You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/fftma_module/gen/sources/fourt.c

592 lines
17 KiB
C

#include <stdio.h>
#include <math.h>
/*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
/* EVALUATES COMPLEX FOURIER SERIES FOR COMPLEX OR REAL FUNCTIONS. */
/* THAT IS, IT COMPUTES */
/* FTRAN(J1,J2,...)=SUM(DATA(I1,I2,...)*W1**(I1-1)*(J1-1) */
/* *W2**(I2-1)*(J2-1)*...), */
/* WHERE W1=EXP(-2*PI*SQRT(-1)/NN(1)), W2=EXP(-2*PI*SQRT(-1)/NN(2)), */
/* ETC. AND I1 AND J1 RUN FROM 1 TO NN(1), I2 AND J2 RUN FROM 1 TO */
/* NN(2), ETC. THERE IS NO LIMIT ON THE DIMENSIONALITY (NUMBER OF */
/* SUBSCRIPTS) OF THE ARRAY OF DATA. THE PROGRAM WILL PERFORM */
/* A THREE-DIMENSIONAL FOURIER TRANSFORM AS EASILY AS A ONE-DIMEN- */
/* SIONAL ONE, THO IN A PROPORTIONATELY GREATER TIME. AN INVERSE */
/* TRANSFORM CAN BE PERFORMED, IN WHICH THE SIGN IN THE EXPONENTIALS */
/* IS +, INSTEAD OF -. IF AN INVERSE TRANSFORM IS PERFORMED UPON */
/* AN ARRAY OF TRANSFORMED DATA, THE ORIGINAL DATA WILL REAPPEAR, */
/* MULTIPLIED BY NN(1)*NN(2)*... THE ARRAY OF INPUT DATA MAY BE */
/* REAL OR COMPLEX, AT THE PROGRAMMERS OPTION, WITH A SAVING OF */
/* ABOUT THIRTY PER CENT IN RUNNING TIME FOR REAL OVER COMPLEX. */
/* (FOR FASTEST TRANSFORM OF REAL DATA, NN(1) SHOULD BE EVEN.) */
/* THE TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE RETURNED IN THE */
/* ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA. THE LENGTH */
/* OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER. THE */
/* PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND IS */
/* PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO. */
/* TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA. LET NTOT BE THE */
/* TOTAL NUMBER OF POINTS (REAL OR COMPLEX) IN THE DATA ARRAY, THAT */
/* IS, NTOT=NN(1)*NN(2)*... DECOMPOSE NTOT INTO ITS PRIME FACTORS, */
/* SUCH AS 2**K2 * 3**K3 * 5**K5 * ... LET SUM2 BE THE SUM OF ALL */
/* THE FACTORS OF TWO IN NTOT, THAT IS, SUM2 = 2*K2. LET SUMF BE */
/* THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS, SUMF = 3*K3+5*K5+.. */
/* THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA */
/* IS T = T0 + T1*NTOT + T2*NTOT*SUM2 + T3*NTOT*SUMF. FOR THE PAR- */
/* TICULAR IMPLEMENTATION FORTRAN 32 ON THE CDC 3300 (FLOATING POINT */
/* ADD TIME = SIX MICROSECONDS), */
/* T = 3000 + 600*NTOT + 50*NTOT*SUM2 + 175*NTOT*SUMF MICROSECONDS */
/* ON COMPLEX DATA. */
/* IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN IN A TIME */
/* PROPORTIONAL TO NTOT**2. FOR HIGHLY COMPOSITE NTOT, THE SAVINGS */
/* OFFERED BY COOLEY-TUKEY CAN BE DRAMATIC. A MATRIX 100 BY 100 WILL */
/* BE TRANSFORMED IN TIME PROPORTIONAL TO 10000*(2+2+2+2+5+5+5+5) = */
/* 280,000 (ASSUMING T2 AND T3 TO BE ROUGHLY COMPARABLE) VERSUS */
/* 10000**2 = 100,000,000 FOR THE STRAIGHTFORWARD TECHNIQUE. */
/* THE COOLEY-TUKEY ALGORITHM PLACES TWO RESTRICTIONS UPON THE */
/* NATURE OF THE DATA BEYOND THE USUAL RESTRICTION THAT */
/* THE DATA FROM ONE CYCLE OF A PERIODIC FUNCTION. THEY ARE-- */
/* 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES */
/* MUST BE THE SAME. */
/* 2. CONSIDERING THE DATA TO BE IN THE TIME DOMAIN, */
/* THEY MUST BE EQUI-SPACED AT INTERVALS OF DT. FURTHER, THE TRANS- */
/* FORM VALUES, CONSIDERED TO BE IN FREQUENCY SPACE, WILL BE EQUI- */
/* SPACED FROM 0 TO 2*PI*(NN(I)-1)/(NN(I)*DT) AT INTERVALS OF */
/* 2*PI/(NN(I)*DT) FOR EACH DIMENSION OF LENGTH NN(I). OF COURSE, */
/* DT NEED NOT BE THE SAME FOR EVERY DIMENSION. */
/* THE CALLING SEQUENCE IS-- */
/* CALL FOURT(DATAR,DATAI,NN,NDIM,IFRWD,ICPLX,WORKR,WORKI) */
/* DATAR AND DATAI ARE THE ARRAYS USED TO HOLD THE REAL AND IMAGINARY */
/* PARTS OF THE INPUT DATA ON INPUT AND THE TRANSFORM VALUES ON */
/* OUTPUT. THEY ARE FLOATING POINT ARRAYS, MULTIDIMENSIONAL WITH */
/* IDENTICAL DIMENSIONALITY AND EXTENT. THE EXTENT OF EACH DIMENSION */
/* IS GIVEN IN THE INTEGER ARRAY NN, OF LENGTH NDIM. THAT IS, */
/* NDIM IS THE DIMENSIONALITY OF THE ARRAYS DATAR AND DATAI. */
/* IFRWD IS AN INTEGER USED TO INDICATE THE DIRECTION OF THE FOURIER */
/* TRANSFORM. IT IS NON-ZERO TO INDICATE A FORWARD TRANSFORM */
/* (EXPONENTIAL SIGN IS -) AND ZERO TO INDICATE AN INVERSE TRANSFORM */
/* (SIGN IS +). ICPLX IS AN INTEGER TO INDICATE WHETHER THE DATA */
/* ARE REAL OR COMPLEX. IT IS NON-ZERO FOR COMPLEX, ZERO FOR REAL. */
/* IF IT IS ZERO (REAL) THE CONTENTS OF ARRAY DATAI WILL BE ASSUMED */
/* TO BE ZERO, AND NEED NOT BE EXPLICITLY SET TO ZERO. AS EXPLAINED */
/* ABOVE, THE TRANSFORM RESULTS ARE ALWAYS COMPLEX AND ARE STORED */
/* IN DATAR AND DATAI ON RETURN. WORKR AND WORKI ARE ARRAYS USED */
/* FOR WORKING STORAGE. THEY ARE NOT NECESSARY IF ALL THE DIMENSIONS */
/* OF THE DATA ARE POWERS OF TWO. IN THIS CASE, THE ARRAYS MAY BE */
/* REPLACED BY THE NUMBER 0 IN THE CALLING SEQUENCE. THUS, USE OF */
/* POWERS OF TWO CAN FREE A GOOD DEAL OF STORAGE. IF ANY DIMENSION */
/* IS NOT A POWER OF TWO, THESE ARRAYS MUST BE SUPPLIED. THEY ARE */
/* FLOATING POINT, ONE DIMENSIONAL OF LENGTH EQUAL TO THE LARGEST */
/* ARRAY DIMENSION, THAT IS, TO THE LARGEST VALUE OF NN(I). */
/* WORKR AND WORKI, IF SUPPLIED, MUST NOT BE THE SAME ARRAYS AS DATAR */
/* OR DATAI. ALL SUBSCRIPTS OF ALL ARRAYS BEGIN AT 1. */
/* THERE ARE NO ERROR MESSAGES OR ERROR HALTS IN THIS PROGRAM. THE */
/* PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(I) IS LESS THAN ONE. */
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */
void fourt(double *datar,double *datai, int nn[3], int ndim, int ifrwd, int icplx, double *workr,double *worki)
{
int ifact[21],ntot,idim,np1,n,np2,m,ntwo,iff,idiv,iquot,irem,inon2,non2p,np0,nprev,icase,ifmin,i,j,jmax,np2hf,i2,i1max,i3,j3,i1,ifp1,ifp2,i2max,i1rng,istep,imin,imax,mmax,mmin,mstep,j1,j2max,j2,jmin,j3max,nhalf;
double theta,wstpr,wstpi,wminr,wmini,wr,wi,wtemp,thetm,wmstr,wmsti,twowr,sr,si,oldsr,oldsi,stmpr,stmpi,tempr,tempi,difi,difr,sumr,sumi,TWOPI = 6.283185307179586476925286766559;
ntot = 1;
for (idim = 0; idim < ndim; idim++) {
ntot *= nn[idim];
}
/*main loop for each dimension*/
np1 = 1;
for (idim = 1; idim <= ndim; idim++) {
n = nn[idim-1];
np2 = np1*n;
if (n < 1) {
goto L920;
} else if (n == 1) {
goto L900;
}
/*is n a power of 2 and if not, what are its factors*/
m = n;
ntwo = np1;
iff = 1;
idiv = 2;
L10:
iquot = m/idiv;
irem = m-idiv*iquot;
if (iquot < idiv)
goto L50;
if (irem == 0) {
ntwo *= 2;
ifact[iff] = idiv;
iff++;
m= iquot;
goto L10;
}
idiv = 3;
inon2 = iff;
L30:
iquot = m/idiv;
irem = m-idiv*iquot;
if (iquot < idiv)
goto L60;
if (irem == 0) {
ifact[iff] = idiv;
iff++;
m = iquot;
goto L30;
}
idiv += 2;
goto L30;
L50:
inon2 = iff;
if (irem != 0)
goto L60;
ntwo *= 2;
goto L70;
L60:
ifact[iff] = m;
L70:
non2p = np2/ntwo;
/*SEPARATE FOUR CASES--
1. COMPLEX TRANSFORM
2. REAL TRANSFORM FOR THE 2ND, 3RD, ETC. DIMENSION. METHOD: TRANSFORM HALF THE DATA, SUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY.
3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD. METHOD: SET THE IMAGINARY PARTS TO ZERO.
4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN. METHOD: TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD-NUMBERED REAL VALUES. UNSCRAMBLE AND SUPPLY THE SECOND HALF BY CONJUGATE SYMMETRY. */
icase = 1;
ifmin = 1;
if (icplx != 0)
goto L100;
icase = 2;
if (idim > 1)
goto L100;
icase = 3;
if (ntwo <= np1)
goto L100;
icase = 4;
ifmin = 2;
ntwo /= 2;
n /= 2;
np2 /= 2;
ntot /= 2;
i = 1;
for (j = 1; j <= ntot; j++) {
datar[j] = datar[i];
datai[j] = datar[i+1];
i += 2;
}
/*shuffle data by bit reversal, since n = 2^k. As the shuffling can be done by simple interchange, no working array is needed*/
L100:
if (non2p > 1)
goto L200;
np2hf = np2/2;
j = 1;
for (i2 = 1; i2 <= np2; i2 += np1) {
if (j >= i2)
goto L130;
i1max = i2+np1-1;
for (i1 = i2; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j+i3-i2;
tempr = datar[i3];
tempi = datai[i3];
datar[i3] = datar[j3];
datai[i3] = datai[j3];
datar[j3] = tempr;
datai[j3] = tempi;
}
}
L130:
m = np2hf;
L140:
if (j <= m) {
j += m;
} else {
j -= m;
m /= 2;
if (m >= np1)
goto L140;
}
}
goto L300;
/*shuffle data by digit reversal for general n*/
L200:
for (i1 = 1; i1 <= np1; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3;
for (i = 1; i <= n; i++) {
if (icase != 3) {
workr[i] = datar[j];
worki[i] = datai[j];
} else {
workr[i] = datar[j];
worki[i] = 0.;
}
ifp2 = np2;
iff = ifmin;
L250:
ifp1 = ifp2/ifact[iff];
j += ifp1;
if (j >= i3+ifp2) {
j -= ifp2;
ifp2 = ifp1;
iff += 1;
if (ifp2 > np1)
goto L250;
}
}
i2max = i3+np2-np1;
i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
datar[i2] = workr[i];
datai[i2] = worki[i];
i++;
}
}
}
/*special case-- W=1*/
L300:
i1rng = np1;
if (icase == 2)
i1rng = np0*(1+nprev/2);
if (ntwo <= np1)
goto L600;
for (i1 = 1; i1 <= i1rng; i1++) {
imin = np1+i1;
istep = 2*np1;
goto L330;
L310:
j = i1;
for (i = imin; i <= ntot; i += istep) {
tempr = datar[i];
tempi = datai[i];
datar[i] = datar[j]-tempr;
datai[i] = datai[j]-tempi;
datar[j] = datar[j]+tempr;
datai[j] = datai[j]+tempi;
j += istep;
}
imin = 2*imin-i1;
istep *= 2;
L330:
if (istep <= ntwo)
goto L310;
/*special case-- W = -sqrt(-1)*/
imin = 3*np1+i1;
istep = 4*np1;
goto L420;
L400:
j = imin-istep/2;
for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) {
tempr = datai[i];
tempi = -datar[i];
} else {
tempr = -datai[i];
tempi = datar[i];
}
datar[i] = datar[j]-tempr;
datai[i] = datai[j]-tempi;
datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2*imin-i1;
istep *= 2;
L420:
if (istep <= ntwo)
goto L400;
}
/*main loop for factors of 2. W=EXP(-2*PI*SQRT(-1)*m/mmax) */
theta = -TWOPI/8.;
wstpr = 0.;
wstpi = -1.;
if (ifrwd == 0) {
theta = -theta;
wstpi = 1.;
}
mmax = 8*np1;
goto L540;
L500:
wminr = cos(theta);
wmini = sin(theta);
wr = wminr;
wi = wmini;
mmin = mmax/2+np1;
mstep = np1*2;
for (m = mmin; m <= mmax; m += mstep) {
for (i1 = 1; i1 <= i1rng; i1++) {
istep = mmax;
imin = m+i1;
L510:
j = imin-istep/2;
for (i = imin; i <= ntot; i += istep) {
tempr = datar[i]*wr-datai[i]*wi;
tempi = datar[i]*wi+datai[i]*wr;
datar[i] = datar[j]-tempr;
datai[i] = datai[j]-tempi;
datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2*imin-i1;
istep *= 2;
if (istep <= ntwo)
goto L510;
}
wtemp = wr*wstpi;
wr = wr*wstpr-wi*wstpi;
wi = wi*wstpr+wtemp;
}
wstpr = wminr;
wstpi = wmini;
theta /= 2.;
mmax += mmax;
L540:
if (mmax <= ntwo)
goto L500;
/*main loop for factors not equal to 2-- W=EXP(-2*PI*SQRT(-1)*(j2-i3)/ifp2)*/
L600:
if (non2p <= 1)
goto L700;
ifp1 = ntwo;
iff = inon2;
L610:
ifp2 = ifact[iff]*ifp1;
theta = -TWOPI/ (double)ifact[iff];
if (ifrwd == 0)
theta = -theta;
thetm = theta/ (double)(ifp1/np1);
wstpr = cos(theta);
wstpi = sin(theta);
wmstr = cos(thetm);
wmsti = sin(thetm);
wminr = 1.;
wmini = 0.;
for (j1 = 1; j1 <= ifp1; j1 += np1) {
i1max = j1+i1rng-1;
for (i1 = j1; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
i = 1;
wr = wminr;
wi = wmini;
j2max = i3+ifp2-ifp1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
twowr = 2.*wr;
jmin = i3;
j3max = j2+np2-ifp2;
for (j3 = j2 ; j3 <= j3max; j3 += ifp2) {
j = jmin+ifp2-ifp1;
sr = datar[j];
si = datai[j];
oldsr = 0.;
oldsi = 0.;
j -= ifp1;
L620:
stmpr = sr;
stmpi = si;
sr = twowr*sr-oldsr+datar[j];
si = twowr*si-oldsi+datai[j];
oldsr = stmpr;
oldsi = stmpi;
j -= ifp1;
if (j > jmin)
goto L620;
workr[i] = wr*sr-wi*si-oldsr+datar[j];
worki[i] = wi*sr+wr*si-oldsi+datai[j];
jmin += ifp2;
i++;
}
wtemp = wr*wstpi;
wr = wr*wstpr-wi*wstpi;
wi = wi*wstpr+wtemp;
}
i = 1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2+np2-ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
datar[j3] = workr[i];
datai[j3] = worki[i];
i++;
}
}
}
}
wtemp = wminr*wmsti;
wminr = wminr*wmstr-wmini*wmsti;
wmini = wmini*wmstr+wtemp;
}
iff++;
ifp1 = ifp2;
if (ifp1 < np2)
goto L610;
/*complete a real transform in the 1st dimension, n even, by conjugate symmetries*/
L700:
switch (icase) {
case 1:
goto L900;
break;
case 2:
goto L800;
break;
case 3:
goto L900;
break;
}
nhalf = n;
n += n;
theta = -TWOPI/ (double) n;
if (ifrwd == 0)
theta = -theta;
wstpr = cos(theta);
wstpi = sin(theta);
wr = wstpr;
wi = wstpi;
imin = 2;
jmin = nhalf;
goto L725;
L710:
j = jmin;
for (i = imin; i <= ntot; i += np2) {
sumr = (datar[i]+datar[j])/2.;
sumi = (datai[i]+datai[j])/2.;
difr = (datar[i]-datar[j])/2.;
difi = (datai[i]-datai[j])/2.;
tempr = wr*sumi+wi*difr;
tempi = wi*sumi-wr*difr;
datar[i] = sumr+tempr;
datai[i] = difi+tempi;
datar[j] = sumr-tempr;
datai[j] = tempi-difi;
j += np2;
}
imin++;
jmin--;
wtemp = wr*wstpi;
wr = wr*wstpr-wi*wstpi;
wi = wi*wstpr+wtemp;
L725:
if (imin < jmin) {
goto L710;
} else if (imin > jmin) {
goto L740;
}
if (ifrwd == 0)
goto L740;
for (i = imin; i <= ntot; i += np2) {
datai[i] = -datai[i];
}
L740:
np2 *= 2;
ntot *= 2;
j = ntot+1;
imax = ntot/2+1;
L745:
imin = imax-nhalf;
i = imin;
goto L755;
L750:
datar[j] = datar[i];
datai[j] = -datai[i];
L755:
i++;
j--;
if (i < imax)
goto L750;
datar[j] = datar[imin]-datai[imin];
datai[j] = 0.;
if (i >= j) {
goto L780;
} else {
goto L770;
}
L765:
datar[j] = datar[i];
datai[j] = datai[i];
L770:
i--;
j--;
if (i > imin)
goto L765;
datar[j] = datar[imin]+datai[imin];
datai[j] = 0.;
imax = imin;
goto L745;
L780:
datar[1] += datai[1];
datai[1] = 0.;
goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
L800:
if (nprev <= 2)
goto L900;
for (i3 = 1; i3 <= ntot; i3 += np2) {
i2max = i3+np2-np1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
imax = i2+np1-1;
imin = i2+i1rng;
jmax = 2*i3+np1-imin;
if (i2 > i3)
jmax += np2;
if (idim > 2) {
j = jmax+np0;
for (i = imin; i <= imax; i++) {
datar[i] = datar[j];
datai[i] = -datai[j];
j--;
}
}
j = jmax;
for (i = imin; i <= imax; i += np0) {
datar[i] = datar[j];
datai[i] = -datai[j];
j -= np0;
}
}
}
/*end of loop on each dimension*/
L900:
np0 = np1;
np1 = np2;
nprev = n;
}
L920:
return;
}