You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/tools/postprocessK/kperm/Ndar1PBack.py

124 lines
2.9 KiB
Python

import numpy as np
# import petsc4py
import math
import time
# from mpi4py import MPI
from tools.postprocessK.kperm.computeFlows import *
from petsc4py import PETSc
# petsc4py.init('-ksp_max_it 9999999999',comm=PETSc.COMM_SELF)
from tools.postprocessK.flow import getKeff
def PetscP(datadir, ref, k, saveres):
# datadir='./data/'+str(job)+'/'
# comm=MPI.COMM_WORLD
# rank=comm.Get_rank()
"""
size=comm.Get_size()
print(rank,size)
pcomm = MPI.COMM_WORLD.Split(color=rank, key=rank)
#print(new_comm.Get_rank())
#pcomm=comm.Create(newgroup)
print('entro')
print pcomm.Get_rank()
print pcomm.Get_size()
pcomm=comm
rank=pcomm.rank
pn=pcomm.size
#PETSc.COMM_WORLD.PetscSubcommCreate(pcomm,PetscSubcomm *psubcomm)
print(rank,pn)
"""
# Optpetsc = PETSc.Options()
rank = 0
pn = 1
t0 = time.time()
# comm=MPI.Comm.Create()
if k.shape[2] == 1:
refz = 1
else:
refz = ref
nz, ny, nx = k.shape[0] * ref, k.shape[1] * ref, k.shape[2] * refz
n = nx * ny * nz
print("algo")
K = PETSc.Mat().create(comm=PETSc.COMM_SELF)
print("algo2")
K.setType("seqaij")
print("algo3")
K.setSizes(((n, None), (n, None))) # Aca igual que lo que usas arriba
K.setPreallocationNNZ(nnz=(7, 4)) # Idem anterior
# K = PETSc.Mat('seqaij', m=n,n=n,nz=7,comm=PETSc.COMM_WORLD)
# K = PETSc.Mat('aij', ((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
# K = PETSc.Mat().createAIJ(((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
# K = PETSc.Mat().createSeqAIJ(((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
# K.setPreallocationNNZ(nnz=(7,4))
print("ksetup")
# K.MatCreateSeqAIJ()
# K=PETSc.Mat().MatCreate(PETSc.COMM_WORLD)
# K = PETSc.Mat().createAIJ(((n,None),(n,None)), nnz=(7,4),comm=pcomm)
K.setUp()
print("entro2")
R = PETSc.Vec().createSeq((n, None), comm=PETSc.COMM_SELF) # PETSc.COMM_WORLD
R.setUp()
print("entro2")
k2, Nz, nnz2 = getKref(k, 1, 2, ref)
k, Nz, nnz = getKref(k, 0, 2, ref)
pbc = float(Nz)
# print('entro3')
K, R = firstL(K, R, k, pbc)
r = (k.shape[1] - 2) * (k.shape[2] - 2) * nnz2 # start row
K, R = lastL(K, R, k2, r)
k2 = 0
K.assemble()
R.assemble()
print("entro3")
ksp = PETSc.KSP()
ksp.create(comm=PETSc.COMM_SELF)
ksp.setFromOptions()
print("entro4")
P = R.copy()
ksp.setType(PETSc.KSP.Type.CG)
pc = PETSc.PC()
pc.create(comm=PETSc.COMM_SELF)
print("entro4")
pc.setType(PETSc.PC.Type.JACOBI)
ksp.setPC(pc)
ksp.setOperators(K)
ksp.setUp()
t1 = time.time()
ksp.solve(R, P)
t2 = time.time()
p = P.getArray().reshape(nz, ny, nx)
if rank == 0:
keff, Q = getKeff(p, k[1:-1, 1:-1, 1:-1], pbc, Nz)
return keff
return
# Ver: A posteriori error estimates and adaptive solvers for porous media flows (Martin Vohralik)