSTqO9JVfnq5K6I6JyMHoScG+t8RVmZmZWXL09FrcBAeRP3TirRr3LSOMv6pLNN7Fdrmib7IyNxRHxiKRzgS9Kup8XTzd9DLgKICLulvRb4IeSjiCdbnoe8NPsjJBKTKeQrr56JrAT8FngmHrjNDMzs/rUm1hsM0jv/3rWnga8Mq7hEmAKKXnZmHRa6KakSbkOyM1hAel00vOA60lng1xJOksFeOFMksmkgaWzgaeA0zyHhZmZWfnqSiwi4uHBePOIuJG1e0Gqlwdwcnbrq85issmw1lPnduCfi0VpZmZm9So6QdaWwFtIAyfXmhY8Ir5dQlxmZmbWgopMkDUF+G/gOeBp0tiLiiAN7jQzM7MOVKTH4ivAacAZEdFbcjxmZmbWwhq+uikwmnTWhZMKMzMzW0uRxOIC4LCyAzEzM7PWV+RQyEnAbyQdANwBrHUFpIg4tozAzMzMrPUUTSz258UpvasHb5qZmVmHKpJYHAccHhEXlxyLmZmZtbgiYyxWA38sOxAzMzNrfUUSi28Bny47EDMzM2t9RQ6FvBHYV9LBwF9Zd/Dme8oIzMzMzFpPkcRiCfCLkuMwMzOzNtBwYhERHx2MQMzMzKz1FRljYWZmZlZTkYuQzWM981VExKsGFJGZmZm1rCJjLM6tet4N7AYcAHx9oAGZmZlZ6yoyxuJbtcolHQm8fsARmZmZWcsqc4zFdcB7S1yfmZmZtZgyE4tDgcUlrs/MzMxaTJHBm3NZe/CmgC2AfwA+VVJcZmZm1oKKDN68qup5L/AkcGNE3DPgiMzMzKxlFRm8+eXBCMTMzMxaX0dNkCXpSEkPSVol6RZJb2x2TGZmZu2k7sRCUq+k5/u5rRnMYAdC0r8CZwNfBl4H/AWYKmnzpgZmZmbWRho5FPLu9SzbA/gMw7sH5FjghxFxEYCkI4CDgMOBrzUzMDMzs3ZRd2IREVdXl0nanvRP+RDgUuDk8kIrj6QNgd2BMyplEdEraQYpKaquPxIYmSsaC7B48WJ6enqqq9PT08OKFSu46aab6Orqoquri97e3hfugSEtG+r3azSue++9lzFjxqDFD6Oe59loo42YPXs2y5cv74ht0+hr1qxZw4oVK3j66afp7u5eZ/9btmzZOmVmZs1S5KwQJG1JOqTwEWAqsGtE3FlmYCV7GTACWFRVvgj4pxr1TwJOqS7cZpttyo/MAPjEJz7R7BDawVhgabODMLPO1lBiIWkT4PPAp4HbgP0i4qZBiKvZziCNx8jbjL4nABsLzAdeAfjnY/+8vRpTz/YaCzw2ZBGZmfWh7sRC0vHACcDjwL/VOjQyjD0FPA+MryofT/o8a4mI1cDqquI+fwlKqjxcFhH+xdgPb6/G1Lm9vB3NbFhopMfia8BK4AHgI5I+UqtSRLynjMDKFBHPSZoN7Ec2wZekruz5eU0MzczMrK00klj8mLWn8m41ZwOXSLoV+D/gaGBj4KJmBmVmZtZOGjkrZMogxjHoIuIKSf8AnEa6tsltwAERUT2gs4jVpMGs1YdPrDZvr8Z4e5lZy1BEK3dCmJmZ2XAynCe0MjMzsxbjxMLMzMxK48TCzMzMSuPEwszMzErjxKIgSZtJulTSUklLJF0gaUw/r7lRUlTdvj9UMQ+lRi9RL+kwSfdk9e+Q9I6hinU4aGR7SZpSYz9aNZTxmpn1xYlFcZcCOwKTgIOBvYEf1PG6HwIvz92OH6wAm6XRS9RL2hO4HLgA2I00idlVknYakoCbrNHtlVnK2vvRVoMdp5lZPXy6aQGSdgDuAt4QEbdmZQcA1wKviIia12yQdCNwW0QcPUShNoWkW4A/R8RR2fMu4FHgOxGxziXqJV0BbBwRB+fKbiZtqyOGKOymKbC9pgDnRsSmQxmnmVk93GNRzB7AkkpSkZkB9AJv6ue1H5T0lKQ7JZ0hafSgRdkEuUvUz6iURURv9nydS9Rn9sjXz0xdT/22UXB7AYyR9LCkRyVdLWnHQQ7VzKwuhS6bbmwBPJEviIg1khZny/pyGfAw6SqUuwBnAtsDw+76KgPQ6CXqIW2zWvXXty3bRZHtdS9wOHA7sAnwOeBPknaMiPmDFaiZWT2cWORI+hrpCq7rs0PR9UdEfgzGHZIWAtdL2jYiHiy6XussETELmFV5LulPwN3AfwBfalZcZmbgxKLaN4GL+6nzN9Kl1tcaWCdpA2AzalyGfT1uye63A9olsWjoEvWZxxus306KbK+1RESPpLmk/cjMrKk8xiInIp6MiHv6uT1H+rW4qaTdcy/fl7Q9b6m58tp2ze4XlvMJmi/bPpVL1ANrXaJ+Vh8vm5Wvn5m0nvpto+D2WoukEcDOtNF+ZGatyz0WBUTE3ZJ+C/xQ0hFAN3Ae8NPKGSGS/hG4HvhwRPyfpG2BD5DOHHmaNMbiHGBmRNzejM8xiNZ7iXpJPwYWRMRJWf1vAb+XdBxwDfB+4PXAJ4Y47mZpaHtJOhm4GXgA2BT4T9Lppj8a6sDNzKo5sSjug6Rk4nrS2SBXAp/JLe8mDcysnPXxHPB2Xvyn8Wj2mtOHJtyhU8cl6ieQtlml/p8kfYC0Lf4LuB94V0TcOaSBN0mj2wt4CWk+lC2AZ0g9HntGxF1DFrSZWR88j4WZmZmVxmMszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLGzISXpI0tHNjsPMzMrnxMLMzMxK48TCzMzMSuPEwhoi6ROSHsuuwJkvv1rShZK2zR4vkrRc0p8lvX0969taUkjaNVe2aVa2T65sJ0nXZetcJOknkl42CB/RzMwGwImFNep/gZcCb6sUSNoMOAC4FBhDuoLrfsBuwG+BX0uaUPQNJW0K3ADMJV319ABgPPCzous0M7PB4aubWkMi4hlJ15EuAX99Vnwo8BTwu4joBf6Se8mXJL0beCfparBFHAXMjYjPVwokHQ48Kuk1EXFfwfWamVnJ3GNhRVwKvFfSyOz5B4GfRkSvpDGSviHpbklLJC0HdiBd+ruoicDbssMgy7N13pMt23YA6zUzs5K5x8KK+DUg4CBJfwb+GTgmW/YNYBLwOeABYCXwc2DDPtbVm90rV9ZdVWdM9p4n1Hj9wkaDNzOzwePEwhoWEask/YLUU7EdcG9EzMkW7wVcHBG/BJA0Bth6Pat7Mrt/OWkMBcCuVXXmAO8FHoqINQP+AGZmNmh8KMSKuhQ4CDg8e1xxP/AeSbtKmghcxnr2s4hYCdwMnChpB0lvBU6vqnY+sBlwuaQ3ZGee7C/pIkkjSvxMZmY2QE4srKgbgMXA9qTkoeJY4BngT6TDF1NJPQ7rczip92w2cC7wxfzCiHiM1BMyApgG3JHVW8KLh1LMzGwYUEQ0OwYzMzNrE+6xMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0vx/Ro5EHfQdraUAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPTElEQVR4nO3deZxcVZ338c+3Q5N0gABBWZVFQAY3QFBBHBRZAm6jiOITZxTBGUTUAfQBRWXTEdzCIqiDDyAoERzRKCqCbAMoxrDviLIbtpCEBNNJOvTv+ePcgptKdXfV7VtdXVXf9+t1X1117qlzf3Xr1ulf3eVcRQRmZmZmZeppdQBmZmbWeZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGDYSiQdL2lMhneVdI2ka3LP3yYpJO0/Rsv/oaSHxmJZVcvdPHufB471sruFpNUkfUPSo5IGJc1qdUztLvf9fFurY7H24ASjg0k6MOsQKtNSSXMlXSbpM5LWKmk5G2eJyfZltFem8RybNdVBwP8FfgZ8FDilteGYdZ/VWh2AjYljgQeBXmBD4G3AqcCRkt4TEbfn6n4VOLnB9jcGjgMeAm5t4HV7N7icIoaL7d9pTZL9MNAHDLRg2d3i7cDfI+KIVgdi1q2cYHSHSyPixtzzkyS9Hfg18CtJ20ZEP0BErABWNDMYSZMjYklELG/mckYSES35Bx/pDoNLW7Hs0ZA0CVgeEYOtjqUO6wMLy2pMUg+wekS03edm1io+RNKlIuIq4CvAZsC/VsprnYMhaS9J10taKOk5SfdJ+lo2723AnKzqubnDMQdm86+RdKekHSVdK2kJ8LXcvGtqhDdB0tckPSHpH5J+JenlVTE9JOmH1S/Mt1lHbKucgyFpDUnfzo7dL8ve6+ckqapeSDpD0nuz97dM0l2S9qnxfqpjXOUcjCyW5yRtImlW9vhpSd+SNKGONh+S9GtJe0u6NTscdrek/arqTc3avCNbxiJJl0rarqpe5Xj7hyR9VdLfgSXAlAJtfFDScZL+LmmxpJ9JWlvSREmnSnoqa+dcSROr2hhy2xtu3QK7A6/OfeZvy+Y3+vl+WNJdwDJg2M9W0r6S/jd7j4skzZE0varOByTdJKlf0jxJP5a0SW7+57Jlb1aj/ZMkLZe07nBxZHV3ytr5aI1507J578qebybpu9m66Jf0jKT/kbR5HcsZ8XuYK5so6QRJf83W/aNK58lMrH69dQbvwehuPyL9s98b+EGtCpJeTdrTcTvpUMsyYCtg16zKPVn5icBZwHVZ+R9zzawHXApcCPwYeHKEuL4IBPB10i/Rw4ErJG1f2dNSp3pie0H2T+ZXpH9OZ5MOqUwDvglsAlTvbn8LsB/wXWAx8BngYkmbRsQzDcRZMQG4DJgNfA7YE/gs8Dfge3W8fmvgIuD7wHnAx4D/kbRPRPw+q/MK4L3A/5AOm20AHAL8r6RXRcTcqja/DCwHvgVMzB6/qsE2vgD0kw69bQV8mnR4aBBYFzge2Bk4MGvvRKhr26vlaeDfSNvQmtmyAe4p8Pm+HfggcAYwj3SYrSalZPEc4C7gJNLekx1IScnMXJ1zSUnvF0jr7T+BXSXtEBELgZ8C38iW+82qxXwQuDwiFgzz/gGIiBslPZC95ryq2QcAC0jbGsAbgDeTvp+PAZsDhwLXZJ/nkpGWNxKlPUC/In1nziJ9N19LWuevJG1P1mkiwlOHTqQOO4CdhqmzELg59/x4sr342fPDszZeMkwbO2V1Dqwx75ps3iFDzLsm9/xtWd3HgLVy5R/Iyj+TK3sI+GEdbQ4X2w+Bh3LP/yWr+8Wqev9D+me4Za4sSP/w8mWvy8o/NcLnsnl1TFksAXy5qu7NwI11fNYPZa/fL1c2BZhb9flOBHpqxLM0v+zcZ/E3oK+qfqNt3AH05spnZuvzt1Vt/LHq8xhx2xtmfVwD3FlV1ujn+zzwqjqWtTawCPgTMKlqnrK/vaTE+o58HeCd2bJOqFoPN1a184as3r81sA6+RkoI182VrU5KLs7OlfXVeO3O1cvLfZ5vK/A9/Ndsfb6lqt4hWZtvbvQz9jT+Jx8iseeA4a4mWZj9/ZfsV0gRy0i/3Op1fkQszj3/GfA48I6Cy6/XO0id4OlV5d8GBOxbVX5FRPyt8iTSybKLSHsJivp+1fPrGmhvLvCLXDyLgPOBHSRtmJUti+wcCkkTJK1H2gbuA15fo83zomqvUYE2zo+Vz3eZTVqf51TVmw28XFJlz+rC7O9otr28Rj/f/42Iu+tody/Sd+jkqDpHIyIqhxt3Iu2N+26+TkT8BriXlGhUXATsKGnLXNkBpO/RL+uIJ99OL2kvW8XewDrZvEoML3y+knqzz/OvpPVf6/Ms4gOkvRb3SnpJZQKuyubvXtJybBxxgmFrknbvD+Ui4A/A/wOelHRhdky9kW3n79HYCZ33559knfRfSb+Sm2kzYG5VcgOpY6zMz3ukRhsLSLv9i1gaEU+Por2/5v6hVfwl+7s5pF3Vko6QdD/pH9Y80mGF15F+iVd7sLqgQBvV6+nZ7O+jNcp7cm2Use3lNfr5rvLeh1BJBO4cYdmQkrBq91Ytu7JH5QB44dDdB0gnay+qMyYi4ras7QNyxQeQPq/KP3Yk9Uk6UdKjrPx5rkPtz7OIrYFXZ+3mp8r2uX5Jy7FxxOdgdDFJLyN1IH8dqk5E9EvajfQL452kY8oHAFdJ2jsinq9jUY2cN1GvoQYDm0D6lToWhlqOhigv2l6ZjiGd3HsO6fyK+aR/ZqdS+wdHrc+u0TaGel/Drr+Str3RaMZ2O6KImCvpOtL5E18jHa7YFDi6QHMXAV/M9hYsBt4D/CTS1WIV3yGdr3MqcAMp0QvSORkjJXP1fg97SIeHjhyifnWyaR3ACUZ3+7fs72XDVcp2h1+ZTUdKOgb4L1LHfwVDdzJFbZ1/kv2C24p0sl/FAtIvrGqbAQ/knjcS28PAnpLWqvqV+0+5+ePZVpJUtRfjldnfh7K/+wNXR8TB+RdKWof0y7UeZbRRlzq2vUY06/OtHCZ7DUMn65W2tyG39yBXVr3si4DvStqGlFQtAS4pENtFpHFg3k86B2QKKXHI2590KOyzlQKlS5LXqaP9er+HfwO2A66ssZfNOpQPkXQppXEwvkzaDXzBMPWm1ii+NftbubzsH9nfdUoK7yNaeZTR/YGNSFeiVPwN2FnS6pWC7LK7lS5nbTC235J+eX2qqvwIUqJy6SqvGF82Bt5XeSJpCvAR4NaIeCIrfp6qPSySPkC6iqJeZbQxojq3vUY06/O9nLR34AvZP+YXZMkxwI3AU8An8pdlStoX2Bb4TVWbF5PW8/8hHR75dUT8gwZFxD2kPQcHZNPjwLVV1Vb5PElX+ox4eTT1fw9/Sto+/r26gewQzRp1LMvajPdgdId9Jf0T6fPegHT53V6kX03vqT4xrcqx2W7q32T11wc+SbrS4/qszt9IJ4R9QtJi0j/12RFR7zHsavOB6yWdm8V7OOmXYf5S2v9HSjx+J+mnpOPg/8qLvyYrGontEuBq4L+yMQBuI50U9y/AqfkTOsepvwBnS3oD6dfqQaT197FcnV+TPtNzSVcrvBb4MCv/2hxJGW3Uo55trxFN+XwjYpGkI0jb5BxJM0m/7LcDJgMfjYgBSUeTTnb+X0k/4cXLVB+iaijziHhK0tWkQwprkTsps4CLSJf+LiVdPVI9UNqvgX+T9CxwN7AL6RLpei61rvd7+CPSIZ/vS9qddG7NBNLeow+SLhe+Eessrb6MxVPzJl68TLUyLSP9grmcNGbDWjVeczwrX6b6dmAW8Pfs9X8nXWa4ddXr3kMaA2CA3CWY1LhcMPeaa6h9meqHSMeenyTtGv41sGmN1x9J+mezlPQPZ8fqNkeI7YfkLovMytYEZmTvcznpn/bnyC43zNUL4IwaMT1Ejcv2qupsno8jF8tzI30ew7T5ULae9ib941xKOnlx/6p6E0ljWszN1u31pGP8Q30W+9dY1qjaYIjLpyvvleyyVOrc9obZtlbZ7kb7+Y6wzHeT/nEuIZ3HMBv4UFWdD5IuPV5K+gf+Y2CTIdr7eBbHIqouf20wrq14sQ/Ytcb8dUjn0zxN2hPzO9Jhm5W2ZWpcptrg97AXOIp0MuxS0g+JG0ljnEwp+v48jd+pco22mbUxpRFJ74yId7U6FjMz8DkYZmZm1gQ+B8PMrI1I6mPk8SnmR4tvJmjmBMPMrL0cwMgj4+5OOg/CrGV8DoaZWRuRtBFpVMzh3BR13BTNrJmcYJiZmVnpfJKnmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4Jho05ScdLitzzhyT9sIUhmVkHcN8yvjjBMDMzs9Kt1uoAzIBtgMFWB2FmHcd9Sws5wbCWi4hlrY7BzDqP+5bW8iESaypJb5E0R9JSSX+TdEiNOj5OamYNcd8y/nkPhjWNpNcClwNPA8eTtrcTgCdbGJaZtTn3Le3BCYY104mAgH+OiEcAJF0M3NHSqMys3blvaQM+RGJNIWkCMA2YVekAACLiHuCylgVmZm3NfUv7cIJhzfJSoA+4v8a8+8Y4FjPrHO5b2oQTDDMzMyudEwxrlqeBfmDrGvO2GeNYzKxzuG9pE04wrCki4nnS8dD3Stq0Ui5pW9LxUzOzhrlvaR9OMKyZjsv+XifpaElfBK4G7mphTGbW/ty3tAEnGNY0EXE76RfF06TLyg4idQy/aGVcZtbe3Le0B0XEyLXMzMzajKRHgcsi4uOtjqUbeQ+GmZl1HEm9wHrAvFbH0q08kqeZmXUUSdOAD5HGy7iyxeF0LR8iMTOzjiLpamAr4HsR8bVWx9OtGj5EImkfSW/JPT9M0q2SZkpat9zwzKxbuG+xskTE7hHxcicXrVXkHIxvAlPghTvafRv4LbAFMKO80Mysy7hvMesgRc7B2AK4O3v8fuDXEXGMpNeTOgMzsyLct5h1kCIJxnJgcvZ4T+D87PF8sl8f7UaSgI2Bxa2OxaxkawFzoz1OtnLfYtY+RuxbiiQY1wMzJP0BeCNwQFb+SuCxAu2NBxvTvrGbjeRlwN9bHUQd3LeYtZdh+5YiCcangO8C+wOHRkSl8X2B3zXSkKQvAPsB/0S6ec0fgaMj4r5cnUmkY7EfAiaSxqD/ZEQ8mauzKfA9YHfgOeA84AsRsaLOUBYDPProo0yZMj5+KA0MDHD55Zez995709vb2+pwCmn399Du8S9atIiXv/zl0D6/nt23jIF2367B76HV6u1bGk4wIuIR4F01yo9otC3grcCZwJwslq8Bl0t6VUT8I6tzCvBO4APAs8AZwM+BXQEkTQB+AzwBvBnYiLRrdQA4ppFgpkyZMq46gcmTJzNlypS22/gq2v09tHv87cZ9y9johO3a76E9FBpoS1IP6Rrj9am6EiUirq23nYjYp6rdA4GngB2BayWtDRwMTI+Iq7I6HwPukbRzRPwJ2Bt4FbBn9svjVklfBr4u6fiIWF7kPZrZ2HPfYtY5Gk4wJO0MzAQ2A1Q1O4AJo4hn7ezv/OzvjkAvcMULC4i4V9IjwC7An7K/d+R3a5J2dX4PeDVwS433MJG0S7RiLUgZ5cDAwCjCL08ljvESTxHt/h46Jf524b5lbLT7dg1+D61Wb8xF9mB8H7iRtGvxcdIXf9SyXy6nAn+IiDuz4g2B5RGxsKr6k9m8Sp0na8wnV6faF3jxdr8vuPzyy5k8eXKN6q3z+9//vtUhjFq7v4d2jX/JkiWtDqFR7lvGULtu13l+D61Rd98SEQ1NwD+ArRp9XR3tfg94CHhZrmw6sKxG3T8DX88en0W6W15+/mRS57TvEMuaSLrsrTJtAsS8efNi+fLlq0wPPPBArDt1vejr64u+vr5Yd+p68cADD9Q9v0hbU6dOjVmzZsVGG29SuK1mxVZvWxttvEnMmjUrpk6d2tR1Vl1nuLbqqVvmZ9Cq9b98+fKYN29eZN+DKWV/X5sxuW9p7vZT/b0cbrtu5HvSzn1LK99npX+5//77x822UW8fWm/fUmQkz9mkY6SlkXQG6eSu3SMif0nXE8DqktapeskG2bxKnQ1qzCdXZyURsSwiFlUmsjNhe3t7a04LFixgwfxnmLzHJ5m8xydZMP8ZFixYUPf8Im31vTXdXXjhgvmF22pWbPW2tXBB2hvd99aPN3Wd5eusvv17hm2rnrplfgatWv+Vqc24bxmD70nlezncdt3I96Sd+5ZWvs8X+peFC8fNtlFvH1pv31LkEMl3gG9L2hC4g3RGdf4Ldnu9DWWD0HwHeB/wtoh4sKrKTVn7ewAXZ6/ZBtgUuCGrcwPwRUnrR8RTWdlewCJeHBWwFL3rvXxU8xtqa+ompbVVb5166zbSFgz/XsqMC2DC2uvX3d5Idcv8DFq5/tuI+5aC84vWrceI35MO6Ftg7N9n72rVpxkVb6usuKCxPnQkRRKMi7O/5+TKgnRSVqMnYp1J2lX5L8DirGMBeDYi+iPiWUlnkwbfmU/6Yn8HuCHSWd4Al5O+7D+SdBTp2OhXgTMjYlnjb8/MWsR9i1kHKXovkrIcmv29pqr8Y8APs8dHAIOkzueFwXAqFSPieUnvIh1nvYF0HPc84NgS4zSz5nPfYtZBigy09XBZC4+IEfcRRcRS4LBsGi6md5QVl5mNPfctZp2l6EBbWwKHA9tmRXcDp0XE30qKy8y6kPsWs87R8FUkkqaRvvRvBG7PpjcBd0naq9zwzKxbuG8x6yxF9mCcDJwSEZ/PF0o6Gfg60H6jhpjZeOC+xayDFBkHY1vg7Brl55DG7TczK8J9i1kHKZJgPA1sX6N8e9LNhMzMinDfYtZBihwi+QFwlqRXAH/MynYFjgZmlBWYmXUd9y1mHaRIgvEV0vC3nwVOysrmAscDp5cTlpl1IfctZh2kyDgYAZwCnCJpraxscdmBmVl3cd9i1lkKjYNR4S+/mTWD+xaz9ldXgiHpZmCPiFgg6RbSfQFqiojXlxWcmXU29y1mnavePRi/BJblHg/ZCZiZNcB9i1mHqivBiIgTco+Pb1o0ZtZV3LeYda4iQ4U/IGm9GuXrSHqgnLDMrNu4bzHrLEUG2tocmFCjfCLwslFFY2bdbHPct5h1jLqvIpH0ntzTaZKezT2fAOwBPFhWYGbWHdy3mHWmRi5TnZX9DeC8qnkDwEOkAXLMzBoxK/vrvsWsg9SdYERED4CkB4E3RMS8pkVlZl3DfYtZZyoykucWzQjEzLqb+xazzlLvQFufAc6KiKXZ4yFFhO8ZYGZ1cd9i1rnq3YNxBHABsDR7PJTANyUys/q5bzHrUPUOtLVFrcdmZqPhvsWscxUZaOtYSZNrlPdJOracsMys27hvMessRQbaOg5Ys0b55GyemVkR7lvMOkiRBEPUviHRdsD8hhqSdpN0iaS5kkLSe6vm/zArz0+/q6ozVdIFkhZJWijpbEm1OikzG9/ct5h1kEZG8lxA+vIH8BdJ+Y5gAumXx/cbXP4awG3AOcDPh6jzO+BjuefLquZfAGwE7AX0AucCZwHTG4zFzFrAfYtZZ2pkHIzDSb8wziHtrswP57sceCgibmhk4RFxKXApgKShqi2LiCdqzZC0LbAPaXCeG7OyTwO/lfS5iJjbSDxm1hKH477FrOM0MpLnefDCaHt/iIgVTYtqZW+T9BSwALgK+FJEPJPN2wVYWOkAMlcAg8CbgF/UalDSRNINlCrWAhgYGGBgYGCV+oODg/T19TFptdRR9fX1MTg4+ELdkeYXaWtiCW01K7ZG2gKYuJqaus5WqtM7Ydi26qlb5mfQqvUPDFk+3rhvGZvtJ19npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRdQ65DnCi6QtSbsWtwT+MyKekrQv8EhE3NVwg6nNAN4XEbNyZR8ClpBudLQl8DXgOWCXiHhe0jHARyNim6q2ngKOi4jvDbGs46lx0tjMmTOZPHmVk9jN2tKSJUuYPn06wNoRsajV8dTDfYvZ+Fd33xIRDU3AW0lfzN+Tjlm+Iiv/PPCzRtvLtRvAe0eo84qs3h7Z82OA+2rUewo4dJh2JgJTctMmQMybNy+WL1++yjRnzpzo6+uLzQ8+LTY/+LTo6+uLOXPm1D2/SFvbHHJ6zJo1K6ZOnVq4rWbFVm9bU6dOjVmzZsU2h5ze1HWWr7Pxuw8ftq166pb5GbRq/S9fvjzmzZtXOa9hStHv5VhO7luau/1Ufy+H264b+Z60c9/SyvdZ6V9mz549braNevvQevuWhu9FApxM2pU4Q9LiXPlVwKcKtFe3iHhA0jxgK+BK4Alg/XwdSasBU7N5Q7WzjNwJXZVjtL29vfT29q5Sv6enh/7+fpauSHt7+vv76enpeaHuSPOLtLWshLaaFVsjbQEsWxFNXWf5On0Dzw/bVj11y/wMWrX+gSHLxzH3LWP0PRmprXzdkb4n7dy3tPp9VsrG07ZRTx9ab99S5DLV11L7+ONTwEsKtFc3SS8D1gMez4puANaRtGOu2ttJ72t2M2Mxs9K5bzHrIEX2YCwkXbr1YFX5DsDfG2kou6Z8q1zRFpK2J13zPp90LPNi0i+GLYFvAH8FLgOIiHuya9d/IOkTpEvJzgAuDJ/lbdZuFuK+xaxjFNmDcSHwdUkbko7B9EjaFfgWcH6Dbe0E3JJNADOyxycCzwOvA34F/AU4G7gJ+OdsN2TFh4F7Sbs1fwtcD/xH42/LzFrMfYtZBymyB+MY4EzgUdIgOHdnf2cCX22koYi4hnT9+1Cm1dHGfDzwjVkncN9i1kEaTjAiYjnw75K+AryGNMreLRFxf9nBmVn3cN9i1lmK7MEAICIekfRo9rjxwTTMzGpw32LWGYqcg4GkgyXdCSwFlkq6U9LHyw3NzLqN+xazztHwHgxJJwJHAt8hXcoFaVjdUyRtGhHHlhifmXUJ9y1mnaXIIZJDgX+PiJ/kyn4l6XZSx+BOwMyKcN9i1kGKHCLpBW6sUX4Tozinw8y6nvsWsw5SJMH4EemXRrX/AC4YXThm1sXct5h1kKK/Cg6WtDfwp+z5m4BNgfMlzahUiogjRxmfmXUX9y1mHaJIgvEa4Obs8ZbZ33nZ9JpcPV9eZmaNcN9i1kGKDLS1ezMCMbPu5r7FrLMUGgcDQNJWkqZJ6sueDzcsr5lZXdy3mHWGhhMMSetJupJ0k6Dfku5+CHC2pG+XGZyZdQ/3LWadpcgejFOAAdKJV0ty5RcB+5QRlJl1JfctZh2kyEmeewPTIuKxqj2X9wOblRKVmXUj9y1mHaTIHow1WPnXRcVUYNnowjGzLua+xayDFEkwrgM+knseknqAo4CrS4nKzLqR+xazDlLkEMlRwJWSdgJWB74BvJr0K2PXEmMzs+7ivsWsgzS8ByMi7gReCVwP/JK0W/PnwA4R8bdywzOzbuG+xayzNLQHQ1Iv8DvgExHxX80Jycy6jfsWs87T0B6MiBgAXtekWMysS7lvMes8RU7y/DFwcNmBmFnXc99i1kGKnOS5GnCQpD2Bm4B/5Gf6LodmVpD7FrMOMtq7qb6yap7vcmhmRblvMesgRa4i2X2Y6e2NtCVpN0mXSJorKSS9t2q+JJ0o6XFJ/ZKukLR1VZ2pki6QtEjSQklnS1qz0fdlZq3lvsWssxS+m2pJ1gBuAw4bYv5RwGeATwBvIu0yvUzSpFydC0jXyu8FvAvYDTirWQGbWVtw32LWYkUOkZQmIi4FLgWoviNzdovmw4GvRsQvs7KPAE8C7wUulLQt6SZIb4iIG7M6nwZ+K+lzETF3bN6JmY0n7lvMWq+lCcYItgA2BK6oFETEs5JmA7sAF2Z/F1Y6gMwVwCDpV8kvajUsaSIwMVe0FsDAwAADAwOr1B8cHKSvr49Jq6WOqq+vj8HBwRfqjjS/SFsTS2irWbE10hbAxNXU1HW2Up3eCcO2VU/dMj+DVq1/YMhy686+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRYyPc6ckBfC+iJiVPX8z8Adg44h4PFfvp0BExAGSjgE+GhHbVLX1FHBcRHxviGUdDxxXXT5z5kwmT55c0jsya60lS5Ywffp0gLUjYlGr42kV9y1m5aq7b4mIESfSmd3rZo+PBSbX87pGJtJZ4u/NPX9zVrZRVb2fAhdlj48B7qvR1lPAocMsayIwJTdtAsS8efNi+fLlq0xz5syJvr6+2Pzg02Lzg0+Lvr6+mDNnTt3zi7S1zSGnx6xZs2Lq1KmF22pWbPW2NXXq1Jg1a1Zsc8jpTV1n+Tobv/vwYduqp26Zn0Gr1v/y5ctj3rx5kX2HppT9fS3xe+++ZYy2n+rv5XDbdSPfk3buW1r5Piv9y+zZs8fNtlFvH1pv31LvIZJtSSdNLSBl59+n9m2Vy/RE9ncD4PFc+QbArbk66+dfJGk10s2RnmAIEbGM3O2fK8doe3t76e3tXaV+T08P/f39LF2R9vb09/fT09PzQt2R5hdpa1kJbTUrtkbaAli2Ipq6zvJ1+gaeH7ateuqW+Rm0av0DQ5aPM+5bxmj7ydcZqa183ZG+J+3ct7T6fVbKxtO2UU8fWm/fUm+CcStwrqTrAQGfk/RcrYoRcWKdbY7kQdIXeY9s+UiaQjr+Wdk9eQOwjqQdI+KmrOztpKtjZpcUh5k1z624bzHrSPUmGAcCJ5Au1QpgX2BFjXoB1N0JZNeUb5Ur2kLS9sD8iHhE0qnAlyTdT+oUvgLMBWYBRMQ9kn4H/EDSJ4Be4AzgwvBZ3mbt4EDct5h1pLoSjIi4D/gQgKRBYI+IeKqE5e8EXJ17PiP7ex6p4/kGaffpWcA6pNs47xMRS3Ov+TDpi38l6Qzvi0nXt5vZOOe+xaxzNXyZakSUNjhXRFxD2i061Pwgnfh17DB15gPTy4rJzFrDfYtZZyk0DoakLUkD1WybFd0NnBYRfyspLjPrQu5bzDpHw78YJE0jfenfCNyeTW8C7pK0V7nhmVm3cN9i1lmK7ME4GTglIj6fL5R0MvB14PdlBGZmXcd9i1kHKXLMc1vg7Brl5wCvGl04ZtbF3LeYdZAiCcbTwPY1yrcnjXJnZlaE+xazDlLkEMkPgLMkvQL4Y1a2K3A0L14KZmbWKPctZh2kSILxFWAx8FngpKxsLnA8cHo5YZlZF3LfYtZBioyDEcApwCmS1srKFpcdmJl1F/ctZp2l0DgYFf7ym1kzuG8xa3+ljZxnZmZmVuEEw8zMzErnBMPMzMxK11CCIalX0pWStm5WQGbWfdy3mHWehhKMiBgAXtekWMysS7lvMes8RQ6R/Bg4uOxAzKzruW8x6yBFLlNdDThI0p7ATcA/8jMj4sgyAjOzruO+xayDFEkwXgPcnD1+ZdW8GF04ZtbF3LeYdZAiI3nu3oxAzKy7uW8x6yyFL1OVtJWkaZL6sucqLywz61buW8w6Q8MJhqT1JF0J/AX4LbBRNutsSd8uMzgz6x7uW8w6S5E9GKcAA8CmwJJc+UXAPmUEZWZdyX2LWQcpcpLn3sC0iHisas/l/cBmpURlZt3IfYtZBymyB2MNVv51UTEVWDa6cMysi7lvMesgRRKM64CP5J6HpB7gKODqUqLKSDpeUlRN9+bmT5J0pqRnJD0n6WJJG5QZg5mNmTHrW8D9i1mzFTlEchRwpaSdgNWBbwCvJv3K2LXE2CruAvbMPV+Re3wK8E7gA8CzwBnAz5sUh5k111j3LeD+xaxpioyDcaekVwKfAhYDa5K+dGdGxOMlxwewIiKeqC6UtDZpWOHpEXFVVvYx4B5JO0fEn5oQi5k1SQv6FnD/YtY0RfZgEBHPAv9VcixD2VrSXGApcAPwhYh4BNgR6AWuyMV1r6RHgF2AITsASROBibmitQAGBgYYGBhYpf7g4CB9fX1MWi2deNbX18fg4OALdUeaX6StiSW01azYGmkLYOJqauo6W6lO74Rh26qnbpmfQavWPzBk+Xg2xn0LlNy/jOe+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRTQ+Aq+kdUnZ/bZZ0d3AuRExv+HGhl/OvqRfMfeRrok/DtiENKTwu7NlTqx6zZ+BqyPi6GHaPT5rayUzZ85k8uTJpcVv1kpLlixh+vTpAGtHxKJWx1OPsepbsmWV3r+4b7FuUHffEhENTcBupOORj5B2X/4ceDgr263R9hpc9jrZcg4GpgPLatT5M/D1EdqZCEzJTZsAMW/evFi+fPkq05w5c6Kvry82P/i02Pzg06Kvry/mzJlT9/wibW1zyOkxa9asmDp1auG2mhVbvW1NnTo1Zs2aFdsccnpT11m+zsbvPnzYtuqpW+Zn0Kr1v3z58pg3b16Q7uExpZnfyxK/3y3rW8rqX8Zz31L9vRxuu27ke9LOfUsr32elf5k9e/a42Tbq7UPr7VuKHCI5kzTwzaER8TyApAnAd7N5ry3QZl0iYqGkvwBbAb8HVpe0TkQszFXbAFjlmGpVO8vIXfZWuea+t7eX3t7eVer39PTQ39/P0hVpb09/fz89PT0v1B1pfpG2lpXQVrNia6QtgGUroqnrLF+nb+D5Yduqp26Zn0Gr1j8wZPk41rK+BcrpX8Zz35KvM1Jb+bojfU/auW9p9fuslI2nbaOePrTevqXIZapbAd+udAAA2eMZ2bymkbQmsCXwOOl2zgPAHrn525BGAbyhmXGYWVO0rG8B9y9mZSuyB+Nm0vHR+6rKtwVuG3VEOZK+BVxC2k26MXAC8Dzwk4h4VtLZwAxJ84FFwHeAG8JneJu1ozHrW8D9i1mz1ZVgSHpd7unpwGmStuLFM6l3Bg4DPl9ueLwM+AmwHvA0cD2wc0Q8nc0/AhgELiYd+7wM+GTJMZhZk7SwbwH3L2ZNVe8ejFtJJ3TkbxDwjRr1ZpKOoZYiIj40wvylpM7nsLKWaWZj6lZa0LeA+xezZqs3wdiiqVGYWbdy32LWoepKMCLi4WYHYmbdx32LWecqNJKnpI2BtwDrU3UlSkScXkJcZtaF3LeYdY6GEwxJBwL/DSwHniEdP60I0olaZmYNcd9i1lmK7MH4CnAicFJEDJYcj5l1L/ctZh2kyEBbk4EL3QGYWcnct5h1kCIJxtnAB8oOxMy6nvsWsw5S5BDJF4BfS9oHuIM0nO4LIuLIMgIzs67jvsWsgxRNMKbx4nC+1SdimZkV4b7FrIMUSTA+CxwUET8sORYz627uW8w6SJFzMJYBfyg7EDPreu5bzDpIkQTjNODTZQdiZl3PfYtZBylyiOSNwNslvQu4i1VPxNqvjMDMrOu4bzHrIEUSjIXAz0uOw8xsIe5bzDpGwwlGRHysGYGYWXdz32LWWYqcg2FmZmY2rCI3O3uQYa5Jj4hXjCoiM+tK7lvMOkuRczBOrXreC+wA7AN8c7QBmVnXOrXqufsWszZW5ByM02qVSzoM2GnUEZlZV3LfYtZZyjwH41Lg/SW2Z2YG7lvM2lKZCcb+wPwS2zMzA/ctZm2pyEmet7DyiVgCNgReCnyypLjMrMu4bzHrLEVO8pxV9XwQeBq4JiLuHXVEZtatZlU9d99i1saKnOR5QjMCGa3sRLD/S/rFcxvw6Yj4c2ujMrN6uW8x6ywdMdCWpAOAGcAJwOtJncBlktZvaWBm1tbct5gVV3eCIWlQ0vMjTCuaGewwjgR+EBHnRsTdwCeAJcBBLYrHzOrkvsWsMzVyiOR9w8zbBfgMLdgjIml1YEfgpEpZRAxKuiKLy8zGN/ctZh2o7gQjIn5ZXSZpG+Bk4N3ABcCx5YVWt5cAE4Anq8qfBP6p1gskTQQm5orWApg/fz4DAwOr1F+0aBGTJk1CzzwIwKRJk7jpppt47rnnGBwc5P777685f9GiRfT09DA4OPjC35Hq3nfffWn+/IdZsuSlNdsCVq47zHKHWl4l9kpb9dQt8j6XLFmC5j889Pscpq0i73PC4ieHbaueui+8z6rPYKzW2YjbRm7+okWLeOaZZ2pt5ixevLhm+XjjvqWxz7yM78mSJUvK+560cd/Syvep3gksWfJSbrnlFp577rlS+oMy+9BS+paIaHgCNgZ+ACwHLgFeU6SdMqYslgB2qSr/BjB7iNccn73Gk6dumDZp1ffTfYsnTx09Ddu3NHQViaS1gWOATwO3AntExHWNtNEE84DngQ2qyjcAnhjiNSeRTtzKm8r4GsxnLeAx4GVAe/wUXVW7v4d2jx/Se5jb6iBG4r5lTHXKdu330Foj9i11JxiSjgKOJn2x/k/U2K3ZChGxXNJNwB5k19FL6smenzHEa5YBy6qKFzUxzIZJqjxcHBHjKrZ6tft7aPf4M+M+bvctY6sTtmu/h3FhxJiV7dYbkaRBoB+4gpTV1xQR+9UbXVmyS8nOAw4B/gwcDnwQ+KeIqD5+2hYkTQGeBdZu042v7d9Du8ffLty3jK1O2K79HtpDI4dIzicdcxl3IuIiSS8FTiQNhnMrsE+7dgBmXcZ9i1kHauQqkgObGMeoRcQZDLHbsk0tIw3uU727tZ20+3to9/jbgvuWMdcJ27XfQxuo+xCJmZmZWb06YqhwMzMzG1+cYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYLQBSQ9Jiqrp862OaziSDsviXipptqQ3tjqmekk6vsb6vrfVcZk1Q7v1L+5b2kdDQ4VbSx1LukdDxbgdWjYbnGgG6dbWs0mDE10maZuIeKqVsTXgLmDP3PNW3S7cbCy0Rf/ivqW9OMFoH4sjYqj7H4w3RwI/iIhzASR9AngncBDpDpntYEUbrW+z0WqX/sV9SxvxIZL28XlJz0i6RdL/lTQuk0NJqwM7koZ9BiAiBrPnu7QqrgK2ljRX0gOSLpC0aasDMmuicd+/uG9pP+NuI7KaTgduJt2R8c2kOzZuRMrmx5uXABOA6qGUnwT+aezDKWQ2cCBwH2k9HwdcJ+k1ETEudx2bjUK79C/uW9qME4wWkXQy6Q6Sw9k2Iu6NiPztn2+XtBz4b0lfyO7eaCWKiEtzT2+XNBt4mHSTq7NbE5VZ/dy/jE/d1rc4wWidbwM/HKHOA0OUzyZ9dpuTMuHxZB7pjpgbVJVvQLodd9uJiIWS/gJs1epYzOrUif2L+5Y24wSjRSLiaeDpgi/fHhgExt1Z0xGxXNJNwB7ALABJPdnztrxhlKQ1gS2BH7U6FrN6dGL/4r6l/TjBGOck7QK8CbiadOnYLsApwI8jYkErYxvGDOA8STcCfyZdSrYGcG4rg6qXpG8Bl5B2XW5MuuPh88BPWhmXWdnasH9x39JGnGCMf8uADwHHAxOBB0kdwIxhXtNSEXGRpJcCJwIbArcC+0RE9clZ49XLSF/49Ui/Aq8Hds5+FZp1krbqX9y3tBffrt3MzMxK53EwzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMGzMSHpI0uGtjsPMOov7lvHJCYaZmZmVzgmGmZmZlc4JhtVF0n9ImpvdvTBf/ktJ50jaMnv8pKTnJM2RtOcw7W0uKSRtnytbJyt7W67sNZIuzdp8UtKPJL2kCW/RzFrAfUvncoJh9fof0g16dq8USJoK7ANcAKwJ/JZ06+QdgN8Bl0jatOgCJa0DXAXcAuyULWsD4KdF2zSzccd9S4fy3VStLhGxQNKlwHTgyqx4f2AecHVEDAK35V7yZUnvA94DnFFwsZ8CbomIYyoFkg4CHpX0yoj4S8F2zWyccN/SubwHwxpxAfB+SROz5x8GLoyIQUlrSvqWpHskLZT0HLAtUPhXBrAdsHu2C/O5rM17s3lbjqJdMxtf3Ld0IO/BsEZcAgh4p6Q5wD8DR2TzvgXsBXwO+CvQD/wMWH2Itgazv8qV9VbVWTNb5tE1Xv94o8Gb2bjlvqUDOcGwukXEUkk/J/262Aq4LyJuzmbvCvwwIn4BIGlNYPNhmns6+7sR6TgowPZVdW4G3g88FBErRv0GzGxcct/SmXyIxBp1AfBO4KDsccX9wH6Stpe0HTCTYbaviOgH/gR8XtK2kt4KfLWq2pnAVOAnkt6QnU0+TdK5kiaU+J7MrPXct3QYJxjWqKuA+cA2pC96xZHAAuCPpF2Pl5F+JQznINJetJuAU4Ev5WdGxFzSr5cJwOXAHVm9hby4G9TMOoP7lg6jiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPGhKTjJUXueUg6o5UxmZlZ8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBsNJJeoukOZKWSvqbpEPqfN2XJA1K+nSzYzQzs+ZardUBWGeR9FrgcuBp4HjSNnYC8OQIr/sqcAxwSET8oMlhmplZkznBsLKdCAj454h4BEDSxcAdQ71A0reAI4CPRcR5YxKlmZk1lQ+RWGkkTQCmAbMqyQVARNwDXFb7JToD+E/gX51cmJl1Du/BsDK9FOgD7q8x7z7gHVVlHwHWBA6NiJ80OTYzMxtD3oNhrfQH0rkZn5I0tdXBmJlZeZxgWJmeBvqBrWvM26ZG2V+BvYGNgd9JWquJsZmZ2RhygmGliYjnSedavFfSppVySduSzs2o9ZrbSYdOtgUukdQ3FrGamVlzOcGwsh2X/b1O0tGSvghcDdw11Asi4k/AvwA7Az+T1Nv8MM3MrJmcYFipsj0S00iHS04EDiIlHb8Y4XVXAR8kHTL5kSRvm2ZmbUwRMXItMzMzswb4V6KZmZmVzgmGmZmZlc4JhpmZmZWu4QRD0j6S3pJ7fpikWyXNlLRuueGZmZlZOyqyB+ObwBR44c6Z3wZ+C2wBzCgvNDMzM2tXRe5FsgVwd/b4/cCvI+IYSa8nJRpmZmbW5YokGMuBydnjPYHzs8fzyfZstBtJIg1XvbjVsZiVbC1gbvh6dDMbY0USjOuBGZL+ALwROCArfyXwWFmBjbGNad/YzUbyMuDvrQ7CzLpLkQTjU8B3gf1Jt9mudFz7Ar8rK7Axthjg0UcfZcqUVXfCDAwMcPnll7P33nvT2+tRrEfD67Ic9azHRYsW8fKXvxy8Z87MWqDhBCMiHgHeVaP8iFIiaqEpU6YMmWBMnjyZKVOm+J/iKHldlsPr0czGuyJ7MMjuE7EVsD5VV6JExLUlxGVmZmZtrOEEQ9LOwExgM0BVswOYUEJcZmZm1saK7MH4PnAj8E7gcVJSYWZmZvaCIgnG1sD+EfHXsoMZ72677TZ6enp4yUtewqabbtrQax955BHmzZsHUOj1ZbfRyhggrcv111+/q9dDkRgqrxkcHGx4eWZmYyoiGpqAq4B9Gn3deJ5I43fEs88+G7U88MADMWvWrOjr6wsgJvVNjocffrhm3VoefvjhmNQ3OUh7exp+fTPaaFUM+XXZzeuhSAz51/T19cWsWbPigQceGLL+s88+W4lxSoyD75knT566ayoyVPh3gG9LOlDSjpJel58KZzrj2DPPPAPA1H0+zXrv+ixL+5e88Ou1HvPmzWNp/xLWe9dnC72+7DbW3uWAlsVQWZdT3rhfV6+HIjHklzt1n08DL65PM7Pxpsghkouzv+fkyoJ0wmdHn+TZO3UTnl9R/JST3vVePvoYSmhjwtrrtz6GKS9tfQzjYT0UiKF3vZfTu1r1+dVmZuNL0XuRmJmZmQ2pyEBbDzcjEDMzM+scRc7BQNKWkr4j6YpsOl3SlgXaOVTS7ZIWZdMNkvbNzZ8k6UxJz0h6TtLFkjaoamNTSb+RtETSU5K+KanQAGJmZmZWjoYTDEnTSLdrfyNweza9CbhL0l4NNvcY8HlgR2An0hUqv5T06mz+KcC7gQ8AbyXdlOznuVgmAL8BVgfeDHwUOBA4sdH3ZWZmZuUp8kv/ZOCUiPh8vlDSycDXgd/X21BEXFJV9EVJhwI7S3oMOBiYHhFXZcv4GHCPpJ0j4k/A3sCrgD0j4kngVklfBr4u6fiIWF7g/ZmZmdkoFTlEsi1wdo3yc0j/7AuRNEHSh4A1gBtIezV6gSsqdSLiXuARYJesaBfgjiy5qLiMNK7FqzEzM7OWKLIH42lge+D+qvLtgacabUzSa0kJxSTgOeB9EXG3pO2B5RGxsOolTwIbZo83zJ5XzydXp9YyJwITc0VrQbpD5cDAwCr1K6MmTswuDezr62NwcLBm3VoGBwfp6+tjUsHXl95G74SWxgC0PIbxsB4ajSG/3Mq2ONzrGonHzKxsimhsXAdJxwJHkA6V/DEr3hU4GpgREV9psL3VgU2BtYH9gY+TzrfYHjg3IiZW1f8zcHVEHC3pLGCziJiWmz8Z+Afwjoi4dIhlHg8cV10+c+ZMJk+e3Ej4ZuPWkiVLmD59OsDaEbGo1fGYWZdpdOhP0oBaR5BO0BzMpseA/yRLWEYzkQ6J/DfwdtLAXetUzX8YOCJ7fCJwa9X8LbLX7TDMMiaSDqNUpk2AmDdvXixfvnyVafbs2TFr1qzY5pDTY/ODT4u+vr6YM2dOzbq1pjlz5kRfX19sfvBphV5fdhsbv/vwlsVQWZev2O+zXb0eisSQX+42h5wes2bNitmzZw9Zf968eR4q3JMnTy2bioyDEaSrO06RtFZWtrjRdobRQ0oAbgIGgD3IRg+VtA1pb8cNWd0bSCeGrh8RlcMzewGLSFe6DPUelgHLKs+ltLu5t7eX3t7eVQPqSaeqLFsRLF0R9Pf309PTU7NuzTfU00N/fz9Ls1FAG3192W30DTzf0hgAlrY4hvGwHhqNoXq5lbKhXtdIPGZmZRvVeBGjTSwknQRcSjpxcy1gOvA2YFpEPCvpbGCGpPmkpOE7wA2RriABuJyUSPxI0lGk8y6+CpyZJRFmZmbWAnUlGJJuBvaIiAWSbiHtdq0pIl7fwPLXB84HNgKeJY2pMS0iKpe6HkE6BHMxaa/GZcAnc8t6XtK7gO+R9mb8AzgPOLaBGMzMzKxk9e7B+CUvHlL4JcMkGI2IiINHmL8UOCybhqrzMPCOMuIxMzOzctSVYETECbnHxzctGjMzM+sIRYYKf0DSejXK15H0QDlhmZmZWTsrMpLn5sCEGuUTgZeNKhozMzPrCHVfRSLpPbmn0yQ9m3s+gXQ56YNlBWZmZmbtq5HLVGdlf4N0pUbeAPAQ8NnRh2RmZmbtru4EIyJ6ACQ9CLwhIuY1LSozMzNra0VG8tyiGYGYmZlZ56h3oK3PAGdFxNLs8ZAi4vRSIjMzM7O2Ve8ejCOAC4Cl2eOhBOAEw8zMrMvVO9DWFrUem5mZmdVSZKCtYyVNrlHeJ8n3ADEzM7NCA20dB6xZo3xyNs/MzMy6XJEEQ9S+2dl2wPzRhWNmZmadoJGRPBeQEosA/iIpn2RMIO3V+H654ZmZmVk7amQcjMNJey/OIR0KyQ8Vvhx4KCJuKC80MzMza1eNjOR5HrwwkucfImJF06IyMzOzttbwORgR8b/AZpK+KuknktYHkLSvpFeXHqGZmZm1nSKXqb4VuAN4E7AfL15Rsh1wQnmhmZmZWbsqchXJycCXImIv0rkXFVcBO5cSlZmZmbW1IgnGa4Ff1Ch/CnjJ6MIxMzOzTlAkwVgIbFSjfAfg76OKxszMzDpCkQTjQuDrkjYkjYnRI2lX4FvA+WUGZ2ZmZu2pSIJxDHAv8CjpBM+7gWuBPwJfLS80MzMza1eNDLQFQEQsB/5d0leA15CSjFsi4v6ygzMzM7P21HCCURERj0h6NHtc694kZmZm1qWKHCJB0sGS7gSWAksl3Snp4+WGZmZmZu2q4T0Ykk4EjgS+A1TuPbILcIqkTSPi2BLjMzMzszZU5BDJocC/R8RPcmW/knQ7KelwgmFmZtblihwi6QVurFF+E6M4p8PMzMw6R5EE40ekvRjV/gO4YHThmJmZWScousfhYEl7A3/Knr8J2BQ4X9KMSqWIOHKU8ZmZmVkbKrIH4zXAzcDTwJbZNC8rew1pyPAdgO1HakjSFyTNkbRY0lOSZknapqrOJElnSnpG0nOSLpa0QVWdTSX9RtKSrJ1vSvLhGjMzsxYpMtDW7iUu/63AmcCcLJavAZdLelVE/COrcwrwTuADwLPAGcDPgV0BJE0AfgM8AbyZdJ+U84EB0qijZmZmNsYK/8qXtBVp78W1EdEvSY0OuBUR+1S1eSDprqw7AtdKWhs4GJgeEVdldT4G3CNp54j4E7A38Cpgz4h4ErhV0pdJ90s5Pht51MzMzMZQkXEw1gN+CuxOutnZ1sADwNmSFkTEZ0cRz9rZ3/nZ3x1JV61cUakQEfdKeoQ09safsr93ZMlFxWXA94BXA7fUeA8TgYm5orUABgYGGBgYWCWowcFBACauJgD6+voYHBysWbeWwcFB+vr6mFTw9aW30TuhpTEALY9hPKyHRmPIL7eyLQ73ukbiMTMrmxod5VvS+cD6wMeBe4DtIuIBSdOAGRHx6kKBSD3Ar4B1IuItWdl04NyImFhV98/A1RFxtKSzgM0iYlpu/mTgH8A7IuLSGss6HjiuunzmzJlMnjy5SPhm486SJUuYPn06wNoRsajV8ZhZdylyiGRvYFpEPCYpX34/sNkoYjmTdJLoW0bRRr1OAmbknq8FPLb33nszZcqUVSrfcsstPP744xx96SMsWxE8OfPzXHvttWy33XZ1Ley2225jt912Y4PpJwM0/Pqy21h3z0NYcMV/tySGyro88vzrePzS73bteigSQ365E1cTX993UzbaaCN22GGHmvUXLXJOYWatUyTBWANYUqN8KrCsSBCSzgDeBewWEY/lZj0BrC5pnYhYmCvfIJtXqfPGqiY3yM1bRUQsy8daSZR6e3vp7e1dpX5PT7rYZtmKYOmKoL+/n56enpp1a+np6aG/v5+lK9LeokZfX3YbfQPPtzQGgKUtjmE8rIdGY6hebqVsqNc1Eo+ZWdmKXKZ6HfCR3PPIDm8cBVzdSENKzgDeB7w9Ih6sqnIT6WqQPXKv2YY05kblPig3AK+VtH7udXsBi4C7G4nHzMzMylFkD8ZRwJWSdgJWB75BOplyKtmlow04E5gO/AuwWNKGWfmzEdEfEc9KOhuYIWk+KWn4DnBDdgUJwOWkROJHko4CNgS+CpyZ7akwMzOzMdbwHoyIuBN4JXA98EvSIZOfAztExN8abO5Q0pUj1wCP56YDcnWOAH4NXAxcSzrssV8unudJh1eeJ+3N+DFpHAzfdM3MzKxFGtqDIakX+B3wiYj4r9EuPCJUR52lwGHZNFSdh4F3jDYeMzMzK0dDezAiYgB4XZNiMTMzsw5R5CTPH5NG1zQzMzOrqchJnqsBB0nak3SVxz/yM30HVTMzMyuSYFTupgrpZM+8xoYFNTMzs47U6rupmpmZWQcqcg6GmZmZ2bCcYJiZmVnpnGCYmZlZ6ZxgmJmZWenqSjAk3Sxp3ezxsZImNzcsMzMza2f17sHYlnTPEYDjgDWbE46ZmZl1gnovU70VOFfS9YCAz0l6rlbFiDixpNjMzMysTdWbYBwInEC6a2kA+wIratQLwAmGmZlZl6srwYiI+4APAUgaBPaIiKeaGZiZmZm1ryIjefrKEzMzMxtWkXuRIGlL4HDSyZ8AdwOnRcTfSorLzMzM2ljDeyMkTSMlFG8Ebs+mNwF3Sdqr3PDMzMysHRXZg3EycEpEfD5fKOlk4OvA78sIzMzMzNpXkfMptgXOrlF+DvCq0YVjZmZmnaBIgvE0sH2N8u0BX1liZmZmhQ6R/AA4S9IrgD9mZbsCRwMzygrMzMzM2leRBOMrwGLgs8BJWdlc4Hjg9HLCMjMzs3ZWZByMAE4BTpG0Vla2uOzAzMzMrH0VGgejwomFmZmZ1eJROc3MzKx0TjDMzMysdE4wzMzMrHQNJRiSeiVdKWnrZgVkZmZm7a+hBCMiBoDXNSkWMzMz6xBFDpH8GDi47EDMzMyscxS5THU14CBJewI3Af/Iz4yII8sIzMzMzNpXkT0YrwFuJo3m+Upgh9y0fSMNSdpN0iWS5koKSe+tmi9JJ0p6XFK/pCuqz/+QNFXSBZIWSVoo6WxJaxZ4X2ZmZlaSIiN57l7i8tcAbiPdifXnNeYfBXwG+CjwIGmY8sskvSoilmZ1LgA2AvYCeoFzgbOA6SXGaWZmZg0oPJKnpK2ALYFrI6JfkrJhxOsWEZcCl2btVbcv4HDgqxHxy6zsI8CTwHuBCyVtC+wDvCEibszqfBr4raTPRcTcou/PzMzMims4wZC0HvBTYHcggK2BB4CzJS2IiM+WFNsWwIbAFZWCiHhW0mxgF+DC7O/CSnKRuQIYBN4E/GKI9zARmJgrWgtgYGCAgYGBVeoPDg4CMHG1lAT19fUxODhYs24tg4OD9PX1Mang60tvo3dCS2MAWh7DeFgPjcaQX25lWxzudY3EY2ZWNjW40wFJ5wPrAx8H7gG2i4gHJE0DZkTEqwsFIgXwvoiYlT1/M/AHYOOIeDxX76eke64dIOkY4KMRsU1VW08Bx0XE94ZY1vHAcdXlM2fOZPLkyUXCNxt3lixZwvTp0wHWjohFrY7HzLpLkUMkewPTIuKxqsMa9wOblRJV850EzMg9Xwt4bO+992bKlCmrVL7lllt4/PHHOfrSR1i2Inhy5ue59tpr2W677epa2G233cZuu+3GBtNPBmj49WW3se6eh7Dgiv9uSQyVdXnk+dfx+KXf7dr1UCSG/HInria+vu+mbLTRRuywww416y9a5JzCzFqnSIKxBrCkRvlUYNnowlnJE9nfDYDHc+UbALfm6qyff5Gk1bJYnmAIEbGMXKyVRKm3t5fe3t5V6vf0pIttlq0Ilq4I+vv76enpqVm3lp6eHvr7+1m6Iu0tavT1ZbfRN/B8S2MAWNriGMbDemg0hurlVsqGel0j8ZiZla3IZarXAR/JPQ9JPaQrPq4uJarkQVKSsEelQNIU0rkVN2RFNwDrSNox97q3k97X7BJjMTMzswYU2YNxFHClpJ2A1YFvAK8m7TXYtZGGsvEqtsoVbSFpe2B+RDwi6VTgS5Lu58XLVOcCswAi4h5JvwN+IOkTpMtUzwAu9BUkZmZmrVNkHIw7Jb0S+BRpsK01SWNYnJk/GbNOO7HyXo/KeRHnAQeSkpc1SONarANcD+yTGwMD4MOkpOJK0tUjF5PGzjAzM7MWKTQORkQ8C/zXaBceEdcAGmZ+AMdm01B15uNBtczMzMaVQgmGpHVJNzzbNiu6Gzg3+2dvZmZmXa7hkzwl7QY8RDoMsW42fQZ4MJtnZmZmXa7IHowzgYuAQyPieQBJE4DvZvNeW154ZmZm1o6KXKa6FfDtSnIBkD2ewcpXhJiZmVmXKpJg3MyL517kbUu6M6qZmZl1uboOkUh6Xe7p6cBp2d1U/5SV7QwcBny+3PDMzMysHdV7DsatpDun5i8p/UaNejNJ52eYmZlZF6s3wdiiqVGYmZlZR6krwYiIh5sdiJmZmXWOogNtbQy8hXQn05VOFI2I00uIy8zMzNpYwwmGpAOB/waWA8+Qzs2oCNJJoGZmZtbFiuzB+ApwInBSRAyWHI+ZmZl1gCLjYEwm3Q7dyYWZmZnVVCTBOBv4QNmBmJmZWecocojkC8CvJe0D3AEM5GdGxJFlBGZmZmbtq2iCMQ24L3tefZKnmZmZdbkiCcZngYMi4oclx2JmZmYdosg5GMuAP5QdiJmZmXWOIgnGacCnyw7EzMzMOkeRQyRvBN4u6V3AXax6kud+ZQRmZmZm7atIgrEQ+HnJcZiZmVkHaTjBiIiPNSMQMzMz6xxFzsEwMzMzG1aRm509yDDjXUTEK0YVkZmZmbW9IudgnFr1vBfYAdgH+OZoAzIzM7P2V+QcjNNqlUs6DNhp1BGZmZlZ2yvzHIxLgfeX2J6ZmZm1qTITjP2B+SW2Z2ZmZm2qyEmet7DySZ4CNgReCnyypLjMzMysjRU5yXNW1fNB4Gngmoi4d9QRmZmZWdsrcpLnCc0IxMzMzDpHxwy0JekwSQ9JWipptqQ3tjomMzOzblV3giFpUNLzI0wrmhnsMLEdAMwATgBeD9wGXCZp/VbEY2Zm1u0aOUTyvmHm7QJ8htbtETkS+EFEnAsg6RPAO4GDgJNbFJOZmVnXqjvBiIhfVpdJ2ob0D/zdwAXAseWFVh9JqwM7AidVyiJiUNIVpMSn1msmAhNzRWsBzJ8/n4GBgVXqL1q0iCVLlqD5D6OB55k0aRI33XQTzz33HIODgwD09PQM+fi+++5j0qRJ6JkHAV54/aJFi2q+rlbZ/fffX7ONemPItzFh8ZMjxlArnqFiyLdRTwxrrrkmE55rbQzjYT00GkN+O1LvBJYseSmLFi3imWeeqbWZs3jx4prlZmZjQRFD3lZk6BdJG5MOR3wUuAz4QkTcWXJsjcTyd+DNEXFDrvwbwFsj4k01XnM8cNyYBWnWWi+LiL+3Oggz6y4NXUUiaW3gGODTwK3AHhFxXRPiaraTSOds5E1l6IHC1gIeA14G+Gfh6HhdlqPe9bgWMHdMIjIzy6k7wZB0FHA08ATwf2odMmmRecDzwAZV5RuQYl1FRCwDllUVLxpqAZIqDxdHxJD1bGRel+VoYD16HZtZSzSyB+NkoB/4K/BRSR+tVSki9isjsHpFxHJJNwF7kA0CJqkne37GWMZiZmZmSSMJxvmsPET4eDIDOE/SjcCfgcOBNYBzWxmUmZlZt2rkKpIDmxjHqETERZJeCpxIui/KrcA+EfFkSYtYRjqptfqwijXO67IcXo9mNq4VuorEzMzMbDgdM1S4mZmZjR9OMMzMzKx0TjDMzMysdE4wzMzMrHROMEbg28CPnqTjJUXVdG+r42oHknaTdImkudl6e2/VfEk6UdLjkvolXSFp6xaFa2b2AicYw/Bt4Et1F7BRbnpLa8NpG2uQtrvDhph/FOlOxp8A3gT8g7SNThqb8MzMavNlqsOQNBuYExGfyp73AI8C34kI3wa+TtnN5d4bEdu3OJS2JimA90XErOy5SPcZ+XZEfCsrWxt4EjgwIi5sVaxmZt6DMYTcbeCvqJRFxGD2vOZt4G1YW2e7+R+QdIGkTVsdUAfYgjSwXH4bfRaYjbdRM2sxJxhDewkwgfRrMO9JUqdu9ZsNHAjsAxxK+sd4naS1WhlUB6hsh95GzWzcaeh27WZFRMSluae3Z4eeHgY+CJzdmqjMzKyZvAdjaA3fBt7qExELgb8AW7U4lHZX2Q69jZrZuOMEYwgRsRyo3AYeWOk28De0Kq5OIGlNYEvg8VbH0uYeJCUS+W10CulqEm+jZtZSPkQyPN8GvgSSvgVcQjossjHpst/ngZ+0Mq52kCVj+T09W0jaHpgfEY9IOhX4kqT7SQnHV0hXlswa41DNzFbiBGMYY3Ab+G7xMlIysR7wNHA9sHNEPN3SqNrDTsDVueczsr/nkU6c/QYp6T0LWIe0bveJiKVjF6KZ2ao8DoaZmZmVzudgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYNiYkfSQpMNbHYeZmTWfEwwzMzMrnRMMMzMzK50TDKuLpP+QNDe7o2y+/JeSzpG0Zfb4SUnPSZojac9h2ttcUmQ37qqUrZOVvS1X9hpJl2ZtPinpR5Je0oS3aGZmJXKCYfX6H9LNynavFEiaCuwDXACsCfyWdOvwHYDfAZdI2rToAiWtA1wF3EK66dc+wAbAT4u2aWZmY8N3U7W6RMQCSZcC04Ers+L9gXnA1RExCNyWe8mXJb0PeA9wRsHFfgq4JSKOqRRIOgh4VNIrI+IvBds1M7Mm8x4Ma8QFwPslTcyefxi4MCIGJa0p6VuS7pG0UNJzwLZA4T0YwHbA7tnhkeeyNu/N5m05inbNzKzJvAfDGnEJIOCdkuYA/wwckc37FrAX8Dngr0A/8DNg9SHaGsz+KlfWW1VnzWyZR9d4/eONBm9mZmPHCYbVLSKWSvo5ac/FVsB9EXFzNntX4IcR8QsASWsCmw/T3NPZ341I51gAbF9V52bg/cBDEbFi1G/AzMzGjA+RWKMuAN4JHJQ9rrgf2E/S9pK2A2YyzPYVEf3An4DPS9pW0luBr1ZVOxOYCvxE0huyK1WmSTpX0oQS35OZmZXMCYY16ipgPrANKYmoOBJYAPyRdFjjMtIeiOEcRNqLdhNwKvCl/MyImEvaMzIBuBy4I6u3kBcPsZiZ2TikiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK9/8BYaMikxAoPNsAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGr0lEQVR4nO3deZxkVX3//9d7hgEZYUA0gqgoQlTcAFFc8EtQmAEVzdc9X81PEZe4oEFM3KKIaAK4sCSSGBVBFNQkGo0isiniAkTZBFlEZB2RHQechR76/P64t7Wmpnum6/btrq7q1/PxqEfVPffUrU/drjr9qXPPPTelFCRJktowr98BSJKk4WFiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNioRmR5JAkMzLNa5Kzk5zdsbxHkpLk5TP0+ickuW4mXqvrdR9dv8/9Zvq154okGyT5eJIbk4wm+Wa/Y5JmGxML9SzJfvU/sLHbyiS/TXJakncm2bSl19m6Tkh2amN7bZrNsWla7Q/8PfBfwOuAo/obTnuSPL5Omi5Ock+Sm5OckuRp/Y5Ng2WDfgeggXYwcC2wANgK2AM4GjgoyYtLKb/oqPsx4PAet7818GHgOuDiHp63pMfXaWJdsb2J/iTt1wMbAyN9eO254nnA0lLKu/odyDR4I/AG4OvAvwKbAX8DnJdkn1LKmf0MToPDxEJTcWop5ecdy4cleR7wHeB/kuxQSlkBUEpZDayezmCSLCylLC+l3Dedr7M+pZS+/GMv1RUFV/bjtaciyQOA+0opo/2OZRIeCtzd1saSzAM2LKVM6u+WJMADxr5XLfsKcEgp5d6O1/sCcAVwCGBioUnxUIhaVUr5PvBR4FHAX4+VjzfGIsniJD9OcneSe5NcleSf6nV7AD+rqx7fcdhlv3r92UkuS7JLknOSLAf+qWPd2eOENz/JPyX5XZI/JPmfJI/sium6JCd0P7Fzm5OIba0xFkkemORT9bH5VfV7/bv6H0VnvZLk00n+b/3+ViX5ZZJ9xnk/3TGuNcaijuXeJA9P8s368W1JPplk/iS2eV2S7yRZUneRr0xyeZKXdtXbot7mpfVrLEtyapIdu+qNjXf5qyQfS7IUWA4sarCNVyb5cJKlddf9fyXZLMlGSY5Ocmu9neOTbNS1jQk/e+vat8BzgSd2/M33qNf3+vd9TZJfAquACf+2Hft/7yQ/B1ZQ9SKQ5PVJvl+/z1X13+Wt69jGc5L8b/03/E2S13bWK6Vc0JlU1GV3AD8CdpgoRqmbPRaaDl+i+ie/BPjceBWSPJGqZ+MXVIdUVgHbA7vVVa6oyw8FPkvVuAH8tGMzDwZOBb4KfBm4ZT1x/QNQgCOofnkeCJyZZKcefwFOJrY/qv+5/A/VP6XjqA6d7A18Ang40N2t/hzgpVTd0fcA7wS+nmSbuqHv1XzgNOB84O+AvYB3A9cA/zaJ5/858DXgM8AXgdcD/5mqe/yMus5jgP8L/CfV4bEtqf4B/jDJE0opv+3a5oeA+4BPAhvVj5/Q4zbeT/WP9nCqz847qA4DjQIPovqV/Uxgv3p7h8KkPnvjuQ34/6g+Q5vUrw1wRYO/7/OAVwKfBm6nOpy2Lo+j6k34d6rv01V1+VuBX9avvRp4EfCvSeaVUo7t2sb2VONCjqP6G+4PnJDkglLKL9fz+lvVcUqTU0rx5q2nG1VDXYCnraPO3cCFHcuHUPfW18sH1tt4yDq28bS6zn7jrDu7Xvc3E6w7u2N5j7ruTcCmHeWvqMvf2VF2HXDCJLa5rthOAK7rWP7Luu4/dNX7T6p/gtt1lBWqf3SdZU+pyw9Yz9/l0d0x1bEU4ENddS8Efj6Jv/V19fNf2lG2CPht1993I2DeOPGs7Hztjr/FNcDGXfV73calwIKO8pPr/fndrm38tOvvsd7P3jr2x9nAZV1lvf597weeMMnXG9v/e4+zbuNxyr4HXDPBNv5PR9mf1fv1k+t5/f9Tv4dDe91X3ubuzUMhmi73Aus6O+Tu+v4vUx1nbmIVcHwP9U8spdzTsfxfwM3ACxq+/mS9gOqfyT93lX8KCPD8rvIzSynXjC2UahDsMqpegaY+07X8ox6291vgvzviWQacCOycZKu6bFWpx0gkmZ/kwVSfgauAp46zzS+Wrl6iBts4saw5nuV8qv35ha565wOPTDLWQ3t3fT+Vz16nXv++PyylXN7D9q8tpZzWXdi5/+pDQA8Bfgg8JslmXdUvL6X8qOO5t1Ht1wk/A0keSpWsXQt8vId4NceZWGi6bELVjT+RrwE/AT4P3JLkq/Ux814+k0tLbwM1r+5cKKUU4NdUv4qn06OA33YlNVAdUhlb3+mGcbZxF1X3fhMr638kTbf363pfdfpVff9oqAYhJnlXkqupEr7bqQ4fPIXq7IJu13YXNNhG9376fX1/4zjl8zq20cZnr1Ovf9+13vt6jFs/yW5JzkzyB6pk6TbqcUasvb96+kwleSDV4aJNgb8sXWMvpHUxsVDrkjyCqmH79UR16l9bu1Md7/8S1T+PrwFnZBKDCmvTMTJ+okm8JhtTG+6foDwTlDfdXps+ABwJnEM1aHdvYDHVGIDx2pnx/na9bmOi97XO/dfSZ28qev3crlU/yXbAWcBDgIOAF1Ltq7F5Nbr316Q/U0k2BL5BtV/+spRyWY/xao5z8Kamw/9X36/Vfdup7vY+q74dlOQDwD9SDYI7k4n/yTf1550L9aC77akG8Y25C9h8nOc+CvhNx3IvsV0P7JVk065ftY/vWD+bbZ8kXb0Wj63vr6vvXw78oJTyhs4nJtmcyQ/8a2MbkzKJz14v+vH3fRHVmJQXl1L+2BuR5LlT2Wjda3MisCfwylLKD6cUpeYkeyzUqlTzWHyIqvv2pHXU22Kc4ovr+7FTA/9Q32/eUnivzZqzgr4ceBjVmSVjrgGeWf9qAyDJvsAap6X2GNt3qXo8DugqfxdVgnLqWs+YXbYGXjK2kGQR8Frg4lLK7+ri++n69ZvkFVRnRUxWG9tYr0l+9nrRj7/vWA/EH/dXPa7i9VPc7r8ArwLeVkr5xhS3pTnKHgtNxfOTPJ7qc7Ql1Wl0i6l+ob24rHvSn4OT7A6cUtd/KPA2qjM3flzXuYbq2PFbktxD9c/8/FJKr8eox9wJ/DjJ8XW8B1Idruk8JfbzVAnH95L8B7AdVbf8NWtuqqfYvg38APjHJI8GLqE6FfcvgaM7B2rOUr8CjkvydKpTeven2n+d/8S+Q/U3PZ7qLIwnA69hzV6e9WljG5Mxmc9eL/rx9z2d6hTdbyf5d6oxTW8CbqVKlnuW5ECq/XAusDzJX3dV+e9Syh/WeqLUxcRCU3FofX8f1T/tS6n+WR8/zkC2bv9DNfBvf6rjxLdTjWj/cCnl91DNYJnkdcBhVGc1bED1z6xpYvFPVMeN3081KO0sql9my8cqlFJOS/JuquPWRwM/B/alGuFPR71Jx1ZKGU3yYqr99aq63nVU15z4VHf9WehqqjkiPkE1p8K1wKu6zlT4J+CBwKup3uOFVMf9e5nGvY1tTMZ6P3u96Mfft5RyVaqL6n2Mai6Q31HNSXIba58VM1k71ffPqm/dtuVPPXXShLL2YG9JqqSaQfSyUsq+/Y5F0mBwjIUkSWqNiYUkSWqNiYUkSWqNYywkSVJr7LGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbHQpCXZL0lJ8uj11LsuyQkzE5WkQWI7MvxMLCRJ6pBkzyRfSPKrJMuT/CbJ55M8rN+xDYKUUvodgwZEkvnAAmBVWccHJ8l1wNmllP1mKDRJA2IQ2pEkPwe2AP4TuBp4DHAAsBzYqZTyu5mOaZBs0O8ANDhKKfcD9/c7DkmDa0DakYOAH5dSRscKknwP+CFVgvHBfgU2CDwUoknrPjaaygeT3FR3F/4gyRPHed4hSdb6ZTLesdb6uOp3kuyR5OdJViS5NMke9fqX1ssrk1yQZOfper+S2jcI7Ugp5ZzOpGKsDLgT2GHqe2G4mVhoKg4FPgpcAvw98BvgdOCBU9zu9sDJwLeB9wMPAr6d5DXAUcCXgQ8D2wH/kcTPsTS4BqIdSbIJsAlw+xTjGnoeClEjSf4MeA9wCvCisWOlSf4R+MAUN/844NmllHPrbV4OnAZ8Dnh8KeWGuvwu4N+B3YGzp/iakmbYgLUjBwIbAl+bYlxDz196amovqi/Zv3QNwDq6hW1fPtYY1M6v778/1hh0lT+mhdeUNPMGoh1JsjtV78Z/lFK+30JsQ83EQk09qr6/urOwlHIbcNcUt935paeU8vv64Y1d9cbKHzTF15PUH7O+HUnyeOC/gcuAN04xpjnBxEIzYaJTyuZPUD7RiPGJytNbOJIG0Iy3I0keSTXe4/fAC0op96wzQgEmFmru+vr+zzsL62Om3Zn/XfW6zbvKH4WkuWzWtiNJHkyVVGwE7F1KuXk6XmcYmVioqTOBEeAdSToz/QPHqXtNfb/7WEGSBwKvm7boJA2CWdmO1Nv9LvBwqp6Kq9fzFHXwrBA1Ukq5LcknqU7j+k6S7wI7A89n7dOxTqc63nlckk9QdUXuD9wGbDNzUUuaTWZxO3ISsCvwBWCHJJ1zV9xbSvlmy683VEwsNBUfBFYCbwGeSzW6egnVqWN/VEoZSfIS4F+pzlf/HdWo77uA42cwXkmzz2xsR3aq7/evb52uB77Z8usNFa8VIkmSWuMYC0mS1BoTC0mS1BoTC0mS1BoTC0mS1JqeE4sk+yR5Tsfy25NcnOTkJE6tLKkR2xZpODTpsfgEsAggyZOBT1FNJLItcGR7oUmaY2xbpCHQZB6LbYHL68cvA75TSvlAkqdSNQJDp54RbmvAeeI1W20K/LYM9vnjti3S7NNz29IksbgPWFg/3gs4sX58J/WvjSG0NXBTv4OQ1uMRwNJ+BzEFti3S7NRT29IksfgxcGSSn1BNefqquvyxDO8X5B6AG2+8kUWL1m7fRkZGOP3001myZAkLFiyY8eAGjfurN+vbX8uWLeORj3wkDP6vXtuWLn5XeuP+6s10tS1NEosDqKZUfTnw1lLKWBbzfOB7DbY3MBYtWjThl3/hwoUsWrTID/MkuL96M4f2l21Llzn0t2+F+6s307W/ek4sSik3APuOU/6uViKSNCfZtkjDodFFyJLMA7YHHkrXmSWllHNaiEvSHGTbIg2+nhOLJM8ETgYeBaRrdQHmtxCXpDnGtkUaDk16LD4D/Bx4IXAz1Rde6tkll1zCvHnzeMhDHsI222zT73DUf7YtaoVtS381SSz+HHh5KeXXbQejueGmm6oB/rvvvjsrVqzgARsv5Korr7ABkG2LpsS2ZXZoMvPm+VTHQKVG7rjjDgC22OcdPHjfd7NyxXJuv/32PkelWcC2RVNi2zI7NOmx+BfgU0m2Ai4FRjpXllJ+0UZgGn4Ltng496+2t1t/ZNuiVti29FeTxOLr9f0XOsoK1WArB1hJasq2RRoCTa8VIklts22RhkCTCbKun45AJM1tti3ScGg6QdZ2wIHADnXR5cAxpZRrWopL0hxk2yINvp7PCkmyN9WXfVfgF/XtGcAvkyxuNzxJc4VtizQcmvRYHA4cVUp5X2dhksOBI4Az2ghM0pxj2yINgSbzWOwAHDdO+ReAJ0wtHElzmG2LNASaJBa3ATuNU74TcOtUgpE0p9m2SEOgyaGQzwGfTfIY4Kd12W7Ae4Ej2wpM0pxj2yINgSaJxUeBe4B3A4fVZb8FDgH+uZ2wJM1Bti3SEGgyj0UBjgKOSrJpXXZP24FJmltsW6Th0GgeizF+6SVNB9sWaXBNKrFIciGwZynlriQXUc3bP65SylPbCk7ScLNtkYbPZHssvgWs6njsZeMktcG2RRoyk0osSikf6Xh8yLRFI2lOsW2Rhk+TKb1/k+TB45RvnuQ37YQlaa6xbZGGQ5MJsh4NzB+nfCPgEVOKRtJc9mhsW6SBN+mzQpK8uGNx7yS/71ieD+wJXNtWYJLmBtsWabj0crrpN+v7Anyxa90IcB3VxDaS1Itv1ve2LdIQmHRiUUqZB5DkWuDppZTbpy0qSXOGbYs0XJrMvLntdAQiaW6zbZGGw2QnyHon8NlSysr68YRKKc7pL2lSbFuk4TPZHot3AScBK+vHEyl4sSBJk2fbIg2ZyU6Qte14jyVpKmxbpOHTZIKsg5MsHKd84yQHtxOWpLnGtkUaDk0myPowsMk45QvrdY0keV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJKmjW2LNASaJBZh/AsF7Qjc2SSIJE8H/gb4Rdeqo4AXAa8A/gLYGvhGx/PmA6cAGwLPBl4H7Acc2lFn27rOD4CdgKOBzyfZu0mskqaNbYs0BHqZefMuqi99AX6VpLMBmE/1S+MzvQaQZBOqwVtvAj7YUb4Z8Abg1aWU79dlrweuSPLMUsp5wBLgCcBepZRbgIuTfAg4IskhpZT7gLcA15ZSxibYuSLJc6gGip3Wa7yS2mXbIg2XXuaxOJDqF8UXqLolO6fdvQ+4rpRyboMYjgVOKaWcmeSDHeW7AAuAM8cKSilXJrkBeBZwXn1/af3FH3Ma8G/AE4GL6jpnsqbTqH5dSOq/A7FtkYZGLzNvfhH+ODveT0opq6f64kn+Cngq8PRxVm8F3FdKubur/JZ63VidW8ZZzyTqLEqycSllxThxbUR14aMxmwKMjIwwMjKyVqBjZeOt09pGR0cB2GiDALDxxhszOjrq/pvA+j5fg77fbFtsW9pi29Kb6Wpbmsy8+cMk29Vdh9sBf1tKuTXJ84EbSim/nMx2kjwSOAZYXEpZ2Wsc0+z9jDNY7PTTT2fhwrUGrf/RGWecMZ0xDZ0jnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUwP2xbblrbYtvSm7bal58QiyV8ApwI/AXYH/gG4lWqA1RuAl09yU7sADwUuTDJWNh/YPckBwN7Ahkk27/plsSXwu/rx74Bdu7a7Zce6sfstx6mzbLxfFLXDgCM7ljcFblqyZAmLFi1aq/LIyAhnnHEGixcvZsGCBRNsUmMuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqvbZtti2TJVtS2+mq23pObEADgc+WEo5Msk9HeXfBw7oYTtnAU/uKjseuBI4AriR6sqGewJfB0jyOGAbYOx467nAPyR5aCnl1rpsMbAMuLyjzgu6XmdxxzbWUkpZBawaWx5rnBYsWLDOL/f61qsyb151MtKq1YWVqwsrVqxg3rx57rv1mOjzNUT7zbZlArYtk2Pb0kzbbUuTxOLJwKvHKb8VeMhkN1JKuQe4rLMsyR+AO0opl9XLxwFHJrmT6gv9L8C59ahtgNOpvuRfSvIeqmOeHwOOrb/AUI0mPyDJx6kGhz0PeCXwwsnGKmlG2LZIQ6DJPBZ3Aw8bp3xnoO0DWe8CvkP1q+Icqq7Hl46tLKXcD+wL3E/1K+HLwInAwR11rqX6oi8GLgHeDbyxlOLpYNLscje2LdLAa9Jj8VWqc7lfQXXe+bwkuwGfpPriNVZK2aNreSXw9vo20XOuZ+3uyO46Z1M1TpJmL9sWaQg06bH4ANWxyhupJq65nCrj/ylVV6EkNWHbIg2BJqeb3ge8KclHgSdRNQAXlVKubjs4SXOHbYs0HJocCgGglHJDkhvrx+PN7y9JPbNtkQZbk0MhJHlDksuAlcDKJJcleWO7oUmaa2xbpMHXZIKsQ4GDqE/PqoufBRyVZJtSysETPlmSJmDbIg2HJodC3gq8qZTylY6y/0nyC6oGwS+/pCZsW6Qh0ORQyALg5+OUX8AUxmxImvNsW6Qh0CSx+BLVL4tubwZOmlo4kuYw2xZpCDT9FfCGJEuAselvn0E1z/6JSf54gZ1SykFTjE/S3GLbIg24JonFk4AL68fb1fe317cnddTzNDFJvbBtkYZAkwmynjsdgUia22xbpOHQaB4LgCTbJ9k7ycb1ctoLS9JcZdsiDbaeE4skD05yFvAr4Lv86WqExyX5VJvBSZo7bFuk4dCkx+IoYIRqQNXyjvKvAfu0EZSkOcm2RRoCTQZvLgH2LqXc1NVDeTXwqFaikjQX2bZIQ6BJj8UDWfPXxJgtgFVTC0fSHGbbIg2BJonFj4DXdiyXJPOA9wA/aCUqSXORbYs0BJocCnkPcFaSpwEbAh8Hnkj1q2K3FmOTNLfYtkhDoOcei1LKZcBjgR8D36LqvvwGsHMp5Zp2w5M0V9i2SMOhpx6LJAuA7wFvKaX84/SEJGmusW2RhkdPPRallBHgKdMUi6Q5yrZFGh5NBm9+GXhD24FImvNsW6Qh0GTw5gbA/kn2Ai4A/tC50qsOSmrItkUaAlO9uulju9Z51UFJTdm2SEPAq5tKmhVsW6Th0PjqppIkSd1MLCRJUmtMLCRJUmtMLCRJUmsmlVgkuTDJg+rHBydZOL1hSZoLbFuk4TPZHosdqObtB/gwsMn0hCNpjrFtkYbMZE83vRg4PsmPgQB/l+Te8SqWUg5tKTZJw+9ibFukoTLZxGI/4CPAvlQT1TwfWD1OvQL45Zc0Wfth2yINlUklFqWUq4C/AkgyCuxZSrl1OgOTNPxsW6Th02TmTc8kkdQ62xZpODS5VghJtgMOpBp4BXA5cEwp5ZqW4pI0B9m2SIOv518ISfam+rLvCvyivj0D+GWSxe2GJ2musG2RhkOTHovDgaNKKe/rLExyOHAEcEYbgUmac2xbpCHQ5JjmDsBx45R/AXjC1MKRNIfZtkhDoElicRuw0zjlOwGO5pbUlG2LNASaHAr5HPDZJI8BflqX7Qa8FziyrcAkzTm2LdIQaNJj8VGqiWreAfywvh0AHAJ8rJcNJXl/kp8luSfJrUm+meRxXXUekOTYJHckuTfJ15Ns2VVnmySnJFleb+cTSTboqrNHfV2CVUl+nWS/nt+5pOlk2yINgZ4Ti1I5qpTyCGAzYLNSyiNKKceUUkqPm/sL4FjgmcBiYAFwepIHdtQ5CngR8Iq6/tbAN8ZWJpkPnAJsCDwbeB3VbH6HdtTZtq7zA6pu1aOBz9ej0CXNArYt0nBoNI/FmFLKPVN8/j6dy3WmfyuwC3BOks2ANwCvLqV8v67zeuCKJM8spZwHLKEa2LVXKeUW4OIkHwKOSHJIKeU+4C3AtaWUd9cvdUWS5wDvAk6bynuQ1D7bFmlwTSmxmAab1fd31ve7UP3SOHOsQinlyiQ3AM8CzqvvL62/+GNOA/4NeCJwUV3nTNZ0GtWvi7Uk2QjYqKNoU4CRkRFGRkbWqj9WNt46rW10dBSAjTYIABtvvDGjo6Puvwms7/PlfpsU25Y5wLalN9PVtsyaxCLJPKov409KKZfVxVsB95VS7u6qfku9bqzOLeOsZxJ1FiXZuJSyomvd+6ku4byG008/nYULF074Hs44w9Pse3HE87epHrzoKyxdupSlS5f2N6BZbqLP1/Lly2c4ksFi2zL32Lb0pu22ZdYkFlTHQ58EPKffgQCHseYo9E2Bm5YsWcKiRYvWqjwyMsIZZ5zB4sWLWbBgwUzFOLAuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqoFi2zJH2Lb0Zrralp4SiyQLgO8BbymlXN3oFcff7qepLpu8eynlpo5VvwM2TLJ51y+LLet1Y3V27drklh3rxu63HKfOsnF+UVBKWQWs6ogPgAULFqzzy72+9arMm1eNGV61urBydWHFihXMmzfPfbceE32+hmG/2bbYtrTBtqWZttuWns4KKaWMAE9p9ErjSOXTwEuA55VSru2qcgEwAuzZ8ZzHAdsA59ZF5wJPTvLQjuctBpZRXXdgrM6erGlxxzYk9ZFtizQ8msxj8WWq0dRtOBb4a+DVwD1JtqpvGwOUUn5PNcXvkUmem2QX4Hjg3HrUNsDpVF/yLyXZsT7N62PAsfWvA4DPAI9J8vEkj0/yNuCVVKebSZodbFukIdBkjMUGwP5J9qLK+v/QubKUclAP23prfX92V/nrgRPqx+8CRoGvU42mPg14W8fr3Z9kX6qR2ufW8XwROLijzrVJXkj1Zf9b4CbgjaUUTweTZg/bFmkINEksngRcWD9+bNe6niaxKaVkEnVWAm+vbxPVuR54wXq2czawcy/xSZpRti3SEOg5sSilPHc6ApE0t9m2SMOhyRgLAJJsn2TvsWOWGRveLElTYNsiDbaeE4skD05yFvAr4LvAw+pVxyX5VJvBSZo7bFuk4dCkx+IoqtO0tgE6p+X6GrDPuM+QpPWzbZGGQJPBm0uAvUspN3X1UF4NPKqVqCTNRbYt0hBo0mPxQNb8NTFmCzpmlJOkHtm2SEOgSWLxI+C1HculvsjPe4AftBKVpLnItkUaAk0OhbwHOCvJ04ANgY9TXUJ4C2C3FmOTNLfYtkhDoOcei/qyw48Ffgx8i6r78hvAzqWUa9oNT9JcYdsiDYdGl02v59n/x5ZjkTTH2bZIg69RYpHkQVQXC9qhLrocOL6UcmdbgUmae2xbpMHXZIKs3YHrgHcCD6pv7wSurddJUs9sW6Th0KTH4liqCWveWkq5HyDJfOBf63VPbi88SXOIbYs0BJqcbro98KmxLz5UlxcGjqzXSVITti3SEGiSWFzIn45/dtoBuGRq4Uiaw2xbpCEwqUMhSZ7SsfjPwDFJtgfOq8ueCbwdeF+74UkaZrYt0vCZ7BiLi4ECdE7g//Fx6p1MdYxUkibjYmxbpKEy2cRi22mNQtJcZdsiDZlJJRallOunOxBJc49tizR8mk6QtTXwHOChdA0ALaX8cwtxSZqDbFukwddzYpFkP+DfgfuAO6iOj44pVAOwJKknti3ScGjSY/FR4FDgsFLKaMvxSJq7bFukIdBkHouFwFf94ktqmW2LNASaJBbHAa9oOxBJc55tizQEmhwKeT/wnST7AJcCI50rSykHtRGYpDnHtkUaAk0Ti72Bq+rl7gFWktSEbYs0BJokFu8G9i+lnNByLJLmNtsWaQg0GWOxCvhJ24FImvNsW6Qh0CSxOAZ4R9uBSJrzbFukIdDkUMiuwPOS7Av8krUHWL20jcAkzTm2LdIQaJJY3A18o+U4JOlubFukgddzYlFKef10BCJpbrNtkYZDkzEWkiRJ42pyEbJrWcc55aWUx0wpIklzkm2LNByajLE4umt5AbAzsA/wiakGJGnOOrpr2bZFGkBNxlgcM155krcDT5tyRJLmJNsWaTi0OcbiVOBlLW5PksC2RRoobSYWLwfubHF7kgS2LdJAaTJ48yLWHGAVYCvgz4C3tRSXpDnGtkUaDk0Gb36za3kUuA04u5Ry5ZQjkjRXfbNr2bZFGkBNBm9+ZDoCmQn1ILC/p/oVdAnwjlLK//Y3Kklg2yINizkzQVaSVwFHAh8Bnkr15T8tyUP7GpikgWbbIq1p0olFktEk96/ntno6g52ig4DPlVKOL6VcDrwFWA7s39+wpLnNtkUaLr0cCnnJOtY9C3gns7QHJMmGwC7AYWNlpZTRJGdSxd5dfyNgo46iTQHuvPNORkZGuqszMjLC8uXL+dGPfsQGG2zA6OgoAPPmzWN0dPSP951l61s/E2X9iuHqq69mk002IXdeT0bu5wEPeAAXXHAB995775zfN+PFsHr1apYvX84dd9zBggUL1vr83XPPPWuVDRjblkm0LfPmzZs1n8nZGsNVV101I23LbNgPbcQ1bW1LKaXxDXgc8N/AauCLwKOmsr3pugFbU402f1ZX+ceB88epf0hd35u3Qbo9vN/ftRa/s7Yt3rzNnltPbUuTs0JIsjXV8cTXAacBO5VSLmuyrVnqMKpjpp22YOJz6TcFbgIeAQz8z8cZ4P7qzWT216bAb2csomli27IWvyu9cX/1Zlralp4SiySbAR8A3gFcDOxZSvlRL9vok9uB+4Etu8q3BH7XXbmUsgpY1VW8bKKNJxl7eE8pZcJ6qri/ejPJ/TXQ+9G2ZXx+V3rj/urNdLUtvQzefA/wG2Bf4P+VUp49IF98Sin3ARcAe46VJZlXL5/br7gk2bZIwyb1cb/1V0xGgRXAmVQZ+rhKKS9tJ7R21aeEfRH4G+B/gQOBVwKPL6XcMsVtLwJ+D2xmlrx+7q/eDPv+sm1Z57aH+m/fNvdXb6Zrf/VyKOREqkEcA6mU8rUkfwYcSjWJzcXAPlP94tdWUR0X7u7i1PjcX70Z9v1l2zKxYf/bt8391Ztp2V+T7rGQJElan1l5brgkSRpMJhaSJKk1JhaSJKk1JhaSJKk1JhYNJdkiyUlJliW5O8lxSTZZz3POTlK6bp+ZqZhnUpK3J7kuycok5yfZdT31X5Hkyrr+pUleMFOxzga97K8k+43zOVo5k/Fq+ti2rJttS2/60baYWDR3EvBEYDHVxD67A5+dxPM+Bzys4/ae6QqwX3q9jHSSZwNfAY4Ddga+CXwzyZNmJOA+a3jZ7WWs+Tl61HTHqRlj2zIB25be9K1t6fdFfAbxBuxAdd790zrK9gFGga3X8byzgaP7Hf8M7J/zgU93LM8DlgLvm6D+14DvdJWdB3ym3+9llu6v/YC7+x23t2n5LNi2rHv/2LZM7/5qpW2xx6KZZ1Ht/J93lJ1J9eV/xnqe+5oktye5LMlhSRZOW5R90HEZ6TPHykopo/XyWpeRrj2rs37ttHXUHxoN9xfAJkmuT3Jjkm8leeI0h6qZYdsyAduW3vSzbWl0dVOxFXBrZ0EpZXWSO+t1EzkZuJ7qSnFPAY6gujz0rJyquKGHAPOB7lkHbwEeP8Fztpqg/rr25bBosr+uAvYHfgFsBvwd8NMkTyyl3DRdgWpG2LZMzLalN31rW0wsOiQ5HHjveqrt0HT7pZTO46SXJrkZOCvJdqWUa5puV3NLKeVcOi5wleSnwBVU16r4UL/i0sRsWzQI2mpbTCzW9CnghPXU+Q3V5ZDXGPySZANgC8a5VPI6nF/fbw8My5e/p8tI137XY/1h0mR/raGUMpLkIqrPkWYn25aps23pTd/aFsdYdCil3FZKuXI9t/uoMrrNk+zS8fTnUe3P88fd+Ph2qu9vbucd9F9pdhnpczvr1xavo/7QaLi/1pBkPvBkhuhzNGxsW6bOtqU3fW1b+j1qdVBvwKnAhcCuwG7Ar4CTO9Y/HLgS2LVe3o6qK2kX4NHAi6l+Sfyw3+9lGvbNq4CVwOuounf/HbgL2LJefyJwWEf9ZwMjwLupjv0dAtwHPKnf72WW7q+DgSXAY6hOIfsK1WXHn9Dv9+Ktlc+DbcvE+8a2ZXr3VyttS9/f+KDeqLomTwbuobqe/ReATTrWP5rqtLE96uVHAj8E7qj/0FcDHwcW9fu9TNP+OYBqMNkqql9az+hYdzZwQlf9V1ANHFoFXAa8oN/vYbbuL+Cojrq/A04Bdu73e/DW2mfBtmXd+8e2ZZr2V1tti5dNlyRJrXGMhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhWZUkuuSHNjvOCQNH9uX2cHEQpIktcbEQpIktcbEQpOW5M1Jfltferez/FtJvpBku/rxLUnuTfKzJHutY3uPTlKS7NRRtnldtkdH2ZOSnFpv85YkX0rykGl4i5L6xPZleJhYqBf/CTwYeO5YQZItgH2Ak4BNgO8CewI7A98Dvp1km6YvmGRz4PvARcDT6tfaEviPptuUNCvZvgyJDfodgAZHKeWuJKcCrwbOqotfDtwO/KCUMgpc0vGUDyV5CfBi4NMNX/YA4KJSygfGCpLsD9yY5LGllF813K6kWcT2ZXjYY6FenQS8LMlG9fJrgK+WUkaTbJLkk0muSHJ3knuBHYDGvyiAHYHn1t2U99bbvLJet90Utitp9rF9GQL2WKhX3wYCvDDJz4D/A7yrXvdJYDHwd8CvgRXAfwEbTrCt0fo+HWULuupsUr/me8d5/s29Bi9pVrN9GQImFupJKWVlkm9Q/ZLYHriqlHJhvXo34IRSyn8DJNkEePQ6Nndbff8wqmOcADt11bkQeBlwXSll9ZTfgKRZy/ZlOHgoRE2cBLwQ2L9+POZq4KVJdkqyI3Ay6/iMlVJWAOcB70uyQ5K/AD7WVe1YYAvgK0meXo8M3zvJ8Unmt/ieJM0Oti8DzsRCTXwfuBN4HNWXe8xBwF3AT6m6F0+j+kWwLvtT9ZxdABwNfLBzZSnlt1S/VOYDpwOX1vXu5k9dnZKGh+3LgEsppd8xSJKkIWGPhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhaZVkv2SlCSP7ncskqTpZ2IhSZJak1JKv2PQEEsyH1gArCp+2CRp6JlYSJKk1ngoRNOqc4xFki8muT3JgnHqnZ7kqn7EKElqj4mFZtKXgAcDe3cWJtkKeB7w5X4EJUlqj4mFZtL3gZuAv+4q/39Un0UTC0kacCYWmjGllFHgJODFSTbtWPUa4KellGv7E5kkqS0mFpppJwIbAy8BSPI4YBeqwySSpAFnYqEZVUq5HLiAPx0O+WvgPuA/+haUJKk1JhbqhxOB5yV5GPBq4JRSyl19jkmS1AITC/XDV4ACHAM8BgdtStLQMLHQjCul3AZ8D3gFcDdwSl8DkiS1xsRC/XJiff8fpZRVfY1EktQaEwtNq1LKCaWUlFKu61p1X33vYRBJGiJeK0R9keQ7wA7A9l6cTJKGxwb9DkBzS5K/Ap4CvBD4W5MKSRou9lhoRiUpwL3A14C3lFJW9zkkSVKLek4skuwD3FtK+XG9/HbgTcDlwNudj0CSpLmryeDNTwCLAJI8GfgU8F1gW+DI9kKTJEmDpskYi22peicAXgZ8p5TygSRPpUowJEnSHNUksbgPWFg/3os/zUdwJ3VPxrBJEmBr4J5+xyJNYFPgtw6GldRvTRKLHwNHJvkJsCvwqrr8scBNbQU2y2zN8L43DY9HAEv7HYSkua1JYnEA8K/Ay4G3llLGGrLnU03TPIzuAbjxxhtZtGjtTpmRkRFOP/10lixZwoIFC2Y8uEHj/urN+vbXsmXLeOQjHwn2qEmaBXpOLEopNwD7jlP+rlYimsUWLVo0YWKxcOFCFi1a5D/KSXB/9cb9JWmQNJogK8k8YHvgoXSdWVJKOaeFuCRJ0gDqObFI8kzgZOBRQLpWF2B+C3FJkqQB1KTH4jPAz6mmZL6ZKpmQenbJJZcwb948HvKQh7DNNtv0OxxJUguaJBZ/Dry8lPLrtoPR3HDTTdUJNrvvvjsrVqzgARsv5KorrzC5kKQh0GTmzfOpxldIjdxxxx0AbLHPO3jwvu9m5Yrl3H777X2OSpLUhiY9Fv8CfCrJVsClwEjnylLKL9oITMNvwRYP5/7VHkmTpGHSJLH4en3/hY6yQjWQ08GbkiTNYU2vFSJJkrSWJhNkXT8dgUiSpMHXdIKs7YADgR3qosuBY0op17QUlyRJGkA9nxWSZG+qRGJX4Bf17RnAL5Msbjc8SZI0SJr0WBwOHFVKeV9nYZLDgSOAM9oITJIkDZ4m81jsABw3TvkXgCdMLRxJkjTImiQWtwE7jVO+E3DrVIKRJEmDrcmhkM8Bn03yGOCnddluwHuBI9sKTJIkDZ4micVHgXuAdwOH1WW/BQ4B/rmdsCRJ0iBqMo9FAY4CjkqyaV12T9uBSZKkwdNoHosxJhSSJKnTpBKLJBcCe5ZS7kpyEdU1QcZVSnlqW8FJkqTBMtkei28Bqzoee0lKSZK0lkklFqWUj3Q8PmTaopEkSQOtyZTev0ny4HHKN0/ym3bCkiRJg6jJBFmPBuaPU74R8IgpRSNJkgbapM8KSfLijsW9k/y+Y3k+sCdwbVuBSZKkwdPL6abfrO8L8MWudSPAdVSTZkmSpDlq0olFKWUeQJJrgaeXUm6ftqgkSdJAajLz5rbTEYgkSRp8k50g653AZ0spK+vHEyqleL0QSZLmqMn2WLwLOAlYWT+eSMELkUmSNGdNdoKsbcd7LEmS1KnJBFkHJ1k4TvnGSQ5uJyxJkjSImkyQ9WFgk3HKF9brJEnSHNUksQjjX4RsR+DOpoEkeV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJIkaWK9zLx5F1VCUYBfJelMLuZT9WJ8pkkQSZ4O/A3wi65VRwEvBF4B/B74NPANYLf6efOBU4DfAc8GHgacSDVh1wfqOtvWdT4DvIZqhtDPJ7m5lHJak3glSdL4epnH4kCq3oovUB3y6JzS+z7gulLKub0GkGQTqjNO3gR8sKN8M+ANwKtLKd+vy14PXJHkmaWU84AlwBOAvUoptwAXJ/kQcESSQ0op9wFvAa4tpYzNCnpFkudQnd1iYiFJUot6mXnzi/DHmTd/UkpZ3VIMxwKnlFLOTPLBjvJdgAXAmR0xXJnkBuBZwHn1/aV1UjHmNODfgCcCF9V1zmRNpwFHTxRQko2oLqo2ZlOAkZERRkZG1qo/VjbeOq1tdHQUgI02CAAbb7wxo6Oj7r8JrO/z5X6TNJs0mXnzh0m2q3sPtgP+tpRya5LnAzeUUn452W0l+SvgqcDTx1m9FXBfKeXurvJb6nVjdW4ZZz2TqLMoycallBXjvPb7GWcg6umnn87ChWudEPNHZ5xxxoTrtLYjnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUjSxHpOLJL8BXAq8BNgd+AfgFupBm++AXj5JLfzSOAYYHEpZWWvcUyzw4AjO5Y3BW5asmQJixYtWqvyyMgIZ5xxBosXL2bBggUzFePAuuiii7j55pt576k3sGp14ZaT38c555zDjjvu2O/QZqX1fb6WLVvWh6gkaXw9JxbA4cAHSylHJrmno/z7wAE9bGcX4KHAhUnGyuYDuyc5ANgb2DDJ5l29FltSDdakvt+1a7tbdqwbu99ynDrLJuitoJSyClg1tjwW34IFC9aZOKxvvSrz5lUnI61aXVi5urBixQrmzZvnvluPiT5f7jdJs0mT002fDPz3OOW3Ag/pYTtn1dvaqeP2c6qBnGOPR6jO4gAgyeOAbYCxQaLnAk9O8tCO7S4GlgGXd9TZkzUt7tiGJElqSZMei7upTuu8tqt8Z2DSB8lLKfcAl3WWJfkDcEcp5bJ6+TjgyCR3UiUL/wKcW58RAnA6VQLxpSTvoRpP8THg2LrXAarTTA9I8nGqM1qeB7yS6jRWSZLUoiY9Fl+lOp1zK6o5LeYl2Q34JNUcEm16F/Ad4OvAOVSHNV46trKUcj+wL3A/VQ/El+sYDu6ocy1VErEYuAR4N/BG57CQJKl9TXosPkB1iuiNVGMiLq/vT6bqLWislLJH1/JK4O31baLnXA+8YD3bPZuqR0WSJE2jJqeb3ge8KclHgSdRzbh5USnl6raDkyRJg6VJjwUApZQbktxYPx7v2iGSJGmOaTLGgiRvSHIZsBJYmeSyJG9sNzRJkjRomkyQdShwEPUZGnXxs4CjkmxTSjl4widLkqSh1uRQyFuBN5VSvtJR9j9JfkGVbJhYSJI0RzU5FLKAavKqbhcwhTEbkiRp8DVJLL5E1WvR7c1Us2ZKkqQ5qmkPwxuSLKG6dDnAM6im2j4xyR8v3lVKOWiK8UmSpAHSJLF4EnBh/Xi7+v72+vakjnqegipJ0hzTZIKs505HIJIkafA1mscCIMn2SfZOsnG9nPU9R5IkDbeeE4skD05yFvAr4LtUVzoFOC7Jp9oMTpIkDZYmPRZHASNUgzWXd5R/DdinjaAkSdJgajJ4cwmwdynlpq6jH1cDj2olKkmSNJCa9Fg8kDV7KsZsAayaWjiSJGmQNUksfgS8tmO5JJkHvAf4QStRSZKkgdTkUMh7gLOSPA3YEPg48ESqHovdWoxNkiQNmJ57LEoplwGPBX4MfIvq0Mg3gJ1LKde0G54kSRokPfVYJFkAfA94SynlH6cnJEmSNKh66rEopYwAT5mmWCRJ0oBrMnjzy8Ab2g5EkiQNviaDNzcA9k+yF3AB8IfOlV7RVJKkuWuqVzd9bNc6r2gqSdIc5tVNJUlSaxpf3VSSJKmbiYUkSWqNiYUkSWqNiYUkSWrNpBKLJBcmeVD9+OAkC6c3LEmSNIgm22OxA9U1QQA+DGwyPeFIkqRBNtnTTS8Gjk/yYyDA3yW5d7yKpZRDW4pNkiQNmMkmFvsBHwH2pZoE6/nA6nHqFcDEQpKkOWpSiUUp5SrgrwCSjAJ7llJunc7AJEnS4Gky86ZnkkiSpHE1uVYISbYDDqQa1AlwOXBMKeWaluKSJEkDqOfehyR7UyUSuwK/qG/PAH6ZZHG74UmSpEHSpMficOCoUsr7OguTHA4cAZzRRmCSJGnwNBkvsQNw3DjlXwCeMLVwJEnSIGuSWNwG7DRO+U6AZ4pIkjSHNTkU8jngs0keA/y0LtsNeC9wZFuBSZKkwdOkx+KjVJNgvQP4YX07ADgE+FgvG0ry/iQ/S3JPkluTfDPJ47rqPCDJsUnuSHJvkq8n2bKrzjZJTkmyvN7OJ5Js0FVnj/qaJ6uS/DrJfj2/c0mStE49JxalclQp5RHAZsBmpZRHlFKOKaWUHjf3F8CxwDOBxcAC4PQkD+yocxTwIuAVdf2tgW+MrUwyHzgF2BB4NvA6qplCD+2os21d5wdUh2yOBj5fn+EiSZJa0mgeizGllHum+Px9OpfrXoRbgV2Ac5JsBrwBeHUp5ft1ndcDVyR5ZinlPGAJ1aDRvUoptwAXJ/kQcESSQ0op9wFvAa4tpby7fqkrkjwHeBdw2lTegyRJ+pMpJRbTYLP6/s76fheqXowzxyqUUq5McgPwLOC8+v7SOqkYcxrwb8ATgYvqOmeyptOoei7WkmQjYKOOok0BRkZGGBkZWav+WNl467S20dFRADbaIABsvPHGjI6Ouv8msL7Pl/tN0mwyaxKLJPOo/tH/pJRyWV28FXBfKeXuruq31OvG6twyznomUWdRko1LKSu61r2f6vLwazj99NNZuHDhhO/hjDOcwqMXRzx/m+rBi77C0qVLWbp0aX8DmuUm+nwtX758hiORpInNmsSCaqzFk4Dn9DsQ4DDWPMNlU+CmJUuWsGjRorUqj4yMcMYZZ7B48WIWLFgwUzEOrIsuuoibb76Z9556A6tWF245+X2cc8457Ljjjv0ObVZa3+dr2bJlfYhKksbXU2KRZAHwPeAtpZSr2woiyaepLsm+eynlpo5VvwM2TLJ5V6/FlvW6sTq7dm1yy451Y/dbjlNn2Ti9FZRSVgGrOuIDYMGCBetMHNa3XpV586oxw6tWF1auLqxYsYJ58+a579Zjos+X+03SbNLTWSGllBHgKW29eCqfBl4CPK+Ucm1XlQuAEWDPjuc8DtgGOLcuOhd4cpKHdjxvMbCM6pomY3X2ZE2LO7YhSZJa0GQeiy9TnanRhmOBvwZeDdyTZKv6tjFAKeX3VNOHH5nkuUl2AY4Hzq3PCAE4nSqB+FKSHetTSD8GHFv3PAB8BnhMko8neXyStwGvpDqVVZIktaTJGIsNgP2T7EXVo/CHzpWllIN62NZb6/uzu8pfD5xQP34XMAp8nepMjdOAt3W83v1J9qU6C+TcOp4vAgd31Lk2yQupEom/BW4C3lhK8VRTSZJa1CSxeBJwYf34sV3repogq5SSSdRZCby9vk1U53rgBevZztnAzr3EJ0mSetNzYlFKee50BCJJkgZfkzEWACTZPsneY+MhMnbqhCRJmrN6TiySPDjJWcCvgO8CD6tXHZfkU20GJ0mSBkuTHoujqE4B3QbonPLva8A+4z5DkiTNCU0Gby4B9i6l3NR19ONq4FGtRCVJkgZSkx6LB7JmT8WYLeiYrVKSJM09TRKLHwGv7Vgu9QXE3gP8oJWoJEnSQGpyKOQ9wFlJngZsCHyc6vLkWwC7tRibJEkaMD33WNSXNH8s8GPgW1SHRr4B7FxKuabd8CRJ0iBpdNn0+hoe/9hyLJIkacA1SiySPIjqQmQ71EWXA8eXUu5sKzBJkjR4mkyQtTtwHfBO4EH17Z3AtfU6SZI0RzXpsTiWajKst5ZS7gdIMh/413rdk9sLT5IkDZImp5tuD3xqLKmA6tLlwJH1OkmSNEc1SSwu5E9jKzrtAFwytXAkSdIgm9ShkCRP6Vj8Z+CYJNsD59VlzwTeDryv3fAkSdIgmewYi4uBAnReHOTj49Q7mWr8hSRJmoMmm1hsO61RSJKkoTCpxKKUcv10ByJJkgZf0wmytgaeAzyUrgGgpZR/biEuSZI0gHpOLJLsB/w7cB9wB9XYizGFanCnJEmag5r0WHwUOBQ4rJQy2nI8kiRpgDWZx2Ih8FWTCkmS1K1JYnEc8Iq2A5EkSYOvyaGQ9wPfSbIPcCkw0rmylHJQG4FJkqTB0zSx2Bu4ql7uHrwpSZLmqCaJxbuB/UspJ7QciyRJGnBNxlisAn7SdiCSJGnwNUksjgHe0XYgkiRp8DU5FLIr8Lwk+wK/ZO3Bmy9tIzBJkjR4miQWdwPfaDkOSZI0BHpOLEopr5+OQCRJ0uBrMsZCkiRpXE0uQnYt65ivopTymClFJEmSBlaTMRZHdy0vAHYG9gE+MdWAJEnS4GoyxuKY8cqTvB142pQjkiRJA6vNMRanAi9rcXuSJGnAtJlYvBy4s8XtSZKkAdNk8OZFrDl4M8BWwJ8Bb2spLkmSNICaDN78ZtfyKHAbcHYp5copRyRJkgZWk8GbH5mOQCRJ0uCbUxNkJXl7kuuSrExyfpJd+x2TJEnDZNKJRZLRJPev57Z6OoOdiiSvAo4EPgI8FbgEOC3JQ/samCRJQ6SXQyEvWce6ZwHvZHb3gBwEfK6UcjxAkrcALwT2Bw7vZ2CSJA2LSScWpZRvdZcleRzVP+UXAScBB7cXWnuSbAjsAhw2VlZKGU1yJlVS1F1/I2CjjqJNAe68805GRka6qzMyMsLy5cv50Y9+xAYbbMDo6CgA8+bNY3R09I/3nWXrWz8TZf2K4eqrr2aTTTYhd15PRu7nAQ94ABdccAH33nvvnN8348WwevVqli9fzh133MGCBQvW+vzdc889a5VJUr80OSuEJFtTHVJ4HXAasFMp5bI2A2vZQ4D5wC1d5bcAjx+n/vuBD3cXbrvttu1HJgDe/OY39zuEYbApsKzfQUia23pKLJJsBnwAeAdwMbBnKeVH0xBXvx1GNR6j0xZMPAHYpsBNwCMAfz6un/urN5PZX5sCv52xiCRpApNOLJK8B3gv8Dvg/413aGQWux24H9iyq3xLqvezhlLKKmBVV/GEvwSTjD28p5TiL8b1cH/1ZpL7y/0oaVbopcficGAF8GvgdUleN16lUspL2wisTaWU+5JcAOxJPcFXknn18qf7GJokSUOll8TiRNacynvQHAl8McnPgf8FDgQeCBzfz6AkSRomvZwVst80xjHtSilfS/JnwKFU1za5GNinlNI9oLOJVVSDWbsPn2h87q/euL8kDYyUMsidEJIkaTaZzRNaSZKkAWNiIUmSWmNiIUmSWmNiIUmSWmNi0VCSLZKclGRZkruTHJdkk/U85+wkpev2mZmKeSb1eon6JK9IcmVd/9IkL5ipWGeDXvZXkv3G+RytnMl4JWkiJhbNnQQ8EVgM7AvsDnx2Es/7HPCwjtt7pivAfun1EvVJng18BTgO2JlqErNvJnnSjATcZ73ur9oy1vwcPWq645SkyfB00waS7ABcDjy9lPLzumwf4LvAI0op416zIcnZwMWllANnKNS+SHI+8LNSygH18jzgRuBfSilrXaI+ydeAB5ZS9u0oO49qX71lhsLumwb7az/g6FLK5jMZpyRNhj0WzTwLuHssqaidCYwCz1jPc1+T5PYklyU5LMnCaYuyDzouUX/mWFkpZbReXusS9bVnddavnbaO+kOj4f4C2CTJ9UluTPKtJE+c5lAlaVIaXTZdbAXc2llQSlmd5M563UROBq6nugrlU4AjgMcBs+76KlPQ6yXqodpn49Vf174cFk3211XA/sAvgM2AvwN+muSJpZSbpitQSZoME4sOSQ6nuoLruuzQdPullM4xGJcmuRk4K8l2pZRrmm5Xc0sp5Vzg3LHlJD8FrgD+BvhQv+KSJDCx6PYp4IT11PkN1aXW1xhYl2QDYAvGuQz7Opxf328PDEti0dMl6mu/67H+MGmyv9ZQShlJchHV50iS+soxFh1KKbeVUq5cz+0+ql+LmyfZpePpz6Pan+ePu/Hx7VTf39zOO+i/ev+MXaIeWOMS9edO8LRzO+vXFq+j/tBouL/WkGQ+8GSG6HMkaXDZY9FAKeWKJN8DPpfkLcAC4NPAV8fOCEnycOAs4LWllP9Nsh3waqozR+6gGmNxFHBOKeUX/Xgf02idl6hPciKwtJTy/rr+McAPk7wbOAX4K+BpwJtnOO5+6Wl/JTkYOA/4NbA58PdUp5t+fqYDl6RuJhbNvYYqmTiL6myQrwPv7Fi/gGpg5thZH/cBe/Gnfxo31s/52MyEO3MmcYn6baj22Vj9nyZ5NdW++CfgauD/llIum9HA+6TX/QU8iGo+lK2Au6h6PJ5dSrl8xoKWpAk4j4UkSWqNYywkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCw0o5Jcl+TAfschSZoeJhaSJKk1JhaSJKk1JhaatCRvTvLb+uqbneXfSvKFJNvVj29Jcm+SnyXZax3be3SSkmSnjrLN67I9OsqelOTUepu3JPlSkodMw1uUJE2RiYV68Z/Ag4HnjhUk2QLYBzgJ2ITq6q17AjsD3wO+nWSbpi+YZHPg+8BFVFc83QfYEviPptuUJE0fr26qSSul3JXkVKrLv59VF78cuB34QSllFLik4ykfSvIS4MVUV4Jt4gDgolLKB8YKkuwP3JjksaWUXzXcriRpGthjoV6dBLwsyUb18muAr5ZSRpNskuSTSa5IcneSe4EdqC773dSOwHPrwyD31tu8sl633RS2K0maBvZYqFffBgK8MMnPgP8DvKte90lgMfB3wK+BFcB/ARtOsK3R+j4dZQu66mxSv+Z7x3n+zb0GL0maXiYW6kkpZWWSb1D1VGwPXFVKubBevRtwQinlvwGSbAI8eh2bu62+fxjVGAqAnbrqXAi8DLiulLJ6ym9AkjStPBSiJk4CXgjsXz8eczXw0iQ7JdkROJl1fMZKKSuA84D3JdkhyV8AH+uqdiywBfCVJE+vzzzZO8nxSea3+J4kSS0wsVAT3wfuBB5HlTyMOQi4C/gp1eGL06h6HNZlf6qeswuAo4EPdq4spfyWqidkPnA6cGld727+dChFkjRLpJTS7xgkSdKQsMdCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS15v8Herd6cf8h/7wAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"data = get_repeteated_data(['log_16-aa'])\n",
|
|
"plot_reapeated_data_distribution(data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 32"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 246,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"gasdev idum\n",
|
|
"gasdev idum2\n",
|
|
"gasdev iy\n",
|
|
"cov_value di\n",
|
|
"cov_value dj\n",
|
|
"cov_value dk\n",
|
|
"ran2 idum\n",
|
|
"ran2 idum2\n",
|
|
"ran2 iy\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCyUlEQVR4nO3de5gkZXn38e9vl2XlNIt4WDwhKB7wBIpB8UBQ5KCoUaPiq3mVYDQqaBCNilFB1CBqQCMaXxVRjCiaGDziAiqCiihHQRARWQ4LrCKwC4FdFvZ5/6hq7G1mZqd7a6Z3qr+f6+qrp55+quru6u577q56qjqlFCRJkpowZ9gBSJKk9rCwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGw0MCSHJpkRi7dmuS0JKd1Te+apCR56Qyt/4tJFs/EunrWu3X9PPed6XWPiiQbJPlIkquTrE5y4rBjmikz+RnW6LCwEABJ9q3/gXVuK5Jcm2RRkrck2ayh9TywTmY7NLG8Jq3PsWla7Qf8M/BfwGuAo4YbjjS7bTDsALTeeR9wBTAP2BLYFfg4cFCSF5ZSft3V94PAh/tc/gOBQ4DFwPl9zLdHn+sZxGSxvY7hFOJXAhsBq4aw7lHxbGBJKeWtww5EagMLC/U6qZRydtf04UmeDXwX+HaS7UoptwOUUu4E7pzOYJJsXEq5rZRyx3SuZ21KKUP5x16qXwlcMYx1r4sk9wLuKKWsHnYsU3B/4OamFpZkDrBhKWXWvW5SEzwUorUqpfwI+ADwUODvOu3jHZ9NsnuSnya5OcmtSS5N8q/1Y7sCv6q7Htt12GXf+vHTklyUZMckpye5DfjXrsdOGye8uUn+Ncn1Sf43ybeTPKQnpsVJvtg7Y/cypxDbPcZYJNkkyb/Vx+ZX1s/17UnS068kOTrJi+rntzLJb5LsNc7z6Y3xHmMs6lhuTfKgJCfWf/8pyceSzJ3CMhcn+W6SPZKcXx/2ujjJS3r6bVEv88J6HcuTnJRk+55+nfEur0jywSRLgNuAsQGW8fIkhyRZkuSWJP+VZEGS+Uk+nuSP9XKOTTK/ZxkTvvcm27bAs4DHdr3mu9aP9/v6virJb4CVwISvbZI59Wfn2iS3Jflxksf0vk+nuu3qvm+u31O3JbkpydlJXtnT5xlJflW/3pcn+cdJYvy7JOckuT3JjUm+lq7PVf18b02y8TjzfjXV53Gt70W1k3ssNFVfpvonvwfwufE6JHks1Z6NX1MdUlkJbAs8ve5ySd1+GPBZ4Iy6/eddi7kPcBLwNeA/gaVrietfgAIcQfXN80Dg1CQ7dPasTNFUYrtb/c/l21T/lI6hOnSyJ/BR4EFA7271ZwAvAT4N3AK8BfjvJFuVUv7cR5wdc4FFwFnA24HnAG8DLgf+YwrzPwI4AfgM8CXg74FvJNmrlHJK3edhwIuAb1AdHlsI/CPwkySPKaVc27PM9wJ3AB8D5td/P6bPZRwM3E51iG1b4M1Uh4FWA/cGDgWeCuxbL+8wmNJ7bzx/Av4v1Xto03rdAJcM8Po+G3g5cDRwA9XhtIkcDrwD+A7Va7h9fX+vnn5T2v5JXgf8O9UYkU/Uy3kC8BTg+LrP44GT6+d8KFXufz/jfL6S/AvVF4mvA58H7kf1Opye5ImllJup3jv7A3vX8XXm3Rh4AfDFUspdk2wDtVkpxZs3qBJ1AZ48SZ+bgXO7pg+l3ltfTx9YL+O+kyzjyXWffcd57LT6sX+c4LHTuqZ3rfteA2zW1f6yuv0tXW2LqRLd2pY5WWxfBBZ3Tf9N3fdfevp9g+qf4MO72grVP7rutifU7Qes5XXZujemOpYCvLen77nA2VN4rRfX87+kq20MuLbn9Z0PzBknnhXd6+56LS4HNurp3+8yLgTmdbUfX2/P7/cs4+c9r8da33uTbI/TgIt62vp9fe8CHjOFdS2kKpT+p6f9kHo5X+xqm+q2O7E3/nHW+z9UBdtWXW3bUR3KLF1tD63b3t0z/+PquN9dT4fqs/dfPf06n79n9vs6eGvPzUMh6setwGRnh9xc3/9NquPMg1gJHNtH/+NKKbd0Tf8XcB3wvAHXP1XPo/pn8u897f9GlXSf29N+ainl8s5EqQbBLqf6Vjqoz/RMn9HH8q6l+mfTiWc5cBzwxCRb1m0rSz1GIsncJPeheg9cCjxpnGV+qfTsJRpgGceVNceznEW1Pb/Q0+8s4CFJOntdb67v1+W9163f1/cnpZSLp7Dc3aj2Fny6p/2TvR372HY3Aw9O8lfjrbA+JLEncGIp5aqu5V9Ctaek20uoDpF/Pcl9OzfgeuAyqj04lFIKVZH1vCSbds2/D7AE+OmEW0CtZ2GhfmxKtRt/IicAP6Pafbq0Pi778j4T/ZLS30DNy7on6oT3e6pvdtPpocC1PUUNVIdUOo93u4p7uolq9/4gVpRS/rQOy/t9va26/a6+3xruHgvw1iSXURV8N1DtSn8CsGCcZV7R2zDAMnq307L6/upx2ud0LaOJ9163fl/fezz3SZYL1Xv0bqWUG6lev7v1se2OoCo4fpnksiSfStJ9COh+VGcWrfFZqV3aM/0IqsLpsnpd3bftqA43dpxQL/eFdbybUhVk3xjnvaURYmGhKUnyYKpk9vuJ+tTfVnehOt7/ZaoEeAJwSh8DufoZFzFVEyW5mRxcNtHx5kzQPujymvRu4EjgdKpBu3sCuwO/YfzcMd5r1+8yJnpek26/ht5762I63rdT2nb1nodHAa+g2lPwt8BPk7x/gHXOofq87FWvq/d294DPUsovqA6rvbxuegFVoXHCAOtVizh4U1P1f+v73l2na6h33f6wvh2U5N3Ah6h2oZ7KxP/kB/WI7ol60N22VIP4Om4CNh9n3ocCf+ia7ie2K4HnJNms51vto7seX59tmyQ93ywfWd8vru9fCvy4lPLa7hmTbE717XkqmljGlEzhvdeP6Xp9O/NtS9dejvowR+/epilvu1LK/1L9Qz8hyYbAN4F/SXI41d6G2+n5rNQe1TN9OVWxdkUp5Xfj9O/1deCfkoxRHQZZXBccGmHusdBapbqOxXupEuFXJum3xTjN59f3nVMD/7e+37yh8F6dNa8K+lLgAVRnlnRcDjy1TrgAJHk+sMZpqX3G9n2qPR4H9LS/lapAOekec6xfHgi8uDNR/2N4NXB+KeX6uvkuevaoJHkZ1VkRU9XEMtZqiu+9fkzX6/tDqsGRb+xp710PTHHb1UXJ3epDiRfX884r1dkZi4AXJdmqa77tqPaCdPtmvd5D6iK9ez3pXRdVMTOf6oqle1EVGhpx7rFQr+cmeTTVe2Mh1Wl0u1N903phmfyiP+9Lsgvwvbr//YE3UY0e7wzmupxqsNkbktxC9c/8rFLKVI9R97qRarfvsXW8B1Idruk+JfbzVAXHD5J8HXg41a7ly9dcVF+xfQf4MfChJFsDF1Cdivs3wMe7B2qup34HHFMP+FtKdVnrhVSnnXZ8l+o1PZbqLIzHA69izb08a9PEMqZiKu+9fkzL61tKWZrkE8Dbknwb+AHV6abPpdoL0b0Haarb7uQk11ONMVlKNRbiAOB7XXtbDqH6x39Gkk9Tfb7fTHVY5Qld8V2e5D1Up8Runep3U24BtqEqRD9LdTpxp/+5SX5PtWdoPh4GEXi6qbfqxl9ON+3cVlKdXXEy1TUXNhtnnkNZ81S1Z1Od+raknn8J1emCj+iZ74VUCW0VXadSMs5pf13znMb4p5u+gur6GkupLsr0XbpOqevqfxDVP5kVVP9oduxd5lpi+yJdpzfWbZtSHQNfQnXNht9RXVMiPf0KcPQ4MS1mnNNge/ps3R1HVyy3ru31mGSZi+vttAfVP8wVVIMSX9rTbz7VP5Fr6237U6prSEz0Wrx0nHWt0zKY4DToznOlPr2UKb73Jnlv3eN9t66v7yTrm0t1/Y3r6m3yQ6pDLDcA/zHAtns98JN6/hVUhfVHgLGe9e4CnF1vn8upxkuM+56hOjvkDKpBobfW74+jgUeO0/eD9Ta4rJ+c4629t5Ti4F1plKS6guhFpZTnDzsWVepxEzcB7ymlfGjI4UjrxDEWkjSDkmw0TvOB9f1pMxeJND0cYyFJM2ufVL/98n2qwwzPAP4PcHIp5WfDDExqgoWFJM2sX1OdGfIOqkupL6X6jY/3DDMoqSmOsZAkSY1xjIUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUGlmTfJCXJ1mvptzjJF2cmKkmziXmkfSwsJEmaRJLdknwhye+S3JbkD0k+n+QBw45tfZRSyrBj0CyVZC4wD1hZJnkjJVkMnFZK2XeGQpM0S8yGPJLkbGAL4BvAZcDDgAOA24AdSinXz3RM67MNhh2AZq9Syl3AXcOOQ9LsNUvyyEHAT0spqzsNSX4A/ISqwHjPsAJbH3koRAPrPTaaynuSXFPvLvxxkseOM9+hSe7xzWS8Y631cdXvJtk1ydlJbk9yYZJd68dfUk+vSHJOkidO1/OV1LzZkEdKKad3FxWdNuBGYLt13wrtYmGhJh0GfAC4APhn4A/AycAm67jcbYHjge8ABwP3Br6T5FXAUcB/AocADwe+nsT3tTR7zYo8kmRTYFPghnWMq3U8FKJGJLkf8A7ge8ALOsdKk3wIePc6Lv5RwNNKKWfWy7wYWAR8Dnh0KeWquv0m4P8BuwCnreM6Jc2wWZZHDgQ2BE5Yx7hax292aspzqD5kn+wZgPXxBpZ9cScZ1M6q73/USQY97Q9rYJ2SZt6syCNJdqHau/H1UsqPGoitVSws1JSH1veXdTeWUv4E3LSOy+7+0FNKWVb/eXVPv077vddxfZKGY73PI0keDfwPcBHwD+sYUytZWGgYJjqlbO4E7RONGJ+oPf2FI2kWmvE8kuQhVOM9lgHPK6XcMmmEI8rCQk25sr5/RHdjfcy0t/K/qX5s8572hyJplK23eSTJfaiKivnAnqWU66ZjPW1gYaGmnAqsAt6cpLvSP3CcvpfX97t0GpJsArxm2qKTNBusl3mkXu73gQdR7am4bC2zjDTPClEjSil/SvIxqtO4vpvk+8ATgedyz9OxTqY63nlMko9S7YrcD/gTsNXMRS1pfbIe55GvADsBXwC2S9J97YpbSyknNry+Wc3CQk16D7ACeAPwLKrR1XtQnTp2t1LKqiQvBj5Ndb769VSjvm8Cjp3BeCWtf9bHPLJDfb9ffet2JXBiw+ub1fytEEmS1BjHWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZ4HYuG1FeJeyDgteM1DJsB1xbPH28dc4uGrO/cYmHRnAcC1ww7CI20BwNLhh2EGmdu0bD1lVssLJpzC8DVV1/N2NjYGg+sWrWKk08+mT322IN58+YNJbj1mdtn7SbbRsuXL+chD3kI+I22rSbMLeDnZ23cPpObjtxiYdGwsbGxcQuLjTfemLGxMd/Y43D7rJ3bSOPlFvC9sTZun8lNx/Zx8KYkSWqMhYUkSWqMhYUkSWpM34VFkr2SPKNrev8k5yc5Psm9mw1P0qgwt0jtMMgei48CYwBJHg/8G/B9YBvgyOZC06i54IILOPfcc7nqqquGHYqGw9yiaXPBBReYW2bIIGeFbANcXP/9t8B3SynvTvIkqiQg9eWaa6pT9HfZZRduv/127rXRxlz620vYaquthhyZZpi5RY3rzi+FmFtmwCB7LO4ANq7/fg5wcv33jdTfNqR+/PnPfwZgi73ezH2e/zZW3H4bN9xww5Cj0hCYW9S4Tn4Z2+kl5pYZMsgei58CRyb5GbATsE/d/ki8OpzWwbwtHsRdd3pF6hFmbtG0mTt2v2GHMDIG2WNxAHAn8FLgjaWUzmU+nwv8oKnAJI0cc4vUAn3vsSilXAU8f5z2tzYSkaSRZG6R2mGgS3onmQNsC9yfnr0epZTTG4hL0ggyt0izX9+FRZKnAscDDwXS83AB5jYQl6QRY26R2mGQPRafAc4G9gauo/rAS9K6MrdILTBIYfEI4KWllN83HYykkWZukVpgkLNCzqI6BrrOkrwxya+TLK9vZyZ5btfj90ryqSR/TnJrkv9OsrBnGVsl+V6S25L8MclHk2zQ02fXJOcmWZnk90n2HSeW/ZMsTrIiyVlJdmriOUqaMnOL1AKD7LH4JPBvSbYELgRWdT9YSvl1H8u6BngXcBnVMdXXAN9K8sRSym+Ao6h2i74MWAYcDXwTeDpAkrnA94DrgacBDwCOq2N6d91nm7rPZ4BXAbsBn09yXSllUd1nH6pLBr+BKrkdCCxK8qhSyh/7eD6SBmdukVpgkMLiv+v7L3S1FaoPb18DrEop3+lp+pckbwSemuQa4LXAK0spPwJI8vfAJUmeWkr5BbAH8BjgOaWUpcD5Sd4LHJHk0FLKHVQf6CtKKW+r13FJ/UNHbwUW1W0HAZ8rpRxbr+cNVElnP+DDU30+ktaJuUVqgUF/K6Rx9TeElwGbAGcCOwLzgFM7fUopv01yFbAz8Iv6/sL6g9+xCPgP4LHAeXWfU1nTIuDj9Xo3rNd1eNd6Vic5tZ53onjnA/O7mjYDWLVqFatWrfFF6+7p3nZVVq9eDcD8DaoTATbaaCNWr17t9uoy2XuoRdvJ3EJ/uaXT3n2vNXXyy73mzTW3jGM6cssgF8i6cqA1TaD+FcMzgXsBtwIvLqVcnGQH4I5Sys09sywFtqz/3rKe7n2cKfQZS7IRcG+qb0Lj9Xn0JKEfDBzS23jyySez8cYbj9MdTjnllEkWpyOeW/8w0Au+ypIlS1iyZMnkM4yg8d5Dt9122xAiaZ655W595xYwv6zNka9+Jrz6meaWCTSZWwa9QNbDqY4Vblc3XQx8opRy+QCLuxTYAVhAdSnfLyX560HimmGHs+ZPOW8GXLPHHnswNrbm7yWtWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVPHML0EduAfPL2nTyy0HHncF1J33a3NJjOnLLIBfI2hP4NnA+8LO6+enAb5K8oJTSV9lcH6vsnF52TpK/Av4JOAHYMMnmPd8sFlINqKK+7x1hvbDrsc79wnH6LC+l3J7kLuCuCfpczwRKKSuBlZ3ppNqNP2/evAk/3JM9NsrmzKlOTlp5Z2HFnYXbb7+dOXPmuK3GMd57qC3bydxyd9x955apPD6qOvllxaq7zC2TaDK3DHK66YeBo0opTymlHFTfnkJ1XPGIgaK4Z0zzgXOoRmDv1nkgyaOArah2b1LfPz7J/bvm3x1YTvVNp9NnN9a0e2cZdfI5p2c9c+rpM5E0U8wtUgsMcihkO+Dl47R/gWoX5pQlORw4CbiKanffK4FdgT1LKcuSHEP1M8o3Un2gPwmcWY/aBjiZ6kP+5STvoDrm+UHgU3XVD9WpYAck+Ugd47Pr+PfuCuVIqt2kZwO/rJ/HJsCx/TwfSevE3CK1wCCFxZ+ojlte1tO+A9Dvedn3pzo3/AFU55L/muqD39nl+VZgNdVpaPOpRly/qTNzKeWuJM+nGql9JvC/wJeA93X1uSLJ3lTnrf8T1fnt/9A5z7zuc0KS+wGHUSWQ84G9ekaES5pe5hapBQYpLD4HfDbJw4Cf121PB97JmgOO1qqU8tq1PL4C2L++TdTnSuB5a1nOacAT19LnaKqL5EgaDnOL1AKDFBYfAG4B3sZfzs++FjgU+PdmwpI0gswtUgsMch2LQrXr76gkm9VttzQdmKTRYm6R2mGg61h0+KGXNB3MLdLsNaXCIsm5wG6llJuSnEd13f5xlVKe1FRwktrN3CK1z1T3WHyLv1yw5VtM8uGXpD6YW6SWmVJhUUp5f9ffh05bNJJGirlFap++r7yZ5A9J7jNO++ZJ/tBMWJJGjblFaodBLum9NdUv9vWaDzx4naKRNMq2xtwizXpTPiskyQu7JvdMsqxrei7V9e+vaCowSaPB3CK1Sz+nm55Y3xeqS9t2WwUsprqwjST148T63twitcCUC4tSyhyAJFcAf1VKuWHaopI0MswtUrsMcuXNbaYjEEmjzdwitcNUL5D1FuCzpZQV9d8TKqV4TX9JU2Jukdpnqnss3gp8BVhR/z2Rgj8WJGnqzC1Sy0z1AlnbjPe3JK0Lc4vUPoNcIOt9STYep32jJO9rJixJo8bcIrXDIBfIOgTYdJz2jevHJGkQ5hapBQYpLML4PxS0PXDjuoUjaYSZW6QW6OfKmzdRfegL8Lsk3QlgLtU3jc80G56ktjO3SO3Sz3UsDqT6RvEFqt2S3ZfdvQNYXEo5s7nQJI2IAzG3SK3Rz5U3vwR3Xx3vZ6WUO6ctKkkjw9witUvfYyxKKT8BHprkg0m+muT+AEmem+SxjUcoaSSYW6R2GOR0078GLgSeAryEv4zi3h54f3OhSRol5hapHQY5K+TDwHtKKbtTHf/s+BHw1EaikjSKzC1SCwxSWDwe+J9x2v8I3HfdwpE0wswtUgsMUljcDDxgnPYnAkvWKRpJo+xmzC3SrDdIYfE14IgkW1Kddz4nydOBjwHHNRmcpJFibpFaYJDC4t3Ab4GrqQZXXQycDvwc+GBzoUkaMeYWqQX6uUAWAKWUO4DXJfkA8DiqBHBeKeWypoOTNDrMLVI79F1YdJRSrkpydf33eNf3l6S+mVuk2W2QQyEkeW2Si4AVwIokFyX5h2ZDkzRqzC3S7Nf3HoskhwEHAZ8EOtfv3xk4KslWpZT3NRifpBFhbpHaYZBDIW8EXldK+WpX27eT/JoqIfjhlzQIc4vUAoMcCpkHnD1O+zmsw5gNSSPP3CK1wCCFxZepvln0ej3wlXULR9IIM7dILTDQ4E3gtfWgqs/XtwuB1wGrkxzZua1tIUkOTvKrJLck+WOSE5M8qqfPvZJ8Ksmfk9ya5L+TLOzps1WS7yW5rV7OR5Ns0NNn1yTnJlmZ5PdJ9h0nnv2TLE6yIslZSXYaaOtIGpS5RZrlBiksHgecC/wJeHh9u6FuexzV5XefCOwwhWX9NfApqh8Y2p1qV+jJSTbp6nMU8ALgZXX/BwLf7DyYZC7wPWBD4GnAa4B9gcO6+mxT9/lxHdfHgc8n2bOrzz7AkVS/ovgk4AJgUeenmyVNO3OL1AKDXCDrWU2tvJSyV/d0Xen/EdgROD3JAuC1wCtLKT+q+/w9cEmSp5ZSfgHsATwGeE4pZSlwfpL3Ul0a+ND6ojtvAK4opbytXtUlSZ4BvBVYVLcdBHyulHJsvZ43AHsD+1H96qKkaWRukdph4AFRSbal+kZxeinl9iRp4GI2C+r7G+v7Ham+aZza6VBK+W2Sq6hOQ/tFfX9h/cHvWAT8B/BY4Ly6z6msaRHVtwuSbFiv6/Cu9axOcmo97z0kmQ/M72raDGDVqlWsWrVqjb6d6d52VVavXg3A/A0CwEYbbcTq1avdXl0mew+1bTuZW6aeWzrt3fdaUye/3GveXHPLOKYjtwxyHYv7AF8HnkX1Q0GPAP4AHJPkpq7Kvd/lzqH6MP6slHJR3bwlcEcp5eae7kvrxzp9lo7zOFPoM5ZkI+DewNwJ+jx6gpAPBg7pbTz55JPZeOONx53hlFNOmWBRAjjiuVtVf7zgqyxZsoQlS/xBy17jvYduu+22IUTSPHPL3frOLWB+WZsjX/1MePUzzS0TaDK3DLLH4ihgFbAVcElX+wlUxxEH+vBTHQ99HPCMAeefaYdTPd+OzYBr9thjD8bGxtbouGrVKk455RR233135s2bN5MxzgrnnXce1113He886SpW3llYevy7OP3009l+++2HHdp6Y7L30PLly4cUVePMLZUp5xYwv6xNJ78cdNwZXHfSp80tPaYjtwxSWOwB7FlKuSZJd/tlwEMHCSLJ0cDzgV1KKdd0PXQ9sGGSzXu+WSysH+v06R1hvbDrsc79wnH6LK93td4F3DVBn+sZRyllJbCy6zkAMG/evAk/3JM9NsrmzKnGEK+8s7DizsLtt9/OnDlz3FbjGO891KLtZG5hsNwylcdHVSe/rFh1l7llEk3mlkHOCtkEGG//yBZ0fRimIpWjgRcDzy6lXNHT5RyqbzC7dc3zKKpvNJ1L/p4JPL5nhPXuwHKqn13u9NmNNe3eWUY9COucnvXMqafPRNJMMLdILTBIYXEG8Oqu6VJ/UN5BdcpVPz4F/B3wSuCWJFvWt40ASinLgGOAI5M8K8mOwLHAmfWobYCTqT7kX06yfX2a1weBT9WVP8BngIcl+UiSRyd5E/Byql2vHUdS/WTza5JsRzVAa5N6fZKmn7lFaoFBDoW8A/hhkidTnd/9EaoR0lsAT+9zWZ2r7J3W0/73wBfrv98KrAb+m2qk9CLgTZ2OpZS7kjyf6sN6JvC/wJfo+l2BUsoVSfam+rD/E3AN8A+llEVdfU5Icj+qc9S3BM4H9uoZES5p+phbpBYY5DoWFyV5JHAAcAuwKdVFZT5VSrmuz2VlCn1WAPvXt4n6XAk8by3LOY3q4jqT9TkaOHptMUlqnrlFaoe+Cosk84AfAG8opXxoekKSNGrMLVJ79DXGopSyCnjCNMUiaUSZW6T2GGTw5n9SXQpXkppkbpFaYJDBmxsA+yV5DtVpVP/b/WAp5aAmApM0cswtUgsMUlh0foEQ4JE9j63r9fwljS5zi9QCQ/11U0nqMLdI7TDIGAtJkqRxWVhIkqTGWFhIkqTGWFhIkqTGTKmwSHJuknvXf78vycbTG5akUWBukdpnqnsstqP6NT6AQ6iu4S9J68rcIrXMVE83PR84NslPgQBvT3LreB1LKYc1FJuk9jsfc4vUKlMtLPYF3g88n+pCNc8F7hynX6H6aWBJmop9MbdIrTKlwqKUcinwCoAkq4HdSil/nM7AJLWfuUVqn0GuvOmZJJIaZ26R2mGQ3wohycOBA6kGXgFcDHyilHJ5Q3FJGkHmFmn26/sbQpI9qT7sOwG/rm9PAX6TZPdmw5M0KswtUjsMssfiw8BRpZR3dTcm+TBwBHBKE4FJGjnmFqkFBjmmuR1wzDjtXwAes27hSBph5hapBQYpLP4E7DBO+w6Ao7klDcrcIrXAIIdCPgd8NsnDgJ/XbU8H3gkc2VRgkkaOuUVqgUEKiw8AtwBvAw6v264FDgX+vZmwJI0gc4vUAoNcx6IARwFHJdmsbrul6cAkjRZzi9QOA13HosMPvaTpYG6RZi+vdCdJkhpjYSFJkhpjYSFJkhrTV2GRZF6SHyZ5xHQFJGn0mFuk9uirsCilrAKeME2xSBpR5hapPQY5FPKfwGubDkTSyDO3SC0wyOmmGwD7JXkOcA7wv90PllIOaiIwSSPH3CK1wCCFxeOAc+u/H9nzWFm3cCSNMHOL1AKDXHnzWdMRiKTRZm6R2mHg002TbJtkzyQb1dNpLixJo8rcIs1ufRcWSe6T5IfA74DvAw+oHzomyb81GZyk0WFukdphkD0WRwGrgK2A27raTwD26mdBSXZJ8p0k1yYpSV7U83iSHJbkuiS3Jzm19zz3JFsk+UqS5UluTnJMkk17+jwhyRlJViS5Osk7xonlZUl+W/e5MMnz+nkuktaZuUVqgUEKiz2Ad5ZSrulpvwx4aJ/L2gS4ANh/gsffAbwFeAPwFKpR4ouS3Kurz1eAxwK7A88HdgE+23kwyRhwMnAlsCPwz8ChSV7f1edpwFeBY4AnAicCJyZ5XJ/PR9LgzC1SCwxyVsgmrPltomMLYGU/CyqlnAScBNB7GLU+rnog8MFSyrfqtlcDS4EXAV9Lsh3VN5m/KqWcXfd5M/D9JG8vpVwLvArYENivlHIH8JskOwAH8Zck8U/AD0opH62n35tkd+AAqsQjafqZW6QWGKSwOAN4NfDeerokmUP1DeDHTQUGbANsCZzaaSilLEtyFrAz8LX6/ubOB792KrCa6lvI/9R9Tq8/+B2LgHcmuXcp5aa6z5E9619ElWTGlWQ+ML+raTOAVatWsWrVqjX6dqZ721VZvXo1APM3qP4BbLTRRqxevdrt1WWy91CLtpO5hf5yS6e9+15r6uSXe82ba24Zx3TklkEKi3cAP0zyZKpq/SNUuwu3AJ4+UBTj27K+X9rTvrTrsS2BP3Y/WEq5M8mNPX2uGGcZncduqu8nW894DgYO6W08+eST2Xjjjced4ZRTTplkcTriuVtVf7zgqyxZsoQlS5YMN6D10HjvodtuG+9L/qxkbqn0nVvA/LI2R776mfDqZ5pbJtBkbhnkOhYXJXkk1a68W4BNgW8CnyqlXDdQFLPT4az5TWQz4Jo99tiDsbGxNTquWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVLHPL3aacW8D8sjad/HLQcWdw3UmfNrf0mI7cMsgeC0opy4APDbTGqbu+vl8IdCeVhcD5XX3u3z1Tkg2ovuFc39VnYc+yF3Y9Nlmf65lAKWUlXcd9O8dx582bN+GHe7LHRtmcOdUY4pV3FlbcWbj99tuZM2eO22oc472H2rSdzC2D5ZapPD6qOvllxaq7zC2TaDK3DHSBrCT3TvL2+vSrY5K8LckWA0UwsSuoPny7da13jOr45pl105nA5kl27Jrv2VTP66yuPrsk6d5CuwOX1sdAO312Y027d61H0gwwt0iz3yAXyNoFWEx1qta969tbgCvqx/pZ1qZJdqhHUgNsU09vVUopwMeB9yR5YZLHA8cB11KdskUp5RLgB8DnkuyU5OnA0cDX6lHbAMcDd1BdZOexSfahGqndvavxE8BedRJ7dJJDgSfXy5I0A8wtUjsMcijkU1QXrHljKeUugCRzgU/Xjz2+j2U9mTVHe3c+kF8C9qUavLUJ1albmwM/BfYqpazomudVVB/SH1KN2P5vqmQE3D3ae486tnOAG4DDSimf7erz8ySvBD4I/CvVefMvKqVc1MdzkbRuzC1SCwxSWGwLvLTzwQcopdyV5EiqU8WmrJRyGjDh7wDU3yzeV98m6nMj8Mq1rOfXwDPX0ucbwDcm6yNpWplbpBYYZIzFucB247RvR3WlO0kahLlFaoEp7bFI8oSuyX8HPpFkW+AXddtTqS6d+65mw5PUZuYWqX2meijkfKCw5q7Fj4zT73iqY6SSNBXnY26RWmWqhcU20xqFpFFlbpFaZkqFRSnlyukORNLoMbdI7TPQlTeTPBB4BtWV6dYYAFpK+fcG4pI0gswt0uzXd2GRZF/g/1FdGObPVMdHOwrVACxJ6ou5RWqHQfZYfAA4DDi8lLK64XgkjS5zi9QCg1zHYmOqy9r6wZfUJHOL1AKDFBbHAC9rOhBJI8/cIrXAIIdCDga+m2Qv4EJgVfeDpZSDmghM0sgxt0gtMGhhsSdwaT3dO8BKkgZhbpFaYJDC4m3AfqWULzYci6TRZm6RWmCQMRYrgZ81HYikkWdukVpgkMLiE8Cbmw5E0sgzt0gtMMihkJ2AZyd5PvAb7jnA6iVNBCZp5JhbpBYYpLC4Gfhmw3FI0s2YW6RZr+/CopTy99MRiKTRZm6R2mGQMRaSJEnjGuRHyK5gknPKSykPW6eIJI0kc4vUDoOMsfh4z/Q84InAXsBH1zUgSSPr4z3T5hZpFhpkjMUnxmtPsj/w5HWOSNJIMrdI7dDkGIuTgL9tcHmSBOYWaVZpsrB4KXBjg8uTJDC3SLPKIIM3z2PNAVYBtgTuB7ypobgkjRhzi9QOgwzePLFnejXwJ+C0Uspv1zkiSaPqxJ5pc4s0Cw0yePP90xGIpNFmbpHawQtkSZKkxkx5j0WS1Uxy8ZpaKaUMcnhF0ogyt0jt0s8H9cWTPLYz8BbcAyKpf+YWqUWmXFiUUr7V25bkUcCHgRcAXwHe11xokkaBuUVql4G+BSR5YJLPARdSFSc7lFJeU0q5stHoJI0Uc4s0+/VVWCRZkOQI4PfAY4HdSikvKKVcNC3RSRoJ5hapPfoZvPkO4J3A9cD/GW/3pST1y9witUs/gzc/DNxO9Y3iNUleM16nUspLmghM0sgwt0gt0k9hcRxrPyVs1qt/SfGfqS4lfAHw5lLKL4cbldRq5hapRfo5K2TfaYxjvZBkH+BI4A3AWcCBwKIkjyql/HGYsUltZW4xt6hdPDd8TQcBnyulHFtKuZgqCdwG7DfcsCTNcuYWjQwLi1qSDYEdgVM7baWU1fX0zsOKS9LsZm7RqPESuX9xX2AusLSnfSnw6N7OSeYD87uaNgO48cYbWbVq1Rp9V61axW233cYZZ5zBnDlzmDNnDqtXr777HrhH22SPta3/pZdeyqabbkpuvJKsuot73etenHPOOdx6662NxbO+b4O1PbZ69Wpuu+02/vznPzNv3rw13l+33HJL79tT65dpyy2wZn7ZYIMNhv5eXd/6X3bZZWy66abMvXXplHLLMOIf5jabjtxiYTG4g4FDehu32WabIYTSPq9//euHHcJstBmwfNhBaJ2ZW6aRuWUgfeUWC4u/uAG4C1jY076Q6vz6XodTDcbqtgVw4zh9NwOuAR4M+PXyntw+a7e2bbQZcO2MRqSpms7cAn5+1sbtM7nGc4uFRa2UckeSc4DdgBMBksypp48ep/9KYGVP87gVXZLOn7eUUvxG2cPts3ZT2EZut/XUdOaWelmdP/38jMPtM7npyC0WFms6EvhSkrOBX1KdErYJcOwwg5I065lbNDIsLLqUUk5Icj/gMKqL2JwP7FVK6R10JUlTZm7RKLGw6FFKOZpxdk+uo5XA+7nn7k1V3D5r5zaa5aYpt4DvjbVx+0yu8e2TUlp/JV1JkjRDvECWJElqjIWFJElqjIWFJElqjIWFJElqjIXFNEmyRZKvJFme5OYkxyTZdC3znJak9Nw+M1MxT6ck+ydZnGRFkrOS7LSW/i9L8tu6/4VJnjdTsQ5LP9soyb7jvFdWzGS8Gg5zyz2ZXyY307nFwmL6fAV4LLA78HxgF+CzU5jvc8ADum7vmK4AZ0qSfaguEPR+4EnABcCiJPefoP/TgK8CxwBPpLpa4YlJHjcjAQ9Bv9uotpw13ysPne44tV4wt3Qxv0xuKLmllOKt4RuwHVCAJ3e17QWsBh44yXynAR8fdvzTsD3OAo7ump4DLAHeNUH/E4Dv9rT9AvjMsJ/LerSN9gVuHnbc3mb8fWJuuedzM780u33WObe4x2J67Ez1wpzd1XYq1Yf/KWuZ91VJbkhyUZLDk2w8bVHOgCQbAjtSPX8ASimr6+mdJ5ht5+7+tUWT9J/VBtxGAJsmuTLJ1Um+leSx0xyqhs/c0sX8Mrlh5RavvDk9tgT+2N1QSrkzyY31YxM5HriS6pfkngAcATwKeMk0xTkT7gvMBXovXbwUePQE82w5Qf/Jtt1sNsg2uhTYD/g1sAB4O/DzJI8tpVwzXYFq6MwtazK/TG4oucXCog9JPgy8cy3dtht0+aWU7uOkFya5DvhhkoeXUi4fdLlqn1LKmcCZnekkPwcuAf4ReO+w4tJgzC1aXzSRWyws+vNvwBfX0ucPwPXAGgNjkmwAbFE/NlVn1ffbArP1w38DcBewsKd9IRNvi+v77D/bDbKN1lBKWZXkPKr3imYfc8tgzC+TG0pucYxFH0opfyql/HYttzuoqr3Nk+zYNfuzqbb3WeMufHw71PfXNfMMZl69Pc4Bduu0JZlTT585wWxndvev7T5J/1ltwG20hiRzgcczi98ro8zcMhjzy+SGlluGPWK1rTfgJOBcYCfg6cDvgOO7Hn8Q8Ftgp3r64VS7mXYEtgZeSPVN4ifDfi4NbIt9gBXAa6h25/4/4CZgYf34ccDhXf2fBqwC3kZ1HPBQ4A7gccN+LuvRNnofsAfwMKpTyL4K3A48ZtjPxdu0v1fMLWtuD/NLs9tnnXPL0J90W29UuyaPB24BlgFfADbtenxrqtPGdq2nHwL8BPhz/Sa4DPgIMDbs59LQ9jiAavDYSqpvVk/peuw04Is9/V9GNYhoJXAR8LxhP4f1aRsBR3X1vR74HvDEYT8HbzPyPjG33HObmF8a2j5N5BZ/Nl2SJDXGMRaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhYauiSLkxw47DgktYu5ZTgsLCRJUmMsLCRJUmMsLLROkrw+ybX1L+Z1t38ryReSPLz+e2mSW5P8KslzJlne1klKkh262jav23btantckpPqZS5N8uUk952GpyhpCMwts5eFhdbVN4D7AM/qNCTZAtgL+AqwKfB9qp/pfSLwA+A7SbYadIVJNgd+BJwHPLle10Lg64MuU9J6x9wyS20w7AA0u5VSbkpyEvBK4Id180uBG4Afl1JWAxd0zfLeJC+m+unmowdc7QHAeaWUd3cakuwHXJ3kkaWU3w24XEnrCXPL7OUeCzXhK8DfJplfT78K+FopZXWSTZN8LMklSW5OciuwHTDwtwpge+BZ9a7KW+tl/rZ+7OHrsFxJ6xdzyyzkHgs14TtAgL2T/Ap4JvDW+rGPAbsDbwd+D9wO/Bew4QTLWl3fp6ttXk+fTet1vnOc+a/rN3hJ6y1zyyxkYaF1VkpZkeSbVN8mtgUuLaWcWz/8dOCLpZT/AUiyKbD1JIv7U33/AKrjnAA79PQ5F/hbYHEp5c51fgKS1kvmltnJQyFqyleAvYH96r87LgNekmSHJNsDxzPJ+66UcjvwC+BdSbZL8tfAB3u6fQrYAvhqkr+qR4fvmeTYJHMbfE6Shs/cMstYWKgpPwJuBB5F9QHvOAi4Cfg51S7GRVTfCiazH9XetHOAjwPv6X6wlHIt1beVucDJwIV1v5v5y+5OSe1gbpllUkoZdgySJKkl3GMhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIa08rCIskuSb6T5NokJcmLpjDPrknOTbIyye+T7Dv9kUqS1C6tLCyATYALgP2n0jnJNsD3gB8DOwAfBz6fZM9pik+SpFZKKWXYMUyrJAV4cSnlxEn6HAHsXUp5XFfb14DNSyl7TX+UkiS1wwbDDmA9sTNwak/bIqo9F+NKMh+Y39O8BXBjo5FJU7MZcG1p+zcFSes9C4vKlsDSnralwFiSjUopt48zz8HAIdMemTR1DwaWDDsISaPNwmJwhwNHdk1vBlxz9dVXMzY2NqSQNIqWL1/OQx7yEIBbhh2LJFlYVK4HFva0LQSWT7C3glLKSmBlZzoJAGNjYxYWkqSR1dazQvp1JrBbT9vudbskSZqiVhYWSTZNskOSHeqmberprerHD09yXNcsnwEeluQjSR6d5E3Ay4GjZjZySZJmt1YWFsCTgfPqG1RjIc4DDqunHwBs1elcSrkC2JtqL8UFwNuAfyilLJqpgCVJaoPWX8dipiQZA5YtW7bMMRaaUcuXL2fBggUAC0opy4cdj6TR1tY9FpIkaQgsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmNaW1gk2T/J4iQrkpyVZKe19D8wyaVJbk9ydZKjktxrpuKVJKkNWllYJNkHOBJ4P/Ak4AJgUZL7T9D/lcCH6/7bAa8F9gH+dUYCliSpJVpZWAAHAZ8rpRxbSrkYeANwG7DfBP2fBvyslHJ8KWVxKeVk4KvApHs5JEnSmlpXWCTZENgROLXTVkpZXU/vPMFsPwd27BwuSfIw4HnA9ydZz/wkY50bsFlDT0GSpFlrg2EHMA3uC8wFlva0LwUePd4MpZTjk9wX+GmSUG2Xz5RSJjsUcjBwSAPxSpLUGq3bYzGIJLsC7wbeRDUm4yXA3kneO8lshwMLum4Pnt4oJUla/7Vxj8UNwF3Awp72hcD1E8zzAeDLpZTP19MXJtkE+GySD9WHUtZQSlkJrOxMVzs6JEkaba3bY1FKuQM4B9it05ZkTj195gSzbQz0Fg93dWZvOkZJktqqjXssoDrV9EtJzgZ+CRwIbAIcC5DkOGBJKeXguv93gIOSnAecBWxLtRfjO6WUu5AkSVPSysKilHJCkvsBhwFbAucDe5VSOgM6t2LNPRQfBEp9/yDgT1TFxr/MVMySJLVBSinDjqEV6lNOly1btoyxsbFhh6MRsnz5chYsWACwoJSyfNjxSBptrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/82TfCrJdUlWJvldkufNVLySJLXBBsMOYDok2Qc4EngDcBZwILAoyaNKKX8cp/+GwCnAH4GXAkuAhwI3z1DIkiS1QisLC+Ag4HOllGMBkrwB2BvYD/jwOP33A7YAnlZKWVW3LZ6BOCVJapXWHQqp9z7sCJzaaSulrK6nd55gthcCZwKfSrI0yUVJ3p1k7iTrmZ9krHMDNmvuWUiSNDu1rrAA7gvMBZb2tC8FtpxgnodRHQKZCzwP+ADwNuA9k6znYGBZ1+2awUOWJKkd2lhYDGIO1fiK15dSzimlnAB8iGqMxkQOBxZ03R487VFKkrSea+MYixuAu4CFPe0LgesnmOc6YFUp5a6utkuALZNsWEq5o3eGUspKYGVnOsk6BS1JUhu0bo9FXQScA+zWaUsyp54+c4LZfgZsW/freCRw3XhFhSRJGl/rCovakcDrkrwmyXbAfwCbAJ2zRI5LcnhX//+gOivkE0kemWRv4N3Ap2Y4bkmSZrU2HgqhlHJCkvsBh1EN2Dwf2KuU0hnQuRWwuqv/1Un2BI4Cfk11HYtPAEfMZNySJM12KaUMO4ZWqE85XbZs2TLGxsaGHY5GyPLly1mwYAHAglLK8mHHI2m0tfVQiCRJGgILC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1JjWFhZJ9k+yOMmKJGcl2WmK870iSUly4jSHKElS67SysEiyD3Ak8H7gScAFwKIk91/LfFsDHwPOmO4YJUlqo1YWFsBBwOdKKceWUi4G3gDcBuw30QxJ5gJfAQ4B/jAjUUqS1DKtKyySbAjsCJzaaSulrK6nd55k1vcBfyylHDPF9cxPMta5AZutQ9iSJLVC6woL4L7AXGBpT/tSYMvxZkjyDOC1wOv6WM/BwLKu2zV9RypJUsu0sbDoS5LNgC8Dryul3NDHrIcDC7puD56G8CRJmlU2GHYA0+AG4C5gYU/7QuD6cfo/HNga+E6STtscgCR3Ao8qpVzeO1MpZSWwsjPdNa8kSSOrdXssSil3AOcAu3Xaksypp88cZ5bfAo8Hdui6fRv4cf331dMYriRJrdLGPRZQnWr6pSRnA78EDgQ2AY4FSHIcsKSUcnApZQVwUffMSW4GKKWs0S5JkibXysKilHJCkvsBh1EN2Dwf2KuU0hnQuRWwekjhSZLUWimlDDuGVqhPOV22bNkyxsbGhh2ORsjy5ctZsGABwIJSyvJhxyNptLVujIUkSRoeCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktSY1hYWSfZPsjjJiiRnJdlpkr6vS3JGkpvq26mT9ZckSeNrZWGRZB/gSOD9wJOAC4BFSe4/wSy7Al8FngXsDFwNnJzkQdMfrSRJ7ZFSyrBjaFySs4BflVIOqKfnUBULnyylfHgK888FbgIOKKUcN8V1jgHLli1bxtjY2ODBS31avnw5CxYsAFhQSlk+7HgkjbbW7bFIsiGwI3Bqp62Usrqe3nmKi9kYmAfcOMl65icZ69yAzQaPWpKkdmhdYQHcF5gLLO1pXwpsOcVlHAFcS1dxMo6DgWVdt2v6C1OSpPZpY2GxTpK8C3gF8OJSyopJuh4OLOi6PXgGwpMkab22wbADmAY3AHcBC3vaFwLXTzZjkrcD7wKeU0r59WR9SykrgZVd8w4UrCRJbdK6PRallDuAc4DdOm314M3dgDMnmi/JO4D3AnuVUs6e7jglSWqjNu6xgOpU0y8lORv4JXAgsAlwLECS44AlpZSD6+l3AocBrwQWJ+mMxbi1lHLrDMcuSdKs1crCopRyQpL7URULWwLnU+2J6Azo3ApY3TXLG4ENgf/qWdT7gUOnNVhJklqkldexGAavY6Fh8ToWktYnrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/5cl+W3d/8Ikz5upWCVJaotWFhZJ9gGOBN4PPAm4AFiU5P4T9H8a8FXgGOCJwInAiUkeNyMBS5LUEimlDDuGxiU5C/hVKeWAenoOcDXwyVLKh8fpfwKwSSnl+V1tvwDOL6W8YYrrHAOWLVu2jLGxsSaehjQly5cvZ8GCBQALSinLhx2PpNG2wbADaFqSDYEdgcM7baWU1UlOBXaeYLadqfZwdFsEvGiS9cwH5nc1bQZVkpdmku85SeuT1hUWwH2BucDSnvalwKMnmGfLCfpvOcl6DgYO6W18yEMeMrUopeZtAVhlSBqqNhYWM+Vw1tzLsRlwDfBg4JahRDR7ue3WTWf73TjsQCSpjYXFDcBdwMKe9oXA9RPMc32f/SmlrARWdqaTdP68xePc/XHbrZuu7SdJQ9e6s0JKKXcA5wC7ddrqwZu7AWdOMNuZ3f1ru0/SX5IkjaONeyygOkTxpSRnA78EDgQ2AY4FSHIcsKSUcnDd/xPAT5K8Dfge8ArgycDrZzhuSZJmtVYWFqWUE5LcDziMagDm+cBepZTOAM2tgNVd/X+e5JXAB4F/BS4DXlRKuaiP1a6kum7GyrV11D247daN20/SeqOV17GQJEnD0boxFpIkaXgsLCRJUmMsLCRJUmMsLCRJUmMsLPrgT7EPrp9tl2TfJKXntmIm411fJNklyXeSXFtvhxdNYZ5dk5ybZGWS3yfZd/ojlaSKhcUU+VPsg+t329WWAw/ouj10uuNcT21Ctb32n0rnJNtQXYvlx8AOwMeBzyfZc5rik6Q1eLrpFA3jp9jbYoBtty/w8VLK5jMZ5/ouSQFeXEo5cZI+RwB7l1Ie19X2NWDzUspe0x+lpFHnHosp6Pop9lM7baWU1fX0ZD/FfmpP26JJ+rfSgNsOYNMkVya5Osm3kjx2mkNtC993kobKwmJqJvsp9ol+Wn2Qn2Jvo0G23aXAfsDfAH9H9T79eZIHT1eQLTLR+24syUZDiEfSiGnlJb01u5VSzqTrB+CS/By4BPhH4L3DikuStHbusZiaGfkp9pYaZNutoZSyCjgP2LbZ0Fppovfd8lLK7UOIR9KIsbCYAn+KfXADbrs1JJkLPB64bjpibBnfd5KGykMhU+dPsQ+ur22X5H3AL4DfA5sD/0x1uunnZzrwYUuyKWvuqdkmyQ7AjaWUq5IcDjyolPLq+vHPAAck+QjwBeDZwMuBvWcwbEkjzMJiiob0U+yt0O+2A+4NfK7uexPVHo+nlVIunrGg1x9PpromRceR9f2XgH2prvGxVefBUsoVSfYGjgL+CbgG+IdSyqIZiVbSyPM6FpIkqTGOsZAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY35/1Z1kQi6TFVhAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOoklEQVR4nO3deZwcdZ3/8dd7kiGZGAIEDAgYYAFZBBTFg8MDREhUdL1x0RWEdcFFXQ4XFJVLdsWLS1AXf8ghRFDRUVSO5VpFMAaQWxA5whGuIZAEMkkG5vP7o6pDpdMz00fV9FTP+/l49GO6v1X9/X6qp+Yzn65TEYGZmZlZnrraHYCZmZl1HhcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7Fxi2CknHShqVy7tKulbStZnXu0oKSR8epfHPkfTgaIxVNe6m6XLuN9pjjxeSJkr6pqSHJQ1K6m13TGWX+fvctd2xWDm4wOhgkvZLE0LlsUzSAkmXS/q8pDVzGmfDtDDZPo/+8jSWY7NC7Q/8J/BzYF/g5PaGYzb+TGx3ADYqjgYeALqBDYBdgVOAwyS9LyJuy8x7AnBig/1vCBwDPAjc0sD79mxwnGYMF9unaU+RPR/oAQbaMPZ48Q7g0Yg4tN2BmI1XLjDGh0sj4sbM669LegfwG+DXkraOiH6AiHgBeKHIYCRNiYilEbGiyHFGEhFt+QcfyR0Gl7Vj7FZImgysiIjBdsdShxnAs3l1JqkLWCMiSvd7M2sX7yIZpyLiauBrwCbAJyrttY7BkLSHpOskPSvpOUn3SPrvdNquwLx01rMzu2P2S6dfK+kOSTtI+r2kpcB/Z6ZdWyO8CZL+W9Ljkp6X9GtJr6yK6UFJ51S/MdtnHbGtdgyGpJdJ+k667355uqxfkKSq+ULS6ZLeny7fckl3SppdY3mqY1ztGIw0luckbSSpN33+lKRvS5pQR58PSvqNpD0l3ZLuDrtL0ger5pue9nl7OsZiSZdKem3VfJX97R+TdIKkR4GlwLQm+viopGMkPSppiaSfS1pL0iRJp0h6Mu3nbEmTqvoYct0b7rMFdgO2yfzOd02nN/r7/bikO4HlwLC/W0nvkvR/6TIuljRP0j5V83xE0k2S+iX1STpf0kaZ6V9Ix96kRv9fl7RC0jrDxZHO+4a0n31rTJuVTtsrfb2JpO+ln0W/pKcl/UzSpnWMM+LfYaZtkqTjJP09/ewfVnKczKTq91tn8BaM8e3HJP/s9wR+WGsGSduQbOm4jWRXy3JgC2CXdJa/pu3HA2cCf0jbr890sy5wKXAhcD7wxAhxfRkI4Bsk30QPAa6UtH1lS0ud6oltpfSfzK9J/jmdRbJLZRbwLWAjoHpz+1uADwLfA5YAnwculjQzIp5uIM6KCcDlwFzgC8A7gcOB+4Dv1/H+LYGLgB8A5wKfAn4maXZE/G86zz8A7wd+RrLbbH3gQOD/JL06IhZU9flVYAXwbWBS+vzVDfbxJaCfZNfbFsDnSHYPDQLrAMcCOwL7pf0dD3Wte7U8BfwLyTo0NR0b4K9N/H7fAXwUOB3oI9nNVpOSYvFHwJ3A10m2nryOpCiZk5nnbJKi90skn9t/ALtIel1EPAv8FPhmOu63qob5KHBFRDwzzPIDEBE3Sro/fc+5VZP3Bp4hWdcA3gjsTPL3+QiwKfAZ4Nr097l0pPFGomQL0K9J/mbOJPnb3I7kM38VyfpknSYi/OjQB0nCDuANw8zzLHBz5vWxpFvx09eHpH2sN0wfb0jn2a/GtGvTaQcOMe3azOtd03kfAdbMtH8kbf98pu1B4Jw6+hwutnOABzOv/ymd98tV8/2M5J/h5pm2IPmHl217Tdr+2RF+L5tWx5TGEsBXq+a9Gbixjt/1g+n7P5hpmwYsqPr9TgK6asSzLDt25ndxH9BTNX+jfdwOdGfa56Sf5++q+ri+6vcx4ro3zOdxLXBHVVujv98XgVfXMdZawGLgT8DkqmlKf3aTFNa3Z+cB3pOOdVzV53BjVT9vTOf7lwY+g/8mKQjXybStQVJcnJVp66nx3h2rx8v8Pndt4u/wE+nn+Zaq+Q5M+9y50d+xH2P/4V0k9hww3Nkkz6Y//yn9FtKM5STf3Op1XkQsybz+OfAY8O4mx6/Xu0mS4GlV7d8BBLyrqv3KiLiv8iKSg2UXk2wlaNYPql7/oYH+FgC/zMSzGDgPeJ2kDdK25ZEeQyFpgqR1SdaBe4DX1+jz3KjaatREH+fFqse7zCX5PH9UNd9c4JWSKltWn01/trLuZTX6+/2/iLirjn73IPkbOjGqjtGIiMruxjeQbI37XnaeiPgtcDdJoVFxEbCDpM0zbXuT/B39qo54sv10k2xlq9gTWDudVolh5e9XUnf6+/w7yedf6/fZjI+QbLW4W9J6lQdwdTp9t5zGsTHEBYZNJdm8P5SLgD8C/w94QtKF6T71RtadR6OxAzrvzb5Ik/TfSb4lF2kTYEFVcQNJYqxMz3qoRh/PkGz2b8ayiHiqhf7+nvmHVvG39OemkGyqlnSopHtJ/mH1kexWeA3JN/FqD1Q3NNFH9ee0KP35cI32rkwfeax7WY3+fldb9iFUCoE7RhgbkiKs2t1VY1e2qOwNK3fdfYTkYO3FdcZERNya9r13pnlvkt9X5R87knokHS/pYVb9fa5N7d9nM7YEtkn7zT4q6+eMnMaxMcTHYIxjkjYmSSB/H2qeiOiX9DaSbxjvIdmnvDdwtaQ9I+LFOoZq5LiJeg11MbAJJN9SR8NQ42iI9mb7y9NRJAf3/ojk+IqFJP/MTqH2F45av7tG+xhquYb9/HJa91pRxHo7oohYIOkPJMdP/DfJ7oqZwJFNdHcR8OV0a8ES4H3ATyI5W6ziuyTH65wC3EBS6AXJMRkjFXP1/h12keweOmyI+auLTesALjDGt39Jf14+3Ezp5vCr0sdhko4C/osk8V/J0EmmWVtmX6Tf4LYgOdiv4hmSb1jVNgHuz7xuJLb5wDslrVn1LfcfM9PHsi0kqWorxqvSnw+mPz8MXBMRB2TfKGltkm+u9cijj7rUse41oqjfb2U32bYMXaxX+t6KzNaDTFv12BcB35O0FUlRtRS4pInYLiK5DsyHSI4BmUZSOGR9mGRX2OGVBiWnJK9dR//1/h3eB7wWuKrGVjbrUN5FMk4puQ7GV0k2A18wzHzTazTfkv6snF72fPpz7ZzC+6RWvcroh4FXkJyJUnEfsKOkNSoN6Wl3q5zO2mBsvyP55vXZqvZDSQqVS1d7x9iyIfCBygtJ04BPArdExONp84tUbWGR9BGSsyjqlUcfI6pz3WtEUb/fK0i2Dnwp/ce8UlocA9wIPAkclD0tU9K7gK2B31b1eTHJ5/zPJLtHfhMRz9OgiPgryZaDvdPHY8Dvq2Zb7fdJcqbPiKdHU//f4U9J1o9PV3eQ7qJ5WR1jWcl4C8b48C5J/0jy+16f5PS7PUi+Nb2v+sC0Kkenm6l/m84/A/h3kjM9rkvnuY/kgLCDJC0h+ac+NyLq3YddbSFwnaSz03gPIflmmD2V9v+RFB6XSfopyX7wT/DSt8mKRmK7BLgG+K/0GgC3khwU90/AKdkDOseovwFnSXojybfV/Uk+v09l5vkNye/0bJKzFbYDPs6q3zZHkkcf9ahn3WtEIb/fiFgs6VCSdXKepDkk3+xfC0wB9o2IAUlHkhzs/H+SfsJLp6k+SNWlzCPiSUnXkOxSWJPMQZlNuIjk1N9lJGePVF8o7TfAv0haBNwF7ERyinQ9p1rX+3f4Y5JdPj+QtBvJsTUTSLYefZTkdOEbsc7S7tNY/CjuwUunqVYey0m+wVxBcs2GNWu851hWPU31HUAv8Gj6/kdJTjPcsup97yO5BsAAmVMwqXG6YOY911L7NNWPkex7foJk0/BvgJk13n8YyT+bZST/cHao7nOE2M4hc1pk2jYVOCldzhUk/7S/QHq6YWa+AE6vEdOD1Dhtr2qeTbNxZGJ5bqTfxzB9Pph+TnuS/ONcRnLw4oer5ptEck2LBelnex3JPv6hfhcfrjFWS30wxOnTlWUlPS2VOte9Ydat1da7Vn+/I4z5XpJ/nEtJjmOYC3ysap6Pkpx6vIzkH/j5wEZD9PevaRyLqTr9tcG4tuClHLBLjelrkxxP8xTJlpjLSHbbrLIuU+M01Qb/DruBI0gOhl1G8kXiRpJrnExrdvn8GLuPyjnaZlZiSq5IekdE7NXuWMzMwMdgmJmZWQF8DIaZWYlI6mHk61MsjDbfTNDMBYaZWbnszchXxt2N5DgIs7bxMRhmZiUi6RUkV8Uczk1Rx03RzIrkAsPMzMxy54M8zczMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMGzMkHSspMi8flDSOW0MycxKyLlkbHCBYWZmZrmb2O4AzIaxFTDY7iDMrPScS9rABYaNWRGxvN0xmFn5OZe0h3eRWFtIeoukeZKWSbpP0oE15vF+UzMblnPJ2OUtGDbqJG0HXAE8BRxLsh4eBzzRxrDMrGScS8Y2FxjWDscDAt4aEQ8BSLoYuL2tUZlZ2TiXjGHeRWKjStIEYBbQW0kIABHxV+DytgVmZqXiXDL2ucCw0fZyoAe4t8a0e0Y5FjMrL+eSMc4FhpmZmeXOBYaNtqeAfmDLGtO2GuVYzKy8nEvGOBcYNqoi4kWS/aPvlzSz0i5pa5L9qWZmI3IuGftcYFg7HJP+/IOkIyV9GbgGuLONMZlZ+TiXjGEuMGzURcRtJN8wniI5zWx/kkTxy3bGZWbl4lwytikiRp7LzMyspCQ9DFweEf/a7ljGE2/BMDOzjiWpG1gX6Gt3LOONr+RpZmYdSdIs4GMk18u4qs3hjDveRWJmZh1J0jXAFsD3I+K/2x3PeFPILhJJsyW9JfP6YEm3SJojaZ0ixjSzzuNcYq2IiN0i4pUuLtqjqGMwvgVMg5V3u/sO8DtgM+CkgsY0s87jXGJWUkUdg7EZcFf6/EPAbyLiKEmvJ0kOZmb1cC4xK6miCowVwJT0+TuB89LnC0m/jZSJJAEbAkvaHYtZi9YEFkR5Dr5yLjEbm0bMJUUVGNcBJ0n6I/AmYO+0/VXAIwWNWaQNKWfcZrVsDDza7iDq5FxiNnYNm0uKKjA+C3wP+DDwmYioBPAu4LKCxizSEoCHH36YadPG5pemgYEBrrjiCvbcc0+6u7vbHU7dHPfoWbx4Ma985SuhXN+enUtGWRnXbXDco6neXFJIgRERDwF71Wg/tIjxRsu0adPGdFKYMmUK06ZNK81KCo7bhudcMvrKum477rGnsAttSeoiOf94BlVnq0TE74sa18w6i3OJWTkVUmBI2hGYA2wCqGpyABOKGNfMOotziVl5FbUF4wfAjcB7gMdIEkFHe+ihh+jrSy51v3z5ciZNmgTAeuutx8yZM1eZp1Zb9n1DTa+012qruPXWWxkYGGhp/HrGymtZHnnkkZbjrhVrM8vSyO8tG/eMGTNa6qvVdWCosTqEc0mB63HRuaTZXFbvsmTbR8olReeyZn8HtXJJ0evAUH3lnksiIvcH8DywRRF9t+NBcjpcLFq0KGqZP39+TO6ZEiTJL1DXyueTe6bE/PnzV5mnVlv2fUNNn9wzJa6//vrV2ubPnx/3339/9Pb2Rk9PT8vjjzRWnsuyzvR1W467VqzNLEsj42fjbrWvVteBWmPVsmjRosp809r9N9XA355zSYHrcdG5pJlc1siy1JtLis5leeaS0chlo5VLirqS51ySfabjQl9fH8v6l7LuXoez1ls/ATHIunsdzrp7Hc6y/qX09fWtnGetnfZerS37vqGmV/q6//77V2vr6+vj6aefBmDqNru1NH49Y+W9LADTdt67qbhrxdrMskzdbo+GxweYPvtzufTV7Dow1PrWQZxLCl6Pi8olzeayepelkVxSdC7LM5cUnctGM5cUtYvku8B3JG0A3A4MZCdGxG0FjdtW3eu+subzrAlrzRj2fSNNH6l/vWydlsZvZKy8lgVg4rQZLY1Vq62RZemaOr3h8QG6p2+US1+trgNDjdUBnEsKXo+LyiWt5rKRlqWZXDIauSyvXFLUOjCauaSoAuPi9OePMm1BcpCWD8wys3o5l5iVVJH3IjEza5VziVlJFXWhrflF9Gtm44tziVl5FXmhrc2BQ4Ct06a7gFMj4r6ixjSzzuNcYlZOhZxFImkWSRJ4E3Bb+ngzcKekPYoY08w6j3OJWXkVtQXjRODkiPhitlHSicA3gP8taFwz6yzOJWYlVdR1MLYGzqrR/iPg1QWNaWadx7nErKSKKjCeArav0b498GRBY5pZ53EuMSuponaR/BA4U9I/ANenbbsARwInFTSmmXUe5xKzkiqqwPgasAQ4HPh62rYAOBY4raAxzazzOJeYlVQhu0jS+6GcHBEbA2sBa0XExhFxaqR3/KmXpI0knS/paUn9km6X9IbMdEk6XtJj6fQrJW1Z1cd0SRdIWizpWUlnSZqaz9KaWVGcS8zKq6hjMFaKiCURsaSZ90paB/gjyf0H3kVyUNfhwDOZ2Y4APg8cRHL62vPA5ZImZ+a5ANgG2APYC3gbcGYzMZlZeziXmJVLbrtIJN0M7B4Rz0j6C8l9AmqKiNfX2e2RwMMR8alM2wOZMUVyAZ4TIuJXadsngSeA9wMXStoamA28MSJuTOf5HPA7SV+IiAV1xmJmo8C5xKwz5HkMxq+A5ZnnDW2+HML7SL5B/Ax4O/Ao8L2I+GE6fTNgA+DKyhsiYpGkucBOwIXpz2crCSF1JTBI8i3ll9WDSpoETMo0rQkwMDDAwMBA9ewMDg7S09PD5IliQveElc8Benp6GBwcXPl8cjp9lbbs+4aYXnleq21wcHDl/JPXmNja+HWMlfeyACvnbXSsWrE2tSxrTGSgwfEBJk1ULn01uw4Mtb7VWk9rtY1RziWjuB4XlkuazGV1L0sDuWTEsVpcljxzSc3xC/7cisolanA35qiStCx9ehLwM+CNwKnAQRFxrqSdSTZ7bhgRj2Xe91OS3bd7SzoK2Dcitqrq+0ngmIj4fo1xjwWOqW6fM2cOU6ZMyWfhzEbZ0qVL2WeffSA5jmFxu+MZTc4lZvmpO5dERO4P4H5g3RrtawP3N9DPCuD6qrbTgBvS5zuTfLt5RdU8PwUuSp8fBdxTo+8ngc8MMe4kYFrmsREQfX19sWLFitUe8+bNi56entj0gFNjow8csfL5pgecGj09PTFv3ryV82z43kNWa8u+b6jplb7OP//8mv3PnTs3ent7Y+Ye+7Y0fj1j5bks06dPj97e3tj8o19qaqxasTazLDPe/vGGxq/EvdWBp7XcVyvrwFDrW631tK+vL9K/l2lF/N07lxSfS/Jej4vMJc3msnqXpZFcUnQuyzOXFJ3LRjOXFHWa6qbAhBrtk4CNG+jnMZL7EGT9FfhQ+vzx9Of66bxkXt+SmWdGtgNJE4HpmfevIiKW89ImWpLds9Dd3U13d/dq83d1ddHf38+yF4KBgRdXPgfo7++nq6tr5fOedHq2Lfu+oaZXntdqq8wLsGzFCy2NX+9YeS4LwLImP7dasTazLN1NfG4Ay1+IXPpqdh0Yan2rtZ7WaiuBTXEuAYpbj4vKJa3ksnqWpZFcMtJYrS5Lnrmk1vhFf25F5ZJcCwxJ78u8nCVpUeb1BGB3MgdW1eGPwFZVba8CKrdwfoDkD3t30iQgaRrJ/tDK5sobgLUl7RARN6Vt7yA5g2ZuA7GY2ShxLjErv7y3YPSmPwM4t2raAPAgyalh9ToZuD7d9/lTkjsq/lv6ICJC0inAVyTdS5IkvkZyIZ7edJ6/SroM+KGkg4Bu4HTgwvBR32ZjVW/607nErKRyLTAiogtA0gMkp3L1tdjfPEkfILmC39Ekf/SHRMQFmdm+CbyM5Fz0tYHrgNkRsSwzz8dJEsFVJEd8X0xyvruZjUHOJWblV8gxGBGxWY59/Qb4zTDTgyRhHD3MPAuBffKKycxGh3OJWXnleaGtzwNnRsSy9PmQIsL3EDCzmpxLzDpDnlswDiW5jO6y9PlQAt+kyMyG5lxi1gFyKzCymzLz3KxpZuOLc4lZZyjkZmeSjpa02mXqJPVIGnL/pplZlnOJWXkVdTfVY4BatzCeQo3L5pqZDcG5xKykiiowRO0bFL0WWFjQmGbWeZxLzEoq7yt5PkOSDAL4m6RsYphA8k3kB3mOaWadx7nErPzyvg7GISTfOH5Esvkye3nfFcCDEXFDzmOaWec5BOcSs1LL+0qe58LKq+/9MSJeyLN/MxsfnEvMyq+QYzAi4v+ATSSdIOknkmYASHqXpG2KGNPMOo9ziVl5FXWa6tuB20nuRPhBXjoK/LXAcUWMaWadx7nErLyKOovkROArEbEHyf7SiquBHQsa08w6j3OJWUkVVWBsB/yyRvuTwHoFjWlmnce5xKykiiowngVeUaP9dcCjBY1pZp3nWZxLzEqpqALjQuAbkjYgOY+9S9IuwLeB8woa08w6j3OJWUkVVWAcBdwNPExyUNZdwO+B64ETChrTzDqPc4lZSeV9oS0AImIF8GlJXwO2JUkMf4mIe4sYz8w6k3OJWXkVUmBURMRDkh5On9e6n4CZ2YicS8zKp6hdJEg6QNIdwDJgmaQ7JP1rUeOZWWdyLjErp0K2YEg6HjgM+C5QuV/ATsDJkmZGxNFFjGtmncW5xKy8itpF8hng0xHxk0zbryXdRpIonBTMrB7OJWYlVdQukm7gxhrtN1HwcR9m1lGcS8xKqqgC48ck3zyq/RtwQUFjmlnncS4xK6kivwEcIGlP4E/p6zcDM4HzJJ1UmSkiDiswBjMrP+cSsxIqqsDYFrg5fb55+rMvfWybmc+nm5nZcJxLzEqqqAtt7VZEv2Y2vjiXmJVXYdfBAJC0haRZknrS1ypyPDPrTM4lZuVTSIEhaV1JVwF/A37HS3dDPEvSd4oY08w6j3OJWXkVtQXjZGCA5ECspZn2i4DZzXYq6YuSQtIpmbbJks6Q9LSk5yRdLGn9qvfNlPRbSUslPSnpW5J8ipvZ2OdcYlZSRf1h7AnMiohHqrZk3gts0kyHkt4IHAjcVjXpZOA9wEeARcDpwC+AXdL3TQB+CzwO7EzyDeg8kqR1VDOxmNmocS4xK6mitmC8jFW/bVRMB5Y32pmkqSTnvH8aeCbTvhZwAHBYRFwdETcBnwJ2lrRjOtuewKuBT0TELRFxKfBV4GBJazQai5mNKucSs5IqagvGH4BPkvzxAYSkLuAI4Jom+jsD+G1EXCnpK5n2HUiu9HdlpSEi7pb0EMn9Cv6U/rw9Ip7IvO9y4PvANsBfqgeTNAmYlGlaE2BgYICBgYHVghscHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuURF3PlY0rbAVSTnr78D+DXJH+B0YJeIuK+Bvj4GfBl4Y0Qsk3QtcEtEHCJpH+DsiJhU9Z4/A9dExJGSzgQ2iYhZmelTgOeBd6ffQqrHPBY4prp9zpw5TJkypd7QzcaUpUuXss8++wCsFRGL2x1PPZxLzMaeunNJRBTyANYi+WP+KcnR3ycAr2iwj1cCTwCvybRdC5ySPt8HWF7jfX8GvpE+PxO4vGr6FJIL87xriHEnAdMyj42A6OvrixUrVqz2mDdvXvT09MSmB5waG33giJXPNz3g1Ojp6Yl58+atnGfD9x6yWlv2fUNNr/R1/vnn1+x/7ty50dvbGzP32Lel8esZK89lmT59evT29sbmH/1SU2PVirWZZZnx9o83NH4l7q0OPK3lvlpZB4Za32qtp319fZGu99OK+rt3Lik2l+S9HheZS5rNZfUuSyO5pOhclmcuKTqXjWYuyX0XiaRu4DLgoIj4rxa72wGYAdycOcBrAvA2SZ8FZgFrSFo7Ip7NvG99kgOxSH++qarf9TPTVhMRy8ns362M3d3dTXd392rzd3V10d/fz7IXgoGBF1c+B+jv76erq2vl8550erYt+76hplee12qrzAuwbMULLY1f71h5LgvAsiY/t1qxNrMs3U18bgDLX4hc+mp2HRhqfau1ntZqG8ucS0ZnPS4ql7SSy+pZlkZyyUhjtboseeaSWuMX/bkVlUtyP8gzIgaA1+TU3VXAdsD2mceNJAdpVZ4PALtX3iBpK5JT2m5Im24AtpM0I9PvHsBi4K6c4jSznDmXmJVbUQd5nk9yRPYXW+kkIpYAd2TbJD0PPB0Rd6SvzwJOkrSQ5A/9u8ANEVG5MdIVJH/8P5Z0BLABySbWM9JvF2Y2djmXmJVUUQXGRGB/Se8EbiI5CGqlyPeuh4cCg8DFJPs7Lwf+PTPWi5L2IjnS+4Y0lnOBo3OMwcyK4VxiVlKjcTfVV1VNa+m0lYjYter1MuDg9DHUe+YD725lXDNrC+cSs5Ly3VTNbMxyLjErr0LvpmpmZmbjkwsMMzMzy50LDDMzM8udCwwzMzPLXW4FhqSbJa2TPj86vUa/mVlDnEvMOkOeWzC2Jrm1MiQ395maY99mNn44l5h1gDxPU70FOFvSdYCAL0h6rtaMEXF8juOaWWe5BecSs9LLs8DYDzgO2Iv07oLACzXmC8BJwcyGsh/OJWall1uBERH3AB8DkDQI7B4RT+bVv5mND84lZp2hqCt5+uwUM2uZc4lZeRV1LxIkbQ4cQnLAFiR3ITw1Iu4rakwz6zzOJWblVMi3A0mzSJLAm4Db0sebgTsl7VHEmGbWeZxLzMqrqC0YJwInR8QXs42STgS+AfxvQeOaWWdxLjErqaL2b24NnFWj/UfAqwsa08w6j3OJWUkVVWA8BWxfo317wEeDm1m9nEvMSqqoXSQ/BM6U9A/A9WnbLsCRwEkFjWlmnce5xKykiiowvgYsAQ4Hvp62LQCOBU4raEwz6zzOJWYlVdR1MAI4GThZ0ppp25IixjKzzuVcYlZehV0Ho8LJwMzy4FxiVi6+Sp6ZmZnlzgWGmZmZ5c4FhpmZmeUu9wJDUrekqyRtmXffZjZ+OJeYlVvuBUZEDACvybtfMxtfnEvMyq2oXSTnAwcU1LeZjR/OJWYlVdRpqhOB/SW9E7gJeD47MSIOK2hcM+ssziVmJVVUgbEtcHP6/FVV06KgMc2s8ziXmJVUUVfy3K2Ifs1sfHEuMSuvQk9TlbSFpFmSetLXavD9X5I0T9ISSU9K6pW0VdU8kyWdIelpSc9JuljS+lXzzJT0W0lL036+Janwq5iaWT6cS8zKp5ACQ9K6kq4C/gb8DnhFOuksSd9poKu3A2cAOwJ7AN3AFZJelpnnZOC9wEfS+TcEfpGJZQLwW2ANYGdgX2A/4PiGF8zMRpVziVl5FbUF42RgAJgJLM20XwTMrreTiJgdEedExJ0RcSvJH/NMYAcASWuRHGF+WERcHRE3AZ8Cdpa0Y9rNnsCrgU9ExC0RcSnwVeBgSWu0spBmVjjnErOSKmrT3p7ArIh4pGpL5r3AJi30u1b6c2H6cweSbyJXVmaIiLslPQTsBPwp/Xl7RDyR6edy4PvANsBfqgeRNAmYlGlaE2BgYICBgYHVghocHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuUTJ3ZDzJWkJ8PqIuDd9/tqIuF/SG4DLI2LdJvrsAn4NrB0Rb0nb9gHOjohJVfP+GbgmIo6UdCawSUTMykyfQnK627vTbyHVYx0LHFPdPmfOHKZMmdJo6GZjwtKlS9lnn30A1oqIxe2Opx7OJWZjT925JCJyf5DsK/1a+nwJsBnJ7pifAj9vss/vAw8CG2fa9gGW15j3z8A30udnkiSi7PQpJKe4vWuIsSYB0zKPjYDo6+uLFStWrPaYN29e9PT0xKYHnBobfeCIlc83PeDU6OnpiXnz5q2cZ8P3HrJaW/Z9Q02v9HX++efX7H/u3LnR29sbM/fYt6Xx6xkrz2WZPn169Pb2xuYf/VJTY9WKtZllmfH2jzc0fiXurQ48reW+WlkHhlrfaq2nfX19ka7304r4u3cuKT6X5L0eF5lLms1l9S5LI7mk6FyWZy4pOpeNZi4pahfJEcBV6beMNYBvkmxCnA7s0mhnkk4H9gLeFhGPZCY9Dqwhae2IeDbTvn46rTLPm6q6XD8zbTURsRxYnhkfgO7ubrq7u1ebv6uri/7+fpa9EAwMvLjyOUB/fz9dXV0rn/ek07Nt2fcNNb3yvFZbZV6AZSteaGn8esfKc1kAljX5udWKtZll6W7icwNY/kLk0lez68BQ61ut9bRWWwk4lxS8HheVS1rJZfUsSyO5ZKSxWl2WPHNJrfGL/tyKyiWFHOQZEXeQXBTnOuBXwMtIjsZ+XUTcV28/SpwOfAB4R0Q8UDXLTSQHgO2eec9WJAdv3ZA23QBsJ2lG5n17AIuBuxpZLjMbXc4lZuVV2PnbEbEI+K8WuzmDZNPlPwFLJG2Qti+KiP6IWCTpLOAkSQtJ/tC/C9wQEX9K572C5I//x5KOADYATgDOSL9dmNkY5lxiVk6FFRiS1iE57WvrtOkukoOoFg79rtV8Jv15bVX7p4Bz0ueHAoPAxST7Oy8H/r0yY0S8KGkvkv2uN5AckHUucHQDcZhZmziXmJVTIQWGpLcBlwCLgBvT5s8DR0t6b0T8vp5+ImLEq/VFxDLg4PQx1DzzgXfXM6aZjR3OJWblVdQWjDNILoTzmYh4EVZeBe976bTtChrXzDqLc4lZSRV1Jc8tgO9UEgIkmxeBk9JpZmb1cC4xK6miCoybeWl/adbWwK0FjWlmnce5xKykcttFIuk1mZenAadK2oLkEruQ3GToYOCLeY1pZp3HucSsM+R5DMYtJFf2yh5M9c0a880h2adqZlbLLTiXmJVengXGZjn2ZWbjl3OJWQfIrcBIT98yM2uJc4lZZyjyQlsbAm8BZlB1MGlEnFbUuGbWWZxLzMqpqAtt7Qf8D7ACeJpkf2pFkBy4ZWY2LOcSs/IqagvG14Djga9HxGBBY5hZ53MuMSupoq6DMQW40AnBzFrkXGJWUkUVGGcBHymobzMbP5xLzEqqqF0kXwJ+I2k2cDswkJ0YEYcVNK6ZdRbnErOSKrLAmAXck76uPjDLzKweziVmJVVUgXE4sH9EnFNQ/2Y2PjiXmJVUUcdgLAf+WFDfZjZ+OJeYlVRRBcapwOcK6tvMxg/nErOSKmoXyZuAd0jaC7iT1Q/M+mBB45pZZ3EuMSupogqMZ4FfFNS3mY0fz+JcYlZKhRQYEfGpIvo1s/HFucSsvIo6BsPMzMzGsaJudvYAw5yjHhH/UMS4ZtZZnEvMyquoYzBOqXrdDbwOmA18q6AxzazznFL12rnErCSKOgbj1Frtkg4G3lDEmGbWeZxLzMprtI/BuBT40CiPaWadx7nEbIwb7QLjw8DCUR7TzDqPc4nZGFfUQZ5/YdUDswRsALwc+PcixjSzzuNcYlZeRR3k2Vv1ehB4Crg2Iu4uaEwz6zy9Va+dS8xKoqiDPI8rot9WpQeG/SfJN6Bbgc9FxJ/bG5WZDcW5xKy8xs2FtiTtDZwEHAe8niQpXC5pRlsDM7NScS4xq0+uBYakQUkvjvB4Ic8xG3AY8MOIODsi7gIOApYC+7cpHjMbgnOJWfnlvYvkA8NM2wn4PG3YaiJpDWAH4OuVtogYlHRlGpeZjS3OJWYll2uBERG/qm6TtBVwIvBe4ALg6DzHrNN6wATgiar2J4B/rJ5Z0iRgUqZpTYCFCxcyMDBQPTuLFy9m8uTJ6OkH6Fry1MrnAJMnT+amm25a+XzCkidWa8u+b6jplef33HPPkP1PnTqV7v5nWhq/3rHyXJalS5fSteTxpsaqFWszy9K9bGHD4y9duhQtnJ9LX82uA7WWdfHixTz99NOrradLlixZrW2sci4ZvfW4qFzSSi6rZ1kaySVF57I8c0nRuWxUc0lEFPIANgR+CKwALgG2LWqsOmMJYKeq9m8Cc2vMf2w6vx9+dOJjo3b9LTqX+OFHRz2GzSW5n0UiaS3gKOBzwC3A7hHxh7zHaVAf8CKwflX7+sDjNeb/OslBXFnTGdsX9lkTeATYGCjPV1XHPdrWBBa0O4h6OJe0TZnXbcc9ekbMJbkWGJKOAI4k+UP756ixmbMdImKFpJuA3UnPq5fUlb4+vcb8y4HlVc2LCw6zJZIqT5dExJiONctxj7pSxOpc0j5lXbcd96gbMValm/FyIWkQ6AeuJKnya4qID+Y2aJ3SU8vOBQ4E/gwcAnwU+MeIqN6fWjqSpgGLgLXKtJI6bqvFuaR9yrpuO+6xJ+9dJOeR7JcZcyLiIkkvB44nuTjOLcDsTkgIZh3IucSs5PI+i2S/PPvLW0ScTo3NmB1iOcmFf6o3x451jttW41zSVmVdtx33GJPrLhIzMzMzGEeXCjczM7PR4wLDzMzMcucCw8zMzHLnAsPMzMxy5wKjA0j6sqTrJS2V9OwQ88yU9Nt0niclfUtS7ldybYSkgyU9KGmZpLmS3tTOeGqR9DZJl0haICkkvb9quiQdL+kxSf2SrpS0ZZvCNWtaWfNIGteYziXjNY+4wOgMawA/A75fa6KkCcBv0/l2BvYF9iM5j78t0osVnURyetbrgVuByyXNaFdMQ3gZSWwHDzH9CJI7ex4EvBl4nmQ5Jo9OeGa5KV0egdLkkvGZR9p9IyM/cr0R037AszXa30V6/4RM20EkV49bo02xzgVOz7zuAh4Fvtjuz3GYmAN4f+a1gMeAL2Ta1gKWAR9rd7x++NHMo0x5JI2hVLlkPOURb8EYH3YCbo9VrzR4OTAN2Ga0g5G0BrADyWWgAYiIwfT1TqMdTws2I7mSY3Y5FpEkvDIth1k9xlQegY7JJR2bR1xgjA8bANWXMX4iM220rQdMoHZM7YinWZVYy74cZvUYa3kEOiOXdGwecYExRkk6MT0YaLjHP7Y7TjMbu5xHrJ3afvSvDek7wDkjzHN/nX09DlQfVb1+Ztpo6yPdl1vVvj7tiadZlVjXJ9mHSub1LaMejdnqOjmPQGfkko7NI96CMUZFxFMRcfcIjxV1dncDsF3VUdV7AIuBu3IPfgRp3DcBu1faJHWlr28Y7Xha8ABJcsguxzSSo8DLtBzWoTo5j0DH5JKOzSPegtEBJM0EpgMzgQmStk8n/T0ingOuIEkAP5Z0BMl+vROAMyKiXXfwOwk4V9KNwJ+BQ0hO5Tq7TfHUJGkqsEWmabP0810YEQ9JOgX4iqR7SRLF14AFQO8oh2rWkpLmEShBLhm3eaTdp7H40fqDZBNo1HjsmplnE+B3wFLgKeDbwMQ2x/1ZYD7JbYrnAm9u92dZI8Zdh/hsz0mni+Q6AI+TnFZ2JfCqdsfthx+NPsqaR9K4xnQuGa95xLdrNzMzs9z5GAwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMGxMkPSjpkHbHYWbl5TwytrjAMDMzs9y5wDAzM7PcucCwlkn6N0kL0rsYZtt/JelHkjZPnz8h6TlJ8yS9c5j+NpUUmZstIWnttG3XTNu2ki5N+3xC0o8lrVfAIppZwZxHOo8LDMvDz4B1gd0qDZKmA7OBC4CpJDdI2h14HXAZcEl698amSFobuBr4C/CGdKz1gZ8226eZtZXzSIfx7dqtZRHxjKRLgX2Aq9LmDwN9wDURMQjcmnnLVyV9AHgfcHqTw34W+EtEHFVpkLQ/8LCkV0XE35rs18zawHmk83gLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNPfPIDXArulmzWfS/u8O522eQv9mln7OI90EG/BsLxcAgh4j6R5wFuBQ9Np3wb2AL4A/B3oB34OrDFEX4PpT2XauqvmmZqOeWSN9z/WaPBmNiY4j3QQFxiWi4hYJukXJN84tgDuiYib08m7AOdExC8BJE0FNh2mu6fSn68g2TcKsH3VPDcDHwIejIgXWl4AM2s755HO4l0klqcLgPcA+6fPK+4FPihpe0mvBeYwzLoXEf3An4AvStpa0tuBE6pmOwOYDvxE0hvTI8xnSTpb0oQcl8nMRpfzSIdwgWF5uhpYCGxF8sdfcRjwDHA9yebIy0m+OQxnf5ItbDcBpwBfyU6MiAUk32gmAFcAt6fzPctLm0bNrHycRzqEIqLdMZiZmVmH8RYMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwxrO0nHSorM65B0ejtjMjOz1rjAMDMzs9y5wDAzM7PcucAwMzOz3LnAsFEl6S2S5klaJuk+SQfW+b6vSBqU9LmiYzQzs9ZNbHcANn5I2g64AngKOJZk/TsOeGKE950AHAUcGBE/LDhMMzPLgQsMG03HAwLeGhEPAUi6GLh9qDdI+jZwKPCpiDh3VKI0M7OWeReJjQpJE4BZQG+luACIiL8Cl9d+i04H/gP4hIsLM7Ny8RYMGy0vB3qAe2tMuwd4d1XbJ4GpwGci4icFx2ZmZjnzFgwbq/5IcmzGZyVNb3cwZmbWGBcYNlqeAvqBLWtM26pG29+BPYENgcskrVlgbGZmljMXGDYqIuJFkmMt3i9pZqVd0tYkx2bUes9tJLtOtgYukdQzGrGamVnrXGDYaDom/fkHSUdK+jJwDXDnUG+IiD8B/wTsCPxcUnfxYZqZWatcYNioSbdIzCLZXXI8sD9J0fHLEd53NfBRkl0mP5bk9dbMbIxTRIw8l5mZmVkD/E3QzMzMcucCw8zMzHLnAsPMzMxy13CBIWm2pLdkXh8s6RZJcyStk294ZmZmVkbNbMH4FjANVt4d8zvA74DNgJPyC83MzMzKqpl7kWwG3JU+/xDwm4g4StLrSQoNMzMzG+eaKTBWAFPS5+8EzkufLyTdstFpJInkktVL2h2LWYvWBBaEz083s4I1U2BcB5wk6Y/Am4C90/ZXAY/kFdgYsyGdu2w2/mwMPNruIMysszVTYHwW+B7wYZJbaVcS1buAy/IKbIxZAvDwww8zbdrqG2kGBga44oor2HPPPenuLseVrB3z6BhLMS9evJhXvvKV4C1xZjYKGi4wIuIhYK8a7YfmEtEYNm3atCELjClTpjBt2rS2/xOpl2MeHWWM2cwsD81swSC9F8QWwAyqzkSJiN/nEJeZmZmVWMMFhqQdgTnAJoCqJgcwIYe4zMzMrMSa2YLxA+BG4D3AYyRFhZmZmdlKzRQYWwIfjoi/5x1M2d166610dXWx3nrrMXPmzNWmP/TQQ/T19TU9vXo+oOa89Ux/8sknAXjkkUfYbLPNCh1ruOmNzPvII8mJPLfeeiszZswodKw8l6sS81DrxmjHYmY2KiKioQdwNTC70feV+UFyfY9YtGhR1HL//fdHb29v9PT0BBCTe6bE/PnzV5ln/vz5MblnStPTa81Xa956p/f09ERvb2+sM33dwscaanqjY60zfd2Vn3PRY+W1XCOtG6MZy6JFiyrzTYsx8Hflhx9+dPajmUuFfxf4jqT9JO0g6TXZRxP9ld7TTz8NwPTZn2PdvQ5nWf/Sld8oK/r6+ljWv5S1dtq7qenV86271+E1x6p3+vTZnwMYlbGGmt7MWJXPeTTGymO5Rlo3RjMWM7PR1MwukovTnz/KtAXJAZ/j+iDP7ukb8eILwx+SMmGtGS1NXznWuq9sbfr0jeoaJ5exRpje6LzDxZ7nWLku1wjrxmjGYmY2Gpq9F4mZmZnZkJq50Nb8IgIxMzOzztHshbY2Bw4Btk6b7gJOjYj7corLzMzMSqzhgzwlzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezZymujVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8eeLKVYMzMzKwzNLOL5IfAmZL+Abg+bdsFOBI4Ka/AzMzMrLyaKTC+BiwBDge+nrYtAI4FTssnLDMzMyuzZq6DEcDJwMmS1kzbluQdmJmZmZVXU9fBqHBhYWZmZrXUVWBIuhnYPSKekfQXknuO1BQRr88rODMzMyunerdg/ApYnnk+/B29zMzMbFyrq8CIiOMyz48tLBozMzPrCM1cKvx+SevWaF9b0v35hGVmZmZl1syFtjYFJtRonwRs3FI0ZmZm1hHqPotE0vsyL2dJWpR5PQHYHXggr8DMzMysvBo5TbU3/RnAuVXTBoAHSS6+ZWZmZuNc3QVGRHQBSHoAeGNE9BUWlZmZmZVaM1fy3KyIQMzMzKxz1Huhrc8DZ0bEsvT5kCLC9yMxMzMb5+rdgnEocAGwLH0+lMA3PDMzMxv36r3Q1ma1npuZmZnV0syFto6WNKVGe4+koxvs622SLpG0QFJIen/VdEk6XtJjkvolXSlpy6p5pku6QNJiSc9KOkvS1Kp5XiPpD5KWSXpY0hGNxGlmZmaNaeZCW8cAU2u0T0mnNeJlwK3AwUNMPwL4PHAQ8GbgeeBySZMz81wAbAPsAewFvA04szJR0jTgCmA+sAPwn8Cxkv6twVjNzMysTs3crl3UvtnZa4GFjXQUEZcClwJIWnWQpOEQ4ISI+FXa9kngCeD9wIWStgZmk5w2e2M6z+eA30n6QkQsAD4OrAHsHxErgDslbQ8cRqYQMTMzs/w0ciXPZ0gKiwD+JilbZEwg2arxgxxj2wzYALiy0hARiyTNBXYCLkx/PlspLlJXAoMkWzx+mc7z+7S4qLgcOFLSOhHxTPXAkiaRXPq8Yk2AgYEBBgYGVgt0cHAQgEkTkyKpp6eHwcHBVeYdHBykp6eHyd0Tmpq+2nxDjFXv9OFizXusoaY3M1blcx6NsfJarkrMRYzVSCy12szMiqKI+u68Lmlfkq0XPyLZspC9VPgK4MGIuKHpQJKC5QMR0Zu+3hn4I7BhRDyWme+nQETE3pKOAvaNiK2q+noSOCYivi/pCuCBiDgwM/3VwJ3AqyPirzViOZYau3vmzJnDlCmrHX5iVgpLly5ln332AVgrIha3Ox4z63AR0dADeDswsdH31dFvAO/PvN45bXtF1Xw/BS5Knx8F3FOjryeBz6TPrwD+p2r6q9O+tx4ilknAtMxjIyD6+vpixYoVqz3mzp0bvb29sdWBp8WmB5waPT09MW/evFXmmTdvXvT09MSG7z2kqenV8216wKk1x6p3+lYHnha9vb0xffr0wscaanqjY02fPn3l51z0WHkt10jrxmjG0tfXV9kCOS3vv18//PDDj+pHM1fy/D9Jm0v6FLA58B8R8aSkdwEPRcSdjfY5hMfTn+sDj2Xa1wduycwzI/smSROB6Zn3P56+J2v9zLTVRMRyYHmmTwC6u7vp7u5ebf6uruRY2eUvBMteCPr7++nq6lpl3q6uLvr7++kZeLGp6dXzLXsh2fJUPW+905cPMb2IsYaa3sxYlc95NMbKa7kqMddaN0YzllptZmZFaeY01bcDt5Mc4/BBXjqj5LXAcfmFxgMkBcDumbGnpeNWdsXcAKwtaYfM+95BslxzM/O8TVI2u+5BsuVjteMvzMzMrHXNnKZ6IvCViNiD5NiLiquBHRvpSNJUSdunZ3UAbJa+nhkRAZwCfEXS+yRtB5wHLCC9s2skx09cBvxQ0psk7QKcDlwYyRkkAHPSOM+StI2kvYH/AE5qdMHNzMysPs2cprodsE+N9ieB9Rrs6w3ANZnXlX/65wL7Ad8kuVbGmcDawHXA7IhYlnnPx0mKiqtIzh65mOTaGcDKM0/2BM4AbgL6gOMjwqeompmZFaSZAuNZ4BUkuzCyXgc82khHEXEtyZkpQ00P4Oj0MdQ8C6ld8GTnuQ14ayOxmZmZWfOa2UVyIfANSRuQHJHele6a+DbJLgwzMzMb55opMI4C7gYeJjnA8y7g98D1wAn5hWZmZmZl1cxpqiuAT0v6GrAtSZHxl4i4N+/gzMzMrJyaOQYDgIh4SNLD6fP6LgdqZmZm40Izu0iQdICkO4BlwDJJd0j613xDMzMzs7JqeAuGpONJ7kT6XV664NVOwMnp9SuGPOPDzMzMxodmdpF8Bvh0RPwk0/ZrSbeRFB0uMMzMzMa5ZnaRdAM31mi/iRaO6TAzM7PO0UyB8WOSrRjV/g24oLVwzMzMrBM0u8XhgPTy239KX78ZmAmcJ2nlPT4i4rAW4zMzM7MSaqbA2Ba4OX2+efqzL31sm5nPp66amZmNU81caGu3IgIxMzOzztHUdTAAJG0haZaknvT1kDctMzMzs/Gl4QJD0rqSrgL+BvyO5M6qAGdJ+k6ewZmZmVk5NbMF42RggOSgzqWZ9ouA2XkEZWZmZuXWzEGeewKzIuKRqr0i9wKb5BKVmZmZlVozWzBexqpbLiqmA8tbC8fMzMw6QTMFxh+AT2Zeh6Qu4AjgmlyiMjMzs1JrZhfJEcBVkt4ArAF8E9iGZAvGLjnGZmZmZiXV8BaMiLgDeBVwHfArkl0mvwBeFxH35RuemZmZlVFDWzAkdQOXAQdFxH8VE5KZmZmVXUNbMCJiAHhNQbGYmZlZh2jmIM/zgQPyDsTMzMw6RzMHeU4E9pf0TuAm4PnsRN9B1czMzFq9m+qrqqb5DqpmZmbmu6mamZlZ/pq+m6qZmZnZUFxgmJmZWe5cYJiZmVnuXGCYmZlZ7uoqMCTdLGmd9PnRkqYUG5aZmZmVWb1bMLYmuecIwDHA1GLCMTMzs05Q72mqtwBnS7oOEPAFSc/VmjEijs8pNjMzMyupeguM/YDjgL1ILqb1LuCFGvMF4ALDzMxsnKurwIiIe4CPAUgaBHaPiCeLDMzMzMzKq5krefrMEzMzMxtWM/ciQdLmwCEkB38C3AWcGhH35RSXmZmZlVjDWyMkzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezRxPsTVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8e8JklZmZm1lSB8UPgTElHSnpr+vgi8D/ptNxIOlZSVD3uzkyfLOkMSU9Lek7SxZLWr+pjpqTfSloq6UlJ35LU1MGtZmZmVp9m/tF+DVgCHA58PW1bABwLnJZPWKu4E3hn5nX2Al8nA+8BPgIsAk4HfgHsAiBpAvBb4HFgZ+AVwHnAAHBUAbGamZkZzV0HI0j+sZ8sac20bUnegWW8EBGPVzdKWgs4ANgnIq5O2z4F/FXSjhHxJ2BPkuNC3hkRTwC3SPoq8A1Jx0bEigLjNjMzG7daumhWRCwpuLgA2FLSAkn3S7pA0sy0fQegG7gyE8/dwEPATmnTTsDtaXFRcTkwDdim4LjNzMzGrbF+LMJckvug3EOye+MY4A+StgU2AFZExLNV73kinUb684ka08nMsxpJk4BJmaY1AQYGBhgYGFht/sHBQQAmTRQAPT09DA4OrjLv4OAgPT09TO6e0NT01eYbYqx6pw8Xa95jDTW9mbEqn/NojJXXclViLmKsRmKp1WZmVhQlezzKQdLawHzgMKAfODsiJlXN82fgmog4UtKZwCYRMSszfQrwPPDuiLh0iHGOJSlmVjFnzhymTJmS09KYja6lS5eyzz77AKwVEYvbHY+ZdbiIKNUDmEdycOk7SO7eunbV9PnAoenz44FbqqZvlr7vdcOMMYlkN0rlsREQfX19sWLFitUec+fOjd7e3tjqwNNi0wNOjZ6enpg3b94q88ybNy96enpiw/ce0tT06vk2PeDUmmPVO32rA0+L3t7emD59euFjDTW90bGmT5++8nMueqy8lmukdWM0Y+nr64t03Z/W7r9jP/zwo/MfDe0ikdQNXAYcFBH3tlTZNEHSVGBz4MfATSRng+wOXJxO3wqYCdyQvuUG4MuSZsRLd3/dA1hMcrnzmiJiObA8My4A3d3ddHd3rzZ/V1dyKMvyF4JlLwT9/f10dXWtMm9XVxf9/f30DLzY1PTq+Za9kGx5qp633unLh5hexFhDTW9mrMrnPBpj5bVclZhrrRujGUutNjOzojRUYETEgKTXFBVMNUnfBi4h2SqxIXAc8CLwk4hYJOks4CRJC0mKhu8CN0RyBgnAFSSFxI8lHUFy3MUJwBlpEWFmZmYFaOYskvNJTg8dDRsDPyE5yPOnwNPAjhHxVDr9UOA3JFswfk9yvYsPVt4cES8Ce5EUJTeksZ8HHD1K8ZuZmY1LzZxFMhHYX9I7SXZTPJ+dGBGH5RFY2tfHRpi+DDg4fQw1z3zg3XnFZGZmZiNrpsDYFrg5ff6qqmnlOSXFzMzMCtPMlTx3KyIQMzMz6xxNX8lT0haSZknqSV8rv7DMzMyszBouMCStK+kq4G/A70iusAlwlqTv5BmcmZmZlVMzWzBOJrn+xExgaab9ImB2HkGZmZlZuTVzkOeewKyIeKRqr8i9wCa5RGVmZmal1swWjJex6paLiulkrn5pZmZm41czBcYfgE9mXoekLuAI4JpcojIzM7NSa2YXyRHAVZLeAKwBfBPYhmQLxi45xmZmZmYl1fAWjIi4g+QCW9cBvyLZZfILkruT3pdveGZmZlZGzWzBICIWAf+VcyxmZmbWIZoqMCStQ3LDs63TpruAsyNiYV6BmZmZWXk1c6GttwEPAp8H1kkfnwceSKeZmZnZONfMFowzSC6q9Zn0duhImgB8L522XX7hmZmZWRk1c5rqFsB3KsUFQPr8pHSamZmZjXPNFBg389KxF1lbA7e2Fo6ZmZl1grp2kUh6TeblacCpkrYA/pS27QgcDHwx3/DMzMysjOo9BuMWIIDszUe+WWO+OSTHZ5iZmdk4Vm+BsVmhUZiZmVlHqavAiIj5RQdiZmZmnaPZC21tCLwFmEHVgaIRcVoOcZmZmVmJNVxgSNoP+B9gBfA0ybEZFUFyEKiZmZmNY81swfgacDzw9YgYzDkeMzMz6wDNXAdjCnChiwszMzMbSjMFxlnAR/IOxMzMzDpHM7tIvgT8RtJs4HZgIDsxIg7LIzAzMzMrr2YLjFnAPenr6oM8zczMbJxrpsA4HNg/Is7JORYzMzPrEM0cg7Ec+GPegZiZmVnnaKbAOBX4XN6BmJmZWedoZhfJm4B3SNoLuJPVD/L8YB6BmZmZWXk1U2A8C/wi5zjMzMysgzRcYETEp4oIxMzMzDpHM8dgmJmZmQ2rmZudPcAw17uIiH9oKSIzMzMrvWaOwTil6nU38DpgNvCtVgMyMzOz8mvmGIxTa7VLOhh4Q8sRmZmZWenleQzGpcCHcuzPzMzMSirPAuPDwMIc+zMzM7OSauYgz7+w6kGeAjYAXg78e05xmZmZWYk1c5Bnb9XrQeAp4NqIuLvliMzMzKz0mjnI87giAjEzM7POMa4utCXpYEkPSlomaa6kN7U7JjMzs05Ud4EhaVDSiyM8Xigy2FZI2hs4CTgOeD1wK3C5pBltDczMzKwDNbKL5APDTNsJ+Dxje4vIYcAPI+JsAEkHAe8B9gdObGdgZmZmnabuAiMiflXdJmkrkn/O7wUuAI7OL7T8SFoD2AH4eqUtIgYlXUlSHFXPPwmYlGlaE2DhwoUMDAxUz87ixYtZunQpWjgfDbzI5MmTuemmm1i8eDFdXV0MDg5y7733MnnyZCYseaKp6QBdXV3cc889TJ48GT39AMBq89Y9feF8li59+eiMNcT0wcHB1ZZ/pL4qn3MRYz333HMtTR9qrKlTp662brQ61nDTFy9ezNNPP73aerpkyZJafx5mZoVQxJC3FRn6TdKGJLsa9gUuB74UEXfkHFtu0ngfBXaOiBsy7d8E3h4Rb66a/1jgmFEN0mz0bBwRj7Y7CDPrbA2dRSJpLeAo4HPALcDuEfGHAuJqt6+THK+RNZ2hLyS2JvAIsDFQlq+Jjnl0jLWY1wQWtDsIM+t8dRcYko4AjgQeB/651i6TMawPeBFYv6p9fZLlWUVELAeWVzUvHqpzSZWnSyJiyPnGEsc8OsZgzGMhBjMbBxrZgnEi0A/8HdhX0r61ZoqID+YRWJ4iYoWkm4DdSS8UJqkrfX16G0MzMzPrSI0UGOex6iXCy+Yk4FxJNwJ/Bg4BXgac3c6gzMzMOlEjZ5HsV2AchYuIiyS9HDie5N4ptwCzI+KJHLpfTnLQa/VulbHMMY+OMsZsZtayps4iMTMzMxvOWL4wlpmZmZWUCwwzMzPLnQsMMzMzy50LDDMzM8udC4wclOk28JKOlRRVj7vbHVeWpLdJukTSgjS+91dNl6TjJT0mqV/SlZK2bFO4lZhGivmcGp/7ZW0K18yscC4wWlTS28DfCbwi83hLe8NZzctIPseDh5h+BMndew8C3gw8T/KZTx6d8GoaKWaAy1j1c//nUYjLzKwtGroXidVUxtvAvxARq10ifayIiEuBS2GVS22TvhbJRdJOqFyuXtIngSeA9wMXjmKoKw0Xc8bysfy5m5nlyVswWpC5DfyVlbaIGExfr3Yb+DFky3RT/v2SLpA0s90BNWAzkgulZT/zRcBcxvZnDrCrpCcl3SPp+5LWbXdAZmZFcYHRmvWACSTfnrOeIPknOBbNBfYDZgOfIfmH/QdJa7YzqAZUPtcyfeaQ7B75JMn9b44E3g5cKmlCW6MyMyuId5GMM+mm/IrbJM0F5gMfBc5qT1SdLyKyu25ul3QbcB+wK3BVW4IyMyuQt2C0pqHbwI9FEfEs8DdgizaHUq/K51razxwgIu4nWX/K8rmbmTXEBUYLImIFULkNPLDKbeBvaFdcjZA0FdgceKzdsdTpAZJCIvuZTyM5m6QUnzmApI2BdSnP525m1hDvImldqW4DL+nbwCUku0U2JDm99kXgJ+2MKysterLf7DeTtD2wMCIeknQK8BVJ95IUHF8DFgC9oxzqSsPFnD6OAS4mKY42B74J/B24fHQjNTMbHS4wWlTwbeCLsDFJMbEu8BRwHbBjRDzV1qhW9Qbgmszrk9Kf55IcoPpNkiLuTGBtkmWYHRHLRi/E1QwX82eA1wD7ksS7ALgC+GpE+DbuZtaRfLt2MzMzy52PwTAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucCwMUHSg5IOaXccZmaWDxcYZmZmljsXGGZmZpY7FxjWMkn/JmlBeifZbPuvJP1I0ubp8yckPSdpnqR3DtPfppIivVlYpW3ttG3XTNu2ki5N+3xC0o8lrVfAIpqZWYNcYFgefkZy87TdKg2SpgOzgQuAqcDvSG6x/jrgMuASSTObHVDS2sDVwF9IbjQ2G1gf+GmzfZqZWX58N1VrWUQ8I+lSYB/gqrT5w0AfcE1EDAK3Zt7yVUkfAN4HnN7ksJ8F/hIRR1UaJO0PPCzpVRHxtyb7NTOzHHgLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNNbMIDXArulu0eeS/u8O522eQv9mplZDrwFw/JyCSDgPZLmAW8FDk2nfRvYA/gC8HegH/g5sMYQfQ2mP5Vp666aZ2o65pE13v9Yo8GbmVm+XGBYLiJimaRfkGy52AK4JyJuTifvApwTEb8EkDQV2HSY7p5Kf76C5BgLgO2r5rkZ+BDwYES80PICmJlZrryLxPJ0AfAeYP/0ecW9wAclbS/ptcAchln3IqIf+BPwRUlbS3o7cELVbGcA04GfSHpjeqbKLElnS5qQ4zKZmVkTXGBYnq4GFgJbkRQRFYcBzwDXk+zWuJxkC8Rw9ifZwnYTcArwlezEiFhAsmVkAnAFcHs637O8tIvFzMzaRBHR7hjMzMysw3gLhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5e7/A1cYIVn9G7g9AAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXTklEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCFdAwIDgAigimBA2rxvqV/0hgnpRUCF4WbyKiCiLyqLg9YqsXkCuoqBizAJiUAJKCAiyCBiWhBCWAAGzTTKf3x+nGmo6PUvX1ExP97yfj0c/evrU6epP1/R85tNVp04pIjAzMzMrQ1ujAzAzM7PW4cLCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIGhaSTJQ3KNK+SbpR0Y+7xXpJC0ocG6fUvkfTwYLxW1etukb3PQwf7tYcLSetIOlPSY5I6JV3T6JjMhhoXFlY3SYdm/8AqtxWSHpc0XdIXJY0t6XU2ywqSncpYX5mGcmw2oA4D/hP4BfBJ4OzGhlMeSdtmRdMdkl6QtEjSdZJ2bXRs1lzWaXQA1tROAuYD7cCmwF7AOcBUSe+NiL/l+p4KnF7n+jcDvg48DNxRx/Mm1/k6RfQU22doTNH+CDAK6GjAaw8XewMLI+KYRgcyAD4NHA5cDfwQ2AD4D+AWSVMiYlYjg7Pm4cLC+mNaRNyWe3yapL2B3wK/lrRdRCwHiIjVwOqBDEbS6IhYFhGrBvJ1ehMRDfnHHumKgisa8dr9IWk9YFVEdDY6lj7YBHiurJVJagPWjYg+/d4kCViv8ndVsiuBkyPixdzrXQTcC5wMuLCwPvGhECtVRNwAfBPYHPhEpb3WGAtJkyT9SdJzkl6UdL+kb2fL9gL+mnW9OHfY5dBs+Y2S7pa0i6TZkpYB384tu7FGeCMkfVvSE5L+JenXkl5XFdPDki6pfmJ+nX2Iba0xFpLWl/S97Nj8yuy9fjn7R5HvF5LOk/S+7P2tlPR3SVNqvJ/qGNcaY5HF8qKk10i6Jvv5KUnflTSiD+t8WNJvJU3OdpGvkHSPpA9U9ds4W+dd2WsslTRN0sSqfpXxLh+VdKqkhcAyYFyBdXxY0tclLcx23f9C0gaSRko6R9KT2XouljSyah3dfvZ62rbAu4Htc7/zvbLl9f5+Py7p78BKoNvfbW777yvpNmA5aS8Ckj4l6Ybsfa7Mfi+f62Ed75D0l+x3+E9Jh+T7RcTcfFGRtT0D3ARs112MZtW8x8IGwk9J/+QnAxfU6iBpe9Kejb+RDqmsBLYG9si63Ju1nwL8mJTcAG7OreYVwDTgZ8D/Aot7ieu/gADOIH3zPBqYJWmnOr8B9iW2l2T/XH5N+qd0IenQyb7Ad4DXANW71d8BfIC0O/oF4IvA1ZImZIm+XiOA6cCtwJeB9wDHAg8B/92H5/8bcBXwI+BS4FPAz5V2j8/M+rweeB/wc9LhsfGkf4B/lPTGiHi8ap1fA1YB3wVGZj+/sc51nEj6R3s66bPzBdJhoE5gI9K37LcDh2brOwX69Nmr5Sng/yN9hsZkrw1wb4Hf797Ah4HzgKdJh9N6sg1pb8L/kP6e7s/aPwf8PXvt1cBBwA8ltUXE+VXr2Jo0LuRC0u/wMOASSXMj4u+9vP6mWZxmfRMRvvlW142UqAPYtYc+zwG35x6fTLa3Pnt8dLaOV/awjl2zPofWWHZjtuw/ull2Y+7xXlnfBcDYXPvBWfsXc20PA5f0YZ09xXYJ8HDu8b9nff+rqt/PSf8Et8q1BekfXb7tTVn7Ub38XraojimLJYCvVfW9HbitD7/rh7PnfyDXNg54vOr3OxJoqxHPivxr534XDwGjqvrXu467gPZc+xXZ9vxd1Tpurvp99PrZ62F73AjcXdVW7+93DfDGPr5eZfvvW2PZqBptvwce6mYd78y1vSrbrt/t5fXfmb2HU+rdVr4N35sPhdhAeRHo6eyQ57L7f1c6zlzESuDiOvpfFhEv5B7/AlgE7F/w9ftqf9I/k+9XtX8PELBfVfusiHio8iDSINilpL0CRf2o6vFNdazvceBXuXiWApcBO0vaNGtbGdkYCUkjJL2C9Bm4H3hzjXVeGlV7iQqs47LoOp7lVtL2vKiq363A6yRV9tA+l93357OXV+/v948RcU8d658fEdOrG/PbLzsE9Ergj8DrJW1Q1f2eiLgp99ynSNu128+ApE1Ixdp84Mw64rVhzoWFDZQxpN343bkK+DPwE2CxpJ9lx8zr+UwujPoGaj6QfxARATxI+lY8kDYHHq8qaiAdUqksz3u0xjqeJe3eL2JF9o+k6PoezLZV3j+y+y0gDUKUdIykB0gF39OkwwdvIp1dUG1+dUOBdVRvp+ez+8dqtLfl1lHGZy+v3t/vWu+9FzX7S9pD0ixJ/yIVS0+RjTNi7e1V12dK0vqkw0VjgX+PqrEXZj1xYWGlk/RaUmJ7sLs+2betPUnH+39K+udxFTBTfRhUmBmIkfHdTeLV15jKsKabdnXTXnR9ZfoKcBYwmzRod19gEmkMQK08U+t3V+86untfPW6/kj57/VHv53at/pK2Aq4HXglMBQ4gbavKvBrV26vPnylJ6wK/JG2Xf4+Iu+uM14Y5D960gfD/Zfdr7b7Ny3Z7X5/dpkr6CvAt0iC4WXT/T76of8s/yAbdbU0axFfxLLBhjeduDvwz97ie2B4B3iNpbNW32m1zy4eyrSWpaq/FG7L7h7P7DwF/iIjD80+UtCF9H/hXxjr6pA+fvXo04vd7EGlMynsj4qW9EZLe3Z+VZnttLgP2AT4cEX/sV5Q2LHmPhZVKaR6Lr5F2317eQ7+NazTfkd1XTg38V3a/YUnhHaKus4J+CHg16cySioeAt2ff2gCQdCDQ5bTUOmP7HWmPx1FV7ceQCpRpaz1jaNkMeH/lgaRxwCHAHRHxRNa8hqpvv5IOJp0V0VdlrKNXffzs1aMRv9/KHoiXtlc2ruJT/VzvD4CPAJ+PiF/2c102THmPhfXHfpK2JX2OxpNOo5tE+ob23uh50p+TJO0JXJf13wT4POnMjT9lfR4iHTs+QtILpH/mt0ZEvceoK5YAf5J0cRbv0aTDNflTYn9CKjh+L+n/gK1Iu+Uf6rqqumL7DfAH4FuStgDuJJ2K++/AOfmBmkPUP4ALJb2FdErvYaTtl/8n9lvS7/Ri0lkYOwIfp+tent6UsY6+6Mtnrx6N+P3OIJ2i+xtJ/0Ma0/QZ4ElSsVw3SUeTtsMcYJmkT1R1+VVE/GutJ5pVcWFh/XFKdr+K9E/7LtI/64trDGSr9mvSwL/DSMeJnyaNaP96RDwPaQZLSZ8ETiOd1bAO6Z9Z0cLi26TjxieSBqVdT/pmtqzSISKmSzqWdNz6HOA24EDSCH9y/focW0R0SnovaXt9JOv3MOmaE9+r7j8EPUCaI+I7pDkV5gMfqTpT4dvA+sDHSO/xdtJx/3qmcS9jHX3R62evHo34/UbE/UoX1TuVNBfIE6Q5SZ5i7bNi+mqn7H637FZtS17eU2fWLa092NvMLFGaQfTuiDiw0bGYWXPwGAszMzMrjQsLMzMzK40LCzMzMyuNx1iYmZlZabzHwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIKk3SopJC0RS/9HpZ0yeBEZWbNxHmk9biwMDMz64GkfSRdJOkfkpZJ+qekn0h6daNjG4oUEY2OwZqUpBFAO7AyevggSXoYuDEiDh2k0MysSTRDHpF0G7Ax8HPgAeD1wFHAMmCniHhisGMaytZpdADWvCJiDbCm0XGYWfNqkjwyFfhTRHRWGiT9HvgjqcD4aqMCG4p8KMQKqz42quSrkhZkuwv/IGn7Gs87WdJa30xqHWvNjqv+VtJekm6TtFzSXZL2ypZ/IHu8QtJcSTsP1Ps1s/I1Qx6JiNn5oqLSBiwBtuv/VmgtLiysTKcA3wTuBP4T+CcwA1i/n+vdGrgC+A1wIrAR8BtJHwfOBv4X+DqwFfB/kvy5NmteTZFHJI0BxgBP9zOuluNDIVYKSa8CjgOuAw6qHCuV9C3gK/1c/TbA7hExJ1vnPcB04AJg24h4NGt/FvgfYE/gxn6+ppkNsibLI0cD6wJX9TOuluNvdlaW95D+yH5QNQDrnBLWfU8lGWRuze5vqCSDqvbXl/CaZjb4miKPSNqTtHfj/yLihhJiaykuLKwsm2f3D+QbI+Ip4Nl+rjv/R09EPJ/9+FhVv0r7Rv18PTNrjCGfRyRtC/wKuBv4dD9jakkuLKwRujulbEQ37d2NGO+uXfWFY2ZNaNDziKTXkcZ7PA/sHxEv9BjhMOXCwsrySHb/b/nG7JhpdeX/bLZsw6r2zTGz4WzI5hFJryAVFSOBfSNi0UC8TitwYWFlmQV0AF+QlK/0j67R96Hsfs9Kg6T1gU8OWHRm1gyGZB7J1vs74DWkPRUP9PKUYc1nhVgpIuIpSd8lncb1W0m/A3YG9mPt07FmkI53XijpO6RdkYcBTwETBi9qMxtKhnAeuRx4K3ARsJ2k/NwVL0bENSW/XlNzYWFl+iqwAjgCeDdpdPVk0qljL4mIDknvB35IOl/9CdKo72eBiwcxXjMbeoZiHtkpuz8su+U9AlxT8us1NV8rxMzMzErjMRZmZmZWGhcWZmZmVhoXFmZmZlYaFxZmZmZWmroLC0lTJL0j9/hISXdIukKSp1I2s0KcW8xaQ5E9Ft8BxgFI2hH4HmnikC2Bs8oLzcyGGecWsxZQZB6LLYF7sp8/CPw2Ir4i6c2kJDAsZbPEbQZ47nhrhLHA49Hc5487t9Tg3GINVnduKVJYrAJGZz+/B7gs+3kJ2beNYWozYEGjg7Bh7bXAwkYH0Q/OLbU5t1ij1ZVbihQWfwLOkvRn0hSnH8na38Dw/vC/APDYY48xblzXHNjR0cGMGTOYPHky7e3tDQluKPP26V1P22jp0qW87nWvg+b/RuvcUlu3uQX899Mbb5+eDURuKVJYHEWaQvVDwOciolLF7Af8vsD6Wsq4ceNqFhajR49m3Lhx/mDX4O3Tu2GyjZxbelArt8Cw+WwU5u3Ts4HYPnUXFhHxKHBgjfZjSonIzIYl5xaz1lDoImSS2oCtgU2oOrMkImaXEJeZDUPOLWbNr+7CQtLbgSuAzQFVLQ5gRAlxmdkw49xi1hqK7LH4EXAbcACwiPQHb9Zvd955J21tbbzyla9kwoQJjQ7HBp9ziw2YO++8k0022cS5ZRAUKSz+DfhQRDxYdjA2PC1YkAb877nnnixfvpz1Ro3m/vvudQIYfpxbrHT5/BLIuWUQFJl581bSMdBSSTpBUkg6J9e2nqTzJT0j6UVJV0saX/W8CZKuk7RM0pOSviNpnao+e0m6XdJKSQ9KOrTG6x8p6WFJKyTdKumtZb9Hq+2ZZ54BYOMpX+AVBx7LiuXLePrppxsclTXAgOQWcH4Zzir5ZdxbP+DcMkiK7LH4AfA9SZsCdwEd+YUR8bd6VyjpLcB/ANXPPZu0W/Rg4HngPOCXwB7Z80YA1wFPALsDryZNqtMBfCXrs2XW50fAx4F9gJ9IWhQR07M+HyFNGXwEKbkdDUyXtE1EPFnv+7Fi2jd+DWtWe+/3MFZ6bgHnF0tGjHtVo0MYNooUFldn9xfl2oI02KruAVaSxgCXA58Bvppr3wA4HPhYRNyQtX0KuFfS2yPiFmAy8EbgPRGxGLhD0teAMySdHBGrSH/M8yPi2GzV92YXOjoGmJ61TQUuiIiLs9c5gpRwDgNOr+f9mFlhpeYWcH4xa4Si1wop0/nAdRExS9JXc+27AO3ArEpDRNwn6VFgN+CW7P6u7I++Yjrw38D2wLyszyy6mg6cAyBp3ey1Tsu9TqekWdlza5I0EhiZaxoLabKRjo4uX7ReelzdbklnZycAI9dJJwKMGjWKzs5Ob6+cnj5DLbSdys4t0IT5pZ7cUmnP31tXlfyyXvsI55YaBiK3FJkg65FCr1SDpI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSN+EavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZQOqDrqShQsXsnBhM1/2YmDU+gwtW7asAZGUr8zcAk2dX+rOLeD80puzDnknHPJO55ZulJlbik6QtRXpOOF2WdM9wLkR8VAd63gdcC4wKSJWFImjwU6j66WcxwILJk+eXHNK75kzZzJp0iRPKVvDvHnzWLRoEcdPe5SVq4PFV5zA7NmzmThxYqNDGzJ6+gwtXbq0QVGVr4zckq2nmfNLn3MLOL/0ppJfpl52E4um/dC5pcpA5JYiE2TtC/wauAP4c9a8B/B3SQdFRF/L5l1Is+vdnq4KDKTKfk9JRwH7AutK2rDqW8V40mAqsvvq0dXjc8sq9+Nr9FkaEcslrQHWdNPnCboRESuBlZXHlffQ3t7e7R93T8uGs7a2dHLSytXBitXB8uXLaWtr87aqodZnqFW2U4m5BZo4vxTJLX1ZPlxV8suKjjXOLT0oM7cUOd30dODsiHhbREzNbm8jHVM8o471XA/sCOyUu91GGmhV+bmDNMoaAEnbABOAOVnTHGBHSZvk1jsJWEr6plPpsw9dTaqsIxuANbfqddqyx3Mws8FSVm4B5xezhilyKGQ74MM12i8i7cLsk4h4Abg73ybpX8AzEXF39vhC0mWUl5D+mH8AzMlGbAPMIP2B/1TScaTjnacC52dVP6TTwI6SdGYW495Z/AfkXvos4FJJtwF/yd7H+sDFfX0/ZtZvpeQWcH4xa6QihcVTpIr/gar2nYCyz8k+BugknYY2kjTa+vOVhRGxRtKBpFHac4B/AZcCJ+X6zJd0AOmc9S8BC4BPV84xz/pcJelVwCmk5HEHMKVqNLiZDazBzC3g/GI2IIoUFhcAP5b0euDmrG0P4Hi6DjiqW0TsVfV4BXBkduvuOY8A+/ey3huBnXvpcx5pghwza4wByy3g/GI2WIoUFt8EXgCO5eVzsx8HTga+X05YZjYMObeYtYAi81gEabff2ZLGZm0vlB2YmQ0vzi1mraHQPBYV/qM3s4Hg3GLWvPpUWEi6HdgnIp6VNI80b39NEfHmsoIzs9bm3GLWevq6x+JaXp6w5Vp6+OM3M6uDc4tZi+lTYRER38j9fPKARWNmw4pzi1nrqXvmTUn/lPSKGu0bSvpnOWGZ2XDj3GLWGopM6b0Fac79aiOB1/YrGjMbzrbAucWs6fX5rBBJ78093FfS87nHI0hz388vKzAzGx6cW8xaSz2nm16T3QdpWtu8DuBh0sQ2Zmb1uCa7d24xawF9Liwiog1A0nzgLRHx9IBFZWbDhnOLWWspMvPmlgMRiJkNb84tZq2hrxNkfRH4cUSsyH7uVkR4Tn8z6xPnFrPW09c9FscAlwMrsp+7E/hiQWbWd84tZi2mrxNkbVnrZzOz/nBuMWs9RSbIOknS6BrtoySdVE5YZjbcOLeYtYYiE2R9HRhTo310tszMrAjnFrMWUKSwELUvFDQRWNK/cMxsGHNuMWsB9cy8+Szpjz6Af0jKJ4ARpG8aPyo3PDNrdc4tZq2lnnksjiZ9o7iItFsyP+3uKuDhiJhTXmhmNkwcjXOLWcuoZ+bNS+Gl2fH+HBGrBywqMxs2nFvMWkvdYywi4o/A5pJOlXSlpE0AJO0nafvSIzSzYcG5xaw1FDnd9F3AXcDbgA/w8ijuicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXsysf5xbzFpDkbNCTge+GhGTSMc/K24A3l7nuhYAJwC7ALtm67g29+3kbOAg4GDgXcBmwC8rT5Y0ArgOWBfYHfgkcChwSq7PllmfPwA7AecAP5G0b67PR4CzSMnrzcCdwPTKNyYzGxTOLWYtoEhhsSPwqxrtTwKvrGdFEfGbiPhdRDwQEf+IiP8CXgTeLmkD4HBgakTcEBFzgU8Bu0uqJJnJwBuBT0TEHRExDfgacKSkdbM+RwDzI+LYiLg3Is4DfkHX6YOnAhdExMURcU/2nGXAYfW8HzPrF+cWsxZQ99VNgeeAVwPzq9p3BhYWDST7hnAwsD4wh/RNox2YVekTEfdJehTYDbglu78rIhbnVjUd+G9ge2Be1mcWXU0nfbsgSxK7AKflXqdT0qzsud3FOxIYmWsaC9DR0UFHR0eXvpXH1e2WdHZ2AjByHQEwatQoOjs7vb1yevoMtdB2eg7nlrpyS6U9f29dVfLLeu0jnFtqGIjcUqSw+BlwhqSDSeedt0naA/gucFm9K5O0I+mPfT3SN4r3R8Q9knYCVkXEc1VPWQxsmv28afa4ejl96DNO0ihgI9K58rX6bNtD6CdSYzbAGTNmMHr0WrMSAzBz5sweVmdn7Dch/XDQlSxcuJCFCwv/L2lZtT5Dy5Yta0AkA8K5Jak7t4DzS2/OOuSdcMg7nVu6UWZuKVJYfAU4H3iM9EdzT3Z/BXBqgfXdTzo+uQHwIeDSbBDXUHca6dhpxVhgweTJkxk3blyXjh0dHcycOZNJkybR3t4+mDE2hXnz5rFo0SKOn/YoK1cHi684gdmzZzNx4sRGhzZk9PQZWrp0aYOiKp1zS9Ln3ALOL72p5Jepl93Eomk/dG6pMhC5pe7CIiJWAZ+R9E1gB9LI7XkR8UCRALL1PZg9nCvpLcCXgKuAdSVtWPXNYjzwRPbzE0D1COvxuWWV+/E1+iyNiOWS1gBruunzBN2IiJXAyspjKe3Gb29v7/aPu6dlw1lbWxrqs3J1sGJ1sHz5ctra2rytaqj1GWqV7eTc8lLcdeeWviwfrir5ZUXHGueWHpSZW4oM3gQgIh4FpgE/L/qH34020vHFuUAHsE9lgaRtgAmk3Ztk9ztWjbCeBCwlfdup9NmHriZV1pEln7lVr9OWPfZsf2aDzLnFrLkVKiwkHS7pbmAFsELS3ZI+XWA9p0naU9IWknaUdBqwF3B5RDwPXAicJendknYBLgbmRMQt2SpmkP7IfyppYnaa16nA+VnVD+kaA6+XdKakbSV9Hvgw6XSzirNI35Q+KWk70gCt9bPXM7NB4txi1vzqPhQi6RTSKVQ/4OWqezfgbEkTIuKkOla3CWlQ1qtJ1wf4G7BvRFRGkRwDdAJXk75pTAc+X3lyRKyRdCDpj3UO8C/gUuCkXJ/5kg4g/bF/iXR++6cjYnquz1WSXkU6R31T4A5gStWIcDMbQM4tZq2hyODNzwGfiYgrc22/lvQ3UkLo8x9/RBzey/IVwJHZrbs+jwD797KeG0mnrPXU5zzgvJ76mNmAcm4xawFFDoW0A7fVaJ9LsULFzAycW8xaQpHC4qekbxbVPgtc3r9wzGwYc24xawFFvwUcLmkyaYY6SBcNmgBcJuml868jYmo/4zOz4cW5xazJFSksdgBuz37eKrt/OrvtkOsX/YjLzIYf5xazFlBkgqx3D0QgZja8ObeYtYbCE2RJ2lrSvtmc+KgyPZyZWT84t5g1t7oLC0mvkHQ98A/gd6TzxAEulPS9MoMzs+HDucWsNRTZY3E2aTrcCUD+0mdXAVPKCMrMhiXnFrMWUGTw5mTSDHYLqvZQPgBsXkpUZjYcObeYtYAieyzWp+u3iYqNyV2Rz8ysTs4tZi2gSGFxE3BI7nFkV+w7DvhDKVGZ2XDk3GLWAoocCjkOuF7SrsC6wJnA9qRvFXuUGJuZDS/OLWYtoO49FhFxN/AG4E/AtaTdl78Edo6Ih8oNz8yGC+cWs9ZQ1x4LSe3A74EjIuJbAxOSmQ03zi1mraOuPRYR0QG8aYBiMbNhyrnFrHUUGbz5v8DhZQdiZsOec4tZCygyeHMd4DBJ7wHmAv/KL/RVB82sIOcWsxbQ36ubvqFqma86aGZFObeYtQBf3dTMhgTnFrPWUPjqpmZmZmbVXFiYmZlZaRpaWEg6UdJfJb0g6UlJ10japqrPepLOl/SMpBclXS1pfFWfCZKuk7QsW893JK1T1WcvSbdLWinpQUmH1ojnSEkPS1oh6VZJbx2QN25mA8q5xaxxGr3H4l3A+cDbgUlAOzBD0vq5PmcDBwEHZ/03I83GB4CkEcB1pCmAdwc+CRwKnJLrs2XW5w/ATsA5wE8k7Zvr8xHgLOAbwJuBO4HpkjYp7+2a2SBxbjFrkD4VFlk1vlH280mSRpfx4hExJSIuiYi/R8SdpD/aCcAu2WttQDqvfWpE3BARc4FPAbtLenu2msnAG4FPRMQdETEN+BpwpKR1sz5HAPMj4tiIuDcizgN+ARyTC2cqcEFEXBwR92TPWQYcVsZ7NbO1ObeYtZ6+nhWyHWne/meBrwM/ovbljftrg+x+SXa/C+mbxqxKh4i4T9KjwG7ALdn9XRGxOLee6cB/ky5gNC/rM4uuppO+XZAliV2A03Kv0ylpVvbctUgaCYzMNY0F6OjooKOjo0vfyuPqdks6OzsBGLmOABg1ahSdnZ3eXjk9fYaafDs5t1SpJ7dU2vP31lUlv6zXPsK5pYaByC19LSzuAC6W9CdAwJclvVirY0ScUqu9N9nlkc8B/pxdjAhgU2BVRDxX1X1xtqzSZ3GN5fShzzhJo4CNgBHd9Nm2m5BPJCXCLmbMmMHo0bW/dM2cObObVRnAGftNSD8cdCULFy5k4cKFjQ1oCKr1GVq2bCD+Dw+aO3BuqVZ3bgHnl96cdcg74ZB3Ord0o8zc0tfC4lDS8cEDSRPV7AesrtEvyB1/rNP5pAly3lHw+YPtNNJx04qxwILJkyczbty4Lh07OjqYOXMmkyZNor29fTBjbArz5s1j0aJFHD/tUVauDhZfcQKzZ89m4sSJjQ5tyOjpM7R06dIGRVWKQ3Fuqdbn3ALOL72p5Jepl93Eomk/dG6pMhC5pU+FRUTcD3wUQFInsE9EPFnoFWuQdB4psewZEQtyi54A1pW0YdU3i/HZskqf6hHW43PLKvfja/RZGhHLJa0B1nTT5wlqiIiVwMrcewCgvb292z/unpYNZ21taajPytXBitXB8uXLaWtr87aqodZnqJm3k3PL2orklr4sH64q+WVFxxrnlh6UmVvqPiskItrK+sNXch7wfmDviJhf1WUu0AHsk3vONqRBWHOypjnAjlUjrCcBS4F7cn32oatJlXVExKrstfKv05Y9noOZDTjnFrPWUORaIUjaCjiaNPAK0h/ZuRHxUJ2rOh/4GPDvwAuSKsctn4+I5RHxvKQLgbMkLSH9Qf8AmBMRt2R9Z2Sv/1NJx5GOeZ4KnJ9V/pAGhB0l6UzgImBv4MPAAblYzgIulXQb8Jfs/a0PXFznezKzgpxbzJpf3YVFdn72r0mDrv6cNe8B/F3SQRFRzwiiz2X3N1a1fwq4JPv5GKATuJo0Uno68PlKx4hYI+lA0kjtOaQrIl4KnJTrM1/SAaTz1r8ELAA+HRHTc32ukvQq0nHcTbP3N6VqRLiZDRDnFrPWUGSPxenA2RFxQr5R0unAGUCf//gjQn3oswI4Mrt11+cRYP9e1nMjsHMvfc4DzustJjMbEM4tZi2gyMyb2wEX1mi/iDSZjJlZEc4tZi2gSGHxFGnq2mo7AaWN5jazYce5xawFFDkUcgHwY0mvB27O2vYAjqfruddmZvVwbjFrAUUKi28CLwDH8vI0tY8DJwPfLycsMxuGnFvMWkDdhUVEBGkE9NmSxmZtL5QdmJkNL84tZq2h0DwWFf6jN7OB4Nxi1ryKDN40MzMzq8mFhZmZmZXGhYWZmZmVpq7CQlK7pOsl/dtABWRmw49zi1nrqKuwiIgO4E0DFIuZDVPOLWato8ihkP8FDi87EDMb9pxbzFpAkdNN1wEOk/QeYC7pin8viYipZQRmZsOOc4tZCyhSWOwA3J79/IaqZdG/cMxsGHNuMWsBRWbefPdABGJmw5tzi1lrKHy6qaStJe0raVT2WOWFZWbDlXOLWXOru7CQ9ApJ1wP/AH4HvDpbdKGk75UZnJkNH84tZq2hyB6Ls4EOYAKwLNd+FTCljKDMbFhybjFrAUUGb04G9o2IBVV7KB8ANi8lKjMbjpxbzFpAkT0W69P120TFxsDK/oVjZsOYc4tZCyhSWNwEHJJ7HJLagOOAP5QSlZkNR84tZi2gyKGQ44DrJe0KrAucCWxP+laxR4mxmdnw4txi1gLq3mMREXeTJq/5E3AtafflL4GdI+KhetYlaU9Jv5H0uKSQ9L6q5ZJ0iqRFkpZLmlV9kSJJG0u6XNJSSc9JulDSmKo+b5J0k6QVkh6TdFyNWA6WdF/W5y5J+9fzXsysf5xbzFpDoXksIuL5iPhWRHw4IvaPiK9GxKICq1ofuBM4spvlxwFfBI4A3kaa4ne6pPVyfS4nfauZBBwI7An8uLJQ0jhgBvAIsAvwn8DJkj6b67M7cCVwIbAzcA1wjaQdCrwnMyvIucWs+RU5FIKkjUgXC9oua7oHuDgiltSznoiYBkzL1ln9GgKOBk6NiGuztkOAxcD7gJ9J2o50GtpbIuK2rM8XgN9J+nJEPA58nLRb9bCIWAX8XdJOwFReThJfAn4fEd/JHn9N0iTgKFLiMbNB4Nxi1vzqLiwk7Qn8BngeuC1r/iJwkqSDImJ2SbFtCWwKzKo0RMTzkm4FdgN+lt0/V/nDz8wCOknfQn6V9Zmd/eFXTAeOl7RRRDyb9Tmr6vWnk5JMTZJGAiNzTWMBOjo66Ojo6NK38ri63ZLOzk4ARq6T/gGMGjWKzs5Ob6+cnj5DrbKdnFuSenJLpT1/b11V8st67SOcW2oYiNxSZI/F+aQJaz4XEWsAJI0Afpgt27FQJGvbNLtfXNW+OLdsU+DJ/MKIWC1pSVWf+TXWUVn2bHbf0+vUciLw9erGGTNmMHr06JpPmDlzZg+rszP2m5B+OOhKFi5cyMKFCxsb0BBU6zO0bFmtMzSbknNLUnduAeeX3px1yDvhkHc6t3SjzNxSpLDYGvhQ5Q8fICLWSDqLrqeKtbrT6PpNZCywYPLkyYwbN65Lx46ODmbOnMmkSZNob28fzBibwrx581i0aBHHT3uUlauDxVecwOzZs5k4cWKjQxsyevoMLV26tEFRlc65JelzbgHnl95U8svUy25i0bQfOrdUGYjcUqSwuJ10/PP+qvbtSIOlyvJEdj8eyA/eGg/ckeuzSf5JktYhnZ72RK7P+Kp1j88t66nPE3QjIlaSm7Snchy3vb292z/unpYNZ21taQzxytXBitXB8uXLaWtr87aqodZnqIW2k3MLxXJLX5YPV5X8sqJjjXNLD8rMLX06KyQ7pepNkt4EfB84V9KXJb0ju32ZNM//2YWiqG0+6Y9vn1wc40jHN+dkTXOADSXtknve3qT3dWuuz56S8ltoEnB/dgy00mcfupqUex0zGwDOLWatp697LO4AAsgPrz6zRr8rSMdI+yQ7J3zrXNOW2ajqJRHxqKRzgK9KeoCUDL4JPE46ZYuIuFfS74ELJB0BtAPnAT/LRm1XYvo66QqJZwA7kEZqH5N73XOBP0o6FrgO+CiwK/BZzGwg3YFzi1lL6WthseUAvf6udJ2qt3Jc8VLgUFKCWZ906taGpIlzpkTEitxzPk76g7+eNGL7atJIcuCl0d6TSYO/5gJPA6dExI9zfW6W9DHgVODbpIsevS+bsMfMBo5zi1mL6VNhERGPDMSLR8SNdP2mUr08gJOyW3d9lgAf6+V1/ga8s5c+Pwd+3lMfMyuXc4tZ6yk6QdZmwDtIg5u6jNOIiO+XEJeZDUPOLWbNr8gEWYcC/wOsAp4hHR+tCNIALDOzuji3mLWGInssvgmcApwWEZ0lx2Nmw5dzi1kLKHIRstGkkdH+wzezMjm3mLWAIoXFhcDBZQdiZsOec4tZCyhyKORE4LeSpgB3AV2uUhIRU8sIzMyGHecWsxZQtLDYl5en3a0eYGVmVoRzi1kLKFJYHAscFhGXlByLmQ1vzi1mLaDIGIuVwJ/LDsTMhj3nFrMWUKSwOBf4QtmBmNmw59xi1gKKHAp5K7C3pAOBv7P2AKsPlBGYmQ07zi1mLaBIYfEc8MuS4zAzew7nFrOmV3dhERGfGohAzGx4c24xaw1FxliYmZmZ1VTkImTz6eGc8oh4fb8iMrNhybnFrDUUGWNxTtXjdmBnYArwnf4GZGbD1jlVj51bzJpQkTEW59Zql3QksGu/IzKzYcm5xaw1lDnGYhrwwRLXZ2YGzi1mTaXMwuJDwJIS12dmBs4tZk2lyODNeXQdYCVgU+BVwOdLisvMhhnnFrPWUGTw5jVVjzuBp4AbI+K+fkdkZsPVNVWPnVvMmlCRwZvfGIhAhopsoNh/kr4p3Ql8ISL+0tiozFqfc4tZa/AEWTmSPgKcBXwDeDPpj3+6pE0aGpiZNTXnFhtO+lxYSOqUtKaX2+qBDHYQTAUuiIiLI+Ie4AhgGXBYY8Mya13OLWatpZ5DIe/vYdluwBdp4j0gktYFdgFOq7RFRKekWaT3V91/JDAy1zQWYMmSJXR0dLkoIx0dHSxbtoybbrqJtrY22tra6OzsfOkeWKutp2Wt1v/+++9nzJgxaMkjqGMN6623HnPnzuXFF18sLZ6hvg16W9bZ2cmyZct45plnaG9v7/L5euGFF6o/ns3GuaVr/z7nFuiaX9ZZZ52Gf1aHWv8HHniAMWPGMOLFxX3KLY2Iv5HbbEByS0QUvgHbAL8CVgOXApv3Z32NvAGbkUak71bVfiZwa43+J2f9ffNtqNxe0+i/oxL/Hp1bfPNt6Nzqyi1FzgpB0makY4WfBKYDO0XE3UXW1cROIx0zzduY2ufbjwUWAK8Fmv7r5QDw9uldb9toLPD4oEY0AJxbgPpyC/jvpzfePj0rPbfUVVhI2gD4CvAF4A5gn4i4qZ51DGFPA2uA8VXt44EnqjtHxEpgZVXz0lorllT58YWIqNlnOPP26V0ftlFTbzfnlpfVk1vAfz+98fbp2UDklnoGbx4H/BM4EPh/EbF7C/3hExGrgLnAPpU2SW3Z4zmNisus1Tm3mLUWZcf0eu8odQLLgVmk6rumiPhAOaENvuyUsEuB/wD+AhwNfBjYNiIW92O944DngQ1cMa/N26d3rbyNnFuK55Zs3S372SiDt0/PBmL71HMo5DLSII6WFRFXSXoVcAppEps7gCn9/cMn7db8Bmvv3rTE26d3rbyNnFv6p5U/G2Xw9ulZ6dunz3sszMzMzHrTtOeGm5mZ2dDjwsLMzMxK48LCzMzMSuPCwszMzErjwmKASNpY0uWSlkp6TtKFksb08pwbJUXV7UeDFfNAknSkpIclrZB0q6S39tL/YEn3Zf3vkrT/YMXaKPVsI0mH1visrBjMeK0xnFvW5vzSs8HOLS4sBs7lwPbAJNLEP3sCP+7D8y4AXp27HTdQAQ6Wei8ZLWl34ErgQmBn4BrgGkk7DErADVDwstpL6fpZ2Xyg47Qhwbklx/mlZw3JLY2+QE8r3oDtSOfl75prmwJ0Apv18LwbgXMaHf8AbI9bgfNyj9uAhcAJ3fS/CvhtVdstwI8a/V6G0DY6FHiu0XH7NuifE+eWtd+b80u526ffucV7LAbGbqRfzG25tlmkP/639fLcj0t6WtLdkk6TNHrAohwEuUtGz6q0RURn9nitS0Zndsv3z0zvoX9TK7iNAMZIekTSY5KulbT9AIdqjefckuP80rNG5ZZCVze1Xm0KPJlviIjVkpZky7pzBfAI6UpybwLOIF0+ummnMgZeCYwAqmcYXAxs281zNu2mf0/brpkV2Ub3A4cBfwM2AL4M3Cxp+4hYMFCBWsM5t3Tl/NKzhuQWFxZ1kHQ6cHwv3bYruv6IyB8nvUvSIuB6SVtFxENF12utJyLmkLuAlaSbgXtJ16L4WqPismKcW2yoKCO3uLCoz/eAS3rp80/SpZC7DIyRtA6wMTUuk9yDW7P7rYFm/eOv65LRmSfq7N/simyjLiKiQ9I80mfFmo9zSzHOLz1rSG7xGIs6RMRTEXFfL7dVpGpvQ0m75J6+N2l731pz5bXtlN0vKucdDL4odsnoOfn+mUk99G9qBbdRF5JGADvSxJ+V4cy5pRjnl541LLc0esRqq96AacDtwFuBPYB/AFfklr8GuA94a/Z4K9Jupl2ALYD3kr5J/LHR76WEbfERYAXwSdLu3P8BngXGZ8svA07L9d8d6ACOJR0HPBlYBezQ6PcyhLbRScBk4PWkU8iuJF16/I2Nfi++Dfhnxbml6/Zwfil3+/Q7tzT8TbfqjbRr8grgBdK17i8CxuSWb0E6bWyv7PHrgD8Cz2QfggeAM4FxjX4vJW2Po0iDx1aSvlm9LbfsRuCSqv4HkwYRrQTuBvZv9HsYStsIODvX9wngOmDnRr8H3wblc+LcsvY2cX4pafuUkVt82XQzMzMrjcdYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFhYw0l6WNLRjY7DzFqLc0tjuLAwMzOz0riwMDMzs9K4sLB+kfRZSY9nl+LNt18r6SJJW2U/L5b0oqS/SnpPD+vbQlJI2inXtmHWtleubQdJ07J1Lpb0U0mvHIC3aGYN4NzSvFxYWH/9HHgF8O5Kg6SNgSnA5cAY4HfAPsDOwO+B30iaUPQFJW0I3ADMA3bNXms88H9F12lmQ45zS5Nap9EBWHOLiGclTQM+BlyfNX8IeBr4Q0R0AnfmnvI1Se8H3gucV/BljwLmRcRXKg2SDgMek/SGiPhHwfWa2RDh3NK8vMfCynA58EFJI7PHHwd+FhGdksZI+q6keyU9J+lFYDug8LcKYCLw7mxX5YvZOu/Llm3Vj/Wa2dDi3NKEvMfCyvAbQMABkv4KvBM4Jlv2XWAS8GXgQWA58Atg3W7W1ZndK9fWXtVnTPaax9d4/qJ6gzezIcu5pQm5sLB+i4gVkn5J+jaxNXB/RNyeLd4DuCQifgUgaQywRQ+reyq7fzXpOCfATlV9bgc+CDwcEav7/QbMbEhybmlOPhRiZbkcOAA4LPu54gHgA5J2kjQRuIIePncRsRy4BThB0naS3gWcWtXtfGBj4EpJb8lGh+8r6WJJI0p8T2bWeM4tTcaFhZXlBmAJsA3pD7xiKvAscDNpF+N00reCnhxG2ps2FzgH+Gp+YUQ8Tvq2MgKYAdyV9XuOl3d3mllrcG5pMoqIRsdgZmZmLcJ7LMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4sbNBJOlRSSNqi0bGYmVm5XFiYmZlZaRQRjY7BhhlJI4B2YGX4A2hm1lJcWJiZmVlpfCjEBl1+jIWkSyU9Lam9Rr8Zku5vRIxmZlaMCwtrtJ8CrwD2zTdK2hTYG/jfRgRlZmbFuLCwRrsBWAB8oqr9/5E+ny4szMyaiAsLa6iI6AQuB94raWxu0ceBmyNifmMiMzOzIlxY2FBwGTAKeD+ApG2AXUiHSczMrIm4sLCGi4h7gLm8fDjkE8Aq4P8aFpSZmRXiwsKGisuAvSW9GvgYcF1EPNvgmMzMrE4uLGyouBII4Fzg9XjQpplZU3JhYUNCRDwF/B44GHgOuK6hAZmZWSEuLGwouSy7/7+IWNnQSMzMrBAXFjboIuKSiFBEPFy1aFV278MgZmZNytcKsSFD0m+B7YCtfXEyM7PmtE6jAzCT9FHgTcABwJdcVJiZNS/vsbCGkxTAi8BVwBERsbrBIZmZWUF1FxaSpgAvRsSfssdHAp8B7gGO9NwDZmZmw1eRwZvfAcYBSNoR+B7wO2BL4KzyQjMzM7NmU2SMxZakvRMAHwR+GxFfkfRmUoFhZmZmw1SRwmIVMDr7+T28PPfAErI9GcORJAGbAS80OhYblsYCj3vgq5k1WpHC4k/AWZL+DLwV+EjW/gZgQVmBNaHNGN7v3xrvtcDCRgdhZsNbkcLiKOCHwIeAz0VEJZHtR5qSebh6AeCxxx5j3LiuO246OjqYMWMGkydPpr29vSHBDWXePr3raRstXbqU173udeC9ZWY2BNRdWETEo8CBNdqPKSWiJjdu3LiahcXo0aMZN26c/3HW4O3TO28jM2sWhSbIktQGbA1sQtWZJRExu4S4zMzMrAnVXVhIejtwBbA5oKrFAYwoIS4zMzNrQkX2WPwIuI00/fIiUjFh1m933nknbW1tvPKVr2TChAmNDsfMzAooUlj8G/ChiHiw7GBseFqwIJ1Ms+eee7J8+XLWGzWa+++718WFmVkTKjLz5q2k8RWlknSCpJB0Tq5tPUnnS3pG0ouSrpY0vup5EyRdJ2mZpCclfUfSOlV99pJ0u6SVkh6UdGiN1z9S0sOSVki6VdJby36PVtszzzwDwMZTvsArDjyWFcuX8fTTTzc4KjMzK6LIHosfAN+TtClwF9CRXxgRf6t3hZLeAvwHUP3cs0mHXA4GngfOA34J7JE9bwRwHfAEsDvwatKEXR3AV7I+W2Z9fgR8HNgH+ImkRRExPevzEdJ05EeQCqejgemStomIJ+t9P1ZM+8avYc1qH1kzM2tmRQqLq7P7i3JtQRrIWffgTUljgMtJFzL7aq59A+Bw4GMRcUPW9ingXklvj4hbgMnAG4H3RMRi4A5JXwPOkHRyRKwiFQvzI+LYbNX3SnoHcAwwPWubClwQERdnr3MEqaA5DDi9nvdjZmY2nBW9VkiZzgeui4hZkr6aa98FaAdmVRoi4j5JjwK7Abdk93dlRUXFdOC/ge2BeVmfWXQ1HTgHQNK62WudlnudTkmzsufWJGkkMDLXNBbSfAMdHV124rz0uLrdks7OTgBGrpNOMho1ahSdnZ3eXjk9fYa8ncxsKCkyQdYjZb24pI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSHtZavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZYM1D7qShQsXsnChZ6euVusztGzZsgZEYmZWW9EJsrYijUPYLmu6Bzg3Ih6qYx2vA84FJkXEiiJxNNhpdL1M/FhgweTJk2vOvDlz5kwmTZrkWRNrmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FZkga1/g18AdwJ+z5j2Av0s6KCL6+rV8F9LMnbenC4MCac/BnpKOAvYF1pW0YdVei/GkwZpk99Vnb4zPLavcj6/RZ2lELJe0BljTTZ8n6EZErARWVh5X3kN7e3u3xUNPy4aztrZ0ctLK1cGK1cHy5ctpa2vztqqh1mfI28nMhpIip5ueDpwdEW+LiKnZ7W2kMQtn1LGe64EdgZ1yt9tIAzkrP3eQzuIAQNI2wARgTtY0B9hR0ia59U4ClpL2olT67ENXkyrryAZ4zq16nbbs8RzMzMysz4ocCtkO+HCN9otIh0f6JCJeAO7Ot0n6F/BMRNydPb6QdIn2JaRi4QfAnOyMEIAZpALip5KOI42nOBU4P9ujAOk006MknZnFuHcW/wG5lz4LuFTSbcBfsvexPnBxX9+PmZmZFSssniLtUXigqn0noOw5H44BOkmnuI4knc3x+crCiFgj6UDSWSBzgH8BlwIn5frMl3QAaU6MLwELgE9X5rDI+lwl6VXAKaTi5A5gStXZJmZmZtaLIoXFBcCPJb0euDlr2wM4nq6DGesWEXtVPV4BHJndunvOI8D+vaz3RmDnXvqcR5qAy8zMzAoqUlh8E3gBOJaX5354HDgZ+H45YZmZmVkzKjKPRZAOK5wtaWzW9kLZgZmZmVnzKTSPRYULCjMzM8vrU2Eh6XZgn4h4VtI80jVBaoqIN5cVnJmZmTWXvu6xuJaXJ4O6lh4KCzMzMxu++lRYRMQ3cj+fPGDRmJmZWVOre+ZNSf+U9Ioa7RtK+mc5YZmZmVkzKjKl9xaka3pUGwm8tl/RmJmZWVPr81khkt6be7ivpOdzj0eQrq0xv6zAzMzMrPnUc7rpNdl9kKbNzusAHiZNmmVmZmbDVJ8Li4hoA5A0H3hLRDw9YFGZmZlZUyoy8+aWAxGImZmZNb++TpD1ReDHEbEi+7lbEeHrhZiZmQ1Tfd1jcQxwObAi+7k7gS9EZmZmNmz1dYKsLWv9bGZmZpZXZIKskySNrtE+StJJ5YRlZmZmzajIBFlfB8bUaB+dLTMzM7NhqkhhIWpfhGwisKR/4ZiZmVkzq2fmzWdJBUUA/5CULy5GkPZi/Kjc8MzMzKyZ1DOPxdGkvRUXkQ555Kf0XgU8HBFzygvNzMzMmk09M29eCi/NvPnniFg9YFGZmZlZU6p7jEVE/BHYXNKpkq6UtAmApP0kbV96hGZmZtY0ipxu+i7gLuBtwAd4+QyRicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXszMzKzYWSGnA1+NiEmksRUVNwBvr3NdC4ATgF2AXbN1XJvb83E2cBBwMPAuYDPgl5UnSxoBXAesC+wOfBI4FDgl12fLrM8fgJ2Ac4CfSNo31+cjwFmkwujNwJ3A9MreGDMzM+ubIoXFjsCvarQ/CbyynhVFxG8i4ncR8UBE/CMi/gt4EXi7pA2Aw4GpEXFDRMwFPgXsLqlSwEwG3gh8IiLuiIhpwNeAIyWtm/U5ApgfEcdGxL0RcR7wC7pOTT4VuCAiLo6Ie7LnLAMOq+f9mJmZDXd1X90UeA54NTC/qn1nYGHRQLK9DwcD6wNzSHsx2oFZlT4RcZ+kR4HdgFuy+7siYnFuVdOB/wa2B+ZlfWbR1XTSnguyAmQX4LTc63RKmpU9t7t4RwIjc01jATo6Oujo6OjSt/K4ut2Szs5OAEauIwBGjRpFZ2ent1dOT58hbyczG0qKFBY/A86QdDBpTos2SXsA3wUuq3dlknYkFRLrkfZWvD8i7pG0E7AqIp6respiYNPs502zx9XL6UOfcZJGARuR5uGo1WfbHkI/kRozjc6YMYPRo9ea8RyAmTNn9rA6O2O/CemHg65k4cKFLFxYuE5tWbU+Q8uWLWtAJGZmtRUpLL4CnA88RvqHfE92fwVwaoH13U8a+7AB8CHg0myA6FB3GmlcRsVYYMHkyZMZN25cl44dHR3MnDmTSZMm0d7ePpgxNoV58+axaNEijp/2KCtXB4uvOIHZs2czceLERoc2ZPT0GVq6dGmDojIzW1vdhUVErAI+I+mbwA6ks0LmRcQDRQLI1vdg9nCupLcAXwKuAtaVtGHVXovxwBPZz08A1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyfoRkSsBFZWHktpN357e3u3xUNPy4aztrY01Gfl6mDF6mD58uW0tbV5W9VQ6zPk7WRmQ0mRwZsARMSjwDTg50WLim60kcYuzAU6gH0qCyRtA0wgHTohu9+x6uyNScBS0p6USp996GpSZR1ZYTO36nXasseeSdTMzKwOhQoLSYdLuhtYAayQdLekTxdYz2mS9pS0haQdJZ0G7AVcHhHPAxcCZ0l6t6RdgIuBORFxS7aKGaQC4qeSJmankJ4KnJ/tUYB0/ZLXSzpT0raSPg98mHQqa8VZpL0wn5S0HWnw5/rZ65mZmVkf1X0oRNIppNMzf8DL3+h3A86WNCEiTqpjdZuQBny+mnTtkb8B+0ZEZYTaMUAncDVpL8Z04POVJ0fEGkkHkgqBOcC/gEuBk3J95ks6gFRIfIk0d8anI2J6rs9Vkl5Fmv9iU+AOYErV2SZmZmbWiyKDNz8HfCYirsy1/VrS30jFRp8Li4g4vJflK4Ajs1t3fR4B9u9lPTeSToftqc95wHk99TEzM7OeFTkU0g7cVqN9LsUKFTMzM2sRRQqLn5L2WlT7LHB5/8IxMzOzZlZ0D8PhkiaTZr+EdEGyCcBlkl6a2yEipvYzPjMzM2siRQqLHYDbs5+3yu6fzm475PpFP+IyMzOzJlRkgqx3D0QgZmZm1vwKT5AlaWtJ+2bX20CVqSfNzMxs2Kq7sJD0CknXA/8AfkeagwLgQknfKzM4MzMzay5F9licTZpqewKQv6ziVcCUMoIyMzOz5lRk8OZk0uyYC6qOfjwAbF5KVGZmZtaUiuyxWJ+ueyoqNiZ3tU8zMzMbfooUFjcBh+QeR3Y10OOAP5QSlZmZmTWlIodCjgOul7QrsC5wJrA9aY/FHiXGZmZmZk2m7j0WEXE38AbgT8C1pEMjvwR2joiHyg3PzMzMmkldeywktQO/B46IiG8NTEhmZmbWrOraYxERHcCbBigWMzMza3JFBm/+L3B42YGYmZlZ8ysyeHMd4DBJ7wHmAv/KL/QVTc3MzIav/l7d9A1Vy3xFUzMzs2HMVzc1MzOz0hS+uqmZmZlZNRcWZmZmVpqGFhaSTpT0V0kvSHpS0jWStqnqs56k8yU9I+lFSVdLGl/VZ4Kk6yQty9bzHUnrVPXZS9LtklZKelDSoTXiOVLSw5JWSLpV0lsH5I2bmZm1qEbvsXgXcD7wdmAS0A7MkLR+rs/ZwEHAwVn/zUgzfQIgaQRwHWl68d2BTwKHAqfk+myZ9fkDsBNwDvATSfvm+nwEOAv4BvBm4E5guqRNynu7ZmZmra1PhUX2TX+j7OeTJI0u48UjYkpEXBIRf4+IO0kFwQRgl+y1NiDNmTE1Im6IiLnAp4DdJb09W81k4I3AJyLijoiYBnwNOFLSulmfI4D5EXFsRNwbEecBvwCOyYUzFbggIi6OiHuy5ywDDivjvZqZmQ0Hfd1jsR3pmiAAXwfGDEw4bJDdL8nudyHtxZhV6RAR9wGPArtlTbsBd0XE4tx6pgPjSBdHq/SZRVfTK+vICpBdql6nM3u8G2ZmZtYnfT3d9A7gYkl/AgR8WdKLtTpGxCm12nuTXXr9HODP2YXOADYFVkXEc1XdF2fLKn0W11hOH/qMkzQK2AgY0U2fbbuJdyQwMtc0FqCjo4OOjo4ufSuPq9st6ezsBGDkOgJg1KhRdHZ2envl9PQZ8nYys6Gkr4XFoaSxBweSJsHaD1hdo1+QG9tQp/NJk2+9o+DzB9uJpL03XcyYMYPRo2sfKZo5c+ZAx9TUzthvQvrhoCtZuHAhCxcubGxAQ1Ctz9CyZcsaEImZWW19Kiwi4n7gowCSOoF9IuLJsoKQdB6paNkzIhbkFj0BrCtpw6q9FuOzZZU+1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyeo7TTSYM+KscCCyZMnM27cuC4dOzo6mDlzJpMmTaK9vb2b1Q1f8+bNY9GiRRw/7VFWrg4WX3ECs2fPZuLEiY0Obcjo6TO0dOnSBkVlZra2IjNvlnYmiSQBPwDeD+wVEfOruswFOoB9gKuz52xDGuA5J+szB/gvSZvkip1JwFLgnlyf/avWPamyjohYJWlu9jrXZK/Tlj0+r1bsEbESWJl7LwC0t7d3Wzz0tGw4a2tLH6mVq4MVq4Ply5fT1tbmbVVDrc+Qt5OZDSVFrhWCpK2Ao0mDOiH9Az83Ih6qc1XnAx8D/h14QVJlTMTzEbE8Ip6XdCFwlqQlpGLhB8CciLgl6zsje/2fSjqONJ7iVOD87J8/wI+AoySdCVwE7A18GDggF8tZwKWSbgP+kr2/9YGL63xPZmZmw1bdhUU298OvSQM6/5w17wH8XdJBEVHPQILPZfc3VrV/Crgk+/kYoJO0x2Ik6WyOz1c6RsQaSQcC/03aA/Ev4FLgpFyf+ZIOIM2J8SVgAfDpiJie63OVpFeRxohsmr2/KVVnm5iZmVkPiuyxOB04OyJOyDdKOh04A+hzYRER6kOfFcCR2a27Po+w9qGO6j43Ajv30uc8ujn0YWZmZr0rMl5iO+DCGu0XkSaqMjMzs2GqSGHxFGla7Go7AaWdKWJmZmbNp8ihkAuAH0t6PXBz1rYHcDxdT780MzOzYaZIYfFN4AXgWNJcDgCPAycD3y8nLDMzM2tGReaxCNLZFWdLGpu1vVB2YGZmZtZ8Cs1jUeGCwszMzPJKm0XTzMzMzIWFmZmZlcaFhZmZmZWmrsJCUruk6yX920AFZGZmZs2rrsIiIjqANw1QLGZmZtbkihwK+V/g8LIDMTMzs+ZX5HTTdYDDJL0HmEu6muhLImJqGYGZmZlZ8ylSWOwA3J79/IaqZdG/cMzMzKyZFZl5890DEYiZmZk1v8Knm0raWtK+kkZlj1VeWGZmZtaM6i4sJL1C0vXAP4DfAa/OFl0o6XtlBmdmZmbNpcgei7OBDmACsCzXfhUwpYygzMzMrDkVGbw5Gdg3IhZUHf14ANi8lKjMzMysKRXZY7E+XfdUVGwMrOxfOGZmZtbMihQWNwGH5B6HpDbgOOAPpURlZmZmTanIoZDjgOsl7QqsC5wJbE/aY7FHibGZmZlZk6l7j0VE3E2aGOtPwLWkQyO/BHaOiIfqWZekPSX9RtLjkkLS+6qWS9IpkhZJWi5pVvUF0CRtLOlySUslPSfpQkljqvq8SdJNklZIekzScTViOVjSfVmfuyTtX897MTMzs4LzWETE8xHxrYj4cETsHxFfjYhFBVa1PnAncGQ3y48DvggcAbyNNH34dEnr5fpcTtpjMgk4ENgT+HFloaRxwAzgEWAX4D+BkyV9Ntdnd+BK4EJgZ+Aa4BpJOxR4T2ZmZsNWkUMhSNqIdCGy7bKme4CLI2JJPeuJiGnAtGyd1a8h4Gjg1Ii4Nms7BFgMvA/4maTtSKe4viUibsv6fAH4naQvR8TjwMdJh2wOi4hVwN8l7QRM5eUC5EvA7yPiO9njr0maBBxFKmrMzMysD+ouLCTtCfwGeB64LWv+InCSpIMiYnZJsW0JbArMqjRExPOSbgV2A36W3T9XKSoys4BO0h6OX2V9ZmdFRcV04HhJG0XEs1mfs6pefzqpgKlJ0khgZK5pLEBHRwcdHR1d+lYeV7db0tnZCcDIdVJxOWrUKDo7O729cnr6DHk7mdlQUmSPxfmkybA+FxFrACSNAH6YLduxpNg2ze4XV7Uvzi3bFHgyvzAiVktaUtVnfo11VJY9m9339Dq1nAh8vbpxxowZjB49uuYTZs6c2cPq7Iz9JqQfDrqShQsXsnDhwsYGNATV+gwtW1br7G8zs8YoUlhsDXyoUlQARMQaSWfR9TTUVncaXfdyjAUWTJ48mXHjxnXp2NHRwcyZM5k0aRLt7e2DGWNTmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FSksbieNrbi/qn070kDMsjyR3Y8H8gNDxwN35Ppskn+SpHVIp74+keszvmrd43PLeurzBN2IiJXkJgSrjBFpb2/vtnjoadlw1taWxhCvXB2sWB0sX76ctrY2b6saan2GvJ3MbCjp01kh2emab5L0JuD7wLmSvizpHdnty6RriJxdYmzzSf/Y98nFMY40dmJO1jQH2FDSLrnn7U16X7fm+uwpKZ99JwH3Z+MrKn32oatJudcxMzOzPujrHos7gADyp26cWaPfFaTxF32SzTexda5py+yMjSUR8aikc4CvSnqAVGh8E3icdDooEXGvpN8DF0g6AmgHzgN+lp0RUonp66Srr54B7EA6C+SY3OueC/xR0rHAdcBHgV2Bz2JmZmZ91tfCYssBev1d6ToNeGXMwqXAoaTiZX3SaaEbkiblmhIRK3LP+TipmLiedDbI1aSzVICXziSZTBpYOhd4GjglIn6c63OzpI8BpwLfJl1Q7X3ZZGBmZmbWR30qLCLikYF48Yi4ka57QaqXB3BSduuuzxLgY728zt+Ad/bS5+fAz3vqY2ZmZj0rOkHWZsA7SAMnu4zTiIjvlxCXmZmZNaEiE2QdCvwPsAp4hjT2oiJIgzvNzMxsGCqyx+KbwCnAaRHRWXI8ZmZm1sSKXIRsNOmsCxcVZmZm1kWRwuJC4OCyAzEzM7PmV+RQyInAbyVNAe4CulwBKSKmlhGYmZmZNZ+ihcW+vDyld/XgTTMzMxumihQWxwKHRcQlJcdiZmZmTa7IGIuVwJ/LDsTMzMyaX5HC4lzgC2UHYmZmZs2vyKGQtwJ7SzoQ+DtrD978QBmBmZmZWfMpUlg8B/yy5DjMzMysBdRdWETEpwYiEDMzM2t+RcZYmJmZmdVU5CJk8+lhvoqIeH2/IjIzM7OmVWSMxTlVj9uBnYEpwHf6G5CZmZk1ryJjLM6t1S7pSGDXfkdkZmZmTavMMRbTgA+WuD4zMzNrMmUWFh8ClpS4PjMzM2syRQZvzqPr4E0BmwKvAj5fUlxmZmbWhIoM3rym6nEn8BRwY0Tc1++IzMzMrGkVGbz5jYEIxMzMzJqfJ8iqIulISQ9LWiHpVklvbXRMZmZmzaLPhYWkTklrermtHshgB5qkjwBnAd8A3gzcCUyXtElDAzMzM2sS9RwKeX8Py3YDvkjz7wGZClwQERcDSDoCOAA4DDi9kYGZmZk1gz4XFhFxbXWbpG1I/3APAi4HTiovtMElaV1gF+C0SltEdEqaRSqcqvuPBEbmmsYCLFmyhI6OLleSp6Ojg2XLlnHTTTfR1tZGW1sbnZ2dL90Da7X1tKzV+t9///2MGTMGLXkEdaxhvfXWY+7cubz44oulxTPUt0Fvyzo7O1m2bBnPPPMM7e3tXT5fL7zwQvXH08ysYYqcFYKkzUiHCz4JTAd2ioi7ywysAV4JjAAWV7UvBrat0f9E4OvVjVtuuWX5kQ1Dn/3sZxsdQjMaCyxtdBBmNrzVVVhI2gD4CvAF4A5gn4i4aQDiagankcZj5G1M7UnCxgILgNcC/nq5Nm+f3vW2jcYCjw9qRGZmNfS5sJB0HHA88ATw/2odGmlyTwNrgPFV7eNJ77mLiFgJrKxqrvltUVLlxxciwt8oq3j79K4P28jbzcyGhHr2WJwOLAceBD4p6ZO1OkXEB8oIbLBFxCpJc4F9yCYBk9SWPT6vgaGZmZk1jXoKi8voOpV3KzoLuFTSbcBfgKOB9YGLGxmUmZlZs6jnrJBDBzCOISEirpL0KuAU0vVP7gCmRET1gM56rSQNdq0+dGKJt0/vvI3MrCkootV3QpiZmdlgafYJrczMzGwIcWFhZmZmpXFhYWZmZqVxYWFmZmalcWExQCRtLOlySUslPSfpQkljennOjZKi6vajwYp5INV7OXpJB0u6L+t/l6T9ByvWRqlnG0k6tMZnZcVgxmtmVosLi4FzObA9MAk4ENgT+HEfnncB8Orc7biBCnCw1Hs5ekm7A1cCFwI7kyYsu0bSDoMScAPUu40yS+n6Wdl8oOM0M+uNTzcdAJK2A+4B3hIRt2VtU4DfAa+NiJrXdJB0I3BHRBw9SKEOCkm3An+NiKOyx23AY8APImKty9FLugpYPyIOzLXdQto2RwxS2IOqwDY6FDgnIjYczDjNzHrjPRYDYzfguUpRkZkFdAJv6+W5H5f0tKS7JZ0mafSARTkIcpejn1Vpi4jO7PFal6PP7Jbvn5neQ/+mVnAbAYyR9IikxyRdK2n7AQ7VzKxXhS6bbr3aFHgy3xARqyUtyZZ15wrgEdJVKt8EnAFsAzTl9Vcy9V6OHtI2qtW/p23XzIpso/uBw4C/ARsAXwZulrR9RCwYqEDNzHrjwqIOkk4nXeG1J9sVXX9E5Mdg3CVpEXC9pK0i4qGi67XWExFzgDmVx5JuBu4F/gP4WqPiMjNzYVGf7wGX9NLnn6TLrHcZdCdpHWBjalyCvQe3ZvdbA81aWNR1OfrME3X2b3ZFtlEXEdEhaR7ps2Jm1jAeY1GHiHgqIu7r5baK9E1yQ0m75J6+N2l731pz5bXtlN0vKucdDL5se1QuRw90uRz9nG6eNiffPzOph/5NreA26kLSCGBHmvizYmatwXssBkBE3Cvp98AFko4A2oHzgJ9VzgiR9BrgeuCQiPiLpK2Aj5HOHHmGNMbibGB2RPytEe+jRD1ejl7SZcDCiDgx638u8EdJxwLXAR8FdgU+O8hxD6a6tpGkk4BbgAeBDYH/JJ1u+pPBDtzMLM+FxcD5OKmYuJ50NsjVwBdzy9tJAzMrZ32sAt7Dy/9QHsuec+rghDtw+nA5+gmkbVTpf7Okj5He+7eBB4D3RcTdgxr4IKp3GwEbkeY82RR4lrTHY/eIuGfQgjYzq8HzWJiZmVlpPMbCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwhpO0sOSjm50HGZm1n8uLMzMzKw0LizMzMysNC4srF8kfVbS49nVOPPt10q6SNJW2c+LJb0o6a+S3tPD+raQFJJ2yrVtmLXtlWvbQdK0bJ2LJf1U0isH4C2amVkdXFhYf/0ceAXw7kqDpI2BKcDlwBjSFVv3AXYGfg/8RtKEoi8oaUPgBmAe6aqnU4DxwP8VXaeZmZXDVze1fomIZyVNI13y/fqs+UPA08AfIqITuDP3lK9Jej/wXtLVX4s4CpgXEV+pNEg6DHhM0hsi4h8F12tmZv3kPRZWhsuBD0oamT3+OPCziOiUNEbSdyXdK+k5SS8C25EuA17URODd2WGQF7N13pct26of6zUzs37yHgsrw28AAQdI+ivwTuCYbNl3gUnAl4EHgeXAL4B1u1lXZ3avXFt7VZ8x2WseX+P5i+oN3szMyuPCwvotIlZI+iVpT8XWwP0RcXu2eA/gkoj4FYCkMcAWPazuqez+1aQxFAA7VfW5Hfgg8HBErO73GzAzs9L4UIiV5XLgAOCw7OeKB4APSNpJ0kTgCnr43EXEcuAW4ARJ20l6F3BqVbfzgY2BKyW9JTvzZF9JF0saUeJ7MjOzOrmwsLLcACwBtiEVDxVTgWeBm0mHL6aT9jj05DDS3rS5wDnAV/MLI+Jx0p6QEcAM4K6s33O8fCjFzMwaQBHR6BjMzMysRXiPhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZleb/B9uEx1mzsfasAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"data = get_repeteated_data(['log_32-aa'])\n",
|
|
"plot_reapeated_data_distribution(data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"## N = 64"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 249,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYxElEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCIqRJSC4AIoIJoTNrwuoV/0h4nJRUFm8gF4ERLwsKouCekVk8QKioqBCzAJiUAJKCJvsyJYQwhIgYLZJ5vP741RDTdOzdE3N9HTP+/l49KO7T52u/nRN9ZlPnzp1ShGBmZmZWRnaGh2AmZmZtQ4nFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWVpikEyQNytStkq6TdF3u+a6SQtJ+g/T+F0h6eDDeq+p9N8k+54GD/d7DhaQ1JJ0m6TFJnZKuaHRMg2Uwv8M2fDixMAAkHZj9A6vclkt6XNJ0SV+RNLak99koa8y2LWN9ZRrKsdmAOgj4L+A3wKeBMxobjllzW6PRAdiQcxzwENAObAjsCpwJHCHpAxFxe67uScApda5/I+B44GHg1jpeN6XO9ymip9g+T2MS8UeAUUBHA957uNgNWBARhzc6ELNW4MTCqk2LiJtzz0+WtBvwR+D3kiZGxDKAiFgFrBrIYCSNjoilEbFyIN+nNxHRkH/ska4SuLwR790fktYCVkZEZ6Nj6YMNgOfKWpmkNmDNiGi6v5tZGXwoxHoVEdcC3wY2Bj5VKa91fFbSZEl/lfScpBcl3Svpf7JluwL/yKqenzvscmC2/DpJd0raXtJsSUuB/8ktu65GeCMk/Y+kJyT9W9LvJb2hKqaHJV1Q/cL8OvsQ2yvGWEhaW9L3s2PzK7LP+jVJqqoXks6W9MHs862Q9E9JU2t8nuoYXzHGIovlRUmvk3RF9vgpSd+TNKIP63xY0h8lTZF0a3bY6y5JH66qt362zjuy91giaZqkSVX1KuNdPi7pJEkLgKXAuALr+Kik4yUtkPSCpN9IWkfSSElnSnoyW8/5kkZWraPbfa+nbQu8D9gy9zffNVte79/3k5L+CawAuv3bSmrLvjuPS1oq6c+S3lq9n/Z122V1v5ztU0slPSvpZkmfqKrzbkn/yP7eD0r6zx5i/JSkuZKWSVos6ZfKfa+yz/uipNE1Xnup0vex133RWpN7LKyvfkH6Jz8FOLdWBUlbkno2bicdUlkBbA7snFW5Oys/EfgpcH1WfkNuNa8CpgG/BP4PWNRLXP8NBHAq6ZfnYcAsSdtWelb6qC+xvST75/J70j+l80iHTvYAvgu8DqjuVn838GHgR8ALwFeAyyVNiIhn6oizYgQwHbgJ+BrwfuBI4EHgx314/ZuAy4CfABcCnwF+LWlqRMzM6rwR+CDwa9LhsfHAfwJ/kfTWiHi8ap3fBFYC3wNGZo/fWuc6vg4sIx1i2xz4MukwUCewHnAC8C7gwGx9J0Kf9r1angL+P9I+NCZ7b4C7C/x9dwM+CpwNPE06nNadk4GjgD+Q/oaTsvu1qur1aftL+jzwA9IYkbOy9WwDvBO4JKuzNTAj+8wnkNr+b1Hj+yXpv0k/JH4F/Ax4DenvMFvSdhHxHGnfOQTYO4uv8trRwL7ABRGxuodtYK0sInzzDVJDHcAOPdR5Drgl9/wEst767Plh2Tpe3cM6dsjqHFhj2XXZsv/sZtl1uee7ZnXnA2Nz5ftn5V/JlT1Mauh6W2dPsV0APJx7/v+yuv9dVe/XpH+Cm+XKgvSPLl+2TVZ+aC9/l02qY8piCeCbVXVvAW7uw9/64ez1H86VjQMer/r7jgTaasSzPP/eub/Fg8Coqvr1ruMOoD1Xfkm2Pa+uWscNVX+PXve9HrbHdcCdVWX1/n1XA2/tw3uNJyVKv6sqPz5bzwW5sr5uuyuq46/xvr8jJWwTcmUTSYcyI1e2cVb2jarXb5XF/Y3suUjfvd9U1at8/95T79/Bt9a5+VCI1eNFoKezQ57L7v+f0nHmIlYA59dR/6KIeCH3/DfAQmCvgu/fV3uR/pn8oKr8+6RGd8+q8lkR8WDlSaRBsEtIv0qL+knV8+vrWN/jpH82lXiWABcB20naMCtbEdkYCUkjJL2KtA/cC7ytxjovjKpeogLruCi6jme5ibQ9f15V7ybgDZIqva7PZff92ffy6v37/iUi7urDencn9Rb8qKr8h9UV69h2zwGvl/T2Wm+YHZLYA7giIh7Nrf9uUk9J3odJh8h/JenVlRvwBHA/qQeHiAhSkrWXpDG5138MWAD8tdstYC3PiYXVYwypG787lwF/I3WfLsqOy360zoZ+QdQ3UPP+/JOswXuA9MtuIG0MPF6V1EA6pFJZnvcor/QsqXu/iOUR8VQ/1vdAtq3y7svuN4GXxgIcLul+UsL3NKkrfRtgnRrrfKi6oMA6qrfT89n9YzXK23LrKGPfy6v37/uKz97DeiHtoy+JiMWkv99L6th2p5ISjr9Lul/SOZLyh4BeQzqzqMt3JXNv1fM3kRKn+7P3yt8mkg43VlyWrfcDWbxjSAnZr2vsWzaMOLGwPpH0elJj9kB3dbJfq7uQjvf/gtQAXgbMrGMgVz3jIvqqu0ZuMAeXdXe8Wd2UF11fmb4BnA7MJg3a3QOYDPyT2m1Hrb9dvevo7nP1uP1K2vf6YyD22z5tu6znYQvg46Sego8Af5X0rQLv2Ub6vkzN3qv69tKAz4i4kXRY7aNZ0b6kROOyAu9rLcSDN62v/r/svrrrtIus6/aa7HaEpG8A3yF1oc6i+3/yRb0p/yQbdLc5aRBfxbPAujVeuzHwr9zzemJ7BHi/pLFVv2rfkls+lG0uSVW/LN+c3T+c3e8H/DkiPpt/oaR1Sb+e+6KMdfRJH/a9egzU37fyus3J9XJkhzmqe5v6vO0i4t+kf+iXSVoT+C3w35JOJvU2LKPqu5LZour5g6Rk7aGIuK9G/Wq/Ar4qaRzpMMjDWcJhw5h7LKxXSvNYfJPUEF7cQ731axTfmt1XTg38d3a/bknhHaCus4LuB7yWdGZJxYPAu7IGFwBJ+wBdTkutM7arST0eh1aVH05KUKa94hVDy0bAhypPsn8MBwC3RsQTWfFqqnpUJO1POiuir8pYR6/6uO/VY6D+vteQBkd+saq8+n2gj9suS0pekh1KvCt7bXukszOmAx+UNCH3uomkXpC832bve3yWpOffR9XvRUpmRpJmLJ1KSjRsmHOPhVXbU9JbSPvGeNJpdJNJv7Q+ED1P+nOcpF2Aq7L6GwBfIo0erwzmepA02OxgSS+Q/pnfFBF9PUZdbTGp2/f8LN7DSIdr8qfE/oyUcPxJ0q+AzUhdyw92XVVdsf0B+DPwHUmbALeRTsX9f8CZ+YGaQ9R9wHnZgL9FpGmtx5NOO634I+lvej7pLIytgU/StZenN2Wsoy/6su/VY0D+vhGxSNJZwJGSfg/8iXS66Z6kXoh8D1Jft90MSU+QxpgsIo2FOBS4KtfbcjzpH//1kn5E+n5/mXRYZZtcfA9KOpZ0SuwmStdNeQHYlJSI/pR0OnGl/i2SHiD1DI3Eh0EMfLqpb+nGy6ebVm4rSGdXzCDNuTC2xmtOoOuparuRTn1bkL1+Ael0wTdVve4DpAatg9yplNQ47S/3muuofbrpx0nzaywiTcr0R3Kn1OXqH0H6J7Oc9I9m++p19hLbBeROb8zKxpCOgS8gzdlwH2lOCVXVC+DsGjE9TI3TYKvqbJKPIxfLi739PXpY58PZdppC+oe5nDQocb+qeiNJ/0Qez7btX0lzSHT3t9ivxnv1ax10cxp05bOSnV5KH/e9HvatV+x3/f379vB+I0jzbyzMtsk1pEMsTwM/LrDtvgD8JXv9clJifRowrup9dwFuzrbPg6TxEjX3GdLZIdeTBoW+mO0fZwNvrlH3pGwb3F9Pm+Nb694U4cG7ZsOJ0gyid0bEPo2OxZJs3MSzwLER8Z0Gh2PWLx5jYWY2iCSNqlF8WHZ/3eBFYjYwPMbCzGxwfUzp2i9Xkw4zvBv4D2BGRPytkYGZlcGJhZnZ4LqddGbIUaSp1BeRrvFxbCODMiuLx1iYmZlZaTzGwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMIKk3SgpJC0SS/1HpZ0weBEZWbNxO1I63FiYWZm1gNJu0v6uaT7JC2V9C9JP5P02kbHNhQpIhodgzUpSSOAdmBF9LAjSXoYuC4iDhyk0MysSTRDOyLpZmB94NfA/cAbgUOBpcC2EfHEYMc0lK3R6ACseUXEamB1o+Mws+bVJO3IEcBfI6KzUiDpT8BfSAnGsY0KbCjyoRArrPrYqJJjJc3Pugv/LGnLGq87QdIrfpnUOtaaHVf9o6RdJd0saZmkOyTtmi3/cPZ8uaS5krYbqM9rZuVrhnYkImbnk4pKGbAYmNj/rdBanFhYmU4Evg3cBvwX8C9gBrB2P9e7OXAJ8Afg68B6wB8kfRI4A/g/4HhgM+BXkrxfmzWvpmhHJI0BxgBP9zOuluNDIVYKSa8BjgKuAvatHCuV9B3gG/1c/RbAThExJ1vnXcB04FzgLRHxaFb+LPC/wC7Adf18TzMbZE3WjhwGrAlc1s+4Wo5/2VlZ3k/6kv2wagDWmSWs+65KY5C5Kbu/ttIYVJW/sYT3NLPB1xTtiKRdSL0bv4qIa0uIraU4sbCybJzd358vjIingGf7ue78l56IeD57+FhVvUr5ev18PzNrjCHfjkh6C/A74E7gc/2MqSU5sbBG6O6UshHdlHc3Yry7ctUXjpk1oUFvRyS9gTTe43lgr4h4occIhyknFlaWR7L7N+ULs2Om1Zn/s9mydavKN8bMhrMh245IehUpqRgJ7BERCwfifVqBEwsryyygA/iypHymf1iNug9m97tUCiStDXx6wKIzs2YwJNuRbL1XA68j9VTc38tLhjWfFWKliIinJH2PdBrXHyVdDWwH7MkrT8eaQTreeZ6k75K6Ig8CngImDF7UZjaUDOF25GLgHcDPgYmS8nNXvBgRV5T8fk3NiYWV6VhgOXAw8D7S6OoppFPHXhIRHZI+BPyIdL76E6RR388C5w9ivGY29AzFdmTb7P6g7Jb3CHBFye/X1HytEDMzMyuNx1iYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaepOLCRNlfTu3PNDJN0q6RJJnkrZzApx22LWGor0WHwXGAcgaWvg+6SJQzYFTi8vNDMbZty2mLWAIvNYbArclT3+CPDHiPiGpLeRGoFhKZslbiPAc8dbI4wFHo/mPn/cbUsNbluswepuW4okFiuB0dnj9wMXZY8Xk/3aGKY2AuY3Oggb1l4PLGh0EP3gtqU2ty3WaHW1LUUSi78Cp0v6G2mK049l5W9meO/8LwA89thjjBvXtQ3s6OhgxowZTJkyhfb29oYEN5R5+/Sup220ZMkS3vCGN0Dz/6J121Jbt20L+PvTG2+fng1E21IksTiUNIXqfsAXI6KSxewJ/KnA+lrKuHHjaiYWo0ePZty4cd6xa/D26d0w2UZuW3pQq22BYbNvFObt07OB2D51JxYR8SiwT43yw0uJyMyGJbctZq2h0EXIJLUBmwMbUHVmSUTMLiEuMxuG3LaYNb+6EwtJ7wIuATYGVLU4gBElxGVmw4zbFrPWUKTH4ifAzcDewELSF96s32677Tba2tp49atfzYQJExodjg0+ty02YG677TY22GADty2DoEhi8SZgv4h4oOxgbHiaPz8N+N9ll11YtmwZa40azb333O0GYPhx22Kly7cvgdy2DIIiM2/eRDoGalaKZ555BoD1p36ZV+1zJMuXLeXpp59ucFTWAG5brHSV9mXcOz7stmWQFOmx+CHwfUkbAncAHfmFEXF7GYHZ8NO+/utYvcq938OY2xYbMCPGvabRIQwbRXosLgcmAj8H/gHcCszL3Rci6RhJIenMXNlaks6R9IykFyVdLml81esmSLpK0lJJT0r6rqQ1qursKukWSSskPSDpwBrvf4ikhyUtl3STpHcU/SxmVsiAtC3g9sVsMBW9VkipJL0d+E+g+hfJGaSBXPsDzwNnA78Fds5eNwK4CngC2Al4LWka4A7gG1mdTbM6PwE+CewO/EzSwoiYntX5GOkiRweTumMPA6ZL2iIiniz785pZTaW3LeD2xWywFZkg65EyA5A0BrgY+DxwbK58HeCzwCci4tqs7DPA3ZLeFRE3AlOAtwLvj4hFwK2SvgmcKumEiFhJ+jI/FBFHZqu+O7s08+HA9KzsCODciDg/e5+DSQ3OQcApZX5eM6ut7LYF3L6YNULRCbI2I2XdE7Oiu4CzIuLBAqs7B7gqImZJOjZXvj3QDsyqFETEPZIeBXYEbszu78i+9BXTgR8DW5K6T3fMryNX58zss6yZvdfJuffplDQre21NkkYCI3NFYyFNj9rR0eXQ8EvPq8st6ezsBGDkGmnqglGjRtHZ2entldPTPtRK26nktgWasH2pp22plOfvratK+7JW+wi3LTUMRNtSZIKsPYDfk457/i0r3hn4p6R9I2JmHev6OPA24O01Fm8IrIyI56rKF2XLKnUW1VhOH+qMkzQKWI808U6tOm/pIfyvA8dXF86YMYPRo0fXqA4zZ/Z50wxLp+6ZnQK276UsWLCABQua+UKdA6PWPrR06dIGRFK+MtuWbH3N2r7U3baA25fenH7Ae+CA97ht6UaZbUuRHotTgDMi4ph8oaRTgFOBPu3dkt4AnAVMjojlBeJotJNJx00rxgLzp0yZUvMiZDNnzmTy5Mm+CE4N8+bNY+HChRw97VFWrAoWXXIMs2fPZtKkSY0ObcjoaR9asmRJg6IqXSltS/aaZm5f+ty2gNuX3lTalyMuup6F037ktqXKQLQtRRKLicBHa5T/nNSF2Vfbk64HcIv00uy9I4BdJB0K7AGsKWndql8V40mDqcjuq0dXj88tq9yPr1FnSUQsk7QaWN1NnSfoRkSsAFZUnlc+Q3t7e7df7p6WDWdtbenkpBWrguWrgmXLltHW1uZtVUOtfaiFtlNZbQs0cftSpG3py/LhqtK+LO9Y7balB2W2LUVON30K2LZG+bZAPSOcrwG2zl5Xud1MGmhVedxBGmUNgKQtgAnAnKxoDrC1pA1y650MLCEdm63U2Z2uJlfWkQ3Amlv1Pm3Z8zmY2WApq20Bty9mDVOkx+Jc4KeS3gjckJXtDBxN1+67HkXEC8Cd+TJJ/waeiYg7s+fnAadLWkz6Mv8QmJON2AaYQfqC/0LSUaTjnScB52RZP6TTwA6VdBrpl89upF9Fe+fe+nTgQkk3A38n/TpaGzi/r5/HzPqtlLYF3L6YNVKRxOLbwAvAkbw80vlx4ATgB+WE9ZLDgU7SxDkjSaOtv1RZGBGrJe1DGqU9B/g3cCFwXK7OQ5L2Jp2z/lVgPvC5yjnmWZ3LJL0GOJHUeNwKTK0aDW5mA2sw2xZw+2I2IIrMYxGkL9EZksZmZS+UEUxE7Fr1fDlwSHbr7jWPAHv1st7rgO16qXM2aYIcM2uAgWxbsnXtWvXc7YvZACg0j0VFmV96M7MKty1mzatPiYWkW4DdI+JZSfOAbq8UFRFvKys4M2ttblvMWk9feyyu5OXTn66khy+/mVkd3LaYtZg+JRYR8a3c4xMGLBozG1bctpi1nrrnsZD0L0mvqlG+rqR/lROWmQ03blvMWkORCbI2Ic1gV20k8Pp+RWNmw9kmuG0xa3p9PitE0gdyT/eQ9Hzu+QjSTHIPlRWYmQ0PblvMWks9p5tekd0HaZKYvA7gYdLENmZm9bgiu3fbYtYC+pxYREQbgKSHgLdHxNMDFpWZDRtuW8xaS5GZNzcdiEDMbHhz22LWGvo6QdZXgJ9GxPLscbciYiDm9DezFuS2xaz19LXH4nDS5YaXZ4+7EwzMxYLMrDW5bTFrMX2dIGvTWo/NzPrDbYtZ6ykyQdZxkkbXKB8l6bharzEz643bFrPWUGSCrOOBMTXKR2fLzMyKcNti1gKKJBai9oWCJgGL+xeOmQ1jblvMWkA9M28+S/rSB3CfpHwDMIL0S+Mn5YZnZq3ObYtZa6lnHovDSL8ofk7qlsxPu7sSeDgi5pQXmpkNE4fhtsWsZdQz8+aF8NLseH+LiFUDFpWZDRtuW8xaS91jLCLiL8DGkk6SdKmkDQAk7Slpy9IjNLNhwW2LWWsocrrpe4E7gHcCH+blUdyTgG+VF5qZDSduW8xaQ5GzQk4Bjo2IyaTjnxXXAu+qZ0WSvijpdklLstscSXvmlq8l6RxJz0h6UdLlksZXrWOCpKskLZX0pKTvSlqjqs6ukm6RtELSA5IOrBHLIZIelrRc0k2S3lHPZzGzfnPbYtYCiiQWWwO/q1H+JPDqOtc1HzgG2B7YgdSAXJnr9jwD2BfYH3gvsBHw28qLJY0ArgLWBHYCPg0cCJyYq7NpVufPwLbAmcDPJO2Rq/Mx4HTSr6K3AbcB0ytdsWY2KNy2mLWAIonFc8Bra5RvByyoZ0UR8YeIuDoi7o+I+yLiv4EXgXdJWgf4LHBERFwbEXOBzwA7Sar8epkCvBX4VETcGhHTgG8Ch0haM6tzMPBQRBwZEXdHxNnAb+h6XYIjgHMj4vyIuCt7zVLgoHo+j5n1y3O4bTFrenVfNh34JXCqpP1J5523SdoZ+B5wUdFAsl8I+wNrA3NIvzTagVmVOhFxj6RHgR2BG7P7OyJiUW5V04EfA1sC87I6s+hqOunXBVkjsT1wcu59OiXNyl7bXbwjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9cQAKNGjaKzs9PbK6enfaiFtpPbFuprWyrl+XvrqtK+rNU+wm1LDQPRthRJLL4BnAM8Rpq85q7s/hLgpHpXJmlr0pd9LdIvig9FxF2StgVWRsRzVS9ZBGyYPd4we169nD7UGSdpFLBeFn+tOm/pIfSvU2Oa4RkzZjB69CsudwDAzJkze1idnbrnhPRg30tZsGABCxbU9SN1WKi1Dy1durQBkQwIty1J3W0LuH3pzekHvAcOeI/blm6U2bbUnVhExErg85K+DWxFGrk9LyLuLxQB3Es6PrkOsB9wYTY6fKg7mXTstGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqMrltuUlfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIj0WAETEo5Ieyx7Xmt+/r+tZCTyQPZ0r6e3AV4HLgDUlrVv1y2I88ET2+AmgeoT1+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXluZS68dvb27v9cve0bDhra0tDfVasCpavCpYtW0ZbW5u3VQ219qFW205uW+pvW/qyfLiqtC/LO1a7belBmW1LkcGbSPqspDuB5cBySXdK+lyhCGrHNBKYC3QAu+fedwtgAql7k+x+66oR1pOBJaRu1Eqd3elqcmUdWeMzt+p92rLnnkbYbBC5bTFrfnX3WEg6kTTS+Ye8/OXYEThD0oSIOK6OdZ0MTAMeJXX3fQLYFdgjIp6XdB5wuqTFpC/0D4E5EXFjtooZpC/5LyQdRTrmeRJwTpb1Q7p40aGSTiNdi2A34KPA3rlQTid1k94M/J107YK1gfP7+lnMrH/ctpi1hiKHQr4IfD4iLs2V/V7S7aQvZ5+//MAGpNHeryVdeOh20he/MorkcKATuJz0S2M68KXKiyNitaR9SCO15wD/Bi7MxxARD0nam3Te+ldJ57d/LiKm5+pcJuk1pHPUNwRuBaZWjQg3s4HltsWsBRRJLNqBm2uUz613fRHx2V6WLwcOyW7d1XkE2KuX9VxHOhe+pzpnA2f3VMfMBpTbFrMWUGSMxS9IvyyqfQG4uH/hmNkw5rbFrAUUPSvks5KmkCaSgXTRoAnARZJeOk0qIo7oZ3xmNry4bTFrckUSi62AW7LHm2X3T2e3rXL1Cp8mZmbDktsWsxZQZIKs9w1EIGY2vLltMWsNheaxAJC0uaQ9sqlrUWUWFzOzfnDbYtbc6k4sJL1K0jXAfcDVvHw1wvMkfb/M4Mxs+HDbYtYaivRYnEGatW4C6fK/FZcBU8sIysyGJbctZi2gyODNKaSJZuZX9VDeD2xcSlRmNhy5bTFrAUV6LNam66+JivXJXTjHzKxOblvMWkCRxOJ64IDc88gurHMU8OdSojKz4chti1kLKHIo5CjgGkk7AGsCpwFbkn5V7FxibGY2vLhtMWsBdfdYRMSdwJuBvwJXkrovfwtsFxEPlhuemQ0XblvMWkNdPRaS2oE/AQdHxHcGJiQzG27ctpi1jrp6LCKiA9hmgGIxs2HKbYtZ6ygyePP/gB4vSWxmVoDbFrMWUGTw5hrAQZLeD8wF/p1f6KsOmllBblvMWkB/r2765qplvuqgmRXltsWsBfjqpmY2JLhtMWsNha9uamZmZlbNiYWZmZmVxomFmZmZlaahiYWkr0v6h6QXJD0p6QpJW1TVWUvSOZKekfSipMslja+qM0HSVZKWZuv5rqQ1qursKukWSSskPSDpwBrxHCLpYUnLJd0k6R0D8sHNbEC5bTFrnD4lFtmXZr3s8XGSRpf0/u8FzgHeBUwG2oEZktbO1TkD2BfYP6u/EWma30psI4CrSNcW2An4NHAgcGKuzqZZnT8D2wJnAj+TtEeuzseA04FvAW8DbgOmS9qgpM9qZlXctpi1nr72WEwkzdsPcDwwpow3j4ipEXFBRPwzIm4jfWknANsDSFqHNGHOERFxbUTMBT4D7CTpXdlqpgBvBT4VEbdGxDTgm8AhktbM6hwMPBQRR0bE3RFxNvAb4PBcOEcA50bE+RFxV/aapcBBZXxWM6vJbYtZi+nr6aa3AudL+isg4GuSXqxVMSJOrFXeR+tk94uz++1JvzRm5dZ/j6RHgR2BG7P7OyJiUW4904Efk66MOC+rM4uuppN+XZA1EtsDJ+fep1PSrOy1ryBpJDAyVzQWoKOjg46Oji51K8+ryy3p7OwEYOQaAmDUqFF0dnZ6e+X0tA81+Xa6FbctXdTTtlTK8/fWVaV9Wat9hNuWGgaibelrYnEgqRtvH9JENXsCq2rUC3LdhPWQ1Eb6Mv4tu8ohwIbAyoh4rqr6omxZpc6iGsvpQ51xkkYB6wEjuqnzlm5C/jrpF1YXM2bMYPTo2r25M2fO7GZVBnDqnhPSg30vZcGCBSxYsKCxAQ1BtfahpUuXNiCS0hyI25Zqdbct4PalN6cf8B444D1uW7pRZtvSp8QiIu4FPg4gqRPYPSKeLPSO3TuHNPPeu0te70A5mXTctGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqPrPbUtNfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIjNvln4miaSzSb9YdomI+blFTwBrSlq36pfF+GxZpU71COvxuWWV+/E16iyJiGWSVgOru6nzBDVExApgRe4zANDe3t7tl7unZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219qFW2U5uW5IibUtflg9XlfZlecdqty09KLNtKfRFlrSZpB9KmpXdfiBpswLrUfbF/xCwW0Q8VFVlLtAB7J57zRakQVhzsqI5wNZVI6wnA0uAu3J1dqeryZV1RMTK7L3y79OWPZ+DmQ0Kty1mza/uxCI7jeouUiZ/e3Z7J/BPSZPrXN05wKeATwAvSNowu40CiIjngfOA0yW9T9L2wPnAnIi4MVvHjCyeX0ialMV3EnBOlvkD/AR4o6TTJL1F0peAj5JON6s4Hfi8pE9LmkgaoLV29n5mNsDctpi1hiJXNz0FOCMijskXSjoFOBWoZwTRF7P766rKPwNckD0+HOgELieNlJ4OfKlSMSJWS9qH9GWdQ7rU8oXAcbk6D0nam/Rl/yowH/hcREzP1blM0mtIA8Q2JI1Wn1o1ItzMBo7bFrMWUCSxmEjKyKv9HDisnhVFhPpQZzlwSHbrrs4jwF69rOc6YLte6pwNnN1bTGY2INy2mLWAImMsniLNMFdtW6Ds0dxmNny4bTFrAUV6LM4FfirpjcANWdnOwNF0PUXKzKweblvMWkCRxOLbwAvAkbw8m9zjwAnAD8oJy8yGIbctZi2gyDwWQRqodIaksVnZC2UHZmbDi9sWs9ZQpMfiJf7Sm9lAcNti1rxKn+nOzMzMhi8nFmZmZlYaJxZmZmZWmroSC0ntkq6R9KaBCsjMhh+3LWato67EIiI6gG0GKBYzG6bctpi1jiKHQv4P+GzZgZjZsOe2xawFFDnddA3gIEnvJ10O+N/5hRFxRBmBmdmw47bFrAUUSSy2Am7JHr+5aln0LxwzG8bctpi1gCIzb75vIAIxs+HNbYtZayh8uqmkzSXtIWlU9rzXyxSbmfXGbYtZc6s7sZD0KknXAPcBVwOvzRadJ+n7ZQZnZsOH2xaz1lCkx+IMoAOYACzNlV8GTC0jKDMblty2mLWAIoM3pwB7RMT8qh7K+4GNS4nKzIYjty1mLaBIj8XadP01UbE+sKJ/4ZjZMOa2xawFFEksrgcOyD0PSW3AUcCfS4nKzIYjty1mLaDIoZCjgGsk7QCsCZwGbEn6VbFzibGZ2fDitsWsBdTdYxERd5Imr/krcCWp+/K3wHYR8WA965K0i6Q/SHpcUkj6YNVySTpR0kJJyyTNqr5IkaT1JV0saYmk5ySdJ2lMVZ1tJF0vabmkxyQdVSOW/SXdk9W5Q9Je9XwWM+sfty1mraHQPBYR8XxEfCciPhoRe0XEsRGxsMCq1gZuAw7pZvlRwFeAg4F3kqb4nS5prVydi0m/aiYD+wC7AD+tLJQ0DpgBPAJsD/wXcIKkL+Tq7ARcCpwHbAdcAVwhaasCn8nMCnLbYtb8ihwKQdJ6pIsFTcyK7gLOj4jF9awnIqYB07J1Vr+HgMOAkyLiyqzsAGAR8EHgl5Imkk5De3tE3JzV+TJwtaSvRcTjwCdJ3aoHRcRK4J+StgWO4OVG4qvAnyLiu9nzb0qaDBxKanjMbBC4bTFrfnUnFpJ2Af4APA/cnBV/BThO0r4RMbuk2DYFNgRmVQoi4nlJNwE7Ar/M7p+rfPEzs4BO0q+Q32V1Zmdf/IrpwNGS1ouIZ7M6p1e9/3RSI1OTpJHAyFzRWICOjg46Ojq61K08ry63pLOzE4CRa6R/AKNGjaKzs9PbK6enfahVtpPblqSetqVSnr+3rirty1rtI9y21DAQbUuRHotzSBPWfDEiVgNIGgH8KFu2daFIXmnD7H5RVfmi3LINgSfzCyNilaTFVXUeqrGOyrJns/ue3qeWrwPHVxfOmDGD0aNH13zBzJkze1idnbrnhPRg30tZsGABCxYsaGxAQ1CtfWjp0lpnaDYlty1J3W0LuH3pzekHvAcOeI/blm6U2bYUSSw2B/arfPEBImK1pNPpeqpYqzuZrr9ExgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYqqdG5bkj63LeD2pTeV9uWIi65n4bQfuW2pMhBtS5HE4hbS8c97q8onkgZLleWJ7H48kB+8NR64NVdng/yLJK1BOj3tiVyd8VXrHp9b1lOdJ+hGRKwgN2lP5Thue3t7t1/unpYNZ21taQzxilXB8lXBsmXLaGtr87aqodY+1ELbyW0LxdqWviwfrirty/KO1W5belBm29Kns0KyU6q2kbQN8APgLElfk/Tu7PY10jz/ZxSKoraHSF++3XNxjCMd35yTFc0B1pW0fe51u5E+1025OrtIym+hycC92THQSp3d6Wpy7n3MbAC4bTFrPX3tsbgVCCA/vPq0GvUuIR0j7ZPsnPDNc0WbZqOqF0fEo5LOBI6VdD+pMfg28DjplC0i4m5JfwLOlXQw0A6cDfwyG7Vdiel40hUSTwW2Io3UPjz3vmcBf5F0JHAV8HFgB+ALmNlAuhW3LWYtpa+JxaYD9P470HWq3spxxQuBA0kNzNqkU7fWJU2cMzUilude80nSF/4a0ojty0kjyYGXRntPIQ3+mgs8DZwYET/N1blB0ieAk4D/IV306IPZhD1mNnDctpi1mD4lFhHxyEC8eURcR9dfKtXLAzguu3VXZzHwiV7e53bgPb3U+TXw657qmFm53LaYtZ6iE2RtBLybNLipyziNiPhBCXGZ2TDktsWs+RWZIOtA4H+BlcAzpOOjFUEagGVmVhe3LWatoUiPxbeBE4GTI6Kz5HjMbPhy22LWAopchGw0aWS0v/hmVia3LWYtoEhicR6wf9mBmNmw57bFrAUUORTydeCPkqYCdwBdrlISEUeUEZiZDTtuW8xaQNHEYg9enna3eoCVmVkRblvMWkCRxOJI4KCIuKDkWMxseHPbYtYCioyxWAH8rexAzGzYc9ti1gKKJBZnAV8uOxAzG/bctpi1gCKHQt4B7CZpH+CfvHKA1YfLCMzMhh23LWYtoEhi8Rzw25LjMDN7DrctZk2v7sQiIj4zEIGY2fDmtsWsNRQZY2FmZmZWU5GLkD1ED+eUR8Qb+xWRmQ1LblvMWkORMRZnVj1vB7YDpgLf7W9AZjZsnVn13G2LWRMqMsbirFrlkg4Bduh3RGY2LLltMWsNZY6xmAZ8pMT1mZmB2xazplJmYrEfsLjE9ZmZgdsWs6ZSZPDmPLoOsBKwIfAa4EslxWVmw4zbFrPWUGTw5hVVzzuBp4DrIuKefkdkZsPVFVXP3baYNaEigze/NRCBDBXZQLH/Iv1Sug34ckT8vbFRmbU+ty1mrcETZOVI+hhwOvAt4G2kL/90SRs0NDAza2puW2w46XNiIalT0upebqsGMthBcARwbkScHxF3AQcDS4GDGhuWWety22LWWuo5FPKhHpbtCHyFJu4BkbQmsD1wcqUsIjolzSJ9vur6I4GRuaKxAIsXL6ajo8tFGeno6GDp0qVcf/31tLW10dbWRmdn50v3wCvKelrWavXvvfdexowZgxY/gjpWs9ZaazF37lxefPHF0uIZ6tugt2WdnZ0sXbqUZ555hvb29i771wsvvFC9ezYbty1d6/e5bYGu7csaa6zR8H11qNW///77GTNmDCNeXNSntqUR8Tdymw1I2xIRhW/AFsDvgFXAhcDG/VlfI2/ARqQR6TtWlZ8G3FSj/glZfd98Gyq31zX6e1Ti99Fti2++DZ1bXW1LkbNCkLQR6Vjhp4HpwLYRcWeRdTWxk0nHTPPWp/b59mOB+cDrgab/eTkAvH1619s2Ggs8PqgRDQC3LUB9bQv4+9Mbb5+eld621JVYSFoH+AbwZeBWYPeIuL6edQxhTwOrgfFV5eOBJ6orR8QKYEVV8ZJaK5ZUefhCRNSsM5x5+/SuD9uoqbeb25aX1dO2gL8/vfH26dlAtC31DN48CvgXsA/wHxGxUwt98YmIlcBcYPdKmaS27PmcRsVl1urctpi1FmXH9HqvKHUCy4BZpOy7poj4cDmhDb7slLALgf8E/g4cBnwUeEtELOrHescBzwPrOGN+JW+f3rXyNnLbUrxtydbdsvtGGbx9ejYQ26eeQyEXkQZxtKyIuEzSa4ATSZPY3ApM7e8Xn9St+S1e2b1pibdP71p5G7lt6Z9W3jfK4O3Ts9K3T597LMzMzMx607TnhpuZmdnQ48TCzMzMSuPEwszMzErjxMLMzMxK48RigEhaX9LFkpZIek7SeZLG9PKa6yRF1e0ngxXzQJJ0iKSHJS2XdJOkd/RSf39J92T175C012DF2ij1bCNJB9bYV5YPZrzWGG5bXsntS88Gu21xYjFwLga2BCaTJv7ZBfhpH153LvDa3O2ogQpwsNR7yWhJOwGXAucB2wFXAFdI2mpQAm6AgpfVXkLXfWXjgY7ThgS3LTluX3rWkLal0RfoacUbMJF0Xv4OubKpQCewUQ+vuw44s9HxD8D2uAk4O/e8DVgAHNNN/cuAP1aV3Qj8pNGfZQhtowOB5xodt2+Dvp+4bXnlZ3P7Uu726Xfb4h6LgbEj6Q9zc65sFunL/85eXvtJSU9LulPSyZJGD1iUgyB3yehZlbKI6Myev+KS0Zkd8/Uz03uo39QKbiOAMZIekfSYpCslbTnAoVrjuW3JcfvSs0a1LYWubmq92hB4Ml8QEaskLc6WdecS4BHSleS2AU4lXT66aacyBl4NjACqZxhcBLylm9ds2E39nrZdMyuyje4FDgJuB9YBvgbcIGnLiJg/UIFaw7lt6crtS88a0rY4saiDpFOAo3upNrHo+iMif5z0DkkLgWskbRYRDxZdr7WeiJhD7gJWkm4A7iZdi+KbjYrLinHbYkNFGW2LE4v6fB+4oJc6/yJdCrnLwBhJawDrU+MyyT24KbvfHGjWL39dl4zOPFFn/WZXZBt1EREdkuaR9hVrPm5binH70rOGtC0eY1GHiHgqIu7p5baSlO2tK2n73Mt3I23vm2quvLZts/uF5XyCwRfFLhk9J18/M7mH+k2t4DbqQtIIYGuaeF8Zzty2FOP2pWcNa1saPWK1VW/ANOAW4B3AzsB9wCW55a8D7gHekT3fjNTNtD2wCfAB0i+JvzT6s5SwLT4GLAc+TerO/V/gWWB8tvwi4ORc/Z2ADuBI0nHAE4CVwFaN/ixDaBsdB0wB3kg6hexS0qXH39roz+LbgO8rblu6bg+3L+Vun363LQ3/0K16I3VNXgK8QLrW/c+BMbnlm5BOG9s1e/4G4C/AM9lOcD9wGjCu0Z+lpO1xKGnw2ArSL6t35pZdB1xQVX9/0iCiFcCdwF6N/gxDaRsBZ+TqPgFcBWzX6M/g26DsJ25bXrlN3L6UtH3KaFt82XQzMzMrjcdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFhYw0l6WNJhjY7DzFqL25bGcGJhZmZmpXFiYWZmZqVxYmH9IukLkh7PLsWbL79S0s8lbZY9XiTpRUn/kPT+Hta3iaSQtG2ubN2sbNdc2VaSpmXrXCTpF5JePQAf0cwawG1L83JiYf31a+BVwPsqBZLWB6YCFwNjgKuB3YHtgD8Bf5A0oegbSloXuBaYB+yQvdd44FdF12lmQ47blia1RqMDsOYWEc9KmgZ8ArgmK94PeBr4c0R0ArflXvJNSR8CPgCcXfBtDwXmRcQ3KgWSDgIek/TmiLiv4HrNbIhw29K83GNhZbgY+IikkdnzTwK/jIhOSWMkfU/S3ZKek/QiMBEo/KsCmAS8L+uqfDFb5z3Zss36sV4zG1rctjQh91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GY2ZLltaUJOLKzfImK5pN+Sfk1sDtwbEbdki3cGLoiI3wFIGgNs0sPqnsruX0s6zgmwbVWdW4CPAA9HxKp+fwAzG5LctjQnHwqxslwM7A0clD2uuB/4sKRtJU0CLqGH/S4ilgE3AsdImijpvcBJVdXOAdYHLpX09mx0+B6Szpc0osTPZGaN57alyTixsLJcCywGtiB9wSuOAJ4FbiB1MU4n/SroyUGk3rS5wJnAsfmFEfE46dfKCGAGcEdW7zle7u40s9bgtqXJKCIaHYOZmZm1CPdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFjYoJN0oKSQtEmjYzEzs3I5sTAzM7PSKCIaHYMNM5JGAO3AivAOaGbWUpxYmJmZWWl8KMQGXX6MhaQLJT0tqb1GvRmS7m1EjGZmVowTC2u0XwCvAvbIF0raENgN+L9GBGVmZsU4sbBGuxaYD3yqqvw/SPunEwszsybixMIaKiI6gYuBD0gam1v0SeCGiHioMZGZmVkRTixsKLgIGAV8CEDSFsD2pMMkZmbWRJxYWMNFxF3AXF4+HPIpYCXwq4YFZWZmhTixsKHiImA3Sa8FPgFcFRHPNjgmMzOrkxMLGyouBQI4C3gjHrRpZtaUnFjYkBARTwF/AvYHngOuamhAZmZWiBMLG0ouyu5/FRErGhqJmZkV4sTCBl1EXBARioiHqxatzO59GMTMrEn5WiE2ZEj6IzAR2NwXJzMza05rNDoAM0kfB7YB9ga+6qTCzKx5ucfCGk5SAC8ClwEHR8SqBodkZmYF1Z1YSJoKvBgRf82eHwJ8HrgLOMRzD5iZmQ1fRQZvfhcYByBpa+D7wNXApsDp5YVmZmZmzabIGItNSb0TAB8B/hgR35D0NlKCYWZmZsNUkcRiJTA6e/x+Xp57YDFZT8ZwJEnARsALjY7FhqWxwOMe+GpmjVYksfgrcLqkvwHvAD6Wlb8ZmF9WYE1oI4b357fGez2woNFBmNnwViSxOBT4EbAf8MWIqDRke5KmZB6uXgB47LHHGDeua8dNR0cHM2bMYMqUKbS3tzckuKHM26d3PW2jJUuW8IY3vAHcW2ZmQ0DdiUVEPArsU6P88FIianLjxo2rmViMHj2acePG+R9nDd4+vfM2MrNmUWiCLEltwObABlSdWRIRs0uIy8zMzJpQ3YmFpHcBlwAbA6paHMCIEuIyMzOzJlSkx+InwM2k6ZcXkpIJs3677bbbaGtr49WvfjUTJkxodDhmZlZAkcTiTcB+EfFA2cHY8DR/fjqZZpdddmHZsmWsNWo0995zt5MLM7MmVGTmzZtI4yvMSvHMM88AsP7UL/OqfY5k+bKlPP300w2OyszMiijSY/FD4PuSNgTuADryCyPi9jICs+Gnff3XsXqVj6yZmTWzIj0WlwMTgZ8D/wBuBebl7guRdIykkHRmrmwtSedIekbSi5IulzS+6nUTJF0laamkJyV9V9IaVXV2lXSLpBWSHpB0YI33P0TSw5KWS7pJ0juKfhYzM7Phqui1Qkol6e3AfwLVvR1nkAaJ7g88D5wN/BbYOXvdCOAq4AlgJ+C1pCnGO4BvZHU2zer8BPgksDvwM0kLI2J6VudjpAuoHUw61HMYMF3SFhHxZNmf18zMrFUVmSDrkTIDkDQGuJh06fVjc+XrAJ8FPhER12ZlnwHulvSuiLgRmAK8FXh/RCwCbpX0TeBUSSdExEpSsvBQRByZrfpuSe8GDgemZ2VHAOdGxPnZ+xxMSmgOAk4p8/OamZm1sqITZG1G+lU/MSu6CzgrIh4ssLpzgKsiYpakY3Pl2wPtwKxKQUTcI+lRYEfgxuz+jiypqJgO/BjYknRoZsf8OnJ1zsw+y5rZe52ce59OSbOy19YkaSQwMlc0FtIMiR0dXYadvPS8utySzs5OAEaukaZFGTVqFJ2dnd5eOT3tQ95OZjaUFJkgaw/g96QxFX/LincG/ilp34iYWce6Pg68DXh7jcUbAisj4rmq8kXZskqdRTWW04c64ySNAtYjTepVq85begj/68Dx1YUzZsxg9OjRNarDzJl93jTD0ql7ZqeX7nspCxYsYMECX0+rWq19aOnSpQ2IxMystiI9FqcAZ0TEMflCSacApwJ9+u8p6Q3AWcDkiFheII5GO5k0LqNiLDB/ypQpNa8VMnPmTCZPnuzrPNQwb948Fi5cyNHTHmXFqmDRJccwe/ZsJk2a1OjQhoye9qElS5Y0KCozs1cqklhMBD5ao/znpMMjfbU96Vojt0gvzQw+AthF0qHAHsCaktat6rUYTxqsSXZfffbG+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXleeUztLe3d5s89LRsOGtrSycnrVgVLF8VLFu2jLa2Nm+rGmrtQ95OZjaUFDnd9Clg2xrl2wL1nEFxDbB19rrK7WbSQM7K4w7SWRwASNoCmADMyYrmAFtL2iC33snAEtK4j0qd3elqcmUd2QDPuVXv05Y9n4OZmZn1WZEei3OBn0p6I3BDVrYzcDRdDw30KCJeAO7Ml0n6N/BMRNyZPT8POF3SYlKy8ENgTnZGCMAMUgLxC0lHkcZTnASck/UoQDrN9FBJp5F6VXYj9bjsnXvr04ELJd0M/J3U87I2cH5fP4+ZmZkVSyy+DbwAHMnLZ1I8DpwA/KCcsF5yONBJmpRrJOlsji9VFkbEakn7kM4CmQP8G7gQOC5X5yFJe5PmxPgqMB/4XGUOi6zOZZJeA5xISk5uBaZWnW1iZmZmvSgyj0WQ/kmfIWlsVvZCGcFExK5Vz5cDh2S37l7zCLBXL+u9DtiulzpnkybgMjMzs4IKzWNRUVZCYWZmZq2hT4mFpFuA3SPiWUnzgG6vFBURbysrODMzM2sufe2xuJKXT628kh4SCzMzMxu++pRYRMS3co9PGLBozMzMrKnVPY+FpH9JelWN8nUl/aucsMzMzKwZFZkgaxPSDJnVRgKv71c0ZmZm1tT6fFaIpA/knu4h6fnc8xGkmSofKiswMzMzaz71nG56RXYfpEmo8jqAh0mTZpmZmdkw1efEIiLaACQ9BLw9Ip4esKjMzMysKRWZeXPTgQjEzMzMml9fJ8j6CvDTiFiePe5WRJR9vRAzMzNrEn3tsTicdDnz5dnj7gTlX4jMzMzMmkRfJ8jatNZjMzMzs7wiE2QdJ2l0jfJRko6r9RozMzMbHopMkHU8MKZG+ehsmZmZmQ1TRRILUfsiZJOAxf0Lx8zMzJpZPTNvPktKKAK4T1I+uRhB6sX4SbnhmZmZWTOpZx6Lw0i9FT8nHfLIT+m9Eng4IuaUF5qZmZk1m3pm3rwQXpp5828RsWrAojIzM7OmVPcYi4j4C7CxpJMkXSppAwBJe0rasvQIzczMrGkUOd30vcAdwDuBD/PyGSKTgG+VF5qZmZk1myJnhZwCHBsRk0ljKyquBd5Vz4okfVHS7ZKWZLc5kvbMLV9L0jmSnpH0oqTLJY2vWscESVdJWirpSUnflbRGVZ1dJd0iaYWkByQdWCOWQyQ9LGm5pJskvaOez2JmZmbFEoutgd/VKH8SeHWd65oPHANsD+xASk6uzB1SOQPYF9gfeC+wEfDbyosljQCuAtYEdgI+DRwInJirs2lW58/AtsCZwM8k7ZGr8zHgdFKPy9uA24DplcM8ZmZm1jdFEovngNfWKN8OWFDPiiLiDxFxdUTcHxH3RcR/Ay8C75K0DvBZ4IiIuDYi5gKfAXaSVOkZmQK8FfhURNwaEdOAbwKHSFozq3Mw8FBEHBkRd0fE2cBv6HrNkyOAcyPi/Ii4K3vNUuCgej6PmZnZcFf3ZdOBXwKnStqfNKdFm6Sdge8BFxUNJOt92B9YG5hD6sVoB2ZV6kTEPZIeBXYEbszu74iIRblVTQd+DGwJzMvqzKKr6aSeC7IEZHvg5Nz7dEqalb22u3hHAiNzRWMBOjo66Ojo6FK38ry63JLOzk4ARq4hAEaNGkVnZ6e3V05P+5C3k5kNJUUSi28A5wCPkSbGuiu7vwQ4qd6VSdqalEisReqt+FBE3CVpW2BlRDxX9ZJFwIbZ4w2z59XL6UOdcZJGAetl8deq85YeQv86NaYwnzFjBqNHv+JSKgDMnDmzh9XZqXtOSA/2vZQFCxawYEFdHWDDQq19aOnSpQ2IxMystroTi4hYCXxe0reBrUhnhcyLiPsLxnAvaezDOsB+wIXZmSdD3cmkcRkVY4H5U6ZMYdy4cV0qdnR0MHPmTCZPnkx7e/tgxtgU5s2bx8KFCzl62qOsWBUsuuQYZs+ezaRJkxod2pDR0z60ZMmSBkVlZvZKRXosAIiIRyU9lj2ude2Qvq5nJfBA9nSupLcDXwUuA9aUtG5Vr8V44Ins8RNA9dkb43PLKvfja9RZEhHLJK0GVndT5wm6ERErgBWV51Lqxm9vb+82eehp2XDW1paG+qxYFSxfFSxbtoy2tjZvqxpq7UPeTmY2lBQZvImkz0q6E1gOLJd0p6TPlRjTSGAu0AHsnnvfLYAJpEMnZPdbV529MRlYQjpEU6mzO11NrqwjS2zmVr1PW/bcU5SbmZnVoe4eC0knks6i+CEv/+PdEThD0oSIOK6OdZ0MTAMeJR1K+ASwK7BHRDwv6TzgdEmLScnCD4E5EXFjtooZpATiF5KOIo2nOAk4J+tRgHRhtEMlnUa6zsluwEeBvXOhnE46BHMz8HfSdVHWBs7v62cxMzOzYodCvgh8PiIuzZX9XtLtpH/8fU4sgA1IZ5K8lnRRs9tJSUVlhNrhQCdwOakXYzrwpcqLI2K1pH1IZ4HMAf4NXJiPISIekrQ3aU6Mr5LmzvhcREzP1blM0mtI819sCNwKTK0628TMzMx6USSxaAdurlE+t971RcRne1m+HDgku3VX5xFgr17Wcx1pno2e6pwNnN1THTMzM+tZkTEWvyD1WlT7AnBx/8IxMzOzZlb0rJDPSppCmqQK0gXJJgAXSXrpFMyIOKKf8ZmZmVkTKZJYbAXckj3eLLt/OrttlatX+BRUMzMza05FJsh630AEYmZmZs2v0DwWAJI2l7RHNi02qswQZWZmZsNW3YmFpFdJuga4D7ial690ep6k75cZnJmZmTWXIj0WZ5BmxJxAurR4xWXA1DKCMjMzs+ZUZPDmFNIkVvOrjn7cD2xcSlRmZmbWlIr0WKxN156KivXJXZTLzMzMhp8iicX1wAG555FdtOso4M+lRGVmZmZNqcihkKOAayTtAKwJnAZsSeqx2LnE2MzMzKzJ1N1jERF3Am8G/gpcSTo08ltgu4h4sNzwzMzMrJnU1WMhqR34E3BwRHxnYEIyMzOzZlVXj0VEdADbDFAsZmZm1uSKDN78P6DHy52bmZnZ8FRk8OYawEGS3g/MBf6dX+grmpqZmQ1f/b266ZurlvmKpmZmZsOYr25qZmZmpSl8dVMzMzOzak4szMzMrDROLMzMzKw0DU0sJH1d0j8kvSDpSUlXSNqiqs5aks6R9IykFyVdLml8VZ0Jkq6StDRbz3clrVFVZ1dJt0haIekBSQfWiOcQSQ9LWi7pJknvGJAPbmZm1qL6lFhk/5DXyx4fJ2l0Se//XuAc4F3AZKAdmCFp7VydM4B9gf2z+huRphCvxDYCuIp03ZKdgE8DBwIn5upsmtX5M7AtcCbwM0l75Op8DDgd+BbwNuA2YLqkDUr6rGZmZi2vrz0WE0nXBAE4HhhTxptHxNSIuCAi/hkRt5ESggnA9gCS1iFNxnVERFwbEXOBzwA7SXpXtpopwFuBT0XErRExDfgmcIikNbM6BwMPRcSREXF3RJwN/AY4PBfOEcC5EXF+RNyVvWYpcFAZn9XMzGw46OvpprcC50v6KyDga5JerFUxIk6sVd5H62T3i7P77Um9GLNy679H0qPAjsCN2f0dEbEot57pwI9JV12dl9WZRVfTST0XZAnI9sDJuffplDQre+0rSBoJjMwVjQXo6Oigo6OjS93K8+pySzo7OwEYuYYAGDVqFJ2dnd5eOT3tQ95OZjaU9DWxOJB0iGAf0iRYewKratQLcocg6iGpjfSP/m/ZFVQBNgRWRsRzVdUXZcsqdRbVWE4f6oyTNApYDxjRTZ23dBPy10m9N13MmDGD0aNrHymaOXNmN6sygFP3nJAe7HspCxYsYMGCBY0NaAiqtQ8tXbq0AZGYmdXWp8QiIu4FPg4gqRPYPSKeLDmWc0izer675PUOlJNJYzIqxgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYrKzOyVisy8WfqZJJLOJvWG7BIR83OLngDWlLRuVa/F+GxZpU712Rvjc8sq9+Nr1FkSEcskrQZWd1PnCWqIiBXAitxnAKC9vb3b5KGnZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219iFvJzMbSgolCZI2k/RDSbOy2w8kbVZgPcqSig8Bu0XEQ1VV5gIdwO6512xBGuA5JyuaA2xddfbGZGAJcFeuzu50NbmyjohYmb1X/n3asudzMDMzsz6pO7HITtG8i9RLcHt2eyfwT0mT61zdOcCngE8AL0jaMLuNAoiI54HzgNMlvU/S9sD5wJyIuDFbx4wsnl9ImpTFdxJwTtarAPAT4I2STpP0FklfAj5KOpW14nTg85I+LWkiafDn2tn7mZmZWR8UubrpKcAZEXFMvlDSKcCpQD0jFL+Y3V9XVf4Z4ILs8eFAJ3A56SyM6cCXKhUjYrWkfUiJwBzSZdwvBI7L1XlI0t6kROKrwHzgcxExPVfnMkmvIQ0+3ZB0JszUqrNNzMzMrAdFEouJpF/71X4OHFbPiiJCfaizHDgku3VX5xFgr17Wcx2wXS91zgbO7i0mMzMzq63IGIunSLNXVtsWKPtMETMzM2siRXoszgV+KumNwA1Z2c7A0XQ9/dLMzMyGmSKJxbeBF4AjeXmmyseBE4AflBOWmZmZNaMi81gEaRDkGZLGZmUvlB2YmZmZNZ8iPRYvcUJhZmZmeaXPomlmZmbDlxMLMzMzK40TCzMzMytNXYmFpHZJ10h600AFZGZmZs2rrsQiIjqAbQYoFjMzM2tyRQ6F/B/w2bIDMTMzs+ZX5HTTNYCDJL2fdKnxf+cXRsQRZQRmZmZmzadIYrEVcEv2+M1Vy6J/4ZiZmVkzKzLz5vsGIhAzMzNrfoVPN5W0uaQ9JI3Knvd6CXQzMzNrbXUnFpJeJeka4D7gauC12aLzJH2/zODMzMysuRTpsTgD6AAmAEtz5ZcBU8sIyszMzJpTkcGbU4A9ImJ+1dGP+4GNS4nKzMzMmlKRHou16dpTUbE+sKJ/4ZiZmVkzK5JYXA8ckHsektqAo4A/lxKVmZmZNaUih0KOAq6RtAOwJnAasCWpx2LnEmMzMzOzJlN3j0VE3EmaGOuvwJWkQyO/BbaLiAfrWZekXST9QdLjkkLSB6uWS9KJkhZKWiZpVvUF0CStL+liSUskPSfpPEljqupsI+l6ScslPSbpqBqx7C/pnqzOHZL2quezmJmZWcF5LCLi+Yj4TkR8NCL2iohjI2JhgVWtDdwGHNLN8qOArwAHA+8kTR8+XdJauToXk3pMJgP7ALsAP60slDQOmAE8AmwP/BdwgqQv5OrsBFwKnAdsB1wBXCFpqwKfyczMbNgqcigESeuRLkQ2MSu6Czg/IhbXs56ImAZMy9ZZ/R4CDgNOiogrs7IDgEXAB4FfSppIOsX17RFxc1bny8DVkr4WEY8DnyQdsjkoIlYC/5S0LXAELycgXwX+FBHfzZ5/U9Jk4FBSUmNmZmZ9UGSCrF2Ah0k9Cetlt68AD2XLyrIpsCEwq1IQEc8DNwE7ZkU7As9VkorMLKCT1MNRqTM7SyoqpgNbZAlSpc4supqeex8zMzPrgyI9FueQJsP6YkSsBpA0AvhRtmzrkmLbMLtfVFW+KLdsQ+DJ/MKIWCVpcVWdh2qso7Ls2ey+p/d5BUkjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9dIvVajRo2is7PT2yunp33I28nMhpIiicXmwH6VpAIgIlZLOp2up6G2uq8Dx1cXzpgxg9GjR9d8wcyZMwc6pqZ26p4T0oN9L2XBggUsWLCgsQENQbX2oaVLa00rY2bWGEUSi1tIYyvurSqfSBqIWZYnsvvxQH5g6Hjg1lydDfIvkrQG6dTXJ3J1xlete3xuWU91nqB7JwOn556PBeZPmTKFcePGdanY0dHBzJkzmTx5Mu3t7T2scniaN28eCxcu5Ohpj7JiVbDokmOYPXs2kyZNanRoQ0ZP+9CSJUsaFJWZ2Sv1KbGQtE3u6Q+AsyRtDtyYlb2LdGbHMSXG9hDpH/vuZIlEdobHO4EfZ3XmAOtK2j4i5mZlu5HGjtyUq/MdSe0RUekzngzcGxHP5ursDpyZe//JWXlNEbGC3EyjlcGn7e3t3SYPPS0bztra0lCfFauC5auCZcuW0dbW5m1VQ619yNvJzIaSvvZY3AoEkD9147Qa9S4hjb/ok2y+ic1zRZtmZ2wsjohHJZ0JHCvpflKi8W3gcdLpoETE3ZL+BJwr6WCgHTgb+GV2RkglpuNJV189FdiKdBbI4bn3PQv4i6QjgauAjwM7AF/AzMzM+qyvicWmA/T+O9B1GvDKoYULgQNJycvapNNC1yVNyjU1IpbnXvNJUjJxDelskMtJZ6kA6UwSSVNIA0vnAk8DJ0bET3N1bpD0CeAk4H9IF1T7YDYZmJmZmfVRnxKLiHhkIN48Iq6jay9I9fIAjstu3dVZDHyil/e5HXhPL3V+Dfy6pzpmZmbWs6ITZG0EvJs0cLLLXBgR8YMS4jIzM7MmVHdiIelA4H+BlcAzpLEXFUEa3GlmZmbDUJEei28DJwInR0RnyfGYmZlZEytyEbLRpLMunFSYmZlZF0USi/OA/csOxMzMzJpfkUMhXwf+KGkqcAfQ5UIFEXFEGYGZmZlZ8ymaWOzBy1N6Vw/eNDMzs2GqSGJxJHBQRFxQcixmZmbW5IqMsVgB/K3sQMzMzKz5FUkszgK+XHYgZmZm1vyKHAp5B7CbpH2Af/LKwZsfLiMwMzMzaz5FEovngN+WHIeZmZm1gLoTi4j4zEAEYmZmZs2vyBgLMzMzs5qKXITsIXqYryIi3tiviMzMzKxpFRljcWbV83ZgO2Aq8N3+BmRmZmbNq8gYi7NqlUs6BNih3xGZmZlZ0ypzjMU04CMlrs/MzMyaTJmJxX7A4hLXZ2ZmZk2myODNeXQdvClgQ+A1wJdKisvMzMyaUJHBm1dUPe8EngKui4h7+h2RmZmZNa0igze/NRCBmJmZWfPzBFlVJB0i6WFJyyXdJOkdjY7JzMysWfQ5sZDUKWl1L7dVAxnsQJP0MeB04FvA24DbgOmSNmhoYGZmZk2inkMhH+ph2Y7AV2j+HpAjgHMj4nwASQcDewMHAac0MjAzM7Nm0OfEIiKurC6TtAXpH+6+wMXAceWFNrgkrQlsD5xcKYuITkmzSIlTdf2RwMhc0ViAxYsX09HR5UrydHR0sHTpUq6//nra2tpoa2ujs7PzpXvgFWU9LWu1+vfeey9jxoxBix9BHatZa621mDt3Li+++GJp8Qz1bdDbss7OTpYuXcozzzxDe3t7l/3rhRdeqN49zcwapshZIUjaiHS44NPAdGDbiLizzMAa4NXACGBRVfki4C016n8dOL66cNNNNy0/smHoC1/4QqNDaEZjgSWNDsLMhre6EgtJ6wDfAL4M3ArsHhHXD0BczeBk0niMvPWpPUnYWGA+8HrAPy9fydund71to7HA44MakZlZDX1OLCQdBRwNPAH8R61DI03uaWA1ML6qfDzpM3cRESuAFVXFNX8tSqo8fCEi/IuyirdP7/qwjbzdzGxIqKfH4hRgGfAA8GlJn65VKSI+XEZggy0iVkqaC+xONgmYpLbs+dkNDM3MzKxp1JNYXETXqbxb0enAhZJuBv4OHAasDZzfyKDMzMyaRT1nhRw4gHEMCRFxmaTXACeSrn9yKzA1IqoHdNZrBWmwa/WhE0u8fXrnbWRmTUERrd4JYWZmZoOl2Se0MjMzsyHEiYWZmZmVxomFmZmZlcaJhZmZmZXGicUAkbS+pIslLZH0nKTzJI3p5TXXSYqq208GK+aBVO/l6CXtL+merP4dkvYarFgbpZ5tJOnAGvvK8sGM18ysFicWA+diYEtgMrAPsAvw0z687lzgtbnbUQMV4GCp93L0knYCLgXOA7YjTVh2haStBiXgBqh3G2WW0HVf2Xig4zQz641PNx0AkiYCdwFvj4ibs7KpwNXA6yOi5jUdJF0H3BoRhw1SqINC0k3APyLi0Ox5G/AY8MOIeMXl6CVdBqwdEfvkym4kbZuDBynsQVVgGx0InBkR6w5mnGZmvXGPxcDYEXiuklRkZgGdwDt7ee0nJT0t6U5JJ0saPWBRDoLc5ehnVcoiojN7/orL0Wd2zNfPTO+hflMruI0Axkh6RNJjkq6UtOUAh2pm1qtCl023Xm0IPJkviIhVkhZny7pzCfAI6SqV2wCnAlsATXn9lUy9l6OHtI1q1e9p2zWzItvoXuAg4HZgHeBrwA2StoyI+QMVqJlZb5xY1EHSKaQrvPZkYtH1R0R+DMYdkhYC10jaLCIeLLpeaz0RMQeYU3ku6QbgbuA/gW82Ki4zMycW9fk+cEEvdf5Fusx6l0F3ktYA1qfGJdh7cFN2vznQrIlFXZejzzxRZ/1mV2QbdRERHZLmkfYVM7OG8RiLOkTEUxFxTy+3laRfkutK2j738t1I2/ummiuvbdvsfmE5n2DwZdujcjl6oMvl6Od087I5+fqZyT3Ub2oFt1EXkkYAW9PE+4qZtQb3WAyAiLhb0p+AcyUdDLQDZwO/rJwRIul1wDXAARHxd0mbAZ8gnTnyDGmMxRnA7Ii4vRGfo0Q9Xo5e0kXAgoj4elb/LOAvko4ErgI+DuwAfGGQ4x5MdW0jSccBNwIPAOsC/0U63fRngx24mVmeE4uB80lSMnEN6WyQy4Gv5Ja3kwZmVs76WAm8n5f/oTyWveakwQl34PThcvQTSNuoUv8GSZ8gffb/Ae4HPhgRdw5q4IOo3m0ErEea82RD4FlSj8dOEXHXoAVtZlaD57EwMzOz0niMhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYU1nKSHJR3W6DjMzKz/nFiYmZlZaZxYmJmZWWmcWFi/SPqCpMezq3Hmy6+U9HNJm2WPF0l6UdI/JL2/h/VtIikkbZsrWzcr2zVXtpWkadk6F0n6haRXD8BHNDOzOjixsP76NfAq4H2VAknrA1OBi4ExpCu27g5sB/wJ+IOkCUXfUNK6wLXAPNJVT6cC44FfFV2nmZmVw1c3tX6JiGclTSNd8v2arHg/4GngzxHRCdyWe8k3JX0I+ADp6q9FHArMi4hvVAokHQQ8JunNEXFfwfWamVk/ucfCynAx8BFJI7PnnwR+GRGdksZI+p6kuyU9J+lFYCLpMuBFTQLelx0GeTFb5z3Zss36sV4zM+sn91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GZmVh4nFtZvEbFc0m9JPRWbA/dGxC3Z4p2BCyLidwCSxgCb9LC6p7L715LGUABsW1XnFuAjwMMRsarfH8DMzErjQyFWlouBvYGDsscV9wMflrStpEnAJfSw30XEMuBG4BhJEyW9Fzipqto5wPrApZLenp15soek8yWNKPEzmZlZnZxYWFmuBRYDW5CSh4ojgGeBG0iHL6aTehx6chCpN20ucCZwbH5hRDxO6gkZAcwA7sjqPcfLh1LMzKwBFBGNjsHMzMxahHsszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNP8/ddAmq2tB48YAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdnUlEQVR4nO3deZxcVZn/8c+3kybpAAGCExDGAIoiogLiAuKwCEkQcUYUxQn+ZHMGHDcWB1wBcQE3NmF0UMQF4jKiYRQxyDa4IEZ2ZBEkbLKGQBJIJ+nQz++PcyvcVFd3V9263dVV/X2/XvdVVeeee+5zq26deuquigjMzMzMytTV6gDMzMys8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcGwtUg6SdKoXN5V0tWSrs693kNSSDpglOb/XUn3jca8qua7Zbach4z2vMcLSRMlfVnSg5L6Jc1rdUztLvf93KPVsVh7cILRwSQdknUIlWGFpIclzZf0EUnrlzSfzbLEZIcy2ivTWI7NRtRhwH8CPwUOBk5vbThm48/EVgdgo+IEYCHQDWwK7AGcARwj6Z8j4pZc3c8DpzbY/mbAicB9wE0NTDerwfkUMVRs/0Zrkuz7gR6grwXzHi/eDPw9Io5udSBm45UTjPHh0oj4c+71KZLeDPwS+F9J20ZEL0BErAZWj2QwkqZExPKIWDWS8xlORLTkBz7SHQZXtGLezZA0GVgVEf2tjqUO04Gny2pMUhewTkS03edm1ireRTJORcSVwOeALYD3VsprHYMhaaak30l6WtIzku6S9MVs3B7Agqzq+bndMYdk46+WdJuknSRdI2k58MXcuKtrhDdB0hclPSrpWUn/K+lFVTHdJ+m71RPm26wjtgHHYEhaV9LXsn33K7Nl/ZgkVdULSWdLenu2fCsl/UXSPjWWpzrGAcdgZLE8I2lzSfOy509I+qqkCXW0eZ+kX0qaJemmbHfY7ZLeUVVvWtbmrdk8lkq6VNL2VfUq+9vfI+nzkv4OLAemFmjj3ZJOlPR3Scsk/VTSBpImSTpD0uNZO+dLmlTVxqDr3lDvLbAnsF3uM98jG9/o53uQpL8AK4EhP1tJb5H0f9kyLpW0QNKcqjrvknS9pF5JiyRdIGnz3PiPZfPeokb7p0haJWmjoeLI6r42a+fgGuNmZ+P2y15vIem/sveiV9KTkv5H0pZ1zGfY72GubJKkz0q6J3vvH1Q6TmZS9fTWGbwFY3z7AenHfhbwrVoVJG1H2tJxC2lXy0pga2DXrModWfnJwLnAb7PyP+Sa2Ri4FPgRcAHw2DBxfQoI4Eukf6JHAZdL2qGypaVO9cS2RvYj87+kH6fzSLtUZgNfATYHqje3vwl4B/BfwDLgI8BFkmZExJMNxFkxAZgPXAd8DNgbOBb4G/CNOqZ/KfBj4JvA94BDgf+RtE9E/Car82Lg7cD/kHabbQIcAfyfpFdExMNVbX4GWAV8FZiUPX9Fg218Augl7XrbGvgwafdQP7ARcBKwM3BI1t7JUNe6V8sTwP8jrUPrZfMGuKPA5/tm4N3A2cAi0m62mpSSxe8AfwFOIW092ZGUlMzN1TmflPR+gvS+fRTYVdKOEfE08BPgy9l8v1I1m3cDl0XEU0MsPwAR8WdJ92bTfK9q9IHAU6R1DeB1wBtJ38+HgC2BDwBXZ5/n8uHmNxylLUD/S/rOnEv6br6K9J6/jLQ+WaeJCA8dOpA67ABeO0Sdp4Ebcq9PItuKn70+KmvjBUO08dqsziE1xl2djTtikHFX517vkdV9CFg/V/6urPwjubL7gO/W0eZQsX0XuC/3+l+yup+qqvc/pB/Dl+TKgvSDly97dVb+oWE+ly2rY8piCeAzVXVvAP5cx2d9Xzb9O3JlU4GHqz7fSUBXjXhW5Oed+yz+BvRU1W+0jVuB7lz53Oz9/FVVG3+o+jyGXfeGeD+uBm6rKmv0830OeEUd89oAWAr8EZhcNU7ZYzcpsb41Xwd4azavz1a9D3+uaud1Wb3/18B78EVSQrhRrmwdUnJxXq6sp8a0O1fPL/d57lHge/je7P18U1W9I7I239joZ+xh7A/eRWLPAEOdTfJ09vgv2b+QIlaS/rnV6/sRsSz3+qfAI8C+Bedfr31JneBZVeVfAwS8par88oj4W+VFpINll5K2EhT1zarXv22gvYeBn+fiWQp8H9hR0qZZ2crIjqGQNEHSxqR14C7gNTXa/F5UbTUq0Mb3Y+3jXa4jvZ/fqap3HfAiSZUtq09nj82se3mNfr7/FxG319HuTNJ36NSoOkYjIiq7G19L2hr3X/k6EXEJcCcp0aj4MbCTpJfkyg4kfY8uriOefDvdpK1sFbOADbNxlRjWfL6SurPP8x7S+1/r8yziXaStFndKekFlAK7Mxu9Z0nxsDHGCYeuRNu8P5sfA74FvA49J+lG2T72Rdefv0dgBnXfnX2Sd9D2kf8kjaQvg4arkBlLHWBmf90CNNp4ibfYvYkVEPNFEe/fkftAq/po9bglpU7WkoyXdTfrBWkTarfBq0j/xagurCwq0Uf0+LckeH6xR3pVro4x1L6/Rz3fAsg+ikgjcNsy8ISVh1e6smndli8qBsGbX3btIB2svrTMmIuLmrO0Dc8UHkj6vyg87knoknSzpQdb+PDek9udZxEuB7bJ280Nl/Zxe0nxsDPExGOOYpH8kdSD3DFYnInol7Ub6h/FW0j7lA4ErJc2KiOfqmFUjx03Ua7CLgU0g/UsdDYPNR4OUF22vTJ8kHdz7HdLxFYtJP2ZnUPsPR63PrtE2BluuId+/kta9ZozEejusiHhY0m9Jx098kbS7YgZwfIHmfgx8KttasAz4Z+CHkc4Wq/g66XidM4BrSYlekI7JGC6Zq/d72EXaPXTMIPWrk03rAE4wxrf/lz3OH6pStjn8imw4RtIngS+QOv7LGbyTKeql+RfZP7itSQf7VTxF+odVbQvg3tzrRmK7H9hb0vpV/3Jfnhs/lm0tSVVbMV6WPd6XPR4AXBURh+cnlLQh6Z9rPcpooy51rHuNGKnPt7Kb7JUMnqxX2t6G3NaDXFn1vH8M/JekbUhJ1XLgFwVi+zHpOjDvJB0DMpWUOOQdQNoVdmylQOmU5A3raL/e7+HfgO2BK2psZbMO5V0k45TSdTA+Q9oMfOEQ9abVKL4pe6ycXvZs9rhhSeG9T2tfZfQA4IWkM1Eq/gbsLGmdSkF22t1ap7M2GNuvSP+8PlRVfjQpUbl0wBRjy2bA/pUXkqYC7wNuiohHs+LnqNrCIuldpLMo6lVGG8Oqc91rxEh9vpeRtg58IvthXiNLjgH+DDwOHJk/LVPSW4BtgUuq2ryI9D7/K2n3yC8j4lkaFBF3kLYcHJgNjwDXVFUb8HmSzvQZ9vRo6v8e/oS0fvxbdQPZLpp165iXtRlvwRgf3iLp5aTPexPS6XczSf+a/rn6wLQqJ2SbqS/J6k8H/oN0psfvsjp/Ix0QdqSkZaQf9esiot592NUWA7+TdH4W71Gkf4b5U2m/TUo8fi3pJ6T94O/l+X+TFY3E9gvgKuAL2TUAbiYdFPcvwBn5AzrHqL8C50l6Henf6mGk9+/QXJ1fkj7T80lnK7wKOIi1/20Op4w26lHPuteIEfl8I2KppKNJ6+QCSXNJ/+y3B6YAB0dEn6TjSQc7/5+kH/L8aar3UXUp84h4XNJVpF0K65M7KLOAH5NO/V1BOnuk+kJpvwT+n6QlwO3ALqRTpOs51bre7+EPSLt8vilpT9KxNRNIW4/eTTpd+M9YZ2n1aSweRm7g+dNUK8NK0j+Yy0jXbFi/xjQnsfZpqm8G5gF/z6b/O+k0w5dWTffPpGsA9JE7BZMapwvmprma2qepvoe07/kx0qbhXwIzakx/DOnHZgXpB2en6jaHie275E6LzMrWA07LlnMV6Uf7Y2SnG+bqBXB2jZjuo8Zpe1V1tszHkYvlmeE+jyHavC97n2aRfjhXkA5ePKCq3iTSNS0ezt7b35H28Q/2WRxQY15NtcEgp09XlpXstFTqXPeGWLcGrHfNfr7DzPNtpB/O5aTjGK4D3lNV592kU49XkH7ALwA2H6S992dxLKXq9NcG49qa5/uAXWuM35B0PM0TpC0xvybttllrXabGaaoNfg+7geNIB8OuIP2R+DPpGidTiy6fh7E7VM7RNrM2pnRF0tsiYr9Wx2JmBj4Gw8zMzEaAj8EwM2sjknoY/voUi6PFNxM0c4JhZtZeDmT4K+PuSToOwqxlfAyGmVkbkfRC0lUxh3J91HFTNLOR5ATDzMzMSueDPM3MzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjCs5SSdJClyr++T9N0WhmRmHcB9S2s5wTAzM7PSTWx1AGY1bAP0tzoIM+s47ltGkRMMG3MiYmWrYzCzzuO+ZXR5F4mNKklvkrRA0gpJf5N0RI063k9qZg1x3zL2eAuGjRpJrwIuA54ATiKtf58FHmthWGbW5ty3jE1OMGw0nQwI+KeIeABA0kXArS2NyszanfuWMci7SGxUSJoAzAbmVToAgIi4A5jfssDMrK25bxm7nGDYaPkHoAe4u8a4u0Y5FjPrHO5bxignGGZmZlY6Jxg2Wp4AeoGX1hi3zSjHYmadw33LGOUEw0ZFRDxH2h/6dkkzKuWStiXtPzUza5j7lrHLCYaNphOzx99KOl7Sp4CrgL+0MCYza3/uW8YgJxg2aiLiFtI/iidIp5UdRuoYft7KuMysvblvGZsUEcPXMjMza3OSHgTmR8T7Wx3LeOAtGGZm1vEkdQMbA4taHct44St5mplZR5M0G3gP6XoZV7Q4nHHDu0jMzKyjSboK2Br4RkR8sdXxjBcN7yKRtI+kN+Vef1DSTZLmStqo3PDMbLxw32IjJSL2jIgXObkYXUWOwfgKMBXW3MHua8CvgK2A08oLzczGGfctZh2kyDEYWwG3Z8/fCfwyIj4p6TWkzsDMrAj3LWYdpEiCsQqYkj3fG/h+9nwx2b+PTiNJwGbAslbHYtaA9YGHo30OtBp3fQu4f7G2NWz/UiTB+B1wmqTfA68HDszKXwY8VKC9drAZnbts1tn+Efh7q4Oo03jsW8D9i7WvIfuXIgnGh4D/Ag4APhARlcbfAvy6QHvtYBnAgw8+yNSpY+OPVF9fH5dddhmzZs2iu7u71eEU0u7LMJbjX7p0KS960Yugvf4Vj8e+BcZY/zKW1+t6tfsyjPX46+1fGk4wIuIBYL8a5Uc32la7mTp16pjoACCtgFOmTGHq1KljcgWsR7svQ7vHP9aM574Fxk7/0gnrdbsvQ7vHX1HoQluSukjnFE+n6kyUiLimhLjMbBxy32LWORpOMCTtDMwFtgBUNTqACSXEZWbjjPsWs85SZAvGN4E/A28FHiF98ce9Bx54gEWL0iXuX/CCFzBjxoyWzL+V84bxt+wAN998M11dXaM2/1a/3yPIfUsNrf68Wzn/sbLs7luKKZJgvBQ4ICLuaWrOHeSBBx5gm5dvy4re5QBM7pnCXXfeMWorZH7+rZw3jK9lf+ihdOD/brvtRm9v76jMv9Xv9whz31Kl1Z93K+c/lpbdfUsxRa7keR1pH6llFi1axIre5Wy837FsvN+xrOhdviYLHM35b7DLgS2b93hc9ieffBKAaft8eNSWvdXv9whz31Kl1Z93K+c/VpbdfUtxRbZgfB34mqRNgVuBvvzIiLilqYjaWPfGL2rp/CdsML1l8x7Xyz5tc55bPbpb81v9fo8Q9y2DaPXn3cr5t3rZ3bcUVyTBuCh7/E6uLEgHZflALDMryn2LWQcpei8SM7OyuW8x6yBFLrR1/0gEYmbjm/sWs85S9EJbLwGOArbNim4HzoyIv5UUl5mNQ+5bzDpHw2eRSJpN+tK/HrglG94A/EXSzHLDM7Pxwn2LWWcpsgXjVOD0iPh4vlDSqcCXgN+UEZiZjTvuW8w6SJHrYGwLnFej/DvAK5oLx8zGMfctZh2kSILxBLBDjfIdgMebCcbMxjX3LWYdpMgukm8B50p6MfCHrGxX4HjgtLICM7Nxx32LWQcpkmB8DlgGHAuckpU9DJwEnFVOWGY2DrlvMesgRa6DEcDpwOmS1s/KlpUdmJmNL+5bzDpLoetgVPjLb2YjwX2LWfurK8GQdAOwV0Q8JelG0n0BaoqI15QVnJl1NvctZp2r3i0YFwMrc89H9/ZuZtap3LeYdai6EoyI+Gzu+UkjFo2ZjSvuW8w6V5FLhd8raeMa5RtKurdoIJI+LikknZErmyzpHElPSnpG0kWSNqmaboakSyQtl/S4pK9ImlhVZw9JN0haKekeSYcUjdPMRsZI9S1ZG+5fzEZZkQttbQlMqFE+CfjHIkFIeh1wBOneA3mnA28D3gXsDmwG/Cw33QTgEmAd4I3AwcAhwMm5Oltlda4iXbDnDODb2X0PzGzs2JKS+xZw/2LWKnWfRSLpn3MvZ0takns9AdgLWNhoAJLWAy4E/g34dK58A+BwYE5EXJmVHQrcIWnniPgjMIt0CeG9I+Ix4CZJnwG+JOmkiFgFHAksjIhjs6bvkPQm4GhgfqPxmlm5Rqpvydp2/2LWIo2cpjovewzge1Xj+oD7SBfIadQ5wCURcbmkT+fKdwK6gcsrBRFxp6QHgF2AP2aPt2Zf/or5wDeA7YAbszqXs7b5pH8aNUmaRPrXVLE+QF9fH319fQPq9/f309PTw+SJAqCnp4f+/v6adctSabuvr+/5+XdPGJV55zWz7PllaHr+LVp2gEmj+LnX+36P1ntQknnZY9l9C7R5/zJm+pZRnH+F+5ax2bdA/e+r0rVt6idpIfC6iFjU0IS123oP8KmsvRWSrgZuioijJM0Bzo+ISVXT/Am4KiKOl3QusEVEzM6NnwI8C+wbEZdK+mvWzim5OvuSNmtOiYjeGnGdBJxYXT537lymTJnS7GKbjbjly5czZ84cgA0iYmmr46lHmX1L1p77F7MRUG//UuRKnls1E1iFpBcBZwIzI2JFGW2W6BTWvvfB+sBDs2bNYurUqQMq33zzzey2225sMudUAB6b+3GuueYatt9++xELsK+vj9/85jfMnDmT22+/nd12242N9j6Cpy7/7xGfd14zy55fhu7u7qbm34plv/HGG3nkkUc4/tIHWLk6RuVzr/f9Xrq0LXKKtZTVt0Dn9C9jpW8ZzflXuG8Zm30L1N+/1HuhrY8A52b/Aj4yVN2IqPeeATsB04EbJFXKJgC7SfoQMBtYR9KGEfF0brpNgEez548Cr69qd5PcuMrjJjXqLK317yJbhpU8f24+lfi6u7trrqxdXV309vayYnXaGtTb20tXV1fhFbsR3d3da+bf0/fcqM4byln2wd7XRubfqmUHWLk6WLE6RmX+9b7fo/UeNGuE+hbokP5lrPQtrZi/+5ax2bdA/f1LvVswjiYdKLUiez6YoP6bEl0BvKqq7HzgTuBLwIOk/a97ARcBSNoGmAFcm9W/FviUpOkRUbmd80xgKXB7rs6+VfOZmWvDzFpnJPoWcP9i1nL1Xmhrq1rPm5Hda+C2fJmkZ4EnI+K27PV5wGmSFpO+1F8Hrs2O8Aa4jPRF/4Gk44BNgc8D52T/EgC+CXxI0peB7wBvBt4NvLWM5TCz4kaib8nacv9i1mJFLrR1QnagU3V5j6QTyglrjaOBX5L+YVxD2hz5jsrIiHgO2A94jvSP4QLg+8AJuToLSV/2mcDNpKPR3x8RPoXMbAwZ5b4F3L+Yjagid1M9kZS1L68qn5KNO3nAFHWKiD2qXq8APpgNg01zPwM3UVbXuRrYsWhcZjYqRqxvAfcvZqOtyJU8Re0bEm0PLG4uHDMbx9y3mHWQRq7k+RTpyx/AXyXlO4IJwHqkfx9mZnVz32LWmRrZRXIU6R/Gd0ibK/OX810F3BcRPnLazBp1FO5bzDpO3QlGRHwP1lxt7/cRsXrEojKzccN9i1lnavgYjIj4P2ALSZ+X9ENJ0wEkvUXSdqVHaGbjgvsWs85S5DTV3YFbgTeQTulaLxu1PfDZ8kIzs/HEfYtZZylyFsmpwKcjYiZp/2jFlcDOpURlZuOR+xazDlIkwXgV8PMa5Y8DL2guHDMbx9y3mHWQIgnG08ALa5TvCPy9qWjMbDx7GvctZh2jSILxI+BLkjYlnbfeJWlX4Kuky+iamRXhvsWsgxRJMD5JuiPhg6SDsG4nXcf/D6QbAZmZFeG+xayDNHwvkohYBfybpM8BryR1BDdGxN1lB2dm44f7FrPOUuRmZwBExAOSHsye17p/gJlZw9y3mHWGIrtIkHS4pNuAFcAKSbdJen+5oZnZeOO+xaxzNLwFQ9LJwDHA14HK/QF2AU6XNCMiTigxPjMbJ9y3mHWWIrtIPgD8W0T8MFf2v5JuIXUM7gTMrAj3LWYdpMgukm7gzzXKr6eJYzrMbNxz32LWQYokGD8g/dOo9u/AhY00JOkDkm6RtDQbrpX0ltz4yZLOkfSkpGckXSRpk6o2Zki6RNJySY9L+oqkiVV19pB0g6SVku6RdEgjcZrZqHDfYtZBiv4rOFzSLOCP2es3ADOA70s6rVIpIo4Zpp2HgI8DdwMCDgYulrRjRPwFOB14K/AuYAlwNvAzYFcASROAS4BHgTeSrgL4faCPdE49krbK6nwTOAjYC/i2pEciYn7B5TezkeG+xaxDFEkwXgnckD1/Sfa4KBtemas37OllEfGLqqJPSfoAsLOkh4DDgTkRcSWApEOBOyTtHBF/BGYBrwD2jojHgJskfYZ0NcCTsvPqjwQWRsSx2TzukPQm4GjAnYDZ2OG+xayDFLnQ1p4jEUj2j+FdwLqkI8h3Iu2TvTw37zslPUA6svyP2eOtWQdQMR/4BrAdcGNW53LWNh84Y4hYJgGTckXrA/T19dHX1zegfn9/Pz09PUyeKAB6enro7++vWbcslbb7+vqen3/3hFGZd14zy55fhqbn36JlB5g0ip97ve/3aL0HZRoPfUsWT939y5jpW0Zx/hXuW8Zm3wL1v68qeh0bSVuT/mVcExG9klTkojiSXkX60k8GniH9q/iVpDnA+RExqar+n4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy9p0+aUiOitEdNJwInV5XPnzmXKlCmNLqLZqFu+fDlz5swB2CAilrY6nkZ0ct+S1TkJ9y/WxurtX4pcB2Nj4CfAnqRNlS8F7gXOk/RUbnNhve4CdgA2AA4Avidp90bjKtkpwGm51+sDD82aNYupU6cOqHzzzTez2267scmcUwF4bO7Hueaaa9h+++1HLMC+vj5+85vfMHPmTG6//XZ22203Ntr7CJ66/L9HfN55zSx7fhm6u7ubmn8rlv3GG2/kkUce4fhLH2Dl6hiVz73e93vp0rbKKYBx07dAA/3LWOlbRnP+Fe5bxmbfAvX3L0WOwTiddKDTDOCOXPmPSV+ahjqBbF/mPdnL6yW9Dvho1t46kjaMiKdzk2xCOvCK7PH1VU1ukhtXedykRp2lg/3DiIiVwMrKayltMuru7q65snZ1ddHb28uK1elPVm9vL11dXYVX7EZ0d3evmX9P33OjOm8oZ9kHe18bmX+rlh1g5epgxeoYlfnX+36P1ntQso7vW7K46u5fxkrf0or5u28Zm30L1N+/FDlNdRZwfEQ8VFV+N7BFgfaqdZH2T15P6mz2qoyQtA2p86lc5e9a4FWSpuemnwksJd2JsVJnL9Y2M9eGmY0N7lvMOkiRLRjrAstrlE8jl5XXQ9IpwKXAA6TNhHOAPYDZEbFE0nnAaZIWk77YXweuzY7yBriM9GX/gaTjgE1Jt3U+J/uXAOkUsg9J+jLwHeDNwLtJp6iZ2djhvsWsgxTZgvFb4H251yGpCzgOuKrBtqaTzi2/C7gCeB2pA/hNNv5o4JfARcA1pE2S71gz44jngP2A50j/Gi7I2jshV2ch6Qs/E7iZtJn1/T5P3WzMcd9i1kGKbME4DrhC0muBdYAvk07bmkZ2kZp6RcThw4xfAXwwGwarcz+w7zDtXA3s2EhsZjbq3LeYdZCGt2BExG3Ay4DfAReTNmv+DNgxIv5WbnhmNl64bzHrLA1twZDUDfwaODIivjAyIZnZeOO+xazzNLQFIyL6gFePUCxmNk65bzHrPEUO8ryAdB1/M7MyuW8x6yBFDvKcCBwmaW/S+eTP5kfWcZdDM7Na3LeYdZBm76b6sqpxxW5sYmbmvsWso4yZu6ma2fjmvsWssxQ5BsPMzMxsSE4wzMzMrHROMMzMzKx0RQ7ytDrccUe62/TKlSuZNGnSmsfhyuqdpr+/H4Cbb76Zu+66a8h5j0Qclef33ntvzWWvp83KLX//9Kc/0dPTUyjOyrK2atnXW2+9Qste9HOvXl4bf+rpW4YbP9Q0le9lrb6lMv+yv0u1xg/Wt9SzbI32LbXGN9u3NPMZDNa3NNNmkb68WXUlGJJuAPaKiKcknQB8NSJq3fVw3HvumadA4r3vfW8qUBdE//OPw5XVOU1PTw8//OEP2W233ejt7U3z7l1We94jEUf18+plr6PNnsmT+OEPf8jMWbPpXf5s8ThbtOyV+Isse9HPvdO4b6lfQ33LcOPrWK/zfcuA+Y9EP1Jv31LHsjXctww2nib6lhI+gyLLXkZfXpZ6d5FsS7ovAMCJwHpD1B3X+lc+AxFsvN+xbPBP74XoZ71XzYToH7askWmmvvFAAKbt8+E0HohVvQPmPRJxDBhftez1tjltnw+nCZuNs1XLvt2ehZe9qTg7i/uWOtXbtzS93mfrdb5vyc9/xPqROvqWepetkb5luO9akb6lrM+gyLKX0ZeXpd5dJDcB50v6HSDgY5KeqVUxIk4uKba21r3xi9Y871pvWl1ljUwzYemE9Hza5kzse27QeY9EHLXG59Xd5rTNS4uzVtlIL7vW3WjA/Mt6P4cr6yA34b6lISOxPtVar2v1LUXbbCbOvLqXrYG+pd7v2kh/p4frW1rRlzer3gTjEOCzwH5AAG8BVteoF4A7ATOr1yG4bzHrSHUlGBFxF/AeAEn9pH2mj49kYGbW+dy3mHWuIlfyrPe4DTOzurlvMesshb7Qkl4i6euSLs+GsyS9pEA7n5C0QNIySY9Lmidpm6o6kyWdI+lJSc9IukjSJlV1Zki6RNLyrJ2vSJpYVWcPSTdIWinpHkmHFFl2Mxs57lvMOkfDCYak2cDtwOuBW7LhDcBfJDV6GOruwDnAzsBMoBu4TNK6uTqnA28D3pXV3wz4WS6eCcAlwDrAG4GDSft1T87V2SqrcxWwA3AG8O1sWcxsDHDfYtZZilxo61Tg9Ij4eL5Q0qnAl4Df1NtQROxT1cYhwOPATsA1kjYADgfmRMSVWZ1DgTsk7RwRfwRmAa8A9o6Ix4CbJH0G+JKkkyJiFXAksDAijs1mdYekNwFHA/MbW3wzGyHuW8w6SJFdJNsC59Uo/w7py9iMDbLHxdnjTqR/HpdXKkTEncADwC5Z0S7ArVkHUDEfmApsl6tzOWubn2vDzFrPfYtZBymyBeMJ0qbAu6vKdyD9QyhEUhdp8+LvI+K2rHhTYFVEPF1V/bFsXKXOYzXGU0edqZJ6IqI3P0LSJGBSrmh9gL6+Pvr6+gbE3t+frqw5eaKY0D1h4PN1JtJXT1mD0wBMmij6SmyzrmlKanPSRAGM+TiHGl/KZ1Awzsp719/fP2C9rLWetoGO71uyeOruXwr1LSWs91C1XrfL97NI3zJGl62Vn0HlvavVt1TW1XooIuqqmPtynEDa/Hcq8IeseFfgeOC0iPhcQw0+3+43SOfAvykiHsrK5gDnR8Skqrp/Aq6KiOMlnQtsERGzc+OnAM8C+0bEpZL+mrVzSq7OvqR9p1NqJBgnka4quJa5c+cyZcqUIotnNqqWL1/OnDlzADaIiKWtjqce46FvycafhPsXa2N19y8R0dBAutre0cBDQH82PAR8lCxhKdDm2cCDwFZV5W8mXWBnw6ry+4Gjs+cnAzdVjd8qm27H7PU1wBlVdQ4FlgwSzyTSZtDKsDkQixYtilWrVg0YFixYED09PbHl4WfG5vsfN+D59N0PqquskWle8u5PxLx582KbI84qrc16pymrzW2OOCvmzZsX06ZNG9NxDjZ+xsyDS/kMisa55eFnRk9PTyxYsGDAOrlo0aLIvgNTi3wnWzGMh76l0f6lSN/S7Hpfa71ul+9nkb5lLC5bqz+DofqWRvqXItfBCNLR16dLWj8rW9ZoOwCSBHwd2B/YIyIWVlW5HugD9gIuyqbZBpgBXJvVuRb4lKTp8fwFemYCS0lHpFfq7FvV9sxcG9XLuBJYmYsTgO7u7jV36cvr6uqit7eXFauDvr7nBjzvXrW6rrJGppmQXcJ35epgRUlt1jtNWW2uXJ22nvX29rLOGI5zsPErVq0u5TMoGmflvevq6hqwXtZaT8e68dC3ZMtUd/9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1aOp27UW//DnnAHOAfwGWSars11wSEb0RsUTSecBpkhaTvthfB66NdJQ3wGWkL/sPJB1H2if6eeCc7IsM8E3gQ5K+TDpg7M3Au4G3Nhm/mY0A9y1m7a/VV877AOno7quBR3LDgbk6RwO/JP3LuAZ4FHhHZWREPEe6j8FzpH8NFwDfB07I1VlI+sLPBG4GjgXeHxE+jcysM7lvMWuxprZgNCsiVEedFcAHs2GwOvczcDNldZ2rgR0bDNHM2pD7FrPWa/UWDDMzM+tADSUYkrolXSHppSMVkJmNP+5bzDpPQwlGRPQBrx6hWMxsnHLfYtZ5iuwiuYB0DX8zszK5bzHrIEUO8pwIHCZpb9K55M/mR0bEMWUEZmbjjvsWsw5SJMF4JXBD9vxlVeMau+64mdnz3LeYdZAiV/LccyQCMbPxzX2LWWcpfJqqpK0lzZbUk70e9rxzM7PhuG8x6wwNJxiSNpZ0BfBX4FfAC7NR50n6WpnBmdn44b7FrLMU2YJxOukmQTOA5bnyHwP7lBGUmY1L7lvMOkiRgzxnAbMj4qGqLZd3A1uUEpWZjUfuW8w6SJEtGOuy9r+LimnkbkFsZtYg9y1mHaRIgvFb4H251yGpCzgOuKqUqMxsPHLfYtZBiuwiOQ64QtJrgXWALwPbkf5l7FpibGY2vrhvMesgDW/BiIjbSBfB+R1wMWmz5s+AHSPib+WGZ2bjhfsWs85SZAsGEbEE+ELJsZjZOOe+xaxzFEowJG1EuinRtlnR7cD5EbG4rMDMbPxx32LWOYpcaGs34D7gI8BG2fARYGE2zsysYe5bzDpLkbNIziFd+GariHhHRLwDeDHwo2xc3STtJukXkh6WFJLeXjVekk6W9IikXkmXS3ppVZ1pki6UtFTS05LOk7ReVZ1XS/qtpBWSHpR0XIHlNrOR5b7FrIMUSTC2Br4WEc9VCrLnp2XjGrEucDPwwUHGH0f6B3Mk8AbS7ZvnS5qcq3Mh6UjzmcB+wG7AuZWRkqYClwH3AzsB/wmcJOnfG4zVzEaW+xazDlLkGIwbSPtH76oq35b0ha5bRFwKXApQfT+j7AZHRwGfj4iLs7L3AY8Bbwd+JGlb0iWEXxcRf87qfBj4laSPRcTDwEGkU94Oi4hVwF8k7QAcQ66zMLOWc99i1kHqSjAkvTr38izgTElbA3/MynYm/VP4eImxbQVsClxeKYiIJZKuA3YhbTbdBXi60gFkLgf6Sf9Kfp7VuSbrACrmA8dL2iginqqesaRJwKRc0foAfX199PX1DQi0v7+fnp4eJk8UE7onDHy+zkT66ilrcBqASRNFX4lt1jVNSW1Ompg6/rEe51DjS/kMCsZZee/6+/sHrJe11tOxaLz1LdBY/1KobylhvYeq9bpdvp9F+pYxumyt/Awq712tvqWyrtZDETF8JakfCGC42yZHREyoa84D5xHA/hExL3v9RuD3wGYR8Uiu3k+y+Rwo6ZPAwRGxTVVbjwMnRsQ3JF0GLIyII3LjXwH8BXhFRNxRI5aTgBOry+fOncuUKVOKLJ7ZqFq+fDlz5swB2CAilrY6nsGMt74lq3MS7l+sjdXdv0TEsAPpRkN1DfW0N8g8Anh77vUbs7IXVtX7CfDj7PkngbtqtPU48IHs+WXAf1eNf0XW9raDxDIJmJobNgdi0aJFsWrVqgHDggULoqenJ7Y8/MzYfP/jBjyfvvtBdZU1Ms1L3v2JmDdvXmxzxFmltVnvNGW1uc0RZ8W8efNi2rRpYzrOwcbPmHlwKZ9B0Ti3PPzM6OnpiQULFgxYJxctWhTZOj616HdyNIbx1rc02r8U6VuaXe9rrdft8v0s0reMxWVr9WcwVN/SSP9S1y6SiLi/nnolezR73AR4JFe+CXBTrs70/ESSJpIuLfxors4mVW1vkhs3QESsJHdzpco+3O7ubrq7uwfU7+rqore3lxWrg76+5wY87161uq6yRqaZ0JeOg1u5OlhRUpv1TlNWmytXp61nvb29rDOG4xxs/IpVq0v5DIrGWXnvurq6BqyXtdbTsWi89S3QWP9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1KHqhrc2AN5G+gGudiRIRZxVps4aFpC/pXmRf+uyo7TcA38jqXAtsKGmniLg+K3tzFtN1uTpfkNQdEZUdRzNJ/05q7iM1s9Zw32LWORpOMCQdAvw3sAp4krSZpCJIB2rV29Z6rH362VbZUdiLI+IBSWcAn5Z0N6lT+BzwMDAPICLukPRr4FuSjgS6gbOBH0U6yhtgLml/53mSvgS8EvgocHT9S21mI819i1lnKbIF43PAycApEdHf5Pxfy9q3YT4te/wecAjpborrkk752pB0E6R9ImJFbpqDSF/8K0hHeF9EOr8dWHN0+CzShXquBxYBJ0eETyMzG1vct5h1kCIJxhRSFt9sB0BEXM0QR49HOiLqhGwYrM5iYM4w87kF+KdiUZrZKHHfYtZBilzJ8zzgXWUHYmbjnvsWsw5SZAvGJ4BfStoHuBVY64obEXFMGYGZ2bjjvsWsgxRNMGbz/OV8qw/EMjMrwn2LWQcpkmAcS7r2/ndLjsXMxjf3LWYdpMgxGCtJl9k1MyuT+xazDlIkwTgT+HDZgZjZuOe+xayDFNlF8nrgzZL2I93Up/pArHeUEZiZjTvuW8w6SJEE42ngZyXHYWb2NO5bzDpGwwlGRBw6EoGY2fjmvsWssxQ5BsPMzMxsSEVudraQIc5Jj4gXNxWRmY1L7lvMOkuRYzDOqHrdDewI7AN8pdmAzGzcOqPqtfsWszZW5BiMM2uVS/og6Q6GZmYNc99i1lnKPAbjUuCdJbZnZgbuW8zaUpkJxgHA4hLbMzMD9y1mbanIQZ43svaBWAI2Bf4B+I+S4jKzccZ9i1lnKXKQ57yq1/3AE8DVEXFn0xGZ2Xg1r+q1+xazNlbkIM/PjkQgoyE7WOw/Sf+KbgY+HBF/am1UZgbuW8w6zbi50JakA4HTgM8CryF1AvMlTW9pYGbW1ty3mNVWd4IhqV/Sc8MMq0cy2CYdA3wrIs6PiNuBI4HlwGGtDctsfHPfYtaZGtlFsv8Q43YBPsIY3SIiaR1gJ+CUSllE9Eu6nBS7mbWO+xazDlR3ghERF1eXSdoGOBV4G3AhcEJ5oZXqBcAE4LGq8seAl1dXljQJmJQrWh9g8eLF9PX1VVdn6dKlTJ48GT25kK5lTwx43r1icV1lDU2z4imWL1+OFt9P17JHy2mzzmlKa3Px/Sxf/g9jP87BxveW8xkUjRNg8uTJLF26lCeffHKtdXLZsmVNfF1G13jqW6Cx/qVI39L0el9jvW6X72eRvmVMLluLPwMYvG+BBvqXiGh4ADYDvgWsAn4BvLJIO6M1ZPEGsEtV+ZeB62rUPymr78FDuw+bt/r7577F/YuHjh2G7F8aOotE0gbAJ4EPAzcBe0XEbxtpo0UWAc8Bm1SVbwI8WqP+KaSDtvKmMbYu9rM+8BDwj0D7/F1dW7svw1iPf33g4VYHUY9x1LfA2O9fxvp6XY92X4Z2iH/Y/qXuBEPSccDxpC/Nv0aNzZpjVUSsknQ9sBfZufaSurLXZ9eovxJYWVW8dITDbIikytNlETGmYqtXuy9DG8Q/FmMaYDz1Ldk0Y7p/aYP1eljtvgxtEv+wcSnbZDcsSf1AL3A5KWOvKSLeUW90oyk7lex7wBHAn4CjgHcDL4+I6v2nY56kqcASYIMxvAIOqd2Xod3jHyvct4wtnbBet/sytHv8FY3sIvk+aZ9LW4qIH0v6B+Bk0sVwbgL2accOwKzDuG8x60CNnEVyyAjGMSoi4mwG2WzZhlaSLuxTvam1nbT7MrR7/GOC+5YxpxPW63ZfhnaPH2hgF4mZmZlZvcbkxWvMzMysvTnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBaDOStpR0nqSFknol/U3SZ7ObLuXrvVrSbyWtkPRgdjGjMUPSByXdl8V3naTXtzqmWiR9QtICScskPS5pXnafjHydyZLOkfSkpGckXSSp+sqOZmOa+5bR1+n9ixOM9vNy0ud2BLAdcDTp9tBfrFTILtJyGXA/6U6P/wmcJOnfRz3aGrILE51GOg3rNcDNwHxJ01saWG27A+cAOwMzgW7gMknr5uqcTrop17uy+psBPxvlOM2a5b5l9HV2/9LqmwV5KOWGS/8J3Jt7/QHSfQ3WyZWdCtzZ6lizWK4Dzs697gL+Dny81bHVEfs/kC4KtVv2egPSjbkOyNV5eVZn51bH68FDM4P7llGPv6P6F2/B6AwbsPaNknYBromIVbmy+cA2kjYa1ciqZJtbdyJdFhqAiOjPXu/SqrgasEH2WHm/dyL968gvz53AA7TH8pgNxX3L6Oqo/sUJRpuTtDXpDpT/nSveFKi+TPFjuXGt9AJgArXja3VsQ8puYnUG8PuIuC0r3hRYFRFPV1Uf88tjNhT3LaOrE/sXJxhjhKRTJcUww8urptkc+DXwPxHxrdZEPq6cA7wSeE+rAzGrl/uWttFx/UsjNzuzkfU14LvD1Lm38kTSZsBVwB+A6gOsHgWqjzLeJDeulRaR7phZK75WxzYoSWcD+5H2jT6UG/UosI6kDav+ZYzp5bFxxX1L62MbUqf2L04wxoiIeAJ4op662b+Lq4DrgUOz/Yx51wJfkNQdEX1Z2Uzgroh4qqyYi4iIVZKuB/YC5sGaTYN7MQZvFiVJwNeB/YE9ImJhVZXrgT5S/Bdl02wDzCB9DmYt5b5lbPYt0Pn9i2921mayDuBq0mliB5MydgAi4tGszgbAXaTTyb5E2uz2HeDoiDh3lEMeIDuV7Huk0+H+BBwFvBt4eYyxW1xL+i9gDvAvpPe0YklE9GZ1vgHsCxwCLCV1GETEG0c1WLMmuG8ZfR3fv7T6NBYPjQ2klSxqDVX1Xg38FlgBPAQc3+rYq+L7EKkjW0k6tewNrY5pkDhrvtfAIbk6k0n7TxcDz5LOUd+01bF78NDI4L6lJbF2dP/iLRhmZmZWOp9FYmZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmEtI+k+SUe1Og4z6zzuX1rPCYaZmZmVzgmGmZmZlc4JhhUi6d8lPZzdrTBffrGk70h6Sfb8MUnPSFogae8h2ttSUkjaIVe2YVa2R67slZIuzdp8TNIPJL1gBBbRzFrE/UtncIJhRf0PsDGwZ6VA0jRgH+BCYD3gV6TbDO8I/Br4haQZRWcoaUPgSuBG4LXZvDYBflK0TTMbk9y/dICJrQ7A2lNEPCXpUtKthq/Iig8AFgFXRUQ/cHNuks9I2h/4Z+DsgrP9EHBjRHyyUiDpMOBBSS+LiL8WbNfMxhD3L53BWzCsGRcC75Q0KXt9EPCjiOiXtJ6kr0q6Q9LTkp4BtgUK/8MAtgf2zDZfPpO1eWc27iVNtGtmY4/7lzbnLRjWjF8AAt4qaQHwT8DR2bivAjOBjwH3AL3AT4F1BmmrP3tUrqy7qs562TyPrzH9I40Gb2ZjmvuXNucEwwqLiBWSfkb6Z7E1cFdE3JCN3hX4bkT8HEDSesCWQzT3RPb4QtI+UIAdqurcALwTuC8iVje9AGY2Zrl/aX/eRWLNuhB4K3BY9rzibuAdknaQtD0wlyHWt4joBf4IfFzStpJ2Bz5fVe0cYBrwQ0mvy44kny3pfEkTSlwmMxsb3L+0MScY1qwrgcXANqQvecUxwFPAH0ibHeeT/iEM5TDSVrXrgTOAT+dHRsTDpH8uE4DLgFuzek/z/CZQM+sc7l/amCKi1TGYmZlZh/EWDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMaxlJJ0mK3OuQdHYrYzIzs3I4wTAzM7PSOcEwMzOz0jnBMDMzs9I5wbBRIelNkhZIWiHpb5KOqHO6T0vql/ThkY7RzMzKM7HVAVjnk/Qq4DLgCeAk0nr3WeCxYab7PPBJ4IiI+NYIh2lmZiVygmGj4WRAwD9FxAMAki4Cbh1sAklfBY4GDo2I741KlGZmVhrvIrERJWkCMBuYV0kuACLiDmB+7Ul0NvBR4L1OLszM2pO3YNhI+wegB7i7xri7gH2ryt4HrAd8ICJ+OMKxmZnZCPEWDBtrfk86NuNDkqa1OhgzMyvGCYaNtCeAXuClNcZtU6PsHmAWsBnwa0nrj2BsZmY2Qpxg2IiKiOdIx1q8XdKMSrmkbUnHZtSa5hbSrpNtgV9I6hmNWM3MrDxOMGw0nJg9/lbS8ZI+BVwF/GWwCSLij8C/ADsDP5XUPfJhmplZWZxg2IjLtkjMJu0uORk4jJR0/HyY6a4E3k3aZfIDSV5fzczahCJi+FpmZmZmDfA/QjMzMyudEwwzMzMrnRMMMzMzK13DCYakfSS9Kff6g5JukjRX0kblhmdmZmbtqMgWjK8AU2HNXTK/BvwK2Ao4rbzQzMzMrF0VuRfJVsDt2fN3Ar+MiE9Keg0p0TAzM7NxrkiCsQqYkj3fG/h+9nwx2ZaNTiNJpEtXL2t1LGYNWB94OHwuupm1QJEE43fAaZJ+D7weODArfxnwUFmBjTGb0bnLZp3tH4G/tzoIMxt/iiQYHwL+CziAdEvtSuf1FuDXZQU2xiwDePDBB5k6deBGmr6+Pi677DJmzZpFd3d7XNHaMY+OVsW8dOlSXvSiF4G3uplZizScYETEA8B+NcqPLiWiMWzq1KmDJhhTpkxh6tSpbfXD55hHXjvGbGZWhiJbMMjuCbE1MJ2qM1Ei4poS4jIzM7M21nCCIWlnYC6wBaCq0QFMKCEuMzMza2NFtmB8E/gz8FbgEVJSYWZmZrZGkQTjpcABEXFP2cG0u5tvvpmuri5WrlzJpEmTAHjBC17AjBkzeOCBB1i0aNGgZUWmqZQBa8prtZMfny+rxNzX11f3NPUuR5FphlvOhx56aE3M06dPb2rZm5mmkWWvFXOzn/tgMZuZjSkR0dAAXAns0+h07TyQru8RS5YsiVruvffemDdvXvT09AQQqCs9QkzumRJ/+MMfYnLPlCHLikwzuWdK3H///XH//fc/X17VTvX4StlaMdc5zVrzGWY5ikwz3LJvNG3jNTE3s+xNT9PAslfHXMbnXivmakuWLKnUmdrq748HDx7G51DkUuFfB74m6RBJO0l6dX4o0F7be/LJJwGYts+H2eCf3gvRz8b7HcvG+x3Lit7l3HvvvazoXT5oWZFpKmWLFi1i0aJFrOhdznqvmjmgnfz4DXY5cE1ZJeb1ttuz7mkqZcMtR5Fp6l32yvvczLI3M02RZc/H3OznXmuaypYNM7OxpMgukouyx+/kyoJ0wOe4Psize9rmTOx7Lj3f+EUDxw9TVmSavK71pg05fsIG0weUad2NGp5muJiKTNPIcnZP23xAWZFlLzJNkWWHgTE3+7kPFrOZ2VhR9F4kZmZmZoMqcqGt+0ciEDMzM+scRS+09RLgKGDbrOh24MyI+FtJcZmZmVkba/ggT0mzSQnF64FbsuENwF8kzSwaiKSPSwpJZ+TKJks6R9KTkp6RdJGkTaqmmyHpEknLJT0u6SuSJlbV2UPSDZJWSrpH0iFF4zQzM7PhFdmCcSpwekR8PF8o6VTgS8BvGm1Q0uuAI0jJSt7ppAt6vQtYApwN/AzYNZtuAnAJ8CjwRuCFpNvH9wGfzOpsldX5JnAQsBfwbUmPRMT8RmM1MzOz4RU5TXVb4Lwa5d8BXtFoY5LWAy4E/g14Kle+AXA4cExEXBkR1wOHAm/MLlcOMCub53sj4qaIuBT4DPBBSetkdY4EFkbEsRFxR0ScDfwU6Pibs5mZmbVKkQTjCWCHGuU7AI8XaO8c4JKIuLyqfCegG1hTHhF3Ag8Au2RFuwC3RsRjuenmky6MtV2uTnXb83NtmJmZWcmK7CL5FnCupBcDf8jKdgWOB05rpCFJ7wFeA7yuxuhNgVUR8XRV+WPZuEqdx2qMp446UyX1RERvjbgmAZNyRetDuvV2X1/fgED7+/sBmDRR9HVPoKenh8kT033genp61jwOVjahwDSV55V59/T0MHmdifQNNT6bT39//5ryyetMHLrN3DR1L0eRaepc9sr73MyyNzVNgWXPx9zs515rmv7+/gHrZa311MxsNCmisXuVSRLpDJJjgc2y4oeBrwBnRZ0NSnoR6aZpMyPilqzsauCmiDhK0hzg/IiYVDXdn4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy/puIwpgyQYJwEnVpfPnTuXKVOm1LN4Zi21fPly5syZA7BBRCxtdTxmNg41c51x0j/79QtO+3bSlT9X54YA+rPne2WvN6ya7n7g6Oz5yaSEJD9+q2y6HbPX1wBnVNU5FFgyRGyTSLtZKsPmQCxatChWrVo1YLjuuuti3rx5sc0RZ8Xm+x8XPT09seXhZ8aWh58ZPT09ccEFFwxZVmSaStmCBQtiwYIF0dPTE9N3P2jI8Zu97ag1ZZWYZ8w8uO5pKmXDLUeRaepZ9mnTpq15n5tZ9mamaXTZq2Nu9nOvNc2CBQsGrJOLFi3yvUg8ePDQ0qHQdTByycmyJia/AnhVVdn5wJ2ks1EeJJ0NshfZ5cklbQPMAK7N6l8LfErS9IioHP8xE1hKOpW2UmffqvnMzLUxQESsBFZWXqeNNtDd3U13d/eA+l1d6VCWlauDFX3P0dvby4rVaUNOb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WiqK8GQdAOwV0Q8JelG0j+jmiLiNfW0mSUnt1XN51ngyYi4LXt9HnCapMWkpOHrwLUR8cdskstIicQPJB1HOt7i88A5WZIA6fTUD0n6MulMlzcD7yad/mpmZmYjoN4tGBfz/D/6ixkiwSjZ0aRdJheRdlvMB/6jMjIinpO0H/AN0haJZ4HvASfk6iyU9FbSNTU+CjwEvD98DQwzM7MRU1eCERGfzT0/aaSCiYg9ql6vAD6YDYNNcz8Dd4FU17ka2LH5CM3MzKweRS4Vfq+kjWuUbyjp3nLCMjMzs3ZW5EJbWwITapRPAv6xqWjMzMysI9R9Fomkf869nC1pSe71BNLZHgvLCszMzMzaVyOnqc7LHoN0IGVeH3Af6eJbZmZmNs7VnWBERBeApIXA6yJi0YhFZWZmZm2t4QttRcRWIxGImZmZdY56L7T1EeDciFiRPR9URJxVSmRmZmbWturdgnE0cCGwIns+mACcYJiZmY1z9V5oa6taz83MzMxqKXKhrROyW6JXl/dIOqHWNGZmZja+FLnQ1onAejXKp2TjzMzMbJwrkmCI2jc72x5Y3Fw4ZmZm1gkauZLnU6TEIoC/SsonGRNIWzW+WW54ZmZm1o4auQ7GUaStF98h7QrJXyp8FXBfRFxbXmhmZmbWrhq5kuf3YM2VPH8fEatHLCozMzNraw0fgxER/wdsIenzkn4oaTqApLdI2q70CM3MzKztFDlNdXfgVuANwDt4/oyS7YHPlheamZmZtasiZ5GcCnw6ImaSjr2ouBLYuZSozMzMrK0VSTBeBfy8RvnjwAuaC8fMzMw6QZEE42nghTXKdwT+3lQ0ZmZm1hGKJBg/Ar4kaVPSNTG6JO0KfBX4fiMNSfqApFskLc2GayW9JTd+sqRzJD0p6RlJF0napKqNGZIukbRc0uOSviJpYlWdPSTdIGmlpHskHVJguc3MzKxORRKMTwJ3Ag+SDvC8HbgG+APw+Qbbegj4OLAT8FrScRwX585GOR14G/AuYHdgM+BnlYklTQAuAdYB3ggcDBwCnJyrs1VW5ypgB+AM4NuSZjcYq5mZmdWpkQttARARq4B/k/Q54JWkJOPGiLi7QFu/qCr6lKQPADtLegg4HJgTEVcCSDoUuEPSzhHxR2AW8Apg74h4DLhJ0mdIW1hOymI9ElgYEcdm87hD0ptIt52f32jMZmZmNrwiWzAAiIgHgEuB/ymSXFSTNEHSe4B1gWtJWzW6gctz87wTeADYJSvaBbg1Sy4q5gNTge1ydS5nbfNzbZiZmVnJGt6CASDpcNIWgJdmr+8GzoiIbxdo61WkhGIy8Aywf0TcLmkHYFVEPF01yWPAptnzTbPX1eOpo85UST0R0VsjpknApFzR+gB9fX309fUNWIb+/n4AJk0Ufd0T6OnpYfJEAdDT07PmcbCyCQWmqTyvzLunp4fJ60ykb6jx2Xz6+/vXlE9eZ+LQbeamqXs5ikxT57JX3udmlr2paQosez7mZj/3WtP09/cPWC9rradmZqNJEbVujDrEBNLJwDHA10mJAaStAR8CTo+IExpsbx1gBrABcADwftLxFjsA50fEpKr6fwKuiojjJZ0LbBERs3PjpwDPAvtGxKWS/pq1c0quzr6k4zKmDJJgnESNW8/PnTuXKVOmNLJ4Zi2xfPly5syZA7BBRCxtdTxmNg5FREMD8ATwrzXK/xVY1Gh7Ndq5HPhv4M2ks1Q2rBp/P3B09vxk4Kaq8Vtl0+2Yvb6GtHUlX+dQYMkQMUwi7WapDJsDsWjRoli1atWA4brrrot58+bFNkecFZvvf1z09PTEloefGVsefmb09PTEBRdcMGRZkWkqZQsWLIgFCxZET09PTN/9oCHHb/a2o9aUVWKeMfPguqeplA23HEWmqWfZp02btuZ9bmbZm5mm0WWvjrnZz73WNAsWLBiwTi5atKhy5+OpzX4nPXjw4KHIUGQXSTfw5xrl11Nwl0uVLtIP/PVAH7AXcBGApG1IWzsqW06uJR0YOj0iHs/KZgJLSWe3VOrsWzWPmbk2BoiIlcDKymspbY7u7u6mu7t7YMBd6VCWlauDFX3P0dvby4rVactQb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WgqcpDnD4AP1Cj/d+DCRhqSdIqk3SRtKelVkk4B9gAujIglwHnAaZL2lLQTcD5wbaQzSAAuIyUSP5C0fXbq6eeBc7IkAeCbwIslfVnSyyX9B/Bu0imwZmZmNgKKbnE4XNIsoPJD/wbSloXvSzqtUikijhmmnemki3O9EFgC3ALMjojfZOOPBvpJWzAmkc7++I9c+89J2g/4BmmLxLPA94ATcnUWSnorKaH4KOnaG++PCJ+iamZmNkKKJBivBG7Inr8ke1yUDa/M1Rv26NGIOHyY8SuAD2bDYHXuZ+AukOo6V5MuZW5mZmajoMiFtvYciUDMzMyscxS+0JakrSXNltSTvVZ5YZmZmVk7azjBkLSxpCuAvwK/4vk7q54n6WtlBmdmZmbtqcgWjNNJp4/OAJbnyn8M7FNGUGZmZtbeihzkOYt0psdDVXtF7ga2KCUqMzMza2tFtmCsy9pbLiqmkbs4lZmZmY1fRRKM3wLvy70OSV3AccBVpURlZmZmba3ILpLjgCskvRZYB/gy6dbo04BdS4zNzMzM2lTDWzAi4jbgZcDvgItJu0x+Rrq52N/KDc/MzMzaUUNbMCR1A78GjoyIL4xMSGZmZtbuGtqCERF9wKtHKBYzMzPrEEUO8rwAGPIeImZmZja+FTnIcyJwmKS9getJdzBdo447qJqZmVmHa/Zuqi+rGjfsHVTNzMys8/luqmZmZla6wndTNTMzMxuMEwwzMzMrnRMMMzMzK50TDDMzMytdXQmGpBskbZQ9P0HSlJENy8zMzNpZvVswtiXdcwTgRGC9MmYu6ROSFkhaJulxSfMkbVNVZ7KkcyQ9KekZSRdJ2qSqzgxJl0hanrXzFUkTq+rskSVKKyXdI+mQMpbBzMzMBqr3NNWbgPMl/Q4Q8DFJz9SqGBEnNzD/3YFzgAVZLF8ELpP0ioioXMDrdOCtwLuAJcDZpJur7QogaQJwCfAo8EbghcD3gT7gk1mdrbI63wQOAvYCvi3pkYiY30C8ZmZmVod6E4xDgM8C+5EupvUWYHWNegHUnWBExD7519lWhceBnYBrJG1Auiz5nIi4MqtzKHCHpJ0j4o/ALOAVwN4R8Rhwk6TPAF+SdFJErAKOBBZGxLHZrO6Q9CbgaMAJhpmZWcnqSjAi4i7gPQCS+oG9IuLxEYhng+xxcfa4E9ANXJ6L5U5JDwC7AH/MHm/NkouK+cA3gO2AG7M6l7O2+cAZJcdvZmZmFLuS54iceSKpi/SD//uIuC0r3hRYFRFPV1V/LBtXqfNYjfHUUWeqpJ6I6K2KZRIwKVe0PkBfXx99fX0DYu/v7wdg0kTR1z2Bnp4eJk8UAD09PWseByubUGCayvPKvHt6epi8zkT6hhqfzae/v39N+eR1Jg7dZm6aupejyDR1LnvlfW5m2ZuapsCy52Nu9nOvNU1/f/+A9bLWempmNpoU0fjtQyS9BDiKdPAnwO3AmRHxt8KBSN8g7Xp5U0Q8lJXNAc6PiElVdf8EXBURx0s6F9giImbnxk8h3YRt34i4VNJfs3ZOydXZl3RcxpQaCcZJpINZ1zJ37lymTPEJNDb2LV++nDlz5gBsEBFLWx2PmY1DEdHQAMwGVgLXAadlw3XACmBmo+1lbZ4NPAhsVVX+ZtJxHRtWld8PHJ09Pxm4qWr8Vtl0O2avrwHOqKpzKLBkkHgmAVNzw+ZALFq0KFatWjVguO6662LevHmxzRFnxeb7Hxc9PT2x5eFnxpaHnxk9PT1xwQUXDFlWZJpK2YIFC2LBggXR09MT03c/aMjxm73tqDVllZhnzDy47mkqZcMtR5Fp6ln2adOmrXmfm1n2ZqZpdNmrY272c681zYIFCwask4sWLYrsOzC1yHfSgwcPHpoditxN9VTg9Ij4eL5Q0qnAl4Df1NuQJAFfB/YH9oiIhVVVriedDbIXcFE2zTbADODarM61wKckTY/njwuZCSwlbVmp1Nm3qu2ZuTbWEhErSUlUJU4Auru76e7uHlC/qyvtNVq5OljR9xy9vb2sWJ22DPX29q55HKysr8A0leeVeff29tK9avWQ43uy+VTKAFY0OE09y1FkmnqXvfI+N7vsRacpsuz5mJv93GtN09XVNWC9rLWempmNpiLHU2wLnFej/DukszkacQ7wXmAOsEzSptnQAxARS7J5nSZpT0k7AecD10Y6gwTgMlIi8QNJ20uaDXweOCdLFCCdnvpiSV+W9HJJ/wG8m3QKrJmZmZWsSILxBLBDjfIdSKeYNuIDpDNHrgYeyQ0H5uocDfyStAXjGtL1Lt5RGRkRz5FOn32OtEXiAtJ1ME7I1VlIupbGTOBm4Fjg/eFrYJiZmY2IIrtIvgWcK+nFwB+ysl2B40nHY9QtIlRHnRXAB7NhsDr3M3AXSHWdq4EdG4nPzMzMiimSYHwOWEbaClA5K+Nh4CTgrHLCMjMzs3ZW5DoYQTp24XRJ62dly8oOzMzMzNpXkS0YazixMDMzs1pG5KqcZmZmNr45wTAzM7PSOcEwMzOz0jWUYEjqlnSFpJeOVEBmZmbW/hpKMCKiD3j1CMViZmZmHaLILpILgMPLDsTMzMw6R5HTVCcCh0nam3QzsmfzIyPimDICMzMzs/ZVJMF4JXBD9vxlVeOiuXDMzMysExS5kueeIxGImZmZdY7Cp6lK2lrS7Mqt1SUNe+MyMzMzGx8aTjAkbSzpCuCvwK+AF2ajzpP0tTKDMzMzs/ZUZAvG6UAfMANYniv/MbBPGUGZmZlZeytykOcsYHZEPFS1V+RuYItSojIzM7O2VmQLxrqsveWiYhqwsrlwzMzMrBMUSTB+C7wv9zokdQHHAVeVEpWZmZm1tSK7SI4DrpD0WmAd4MvAdqQtGLuWGJuZmZm1qYa3YETEbaQLbP0OuJi0y+RnwI4R8bdywzMzM7N2VGQLBhGxBPhCybGYmZlZhyh0oS1JG0n6mKTzsuFYSdMKtLObpF9IelhSSHp71XhJOlnSI5J6JV1efat4SdMkXShpqaSns3jWq6rzakm/lbRC0oOSjiuy3GZmZlafIhfa2g24D/gIsFE2fARYmI1rxLrAzcAHBxl/XNb2kcAbSDdWmy9pcq7OhaRjQGYC+wG7Aefm4p0KXAbcD+wE/CdwkqR/bzBWMzMzq1ORXSTnkC6q9YGIeA5A0gTgv7Jxr6q3oYi4FLg0a2Otcdmlx48CPh8RF2dl7wMeA94O/EjStqSLe70uIv6c1fkw8CtJH4uIh4GDSAejHhYRq4C/SNoBOIZcImJmZmblKZJgbA0cUEkuACLiOUmnsfbpq83aCtgUuDw3nyWSrgN2AX6UPT5dSS4ylwP9pC0eP8/qXJMlFxXzgeMlbRQRT1XPWNIkYFKuaH2Avr4++vr6BgTa398PwKSJoq97Aj09PUyemBKmnp6eNY+DlU0oME3leWXePT09TF5nIn1Djc/m09/fv6Z88joTh24zN03dy1FkmjqXvfI+N7PsTU1TYNnzMTf7udeapr+/f8B6WWs9NTMbTYpo7A7rkn4PfCUi5lWVvx34eETsXCgQKYD9K+1KeiPwe2CziHgkV+8nQETEgZI+CRwcEdtUtfU4cGJEfEPSZcDCiDgiN/4VwF+AV0TEHTViOQk4sbp87ty5TJkypcjimY2q5cuXM2fOHIANImJpq+Mxs3EoIoYdgFfnhgNJxzN8DHhTNnwMWAgcWE97g8wjgLfnXr8xK3thVb2fAD/Onn8SuKtGW4+TduFAOv7iv6vGvyJre9tBYpkETM0NmwOxaNGiWLVq1YDhuuuui3nz5sU2R5wVm+9/XPT09MSWh58ZWx5+ZvT09MQFF1wwZFmRaSplCxYsiAULFkRPT09M3/2gIcdv9raj1pRVYp4x8+C6p6mUDbccRaapZ9mnTZu25n1uZtmbmabRZa+OudnPvdY0CxYsGLBOLlq0KLJ1fGrR76QHDx48NDPUu4vkpqyzyh8o8eUa9eaSjs8ow6PZ4ybAI7nyTbJ4KnWm5yeSNJF00a9Hc3U2qWp7k9y4ASJiJbnLnleOD+nu7qa7u3tA/a6udKzsytXBir7n6O3tZcXqtGWot7d3zeNgZX0Fpqk8r8y7t7eX7lWrhxzfk82nUgawosFp6lmOItPUu+yV97nZZS86TZFlz8fc7Odea5qurq4B62Wt9dTMbDTVm2BsNaJR1LaQlADsRZZQZGeEvAH4RlbnWmBDSTtFxPVZ2ZtJZ8dcl6vzBUndEVHZMT2TtOVjwPEXZmZm1ry6EoyIuH8kZp5dr2LrXNFW2RkeiyPiAUlnAJ+WdDcp4fgc8DAwL4vrDkm/Br4l6UigGzgb+FGkM0ggbVU5EThP0peAVwIfBY4eiWUyMzOzglfylLQZ6diL6VRdSyMizmqgqdey9g3STssevwccQtoNsy7pdNINSZcn3yciVuSmOYiUVFxBOnvkItK1MyrxLJE0i3QK7fXAIuDkiPApqmZmZiOk4QRD0iHAfwOrgCdJx2ZUBFB3ghERV7P2cR3V4wM4IRsGq7MYmDPMfG4B/qneuMzMzKw5RbZgfA44GTglIvpLjsfMzMw6QJF7kUwhHePg5MLMzMxqKpJgnAe8q+xAzMzMrHMU2UXyCeCXkvYBbgXWuiZxRBxTRmBmZmbWvoomGLOBu7LX1Qd5mpmZ2ThXJME4lnRn0u+WHIuZmZl1iCLHYKwk3YTMzMzMrKYiCcaZwIfLDsTMzMw6R5FdJK8H3ixpP9Itz6sP8nxHGYGZmZlZ+yqSYDwN/KzkOMzMzKyDNJxgRMShIxGImZmZdY4ix2CYmZmZDanIzc4WMsT1LiLixU1FZGZmZm2vyDEYZ1S97gZ2BPYBvtJsQGZmZtb+ihyDcWatckkfBF7bdERmZmbW9so8BuNS4J0ltmdmZmZtqswE4wBgcYntmZmZWZsqcpDnjax9kKeATYF/AP6jpLjMzMysjRU5yHNe1et+4Ang6oi4s+mIzMzMrO0VOcjzsyMRiJmZmXWOcXWhLUkflHSfpBWSrpP0+lbHZGZm1onqTjAk9Ut6bphh9UgG2wxJBwKnAZ8FXgPcDMyXNL2lgZmZmXWgRnaR7D/EuF2AjzC2t4gcA3wrIs4HkHQk8FbgMODUVgZmZmbWaepOMCLi4uoySduQfpzfBlwInFBeaOWRtA6wE3BKpSwi+iVdTkqOqutPAiblitYHWLx4MX19fdXVWbp0KcuXL0eL76dr2aNMnjwZPbkQgMmTJ3PXXXcNWda17ImGp6mUXX/99Wued69YPOT4CcseW6tsvfXWo7v3qYamqWc5ikxT77JX3udml73oNEWWPR9zs597rWmWLl3Kk08+udY6uWzZsgHrqZnZaFLEoLcVGXwiaTPSroaDgfnAJyLitpJjK00W79+BN0bEtbnyLwO7R8QbquqfBJw4qkGajYx/jIi/tzoIMxt/GjqLRNIGwCeBDwM3AXtFxG9HIK5WO4V0vEbeNAa/kNj6wEPAPwLt8tfRMY+OVsa8PvDwKM/TzAxoIMGQdBxwPPAo8K+1dpmMYYuA54BNqso3IS3PWiJiJbCyqnjpYI1LqjxdFhGD1htLHPPoaHHMbfEemVlnamQLxqlAL3APcLCkg2tVioh3lBFYmSJilaTrgb3ILhQmqSt7fXYLQzMzM+tIjSQY32ftS4S3m9OA70n6M/An4ChgXeD8VgZlZmbWiRo5i+SQEYxjxEXEjyX9A3Ay6d4pNwH7RMRjJTS/knTQa/VulbHMMY+OdozZzKxphc4iMTMzMxvKWL4wlpmZmbUpJxhmZmZWOicYZmZmVjonGGZmZlY6JxglGMu3gZe0m6RfSHpYUkh6e9V4STpZ0iOSeiVdLumlLQoXSZ+QtEDSMkmPS5qX3fMmX2eypHMkPSnpGUkXSaq+iNpoxvwBSbdIWpoN10p6y1iN18xsNDjBaFIb3AZ+XVJMHxxk/HGkO+EeCbwBeJYU/+TRCW+A3YFzgJ2BmUA3cJmkdXN1TifdYO9dWf3NgJ+Ncpx5DwEfJ91Q77XAlcDFkrbLxo+1eM3MRpxPU22SpOuABRHxoex1F/Ag8PWIGFO3gZcUwP4RMS97LdK9Kr4WEV/NyjYAHgMOiYgftSrWiuzaJY+Tbkp3TRbfE8CciPhpVuflwB3ALhHxx9ZF+zxJi4H/BH5KG8RrZlY2b8FoQu428JdXyiKiP3s94DbwY9BWpIuO5eNfAlzH2Il/g+yxcqO5nUhbNfIx3wk8wBiIWdIESe8hbTm6ljEer5nZSGnobqo2wAuACaR//HmPAS8f/XAatmn2WCv+TWmxbGvQGcDvI+K2rHhTYFVEPF1VvaUxS3oVKaGYDDxD2lJ0u6QdGIPxmpmNNCcYNpadA7wSeFOrA6nDXcAOpC0uB5Due7N7SyMyM2sh7yJpTkO3gR+DKjGOufglnQ3sB+wZEQ/lRj0KrCNpw6pJWhpzRKyKiHsi4vqI+ATpwNqPMkbjNTMbaU4wmhARq4DKbeCBtW4Df22r4mrAQtKPXD7+qaSzSVoSf3ba7NnA/sCbI2JhVZXrgT7WjnkbYAZj6z3vAibRPvGamZXKu0iaN6ZvAy9pPWDrXNFW2XEBiyPiAUlnAJ+WdDcp4fgc6cySeaMcasU5wBzgX4BlkirHKSyJiN6IWCLpPOC07EyNpcDXgWtbdUaGpFOAS0kHbq5Pin8PYPZYjNfMbDQ4wWjSCN8GvgyvBa7KvT4te/wecAjwZVJCdC6wIfA7UvwrRi/EtXwge7y6qvxQ4LvZ86OBfuAi0laC+cB/jEJsg5kOfB94IbAEuIWUXPwmGz/W4jUzG3G+DoaZmZmVzsdgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYFjLSLpP0lGtjsPMzMrnBMPMzMxK5wTDzMzMSucEwwqR9O+SHs7uHpsvv1jSdyS9JHv+mKRnJC2QtPcQ7W0pKbIbsVXKNszK9siVvVLSpVmbj0n6gaQXjMAimplZE5xgWFH/A2wM7FkpkDQN2Ae4EFgP+BXpNuU7Ar8GfiFpRtEZStoQuBK4kXQTt32ATYCfFG3TzMxGhu+maoVExFOSLiXdmvyKrPgAYBFwVUT0AzfnJvmMpP2BfwbOLjjbDwE3RsQnKwWSDgMelPSyiPhrwXbNzKxk3oJhzbgQeKekSdnrg4AfRUS/pPUkfVXSHZKelvQMsC1QeAsGsD2wZ7Z75JmszTuzcS9pol0zMyuZt2BYM34BCHirpAXAPwFHZ+O+CswEPgbcA/QCPwXWGaSt/uxRubLuqjrrZfM8vsb0jzQavJmZjRwnGFZYRKyQ9DPSloutgbsi4oZs9K7AdyPi5wCS1gO2HKK5J7LHF5KOsQDYoarODcA7gfsiYnXTC2BmZiPGu0isWRcCbwUOy55X3A28Q9IOkrYH5jLE+hYRvcAfgY9L2lbS7sDnq6qdA0wDfijpddmZKrMlnS9pQonLZGZmTXKCYc26ElgMbENKIiqOAZ4C/kDarTGftAViKIeRtqpdD5wBfDo/MiIeJm0ZmQBcBtya1Xua53exmJnZGKCIaHUMZmZm1mG8BcPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzEr3/wFHFetcmY/wCgAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJcElEQVR4nO3deZxkVX3//9d7hgHZBkQFNIoiRMUNcMEFQ1QcQEXz1WjMV/NTxJhgRIOYLy5RRDTBFVDBGA0iGFFMNJqIOCyKoCKGVRBEREA22XEGZ6GHPr8/7m2tKap7um7f7p6qej0fj3pU1bmnbn3q9q3Tnzr33HNTSkGSJKkNC+Y7AEmSNDxMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDQnkhyWZE6meU1yVpKzOp4/N0lJ8oo5ev8vJLl2Lt6r630fVX/O/eb6vUdFkg2SfCTJ9UnGk3xjvmOS1jcmFupbkv3qf2ATt1VJbkqyNMlbk2ze0vs8rE5IdmljfW1an2PTrNof+H/AfwKvA46a33Dak+RxddJ0cZLlSW5OckqSp813bBosG8x3ABpohwLXAIuAbYHnAkcDByd5aSnlpx11Pwh8qM/1Pwx4H3AtcHEfr9urz/dpYqrY3sj8JO3XARsDY/Pw3qPi+cCNpZS3zXcgs+CvgTcAXwM+DWwB/C3w4yT7lFLOmM/gNDhMLDQTp5ZSzu94fkSS5wPfAv47yU6llJUApZQ1wJrZDCbJJqWUFaWUe2fzfdallDIv/9hLdUXBVfPx3jOR5AHAvaWU8fmOZRq2Bu5ua2VJFgAbllKm9XdLEuABE9+rln0ZOKyUck/H+30euAI4DDCx0LR4KEStKqV8F/gA8EjgrybKe42xSLIkyQ+S3J3kniRXJvnnetlzgf+tqx7fcdhlv3r5WUkuS/LUJGcnWQH8c8eys3qEtzDJPyf5TZLfJfnvJI/oiunaJF/ofmHnOqcR2/3GWCTZNMnH62Pzq+vP+g/1P4rOeiXJMUn+T/35Vif5WZJ9enye7hjvN8aijuWeJH+U5Bv149uSfCzJwmms89ok30qyV91FvirJ5Ule3lVvq3qdl9bvsSzJqUl27qo3Md7lL5N8MMmNwApgcYN1/EWS9yW5se66/88kWyTZKMnRSW6t13N8ko261jHpvjfVtgWeBzyh42/+3Hp5v3/f1yT5GbAamPRv27H9905yPrCSqheBJK9P8t36c66u/y5vmmIdz0nyk/pv+Kskr+2sV0q5oDOpqMvuAM4BdposRqmbPRaaDV+k+ie/F/C5XhWSPIGqZ+OnVIdUVgM7ArvXVa6oyw8HPkvVuAH8qGM1DwJOBb4C/Dtwyzri+kegAB+m+uV5EHBGkl36/AU4ndh+r/7n8t9U/5SOozp0sjfwUeCPgO5u9ecAL6fqjl4OvBX4WpLt6oa+XwuBpcB5wD8ALwDeDlwN/Ms0Xv/HwMnAZ4ATgNcD/5Gqe/z0us6jgf8D/AfV4bFtqP4Bfj/J40spN3Wt873AvcDHgI3qx4/vcx3vovpH+yGqfectVIeBxoEHUv3KfiawX72+w2Fa+14vtwH/H9U+tFn93gBXNPj7Ph/4C+AY4Haqw2lTeSxVb8K/Un2frqzL3wT8rH7vNcBLgE8nWVBKObZrHTtSjQs5jupvuD/whSQXlFJ+to7337aOU5qeUoo3b33dqBrqAjxtijp3Axd2PD+Mure+fn5QvY4HT7GOp9V19uux7Kx62d9OsuysjufPreveAGzeUf7KuvytHWXXAl+Yxjqniu0LwLUdz/+srvuPXfX+g+qf4A4dZYXqH11n2ZPr8gPX8Xd5VHdMdSwFeG9X3QuB86fxt762fv3LO8oWAzd1/X03Ahb0iGdV53t3/C2uBjbuqt/vOi4FFnWUn1Rvz293reNHXX+Pde57U2yPs4DLusr6/fveBzx+mu83sf337rFs4x5l3wGunmQdf9JR9pB6u35sHe//J/VnOLzfbeVtdG8eCtFsuQeY6uyQu+v7P0t1nLmJ1cDxfdQ/sZSyvOP5fwI3Ay9q+P7T9SKqfyaf7Cr/OBDghV3lZ5RSrp54UqpBsMuoegWa+kzX83P6WN9NwH91xLMMOBHYNcm2ddnqUo+RSLIwyYOo9oErgaf0WOcJpauXqME6Tixrj2c5j2p7fr6r3nnAI5JM9NDeXd/PZN/r1O/f9/ullMv7WP81pZSl3YWd268+BPRg4PvAo5Ns0VX98lLKOR2vvY1qu066DyTZmipZuwb4SB/xasSZWGi2bEbVjT+Zk4EfAv8G3JLkK/Ux8372yRtLfwM1r+p8UkopwC+pfhXPpkcCN3UlNVAdUplY3unXPdZxF1X3fhOr6n8kTdf3y3pbdfpFff8oqAYhJnlbkquoEr7bqQ4fPJnq7IJu13QXNFhH93b6bX1/fY/yBR3raGPf69Tv3/d+n30detZPsnuSM5L8jipZuo16nBH331597VNJNqU6XLQ58Gela+yFNBUTC7UuycOpGrZfTlan/rW1B9Xx/i9S/fM4GTg90xhUWJuNkfGTTeI13ZjacN8k5ZmkvOn62vRu4EjgbKpBu3sDS6jGAPRqZ3r97fpdx2Sfa8rt19K+NxP97rf3q59kB+BM4MHAwcCLqbbVxLwa3dtr2vtUkg2Br1Ntlz8rpVzWZ7wacQ7e1Gz4/+r7+3Xfdqq7vc+sbwcneTfwT1SD4M5g8n/yTf1x55N60N2OVIP4JtwFbNnjtY8EftXxvJ/YrgNekGTzrl+1j+tYvj7bMUm6ei0eU99fW9+/AvheKeUNnS9MsiXTH/jXxjqmZRr7Xj/m4+/7EqoxKS8tpfy+NyLJ82ay0rrX5kRgT+AvSinfn1GUGkn2WKhVqeaxeC9V9+2Xpqi3VY/ii+v7iVMDf1ffb9lSeK/N2rOCvgJ4KNWZJROuBp5Z/2oDIMm+wFqnpfYZ27epejwO7Cp/G1WCcur9XrF+eRjwsoknSRYDrwUuLqX8pi6+j65fv0leSXVWxHS1sY51mua+14/5+PtO9ED8fnvV4ypeP8P1fgp4FfB3pZSvz3BdGlH2WGgmXpjkcVT70TZUp9EtofqF9tIy9aQ/hybZAzilrr818HdUZ278oK5zNdWx4wOSLKf6Z35eKaXfY9QT7gR+kOT4Ot6DqA7XdJ4S+29UCcd3knwV2IGqW/7qtVfVV2z/A3wP+KckjwIuoToV98+AozsHaq6nfgEcl+TpVKf07k+1/Tr/iX2L6m96PNVZGE8CXsPavTzr0sY6pmM6+14/5uPvexrVKbr/k+RfqcY0vRG4lSpZ7luSg6i2w7nAiiR/1VXlv0opv7vfC6UuJhaaicPr+3up/mlfSvXP+vgeA9m6/TfVwL/9qY4T3041ov19pZTfQjWDZZLXAUdQndWwAdU/s6aJxT9THTd+F9WgtDOpfpmtmKhQSlma5O1Ux62PBs4H9qUa4U9HvWnHVkoZT/JSqu31qrretVTXnPh4d/310FVUc0R8lGpOhWuAV3WdqfDPwKbAq6k+44VUx/37mca9jXVMxzr3vX7Mx9+3lHJlqovqfZBqLpDfUM1Jchv3Pytmunap759V37ptzx966qRJ5f6DvSWpkmoG0ctKKfvOdyySBoNjLCRJUmtMLCRJUmtMLCRJUmscYyFJklpjj4UkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUaS7JfkpLkUeuod22SL8xNVJIGie3I8DGxkCRpCkn2TPL5JL9IsiLJr5L8W5KHznds66OUUuY7Bg2oJAuBRcDqMsWOlORa4KxSyn5zFJqkATEI7UiS84GtgP8ArgIeDRwIrAB2KaX8Zq5jWp9tMN8BaHCVUu4D7pvvOCQNrgFpRw4GflBKGZ8oSPId4PtUCcZ75iuw9ZGHQtRY97HRVN6T5Ia6u/B7SZ7Q43WHJbnfL5Nex1rr46rfSvLcJOcnWZnk0iTPrZe/vH6+KskFSXadrc8rqX2D0I6UUs7uTComyoA7gZ1mvhWGi4mF2nQ48AHgEuD/Ab8CTgM2neF6dwROAv4HeBfwQOB/krwGOAr4d+B9wA7AV5O4X0uDayDakSSbAZsBt88wrqHjoRC1IslDgEOAU4CXTBwrTfJPwLtnuPrHAs8upZxbr/NyYCnwOeBxpZRf1+V3Af8K7AGcNcP3lDTHBqwdOQjYEDh5hnENHX/ZqS0voPqSfaprANbRLaz78onGoHZeff/dicagq/zRLbynpLk3EO1Ikj2oeje+Wkr5bguxDRUTC7XlkfX9VZ2FpZTbgLtmuO7OLz2llN/WD6/vqjdR/sAZvp+k+bHetyNJHgf8F3AZ8NczjGkomVhoPkx2StnCSconGzE+WXn6C0fSAJrzdiTJI6jGe/wWeFEpZfmUEY4oEwu15br6/o87C+tjpt2Z/131si27yh+JpFG23rYjSR5ElVRsBOxdSrl5Nt5nGJhYqC1nAGPAW5J0ZvoH9ah7dX2/x0RBkk2B181adJIGwXrZjtTr/TbwR1Q9FVet4yUjzbNC1IpSym1JPkZ1Gte3knwb2BV4Ifc/Hes0quOdxyX5KFVX5P7AbcB2cxe1pPXJetyOfAnYDfg8sFOSzrkr7imlfKPl9xtoJhZq03uAVcABwPOoRlfvRXXq2O+VUsaSvAz4NNX56r+hGvV9F3D8HMYraf2zPrYju9T3+9e3TtcB32j5/Qaa1wqRJEmtcYyFJElqjYmFJElqjYmFJElqjYmFJElqTd+JRZJ9kjyn4/mbk1yc5KQkTqUsqRHbFmk4NOmx+CiwGCDJk4CPU00csj1wZHuhSRoxti3SEGgyj8X2wOX14z8HvlVKeXeSp1A1AiOpniXuYYBzx2s+bA7cVAb7/HHblh5sWzTP+m5bmiQW9wKb1I9fAJxYP76T+tfGiHoYcMN8B6GR9nDgxvkOYgZsW3qzbdF866ttaZJY/AA4MskPqaY4fVVd/hhGe+dfDnD99dezePHabeDY2BinnXYae+21F4sWLZqX4NZnbp+prWv7LFu2jEc84hEw+L9obVt6s22ZAbfR1KbaPk3bliaJxYFUU6i+AnhTKWUii3kh8J0G6xsqixcv7vnl32STTVi8eLE7dg9un6mN0PaxbZmCbUszbqOpzcb26TuxKKX8Gti3R/nbWolI0kiybZGGQ6OLkCVZAOwIbE3XmSWllLNbiEvSCLJtkQZf34lFkmcCJwGPBNK1uAALW4hL0oixbZGGQ5Mei88A5wMvBm6m+sJLM3bJJZewYMECHvzgB7PddtvNdziae7YtmjWXXHIJW2+9tW3LHGiSWPwx8IpSyi/bDkaj6YYbqgH/e+yxBytXruQBG2/ClT+/wgZg9Ni2qHWd7Ushti1zoMnMm+dRHQOVWnHHHXcAsNU+b+FB+76dVStXcPvtt89zVJoHti1q3UT7sni3l9u2zJEmPRafAj6eZFvgUmCsc2Ep5adtBKbRs2irP+K+NfZ+jzDbFs2ahYsfMt8hjIwmicXX6vvPd5QVqsFWDrCS1JRtizQEml4rRJLaZtsiDYEmE2RdNxuBSBptti3ScGg6QdYOwEHATnXR5cAnSilXtxSXpBFk2yINvr7PCkmyN9WXfTfgp/XtGcDPkixpNzxJo8K2RRoOTXosPgQcVUp5Z2dhkg8BHwZObyMwSSPHtkUaAk3msdgJOK5H+eeBx88sHEkjzLZFGgJNEovbgF16lO8C3DqTYCSNNNsWaQg0ORTyOeCzSR4N/Kgu2x14B3BkW4FJGjm2LdIQaJJYfABYDrwdOKIuuwk4DPhkO2FJGkG2LdIQaDKPRQGOAo5KsnldtrztwCSNFtsWaTg0msdigl96SbPBtkUaXNNKLJJcCOxZSrkryUVU8/b3VEp5SlvBSRputi3S8Jluj8U3gdUdj70EpaQ22LZIQ2ZaiUUp5f0djw+btWgkjRTbFmn4NJnS+1dJHtSjfMskv2onLEmjxrZFGg5NJsh6FLCwR/lGwMNnFI2kUfYobFukgTfts0KSvLTj6d5JftvxfCGwJ3BNW4FJGg22LdJw6ed002/U9wU4oWvZGHAt1cQ2ktSPb9T3ti3SEJh2YlFKWQCQ5Brg6aWU22ctKkkjw7ZFGi5NZt7cfjYCkTTabFuk4TDdCbLeCny2lLKqfjypUopz+kuaFtsWafhMt8fibcCXgFX148kUvFiQpOmzbZGGzHQnyNq+12NJmgnbFmn4NJkg69Akm/Qo3zjJoe2EJWnU2LZIw6HJBFnvAzbrUb5JvUySmrBtkYZAk8Qi9L5Q0M7AnTMLR9IIs22RhsC0E4skdyW5k+qL/4skd3bcfgucDny1aSBJ3pmkJDm6o+wBSY5NckeSe5J8Lck2Xa/bLskpSVYkuTXJR5Ns0FXnuUkuTLI6yS+T7Nfj/d+c5Nokq5Kcl2S3pp9F0vTZtkjDpZ95LA6i+kXxeapuyc5pd+8Fri2lnNskiCRPB/4W+GnXoqOAFwOvrN/vGODrwO716xYCpwC/AZ4NPBQ4kWq2vnfXdbav63wGeA3V9MD/luTmUsrSus6rgCOBA4Dz6s+6NMljSym3NvlMkqbtIGxbpKHRz8ybJ8DvZ8f7YSllTRsBJNmM6nSzNwLv6SjfAngD8OpSynfrstcDVyR5Zinlx8BewOOBF5RSbgEuTvJe4MNJDiul3Ev1hb6mlDIxJfAVSZ5DdWrb0rrsYOBzpZTj6/c5gKrR2R/4UBufU1Jvti3ScGky8+b3k+xQfxF3AP6+lHJrkhcCvy6l/KzPVR4LnFJKOSPJezrKnwosAs7oeO+fJ/k18Czgx/X9pfUXf8JS4F+AJwAX1XXOYG1LgaMBkmxYv9cRHe8znuSM+rU9JdmI6qqLEzYHGBsbY2xsbK26E8+7y1UZHx8HYKMNAsDGG2/M+Pi426u2rv1nWLaTbUvFtqVdE+3LAxYttG3pYap9qOl26juxSPKnwKnAD4E9gH8EbqUaYPUG4BV9rOsvgacAT++xeFvg3lLK3V3lt9TLJurc0mM506izOMnGwAOprqDYq87jpgj/XfQYqX7aaaexySb3O2MOgNNPP32K1enDL9yuevCSL3PjjTdy4403zm9A65nJ9p8VK1bMcSSzw7bl92xbZsGRr/0TeO2f2LZMotc+1LRt6TuxoOq+e08p5cgkyzvKvwscON2VJHkE8AlgSSllVYM45tsRVMdOJ2wO3LDXXnuxePHitSqOjY1x+umns2TJEhYtWjSXMQ6Eiy66iJtvvpl3nPprVq8p3HLSOzn77LPZeeed5zu09cK69p9ly5bNQ1SzwralYtvSoon25eATz+HmUz9t29Jlqn2oadvSJLF4EvDqHuW3Ag/uYz1PBbYGLkwyUbYQ2CPJgcDewIZJtuz6ZbEN1YAq6vvuEdbbdCybuN+mR51lpZSVSe4D7pukzm+YRCllNbB64vnEZ1i0aNGkX/Cplo2yBQuqk5NWrymsWlNYuXIlCxYscFt1mWz/GaLtZNuCbUvbJtqXVWP32bZModc+1HQ7NZnH4m6qEdLddgX66V86k6oh2aXjdj7VYKuJx2NUI60BSPJYYDtgYoT4ucCTkmzdsd4lwDLg8o46e7K2JRPrqAdhXdD1Pgvq541Goktq5G5sW6SB16TH4itUI6NfSXXe+YIkuwMfozoda1pKKcuByzrLkvwOuKOUcln9/DjgyPoc92XAp4Bz61HbAKdRfcm/mOQQqmOeHwSOrbN+qE4FOzDJR6hOZ3s+8BdUI7MnHAmckOR84CdUp4RtChw/3c8jacZsW6Qh0CSxeDfVaOvrqboXL6/vT6L64rXpbcA48DWqUdJLgb+bWFhKuS/JvlQjtc8FfgecABzaUeeaJC+mOm/974EbgL+eOM+8rnNykocAh1M1IBcD+3SNCJc0u2xbpCHQ5HTTe4E3JvkA8ESquf0vKqVcNdNgSinP7Xq+CnhzfZvsNdcBL1rHes+i6k6dqs4xVJPkSJoHti3ScGjSYwFAKeXXSa6vH/ea31+S+mbbIg22JoM3SfKGJJcBq4BVSS5L8tfthiZp1Ni2SIOvyQRZh1NNU/sp/jCy+VnAUUm2K6UcOumLJWkSti3ScGhyKORNwBtLKV/uKPvvJD+lahD88ktqwrZFGgJNDoUsojoPvNsFzGDMhqSRZ9siDYEmicUXqX5ZdPsbqgloJKkJ2xZpCDT9FfCGJHtRXQUQ4BlUs9admOT3c9yXUg6eYXySRottizTgmiQWTwQurB/vUN/fXt+e2FHP08Qk9cO2RRoCTSbIet5sBCJptNm2SMOh0TwWAEl2TLJ3ko3r51nXayRpXWxbpMHWd2KR5EFJzgR+AXybP1yN8LgkH28zOEmjw7ZFGg5NeiyOorrk8HbAio7yk4F92ghK0kiybZGGQJPBm3sBe5dSbujqobwKeGQrUUkaRbYt0hBo0mOxKWv/mpiwFbB6ZuFIGmG2LdIQaJJYnAO8tuN5SbIAOAT4XitRSRpFti3SEGhyKOQQ4MwkTwM2BD4CPIHqV8XuLcYmabTYtkhDoO8ei1LKZcBjgB8A36Tqvvw6sGsp5ep2w5M0KmxbpOHQV49FkkXAd4ADSin/NDshSRo1ti3S8Oirx6KUMgY8eZZikTSibFuk4dFk8Oa/A29oOxBJI8+2RRoCTQZvbgDsn+QFwAXA7zoXetVBSQ3ZtkhDYKZXN31M1zKvOiipKdsWaQh4dVNJ6wXbFmk4NL66qSRJUjcTC0mS1BoTC0mS1BoTC0mS1JppJRZJLkzywPrxoUk2md2wJI0C2xZp+Ey3x2Inqnn7Ad4HbDY74UgaMbYt0pCZ7ummFwPHJ/kBEOAfktzTq2Ip5fCWYpM0/C7GtkUaKtNNLPYD3g/sSzVRzQuBNT3qFcAvv6Tp2g/bFmmoTCuxKKVcCfwlQJJxYM9Syq2zGZik4WfbIg2fJjNveiaJpNbZtkjDocm1QkiyA3AQ1cArgMuBT5RSrm4pLkkjyLZFGnx9/0JIsjfVl3034Kf17RnAz5IsaTc8SaPCtkUaDk16LD4EHFVKeWdnYZIPAR8GTm8jMEkjx7ZFGgJNjmnuBBzXo/zzwONnFo6kEWbbIg2BJonFbcAuPcp3ARzNLakp2xZpCDQ5FPI54LNJHg38qC7bHXgHcGRbgUkaObYt0hBoklh8AFgOvB04oi67CTgM+GQ7YUkaQbYt0hDo+1BIqRxVSnk4sAWwRSnl4aWUT5RSSj/rSvKuJP+bZHmSW5N8I8lju+o8IMmxSe5Ick+SryXZpqvOdklOSbKiXs9Hk2zQVee59QWPVif5ZZL9esTz5iTXJlmV5Lwku/XzeSQ1Z9siDYcZTUhTSlleSlk+g1X8KXAs8ExgCbAIOC3Jph11jgJeAryyrv8w4OsTC5MsBE4BNgSeDbyOaprgwzvqbF/X+R7V8dqjgX+rT2+bqPMqqu7W9wNPAS4BlibZegafT1IDti3S4Go0QVZbSin7dD6vM/1bgacCZyfZAngD8OpSynfrOq8HrkjyzFLKj4G9qEaMv6CUcgtwcZL3Ah9Oclgp5V7gAOCaUsrb67e6IslzgLcBS+uyg4HPlVKOr9/nAODFwP5Up8FJGhC2LdL8mdfEooct6vs76/unUv3SOGOiQinl50l+DTwL+HF9f2n9xZ+wFPgX4AnARXWdM1jbUqpfFyTZsH6vieO6lFLGk5xRv/Z+kmwEbNRRtDnA2NgYY2Nja9WdeN5drsr4+DgAG20QADbeeGPGx8fdXrV17T9up2mxbRlRE+3LAxYttG3pYap9qOl2Wm8SiyQLqL6MPyylXFYXbwvcW0q5u6v6LfWyiTq39FjONOosTrIx8EBg4SR1HjdJyO8C3tddeNppp7HJJpv0fMHppzu/z1Q+/MLtqgcv+TI33ngjN9544/wGtJ6ZbP9ZsWLFHEcyWGxbBHDka/8EXvsnti2T6LUPNW1b+koskiwCvgMcUEq5qtE7Tu5Y4InAc1pe72w5grVPgdscuGGvvfZi8eLFa1UcGxvj9NNPZ8mSJSxatGguYxwIF110ETfffDPvOPXXrF5TuOWkd3L22Wez8847z3do64V17T/Lli2bh6jaZduyFtuWFk20LwefeA43n/pp25YuU+1DTduWvhKLUspYkic3eqcpJDkG2BfYo5RyQ8ei3wAbJtmy65fFNvWyiTrdI6y36Vg2cb9NjzrLSikrk9wH3DdJnd/QQyllNbC64zMAsGjRokm/4FMtG2ULFlRjiFevKaxaU1i5ciULFixwW3WZbP8Zhu1k2/IHti3tmmhfVo3dZ9syhV77UNPt1OSskH+nGvQ0Y6kcA7wMeH4p5ZquKhcAY8CeHa95LLAdcG5ddC7wpK4R1kuAZVQXNJqosydrWzKxjnoQ1gVd77Ogfn4ukuaCbYs0BJqMsdgA2D/JC6i+ML/rXFhKObiPdR0LvBr4M2B5konjlr8tpawspfw2yXHAkUnupPpCfwo4tx61DXAa1Zf8i0kOoTrm+UHg2DrzB/gMcGCSj1Bdd+D5wF9QjcyecCRwQpLzgZ9QXbp5U+D4Pj6PpOZsW6Qh0CSxeCJwYf34MV3L+prEBnhTfX9WV/nrgS/Uj98GjANfoxopvRT4u9+/YSn3JdmXaqT2uVSN0QnAoR11rknyYqrz1v8euAH461LK0o46Jyd5CNU56tsCFwP7dI0IlzR7bFukIdB3YlFKeV5bb15KyTTqrALeXN8mq3Md8KJ1rOcsYNd11DkGOGZdMUlqn22LNBwaz7yZZMcke9enVJGJEUaSNAO2LdJg6zuxSPKgJGcCvwC+DTy0XnRcko+3GZyk0WHbIg2HJj0WR1GNpt4O6Jw942Rgn56vkKR1s22RhkCTwZt7AXuXUm7o6qG8CnhkK1FJGkW2LdIQaNJjsSlr/5qYsBUdk7pIUp9sW6Qh0CSxOAd4bcfzUk/4cgjVpYMlqQnbFmkINDkUcghwZpKnARsCH6G60t9WwO4txiZptNi2SEOg7x6L+uqAjwF+AHyTqvvy68CupZSr2w1P0qiwbZGGQ6PLppdSfgv8U8uxSBpxti3S4GuUWCR5INXFgnaqiy4Hji+l3NlWYJJGj22LNPiaTJC1B3At8FbggfXtrcA19TJJ6pttizQcmvRYHEs1Yc2bSin3ASRZCHy6Xvak9sKTNEJsW6Qh0OR00x2Bj0988aG6CiDVpYF3bCswSSPHtkUaAk0Siwv5w/HPTjsBl8wsHEkjzLZFGgLTOhSS5MkdTz8JfCLJjsCP67JnUl16+J3thidpmNm2SMNnumMsLgYK0DmB/0d61DuJ6hipJE3Hxdi2SENluonF9rMahaRRZdsiDZlpJRallOtmOxBJo8e2RRo+TSfIehjwHGBrugaAllI+2UJckkaQbYs0+PpOLJLsB/wrcC9wB9Xx0QmFagCWJPXFtkUaDk16LD4AHA4cUUoZbzkeSaPLtkUaAk3msdgE+IpffEkts22RhkCTxOI44JVtByJp5Nm2SEOgyaGQdwHfSrIPcCkw1rmwlHJwG4FJGjm2LdIQaJpY7A1cWT/vHmAlSU3YtkhDoEli8XZg/1LKF1qORdJos22RhkCTMRargR+2HYikkWfbIg2BJonFJ4C3tB2IpJFn2yINgSaHQnYDnp9kX+Bn3H+A1cvbCEzSyLFtkYZAk8TibuDrLcchSXdj2yINvL4Ti1LK62cjEEmjzbZFGg5NxlhIkiT11OQiZNcwxTnlpZRHzygiSSPJtkUaDk3GWBzd9XwRsCuwD/DRmQYkaWQd3fXctkUaQE3GWHyiV3mSNwNPm3FEkkaSbYs0HNocY3Eq8Octrk+SwLZFGihtJhavAO5scX2SBLYt0kBpMnjzItYeYBVgW+AhwN+1FJekEWPbIg2HJoM3v9H1fBy4DTirlPLzGUckaVR9o+u5bYs0gJoM3nz/bASyPqgHif0/ql9JlwBvKaX8ZH6jkkbDMLctYPui0eEEWbUkrwKOBN4PPIXqi780ydbzGpikgWf7olEy7cQiyXiS+9ZxWzObwc6yg4HPlVKOL6VcDhwArAD2n9+wpOE2Am0L2L5ohPRzKORlUyx7FvBWBrQHJMmGwFOBIybKSinjSc6g+my9XrMRsFFH0eYAd955J2Nja12UkbGxMVasWME555zDggULWLBgAePj4/e7B6ZVNtv15/o9r7zySjbbbDNy53Vk7D4e8IAHcMEFF3DPPffM2zZYn+qvWbOGFStWcMcdd7Bo0aL77YvLly/vtYsOkqFtW6D/9qXNtgXW7317LupfddVVbLbZZiy855ZptS2D8JnarD8+Pj5p+9K4bSmlNL4BjwX+C1gDnAA8cibrm68b8DCq0ejP6ir/CHDeJK85rH6NN2/ry+2P5vu71OJ3cijalibtC7Yt3ta/W19tS5OzQkjyMKpjha8DlgK7lFIua7KuAXYE1THTTlvR+3z7zYEbgIcDA//zcha4faY2ne2zOXDTnEU0S2xbANuWtrmNprau7dN329JXYpFkC+DdwFuAi4E9Synn9LOO9dTtwH3ANl3l2wC/6fWCUspqYHVX8bJedZNMPFxeSulZZ5S5faY2ze0z0NttiNsW6LN9sW1pl9toatPYPn1vs34Gbx4C/ArYF/i/pZRnD8sXv5RyL3ABsOdEWZIF9fNz5ysuaRQMc9sCti8aPamP6a27YjIOrATOoMq+eyqlvLyd0OZWfTrYCcDfAj8BDgL+AnhcKeWWGa57MfBbYAsz5vtz+0xt2LfPsLctMHvty7DvG21wG01tNrZPP4dCTqQaxDGUSiknJ3kIcDjVBDYXA/vMNKmoraY6btzdvamK22dqw759hrptgVltX4Z932iD22hqrW+fafdYSJIkrcvAnhsuSZLWPyYWkiSpNSYWkiSpNSYWkiSpNSYWsyTJVkm+lGRZkruTHJdks3W85qwkpev2mbmKeTYleXOSa5OsSnJekt3WUf+VSX5e1780yYvmKtb50M/2SbJfj/1k1VzGq/lj27I225Z1m+v2xcRi9nwJeAKwhGrinz2Az07jdZ8DHtpxO2S2Apwr/V4yOsmzgS8DxwG7At8AvpHkiXMS8BxreEntZay9nzxytuPUesO2pWbbsm7z0r7M9wV6hvEG7ER1Xv7TOsr2AcaBh03xurOAo+c7/lnYHucBx3Q8XwDcCLxzkvonA9/qKvsx8Jn5/izryfbZD7h7vuP2Nvc325b7fS7blva30YzbF3ssZsezqP4w53eUnUH15X/GOl77miS3J7ksyRFJNpm1KOdAxyWjz5goK6WM1897XpK+Lj+jq2zpFPUHVsPtA7BZkuuSXJ/km0meMMuhav1g21KzbVm3+WpfGl3dVOu0LXBrZ0EpZU2SO+tlkzkJuI7qSnJPBj5MdfnogZ3KGHgwsBDonmHwFuBxk7xm20nqT7XtBlWT7XMlsD/wU2AL4B+AHyV5QinlhtkKVOsF25Y/sG1Zt3lpX0ws+pDkQ8A71lFtp6brL6V0Hie9NMnNwJlJdiilXN10vRoupZRz6bh4VZIfAVdQXYfivfMVl5qzbdH6oo32xcSiPx8HvrCOOr+iuhTyWgNjkmwAbMUkl2GfxHn1/Y7AoH75+74kfV3eT/1B1mT7rKWUMpbkIqr9RIPJtqV/ti3rNi/ti2Ms+lBKua2U8vN13O6lyva2TPLUjpc/n2p7n9dz5b3tUt/f3M4nmHul2SWjz+2sX1syRf2B1XD7rCXJQuBJDPB+MupsW/pn27Ju89a+zPeI1WG9AacCFwK7AbsDvwBO6lj+R8DPgd3q5ztQdTM9FXgU8FKqXxLfn+/P0sK2eBWwCngdVXfuvwJ3AdvUy08Ejuio/2xgDHg71XHAw4B7gSfO92dZT7bPocBewKOpTh/7MtVlxx8/35/F25zsL7Ytf/isti3tb6MZty/z/qGH9UbVNXkSsJzqWvefBzbrWP4oqtPGnls/fwTwfeCOeie4CvgIsHi+P0tL2+NAqsFjq6l+WT2jY9lZwBe66r+SahDRauAy4EXz/RnWl+0DHNVR9zfAKcCu8/0ZvM3ZvmLbsvb2sG1pcRu10b542XRJktQax1hIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFho3iW5NslB8x2HpOFi2zI/TCwkSVJrTCwkSVJrTCw0I0n+JslN9aV4O8u/meTzSXaoH9+S5J4k/5vkBVOs71FJSpJdOsq2rMue21H2xCSn1uu8JckXkzx4Fj6ipHlg2zK4TCw0U/8BPAh43kRBkq2AfYAvAZsB3wb2BHYFvgP8T5Ltmr5hki2B7wIXAU+r32sb4KtN1ylpvWPbMqA2mO8ANNhKKXclORV4NXBmXfwK4Hbge6WUceCSjpe8N8nLgJcCxzR82wOBi0op754oSLI/cH2Sx5RSftFwvZLWE7Ytg8seC7XhS8CfJ9mofv4a4CullPEkmyX5WJIrktyd5B5gJ6DxrwpgZ+B5dVflPfU6f14v22EG65W0frFtGUD2WKgN/wMEeHGS/wX+BHhbvexjwBLgH4BfAiuB/wQ2nGRd4/V9OsoWddXZrH7Pd/R4/c39Bi9pvWXbMoBMLDRjpZRVSb5O9WtiR+DKUsqF9eLdgS+UUv4LIMlmwKOmWN1t9f1DqY5zAuzSVedC4M+Ba0spa2b8ASStl2xbBpOHQtSWLwEvBvavH0+4Cnh5kl2S7AycxBT7XSllJfBj4J1Jdkryp8AHu6odC2wFfDnJ0+vR4XsnOT7JwhY/k6T5Z9syYEws1JbvAncCj6X6gk84GLgL+BFVF+NSql8FU9mfqjftAuBo4D2dC0spN1H9WlkInAZcWte7mz90d0oaDrYtAyallPmOQZIkDQl7LCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDTnkuyXpCR51HzHIklql4mFJElqTUop8x2DRkyShcAiYHVxB5SkoWJiIUmSWuOhEM25zjEWSU5IcnuSRT3qnZbkyvmIUZLUjImF5tsXgQcBe3cWJtkWeD7w7/MRlCSpGRMLzbfvAjcAf9VV/n+p9k8TC0kaICYWmlellHHgS8BLk2zeseg1wI9KKdfMT2SSpCZMLLQ+OBHYGHgZQJLHAk+lOkwiSRogJhaad6WUy4EL+MPhkL8C7gW+Om9BSZIaMbHQ+uJE4PlJHgq8GjillHLXPMckSeqTiYXWF18GCvAJ4NE4aFOSBpKJhdYLpZTbgO8ArwTuBk6Z14AkSY2YWGh9cmJ9/9VSyup5jUSS1IiJheZcKeULpZSUUq7tWnRvfe9hEEkaUF4rROuNJN8CdgJ29OJkkjSYNpjvAKQkfwk8GXgx8PcmFZI0uOyx0LxLUoB7gJOBA0opa+Y5JElSQ30nFkn2Ae4ppfygfv5m4I3A5cCbnXtAkqTR1WTw5keBxQBJngR8HPg2sD1wZHuhSZKkQdNkjMX2VL0TAH8OfKuU8u4kT6FKMCRJ0ohqkljcC2xSP34Bf5h74E7qnoxRlCTAw4Dl8x2LRtLmwE0OfJU035okFj8AjkzyQ2A34FV1+WOAG9oKbAA9jNH+/Jp/DwdunO8gJI22JonFgcCngVcAbyqlTDRkL6SaknlULQe4/vrrWbx47Y6bsbExTjvtNPbaay8WLVo0L8Gtz9w+U1vX9lm2bBmPeMQjwN4ySeuBvhOLUsqvgX17lL+tlYgG3OLFi3smFptssgmLFy/2H2cPbp+puX0kDZJGE2QlWQDsCGxN15klpZSzW4hLkiQNoL4TiyTPBE4CHgmka3EBFrYQlyRJGkBNeiw+A5xPNf3yzVTJhDRjl1xyCQsWLODBD34w22233XyHI0lqoEli8cfAK0opv2w7GI2mG26oTqbZY489WLlyJQ/YeBOu/PkVJheSNICazLx5HtX4CqkVd9xxBwBb7fMWHrTv21m1cgW33377PEclSWqiSY/Fp4CPJ9kWuBQY61xYSvlpG4Fp9Cza6o+4b41H1iRpkDVJLL5W33++o6xQDeR08KYkSSOs6bVCJEmS7qfJBFnXzUYgkiRp8DWdIGsH4CBgp7rocuATpZSrW4pLkiQNoL7PCkmyN1UisRvw0/r2DOBnSZa0G54kSRokTXosPgQcVUp5Z2dhkg8BHwZObyMwSZI0eJrMY7ETcFyP8s8Dj59ZOJIkaZA1SSxuA3bpUb4LcOtMgpEkSYOtyaGQzwGfTfJo4Ed12e7AO4Aj2wpMkiQNniaJxQeA5cDbgSPqspuAw4BPthOWJEkaRE3msSjAUcBRSTavy5a3HZgkSRo8jeaxmGBCIUmSOk0rsUhyIbBnKeWuJBdRXROkp1LKU9oKTpIkDZbp9lh8E1jd8dhLUEqSpPuZVmJRSnl/x+PDZi0aSZI00JpM6f2rJA/qUb5lkl+1E5YkSRpETSbIehSwsEf5RsDDZxSNJEkaaNM+KyTJSzue7p3ktx3PFwJ7Ate0FZgkSRo8/Zxu+o36vgAndC0bA66lmjRLkiSNqGknFqWUBQBJrgGeXkq5fdaikiRJA6nJzJvbz0YgkiRp8E13gqy3Ap8tpayqH0+qlOL1QiRJGlHT7bF4G/AlYFX9eDIFL0QmSdLImu4EWdv3eixJktSpyQRZhybZpEf5xkkObScsSZI0iJpMkPU+YLMe5ZvUyyRJ0ohqkliE3hch2xm4c2bhSJKkQTbtxCLJXUnupEoqfpHkzo7bb4HTga82DSTJO5OUJEd3lD0gybFJ7khyT5KvJdmm63XbJTklyYoktyb5aJINuuo8N8mFSVYn+WWS/Xq8/5uTXJtkVZLzkuzW9LNIkjSq+pnH4iCq3orPUx3y6JzS+17g2lLKuU2CSPJ04G+Bn3YtOgp4MfDK+v2OAb4O7F6/biFwCvAb4NnAQ4ETqWYCfXddZ/u6zmeA11BNPf5vSW4upSyt67wKOBI4ADiv/qxLkzy2lHJrk88kSdIo6mfmzRPg9zNv/rCUsqaNAJJsRnUq6xuB93SUbwG8AXh1KeW7ddnrgSuSPLOU8mNgL+DxwAtKKbcAFyd5L/DhJIeVUu6lShauKaVMTDd+RZLnUJ02u7QuOxj4XCnl+Pp9DqBKaPYHPtTG55QkaRT0PcailPJ94JFJPpjky0m2BkjywiRPaBDDscAppZQzusqfCiwCfl9eSvk58GvgWXXRs4BL66RiwlJgMfCEjjrd6146sY4kG9bv1fk+4/XzZyFJkqat7ym9k/wpcCrwQ2AP4B+BW6kGb74BeEUf6/pL4CnA03ss3ha4t5Ryd1f5LfWyiTq39FjONOosTrIx8ECqq7P2qvO4KWLfiOpS8RM2BxgbG2NsbGytuhPPu8tVGR8fB2CjDQLAxhtvzPj4uNurtq79x+0kaX3Sd2JBdWjgPaWUI5Ms7yj/LnDgdFeS5BHAJ4AlpZRVDeKYb++ix+m1p512Gptscr9pPgA4/fTTZzumgfbhF25XPXjJl7nxxhu58cYb5zeg9cxk+8+KFSvmOBJJmlyTxOJJwKt7lN8KPLiP9TwV2Bq4MMlE2UJgjyQHAnsDGybZsqvXYhuqwZrU991nb2zTsWzifpsedZaVUlYmuQ+4b5I6v2FyR1AN+JywOXDDXnvtxeLFi9eqODY2xumnn86SJUtYtGjRFKscTRdddBE333wz7zj116xeU7jlpHdy9tlns/POO893aOuFde0/y5Ytm4eoJKm3JonF3VRnX1zTVb4r0M9PzDOpkpROxwM/Bz4MXE91dseewNcAkjwW2A6YOPvkXOAfk2zdcfbGEmAZcHlHnRd1vc+SiXWUUu5NckH9Pt+o32dB/fyYyYIvpawGVk88n0iOFi1aNGnyMNWyUbZgQTXUZ/Wawqo1hZUrV7JgwQK3VZfJ9h+3k6T1SZPE4itUZ128kmpOiwVJdgc+RnWq57SUUpYDl3WWJfkdcEcp5bL6+XHAkfX8GcuATwHn1meEAJxGlUB8MckhVOMpPggcW//jh+o00wOTfITqVNnnA39BddbHhCOBE5KcD/yE6nTTTakSHUmSNE1NEot3U53JcT3VoYvL6/uTqP6pt+ltwDhVj8VGVGdz/N3EwlLKfUn2Bf6Fqgfid8AJwKEdda5J8mKqOTH+HrgB+OuJOSzqOicneQhwOFVycjGwT9fZJpIkaR36TizquSHemOQDwBOprhtyUSnlqpkGU0p5btfzVcCb69tkr7mO+x/q6K5zFtWhmqnqHMMUhz4kSdK6NemxAKCU8usk19ePe107RJIkjZgmFyEjyRuSXAasAlYluSzJX7cbmiRJGjRNJsg6nGoK7E/xh7MzngUclWS7Usqhk75YkiQNtSaHQt4EvLGU8uWOsv9O8lOqZMPEQpKkEdXkUMgi4Pwe5RcwgzEbkiRp8DVJLL5I1WvR7W+orlIqSZJGVNMehjck2QuYmKjqGVQzYp6Y5PfTXJdSDp5hfJIkaYA0SSyeCFxYP96hvr+9vj2xo56noEqSNGKaTJD1vNkIRJIkDb5G81gAJNkxyd5JNq6fZ12vkSRJw63vxCLJg5KcCfwC+DbVlU4Bjkvy8TaDkyRJg6VJj8VRVJcz3w5Y0VF+MrBPG0FJkqTB1GTw5l7A3qWUG7qOflwFPLKVqCRJ0kBq0mOxKWv3VEzYClg9s3AkSdIga5JYnAO8tuN5SbIAOAT4XitRSZKkgdTkUMghwJlJngZsCHwEeAJVj8XuLcYmSZIGTN89FqWUy4DHAD8Avkl1aOTrwK6llKvbDU+SJA2SvnoskiwCvgMcUEr5p9kJSZIkDaq+eixKKWPAk2cpFkmSNOCaDN78d+ANbQciSZIGX5PBmxsA+yd5AXAB8LvOhV7RVJKk0TXTq5s+pmuZVzSVJGmEeXVTSZLUmsZXN5UkSepmYiFJklpjYiFJklpjYiFJklozrcQiyYVJHlg/PjTJJrMbliRJGkTT7bHYieqaIADvAzabnXAkSdIgm+7pphcDxyf5ARDgH5Lc06tiKeXwlmKTJEkDZrqJxX7A+4F9qSbBeiGwpke9AphYSJI0oqaVWJRSrgT+EiDJOLBnKeXW2QxMkiQNniYzb3omiSRJ6qnJtUJIsgNwENWgToDLgU+UUq5uKS5JkjSA+u59SLI3VSKxG/DT+vYM4GdJlrQbniRJGiRNeiw+BBxVSnlnZ2GSDwEfBk5vIzBJkjR4moyX2Ak4rkf554HHzywcSZI0yJokFrcBu/Qo3wXwTBFJkkZYk0MhnwM+m+TRwI/qst2BdwBHthWYJEkaPE0Siw8Ay4G3A0fUZTcBhwGfbCcsSZI0iPo+FFIqR5VSHg5sAWxRSnl4KeUTpZTSz7qSvCvJ/yZZnuTWJN9I8tiuOg9IcmySO5Lck+RrSbbpqrNdklOSrKjX89EkG3TVeW59MbXVSX6ZZL8e8bw5ybVJViU5L8lu/XweSZJG3YwmuyqlLC+lLJ/BKv4UOBZ4JrAEWASclmTTjjpHAS8BXlnXfxjw9YmFSRYCpwAbAs8GXkc1BfnhHXW2r+t8j2osyNHAv9Wnzk7UeRXVoZz3A08BLgGWJtl6Bp9PkqSR0miCrLaUUvbpfF73ItwKPBU4O8kWwBuAV5dSvlvXeT1wRZJnllJ+DOxFdTbKC0optwAXJ3kv8OEkh5VS7gUOAK4ppby9fqsrkjwHeBuwtC47GPhcKeX4+n0OAF4M7E91iq0kSVqHeU0setiivr+zvn8qVS/GGRMVSik/T/Jr4FnAj+v7S+ukYsJS4F+AJwAX1XXOYG1LqXouSLJh/V4TY0YopYwnOaN+7f0k2QjYqKNoc4CxsTHGxsbWqjvxvLtclfHxcQA22iAAbLzxxoyPj7u9auvaf9xOktYn601ikWQB1T/6H5ZSLquLtwXuLaXc3VX9lnrZRJ1beixnGnUWJ9kYeCCwcJI6j5sk5HcB7+suPO2009hkk016vuD00507bCoffuF21YOXfJkbb7yRG2+8cX4DWs9Mtv+sWLFijiORpMn1lVgkWQR8BziglHJVy7EcCzwReE7L650tR7D26bWbAzfstddeLF68eK2KY2NjnH766SxZsoRFixbNZYwD4aKLLuLmm2/mHaf+mtVrCrec9E7OPvtsdt555/kObb2wrv1n2bJl8xCVJPXWV2JRShlL8uS2g0hyDLAvsEcp5YaORb8BNkyyZVevxTb1sok63WdvbNOxbOJ+mx51lpVSVia5D7hvkjq/oYdSympgdcdnAGDRokWTJg9TLRtlCxZUY4hXrymsWlNYuXIlCxYscFt1mWz/cTtJWp80OSvk36kGVM5YKscALwOeX0q5pqvKBcAYsGfHax4LbAecWxedCzyp6+yNJcAyqoulTdTZk7UtmVhHPcDzgq73WVA/PxdJkjQtTcZYbADsn+QFVP+Mf9e5sJRycB/rOhZ4NfBnwPIkE2MifltKWVlK+W2S44Ajk9xJlSx8Cji3PiME4DSqBOKLSQ6hGk/xQeDYulcB4DPAgUk+QnVNk+cDf0F11seEI4ETkpwP/ITqsvCbAsf38XkkSRppTRKLJwIX1o8f07WsrwmygDfV92d1lb8e+EL9+G3AOPA1qrMwlgJ/9/s3LOW+JPtSnQVyLlWicwJwaEeda5K8mGpOjL8HbgD+upSytKPOyUkeQjX/xbbAxcA+XWebSJKkKfSdWJRSntfWm5dSMo06q4A317fJ6lwHvGgd6zkL2HUddY4BjllXTJIkqbfGM28m2THJ3vXpmmRi9KIkSRpZfScWSR6U5EzgF8C3gYfWi45L8vE2g5MkSYOlSY/FUVRnamwHdM7MczKwT89XSJKkkdBk8OZewN6llBu6jn5cBTyylagkSdJAatJjsSlr91RM2IqOCaMkSdLoaZJYnAO8tuN5qSeTOoTqsuSSJGlENTkUcghwZpKnARsCH6G6iuhWwO4txiZJkgZM3z0W9ZVHHwP8APgm1aGRrwO7llKubjc8SZI0SBpdNr2U8lvgn1qORZIkDbhGiUWSB1JdiGynuuhy4PhSyp1tBSZJkgZPkwmy9gCuBd4KPLC+vRW4pl4mSZJGVJMei2OpJsN6UynlPoAkC4FP18ue1F54kiRpkDQ53XRH4OMTSQVUVxiluuz4jm0FJkmSBk+TxOJC/jC2otNOwCUzC0eSJA2yaR0KSfLkjqefBD6RZEfgx3XZM6kua/7OdsOTJEmDZLpjLC4GCtB5cZCP9Kh3EtX4C0mSNIKmm1hsP6tRSJKkoTCtxKKUct1sByJJkgZf0wmyHgY8B9iargGgpZRPthCXJEkaQH0nFkn2A/4VuBe4g2rsxYRCNbhTkiSNoCY9Fh8ADgeOKKWMtxyPJEkaYE3msdgE+IpJhSRJ6tYksTgOeGXbgUiSpMHX5FDIu4BvJdkHuBQY61xYSjm4jcAkSdLgaZpY7A1cWT/vHrwpSZJGVJPE4u3A/qWUL7QciyRJGnBNxlisBn7YdiCSJGnwNUksPgG8pe1AJEnS4GtyKGQ34PlJ9gV+xv0Hb768jcAkSdLgaZJY3A18veU4JEnSEOg7sSilvH42ApEkSYOvyRgLSZKknppchOwappivopTy6BlFJEmSBlaTMRZHdz1fBOwK7AN8dKYBSZKkwdVkjMUnepUneTPwtBlHJEmSBlabYyxOBf68xfVJkqQB02Zi8QrgzhbXJ0mSBkyTwZsXsfbgzQDbAg8B/q6luCRJ0gBqMnjzG13Px4HbgLNKKT+fcUSSJGlgNRm8+f7ZCESSJA0+J8jqkOTNSa5NsirJeUl2m++YJEkaJNNOLJKMJ7lvHbc1sxnsbEryKuBI4P3AU4BLgKVJtp7XwCRJGiD9HAp52RTLngW8lcHuATkY+Fwp5XiAJAcALwb2Bz40n4FJkjQopp1YlFK+2V2W5LFU/3RfAnwJOLS90OZOkg2BpwJHTJSVUsaTnEGVNPV6zUbARh1FmwPceeedjI2tdSV5xsbGWLFiBeeccw4LFixgwYIFjI+P3+8emFbZbNef6/e88sor2Wyzzcid15Gx+3jAAx7ABRdcwD333DNv22B9qr9mzRpWrFjBHXfcwaJFi+63Ly5fvrzXLipJ86LJWSEkeRjVIYPXAUuBXUopl7UZ2Bx7MLAQuKWr/BbgcZO85l3A+7oLt99++3YjG1F/8zd/M98hDKLNgWXzHYSk0dZXYpFkC+DdwFuAi4E9SynnzEJcg+AIqjEZnbai9yRhmwM3AA8H/Hl5f26fqU1n+2wO3DRnEUnSJKadWCQ5BHgH8Bvg//Y6NDLAbgfuA7bpKt+G6vPeTyllNbC6q7jnr8UkEw+Xl1L8RdnF7TO1aW4ft5uk9UI/PRYfAlYCvwRel+R1vSqVUl7eRmBzqZRyb5ILgD2pJwBLsqB+fsw8hiZJ0kDpJ7E4kbWn8h42RwInJDkf+AlwELApcPx8BiVJ0iDp56yQ/WYxjnlXSjk5yUOAw6mufXIxsE8ppXtAZxOrqQa7dh86UcXtMzW3j6SBkVKGuRNCkiTNpUGe0EqSJK1nTCwkSVJrTCwkSVJrTCwkSVJrTCxmSZKtknwpybIkdyc5Lslm63jNWUlK1+0zcxXzbOr3kvRJXpnk53X9S5O8aK5inQ/9bJ8k+/XYT1bNZbySNBkTi9nzJeAJwBJgX2AP4LPTeN3ngId23A6ZrQDnSr+XpE/ybODLwHHArlSTln0jyRPnJOA51u/2qS1j7f3kkbMdpyRNh6ebzoIkOwGXA08vpZxfl+0DfBt4eCml5zUdkpwFXFxKOWiOQp0TSc4D/reUcmD9fAFwPfCpUsr9Lkmf5GRg01LKvh1lP6baNgfMUdhzpsH22Q84upSy5VzGKUnTYY/F7HgWcPdEUlE7AxgHnrGO174mye1JLktyRJJNZi3KOdBxSfozJspKKeP1856XpK/Lz+gqWzpF/YHVcPsAbJbkuiTXJ/lmkifMcqiSNC2NLpuuddoWuLWzoJSyJsmd9bLJnARcR3WVyicDHwYeCwzc9Vc6NLkk/baT1J9q2w2qJtvnSmB/4KfAFsA/AD9K8oRSyg2zFagkTYeJRR+SfIjqCq9T2anp+kspnWMwLk1yM3Bmkh1KKVc3Xa+GSynlXODciedJfgRcAfwt8N75ikuSwMSiXx8HvrCOOr+iutT6WgPvkmwAbMUkl2GfxHn1/Y7AoCYWfV+Svi7vp/4ga7J91lJKGUtyEdV+IknzyjEWfSil3FZK+fk6bvdS/ZrcMslTO17+fKrtfV7Plfe2S31/czufYO7V22PikvTAWpekP3eSl53bWb+2ZIr6A6vh9llLkoXAkxjg/UTS8LDHYhaUUq5I8h3gc0kOABYBxwBfmTgjJMkfAWcCry2l/CTJDsCrqc4cuYNqjMVRwNmllJ/Ox+do0ZSXpE9yInBjKeVddf1PAN9P8nbgFOAvgacBfzPHcc+VvrZPkkOBHwO/BLYE/h/V6ab/NteBS1I3E4vZ8xqqZOJMqrNBvga8tWP5IqqBmRNnfdwLvIA//FO5vn7NB+cm3NkzjUvSb0e1jSbq/yjJq6k++z8DVwH/p5Ry2ZwGPkf63T7AA6nmO9kWuIuqx+PZpZTL5yxoSZqE81hIkqTWOMZCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRC8y7JtUkOmu84JEkzZ2IhSZJaY2IhSZJaY2KhGUnyN0luqq/I2Vn+zSSfT7JD/fiWJPck+d8kL5hifY9KUpLs0lG2ZV323I6yJyY5tV7nLUm+mOTBs/ARJUl9MLHQTP0H8CDgeRMFSbYC9gG+BGxGdcXWPYFdge8A/5Nku6ZvmGRL4LvARVRXPd0H2Ab4atN1SpLa4dVNNSOllLuSnEp1yfcz6+JXALcD3yuljAOXdLzkvUleBryU6uqvTRwIXFRKefdEQZL9geuTPKaU8ouG65UkzZA9FmrDl4A/T7JR/fw1wFdKKeNJNkvysSRXJLk7yT3ATlSXAm9qZ+B59WGQe+p1/rxetsMM1itJmiF7LNSG/wECvDjJ/wJ/ArytXvYxYAnwD8AvgZXAfwIbTrKu8fo+HWWLuupsVr/nO3q8/uZ+g5cktcfEQjNWSlmV5OtUPRU7AleWUi6sF+8OfKGU8l8ASTYDHjXF6m6r7x9KNYYCYJeuOhcCfw5cW0pZM+MPIElqjYdC1JYvAS8G9q8fT7gKeHmSXZLsDJzEFPtdKWUl8GPgnUl2SvKnwAe7qh0LbAV8OcnT6zNP9k5yfJKFLX4mSVKfTCzUlu8CdwKPpUoeJhwM3AX8iOrwxVKqHoep7E/Vm3YBcDTwns6FpZSbqHpCFgKnAZfW9e7mD4dSJEnzIKWU+Y5BkiQNCXssJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa/5/Gcm/YuSzxLYAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<Figure size 600x600 with 3 Axes>"
|
|
]
|
|
},
|
|
"metadata": {
|
|
"needs_background": "light"
|
|
},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"data = get_repeteated_data(['log_64-aa', 'log_64-ab'])\n",
|
|
"plot_reapeated_data_distribution(data)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3 (ipykernel)",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.18"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 4
|
|
}
|