You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
144 lines
3.5 KiB
Python
144 lines
3.5 KiB
Python
import numpy as np
|
|
import matplotlib.pyplot as plt
|
|
from tools.generation.config import DotheLoop, get_config
|
|
import os
|
|
|
|
|
|
def collect_scalar(filename, rdir):
|
|
|
|
njobs = DotheLoop(-1)
|
|
res = np.array([])
|
|
for job in range(njobs):
|
|
res = np.append(res, np.loadtxt(rdir + str(job) + "/" + filename))
|
|
|
|
res = res.reshape(njobs, -1)
|
|
return res
|
|
|
|
|
|
def get_stats(res, col, logv):
|
|
|
|
parser, iterables = get_config()
|
|
|
|
seeds = iterables["seeds"]
|
|
n_of_seeds = len(seeds)
|
|
ps = iterables["ps"]
|
|
n_of_ps = len(ps)
|
|
stats = np.zeros((n_of_ps, 3))
|
|
x = res[:, col]
|
|
if logv == True:
|
|
x = np.log(x)
|
|
|
|
for i in range(n_of_ps):
|
|
|
|
stats[i, 0] = ps[i]
|
|
stats[i, 1] = np.nanmean(x[i * n_of_seeds : (i + 1) * n_of_seeds])
|
|
stats[i, 2] = np.nanvar(x[i * n_of_seeds : (i + 1) * n_of_seeds])
|
|
|
|
if logv == True:
|
|
stats[:, 1] = np.exp(stats[:, 1])
|
|
|
|
return stats
|
|
|
|
|
|
def collect_Conec(scales, rdir):
|
|
|
|
parser, iterables = get_config(rdir + "config.ini")
|
|
|
|
ps = iterables["ps"]
|
|
njobs = DotheLoop(-1, parser, iterables)
|
|
res = dict()
|
|
for job in range(njobs):
|
|
for scale in scales:
|
|
try:
|
|
fdir = rdir + str(job) + "/ConnectivityMetrics/" + str(scale) + ".npy"
|
|
jobres = np.load(fdir).item()
|
|
|
|
params = DotheLoop(job, parser, iterables)
|
|
indp = int(np.where(ps == params[2])[0])
|
|
for ckey in jobres.keys():
|
|
try:
|
|
res[params[0], params[1], scale, ckey, indp] = np.append(
|
|
res[params[0], params[1], scale, ckey, indp],
|
|
jobres[ckey].reshape(-1),
|
|
)
|
|
except KeyError:
|
|
res[params[0], params[1], scale, ckey, indp] = jobres[
|
|
ckey
|
|
].reshape(-1)
|
|
except IOError:
|
|
pass
|
|
return res
|
|
|
|
|
|
def ConValidat(conkey, scale, ddir):
|
|
|
|
scales = [scale]
|
|
resdict = collect_Conec(scales, ddir)
|
|
parser, iterables = get_config(ddir + "config.ini")
|
|
params = DotheLoop(0, parser, iterables)
|
|
con = params[0]
|
|
lc = params[1]
|
|
x, y, yv = constasP(con, lc, scales[0], conkey, resdict, iterables)
|
|
|
|
try:
|
|
os.makedirs("./plots/" + ddir)
|
|
except:
|
|
pass
|
|
plt.figure(1)
|
|
plt.plot(x, y, marker="x")
|
|
plt.xlabel("p")
|
|
plt.ylabel(conkey)
|
|
plt.grid()
|
|
plt.savefig("./plots/" + ddir + conkey + str(scale) + ".png")
|
|
plt.close()
|
|
|
|
return
|
|
|
|
|
|
def showValidateResults(conkeys):
|
|
for conkey in conkeys:
|
|
ConValidat(conkey, 128, "./data_Val2D/")
|
|
ConValidat(conkey, 16, "./data_Val3D/")
|
|
|
|
return
|
|
|
|
|
|
def constasP(con, lc, scale, conkey, res, iterables):
|
|
|
|
x = iterables["ps"]
|
|
|
|
y = np.zeros((x.shape))
|
|
vy = np.zeros((x.shape))
|
|
for i in range((x.shape[0])):
|
|
|
|
y[i] = np.mean(res[con, lc, scale, conkey, i])
|
|
vy[i] = np.mean(res[con, lc, scale, conkey, i])
|
|
|
|
return x, y, vy
|
|
|
|
|
|
def plot_keff(stats):
|
|
|
|
ylabel = r"$K_{eff}$"
|
|
xlabel = r"$p$"
|
|
fsize = 14
|
|
plt.figure(1)
|
|
plt.semilogy(stats[:, 0], stats[:, 1])
|
|
plt.xlabel(xlabel, fontsize=fsize)
|
|
plt.ylabel(ylabel, fontsize=fsize)
|
|
plt.grid()
|
|
plt.savefig("Keff_p.png")
|
|
plt.close()
|
|
|
|
plt.figure(2)
|
|
plt.plot(stats[:, 0], stats[:, 2])
|
|
plt.xlabel(xlabel, fontsize=fsize)
|
|
plt.ylabel(ylabel, fontsize=fsize)
|
|
plt.grid()
|
|
plt.savefig("vKeff_p.png")
|
|
plt.close()
|
|
return
|
|
|
|
|
|
showValidateResults(["P", "S", "npx", "Plen"])
|