You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/tools/connec/PostConec_v2.py

369 lines
8.0 KiB
Python

from __future__ import division
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
import os
import collections
def main():
#scales=[4,6,8,16,24,32]
#numofseeds=np.array([10,10,10,48,100,200])
#startseed=1
scales=[2,4,8,12,16,20,26,32]
numofseeds=np.array([1,2,12,16,20,25,30,50])
startseed=1
dim=3
numofseeds=numofseeds+startseed
mapa=np.loadtxt(('vecconec.txt')).astype(int)
if dim==2:
LL=int(np.sqrt(mapa.shape[0]))
mapa=mapa.reshape(LL,LL)
if dim==3:
LL=int(np.cbrt(mapa.shape[0]))
mapa=mapa.reshape(LL,LL,LL)
res, names=doforsubS_computeCmap(mapa,scales,postConec, compCon,dim,[],numofseeds)
with open('keysCon.txt', 'w') as f:
for item in names:
f.write("%s\n" % item)
np.save('ConResScales.npy',res)
return
def doforsubS_computeCmap(mapa,scales,funpost, funcompCmap,dim,args,numofseeds):
L=mapa.shape[0]
res=dict()
names=[]
with open('Kfield.don') as f:
seed = int(f.readline())
for iscale in range(len(scales)):
l=scales[iscale]
if numofseeds[iscale] > seed: #guarda aca
nblocks=L//l #for each dimension
if dim==2:
for i in range(nblocks):
for j in range(nblocks):
cmapa=funcompCmap(mapa[i*l:(i+1)*l,j*l:(j+1)*l],dim)
dats,names=funpost(cmapa,dim,args)
if i== 0 and j==0:
for icon in range(len(names)):
res[l,names[icon]]=[]
for icon in range(len(names)):
res[l,names[icon]]+=[dats[icon]]
if dim==3:
for i in range(nblocks):
for j in range(nblocks):
for k in range(nblocks):
cmapa=funcompCmap(mapa[i*l:(i+1)*l,j*l:(j+1)*l,k*l:(k+1)*l],dim)
dats, names=funpost(cmapa,dim,args)
if i== 0 and j==0 and k==0:
for icon in range(len(names)):
res[l,names[icon]]=[]
for icon in range(len(names)):
res[l,names[icon]]+=[dats[icon]]
return res, names
def ConConfig(L,dim):
params=[]
if dim==2:
params=['1','4','imap.txt',str(L)+' '+str(L),'1.0 1.0','pardol.STA','pardol.CCO','pardol.COF']
execCon='conec2d'
if dim==3:
params=['1','6','imap.txt',str(L)+' '+str(L)+' ' +str(L),'1.0 1.0 1.0','30','pardol.STA','pardol.CCO','pardol.COF']
execCon='conec3d'
return params, execCon
def compCon(mapa,dim):
exeDir='./'
L=mapa.shape[0]
params,execCon=ConConfig(L,dim)
with open(exeDir+'coninput.txt', 'w') as f:
for item in params:
f.write("%s\n" % item)
np.savetxt(exeDir+params[2],mapa.reshape(-1))
#wiam=os.getcwd()
#os.chdir(exeDir)
os.system('cp ../../../tools/conec3d ./')
os.system(' ./'+execCon +'>/dev/null') #'cd ' +exeDir+
cmapa=np.loadtxt(params[-2]).reshape(mapa.shape).astype(int) #exeDir+
#os.chdir(wiam)
return cmapa
def postConec(cmap,dim,args):
names=['PPHA','VOLALE','ZNCC','zintcc','spaninning','npz','npy','npx',]
L=cmap.shape[0]
results=[]
names=[]
y = np.bincount(cmap.reshape(-1))
ii = np.nonzero(y)[0]
cf=np.vstack((ii,y[ii])).T #numero de cluster, frecuencia
if cf[0,0]==0:
cf=cf[1:,:] #me quedo solo con la distr de tamanos, elimino info cluster cero
if cf.shape[0]>0:
# headers=['N','p','Csize','CLenX','CLenY','CmaxVol','MaxLenX','MaxLenY','NpcX','NpcY']
nper=np.sum(cf[:,1]) #num de celdas permeables
nclus=cf.shape[0] #cantidad de clusters
#ZINTCC,VOLALE,ZGAMMA,ZIPZ,ZNCC,PPHA
results+=[nper/np.size(cmap)] #ppha
results+=[np.max(cf[:,1])/nper] #volale #corregido va entre [0,p]
results+=[nclus] #zncc
results+=[np.sum(cf[:,1]**2)/np.size(cmap)/nper] #gamma, recordar zintcc =gamma*p
spanning, pclusZ, pclusY, pclusX =get_perco(cmap,dim)
results+=[spanning, len(pclusZ), len(pclusY), len(pclusX)]
results+=Plen(spanning,cmap,cf,dim)
names+=['PPHA']
names+=['VOLALE']
names+=['ZNCC']
names+=['ZINTCC']
names+=['spanning', 'npz', 'npy', 'npx']
names+=['Plen','S','P']
if cf.shape[0]==0:
for i in range(len(names)):
results+=[0]
return results, names
#ZINTCC,VOLALE,ZGAMMA,ZIPZ,ZNCC,PPHA
def get_pos2D(cmap,cdis):
Ns=cdis.shape[0]
pos=dict()
i=0
for cnum in cdis[:,0]:
pos[cnum]=np.zeros((cdis[i,1]+1,2)) #+1 porque uso de flag
i+=1
for i in range(cmap.shape[0]):
for j in range(cmap.shape[1]):
if cmap[i,j] != 0:
flag=int(pos[cmap[i,j]][0,0])+1
pos[cmap[i,j]][0,0]=flag
pos[cmap[i,j]][flag,0]=i
pos[cmap[i,j]][flag,1]=j
return pos
def get_pos3D(cmap,cdis):
Ns=cdis.shape[0]
pos=dict()
i=0
for cnum in cdis[:,0]:
pos[cnum]=np.zeros((cdis[i,1]+1,3))
i+=1
for i in range(cmap.shape[0]):
for j in range(cmap.shape[1]):
for k in range(cmap.shape[2]):
if cmap[i,j,k] != 0:
flag=int(pos[cmap[i,j,k]][0,0])+1
pos[cmap[i,j,k]][0,0]=flag
pos[cmap[i,j,k]][flag,0]=i
pos[cmap[i,j,k]][flag,1]=j
pos[cmap[i,j,k]][flag,2]=k
return pos
def Plen(spannng,cmap,cdis,dim):
if dim==2:
return P_len2D(spannng,cmap,cdis)
if dim==3:
return P_len3D(spannng,cmap,cdis)
return []
def P_len2D(spanning,cmap,cdis):
pos = get_pos2D(cmap,cdis)
#print(summary['NpcY'],summary['NpcX'],summary['PPHA'])
den=0
num=0
nperm=np.sum(cdis[:,1])
if spanning > 0:
amax=np.argmax(cdis[:,1])
P=cdis[amax,1]/nperm
cdis=np.delete(cdis,amax,axis=0)
else:
P=0
i=0
if cdis.shape[0]> 0:
S=np.sum(cdis[:,1])/(cdis.shape[0])
for cnum in cdis[:,0]: #los clusters estan numerados a partir de 1, cluster cero es k-
mposx, mposy = np.mean(pos[cnum][1:,0]), np.mean(pos[cnum][1:,1]) #el 1: de sacar el flag
Rs =np.mean((pos[cnum][1:,0]-mposx)**2 +(pos[cnum][1:,1]-mposy)**2) #Rs cuadrado ecuacion 12.9 libro Harvey Gould, Jan Tobochnik
num += cdis[i,1]**2 * Rs
den+=cdis[i,1]**2
i+=1
return [np.sqrt(num/den), S, P]
else:
return [0,0,P]
def P_len3D(spanning,cmap,cdis):
pos = get_pos3D(cmap,cdis)
#print(summary['NpcY'],summary['NpcX'],summary['PPHA'])
den=0
num=0
nperm=np.sum(cdis[:,1])
if spanning > 0:
amax=np.argmax(cdis[:,1])
P=cdis[amax,1]/nperm
cdis=np.delete(cdis,amax,axis=0)
else:
P=0
i=0
if cdis.shape[0]> 0:
S=np.sum(cdis[:,1])/(cdis.shape[0])
for cnum in cdis[:,0]: #los clusters estan numerados a partir de 1, cluster cero es k-
mposx, mposy, mposz = np.mean(pos[cnum][1:,0]), np.mean(pos[cnum][1:,1]), np.mean(pos[cnum][1:,2]) #el 1: de sacar el flag
Rs =np.mean((pos[cnum][1:,0]-mposx)**2 +(pos[cnum][1:,1]-mposy)**2+(pos[cnum][1:,2]-mposz)**2) #Rs cuadrado ecuacion 12.9 libro Harvey Gould, Jan Tobochnik
num += cdis[i,1]**2 * Rs
den+=cdis[i,1]**2
i+=1
return [np.sqrt(num/den), S, P]
else:
return [0,0,P]
def get_perco(cmap,dim):
if dim==2:
pclusY=[] #list of the percolating clusters
for i in range(cmap.shape[0]):
if cmap[i,0] != 0:
if cmap[i,0] not in pclusY:
if cmap[i,0] in cmap[:,-1]:
pclusY+=[cmap[i,0]]
pclusZ=[] #list of the percolating clusters Z direction, this one is the main flow in Ndar.py, the fixed dimension is the direction used to see if pecolates
for i in range(cmap.shape[1]):
if cmap[0,i] != 0:
if cmap[0,i] not in pclusZ:
if cmap[0,i] in cmap[-1,:]: #viendo sin en la primer cara esta el mismo cluster que en la ultima
pclusZ+=[cmap[0,i]]
pclusX=[]
spanning=0
if len(pclusZ)==1 and pclusZ==pclusY:
spanning=1
if dim==3:
pclusX=[] #list of the percolating clusters
for i in range(cmap.shape[0]): # Z
for j in range(cmap.shape[1]): #X
if cmap[i,j,0] != 0:
if cmap[i,j,0] not in pclusX:
if cmap[i,j,0] in cmap[:,:,-1]:
pclusX+=[cmap[i,j,0]]
pclusY=[] #list of the percolating clusters
for i in range(cmap.shape[0]): # Z
for k in range(cmap.shape[2]): #X
if cmap[i,0,k] != 0:
if cmap[i,0,k] not in pclusY:
if cmap[i,0,k] in cmap[:,-1,:]:
pclusY+=[cmap[i,0,k]]
pclusZ=[] #list of the percolating clusters
for k in range(cmap.shape[2]): #x
for j in range(cmap.shape[1]): #y
if cmap[0,j,k] != 0:
if cmap[0,j,k] not in pclusZ:
if cmap[0,j,k] in cmap[-1,:,:]:
pclusZ+=[cmap[0,j,k]] #this is the one
spanning=0
if len(pclusZ)==1 and pclusZ==pclusY and pclusZ==pclusX:
spanning=1
return spanning, pclusZ, pclusY, pclusX
main()