You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/tools/solver/Ndar_temp.py

176 lines
3.3 KiB
Python

print('importo0')
import numpy as np
#import petsc4py
print('importo1')
import math
import time
#from mpi4py import MPI
from tools.postprocessK.kperm.computeFlows import *
print('importo2')
print('importo4')
from tools.postprocessK.flow import getKeff
import sys
def PetscP(datadir,ref,k,saveres,Rtol,comm):
from petsc4py import PETSc
#petsc4py.init('-ksp_max_it 9999999999')
print('importo3')
if comm==0:
pcomm=PETSc.COMM_SELF
rank=0
pn=1
else:
pcomm=PETSc.COMM_WORLD
rank=pcomm.rank
pn=pcomm.size
t0=time.time()
if pn==1:
if not isinstance(k,np.ndarray):
k = np.load(datadir+'k.npy')
if k.shape[2]==1:
refz=1
else:
refz=ref
nz, ny, nx=k.shape[0]*ref,k.shape[1]*ref,k.shape[2]*refz
n=nx*ny*nz
K = PETSc.Mat().create(comm=pcomm)
K.setType('seqaij')
K.setSizes(((n,None),(n,None))) # Aca igual que lo que usas arriba
K.setPreallocationNNZ(nnz=(7,4)) # Idem anterior
K.setUp()
R = PETSc.Vec().createSeq((n,None),comm=pcomm) #PETSc.COMM_WORLD
R.setUp()
k2, Nz, nnz2=getKref(k,1,2,ref)
k, Nz, nnz=getKref(k,0,2,ref)
pbc=float(Nz)
K,R = firstL(K,R,k,pbc)
r=(k.shape[1]-2)*(k.shape[2]-2)*nnz2 #start row
K,R =lastL(K,R,k2,r)
k2=0
else:
if not isinstance(k,np.ndarray):
k = np.load(datadir+'k.npy')
k, Nz, nnz=getKref(k,rank,pn,ref)
pbc=float(Nz)
nz, ny, nx=(k.shape[0]-2),(k.shape[1]-2),(k.shape[2]-2)
n=nx*ny*nz
K = PETSc.Mat().createAIJ(((n,None),(n,None)), nnz=(7,4), comm=pcomm)
K.setUp()
R = PETSc.Vec().createMPI((n,None),comm=pcomm)
R.setUp()
r=nx*ny*nnz*rank #start row
if rank==0:
K,R = firstL(K,R,k,pbc)
if (rank>0) and (rank<pn-1):
K,R=centL(K,R,k,r)
k=0
if rank==(pn-1):
K,R =lastL(K,R,k,r)
k=0
K.assemble()
R.assemble()
ksp = PETSc.KSP()
ksp.create(comm=pcomm)
ksp.setTolerances(rtol=Rtol, atol=1.0e-100, max_it=999999999)
ksp.setFromOptions()
P = R.copy()
ksp.setType(PETSc.KSP.Type.CG)
pc = PETSc.PC()
pc.create(comm=pcomm)
pc.setType(PETSc.PC.Type.JACOBI)
ksp.setPC(pc)
ksp.setOperators(K)
ksp.setUp()
t1=time.time()
ksp.solve(R, P)
t2=time.time()
p=P.getArray().reshape(nz,ny,nx)
if rank==0:
keff,Q=getKeff(p,k[1:-1,1:-1,1:-1],pbc,Nz)
if saveres==True:
for i in range(1,pn):
from mpi4py import MPI
comm=MPI.COMM_WORLD
pi=comm.recv(source=i)
p=np.append(p,pi,axis=0)
np.save(datadir+'P',p)
f=open(datadir+"RunTimes.out","a")
f.write("ref: "+str(ref)+"\n")
f.write("Matrix creation: "+str(t1-t0)+"\n")
f.write("Solver: "+str(t2-t1)+"\n")
f.write("Keff: "+str(keff)+"\n")
f.write("N_cores: "+str(pn)+"\n")
f.close()
try:
res=np.loadtxt(datadir+'SolverRes.txt')
res=np.append(res,np.array([keff,ref,t2-t0,pn]))
except:
res=np.array([keff,ref,t2-t0,pn])
np.savetxt(datadir+'SolverRes.txt',res,header='Keff, ref, Runtime, N_cores')
print(datadir[-3:],' keff= '+str(keff), ' rtime= '+str(t2-t0))
return keff
else:
if saveres==True:
from mpi4py import MPI
comm=MPI.COMM_WORLD
comm.send(p, dest=0)
return
#Ver: A posteriori error estimates and adaptive solvers for porous media flows (Martin Vohralik)
ddir='./test/0/'
ref=1
icomm = MPI.Comm.Get_parent()
print('aca')
PetscP(ddir,ref,'0',True,0.000001,1)
#icomm = MPI.Comm.Get_parent()
icomm.Disconnect()