You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/fftma_module/gen/analysis.ipynb

7672 lines
1.1 MiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Análisis de la etapa de generación de medios"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np \n",
"import plotly.express as px"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Armado del dataset\n",
"\n",
"En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU. Con esto buscamos identificar:\n",
"- Qué funciones son las que consumen mayor cantidad de memoria\n",
"- Qué funciones son las que tienen un mayor tiempo de procesamiento\n",
"- Qué funciones son las que son invocadas una mayor cantidad de veces\n",
"\n",
"Una vez identificados estos puntos de análisis podemos proponer soluciones para mejorar estas estadísticas."
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def get_function_name(function_name):\n",
" return function_name[10:].rsplit(\".c\")[0]"
]
},
{
"cell_type": "code",
"execution_count": 74,
"metadata": {},
"outputs": [],
"source": [
"relations = {\n",
" \"Py_kgeneration\": ['generate', 'fftma2'],\n",
" \"generate\": [\"gasdev\"],\n",
" \"gasdev\": [\"ran2\"],\n",
" \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n",
"}\n",
"overall_time= {}\n",
"overall_memory = {}"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def get_data(file_name):\n",
" data = []\n",
" row = {}\n",
"\n",
" with open(file_name) as log_file:\n",
" lines = log_file.readlines()\n",
" for line in lines:\n",
" split_line = line.split()\n",
" \n",
" if \"USED\" not in split_line and \"ELAPSED\" not in split_line and \"CPU\" not in split_line: continue\n",
" \n",
" if \"CPU\" in split_line:\n",
" idx_cpu = split_line.index(\"CPU\") + 1\n",
" idx_per = idx_cpu + 1\n",
" row[\"cpu\"] = row.get('CPU', [])\n",
" row[\"cpu\"].append(float(split_line[idx_per].rsplit(\"%\")[0]))\n",
" continue\n",
" \n",
" idx_used_mem = split_line.index(\"USED\") + 4\n",
" idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
" \n",
" function_name = get_function_name(split_line[2])\n",
" \n",
" used_virtual_mem = float(split_line[idx_used_mem])\n",
" elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n",
"\n",
" row[\"function\"] = function_name\n",
" row[\"memory\"] = used_virtual_mem \n",
" row[\"time\"] = elapsed\n",
" if \"cpu\" in row:\n",
" row[\"cpu\"] = sum(row[\"cpu\"]) / len(row[\"cpu\"])\n",
" data.append(row)\n",
" row = {}\n",
" \n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"def create_df(file_name):\n",
" data = get_data(file_name)\n",
" df = pd.DataFrame(data)\n",
" return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median'], 'cpu': ['min', 'max', 'mean']})"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"def analyze(file_name):\n",
" df_grouped = create_df(file_name)\n",
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False) "
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"def merge_dfs(dfs):\n",
" functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n",
" df_final = pd.concat(dfs, join='inner').sort_values(by=('time', 'sum'), ascending=False) \n",
"\n",
" memory_min, memory_max, memory_median = [], [], []\n",
" time_min, time_max, time_mean, time_sum, time_count = [], [], [], [], []\n",
" cpu_min, cpu_max, cpu_mean = [], [], []\n",
"\n",
" for function in functions:\n",
" memory_min.append(df_final.loc[function, ('memory', 'min')].min())\n",
" time_min.append(df_final.loc[function, ('time', 'min')].min())\n",
" cpu_min.append(df_final.loc[function, ('cpu', 'min')].min())\n",
" memory_max.append(df_final.loc[function, ('memory', 'max')].max())\n",
" time_max.append(df_final.loc[function, ('time', 'max')].max())\n",
" cpu_max.append(df_final.loc[function, ('cpu', 'max')].max())\n",
" time_mean.append(df_final.loc[function, ('time', 'mean')].mean())\n",
" cpu_mean.append(df_final.loc[function, ('cpu', 'mean')].mean())\n",
" time_sum.append(df_final.loc[function, ('time', 'sum')].sum())\n",
" time_count.append(df_final.loc[function, ('time', 'count')].sum())\n",
" try:\n",
" memory_median.append(df_final.loc[function, ('memory', 'median')].median())\n",
" except:\n",
" memory_median.append(df_final.loc[function, ('memory', 'median')])\n",
" \n",
" df = pd.DataFrame({('memory', 'min'): memory_min, ('memory', 'max'): memory_max, ('memory', 'median'): memory_median, ('time', 'min'): time_min, ('time', 'max'): time_max, ('time', 'mean'): time_mean, ('time', 'sum'): time_sum, ('time', 'count'): time_count, ('cpu', 'min'): cpu_min, ('cpu', 'max'): cpu_max, ('cpu', 'mean'): cpu_mean})\n",
"\n",
" df.index = functions\n",
" df.index.name = 'function'\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"def analyze(file_names):\n",
" if len(file_names) == 1:\n",
" df_grouped = create_df(file_names[0])\n",
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False)\n",
" else:\n",
" dfs = []\n",
" for file_name in file_names:\n",
" print(\"Executing file {}\".format(file_name))\n",
" df = create_df(file_name)\n",
" dfs.append(df)\n",
" return merge_dfs(dfs)"
]
},
{
"cell_type": "code",
"execution_count": 58,
"metadata": {},
"outputs": [],
"source": [
"def plot_pie(df, function, plt, column):\n",
" \n",
" labels = relations[function][:]\n",
" total = abs(df.loc[function][column])\n",
" sizes = []\n",
" explode = []\n",
"\n",
" rest = total\n",
"\n",
" for func in labels:\n",
" func_duration = abs(df.loc[func][column])\n",
" rest -= func_duration\n",
" value = func_duration/ total\n",
" sizes.append(value)\n",
" explode.append(0 if value > 0.01 else 0.1)\n",
"\n",
" \n",
" if rest > 0:\n",
" labels.append(\"other\")\n",
" sizes.append(rest/total)\n",
" explode.append(0 if rest/total > 0.01 else 0.1)\n",
" sizes = np.array(sizes)\n",
" porcent = 100.*sizes/sizes.sum()\n",
" \n",
"\n",
" if not np.isnan(sizes).all():\n",
" \n",
" plt.set_title(function)\n",
"\n",
" patches, texts = plt.pie(sizes, startangle=90, radius=1.2)\n",
" labels_formated = ['{0} - {1:1.2f} %'.format(i,j) for i,j in zip(labels, porcent)]\n",
"\n",
" sort_legend = True\n",
" if sort_legend:\n",
" patches, labels_formated, dummy = zip(*sorted(zip(patches, labels_formated, sizes),\n",
" key=lambda x: x[2],\n",
" reverse=True))\n",
"\n",
" plt.legend(patches, labels_formated, loc='upper left', bbox_to_anchor=(-0.1, 1.),\n",
" fontsize=8)\n",
"\n",
" plt.axis('equal')\n",
"\n",
"def plot_pie_charts(df, title, column):\n",
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
" fig.suptitle(title)\n",
" functions = list(relations.keys())\n",
" for i in range(2):\n",
" for j in range(2):\n",
" plot_pie(df,functions[2*i + j], axs[i, j], column)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 59,
"metadata": {},
"outputs": [],
"source": [
"parents = {\n",
" \"Py_kgeneration\": \"\",\n",
" \"generate\": \"Py_kgeneration\",\n",
" \"gasdev\": \"generate\",\n",
" \"fftma2\": \"Py_kgeneration\",\n",
" \"covariance\": \"fftma2\",\n",
" \"fourt\": \"fftma2\",\n",
" \"prebuild_gwn\": \"fftma2\",\n",
" \"ran2\": \"gasdev\",\n",
" \"cov_value\": \"covariance\",\n",
"}\n",
"\n",
"def plot_treemap(df, column, name):\n",
" df[\"parent\"] = [parents.get(item, \"\") for item in df.index]\n",
" df2 = df.reset_index()\n",
" df2[name] = df2[[column]]\n",
" df2 = df2[[\"function\", \"parent\", name]]\n",
" fig3 = px.treemap(df2, names='function', parents='parent',values=name, color=\"parent\", title=\"Time treemap\")\n",
" fig3.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 8"
]
},
{
"cell_type": "code",
"execution_count": 75,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>0.544398</td>\n",
" <td>0.544398</td>\n",
" <td>0.544398</td>\n",
" <td>0.544398</td>\n",
" <td>1</td>\n",
" <td>0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.2</td>\n",
" <td>4.978049</td>\n",
" <td>4.978049</td>\n",
" <td>4.978049</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>0.383407</td>\n",
" <td>0.383407</td>\n",
" <td>0.383407</td>\n",
" <td>0.383407</td>\n",
" <td>1</td>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>7.507407</td>\n",
" <td>7.507407</td>\n",
" <td>7.507407</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>0.000081</td>\n",
" <td>0.016990</td>\n",
" <td>0.000548</td>\n",
" <td>0.280543</td>\n",
" <td>512</td>\n",
" <td>-0.7</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.393945</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>0.157936</td>\n",
" <td>0.157936</td>\n",
" <td>0.157936</td>\n",
" <td>0.157936</td>\n",
" <td>1</td>\n",
" <td>0.3</td>\n",
" <td>0.3</td>\n",
" <td>0.3</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>0.154748</td>\n",
" <td>0.154748</td>\n",
" <td>0.154748</td>\n",
" <td>0.154748</td>\n",
" <td>1</td>\n",
" <td>0.3</td>\n",
" <td>0.3</td>\n",
" <td>0.3</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>0.000080</td>\n",
" <td>0.001279</td>\n",
" <td>0.000118</td>\n",
" <td>0.082659</td>\n",
" <td>702</td>\n",
" <td>-0.4</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.143162</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>0.000081</td>\n",
" <td>0.000197</td>\n",
" <td>0.000097</td>\n",
" <td>0.067926</td>\n",
" <td>700</td>\n",
" <td>-0.5</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000286</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.001345</td>\n",
" <td>0.001345</td>\n",
" <td>0.001345</td>\n",
" <td>0.001345</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.000287</td>\n",
" <td>0.000294</td>\n",
" <td>0.000292</td>\n",
" <td>0.000875</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.000129</td>\n",
" <td>0.000145</td>\n",
" <td>0.000138</td>\n",
" <td>0.000413</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.000081</td>\n",
" <td>0.000081</td>\n",
" <td>0.000081</td>\n",
" <td>0.000243</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.000096</td>\n",
" <td>0.000096</td>\n",
" <td>0.000096</td>\n",
" <td>0.000096</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.000088</td>\n",
" <td>0.000088</td>\n",
" <td>0.000088</td>\n",
" <td>0.000088</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" time memory \\\n",
" min max mean sum count min max \n",
"function \n",
"Py_kgeneration 0.544398 0.544398 0.544398 0.544398 1 0.2 0.2 \n",
"generate 0.383407 0.383407 0.383407 0.383407 1 -0.1 -0.1 \n",
"gasdev 0.000081 0.016990 0.000548 0.280543 512 -0.7 0.2 \n",
"fftma2 0.157936 0.157936 0.157936 0.157936 1 0.3 0.3 \n",
"covariance 0.154748 0.154748 0.154748 0.154748 1 0.3 0.3 \n",
"ran2 0.000080 0.001279 0.000118 0.082659 702 -0.4 0.2 \n",
"cov_value 0.000081 0.000197 0.000097 0.067926 700 -0.5 0.2 \n",
"cgrid 0.001345 0.001345 0.001345 0.001345 1 0.0 0.0 \n",
"length 0.000287 0.000294 0.000292 0.000875 3 0.0 0.0 \n",
"fourt 0.000129 0.000145 0.000138 0.000413 3 0.0 0.0 \n",
"maxfactor 0.000081 0.000081 0.000081 0.000243 3 0.0 0.0 \n",
"build_real 0.000096 0.000096 0.000096 0.000096 1 0.0 0.0 \n",
"prebuild_gwn 0.000090 0.000090 0.000090 0.000090 1 0.0 0.0 \n",
"clean_real 0.000088 0.000088 0.000088 0.000088 1 0.0 0.0 \n",
"\n",
" cpu \n",
" median min max mean \n",
"function \n",
"Py_kgeneration 0.2 4.978049 4.978049 4.978049 \n",
"generate -0.1 7.507407 7.507407 7.507407 \n",
"gasdev 0.0 0.000000 100.100000 0.393945 \n",
"fftma2 0.3 0.100000 0.100000 0.100000 \n",
"covariance 0.3 0.100000 0.100000 0.100000 \n",
"ran2 0.0 0.000000 100.100000 0.143162 \n",
"cov_value 0.0 0.000000 0.100000 0.000286 \n",
"cgrid 0.0 0.000000 0.000000 0.000000 \n",
"length 0.0 0.000000 0.000000 0.000000 \n",
"fourt 0.0 0.000000 0.000000 0.000000 \n",
"maxfactor 0.0 0.000000 0.000000 0.000000 \n",
"build_real 0.0 0.000000 0.000000 0.000000 \n",
"prebuild_gwn 0.0 0.000000 0.000000 0.000000 \n",
"clean_real 0.0 0.000000 0.000000 0.000000 "
]
},
"execution_count": 75,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_8-aa'])\n",
"overall_time[\"8\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"8\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACmn0lEQVR4nOzdd3wT5R/A8c+TdNAywt4jrFLKEGTJEhAFpaICAgKiKC4UFyrUhXHX9RNcICqiuEARRSqKiKKAICAgsgXKhrK6V5K73x+X1tIWOmh7Sfp9v155lV4ud98Lvfve89wzlK7rCCGEEMK3WcwOQAghhBAXThK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6KBeUUnOUUrFmxyFAKdVXKaUrpfqaHYsQ/iTA7ACEKC6lVGHHLe5XqoEIIYQXUDKWu/BVSqkbcy26CbgCGJtr+U/AacCi63pGWcQmzk0pZQGCgExd1zWz4xHCX0hCF35DKfUWcI+u68rsWEReSqkKSBIXotTIM3RRLuR+hq6Usnue4z6slLpHKbVXKZWqlFqqlGqkDE8qpQ4ppdKUUt8qparns92rlFK/K6VSlFJJSqkYpVSbQsZUVSn1ulIqVimV4dnXx0qpmjnWqa2U+kApdVwpla6U2qyUujnXdi74WDwxLFZKDVBKbfLsa5tSamiu9aorpV5VSm1RSiUrpRKVUkuUUhflWi/rOfkNSqnnlFKHgVSgSn7P0JVSLZVSC5RSxzz7PqSU+kIpZcuxToDnOPZ4vq9YpdQLSqngcxxLL6XUn57t7VVK3ZRrvUCl1FNKqd2edU4ppVYqpa4ozP+fEN5GnqGL8m4MRvXvm0B1YDIwH1gO9AVeAloA9wKvArdmfVApNRb4CPgRmAKEAhOAlUqpjrqux55rp0qpSsDvQGtgNvAXUBO4BmgInFRKhQC/evb/FrAPGA7MUUpV1XV9ekkdi0dLYB4w03NctwBfKqWu1HX9J886zYDrgC898dQB7gRWKKUidF0/kmubTwKZnv0Fe/6d+7sIwvgOgz2xHwMaAFcDVYEEz6rvAzcDXwGvAd2ARz3f4ZBcm23hWe8Dz7Hc6vneNui6vtWzjsPz+feBP4EqQGfgYozHNEL4Fl3X5SUvv3hhJD39HO/NAWJz/G4HdCAOsOVY/oJn+SYgIMfyz4AMINjzeyXgDDAr137qAPG5l+cTz9Oe/QzJ572sR2H3e9YZk+O9QGA1kARULolj8SyL9aw7NMeyKsAR4K8cy4Ix2iLkjNcOpANP5ljW17O9PUBIrvWz3uvr+b2D5/frz/N9XeRZ571cy1/xLO+Xz7H0zrGslifGV3Ms2wQsNvvvVl7yKqmXVLmL8u5LXdcTcvy+1vPzE13XXbmWB2GUHMFofFcV+FwpVTPrBbg96xbUsn4YsFnX9YW539B1PathyyCM0urnOd5zAm9g3FD0KaFjyXIEyI5H1/VE4GOgo1KqrmdZhu55Bq6UsiqlagDJwE6Mkm1uH+m6npbP8pyyYh6olAo9xzqDPD//l2v5a56fkbmWb9N1/fccx3LCE2OzHOvEA22UUi0LiE8InyAJXZR3B3L9npVcDp5jeTXPz6wksBw4kes1AKhdwH6bA/8UsE4TYLeetxHZ9hzv51TcY8nyb46biSy7PD/tYLRQV0o9qJTajVHKP4lxzO0BG3nty2fZWXRd34eRqG/DeNTwo6ctQM7tNQE04N9cnz2GkZgL+i7AqFHJecxTMW7KdnnaBLyilGpfULxCeCtJ6KK8cxdxeVYL+qxzZyxGaT3369qSCrAIinssRfEYRvL9DbgRGIhxvFvJ/3pSUOkcAF3XH8K4KXgBCMGohdiqlGqYe9VCxlngMeu6/hvGjdWtGDdXtwF/KaVuK+Q+hPAq0ihOiOLZ4/kZp+v6smJ+vm0B6+wH2iulLLlK6eE53i9JLZRSKlcpPczzM9bz83rgF13Xx+f8oFKqKkZpvdh0Xd8CbAGeU0r1AFYBdwFPYByrBaNmJKuGAqVUHYxSdrG+C13XTwMfAh96Gir+htFY7v3iHocQZpESuhDF8yOQCDymlArM/aZSqlYBn18AXKSUyt06G6VUVinye6AuMDLHewEYrdSTgRXFC/2c6pOjtbhSqgrGYD2bPFXbYJR8zyrZK6WGk/d5fKEppap4jiunLRhV7Fld0r73/Hwg13qTPD9jirHfGjl/13U9GaNKPzj/Twjh3aSELkQx6LqeqJSaAMzFqKb9AuNZcmOMBlqrgInn2cQrGKXdL5VSs4ENGF3NrsEolW4GZmF0CZujlOqEUUq+HugJPKDrelIJH9Yu4AOlVBfgOEZVdB2M7mtZFgNTlVIfYrS2b4fRXW7vBez3MuAtpdSXnhgCMB5luDFufNB1fbNS6iPgDk9twAqgK0Y3tm90Xf+lGPvdppT6FeO7P43RZe16jN4SQvgcSehCFJOu658ppY4AUcAjGCW7wxj9yz8s4LPJSqneGN3XhmAkpjjgZ+CQZ500z+Ar0Z73q2C01L5F1/U5JX9E7MYo/b8CtMJo0DZS1/Ufc6zzAlARGI1Rc/AXxg1M9AXsdzNGjcdgjJJ+qmfZVbqur8mx3m0YNw7jML6zY8CLGN9hcbyBcQM1AOP/bj9G9f4rxdyeEKaSoV+FEChjFL1/dF2/2uxYhBDFI8/QhRBCCD8gCV0IIYTwA5LQhRBCCD8gz9CFEEIIPyAldCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEI3mVLKrpTSlVIPmx2Lt1NK9fV8V33NjkUIIbyNJPR8KKXGeRJH1itdKbVLKfWWUqqO2fH5O6XU3UqpcWbHIYQoPqXUY0qp68yOozwJMDsALzcV2AdUAHoBE4BBSqm2uq6nmhqZf7sbOAnMybX8NyAEyCzrgIQQRfYY8BXwjclxlBuS0M9via7r6z3/fl8pdQqYBFwLfG5eWL5DKaWACrqup13otnRd14D0C49KCFEUSikLEKTrupx/Xkyq3ItmuednU09V/IO5V1BK9fC8N6q4O1GGWUqpTKXU0BzL2yulViil0pRSh5RSTyilbvHsz55rG1cppX5XSqUopZKUUjFKqTa51pmjlEpWSjVQSn3j+fcJpdSrSilrrnUtSqkHlFJbPY8gjiul3lVKVcu1XqxSarFSaqBSaj2QBtzpee8WpdRypVScUipDKbVNKTUh9+eBNkCfHI88fvW8l+8zdKXUcKXUBs/3clIp9YlSqkFxj1WI0ub5W17vOZf2KKXuVEo5lFJ6rvVuzPG3fVop9YVSqlGudX5VSv2jlIpQSv2ilEpVSh1WSk3OZ7/BSqmnlVL/es7Bg0qpl5VSwbnW0z2PGMcopbYCGcCVnvceVkqtVkqd8sS1QSl1fe7PAxWBm3Ocx3NyvN9AKTXbcx3J8FxXbr3Ar7XckxJ60TT3/DwFrALGAK/nWmcMkAR8W5wdeJLLbGAkMETX9RjP8gbAL4AOvAikALdhnGi5tzEW+Aj4EZgChGI8LliplOqo63psjtWtnvXWAg8DlwMPAXuAGTnWexcYB3wIvAE0BSYCHZVSPXVdd+ZYtxVGDca7wHvATs/yCcBWYBHgAgYD7yilLLquv+1Z5wHgTSAZeN6z7Ph5vq+smNYBjwJ1gPuBnp5jjS/GsQpRapRSHYEfgKPAUxh/l1OBE7nWexx4FpgPvA/UAu4Ffsvnb7uaZ5tfe9a/HnhJKbVF1/Ulnu1ZMM69XsAsYDvQDngQCAOuyxXqZcAI4C2MR2CxnuX3e7bzKRAE3AB8qZS6Out6BYz1xPynZ19gnGcoox3SGoxr2Vue474K+EApVUXX9WkFfYfiHHRdl1euF0bi0oH+QE2gIUaCPQmkAg2AOzzrhOf4XCDGH+ecIuzL7tnOwxg3WF949jEg13pvABrQIcey6hg3Fzpg9yyrBJwBZuX6fB0gPudyjGfUOvBkrnX/Atbn+L2XZ73RudYbmHs5xkmvAwPzOdaQfJb9AOzJtewf4Nd81u3r2XbfHN/3cWALRrV+1nqRnvWeLuqxyktepf3CSIYpQP0cy1oATuOSrAM0wbjpfSzXZ9t61nssx7JfPX/bY3MsC8K4Yfgqx7IbATfQK9c27/R8vkeOZbpn3Yh84g/J9Xug5xz8Odfy5PyuhRiJ/ghQI9fyzz3XqDzXCXkV7iVV7ue3DCNBH8RItMkYpebDGHfB6Rgl8iwDMW4APinGvoKAL4GrgUG6ri/N9f6VwB+6rm/KWqDr+mmMu+ScrgCqAp8rpWpmvTBOzrVAv3z2PTPX778DzXL8PhxIAH7Ktc0NGN9J7m3u03X9x9w70XM8R1dK2TzbWAE0U0rZ8omrIJ2B2sA7eo5ne7pRStiBkdhzK+hYhSg1nhq4y4FvdF0/krVc1/V/gSU5Vh2K8Uh0fq5z7hiwm7znXDI5rju6rmdilI5zn8fbgR25tpn1KDH3Nlfour4t9zHkOo+rATaM8+jiQhy/AoYB33l+zRnHj55tFbgdkT+pcj+/e4BdGHfKx4GdutEwC13X45VS3wGjgSc9648BDvPfCVIUj2KUrq/Sdf3XfN5vAvyRz/J/c/3e0vPzXDEk5vo9Xdf1E7mWncGowsu5TRsQd45t1s71+778VlJK9QSeBrpjPAbIyYZx01AUTTw/d+bz3g6MmoWcCnOsQpSm2hg9NXKft+Ra1hJQGMk7P85cvx/SPcXcHM4A7XNtszW5qvZzxZbTuc7jq4EngA5Azmfvufefn1oYBY47PK/CxCEKSRL6+f2p/9fKPT8fA8OVUj0wqpyuwSgtasXY148YpfDJSqlf9eK3Js2qdRmLcTefmyvX7+5CbjOOs2sjcsp9gcjTol0p1Rz4GSPRTsKo9cgEBmE8wyuL2qLCHKsQ3sCCkSCvIv+/2+Rcv5/rb1vl2uYWjPMvPwdz/Z7fedwb45HBbxjdS49i3FzcglG4KUjWef4JRjuf/PxdiO2IfEhCvzA/YCSzMRjV2aHA3GJuaw1GdfBijAYmQ3Rdz5l892M8Z8st97I9np9xuq4vK2Ysue3BqCZcpRe/+9lgjLv5a3RdP5C1UCmV3yOAwtzpg/GdgNEIL3eNRKsc7wvhLeIwHtUVdC7vwUjG+3Rd31VC+94DXITxrLuw51huwzDiH6jrenaDXKXULfmsm98+TmA0GraW4PVJeMgz9AvgSbifY7QEHQds0XW92HeXnj/wGzBK6nM9rVKz/Ah0V0p1yFqglKpO3lLzjxjV6o8ppQJz70MpVasYoc3HaIn7ZO43lFIBSqmqhdhGVgkiu8TgeW6e34UgBaNariDrMS6Qd+XsdqOUugqjajHmXB8Uwgy6rrsx2uZcp5Sqn7VcKdUCozSe5WuMc+Ypz3NncqyrlFI1irH7+RgNem/P/YZSKkQpVbEQ23BjJOrsrp7K6DJ7XT7r5jmPPce/ABimlGqbTxzFuT4JDymhX7iPgfswGpRMudCN6br+jedu92OMxHyn562XMVqp/qSUepP/uq0dwGjtrns+n6iMvt1zgb+UUl9g3BU3xmgktgqju1lRYlqhlHoXeNRzQ7EUo5qtJUZDm/sxRoQ6n6UYVezfebZVCePCEgfUy7XuBmCCUuoJjOeKcbqu52kToOu6Uyk1BaPb2gql1Of8120tlrxdCoXwBg5gALBKKTUDIzlOxOjd0QFA1/U9nr//FwG7UuobjJJtU2AIRlewV4u437kYhY+ZnpqxVZ59h3uWD8S4ST6fGIwq+x+UUp9hPO++B+M8bZ9r3Q3A5UqpSRit2vfpur4WiMK4Xq5VSr0HbMO4hl2MURNYvYjHJbKY3czeG1/8122tcyHX/wfjzrVBMfZl9+zr4VzLJ3iWv5JjWQeMZ1fpGM+7ojD6pepAnVyf74vxSCAe41nYvxiJr1OOdeYAyfnE5MDTfSbX8tsxTvhUjJuNv4GXgHo51okFFp/jWAcDmz3x7AMmY5TQs7vdedarg/HoIdHz3q85jim721qO9UdgdD9Lx+jG90nu/4uiHqu85FWaL4w+3n9hjCPxLzAeI0Gn5VpvKEYL8mTPaztG3+2wHOv8CvyTzz7mALG5lgV6zrt/POfLac85PRWokmM9HXjrHLHfitFYON0Tz7j8ziOMx14rPNcLnRxd2DBuBN7CKJBkYjyLXwbcbvb/jS+/lOfLFRdAKbUROK3ren8T9j0NoxRfSTeqs4QQPshTCm+j63rLgtYVIj/yDP0CKaU6Y5ScPy6DfYXk+r0GRmv2lZLMhfAd+ZzLLTF6fPxqSkDCL0gJvZg8DTo6YQwdWhNopufoauYZQKKgBh7Juq7n7n5yvn1uwjjht2NUS48H6gP9dV3/rSjxCyHMo5Q6ilElvhdjPIUJGL1AOuq6fq6+50KclzSKK77rMZ477QRG6Xn7jTfiHAMz5PA0xrOnwvres9+sYWf/AsZLMhfC5/wAjALqYjxH/wNjOFdJ5qLYpIReSpRSWXOon89eXdf3lkU8Qggh/JskdCGEEMIPSKM4IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8QJEGltmwYUMljJHJ5EZAFJcGHOnUqVOhR8gT5pLzXpyDnMteptD90Dds2HCJxWKZabFYbOSY01qIItI1TUvQNO2uTp06rTE7GHF+ct6L85Bz2csUKqFv2LChksViWVm1atU6tWvXPq2UktFofICm6WS6tSCnWwty6wRomm5167pV07C6Nd2i6XqApusWMMaRDQpKznSREaRQhKqAjBrOTCsWq4ZSGsrqRlk0LFaXHhCcgTU4E0tAkSeE0XVdxcXFVY+Pjz+uaVovubv3XnLe+zZN05VL0wPcum51a56Xrls1TQ/QQGH8b6oaKkULwKk892s6Ch1l0XQV4MIa6MQa6MIS4ESdXUEj57L3KWyVe32LxWKrXbv26YoVK6aVakSiyJxuLSAlw1Ux3ekOyXBpwU63ViHTpQe7NC0w79oq18//BAbqusvtCgXAatFCnGmV0PLZYUbWJixurMHpBASlExCcTkCFdAIqZBAQko7Fcs6Lf+3atU8nJibaNE2rjzGvsvBOct57OZdbs6Y7tQoZLndwhkurkOnSgjPdxk9N1635f+rsc79hUGpqgCsltMCdKasLa4ATS2Am1kAnlsDM2lWCXEnxWk3NeCQj57LJCpvQLYCSO3TzuTXdkpLhCk3NdFdMc7orpjvdFZ1uLaik91OoulVds+JKq4grrWKe9yyBmQSFJhNcOZFgWyIBQc7sbRt/Rwp5Juvt5Lz3Ipquq9RMd0hqhquS5/yvVBrn/jnp7gBc7gDIyJ761erSCUw/SctVj6zlu/1rgLWe1584Ek6VWWwCuIDZ1uxRMZ1KMpCcYqMjN5TWtn1RaqYrJDHNVSU5w2VLy3RX0tFL/VnmBWdazRlEekJ10hOqwyGwBqUTXCmR4CqJaIGZJRGjKHuldd7LOZ+XruskZbgqJaW5bKmZrsrpLi1U10v/3C8OhVYVuNLzMjhse/gvwS/FkbDDlODKESkhlZLFixdX/uqrr6oU57OapqszKZlV959KabLtSGL7f+OSI+KS0humZroqr/x1mRoxsDdZr8s7tWbkVX2yP/v3xvUMH9CLwZd25raR13D86JHz7is9LY0hl13CiIG9s5dtWreJ/r2uDu1wxQ206Xc9d05+joyM/HPwnZOfo13/EVw2/A4SEpMA40J01Y0T2RN78L8V3ZkVSD1dmzOxLdTp3a0D00/XbbFm8p04bF1x2OTvUJhu3bp1FRo0aNCurPY3duzYxuHh4RFZr+Dg4IufefbZuqeSM6q//cHcVq0i2nbq2uniVpd261j35eccFTVNyzeZv//ma1zTpwsdGldn+Q8xZ703ZvDl2deKof27c1Gjauza/k+ebew7cJhuV99Em37X88IbH2Qv3757L9eMe6C4h9gcGA1MB7bjsG3FYXsah63MvuPyRi6kxeR0Os/7/vLlyyt///33tsJuT9d1EtKclfefSrFvO5rY4eCZ1OYJac6auZ+D9+zbn/k//p79Cm/XnkHXDQdA0zQeu/cOHnG8yHe/rad3vyt45enHzrvfaS866NC521nLWrVpxU/LF6Zs+ukLtvw8n7hTZ3jno/l5PvvPjn/Zve8AW36eT98enZm7wLiYvP/ZQvr16Exze6N896nQldIyg4PTjj+Acfe+H4ftGRy2xoX8uoTweXPnzj2wY8eObf9s3bZz3rcxp5SyqN6RIxocjk9renHPvpWyz/MffuOP33/Nk6yzdOvVl3c+/pJO3Xrkee/T75ZlXysmTIqiRavWhLVum2e9t+fM556bR/D3snl89OVikpJT0HWdB556lenPPFJShxwBTAX+xmHbicP2Ag7bxSW1ceHjCf2TTz6p2qxZszatWrWKmDBhQoNq1apdtHPnziCALVu2BPft27dF27ZtW4eFhUW88MILtbI+p5TqFBUVVbddu3atGzRo0G769Ok1st4r6HMPPvhg/bZt27aeOHFiwz///DOkU6dOrSIiIlo3b968zeTJk+sBrF69OuTjjz+utXDhwurh4eERDz/8cD2ABQsWVOnUqVOrNm3atG7Xrl3r7777rnJKhivk0JnUhtuPJrXffyolLCHNWSOr5XlB4o4d5c+Vv3H1sJEAbPt7E9aAALr2MErb1984jhXLfiAjPT3fz6/5/Vfijh1l0JDhZy0PCQ0hODBQAWRmOklLT0epfBrRBQSQkelE0zRSUtMICgzk6PETfP7ND0y648bCHEKWhsCTwD4ctiU4bENx2Ir9OEj4r/Od83fccUfDtm3btg4PD4/o3Llzq82bNwcDJCcnq8jIyGbNmzdv06pVq4iePXu2zNrepEmT6jdp0qRtmzZtWs+dO7d6zn3ld74C9OjRo+WHH35YLWu9xYsXV27dunVEUY5D13XiUzNt+06mNNt+LOmiDz+a27BHn8uoUbsOABUrVcZiMS4DGRnpODMz8j0HAdp17ETDJvYC97nwi7kMuWFsvu8FBgaQmpaO0+lC0zQsFgszP/6KAZd2p2njBkU5tMIKAx4FNuCw7cVhewWHrdQe45YXPnvRPHz4cMDEiRPtv/zyy46OHTumT58+vUZ8fHwAgMvlYtSoUc3mzp27r2PHjulJSUmWTp06hffs2TOlT58+qQDBwcH6li1btm/cuLFCr169Wt99992nlFIFfs5qter//PPPdoAzZ85YVq5cuSskJERPTk5WXbp0aT1w4MDE/v37p9x0000n4uPjrbNnzz4IsG3btqBnn322/vLly3dVq1ZNW7txS63BV17Rcskff6ug4OBifQeLvvyMXpddQY2axj3HsSOHqNfgv1JxxUqVqVipMieOH8tzwicmJPD6C0/xztyv2Lt7Z55tH4g9oPrfeBd79h8isn8v7r55RJ51WrWw069HZy4eOJqWTRvz1KQ7uHXS07zy5AMEBBTrT8vCf8/hjuGwzQHex5GwpzgbE/7lfOc8gMPhOFa/fv1DALNmzao2ceLExr///vvur7/+2paQkGDds2fPVoDjx49bAb744gvbokWLqm3cuHFb1apVtSFDhjTN2lbO87V69eraP//8E9yvX79WBw4c2HLTTTed+vjjj2vccsstZwBmz55d48YbbzxZmGNId7qDTyVn1ExIc9XIWfv2zbxPmfTEM2etu2n9Wp6NepADsXsZceOt9Bs4qNjf3bEjh9iwZjXPT3833/fvu/UGxj34FO9+soCH7xpLQmIyX8UsY+nn7xR7n0XQFHgYeBiH7U/gDWA+joTzV4OKPHy2hP7rr79WbNWqVWrHjh3TASZOnHgqMDBQB9i8eXOFf//9N2TUqFHNwsPDI7p06RKekpJi/fvvv7NbZ44fP/4UQMeOHdOtVqt+4MCBwMJ8bsKECdknbmpqqmXUqFH2sLCwiE6dOrU+cuRI0IYNG/Lt/rFo0SLb/v0Hgnv07NW2ddv2F48bO6axsljV0SOHinX8uq7zzbxPGXJDkUrC2V588hFumzgp+2Ygt6ZNGumbl83j2KafyMh08vWS5fmu99yUe9j00xd8OetlfvptLY3q18HesD63PPgUw25/mHnf/lis+IC6QBSwG4dtGQ7bSBy2smvRK7zO+c55gEWLFlXp0KFDeMuWLdu89NJL9bdv3x4K0Llz59Q9e/ZUuPHGGxu/99571YKCgnSAZcuWVb722mtPV69eXbNYLEyYMOFEjm3Z9u/fH9yjR4/w8PDwiOuvv765Uop///036MYbbzyzadOmivv37w9MSEiwLF++vGrW9eRckjNcoftOJjffdTyp7amUzLo5k/lfa1eTmpxM78sGnPWZDp27sWDZan5c+w/btmzir7Wri/3dfTv/cy69fCDVqtfI9/16dWrx42fvsHHp59w59nrun/oKr02dxC+r1jPs9ocZfc9j7D90/vY4JaQr8AlwAIfNgcNWuyx26i98toR+PrquU6VKFdeOHTu2nWud0NDQ7AuB1WrVXS6XKsznbDZbds/sSZMmNahRo4Zr69at2wIDAxkwYEDz9PT0PPViGS53UJrbUr17n8us0W+9f95Wqnt27eDRe28HjBP6sedfzXe99WtWkZGRQY8+/bOX1a3fkKOH/2uIlpKcRHJSIrXq1M3z+U3r1rBp3Rr+99yTZGRkkBB/his6Xxa6eO1iACyelvSVKoZyw7UD+fTr77nh2oHnjDsxKZlXZ37Mj5+9zYtvfkifSzpx47BBXHTFDVwzoA8hIRXOd9jno4D+ntdBHLbngdly9y5y2r17d9CUKVMar169enubNm0y1q5dG3L55Ze3AoiIiMjcsWPH1sWLF1f+6aefqjz11FMNN2/enOccz1mlres6vXr1Svzuu+/25be/QYMGnXnvvfeq16pVy9W9e/fEunXr5hlk6dFHH6278Jtva6EsAfc/9rSlZ9/++W2KhV98wuDhN2C15t9tvHqNmvS67AqWxnxLp0t6Fur7yEnXdb798lMef/61Qq2/IOZnmtsb0qFtK1r3GcqfMXNZv3kbU1+ZyUfTnyl4AyWjLvAUMAWH7UPgFRwJ+f5fiP/4bAm9b9++KTt37gzNek42Y8aMGk6nUwFcdNFF6ZUqVXLnfDb+zz//BGdVtZ1LUT8XHx8f0LBhw8zAwEA2b94cvGrVquxW7VWqVHEnJCYGHDyd2mjX8eS2XS69vNKalStUzhamWzbm7anTPCw8uxHLuZI5GM/Drh0+6qyLQET7DricTv5c/TsAX30yhz6XX0lwhbzJdMkff2e/Xnr7A5q3bMVP65enAhzYewBXptGqPTPTycIly2nfumWebeQU9cKbTH3wDkJDQkhJTUMphVIKp9NFZgENCIugETAT2IXDdqs8Zy9fznfOnzlzxhoQEKA3btzYqWka06ZNyy7Z7dmzJ1ApxZgxYxJmzpx5SNd19u7dG3TFFVckLVq0qPqZM2csmqYxc+bMmlmfGTx4cOKqVauqrF27Nrt27pdffsmufbvttttOfvbZZzU/+eSTmrfccstZ1e26rnMqOaP6zfc/WmP+T6uD5i9dec5knpyUyE/fL+K6kWfXtO37dxeaZpQdUpKT+P3npYS1blOs7+3PVb/hdrnofmm/AteNT0hi+gef8dSDdwCQmpaOxWLBYrGQnJparP1foArABIyauk9x2PK26BPZin1BNLvfaIMGDVxvvPFG7JAhQ1oEBQXpffr0SQwNDdVq1KjhDgwM5Lvvvvv33nvvbfT222/X0TRNVatWzTV//vy9wDmHKy3q56ZOnXpk3LhxzT7//PMaTZo0ybjkkksSwRi96Yprrg+a99XX1a/o3Y3LrhrMXQ9MJvrN93g2ahLpaak4nU7C27Qj+q33i3zsSYkJ/LxkMQt+WnXWcovFwgtvvMuzUQ+SkZFB7Tp1eX76zOz377lpOHc/9BhtLup43u2vXbmWSe/eGxpkteByu+nfqytPPnD7OddftW4TaenpXHHpJcZ+xo1g1D2P8dI7cxg7LBJblcpFPsYC2IEPgEdx2J7AkTCvpHcg8mfmeX++c75Vq1aZ11xzzenw8PA21apVcw0aNCg+63MbNmwImTp1akNd13G73er6668/3a1bt7Ru3bqlrV27tmKHDh0iKlWq5O7fv3/Cn3/+CUDbtm0zZs+evffOO+9skpaWZnE6napNmzap/fr12wfQr1+/VKvVyv79+4OHDh2amLWvhDRn5WMJ6Q0zXO6CR14Dflj0NRHtLqJJ0+ZnLf/xu4X8+N1CAgICcLvdXBF5LUNH3QTA1s0beee1F3j74y8BmDX9Vb785EPOnD7Jvzu38+KTk5n3wwqq1zDuTxZ+MZdrR4zJbmR3PlOen45j0p3ZNWpP3H8bna8aQ1BgIB+89lRhDqm0WDG6wN2Aw/YB8DiOhBMFfKbcKexY7uEBAQE/tGzZMjk0NDT/JtMmOHPmjKVatWoawNy5c6s+9dRTDfbu3bvVrHg0XVdxiRm1T6Vk1HNr5xp20XuFVjyTkuFOrQhg1y1pFZ3pIQV9pjjSXTr7Dp+g6aqHqJB8sOAPFOwP4CEcCX+UxMaEwRvPe28757OkZrpCjiakN0zJcBVr7AkzRQTFFW7o13yUwrlcWPHA08BbOBJcZbljb+bTVZYvvfRS7YULF1bXNE1VqlTJ/fHHH5v2jCUhzVnlaHxa40y3Vrwm617G4qUjUp1Dd2A1Dtt8IEqetfkvbzrnATJdWuDRhLQGCWnO/FubidJSFXgduAOH7QEcCUtNjscr+HQJ3RtkurTAw/FpjZLSndUKXtu75Syht3CTGezOLJVW5aV8V58BPAH8D0dCflPLiEKS8/7cdF3nRFJG7bikjAaFHTfCW/loCT23RcCk8t7F1af/EM2k6zpxSem1dh1PauMPyTw3Rf7DTPqAYOAV4BccNrvJsQg/lJrpqrA7Ljn8WGJ6I19P5n7kGmArDtuLOGx5J4sqJ+SPsRgyXO7APSeSWx1LSG987ikKfZuPVbnn51KMISZvMTsQ4R90XedofFq9PXEpEelOd7lNGl4sGGPsio3ldUhZSehFdDols9q/x5PbpGa6K5kdS2lS/lHyqAzMxmFbiMOW/wg6QhRCWqarwq7jya1PJGfUL4vZDsUFaQn8gcP2oNmBlDV/uGiXCbemW/afSmly6ExqM7eflspzsuiaP/1tXAf8g8N2jdmBCN9zMjmjxp4TKa0L2xVNeIUg4H84bItx2GoWuLafKH4r99IcSN+R4FVzI6dkuEIPnk5t5i8t2AtBV8YIbf6kNvAtDtts4AEcCUlmB+STSuu897JzHoxpjA+eSW2ckOYsNwnBD0UCm3HYxuBI+NXsYEqbT5fCsmZeCg8Pj/jzzz9Dcv/+8ssvX3A168nkjBp7T6aEZyXzuGNHuWvMMK7p04Xrr+jJpDtu4vSpQs3LcJaM9HQeGD+GwZd2ZviAXtw5eggH9u3Nfv+fTX9x85CBDB/QixEDe7N21W/n3Nb55kB/6M6bubxTay5qVI3EhIRzbmPhF58wsNvlodf3u57tf2/Lbh0+9ZUZfLZwSZGPz4vdivGMrZXZgYiSs3PnzqDc53uDBg3arV69ulhjKaQ53cG745JbFzWZ796+lVuGDeLavl0Z2r87Ux+aSHpaWvb7ifHxPHrv7Qy+tDND+ndn2ouOfLeTnpbG4w/cxdD+3Rnavzv33TIq+zqzecOf2XOcD+nfnWeiHiAzIyPf7TwT9QDDLu/BbSOvISnROP91XefusddzMLbc9O6sD/zsmaLZr2tXfTqhz5o1q9aUKVOO7tixY1vXrl3Tcv4eFxcXMHv27GIndF3XOXQmteGR+DS7nqOBmNVq5Y77H2bRinV89dMqGjZuwuvPTS3WPoaNuZlFK9bx5dKV9B1wFU9Pvi973w/ePpYJkx7ly6UreXnGh0yddPdZF4YsBc2BPvzGW5j347lvBrLMeuMVFi5flBr1fBSzXn/PArB15x7+3r6b0UOuKtbxebHmGP3We5kdiCgZu3fvDr6Q8z2n0ymZ1fbEJUdkuNwhLlfRxiwJqlCBR597mW9//ZMvl64kLTWVD2dMz35/6sMTCW/Tnu9+W8/Cn//gxvET8t3OV5/OIT0tjQXLVvP1z39Qo1ZtPpr5BgBhEW35dPFy5v/4Owt+WsXpkyeZ9/EHebaxe8c2Duzby4Jlq+ncvReLvzYGVPz684/p0qM3jexN83zGj1kwpmj+FYetVOaD9QY+m9DHjRvXaP369ZWeeeaZBh07dgzP/fu9997bODY2tkJ4eHjEZZdd1gKMO/b77ruvfseOHcPr1q3b/uWXX641ffr0Gh06dAhv0KBBu1mzZlUD43n51UOubz+wT88611/Rk4k3j+Bk3HEAatSqzcVdu2fH0a5jZ44cOlDk+IMrVKD3ZQOyJ4Ro37FL9nbiz5zmzOmTXNK7LwD2Zi2oXMXGyl+X5dlOQXOgX9K77zlnVMvJarGSkZ5OWmoagUGBuqZpPOh4jenPPFzkY/MR1YFlOGx554UVXmvBggVVIiIiWoeFhUV06dKl1YYNGyoA5He+A8yfP79a1vk9efLkelnLDxw4EDBo0KBm7dq1ax0WFhZx33331Qc4mpBWt114i2avPT/VMvrq/jz5YP4J91yaNG1OWGtjuHGr1Urbizpy5KBxXh/Yt5dtf29k7B33ZK9f0zP/eW5KKdLTUnE5nbhcLlJTkqldz8hDISGhBAYak7U5MzPJSE/Pd670wMBAnJkZaJpGWmoKgYFBnDh+jCXfLmDs7ffkWb+c6AWswWEr0vz1vsJnE/qcOXMOtm3bNjU6Ovrgxo0bd+T+/c033zxgt9vTd+zYsW358uX/Zn0uJSXFunHjxh3Lli3bOXXq1EaHDx8O2rRp047PPvtsz5QpUxqnO91Bu+OSWj/y9EuBn3//C1/9tIqOXbsz4/XoPDG43W6+mPMefQcUf57iLJ/Onpm9nWrVa1Crdh1+/G4hYFS/x+79N/vCkNP55kAvigcef5qbh4wN+eCND7j34Xtc73w0n8j+vWjSsP4FHJXXCwa+wGF7xOxARMEOHz4cMH78+GZz5syJ3bVr17Zbb731xIgRI5prmsa5zvf4+Hjrpk2bdqxfv377jBkz6uzbty8QYPTo0U3vueeeuC1btmzfunXrto0bN1Z8Y9aHLU8kZTQASDhzhk+/W8aLb75X7HhTU1P4+ou52ef13t07qFOvAc89NokbBvXlztFD2f7P3/l+9vox4witWJl+HVtyWccwkpMSGTXuv/kUDh88wPABvehzUQsqVa7CyJvG59mGvXlLunTvzQ1X9eHwgf1EDh3BK08/xqTHnyEgwKcHCb1QDYHfcdi6F7imj/HZhF5co0ePPg3G5AtBQUHaqFGjzgD07t07NTExMWDjv4daZ7q0Cku++YpRg/oxtH93Fn4+l51b/zlrO7qu8/zjD1HZVpUx4++6oJjef/M1Dsbu476o/6rup33wKd/M+5QRV17Kp7Nn0rHLJVhL8SS8/KrBLPotJm3OojmEVgzVv/1xBRNvGcljL77JyLum8Hj0W6W2b5Mp4GUctrf8/fmar1uxYkXFsLCwtK5du6YBTJgw4XRcXFxgVpLOz9ixY08D1KtXz9WwYcPMXbt2BScmJlrWrFlT5aGHHmocHh4e0a5du4j9Bw9V2rV7T/Y47NcMH5VvqbewnJmZTL77Vrpf2o/+V10NgMvt5p9NG7jymmF88f2vjL19AveOuwFnPrMR/vHbcnRd4+cNO/l5ww4qV7HxzqsvZL/foFFjvly6kuV/7cCZmcGyJd/lG8fEyU8w/8ffeXXmHNb89it16zegfqPGPDnpHibdcRM/LPq62Mfo47Jq6CLNDqQklbvbtJCQkOwGX1arVQ8NDdUAUjLdFZVSZDpdATv//IPPZr/Lx98upUbNWvy69Hveee3Fs7YTPXUKx48cZtr7n55zFqObrhtAeloagUHBfPpd3upygI9mvsnPSxbz7uffEBLyX6+YVhHtmPHJV9m/X9evGy3CwvN8vihzoBfWs48+F/C/pybx6+r1HDl+knkzX+Lm+6fyy6p19OvZpdjb9XL3AI1w2EbhSDBlnkhR8nKf706nM3u467/++mt7QFCFgNiTKS3SXe6zTuLQivkPM7Fn1w4evdcoKXfo3C3fKY6dTieP3H0rtWrXZcrT/9Xs1avfkNp162U/HuvV7wpczkyOHjpI46bNztrGV599xKBrr8+e+njQkOF88Nb/8uwrtGIlBl4zlO+/+ZKrrh12zu8hOSmRj959kxmfLuCDt16n8yU9iRw6guEDe3NXZGeqnPOWyK+FAt/gsN2GI+Ejs4MpCX5bQq9atao7KSmpUCWuhDRn5f2nUsOyfk9MiKdipUpUrVYdZ2YmX30656z1o6dO4WDsXl5/7xMCg8493PnH3yxl/o+/nzOZfzzrbZYsWsC7ny2kis121ns5q8wXfPYRISGhdO15aZ5tFGUO9MJYsnAJLVo219q1bklKWjpZhRSLRZGc4vd57hqMRjO1C1xTlLm+ffum7Nq1K2TdunUVAGbNmlWtTp06zqZNmzqLcr7bbData9euiY898UTDPSeSw9Nd7tC4Y0c5fvRwgZ9tHhbO/B9/Z/6Pv+ebzF0uF1PuGY+tajWmvjTtrFJ+RPsOVKxUmV3bjdq+LRs3oOs6devnbaPVsLGdP377BV3X0XWd339eSvNWrQHjWXxWqd6ZmcnyH2IICz//XOnTX3yaOx+YTEhIKGmpqSilUErhcjrJzMws8Lj9WAAwB4dtstmBlIQL6Ifuff1Gc+rWrVtqWFhYWsuWLds0atQoI+dztZySM9yVD5xObZKzJXvPvpcT8/WXXNunC7Zq1bmkVx/ijh0FYOO6NXz+4SyatgjjxmsuB6B+oyZMe/+TIsV3/OhhXnv2CRo2tnPbyMEAZ5XkF3z2ETELvwRdp2mLMF5/f272xWH+3NmcOH6Mex5+rMA50CfePIKd24zZJYf2706Tps344MvF+cYUfyaeL2Z/wSdfz8lEdwZe2bcH73+2kPaXj6BpowZc2a9HkY7RR3XBGGWqN46EIwWuXd6YeN7Xr1/f9f777++9+eabm7pcLmWz2dzz5s3bY7FYCn2+Z/n0iy8O3Xv/Q+GD+3azKKUICa3Ik9H/o069C2sA/eN3X/Pzku8Ia92GkVcaN+BZJXmlFM+9PoOnJz9ARnoaQUHBvPbuxwQFG8Nb3HPTcO5+6DHaXNSRCQ9G8UzUAwy93DjnmjZvyZPRrwPw5+rf+Gz2u1itVlxuN916Xsod95+7GcjGdWtIT0+n+6X9ALjh5tuYMvE2PpwxnauHjqSqrQq4Ui7ouP3ASzhsdYCHcSQUPGOZlyrXs62dTsmsdvhMWlMZytGQNdtaZWtwSuO0pFIbq9qLZmg6ny3ApTgS4s0OxCz+et5nuNyBe0+ktHKWn4GizstPZlsrKR8D43w1qfttlXtBEtKcVSSZ50+BT/4xl7B2wHc4bMUamER4p0yXJslcnM9NwJtmB1Fc5TKhJ6e7Kh48ndpcknn+yuUfRf56AfOk9bt/MJJ5siRzUZB7cNieNjuI4ih31+60THeF/adTWsg8xucmdzlnGQzMMjsIk2iArvv+VLq4Nd2y72RKy3I0H0OZyH5iW4hHtz5mKg7bvWYHUVTlqttahssduO9USku3pper4y4qi1S553YrDlscjoRHzQ6kjB3RNC0hLi6uTu3atU8rpXzy70LXdQ4npDdJz3TL45N8pCu3CnAX/b9W1+FEihuVkUhgetHns/AB03HYjuNImG92IIVVbhKby61Z951MCXO5tXP3MxMAWHzysl3qojwn9zSzAykrnTp1St6wYcNd8fHxMxMTE234aOVNUoZWI82l59+xXGCxJlgDtOJ1XVMZiTTc9BpWt9+0mcxJAR/hsB3EkfCH2cEURrETeruP2pXa9Klbbt5Sol1jdF1n/+nUppkurXids8sZP5w6taT8D4ftBI6ET80OpKx06tRpzYYNG3ppmlYfH3xE9/zvZ8YdT3FNMTsOb/ZFhRd31dJPtS3yB3WdwPST/prMs1TAmHb5EhwJewtc22R+WULfuXNn0LfffmubPHnyCYCjCen1L704wvb6+58S3qZdmcayYtkP/O+5qWhuNy3CI3j2f29TqXKVPOvN+F808z56n9p1jfkjmoeFnzWO9LLvFzHjf9FkdTN8c848GjRqfNY2EuPjefCOscSfPsXFXbvz+AuvAXD61EkeuWscMz9bmD2pw/lYpMb9XBTwoeeOveAp7PxEp06dkoFdZsdRVPaomGsBGae/AEGZsekVVLzZYXizWkAMDlsPHAlnzA7mfHzujrswck6leCY103YyOaNeQZ8pjKJOpZiakozjkfuY9v4nfPf7BmrVqcus6a+cc/1BQ4Znj0KVM5lv/+dv3nz5OWZ8soCvf/6Dud8upXrNvNM0x3wzny49erNg2Wr27dnN7h3bAHj1mce5/9GnCpXMAXzzSWmZCQQ+x2Erkak6RemwR8W0Bj7FT69xosyFA3PMDqIgPv3HXvBUiq3bDLn22uZZ6/+85DvGXjuAq3pcxKzp/w3beDLuOI9MuIXRV/dn2OU9eOvl57Lfu6p7e15/4SmKM5Xiyl+WEd6mPU1bGKPKjrxpPEu+LfpkCB/Peouxt9+dXXqvWKnyWeO+ZwkICCQ9LRVN03BmZhAYFMSqX5ZRxVaV9hcXfgx2i3TnK0h94BMcNvmevJA9KiYEmAeU2uBIoly6BoetaEmgjPlsQi/MVIrf/LqWNz78PPuim5SYwNxvl/LZ4uV89O4bHD9qjOz5xIN3M/Km2/hs8c/M++E3tv69iaWLv8neV3GnUjx6+BD1GjbM/r1+o8acjDt2zpL+0sXfMnxAL24beU322OwAe3fv5NjhQ9x6fSQjrryUt155HrfbnefzkUNHcDB2HyOvvJRuvfpSu2493nvzNe6d/ESR4rb4XxeU0jAAeMzsIES+pmEMDCRESXvNm+dS99ln6PlNpTh58uTG2VMpWqyBmS7trOMbdN31gDHfeIPGdg4f3E9lm40/V63g9Mm47PVSU1KI3fPfUNAXOpViYQy/8RZuu/chAgMD2bhuDQ/ePpbPFv9M/YaNcbtc7Nj6N+/M/QpN17j/1tHMn/sBo8bdcdY2QkMr8tq7/00a9IrjMW65+34OxO7Lnqnp9vseolXE+a910iiu0J7GYfsNR8LvBa8qyoI9KmYkcEeBKwpRPCEYj9y64kjIMDuY3Hw2oZ9PulsPRVnyHFtQ8H+N3K0Wq1HK9ZRG53770zlnKCvuVIr1GjRkze+/Zv9+5OABatauS0A+85rXrF0n+98du1xCeJv2bPt7E/UbNqZug4b0v3IwFUKMbrT9r7yazX+ty5PQc9qycQOnT52gz+VXMm7oVTw//V10XWfqpLuZ/VXMOT8HYPGDgUTKiBWYi8PWHkdCotnBlHf2qJjmlN9BgETZaQ+8BDxgchx5+GyV+7mmUmzUuImmB9vqJiUV7voaWrESXXr0ZvY707KXldRUij379mf7P5vZ96/RQHjexx9w5TVD891Wzv3t37eHndu20CLcqNkZdO31/PHbcjRNw+Vy8cdvv9Aq4ty9TJxOJ9NedPDw1OcBSEtLRSljCtTU1IJnVVLyDL0omgDTzQ6ivLNHxQQAnwN5u5AIUfLuw2G7yuwgcit2Cb2k+4oX1bmmUjyckNGkeXhEQPOwcIb2707Dxnbe+PDz827rhTdm8eozjzO0f3dKcirFipUq43h5Og/cdiNul4sWrVrz7OvvZL8/YmBv3vpoPrXr1uPNl59j29+bCAgIwGK18thzr2Bv1gKAK68dxvZ//mZo/+5YLBYu7tqdMbfedc79fjTzDQYPu4EatYxpve9+6FHuuXkkAJMeL3iIYouuSUIvmnE4bN/iSPjG7EDKsYcwpr4VoiwojHnU2+NIOG52MFn8avrUU8kZ1Q/HpzU1Ow5flTV9aku3nhnkdpbaiHp+OOUiwAmgnTed3OWFPSqmGfAPxvNNUURrg+9eX0fFdzY7Dh+1BIj0lulWfbbKPTeXW7MeS0xvZHYc/kDJxDXFUQv4n9lBlFPvIslcmOMqjClXvYLfXLiPJqQ3kElXSoZUuRfbKBw2qfYtQ/aomJuAy82OQ5RrL+CwecWYB4VN6BpAYarnzZCS4QqJT82UkbtKSGmX0P14ykWFlNLLjD0qpibwmtlxiHKvPuAV8wUU9sIdr+u6KzMz0ytnKjsSn9bY71KDiUp7pLhMDdBcWJ1Jpbkbs/TCYRtmdhDlxEtA3jGQhSh7D+Owmf7It7BV1Cc1TVtx/PjxyMDAQKfF4j0TbCakOW2paRkyNWIJcGe6la7pWrqr9Eromg4nEtIJjfuLgEy/7br9Eg7bdzgSijcnpSiQPSqmLTDO7DiE8AjBuMEcbWYQhUronTp10jZs2DA1LS2t3Z49e2rhJSOJ6aBOp7rrub3m9sK3BQWlBLhxYnU6S3EvOpa00zTeOQflv7O6NQfuAV43OxA/9gJ+1AZI+IVROGxv4EhYY1YAheq2lmXDhg1BQGO8ZIS5Z387fceJVPeDZsfhL6o0mfO3sp6p+/Xhw7VLbSeam6C0OCx60Wau80FngBY4Ek6bHYi/sUfF9AJkuN0SIt3WStRaoLtZ3diKlJg7deqUCfxb4IplwB4VY0Oq3EpUfNrh9ODAMyl+1DfcTNWAqXjh8JB+4CWzAxDiHLphVLt/asbOfbnKahLGRVOUIKuuy3PfknM3DltLs4PwJ/aomOuAHmbHIcR5ROOw5T8xSCnzyYTuKZ3fb3Yc/igASvMBenkTiPGsV5QAe1SMAp41Ow4hCtAQuNGMHftkQgfuBWxmB+GPAnVdEnrJGoLD1tjsIPzE1cC5ZyUSwnuYUuD0uYRuj4oJRZ5LlppA3f9bq5UxK3DumXREUUw2OwAhCqktDluZj2Docwkdo8FBDbOD8FdBuu42OwY/dBsOW7DZQfgye1TMJUAvs+MQogjKvJTuiwn9HrMD8GfBktBLQy1ghNlB+LgHzA5AiCKKxGFrUZY79KmEbo+K6QF0MDsOf1ZB1zWzY/BTciNaTPaomIaADKcrfI2ijEvpPpXQkYtiqQvRJKGXkm44bJ3MDsJH3YWXDGYlRBGNw2ErswbcPpPQ7VExtYHrzY7D34V465R6/kFuSIvIHhVjAW42Ow4hiqkScFtZ7cxnEjowHvDK2d78SagmBfRSdAMOW3Wzg/Ax/TD69QrhqybisFnLYke+lNBN6ahf3oRKAb00hQC3mh2EjxlrdgBCXCA70LcsduQTCd0eFdMGiDA7jvIgVNO8YiY9P3an2QH4Cs+YE9IYTviDMunl4hMJHenyU2YqaqU3F7oAoAUOm9ycFs51GM8ghfB1Q8qi2t1XLt6S0MtIRV3zlb8JXxZpdgA+4iazAxCihNTCaA9Sqrz+4m2PimkPhJsdR3lRUdPLpPFGOTfI7AC8nWcCpv5mxyFECRpe2jvw+oSOlM7LVEVNk/6+pa8nDlsVs4Pwclcgfc+FfxmMw1aqbZR8IaFL9WQZCtV1uYiWvkBggNlBeLmrzA5AiBJWDyjVwaW8OqHbo2JqAheZHUd5UlHTAs2OoZyQavfzu9LsAIQoBVeX5sa9OqFjNCKQblRlKFTTJaGXjatKu/rNV9mjYi4C6psdhxCloFwn9DKfT7a8C9U1GY2vbNQFLjY7CC8lpXPhry7GYatVWhv39oQurVzLWIiuy7zdZUeq3fM30OwAhCglCuhSWhv32oRuj4ppAjQ3O47yJkTTK5gdQzkiDT5zsUfFWIGuZschRCkqfwkd6G12AOVRiC4JvQx1wmGTGpGztQYqmh2EEKWoc2lt2JsTekezAyh/lB4sCb0sBQBtzQ7Cy0jpXPi7Uuu6JgldZLPqyqWkV0FZk7/zs5VadaQQXqIeDluD0tiwNyf0DmYHUN4E6LjMjqEc6mB2AF5GErooD0ql2t0rE7o9KsYOVDM7jvImQFdus2Moh6SE7mGPigkG2psdhxBloPwkdKTUYoogXWlmx1AOtTM7AC8SgTEsrhD+rlwldBnu1QTBGlJCL3uVcdjqmR2El5BuqqK8KFcJXU5sEwTrupTQzRFmdgBeQs57UV7UxGGrU9Ib9daE3tjsAMqjCjq62TGUU63MDsBLNDM7ACHKUInXzHlrQm9idgDlUYimS0I3h5TQDVJCF+WJ/yd0e1SMBWhodhzlUagkdLO0NDsALyEldFGe1C3pDXpdQseYNjHA7CDKo1DJ52apbnYAZrNHxQQgj9pE+eL/JXSkut00FTVpE2eSKmYH4AVqAVazgxCiDJWLEnqJH6QonEqaJsO+mkMSOlQ1OwAhyli5KKFXNjuA8qqiJHSzSEKXhC7Kn3KR0CuZHUB5VUl3S0I3h9zEgs3sAIQoY+Wiyl0ubiaprLnlGaY5AnHYQswOwmRVzQ5AiDImCV2Unkqa2xv/HsqL8l7tXtXsAIQoYxVx2Eq0EOWNF3BJ6CaprGtSQjdPeU/oUuUuyqMS7VrkjQldnqGbpLLmkoRunvKe0L3xWiRE6XIklOjgH954EsnoJiappLllQB/zlPeELoMgiPKmxGe39MYLuNPsAMqr+533174r4Ltf+1k21a5IemulkFbvZaeC2QGYTBK6Se7KfLByd8u2VS0th1x2dUzVU6dDq5JsC8ZZR6lyf6NZmkr8b14Susi2VW/a4l7nfS0AanPmxCjr8p1Drb8HNFZxbZSStg2lLMnsAExW4qUVUTgb9ZatNrpbtsrvf6AyKYl2dfx4C3U4IcxyKLWFOqI3VscDaqn4SpVJqxaAu65SBJV91H5BSuiibMRRrdZ097Ba093DCMSVeYVlw19jrT8ld7LsbBKk3DI8b8lLMDsAk0kJ3QslUbHKFr1ZlS16s3P8D+l6Hc7ENbUcPRmmDie2VIcymqsjNFAng2uoxCohZNS0oNeS2r58lYsSusvsAMTZnAQEfa91u/h7rRsArdSBfTdZlx640rquSnWS2ipFoMkh+gNJ6MIHKXWc6rWPa9Vrr6FNvmsE4spsqOKONVdHzoSpw8ktLYdcTdUxS111OqQqyVWDcdYup1X75SKhSwndy+3UGzd93HVb08ddt1GZlIRh1t+33WD9xR2mDoVblF7T7Ph8VHlP6HLe+yknAUH79PqN9+n1Gy+jc74VzQVU7VcPwF3HD6v2y0WVe5rZAYjCS6KibY77yu5z3Fei0LSelq3/3GRderKXZUv9UJUZZnZ8PkIDEs0OwmSnzA5AmKcIVfsnwtThJD+p2i8XJXQ5sX2UjsWyUmvXdqXWDoAGnDg6JuDnf6+zrqpQj1NtlaK8D296Lkkl3R/VB500OwDhzQpXtd/IqNo/HaYOpbSwHHY2VcesXly1n1zSG/TGhC4ntp84TK16L7tuqPey6waCyUwfZFm7/saAZakXqT3NA5TWwOz4vEh5r24HOGF2AMK3OQkI2qvXb7xXr9/4p/NU7TdVx443V0fiwyyH0luow+7GKi6wtoqvWIm0GmVctX+0pDfojQldTmw/lEFQhYVa784LM3sD0F7t2X1zwNIjl1s2VKtCahulKM+j1ElCl/NelIEkKlb5W29e5W+9eaGq9sPUwYxm6mjOqv1aFvSaJVS1f6wEtnEWb0zoJX6Qwvv8rTdv+ZBzQkuAaiSeHmFdsX249VfVTB2NsKhyN1FHvNkBeAGpmRNeoOCq/SCcGQ3ViePnqdqvU8hxO0q8hK503bse3dmjYmzIBa7csuJ29bFs3nqTdWl8d8v2hsHK2dzsmMrAYhwJg80Owmz2qJgzyKxrwg9UJiWhqToWd56q/bpK8TyOhKdLcr9eV0KPjY5MsEfFpAAVzY5FlD031oDl2sUXLdcuBsCujh68yfrTvqutf1SsRUJbpQg2OcTSUOJ36j7qKJLQhR9IoqLtb7257XxV+1VJjt1Uwvv1uoTusQdob3YQwnyxer1Gz7huavSM6yZCSU+51rpq8yjr8ow2KjbMqvQ6ZsdXQraYHYCX+BdobXYQQpQ+peKpfLCkt+qtCX07ktBFLqlUqPi5u3/Xz939AV3vonbuuClg6TE/mExGErrhX7MDEKIMxZb0Br05oQtxHkqt08PD1znDw8HnJ5P5x+wAvMRuswMQoow4gQMlvVFJ6MIvnGsymc6WnU0CvXsymWM4EqSFt0HOe1FebIuNjizxeUu8NaHvMDsA4bt8bDIZqW7/z1azAxCijGwqjY1aSmOjJWAXMvuSKCGeyWT6dMp4t2P7jPdSHc6b/tihNVqp6cobSsaS0D1ioyNPIP3RRfmwsTQ26pUJPTY6Mh15niZKQdZkMldmvtSrecbc6jdmPvrPUnenX1P1oF0mhSQJ/Wx/mR2AEGVgU2ls1Fur3AFWA63MDkL4r/wmk7kxYNnua62rQ8pwMhlpEHe21cAAs4MQohTplMOEvgq4xewgRPlxmFr1XnKNqveSa1RZTSajIc+Nc1tldgBClLLY2OjIUpm/wZsT+kqzAxDlVxlNJrMHR0JaCWzHn6zBmCerPE/WI/zb2tLasNeN5Z6TPSrmBFDT7DiEyKkaiadHWn/dMdy6gmbqaBulsBVzUx/gSLitRIPzA/aomI1AB7PjEKKU3B4bHfl+aWzYm0voYDxPu8bsIITI6QxVqs90X9NjpvuarMlkNhdzMpmlpRakb1uFJHThv34qrQ17e0JfiSR04cUuYDIZDVhWZoH6lpXAPWYHIUQp2BMbHbm/tDbuld3WclhidgBCFIVnMplLu2bM6NQmY7brUef4P7doTVe6dXU816rrcSScNiVI7/cTxnN0IfzNz6W5ca9+hg5gj4rZAzQzOw4hLoyud1E7d94csPR4X8umWhVJ/0o9nfCU2VF5K3tUzArgUrPjEKKEjYiNjvyytDbu7VXuAN8B95sdhBAX5uzJZAJwfy9Ti53XIiShC/+iActLcwfeXuUO8K3ZAQhRwo65sP5pdhBeTs574W9+i42OPFWaO/CFhP47cMbsIIQoQd/FRkd697Muk8VGR/6LzL4m/MsXpb0Dr0/oninmvjc7DiFK0FdmB+AjFpkdgBAlxEUZnPden9A95pkdgBAl5DDSXa2w5psdgBAlZFlpV7eD7yT074GjZgchRAn4JDY6UqYGLoTY6Mi/gM1mxyFECSj16nbwkYQeGx3pBuaaHYcQJWCO2QH4mA/MDkCIC5QBLCyLHflEQveYbXYAQlygP2OjI3eYHYSP+RTjgiiEr/o2NjoysSx25DMJPTY6cifG2O5C+KqPzA7A18RGR56mjEo3QpSSN8tqRz6T0D2klC58VSrwudlB+Cipdhe+alNsdGSZTQXuawn9C0DGvxa+aHZsdKSMp1A8PwN7zQ5CiGIos9I5+FhCj42OTAHeNjsOIYrIDbxudhC+yjMIz2tmxyFEEZ0CPivLHfpUQvd4E0gzOwghimBhbHSklDAvzGwg94x1Qniz92OjI9PLcoc+l9BjoyNPAB+aHYcQRfCK2QH4Os+FcZrZcQhRSE7gnbLeqc8ldI9XkfmShW9YGRsdKROxlIwZQJl0/xHiAn0QGx15oKx36pMJPTY6ch8yHrbwDS+aHYC/iI2OTMCEUo8QRZQOPGfGjn0yoXs8g5TShXdbERsdKRMLlazXkTY0wru9GxsdediMHftsQo+NjtyG9EsX3m2K2QH4m9joyDikxbvwXqmYWCvnswndYyqQYnYQQuRjQWx05Fqzg/BT0chkTcI7vRUbHWlabwyfTuix0ZHHMBrICeFNXMBjZgfhrzzjUTxpdhxC5BIPvGxmAD6d0D1eAY6ZHYQQOXwQGx25y+wg/NyHyNSqwrs8XhZznp+Pzyd0z936U2bHIYTHaYxHQaIUeeaUf8jsOITw2ADMNDsIn0/oHu8Df5gdhBDAI56GW6KUxUZH/gwsMjsOUe5pwATPTaap/CKhe77I24BMs2MR5dovsdGR0vOibN2DDDYjzPVebHTkOrODAD9J6JDdje15s+MQ5VY6cKfZQZQ3sdGRh5Cqd2Gek3hRA1i/SegeLwL/mB2EKJeej42O3G12EOVRbHTk+8BSs+MQ5dIDsdGRXjOlt18l9NjoSCdG1bvpzzJEubIFeMnsIMq524Eks4MQ5crnsdGRn5odRE5+ldABPIN5yEhSoqykAaM8N5PCJJ6JMCabHYcoN/YDE8wOIje/S+gejwPrzQ5ClAsPxEZHbjU7CAHAu8APZgch/J4GjPVMFuRV/DKhe0pLNyBVcKJ0fRkbHTnL7CCEITY6UgduBMp82kpRrkTHRkf+bnYQ+fHLhA4QGx25B+O5mhClIRb5+/I6npG6hiNdWEXpWIcXD2TmtwkdIDY6ch7wltlxCL/jwnhu7nVVbgJioyP/BCaZHYfwOyeA62OjI11mB3Iufp3QPR5CRpETJWtibHTkGrODEOcWGx35NvC52XEIv+ECRngaX3otv0/osdGRmcB1wD6TQxH+4fXY6Mh3zQ5CFMrtgDRYFCVhUmx05K9mB1EQv0/oAJ6xtQdhTG8nRHEtBh42OwhROJ6JmyIB0+anFn7hndjoyDfNDqIwykVCB4iNjtwBDAWkv7Aojs0Yz81l0CIfEhsduR+4GkgxOxbhk5YC95sdRGGVm4QOEBsd+QvSMlkU3TFgcGx0ZLLZgYiii42OXA+MxHgOKkRhbQCGe3MjuNzKVUIHiI2O/AhwmB2H8BmngAGx0ZEHzQ5EFF9sdGQMMB7QzY5F+IR/gIGx0ZE+NZNfuUvoALHRkU8D0WbHIbxePHBFbHTkFrMDERcuNjryY+ARs+MQXm83xnl/yuxAiqpcJnSA2OjIR4GXzY5DeK1EjDv0jWYHIkpObHTka8AUs+MQXms/0D82OvKY2YEUh9L18l0DZY+KeRWZT1mcLQUjma8yOxBROuxRMfcD08yOQ3iVo8ClsdGR/5odSHGV2xJ6ltjoyIeB182OQ3iNFIwGcJLM/VhsdOR0jNmyyneJRmTZD/T15WQOktABiI2OnAS8YHYcwnSnMKrbfjE7EFH6YqMjZ2I0lJOuiOXbFqBHbHTkLrMDuVDlvso9J3tUzJ3A24DV7FhEmTuE0Zp9u9mBiLJlj4oZDXwIBJkdiyhzvwPXxEZHxpsdSEmQhJ6LPSrmauALoKLZsYgy8zcwKDY68rDZgQhz2KNiegMLgRpmxyLKzLfADbHRkelmB1JSpMo9l9joyMVAXyDO5FBE2fgJ6C3JvHzzzG/dFZAamvJhFjDMn5I5SAn9nOxRMU0xxu6OMDsWUWpeByb70khQonTZo2JswDxgoNmxiFKRCdwbGx05y+xASoMk9POwR8VUBGYCN5odiyhRycCtsdGRX5odiPA+9qgYK0aXtokmhyJK1iGMUvmfZgdSWiShF4Knsdx0INjsWMQF2wEMlcZvoiD2qJhRGDf0VcyORVyw5RjPy0+YHUhpkmfoheCZ/7oHMqe6r/sS6CLJXBRGbHTk50AHYK3JoYji0zFGBB3g78kcpIReJPaomKrAe8D1JociiiYJeCg2OvI9swMRvsceFRMAPIMxZKwUgnzHfmB8bHTkz2YHUlYkoReDPSpmOEZ/9VpmxyIK9DPG8/IDZgcifJs9KuYyYC5Q3+xYRIHew7iJTzI7kLIkCb2Y7FExNYG3MOZZFt4nBZgMzIiNjpQ/clEiPLV0LwB3IqV1b3QYuC02OvIHswMxgyT0C2SPihkCzADqmB2LyPYLRlWbtHkQpcIeFdMNeBe4yOxYBGA8K58DTPKXUd+KQxJ6CbBHxVQDHMDdQIC50ZRrscAjsdGRX5kdiPB/nmfr9wNPIyNLmmkNcL8/d0crLEnoJcgeFdMKeAUYbHYs5UwK8CLwmr+N/CS8nz0qpjHwKkZjWWVyOOXJYSAK+FQeqxkkoZcCe1RMf+A1pDqutOnAJ0BUbHTkEbODEeWbPSrmYuB54EqzY/FzaRg3UC/FRkemmB2MN5GEXkrsUTEW4GbgUaClyeH4Gw34GnguNjpys9nBCJGTPSrmUoyGcz3NjsXPpGK0Xn9F5l7InyT0UuYZRnI4RmJvb3I4vs6NMRPe8zI4jPB29qiYQRhta7qYHIqvS8LoJvx6bHSkTJp1HpLQy5BnatbHgO5mx+JjnBhV6y/ERkf+a3YwQhSFPSqmJ/AAMASwmhuNTzmDMeT2G7HRkWfMDsYXSEI3gWfu5buBoUCQyeF4s30Y0xzOljtz4es8jecmArcDVc2Nxqutwaha/yI2OjLV7GB8iSR0E9mjYmoDtwC3AmEmh+Mt3MB3GJNiLJXWq8LfeGZxvBEYizFHhLSMh3iMWrhZsdGRW0yOxWdJQvcS9qiYXsA44FqgprnRmGId8BVGFxRp8CLKBXtUjB0YBYwB2pgbTZlzYcyC9inwZWx0ZJrJ8fg8SehextOIrjfG87brgMamBlR6dOAPjCT+dWx05H6T4xHCVPaomPYYif06/LfGLh1jfoWvgW9ioyNPmxyPX5GE7uXsUTGdME7wK4BO+PZIdHHACoy78kXSd1yI/NmjYpoDg4CBQB+gkrkRXZCdwG9ADPCTPBcvPZLQfYjn2dslwKWeVzcgxNSgzu8k8GvWKzY6cqup0QjhgzxDzHYF+mF0gesENDQ1qHNzA5uA3z2vldKgtexIQvdh9qiYIIzR6NoAbXP8LOuTXQP2ANuAv4GNwMbY6MjYMo5DiHLB06D2Yozk3gnjvG9C2faaOYpxzud8bSxvU5Z6E0nofsgeFWMDIoBGGHM318v1swZQwfM61wVAwxhiMdXzSsAYO/lQjp9Zrz0yhroQ5rJHxSiM89ue61ULqAxUyfWzIkYLe2c+rwzgBHAcOOb5mfU6CGwvz7OaeStJ6OWc5yIQjJHcgzFO5lRJ0EL4N3tUjJJuof5FEroQQgjhByxmByCEEEKICycJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXRRIKWVXSulKqXFmxyJEeaKU6qKUWq2USvGcgx2UUlcqpTYppdI9y6qaHafwDgFmByCEECIvpVQg8CWQDjwIpAIHgd+ArcA9QAaQopR6DNim6/o3JsVaA7gVGAy0BgKBHcDruq7PMyOm8kgSuhBCeKfmQBPgdl3X3wdQSl0JVAae1HV9WdaKnoT+FfCNCXECdAeeB74HngNcwDDgC6VUhK7rT5kUV7kiCV0IIbxTbc/P+AKWeYOtQEtd1/dnLVBKvQMsA6YopV7WdT3FtOjKCXmG7uWUUn2VUus9z8v2KKXuVEo5lFJ6jnVuUUotV0rFKaUylFLblFIT8tlWZ6XUj0qpk0qpNKXUPqXU7FzrVFVKzVFKJSil4pVSHwFVzxFbuFLqK6XUaU9865VS1+Tan66Uujmfzw70vHf1hXw/QvgjpdQcYIXn1y8958qvwEeeZes8y+Z4rgUVgZs9y3TP58m6ViilwpRSn3jO6xNKqWeVoZFS6lulVKJS6phS6qFccQQppZ5RSm3wfDZFKfW7UqpfzvV0Xd+XM5l7lukYNQbBQLMS/YJEvqSE7sWUUh2BH4CjwFOAFZgKnMi16gSMO+RFGFVdg4F3lFIWXdff9myrNrDU89lojDt8OzA0x/4U8C3QC5gJbAeG8N9FJGdsbYBVwGHP9lKAEcA3Sqlhuq4v1HV9vVJqr2d57m2MBM4APxbxaxGiPHgX49x6DHgDWAccB3YCd2BcB/YBezBKwe8DfwKzPJ/fk2t78zDO5yggEngCOA3cCSwHpgBjgFeVUut0Xf/N87kqwG3A58B7GNX944EflVJddV3fVMBx1PX8PFn4QxfFpuu6vLz0hZGgU4D6OZa1AJx4boA9y0Ly+ewPwJ4cv18H6EDn8+zvWs86j+RYZsVohKMD43IsXwb8DQTnWKYwkvyuHMteADKBajmWBWEk8w/M/o7lJS9vfQF9Pefd9TmWjcvvPAaSgTn5bMPhWf/dHMusGI3rNGBKjuVVMRrezcm1blCubVYFjhV0/gLVMW5CfjP7uywvL6ly91JKKStwOfCNrutHspbruv4vsCTnurqup+X4nE0pVROjuq6ZUsrmeSve8/NqT+vZ/AzCKOHPyLFtN/BmrtiqA5cB84HKSqmann3WwChxt1RKNfCsPg+jxevQHJsYgHFRkNavQpSN97P+4Tmn12PcgH+QY3k8Rg1As5zr6rqeCaCUsnjO/QDP5y8+186UUhbgU4zz/N4SPA5xHpLQvVdtIAT4N5/3zlqmlOqplFqmlErBSNwnMErGAFkJfQWwAKPq/qTnudktSqngHJtqAhzVdT051/525vq9BcbF4FnPvnK+ns4RP7qub8bovjIyx+dHYlTBLc/3yIUQJe1Art8TgHRd13NXhScA1XIuUErdrJT6G6P73CmM8zyS/64t+XkTuBK4zXMNEGVAnqH7OKVUc+BnjKQ5CaMqLROjtP0gnps23agDu14pdQnGM/aBwGzgIaXUJfkk8fPJuhF8lXM/A8950zEPeNxTik8CrgE+13XdVYR9CiGKz13IZWDcrBv/UOpGYA5G47ZXgDjP5x7F6FaX98NKPQXcDUTpuj632BGLIpOE7r3iMO6IW+TzXs5lgzFakV6j63r2XXjuVqhZdF1fA6zBSLCjMarFbsCoktsP9FdKVcqV4Fvl2sxez0+nnqMv7HnMw6gZGIbxTK0K8EUhPieEKBy94FWK5XqM832op1AAgFLq6fxWVkrdg/Hcfpqu6y+VUkziHKTK3Ut5nnMtA65TStXPWq6UagFclWPVrLvsnHfVNuCWnNtTSlXztGLPaZPnZ1a1+/cYN3kTcnzOSq5nYLquxwG/Ancqperljl0pVSvX+tuBLRhV7SMxWu3/lvtzQohiS+Ec3UsvUH7Xl24YA8mcRSk1EqNF/qcYtYWijEkJ3bs5MBqQrVJKzcBocToR+Afo4FlnKUYV+3dKqXeBSsDtGCX8nMn2ZuBupdRCjC4tlT3rJWIkcoDvMFqpRyul7MA2jMZs+T0ruwdYCWxRSr2HcRdfB+NEbwhclGv9ecAzGLUOH+i6rhXpmxBCnM8G4HKl1CTgCLBP1/W1JbDdxRjXgIVKqRigKXAXxrWhUtZKSqmuwMcYz9h/BsbkKj+s1nV9L6JUSUL3Yrqub1BKXYXxrPpZjOfjUzHGSg73rLNTKXU9xnCLr2J0J5mB0XAl56AxK4CuGNXrdTAav/wJjNF1fZ9nW5pnYJhpwI0Y1XiLgIeAjbli26aU6oxRlT4Oo4V7nGe9Z/I5nHmeGEOR1u1ClLRJGH3Qn8NoTPsRUBIJfQ5GX/I7MdrdbMO4NgzH6FaXJQKjO2otzr7uZLmF/x7ViVKicjwWET5CKfUN0EbX9ZZmxyKEEMI7yDN0L6eUCsn1e0uMFuy/mhKQEEIIryQldC+nlDqKUe21F6Of+ASMRmwddV3fbWJoQgghvIg8Q/d+PwCjMJ5jZQB/AI9JMhdCCJGTlNCFEEIIPyDP0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/UKSBZTZs2FAJqI/cCJQXGnCkU6dOyQWuKfyWnPfCC8i1qBAKPbDMhg0bLrFYLDMtFouNHHPjCr+ma5qWoGnaXZ06dVpjdjCi7Ml5L7yEXIsKoVAJfcOGDZUsFsvKqlWr1qldu/ZppZQML+cjdF3HpelWp6YHulx6kEvTAl2aHqDpWHVdN/4jdRToqq4lwW3VnRZQoJSuo7QTielBiaePJ7ZacdfTQWlxx4DTGPMt78eR4Db14ESpkvPeN7k0zeJy6wEuTQ90a3qAy60HuHU90OXWrRp6gO4533UdKumuzMqpCUEAKAUWi1uhNKwWTSnlxhrgJsDqIiDAqYKtTosl0InFWuZ/B7quq7i4uOrx8fHHNU3rJSX1/BW2yr2+xWKx1a5d+3TFihXTSjUiUWSapqvkTFfFDKdWwenWgoyXHuR0a0Eutx6ko+cqWalcPw0h1ox0q5ZeATBmQgdqB+uk6q5KmiXo3Vy7deKw7Qf+BfZ4fu4CNuBIOF6iByjMIue9l9J1nXSnViE10xWa5nSHpju10Ey3Fux264F5z3cwzvW8i5XSCHI6QwvcYVBQusWWabGqINdOV52gIKslIyjAkh4UYEmvEGBNrxgckBwUYHGVwKGdU+3atU8nJibaNE2rj3GtEbkUNqFbACV36N7B5dasSRmuSikZrsppme5K6U4tNP+T+MIplfsf2QKBFp7X2Ry2g8CfntdaYD2OhJTSiE+UKjnvvYCu66Q53SGpme7QtEx3aLrTHZrh0kI1XS+zNg1agMUdrLmCMqyhmW5ND0jT3AFpTnfFnOsEWi2ZIYHW5NAga3LF4IDk0CBrmsp73Sg2z9+hQtpynFPxZ1tz2DqVYBy5tp2wodS27YMynO6g5AxXpZRMd+XUTFelTJdWweyYCtDI8xrm+d2Nw/YXsMTz+hNHgmZWcKL47FExpXLex0ZHyjmfg8utWRPSnLakdJctJdNlc2u61cx4dKvSLLpucRJ4zps7T+1g9cR0Z3UAi1JahUBrSmiQNblScEBS5QoBSSWZ4EVefnmns3PnzqCXX365Vs5lDRo0aLd69eqQsoxjwYIFVcLDwyOyXrVr124fERHROuv95cuXV2zVqlWE3W5ve8kll4Tt27cvMOu95HRXxYOnUxttO5LY/uU3321nr1+r6YDe3Wpe179nhfEjBufZV3paGkMuu4QRA3ufM55noh5g2OU9uG3kNSQlJgDG3f/dY6/nYOy+Ej32XKxAF2AqxvSvcThsn+GwjcVhq1maOxaipISHh0ecOXOm1K6ZaZnuCscS0uvsjktqtf1o0kWH49OaJqY7qxclmf+z6S9uHjKQ4QN6MWJgb9au+i37vQduu5ERA3tnvzo0rs4PP3yf77aXrlxJz5Ej6Tp0KH3GjGHT9m0KIJ0Ay5aNG7jxmisYceWlXNevGx/OmJ5vLAf2x1qGDOxbuXe3i+s94XgmbNvRxIsOnEptsmrthpqXXXZZ3po9ccH8cj703bt3B8+ePbvW5MmTT5Tkdp1OJ4GBgQWv6DFs2LDEYcOGbcv6vV+/fi0uvfTSJAC32824ceOavv322/sHDx6cNHXq1DoT7r67yYeff52SkOaskenWgnNuq0v33kz74NNz7mvaiw46dO7G1s1/5fv+7h3bOLBvLwuWrWbmtJdZ/PU8Ro27g68//5guPXrTyN4UOFroY7tANTDmeB8FuHDYlgJzgW9xJMizWuFVss77HTt2bCt47aJJznCFnknJrJGc4bI5c53zRaXrOg/ePpZn//c2l/TuS+zef7lz1HV8++s6KoSEMO39T7LX3bp5I3ePvZ7LLrvcTWr8Wds5k5DArVFRLJ0zh4gWLVi1YQO33fdg6I5fvyRdC7A+G/UAdz/0KH0HDCLhzBmu7deVS/sPpHlY+FnbmffR+9xw820MGjKcIZddwqhb7ghwVaxU85HJk2s+Ff26a/+plCZVQwLPVA4JTLLIY50S4dMl9AULFlSJiIhoHRYWFtGlS5dWGzZsqABw7733No6Nja0QHh4ekfNOcP78+dU6dOgQ3qBBg3aTJ0+ul7X8wIEDAYMGDWrWrl271mFhYRH33Xdf/az3GjRo0G7ChAkN2rVr13rYsGFNixtrbGxs4B9//FHljjvuOAWwcuXKUKvVql81KDI1Lim91pCb7qr2yy+/2A6dTKifO5kXZM3vvxJ37CiDhgw/5zqBgYE4MzPQNI201BQCA4M4cfwYS75dwNjb7ynuYZWEAGAQ8DlwHIdtDg5bfxw2n/7bFKVj2bJlFTt16tSqVatWEWFhYRGffPJJVYDffvsttGPHjuFhYWER7dq1a7106dKKADfccEOTqVOn1sn6/I4dO4Jq1qx5UUZGhvr2228rd+jQIbx169YRLVq0aPP6669n1xYNGzbMPnz4cHvnzp1bhYWFtQFQSnU6efKkFeCOO+5o2LZt29bh4eERnTt3brV58+bsc1Yp1SkqKqpuu3btWjdo0KDd9OnTa2S999dff1Xo1atXWFh46/ZhrSMujv7fG63PpGbWPnr0aPAjE25h9NX9GXZ5D956+bkifzfxZ05z5vRJLundFwB7sxZUrmJj5a/L8qy78Iu5RA4dQVBQUJ739h46RPWqVYloYVw6e3bqxOEjxyx/bdlOqmYNQCmSEhMBSEszriW2qtXybCcgMIC0tFRcTie6pqEsFr6cO5vul/ajXqMmAQlpzpr7T6e23H4k8aL9p1LsSenOSkU+aHEWn71oHj58OGD8+PHN5syZE7tr165tt95664kRI0Y01zSNN99884Ddbk/fsWPHtuXLl/+b9Zn4+Hjrpk2bdqxfv377jBkz6mRVcY8ePbrpPffcE7dly5btW7du3bZx48aKs2fPzv4LPX36dMDmzZu3L1q0qNj10jNnzqzRp0+fhAYNGrg0XVc7/t1XrX4je8D2o0kXHUtIb2ytEFqxYqXKnDh+LN/Pb1y3hhEDe3PTdQNYuvib7OWJCQm8/sJTPP7Ca+fdv715S7p0780NV/Xh8IH9RA4dwStPP8akx58hIMBrKmoqAzcDy4B9OGyTcdiqmhuS8BbHjx+3jhw5ssXzzz9/eOfOndu2b9++7YorrkhKT09XI0eObP7EE08c2bVr17ZXX3314OjRo1skJCRYxo8ff/Lzzz/PTtTvvvtuzSFDhpwKDg7We/Tokbp+/fod27dv37Zq1aodr7zySr09e/ZkV8H9/fffoT/99NPuffv2bc0di8PhOPbPP/9s37Fjx7Y77rgjbuLEiY1zvh8cHKxv2bJl++LFi3c/9thjjZ1OJ6eTUisOGXZ968E33FLpq2V/BH7102p1ReS1ADzx4N2MvOk2Plv8M/N++I2tf2866zwvjGrVa1Crdh1+/G4hYFS/x+79lyMHD5y1XnpaGj8sWsCQkTfmu50WjRtzOj6eNZs2AbD4l19ITklh78GjWqZmCXjmtbd5+9XnGditLddc2oX7pjxJzdp18mxn9C13svyHGMZeN4Cb7pxIcmIiP32/iBtvm3DWem5dtyakOWvsO5nSatfxpNankjOqa3rpNPL1d15zJS+qFStWVAwLC0vr2rVrGsCECRNOT548uXHO59C5jR079jRAvXr1XA0bNszctWtXcI0aNdxr1qyp8tBDDwU+9NBDAKSmplp27NiR3fDs1ltvPWWxFP/eR9M0Pvvss5ovv/LKoWOJ6XVOJ2fWSXFbAnVlQafgmqZLLx/IgMHXERISyt7dO7lrzFDq1m9A+4u78OKTj3DbxEnUqFmLvbt3nnc7Eyc/wcTJTwDwy4/fU7d+A+o3asyTk+4hJTmJW6651Drmmv7FPs4S1hh4CZiKwzYHmI4jYbe5IQkz/fLLL5WaNm2afuWVVyYDWK1W6tSp4/7zzz9DLBYLw4YNSwQYOHBgco0aNZxr1qwJHThwYLLL5WLFihWhvXv3Tp0/f36Nb775ZjfA8ePHA8aMGWPft29fBavVqsfHxwds3LgxpHnz5k6Aa6+99ky1atXybby5aNGiKjNnzqydkpJi1TSNhISEs66l48ePPwVw0UUdMqwBAaz6+9+I0/HxIZmZmVx13bDs9apVr0Fqagp/rlrB6ZNx2ctTU1KI3fMvRTXtg0+Z9sLTfPD26zQPC6djl0uw5rph/+n7b2nctAUtW7cBMvNsw1a5Mp/+739MnTaN5NRUul10EWEtm2vWgEA3YJn99uvcN2Uqg4YM59D+WG4dHklE+w55qtxr1anLzE8XZP/+8F3jeOjJ51i3+nfmz51NUFAQ90VNpX7D/+6F0p3u0MPxaU2PJ2Y0rF4xMK5mpeATAVaLjHdRSD6b0IsjJCQk++S0Wq260+nMHljnr7/+2h4aGppvdq1cuXK+f1AbNmyoMGbMmGYAXbp0SZ47d+6B/NZbHPO9LSPTGRjR4wp7XGK6FaBu/YYcPXwwe52U5CSSkxKpVaduns9Xq55dY0ezlq3oddkVbFy3lvYXd2HTujVsWreG/z33JBkZGSTEn+GaPl1YtGLdOb+H5KREPnr3TWZ8uoAP3nqdzpf0JHLoCG4c0C1g6BU9CQnxqkb0FYF7gLtx2GKAV3EkrDA5JuHlcramHj169Kn33nuvZmJi4plq1aq5unTpkg5wxx13NBkwYEDCDz/8sMdisRAREdE6LS0t+869UqVK+Z73u3fvDpoyZUrj1atXb2/Tpk3G2rVrQy6//PJWOdepEBJCXGJ67ZPJGXWt1gBLWqbz3A1yPdegud/+RHCF8597D915Mwdj9wIw64tvqVqt+lnvt4pox4xPvsr+/bp+3WiRK9F+88UnDLkh/9J5lj5du9Kna1cAMlwuzd7nUkurVuHpJ06fClz+YwwvvzMbgIZN7MZ1aP3aPAk9p2XfL6JhEzvhbdpxXb9ufPrdMrb+vYl3XnuR516fkWd9l6YFxiVlNDiZnFmvSkjgqVqVgmVsi0Lw2Sr3vn37puzatStk3bp1FQBmzZpVrU6dOs6mTZs6q1at6k5KSipUy1CbzaZ17do18Yknnsh+ph4bGxuYs+rtXDp16pS+Y8eObTt27NiWXzJ3uTXr4TNpDd6bM7f5tSPGWFCW7Jgi2nfA5XTy5+rfAfjqkzn0ufzKfE/o40ePZP/71Ik41q36nfC27QFY8sff2a+X3v6A5i1bnTeZA0x/8WnufGAyISGhpKWmopRCKYXT5SLT6SzosM2igKuBX3HYfsJh62x2QKJs9e/fP3n//v3BP/zwQyUwGpYeP37c2r59+3RN01i4cGEVgJ9++qniyZMnAy+55JJUgNtvv/1UTExMtZkzZ9YaO3bsyaztJSQkWO12e4bFYmHJkiWVdu7cWfAAK8CZM2esAQEBeuPGjZ2apjFt2rTaWe9lFRD2nUprfSwxvZFL07OvI/bmLakQEsqSb/5LuGdOnyK0YiW69OjN7HemZS+PO3aU40cP59n3a+9+xPwff2f+j7/nSebAWY/sFnz2ESEhoXTteWn2sgP79rL1701cde2wPJ/N6eiJ/9oTvzBjht6nZ1etaYuWWhVbVUJCQrNbz585fYotG9fTolXrc22KxIQEPv1gJnc9MAWA9LRUlMWCRVlITTn/8BSarlviUzNr7Y5Lans4Pu2s71PkdQH90M3tK16/fn3X+++/v/fmm29u6nK5lM1mc8+bN2+PxWKhW7duqWFhYWktW7Zs06hRo4ycz9Hz8+WXX+67++67G7Vs2bKNUkoPCQnRZs6cuT+r6q2o3JpuiUtMr3MqJbNOQkK8ddmSxSz4adVZ61gsFl54412ejXqQjIwMatepy/PTZ2a/f89Nw7n7ocdoc1FH5n30Pr/8tITAgAA0TePG2ybQLcdJWhQb160hPT2d7pf2A+CGm29jysTb+HDGdG4cNthtq1LZF2ptLgcux2H7GngCR8J2swMqL8zsL16rVi33F198seeRRx5pdN9991ksFgtTp049PHr06IR58+btuf/++xtPmTKlYXBwsP7pp5/usdlsGoDdbndedNFFKT///HPVjz76aH/W9p577rnDDzzwQOPo6Oj6bdq0SW3fvn2hBj/q2rVr2jXXXHM6PDy8TbVq1VyDBg2KBzidklktLjG9PoDTrQflLpIHBAQw/YNPefHJKbz/1v+wWCyMuGk8w2+8hRfemMWrzzzO0P7dUUoRElqRJ6P/R516DYr0HS347CNiFn4Juk7TFmG8/v7cs2orvpn3CZcPGkylylXO+tziX34h5tdfmfH00wA8+/bbrN6wAZfbTecOF/Hh/6aSqQditVp5ZcaHvP78VNwuFy6XizHjJ3BRp67njGnai09x16QoKoQY38jt9z3M6MjLCAwMxPHKm4U+ttRMd5UzaVqVV1aden7nlzH3x0ZHHirKd1MeFHYs9/CAgIAfWrZsmRwaGppeBnH5JE3X1YmkjFonkzPquTXdFxLjWdoEHk23utPPqiJId+nsO3yCpqseokLywXN91Exu4BNgKo6EfB95iOKR875w4lMzbccTMxpkuNxlOs5FSahBZmr1+Ljz1kxolUKSKwYlVjpurZdy3Fmh4vnWLU26K5O4I4dw/BLH4SR3OjAdeD42OjLJrJi8jc9WuXub5HRXxV3HkyKOJ6Y38sVk7sOsGC3jt+OwPY7DlrcfjhClIC3TXWH38aRWB06ntvDFZF5YulVpAGm693SHASoAU4Cd9qiYm+xRMdIqHknoF8yt6ZZDZ1Ib7j2ZHO4DQ7L6s1DgOeAfHDavaaov/I+u6xxNSKv774nkiDSn2//7TluMrjhpbqs3JfQs9YCPgD9Ka1hiXyIJ/QIkpjkr7zqeFHE6JTNvJ0xhlpbAMs8ANTUKXFuIIkjJcIXsOp7c+kRSRgO9nPSV1i2gK4vbqStTx5MvQDdgjT0qxmGPivHGG48yIQm9GFyaZjlwOrVx7KmUsAsdrlGUmqxq+GvNDkT4Pk3X1eEzaQ32nkhpneFyF6o1vN+w6kq3BHpt95ccAoCngFX2qJgws4MxgyT0IopPzbTtOpbcNj41s1bBawuT1QK+wWGbgcPmt884RelKSndW3HU8KeJUSkbd0pqm2KspzeJWgb40uEtXYKM9KuZuswMpa5LQC8nl1qyxp1LsB06ntnBpmvSF9C13Aetx2NqbHYjwHbquc/hMWoN9J1PKb/sYpXSF+7zTpnqpUOBte1TMEntUTL0C1/YTxX7WUJoNELxtbuS0THeF2FMpLaR63adFAH/isE3BkZD/fI+iQNvDW5fKed96x3avOuddbs26/1Rqs5RMV5WC1/ZjVqsrUHMHpKnAvGPE+oYrgS32qJg7Y6MjFxS4to+TEjqwaNGiyu3atWvdvHnzNi1atGhz1113NXS7jRqmhNTMKntOJIcXJpnv3r6VW4YN4tq+XRnavztTH5pIetp/s4F+t+ALhg/oxdD+3bn9hmvPGvo1P7quc9vIa+jVpslZy48ePsi9t9zANX26MOSyS/jsw1n5fv7daa8wpH93brzmCo4c+q+L9pMP3s3GdWsKOhx/FAxMw2H7GofNtP60ouTt3Lkz6OWXXz7rMViDBg3arV69usiPWlIzXSG745JbFyeZp6Ykc9eYYfRp3zzPeZvbC48/fNb85F1a1OXT2e9mvz9r+qtE9uxIZM+OvPnSs/luw+l08sD4MQwf0IsHbx+Ly+UCICM9nVuGDSIxPr6oh3A2q8UVqDkD0vUAX84VNYCv7FEx/7NHxfjycRTIbw7OeQFDltaoUcM1b968PXv27Nn6999/b1u3bl3Ft99+u8bxxPTaB06nttR0vVCtO4MqVODR517m21//5MulK0lLTeXDGUZhcN+/u3j9+ad4Z+5XfP3zH1w7YjTPP/bQebc39713aNTk7Blbs+Y8HjzsBhatWMfC5WsYePV1eT6bnJRIzML5fLV0JSNvGs/nH74HwB+//UKFkBA6drmkMIfkr4YAq3DYGhe4pvAJu3fvDp49e/YFt2s5nZJZbe+JlOwb+KwEWVgBAYHccvf9vPv5NwWu+9jzr2YP4/rO3K9QqOxzecOaVSxZtIAvf1rJwuVrWL1iOb/9/GOebaxe8TNVqlbjy6UrqVzFxirPVKmzpr/CDeNup0rVqkWKPzc9wOK26LolTbN6cwv3wnoQWGiPivHbm3mfTuhKqU4PPvhg/bZt27aeOHFiwz///DOkU6dOrSIiIlo3b968Tc45zydNmlQ/MjKy2WWXXdaiefPmbS655JKw48ePWwF69uyZFhERkQkQGhqqt2nTJm3XvoO1jyemNyrKg6MmTZsT1rotYMwE1faijtlTF/67czstw9tkT77Su98AVv6yjPgzp/Pd1r87t/PLjzHcevcDZy1fu3IFQUFBDMiRxGvUqk1uFqsVze3G5XR65j8PJC0tlVnTX+H+R58qwlH5rYuAdThsPcwORBTeggULqkRERLQOCwuL6NKlS6sNGzZUALj33nsbx8bGVggPD4+47LLLWmStP3/+/GodOnQIb9CgQbuc14MDBw4EDBo0qFm7du1ah4WFRdx77731D51JbXjoTGqzgZe0s7z+wlOMvro/Tz44Ib8wzikoOJhuPS+lchVbkT636KvP6dHnsuxpSH/8biFXDx1BaGhFgoKDuW7kGJZ8m7fGOCAgkPS0VMAYIz0wMIhd2/9h357dDBw8pEgx5Ee3WoxBZTSrv7QbugZYaY+KaWh2IKXBpxM6GLOm/fPPP9vffffdQy1btsxYuXLlrm3btm3fvHnztu+++67azz//nH03tmnTpoqfffbZvj179mytWbOma9q0aXnu6PfG7g/+fskPNXtePuiCuqakpqbw9Rdz6TtgEABhEW3Z8c9mYvcaw8ovXjjfGKDiUN5qd6fTyTNT7ufJ6Nex5Lox3rN7J9Wq12Ty3bcy4spLeeC2Gzm0PzbPNkJDKzL29rsZe+0V/LJ0CWPG38U7r77ITXdMzDOOczlWG1iOw3az2YGIgh0+fDhg/PjxzebMmRO7a9eubbfeeuuJESNGNNc0jTfffPOA3W5P37Fjx7acczfEx8dbN23atGP9+vXbZ8yYUSdreuXRo0c3veeee+K2bNmyfdPfW3b+9ffWWl/Mm589nkTCmTN8+t0yXnzzvTI5tm/mfcp1OWZAO3rkEPUbNMr+vX6jxhw7nHfo8u6X9qNipcoMH9CLSlWq0LXnpbz6zBNMefrFkgnMgq4rq8ulK5/PFTl0ANbao2IuNjuQkubz/0kTJkzInj0pNTXVMmrUKHtYWFhEp06dWh85ciRow4YN2Ym5T58+CXXr1nUDdOvWLXnv3r1nPRc/cvxE6DXXXtdm3IT7VZuLOhY7JmdmJpPvvpXul/aj/1VXA0bp/YkX/8cTD0xg1KB+JJw5TWWbDWtA3pqsd19/if5XDqZZy1Z53nO7XPy5+nfuuP8R5v/wGz36XMYjE27JN46RN9/G/B9/Z8YnX3H86BGOHz1Mz779eeHxh3n4rnFnPa8rx4KBOThs+T+kFF5jxYoVFcPCwtK6du2aBjBhwoTTcXFxgVlJOj9jx449DVCvXj1Xw4YNM3ft2hWcmJhoWbNmTZWHHnqocXh46zYXd+p80cH9sQE55x+/ZviosyY1KU1/rV1NanIyvS8bUOTPWiwWnnp5Ol8uXcnU6Gl8Mec9+g0chMvlJmribUy646bsmdGKxQqaJbBozx18Q33gd3tUzIVXY3gRnx9RJ2tGJYBJkyY1qFGjhmvr1q3bAgMDGTBgQPP09PTss7JChQrZNehWq1V3uVzZ7+0/esJ27eDIFn0HRHLTHffku689u3bw6L23A9Chczcee/7VPOs4nU4euftWatWuy5Sno89674rIa7ki0hjn5GTccT6cMZ1G9mZ5trF+zSqOHTnEFx+9h8vlJjkpiau6t+fTxcup16Ah4W3aZU9XePWwkbzw+MM4nU4CA/O/rrlcLl577kleeut9Fi+cT7UaNXns+VcZP2IwffoPpGETe76fK2eewGGrjCPhAbMDESUnJCQk+/pgtVp1p9OZPSHVqrXr9h5P1Vu63FqezB1aMf8RXQtzDSiqhV98wuDhN2DNURtXr35DjuRoNHvk4AHqNjh/LfGRQwf4fflPzPjkK554cALDxowjot1F3HjtABb+/EfxgrPoysf6oBdFKLDAHhUTFRsd+bLZwZQEny+h5xQfHx/QsGHDzMDAQDZv3hy8atWqQtUtHzx2sup111zdokffy7nj/ofPuV7zsPDsRiz5ncgul4sp94zHVrUaU1+alucOP2uuYrfbzbQXHYy86TZCQvLW7M/5egk/rNnCkj/+Zs7XS6hUuTJL/vib6jVq0rPf5Rw/diR7jvSVy3+iactW50zmAB/PeotB111Pzdp1suc/B1BKkZZaqBkjy4v7cdhm4bD51XnhL/r27Zuya9eukHXr1lUAmDVrVrU6deo4mzZt6qxatao7KSmpUA23bDab1rVbt5Qnnn6utcutBcG55x/PraBrQFElJyXy0/eLuG7kjWctv+Lq61j89XxSU1PIzMjgm3mfcuU1Q8+7rZefepRHnnoei8VinOcolMVC+gWc47rSLE4VqBW8ps9SwEv2qJjnzA6kJBS7hO5tfcUBpk6demTcuHHNPv/88xpNmjTJuOSSSxIL+kximrPyy69Pb/bPpr9IS01l+ZLvAKM0fft9507u+fnxu6/5ecl3hLVuw8grjfnKc97FP/XwRI4ePkRmRga9+w/gvilPZn/W8ch99L3iyuxn7ucSGlqRJ174H/eOG4mu61SqXIWX33r/nOsfjN3H+j9W8vbHXwJw9ZARPHj7jSxd/A0dunSjZes2RTrGcuB2IBSHbRyOBH+sarwgZvYXr1+/vuv999/fe/PNNzd1uVzKZrO5582bt8disdCtW7fUsLCwtJYtW7Zp1KhRRs7n6LmlZLhCo9/5qMJLTz9mudD5x/Nz/RU9OXP6FMlJSVzRpQ1devTihenG460RA3vz1kfzqV3XaJ/3w6KviWh3EU2aNj9rG12692Lg4CFcf0VPAAYOHkKfy6885z6/X/glYRFts2vubr37AZ6Zcj9Op5Pb73+k2MeilNuSoQf4c0LP8rg9KiYjNjrSpx+9lev50JPSnRX3n0oN03RdSmT47HzopeUbYCSOBF8dUOOC+eN5n5LhCt13MiWssF1R/d1550O3Wl2W6pp2mpquE85g08evzzUfemntZnJsdOQrpbXx0lZuE1lKhitk/6nUlpLMxTlcB8yV6nf/Icm8iKxWV6DmCkjTvGoe9NL2sj0q5j6zgyiucnmxSst0VYg9JSe2KNAI4A2zgxAXLjXTVUGSedHoARa30jRLqv/0QS+s6faomDvNDqI4CpvQNUD3h/l/053u4H0nU8Pcml6e7jqLLfuJTCEezfipe3DYppodhCi+TJcW4KmNk2ReFFalYQlwajo+f90vhhn2qJj8+wN7scImtSOapiXExcXVqV279mmllE9e3TPdWsDhM+nNZLa0/KWjKav233+trsOJFDcqI5HA9JPn+aTfexqHLQ5HwkyzAxFFo2m68kysFGR2LD7HqjTNEujCTXm8XirgfXtUTEpsdOR8s4MprEIl9E6dOiVv2LDhrvj4+JmJiYk28L07Nk3HeibdXdet+X7f+9ISYI23WLSzx8RXGYk03PQaVrdftIm6EG/jsJ3AkeD3Mzb5C13X2X86tWm60+23Y3eXKgu4/LcPemFYgI/sUTH7YqMj15kdTGEUOrl16tRpzYYNG3ppmlYfH3v2npihWZ/57fScTLful+P3lpRvKzgOVNKT/+s/o+sEpp+UZG6wAB/jsO3CkbDF7GBM47CVzrTJjoQS7w53JD69QVK6s1pJb7fcsOjKqQJ8sja2BFUAvrFHxXSJjY48YnYwBSlSabVTp07JwK5SiqXU2KNipgGdzY7D21XI3JdZQUnyPo9QYCEOWxccCWfMDqY8+uSTT6pOnTq1QVBQkP7xxx/vyxoGNreTyRk1TqVk1C3sdtf9sZLM9HR69ru8WHH9vXE9z055gPT0dOrUq8/z02ZSp179POst+XYBH74zLXsWt2tHjOHmOydmv797+1aip07h1MkTAEyc/ASXXzU4z3aeiXqAzev/pFqNmrz+3lwqV7Gh6zr33DScR599hUb2pnk+U2RKs2To5bG2PY/6GEm9T2x0ZL5/b97Cp0raxWGPihkF3G92HMJvNAc+le5s5pg1a1atKVOmHN2xY8e2cyXzxDRnpaPx6eefjDwHl8vF+j9WsmrFz8WKSdM0Hrv3Dh5xvMh3v62nd78reOXpx/Jdt279BtlTKH+08Ae+nDubdX+sBCAtLZX7bxvDPY88zje/rGXBstVc3LV7nm3s3rGNA/v2smDZajp378Xir+cB8PXnH9OlR++SSeYAym3x8XnQS1IXwOsnv/Dr/yx7VExboGymSxLlyVXAM2YHUd6MGzeu0fr16ys988wzDTp27BgOeadTXbtufeWDZ1Jb/PnH72rEwN7Zn929YxtXdW8PwOGDB+jVpgmvv/AUI6/qwxdz3uPLTz7k+4VfMmJgb2ZOK9qw3tv+3oQ1IICuPYz9XX/jOFYs+4GM9Ly1XR27XJI9RWrlKjbsLVpmT7G85JuvaN+xc3YSt1qtVK9RM882AgMDcWZmoGmaZ2rkIE4cP8aSbxcw9vb856EoMotFs+ruAD+aNrUkjLVHxdxldhDn47cJ3TOJ/VeANIgRpeExHLbrzA6iPJkzZ87Btm3bpkZHRx/cuHHjjvymUx09ekwLl1srsHtaUmIiLcJaM2/JCm68bQLDb7yFQUOGM//H37nrgclFiuvYkUPUyzHVacVKlalYqXL23A3nsmfXDv7esI5Levfx/L6TwKBgJo4byYiBvXn8gbs4fSpv7xJ785Z06d6bG67qw+ED+4kcOoJXnn6MSY8/Q0BJjQFjtToDNJc1zS0JPZdp9qiYLmYHcS5+m9AxBgTJO/+oECVDAR/gsOV9UCrKRO7pVIeMviXwRNwxS9yxgtsuBQQGEjl0RKnHeC7Hjx7mgfFjeOLF/8aPd7tdrF35K0+++DrzfviN2nXr8fxjD+X7+YmTn2D+j7/z6sw5rPntV+rWb0D9Ro15ctI9TLrjJn5Y9PWFBRhgcVvO6sQqPIKBr+xRMdXNDiQ/fpnQ7VExI4BbzY5D+L3qwAdmByEgNdMVciI5I3tmFavVitv9X4+rzIyMs9YPCQnBYinc5S8xIYERA3szYmBvHrjtxjzv163fkKM5pjpNSU4iOSmRWnXyb5MXd+wod4wawu33PcyAq6/LXl6vfkO69OhNnXr1UUoROWQEf/+1/ryxJScl8tG7bzLhoUf55P0ZdL6kJy+/M5t3p79CetoFtN+yWjS38st50EtCY2Ca2UHkx+8Suj0qpgkwy+w4RLlxJQ6bTw4T6euyplNd++efIQdPpzX9/puvVK269aldtz4NG9s5evhQdpV1VsOxc6lYqTJJiflPzljFZsueMnXa+5/keT+ifQdcTid/rv4dgK8+mUOfy68kuEKFPOueOH6MO0Zdxy0T7uea4aPOem/A4OvYunkjyUlGHCt/+YlWEeefDXH6i09z5wOTCQkJzZ4aWSmFy+nE6byAeYWsSnOrgPLcB70gY+1RMVeZHURufjXIij0qRgGfADazYxHlyms4bMtwJOwxO5BSVwr9xYsrazrVcbeMD3NrWkAVW1VenfEhSilq163HuLvuY8zg/tSoWZteBXRHu+zKq1n89TxGDOzNZVcNLtJzdIvFwgtvvMuzUQ+SkZFB7Tp1eX76f4MK3nPTcO5+6DHaXNSRd157kaOHD/HZ7Jl8NttYZ/Std3HdyDHUa9CI8RMf5KbrBmKxWKhdtx5TX5p2zv1uXLeG9PR0ul/aD4Abbr6NKRNv48MZ07l66EgqV7mAy6AFPVMFSo37+b1rj4ppExsdmWR2IFkKNX2qr7BHxdyKVIEW2z/Bt26vpNJbmx2Hj1oFXIojwW/mjvaF6VMT05yVY0+lhJkdh6865/SpNUISU6whliOZoZVMCCtfZTR9alHNjI2OnGB2EFn8psrdHhVjA140Ow5RbvUE7jU7iPLE5dash+PT7GbH4ZeUptK1AJnMpmB32qNi+pgdRBa/SejAU0Bts4MQ5drTOGzyN1hGjiWm15dJV0qJclvL2TzoxZU1iUuI2YGAnyR0e1RMODCxwBWFKF1SS1RG0p3u4DMpzlpmx+GXlNKV0ixpmkX6oBdOC+BZs4MAP0noGF0I5I9PeINbcNi6mh2EvzsSn9ZQR/e5WR99gtXqKvdTshTdg/aomI5mB+HzCd0eFXMtMNDsOITwUMCbOGySbEpJYpqzcnKGq6rZcfgtq8WFsvpN484yYgFe8IYgfJY9KiYY+J/ZcQiRS1fgFrOD8Ee6rnM0IV2mQS5NARa3i0BJ6EV3pT0qpnfBq5UeX2/08DDQzOwghMjHszhsn+FI8MruXsXV7qN2pTIf+pabtxSqf/uplMwaGS533m5WouRYlJapAqWGqXheAExL6j5bQrdHxTQAHjU7DiHOoT7gNf1T/YFb0y1xif8N7ypKiRUyZNrU4upl5ghyvvyf9jgyk5rwblE4bPI3WkKOJ6bXdWlaiTR+HT/8apb/EFPkz7396gvELJwPwIz/RfOyI/8yxYplPzB++NUXFGNZ+n7FCjoMHky7yEiGj78zNC4+Nd8+6Jqm8eKTk4ns2ZGre13M53POHmV72feLGHZ5D4b2787Q/t057JkaNqfE+HjGjxjMsMt7nDX5zOlTJxk//GqcTmcJH12Ze84zammZ88mE7pnp5maz4xCiALWRUnqJcLk16+mUzDqFXt9VOvOK3PPwY0QOMW+WttKQnJrK3VOnMm/6dLbExFCvTi39tf+9nm///piv57N3904W/baeT7/7mY9mvsm/O7cDsP2fv3nz5eeY8ckCvv75D+Z+u5TqNfPO5x7zzXy69OjNgmWr2bdnN7t3bAPg1Wce5/5HnyIw0Oc7LF0MXG/Gjn0yoQN3APIcTfiCh3DY8s7SIYrkZHJGLU3XLRc1qsZbLz/HiCsvZfClnbNLywAXNarGO6+9yOjIy3gj+mlSkpN4evL9jL66P9df0ZNnpjyAM/O/CUvWrlrB6MjLuLrXxbz6zBNkDYOdu/T+0J038+38zwB48sG7+eT9GXniczqdPP/YQwzu3YnRV/dn3eqVBR7TiePHuHP0UIZcdgl3jh7K5LtvZcb/ogG4vHMEcceOAvDIhFu46boBgDFr3KXtmpGZkcG38z/jjlHXMeWe8Qy7vAejBvXj0P7YIn6zsPT332nfujWtmhnNke4aP8YZ8+3CfHPDj999zdBRN2G1WrFVq8bAwUP44dsFAHw86y3G3n43tevWA4wJb0JC8l6mAwICSU9LRdM0nJkZBAYFseqXZVSxVaX9xV471XhRPWOPiinzkfZ8LqHbo2ICgHvMjkOIQqoLjDc7CF+m6bo6neL8bwQ+pZj/w2/MmPsV0U9OOata12K18lnMciY98SyvPfskF3ftzmeLf+bLpSvRNI1PZ/83acre3Tv56Jsf+fKnlWxYs4ol33xV7BgXfDqH2L3/8vXPf/DR10vY/s/mAj/z0lNRXNSpCwuXr+H5aTNYv2ZV9nvdel3K2pUr0DSNndv+ISnJmJJ147o1tG7XgaDgYAC2bv6Le6dMZcGy1XTr3YfZM6YVOfaDx47RuF697N+b2BtrJ+OO5VvLcfTwIeo3bJT9e/2GjTl65BBgfJ/HDh/i1usjGXHlpbz1yvNnTWGbJXLoCA7G7mPklZfSrVdfatetx3tvvsa9k58ocuxeLBwYU9Y79bmEDgwHpNuK8CX3S7/04juVnFkj57PzoaPGAtCwiZ1O3Xrw19rV2esOGfnfNXT5jzHMmfnG/9u77zip6nv/468zs/SyFpp9LChFbHit2MCCjhUVe/R6EyWYXKOmjOYmOeYX42hiEmNMovf+rIlJ1EdsmWtUiA0VC4hIEVQ8VOlw1oVl2TL3j7MgKnV3Zj6nvJ+Pxz6CspzzXuLMe84538LIU47hguHHMvGtN5jjzVr/+2eceyHt2rWjU6fOZEeMZPy4l1ud8c3XXgmO17497dq35+wLtvxe/ua4l9d/X49evTl22OfLaRwx5HjGj3uJD6ZMZr8B+3PYUcfwzhvjGD/uJQ4fcuz67zvgkMPYdfc9ADjwkMNadYX+Bel0Y4rW/afa1NjIB1Mn8/uHH+eBvz/LexPe4tGHv7pXVufOXbjjngd57PlxjL7hRu6+/Rb+ffS1zPE+4bujruC7o65gxrT32/ZzhEPF93aI4rS171gHENlGfYGTgOetg0TRslX1m392vkH/dNpwc7BikTvufYjMXvts1XkcJzhQuqqK5ubPryzr67d95uG6Y7X2zxw+5DjuzP+Uvfrux+FDjmPHHr0YP+5lJk94mx/+/I7139eh5UodIJVO0bSRq+qPZ37Ajd/+BgAHHXo4N93yyy/8/m59+jD2jTeCf0inG2fNnp3q0asPVRtZyn2nXXZlwby5HDg4WAxxwbw57LRzcH3VZ5ddGTb8DDp2CpY1Hzb8dN6b+DYXXXHVJn/m99+dwPJlSzjuxOFcMeJUbrnzHorFIj++fjT3Pb7tgxZD5tBMrjDYy2crtuVwpAo9kyscSbBoh0jUjCYGhb6188VLpaauodvaxuYvjEF46tFH+Ob1OebPncPEt97ge+7Gl88/4ZQs9//+Tn6U/zVVVVXUrFzJyhXL2X3P4Flx4YlHOfXs82hqbOR/n3ycy74ejF/cLbMn77/7Dieedibz5sxm0tvjOem0szab84ghx60/HsXi+mfum3PY0cfy9GN/YdR1P2DZksW8MvY5zrvkCgB69dmJbt278/if7ue///o02+2wA7/46U2srq2l/6ADt3jsDe29bz8efe7VTf7+SUOGcN3Pf86MWbPot/+Apj/c9+f2w88csfHvzZ7N3//yECeffja1NTU898wT3HX/XwE47azzeOmFZzlr5MU0NzfzxisvcvBhR2zyvA0NDfzmVpfb7w6u4uvqVuM4wQeb1atXbdPPGGKjgG9U6mSRKnTgOusAIq10Om717rj+V+fxyCYtra3/yu51TU1NjBx+LHWrV/ODn+bZZbfdN/pnv/eTW/jNrTcz8pRjSKVSpKuquO6mm9cX+p777Mvl5wynZuUKjj/5NIafdS4A/z7qWr4/+krOPfEo9t63H/sfdOgWc464+HI+mjGdEUOPoFv1dhxy2JFMf3/SZv/M991b+dH1ozln6BH07N2HQQcNplv36vW/f/iQ43hl7HPsukcGgB49e9Fj4AGkUqV9UtqtSxfudl0uuPZaGpqaOvft36/5x7/+2frfH3nKMfzuwUfp1WcnTj/3Aqa+N5Ezjh2Mg8Nl37iGvv0HAjD8rHOZPmUyI4YdSSqV4pDDjuSSK0dt8rwP/vG3nHHuhezYM/i/ePQNN3LN5RcAcP0Pby7pz2jookyucIOXz9ZU4mTOupGdYZfJFXYHZgHao7dMpnS4cnpXZ01/6xwx9nNc/4fWIbbWhAkT+lVVVf2zb9++tZ07d674inf1jU3tZy78bNCG71AH7rY9r07x6F5dvck/FxVr6uqoateOqqoqVq5YzmVnnsQtv72HAw7e8geIUtmRtat3WLl4/VB0p7pTzaJ23dv7je1CNzOj2LiWxQvm4b64mPmffXWwXYh9y8tn767EiaI0KO7bqMwl2r6OW639u7fSstq1PaJxudE6c7yPuTh7AuefPIQrRpzKyK/9R0XLfGOcFKxuqor8RPCQubpSJ4rELfeW+XxXWOcQaaNeBDsDPmMdJApq6hq2//K/e2/uCosorfbqv57nrtu+ulX2lddcx/AzR2z22baFYgoamhxdOJXWoEyucLSXz7625W9tm0gUOnAU8NUlh0SiZyTRKfRmoFgsVn7f8dVrGzutbWoO3W3fbXXM0JM5ZujJ1jG2WnPKgbDezS4WgSLN0bxtMwpQobfY/BBTkeg4E7e6A65fbx1kKyxobm72Fy9e3LtXr17LHcep2Fvpktr6nsXGyK/pHXqNNDj1zZ/vlNrU1JwqNq7dzJ8wUizSuLqGz9Y0saIukju7npvJFa728tnV5TxJVAr9TOsAIiXSHRgOPGUdZEsGDx5cO2HChFErV678Y01NTTW0csWRVlhW17RdUyTft6NlVbEh7a+pXfePxcY1HaqWNVZkQPY2KvLZmib+8M5K1jRF8hK9E8HjtifKeZLQF3omV+hPsDCHSFyMJAKFDjB48ODxEyZMGNLc3LwzFRpE+/j02r6vzK57uhLnSrohi6fN+NrkfwwCaGyfnjvzpH6L7qrPhm5B9eYirKhrjmqZr3MOSS90dLtd4ucM3OqOuH7Fp4K1xuDBg2uBmZU637mPFS6q1LmSbtnimjWpT4NNYFIdm5dMWHFQcf5G1l+Xkjg9kytUeflsebYCJBrT1nS7XeKmG3CCdYgQO986QCJ1bK6d0bzbV2YWSMlsDxxXzhOEutAzuUJv4HDrHCJlMMw6QBhlcoWBgBY3MpDq0rz24+LOO235O6UNTi3nwUNd6MDphD+jSGuo0DeurG94smkNXVMNq+jUdcvfKW0wvJwHD3tZ6vm5xNWBuNU7WocIoaOtAyRVTdfOZXu2K+sNzOQKZdv+O7SFnskVOgInWucQKRMHPUffmKOsAyTVsm7drCMkRdmu0kNb6MBBBHP3ROJKt903kMkV9iFYHlcMLOy2fRRmPcVB2e5ChbnQQzcXUqTEjrcOEDK6OjdShLXLOuyoC6jKOKRcBw5zodtuOyRSfvviVnexDhEiKnQjRae4aEnzzrrnXhkDMrlCh3IcOMyFrit0ibsUcIB1iBDRgDgr7YorZhR30yDNyqiiTK/7UBZ6JlfoCuxnnUOkAg62DhAGmVyhGhhgnSOpnA7Fmk+KfTQHvXLKcts9lIUODCK82URK6SDrACFxBHrNm6nvWLW6nvaR3642QhJV6AOtA4hUyEHWAUJCjx4M+V06h3DP1FhLVKHr1pskxf641WnrECGwp3WAJFvatVqb1VbWoEyu0K7UB1Whi9jqBOxmHSIEVOiG5nfvoQ+VldWBMtyJVqGL2NvdOkAIqNANzevaU3PQK2/vUh8wdIWeyRV0xSJJk+hCz+QKDpCxzpFURSjO79yru3WOBCr5rILQFTqguZCSNIkudII3trIstCFbo7j0U2cnLblbeYko9O2tA4hUWNILXbfbLVWxdG6xl+agV54KXSSGVOhiZm27qpWNVJV8xLVskQpdJIZ2sQ5gTIVuqKZjl9XWGRKqT6kPqEIXsZf0AUklf2OTrbe483YN1hkSSlfoIjGU9F2ukv7zm5rXtYdjnSGhemZyhZLO/1ehi9jrah3AWNJ/flOzu/fRGu42UkDvUh8wbFTokjQdcKurrEMY0hW6odld+iT9kY+lkv7dq9BFwiHJV6ldrAMkVdFxmNOlt+ag2ynp4w4Vukg4JLnQtaiMkTXtqljWbnvNQY+JMBa6Pq1LEiV5c4wkP24wNb9rrx2KpMLYA9IKYXwh1VkHSJL2NNSfknp7yiVVY1d1Yc3B1nkSLMlTh8L4PpQI8zv33Nk6g5ROGF9In1kHiLs9nIXzLkmPnXV6+o2OO7F8f8dhsHUmYa11AENhfB9KhIZ0O+2yZqukz9DD+EKqtQ4QN1U0NpyYmjjlkvSYmsNSM3bt4DTsDexqnUu+IMlX6EXrACJxEMZC1xV6CezCkk8vqvrXR2elXm+/q7NkgOOg2+nhluQrdN86gEgchLHQdYXeCmmaGo9PTZp6SXrsiiNT03bp5KztSxmWFpSySXKhr7AOIBIHYSx0XaFvpd4sX3xh+sWZ56THVe3hLOrvOBxonUlapQnXb7IOYWildQARIyX9IK9Cj5AUzU1Hp6ZMuzT9wvIhqSm9O1O/n+OgRSGiL+lXqEn/+SW5lpXyYGEsdN1y38CO+EtHpl+acW76FWcv59P+KYdB1pmk5JZYBzCmQpckaqTEd6fCWOgJv0IvFo9ITZt+WXrMkuNS7/Xswpp+jsPR1qmkrJZaBzC20jqAiIFlXj5b0hkeYSz0xF2hb8dnK85LvzL9/PTLxb7O/P1STnGAdSapqIXWAYzpCl2SqOQf5MNY6CV9phBOxeJgZ+aMy6peWDQ0NWnHbqzu7zgcZZ1KzMy3DmBspXUAEQMLSn3AMBb6BwQLTZR0BR1r3Vjlj0iPmz4y/VJjP2dO37RT7Af0s84loVDyF3bEJP2RgyTT3FIfMHSF7uWzqzK5whxgD+ssbXWg8/GHl6ZfWHBieuJ221E70HE4wjqThJJnHcDYTOsAIgbmlfqAoSv0FlOJYKF3oa72rPRrUy9Iv7R2oOPtU+U09wX6WueS0JtuHcCSl8/Oz+QKNUB36ywiFRT/K/QW04DTrENsjQGO9/Gl6THzTk6/031HagY6DodbZ5JIaUJXqBB8qNFrR5LEK/UBw1roU60DbEon6ldn0+OnXJT+15oDnFl7tXOa9gb2ts4lkfUxrp/kZV/XmYYKXZJlUqkPGNZCn2YdYEP7OnO9S9JjZ5+afrNrT/z9HYfDrDNJbITqv3VDiX7sIIkz18tnEzFtDYI3ObOR7h1Yu+aU1NtTL6kau+pg58M92jtNGSBjkUViT0UW0AcbSZJ3y3HQUBa6l8/WVnqke8b5dO4l6bGfnJ5+o1MfVgx0HAZX6tySaKF9vFRh+mAjSTKxHAcNZaG3mEYZC70djWtPTE2Yeml6TM2hqRm7dXAa9wJ2K9f5RDZhvHWAkPCAOqCTcQ6RSkjOFXqLqcCppTzgrs6SBRenx358Zvr1DruwdIDjcHApjy+yjRbi+h9bhwgDL59tzuQK00B3xiQREneFPqGtB0jT1HhC6t2pl6bHrDwiNX3njk5DX2DnEmQTKYXXrAOEzMuo0CX+lnj5bMkXlYFwF/pYWjEwrg/LF11UNfbDs1OvVe3uLO7vOBxYnngibTbOOkDIjAGutw4hUmZlud0OIS50L59dkskVJsPmCzlFc9MxqcnTLk2PWXZ0aupOnajf13HoXaGYIm2hQv+iV4AGoJ11EJEyeqtcBw5tobcYw0YKvQcrl1yQfmnGiPSr6T2dT/unHAYZZBNpi1rK+Ek9ilr2cXgTGGKdRaSMni3XgcNe6C8ANzg0Nx+Zmjb90vSYpcemJvfswpr+jkNP63AibfASrt9kHSKExqJCl/haShlntoS90F8ptL/xpf7OnEEppzjQOoxICT1lHSCkxgI/sQ4hUibPevlsc7kOnirXgUvBy2frBqZm16Wc4o7WWURKqBl4xjpESI0HVlmHECmTQjkPHupCb6E3PombN3H9RdYhwsjLZxsIBseJxE0j8M9yniAqhV60DiFSQrrdvnnPWQcQKYNxXj7rl/ME4S9015+HpvdIvKjQN+8xgscSInFS1tvtEIVCDzxkHUCkRKbh+h9YhwgzL59dQLBqnEic/KPcJ4hKoT8GrLEOIVIC91kHiIi/WAcQKaGpXj5b9g/y0Sh01/eBp61jiLRRA/CwdYiIeBxYax1CpETuqcRJolHoAb0RStT9A9dfbB0iCrx8dgUaayDxsJoK9VeUCv2fgN4MJcr+v3WAiNHfl8TB37x8dmUlThSdQnf9RuC/rWOItNICyjwHNYZeAOZYhxBpo4rcbocoFXrgd+i5mkTTfVq7fdu0LJH5gHUOkTaY5OWzb1bqZNEqdNdfiEa/SvSsAe6yDhFR9wD11iFEWqliV+cQtUIP/Mo6gMg2ul+D4VqnZU76A9Y5RFqhFvhzJU8YvUJ3/ckEOzKJREET8AvrEBF3G8E62CJR8oiXz35WyRNGr9ADd1gHENlKj+L6n1iHiDIvn/0EeMQ6h8g2MPkgH81Cd/1ngYoNNBBpg9usA8TErWh9d4mOP3n57EeVPmk0Cz2Qsw4gsgXP4PrvWYeIg5ZlM/9unUNkKzQBP7M4cXQL3fVfAp63jiGyCU3AD6xDxMwt1gFEtsLDFlfnEOVCD9yI9kqXcPofXH+6dYg48fLZSVRgC0qRNqgHXKuTR7vQXX8iwU5sImFSC/zEOkRM/QQ9S5fw+r2Xz862Onm0Cz3wX2j1OAmX23H9RdYh4sjLZyegJaAlnHyMHwtFv9Bd/0M0z1fCYz6aVlluNwFLrUOIfMltXj67zDJA9As98DPgY+sQIsANuP5q6xBx5uWzy9GAQwmX6YRgFdN4FLrrrwFGW8eQxHsa1/+bdYiEuB943TqECMGYjq97+az5ngPxKHQA138ebdwidnzgm9YhksLLZ4sEf9/awU6s3e3ls6H4cBmfQg9cB6y0DiGJ9D1cf4F1iCTx8tnJaBc7seURTJ8OhXgVejCy+FrrGJI4/8L1NfLaxo8BfZASK1d5+ewq6xDrxKvQAVz/IXTrXSpnFXCVdYikatnNapR1DkmkB7x89gXrEBuKX6EHRgHa4Uoq4Vu4vmZYGPLy2WeAX1vnkERZCFxvHeLL4lnorl8DXIz2UJby+hOu/4B1CAGCaWxvWYeQxPiml8+usA7xZfEsdADXH4/hmroSezPRVMnQ8PLZBuACNChWyu+XXj77pHWIjYlvoQduBcZYh5DYWQWMwPU/sw4in/PyWQ+40jqHxNoYQrx1d7wL3fWbCT61f2gdRWLlalx/qnUI+Sovn30CTWWT8vCAC718NrRrH8S70AFcfzlwBroVJ6VxG67/Z+sQslnfBd6xDiGxUgecY71W+5bEv9ABXH8GcD4aJCdt8zdCtIiEbJyXz64luDO33DqLxMZVXj47yTrEliSj0AFcfwzwHesYElmvAZfj+kXrILJlXj47CzgLWGOdRSLvTi+f/ZN1iK2RnEIHcP27gd9ax5DI+RA4C9c333xBtp6Xz44DvgboQ5i01osEj3AiIVmFHvgO8IBxBomOpcBpuH6on53Jxnn57GNE6A1ZQuVt4Gwvn43Mo9rkFXpwy/Q/CJ6HimzOcuAkXP8j6yDSel4++yvgduscEinvAad4+WyNdZBt4RSLCb0b5VZXAY8TPGcT+bLlwDBcf5J1ECmNTK7wR+Bq6xwSetOA4718dol1kG2VvCv0dVy/kWAk7HPWUSR0lgMnqsxjZzTauEk270NgWBTLHJJc6EDLIKdzgOeto0horCvzd62DSGl5+WwzwSC5x62zSCh9Agz18tmF1kFaK9mFDuD6dQQLzzxmHUXMLSF4Zq4yj6mWAU4XAH+wziKhMo/gynyedZC2SO4z9C9zq1PA79EztqSaSTCaXVuhJkQmV/gxcLN1DjE3GzjJy2cjv0S4Cv3L3Or/Av6fdQypqNcI5plralrCZHKFq4G7gbR1FjExEchG+Tb7hlToG+NWXwHcC7QzTiLl9xjwNVxfK4olVCZXOIdgsFwH6yxSUc8CI718ttY6SKnoGfrGuP4DwHHAAuMkUl6/BC5QmSdbyw5tpwC+dRapmHuBM+NU5qAr9M1zq3sTXMEdYx1FSqoW+Aau/1frIBIemVzhAOBpYA/rLFI2jcB1Xj77O+sg5aAr9M1x/UXAUOBO6yhSMu8Dh6rM5cu8fHYycDDwpHEUKY8VwKlxLXPQFfrWc6svJrhN08U6irTa/cA1LVMVRTYpkyv8J/ALoL11FimJicCFcRjJvjkq9G3hVu9DsLHL0cZJZNusBr6F699vHUSiI5MrHEqw58Ne1lmk1ZqAPHCzl882WIcpNxX6tgrmq18P/AyNio2CF4Gv4/qzrINI9GRyhWrgf4DzrLPINpsFXObls69bB6kUFXprudUDgIeAwdZRZKNqgO8D97bssCfSaplcYTTwK/QhPiruA77j5bOfWQepJBV6WwQ7tuWAm4BOxmnkc/8LXI3rR3oZRwmXTK7Qj2ARmqHWWWSTlgJXtUxFTBwVeim41XsQzGnWbTlb84Ef4Pp/tg4i8ZXJFS4E7gB2ts4iX/AUMCouq761hgq9lNzq44HfAoOMkyTNKuB24Je4/mrrMBJ/mVyhG8E68N8GqozjJN17wA1ePjvWOog1FXqpudVpYBTBi31H4zRx10wwFe1HuP6n1mEkeVoWo7kbGGKdJYEWAj8C7mvZGjfxVOjl4lZ3A64BbgB6GKeJo2eBHK4/2TqIJFsmV3AI9lm/DehtHCcJ1hA88sjHbenWtlKhl5tb3QUYDXwP6GmcJuqaCZbizeP6k4yziHxBJlfoDHyT4LWuYi+9IsEmOjd6+ewc6zBhpEKvFLd63Yv9OmAX4zRRsxZ4ELgd1//IOozI5qjYS66BYIGfX3n57LvWYcJMhV5pwVS3Mwle8MMAxzZQqC0mmE96F66vne8kUjK5QkfgcoLHbn2N40TRCuAe4C4vn9Xrfyuo0C251fsSDKC7AtjeNkxoFAlWd7sXeALXX2ucR6RNMrlCCjiHoNiPNI4TBR8CvwEe8PJZzVrZBir0MHCrOwFnA+cDpwIdTfPY+Ah4GHgQ159tHUakHDK5wn4EA+guBXY3jhM2LwK/Bv7h5bMqplZQoYeNW90VOJ3Pyz3OK9BNINiq8klcf4pxFpGKaRkZfzxBuZ8LdDMNZGcq8AjwiJfPesZZIk+FHmZBuQ8neNY+FNjXNlCb1QHjCFZ0ekpLs4qsH0R3DkG5DwPStonKbirBB/lHW/aglxJRoUeJW70LQbEPBU4A9rANtEXLCQp8HPAqMAHXj/0WhiKtlckVtgOOIyj2YcAA00ClsRZ4C3gaeDLue5JbUqFHmVvdGziEYMe3A4H9gX2o/FKURWA2MK3layrwNjBNO52JtF4mV9iJ4AP8uoKPwnP3pcDrwGstX+94+Wy9baRkUKHHjVvdAdgb2G0TX9sDXYDObP2UuRqCZRYXAp9u8Ov5wHRgOq6/qnQ/hIhsTCZX2Af4N4Ir9/4tX32BdkaR6ggGtL5JS4l7+exMoyyJp0JPKrfaIRhw1wXoSrDPcwNQT3CLrH79r11f6ySLhFQmV6giuDPXf4OvDMHKlD2AHWj9ehdNwFxgFvDJl75mefnsorZkl9JSoYuIxFgmV0gTlHp3gg/v677aE6yLXtfyvxv+ev2/08Yn0aFCFxERiYGUdQARERFpOxW6iIhIDKjQRUREYkCFLiIiEgMqdBERkRhQoYuIiMSACl1ERCQGVOgiIiIxoEIXERGJARW6iIhIDKjQRUREYkCFLiIiEgMqdBERkRhQoYuIiMSACl1ERCQGVOgiIiIx8H9Wm5EQEV66GAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/oli/.local/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAIsCAYAAACN/bHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACCcklEQVR4nO3dd5gT1dfA8e/JFjqhd3BBelEQRUVUfjZ4XUUFFUVRFCv2yoqKsa8d7GJDxQI2BFZFsSAWVFZFVIoCK71Dlu2b5L5/TBZi2M4mk3I+zzMPZObOzEk2k5zce+deMcaglFJKqfjmsDsApZRSStlPEwKllFJKaUKglFJKKU0IlFJKKYUmBEoppZRCEwKllFJKoQmBUkoppdCEQCmllFJoQqCUUkopNCFQSsUBERkjIkZEUuyORalIpQmBigkBH/hGRAaVsl1EZK1/+xw7YlRKqUimCYGKNQXAqFLWHwu0AwrDG46KEG8AdYB/7Q5EqUilCYGKNR8DZ4lIYtD6UUAmsCn8Ie0/EalndwzRqOR1M8Z4jTEFRmdzU6pMmhCoWPM20BQ4sWSFiCQDZwJvlbaDiDhE5HoR+VNECkRks4i8ICKNg8plicgcERksIotEJF9ElojIYP/24f7HBSKSKSL9SjnXcSKyQERyRWSXiHwkIj2Cyrj8TRs9ReQtEdkJfCsiF/nXl3bcCSLiFZG25b04ItJWRF4WkQ0iUigiq0XkOf9rVFKmk4i8KyI7RCRPRBaKSGrQcQb7YzlbRO4SkfUisltE3hMRp4jUEpFJIrJFRHJE5FURqRV0DCMiT4vIeSKyPOB1Oyao3AEi8qy/TL6IbPfHlxJUrqTZ6Fh/+S3AuqBtKQHlDxWRuSKyzX/c1SLyStAx64nIY/7mpkJ/DDeLiJTxXE4XkT/8Zf8UkaFB5Rr4X5csf5ktIvK5iBxS3t9NqXAI/hWlVLTLAn4AzgU+8a/7P8AJvANcW8o+LwBjgFeBJ4GOwNVAPxE5yhhTHFC2M1Zi8QIwDbgZmC0iVwAPAM/6y90GzBCRbsYYH4CInOCPaRXgwqrCvgb4TkQOMcZkBcX1LvA3MAEQ4D3gGeA84NegsucBXxtj1pf1wohIG+AnoBEwBVgGtMVKluoCRSLSEvje//hJYDtwITBLRM40xnwYdNjbgHwg3f/aXAMUAz6gsf95HoH1+q4G7gna/1hgpP9chcA44FMRGWCM+cNf5jBgINbfbx2QAlwJfC0iPY0xeUHHfBbY6j9XqTUrItIC+MxfLh3Y5T/u8IAyAswC/ge8DPwGDAEe8b9uNwQddpB//2eB3VjvtfdFpIMxZru/zPNYr/fTwF9YyesgoAfwS2mxKhU2xhhddIn6BesLxwCHAlcB2UAd/7YZwJf+/2cBcwL2G+Tfb1TQ8YYEr/fva4AjA9ad5F+XB3QIWH+Zf/3ggHW/ApuBJgHrDgK8wGsB61z+fd8q5Xm+BawHHAHr+vnLj6ngNXrNf65DS9km/n+f8B9rUMC2+lhJzOqS8wKD/eWWAElB8fmAj4OO/z2QFbTO+Jf+Aes6YCUYHwSsq1NKvEf49x1dyntgAZBQxvsjxf/49JL3Szmv12n+MrcHrX/X/xwPDHouhUHrDvKvvzpg3S7gabuvF110KW3RJgMVi2Zg/fo+RUQaAKdQRnMBcBbgBj4XkWYlC1Z/gxysX4eB/jLG/BDw+Ef/v18aY9aUsr4TgIi0BvoCU40xO0oKGWN+Bz4HTi4ltudLWfc60CYorvOwvkTfL+M5IiIOrC/B2caYRcHbjTElbesnAz8ZY74N2JaDVaOQAvQMjsf8twblR6zajFeCyv0ItJd9+3b8YIzJDDjXGuAjYIiIJPjX5Qc8jyQRaQr8g/XlWlpV+4vGGG8p6wPt8v97iogklVHmZKwE6smg9Y9hPcf/C1o/zxizMuC5/I6VmHYKOu/h/toapSKKJgQq5hhjtgLzsDoSDgcSsKrbS9MFqzlhC1b1ceBSH2gRVD7wSx9jjNv/37VB5UrWl/RDOMD/7/JSYlgKNJN9Ow6uLqXs58BGrCSg5Iv+XOAjY8zuUsqXaA40BP4op0xJnGXFWLI90Jqgx+W9Hg6s1zrQ36WcawVWk0VzABGpIyL3iMharF/h27D+Po1KOR6U/roFm4+VQN0FbPP35bgoqJ/DAcCGUl7Xyr4WADvZ+x4AuBXoDawVkZ/8/UU6lbKfUmGnfQhUrHoLeBFoBXxijNlVRjkHVjJwXhnbtwY9LuuXZ1nrpYz1lZEfvMIY4xWRt4BLRWQccBRWjcG0/TjP/gjH6/EUcBEwCat/iBurKv4dSv9Rs8/rFsxfI3KmiBwBnIrVRPQKcJOIHOGvFamqCp+zMWaGiCwAzsBqbroFGC8iw40xn5Sxv1JhoQmBilUfYnX8OwKr01pZVgInAN8FVk2HQMn9791K2dYd2GaMya3ksV4HbsL6Ivs/rKRlbgX7bMWqvu5diTjLirFke03qUsq6rlh9MkqSsTOx+ljcVFJARGpj1RDsF2PMQmAhcLuIjALeBM4BXsJ6rieISIOgWoL9ei2MMRuxOh4+6+/c+AtwO3s7wSplC20yUDHJ/wvvSqwOerPLKToDq0nhzuANIpIoIo1qKJ6NWL3ULww8poj0xvql+HEVjvU78DtwCTACeMcY46lgHx8wEzhVRA4N3h5wG93HwAAROTJgWz2sTpJZWD3ja9KRgbfciUh7rM58nwX0A/Cyb83CNVh/t2oRkcbBtw5i/X0ASpoNPvaf4+qgcjdg1VBU6QtcRBJE5D9NHMaYLcCGgHMqZRutIVAxyxjzWiXKzBeRF4DbRKQv1q1oxVi/XM8CrqPs/gdVdQvWl8gPIvIye287dGMlLlXxOvCo//+VbS6YgJV8zBeRKVht4a2xnucgrA5v6fhv2RSRJ4EdWLcddgRG+BOLmvQHMNd/rpLbDsFq2y8xBxgtIm6shORIrFqd7VTfhcA4EfkQq5aoAXApVi1KSXI2G/gKuN8/fsFirNfvNGBSYAfCSmoArBOR9/zHyvE/j8OwanyUspUmBCruGWOuEJFM4HKssQQ8WL+GpwHf1eB55vkHqrkb6x75YqzObeONMZXpCBfoTeAhYKUx5qdKnn+9iBwO3IvVZ6Ih1i2Mn2BV0WOM2SwiA/3HvgaojVUbcaoxJqOKMVbGfKx+AXdh3XL4F9btk78HlLkOq5bgPH8832F9kVbUTFLReQdgNQ+0xErKfgLOK/lbGGN8IjIM6281EqsfQxZWYvdYNc6Zh9VUcBJWZ1cH1t0S44wxz+3Hc1GqRpTce6yUiiL+WyM3AvcYY+61O57qEBEDPGOMCa6SV0rZQPsQKBWdxmC1b79hcxxKqRihTQZKRREROQ5rcKDbgZlm3+GOlVKqWjQhUCq6TMQa1/87rDZ+pZSqEdqHQCmllFLah0AppZRSmhAopZRSCk0IlFJKKYUmBEoppZRCEwKllFJKoQmBUkoppdCEQCmllFJoQqCUUkopNCFQSimlFJoQKKWUUgpNCJRSSimFJgRKKaWUQhMCpZRSSqEJgVJKKaXQhEAppZRSaEKglFJKKTQhUEoppRSaECillFIKTQiUUkophSYEUU9EUkTEiMjNdscS6URksP+1Gmx3LEopFWk0IQgBERnj/+IpWQpEZIWIPC0iLe2OL9aJyDgRGWN3HEqp6hORCSJyut1xxJNEuwOIcROB1UBtYBBwJXCyiPQ2xuTZGllsGwdsA6YGrf8GqAMUhTsgpVSVTQDeA2baHEfc0IQgtD4xxizy//8lEdkO3AicBrxtX1jRQ0QEqG2Myd/fYxljfEDB/kellKoKEXEAycYYvf4imDYZhNeX/n87+psSbgguICID/dvOre5JxDJFRIpEZHjA+oNEZL6I5IvIOhG5Q0Qu8p8vJegY/yciC0QkV0R2i0iGiPQKKjNVRHJEpK2IzPT/f6uIPCoiCUFlHSJyvYj86W9C2SwiL4hI46ByWSIyR0SGiMgiIB+43L/tIhH5UkS2iEihiPwlIlcG7w/0Ao4NaLL52r+t1D4EInKWiGT6X5dtIjJNRNpW97kqFWr+9/Ii/7W0UkQuFxGXiJigcucHvLd3iMg7ItI+qMzXIvKHiPQUka9EJE9E1ovIraWct5aI3C0i//ivwbUi8rCI1AoqZ/xNpOeJyJ9AITDUv+1mEfleRLb748oUkTOD9wfqARcGXMdTA7a3FZFX/J8jhf7PlYv382WNe1pDEF4H+v/dDnwHnAc8EVTmPGA38FF1TuD/cnoFGAmcYYzJ8K9vC3wFGOBBIBe4BOtCDT7GaOA1YC4wHqiL1dzxrYj0M8ZkBRRP8Jf7EbgZOAG4CVgJPBdQ7gVgDPAq8CTQEbga6CciRxljigPKdsOqQXkBeBFY7l9/JfAnMAvwAKcCz4qIwxjzjL/M9cBTQA5wv3/d5nJer5KYfgZuA1oC1wFH+Z/rrmo8V6VCRkT6AZ8CG4G7sN6XE4GtQeVuB+4FZgAvAc2Ba4BvSnlvN/Yf8wN/+TOBh0RkiTHmE//xHFjX3iBgCrAU6APcAHQFTg8K9TjgbOBprCa8LP/66/zHeRNIBs4B3hWRU0o+r4DR/ph/8p8LrOsMsfphLcT6LHva/7z/D3hZRBoaYyZV9BqqMhhjdKnhBeuLzwDHA82Adlhf0NuAPKAtcJm/TPeA/ZKw3txTq3CuFP9xbsZK8N7xn+OkoHJPAj6gb8C6JljJiQFS/OvqAzuBKUH7twR2Ba7HaqM3wJ1BZX8BFgU8HuQvNyqo3JDg9VgfGgYYUspzrVPKuk+BlUHr/gC+LqXsYP+xBwe83puBJVjNEiXlUv3l7q7qc9VFl1AvWF+muUCbgHWdgWLrI90AHICVNE8I2re3v9yEgHVf+9/bowPWJWMlHO8FrDsf8AKDgo55uX//gQHrjL9sz1LirxP0OMl/DX4RtD6ntM9CrERhA9A0aP3b/s+ofT4ndKncok0GoTUP6wt+LdYXdQ7Wr/b1WFl4AVaNQIkhWAnEtGqcKxl4FzgFONkY81nQ9qHAD8aY30pWGGN2YGXpgU4EGgFvi0izkgXr4v4R+F8p534+6PECoFPA47MAN/B50DEzsV6T4GOuNsbMDT6JCehHICJO/zHmA51ExFlKXBU5FGgBPGsC2jaN9StlGVZiEKyi56pUyPhrAE8AZhpjNpSsN8b8A3wSUHQ4VpPwjKBrbhPwN/teczkEfO4YY4qwfp0HX8dLgWVBxyxpCg0+5nxjzF/BzyHoOm4MOLGuo0Mq8fwFGAHM9j8MjGOu/1gVHkeVTpsMQusqYAVWpr4ZWG6sjm0YY3aJyGxgFHCnv/x5wHr2XmBVcRvWr/v/M8Z8Xcr2A4AfSln/T9DjLv5/y4ohO+hxgTFma9C6nVhVkIHHdAJbyjhmi6DHq0srJCJHAXcDR2I1YwRyYiUdVXGA/9/lpWxbhlWzEagyz1WpUGqBdadM8HVL0LougGB9+ZemOOjxOuP/mR1gJ3BQ0DF7ENQ0ERRboLKu41OAO4C+QGDfg+Dzl6Y51g+Wy/xLZeJQlaQJQWj9ZPbeZVCa14GzRGQgVpXZMKxfq75qnGsuVi3ArSLytal+b96SWqPRWL8mgnmCHnsrecwt/Lc2JFDwB8w+dxSIyIHAF1hf1Ddi1boUASdjtWGGo7arMs9VqUjgwPqC/T9Kf9/mBD0u670tQcdcgnX9lWZt0OPSruOjsZo8vsG6PXgjVnJyEdaPo4qUXOfTsPo5leb3ShxHlUITAnt9ivVleB5WdXxd4I1qHmshVnX2HKwOOmcYYwK/vP/FamcMFrxupf/fLcaYedWMJdhKrGrO70z1bx88FevXxDBjzJqSlSJSWhNGZX5pgPWagNWJMbhGpFvAdqUixRaspsaKruWVWF/mq40xK2ro3CuBg7Ha+it7jQUbgRX/EGPMng7NInJRKWVLO8dWrE7XCTX4+aT8tA+Bjfxf2G9j9cQdAywxxlQ7u/VfIOdg1RS84e8VXGIucKSI9C1ZISJN2PdX+1ysZoEJIpIUfA4RaV6N0GZg9YS+M3iDiCSKSKNKHKPkF8yeXyz+fgOlfZDkYlUrVmQR1gfsFYG3TYnI/2FVjWaUtaNSdjDGeLH6Jp0uIm1K1otIZ6zagBIfYF0zd/nb3QkoKyLStBqnn4HVIfrS4A0iUkdE6lXiGF6sL/o9t+qKdcvz6aWU3ec69j//94ERItK7lDiq8/mk/LSGwH6vA9didcgZv78HM8bM9Gfbr2N9sV/u3/QwVi/hz0XkKfbedrgG624D498/W6x7+98AfhGRd7Cy8g5Yney+w7pdsCoxzReRF4Db/AnJZ1jVhF2wOipdhzUiWXk+w2oimO0/Vn2sD6YtQOugspnAlSJyB1a76hZjzD59IowxxSIyHuu2w/ki8jZ7bzvMYt9bQpWKBC7gJOA7EXkO68v1aqy7a/oCGGNW+t//DwIpIjIT65d1R+AMrFv5Hq3ied/A+vHyvL9m7jv/ubv71w/BSrLLk4HV5PCpiLyF1d5/FdZ1elBQ2UzgBBG5EeuugtXGmB+BNKzPyx9F5EXgL6zPsEOwaiKbVPF5qRJ23+YQiwt7bzs8tJLl/8DKnNtW41wp/nPdHLT+Sv/6RwLW9cVquyvAau9Lw7ov2QAtg/YfjNWksQurLfAfrC/O/gFlpgI5pcTkwn/7U9D6S7E+MPKwkpXfgYeA1gFlsoA5ZTzXU4HF/nhWA7di1RDsuW3SX64lVtNJtn/b1wHPac9thwHlz8a6fbAA6zbMacF/i6o+V110CeWCdY//L1jjiPwDjMX6gs8PKjccqwd/jn9ZinXvfteAMl8Df5RyjqlAVtC6JP9194f/etnhv6YnAg0Dyhng6TJivxirs3WBP54xpV1HWM128/2fF4aAWxCxEomnsX7QFGH1RZgHXGr33yaaF/G/uMpGIvIrsMMYc7wN556EVYtQ31jVcUqpKOSvBehljOlSUVmlSqN9CGwmIodi/XJ/PQznqhP0uCnW3QTfajKgVPQo5VrugnXHzde2BKRigtYQ2MTfIaY/1tC3zYBOJuBWQf8AJBV1kMkxxgTfPlTeOX/D+sBYilWtPhZoAxxvjPmmKvErpewjIhuxqvRXYY2ncSXWXTj9jDFljT2gVLm0U6F9zsRqd1sOnGv2HTegPWUM7BHgbqy2t8r62H/ekmGTfwHGajKgVNT5FDgXaIXVj+AHrOGINRlQ1aY1BBFKRGqz70h5wVYZY1aFIx6llFKxTRMCpZRSSmmnQqWUUkppQqCUUkopNCFQSimlFJoQKKWUUgpNCJRSSimFJgRKKaWUIswDE2VmZtbHGhlPExFVXT5gQ//+/Ss9QqOyl173yk+v3QgXtnEIMjMzj3A4HM87HA4nAXPaK1VFxufzuX0+3xX9+/dfaHcwqnx63asAeu1GuLAkBJmZmfUdDse3jRo1atmiRYsdIqKjIUU4n8+Ix2eSin2+RI/XJHp9JtHjM0ker0n0GpPkM0YAwSAGpGVibkFdb3ZtEGOtdRhI8OBweHEkeJEEL44Er5EEDwlJxSTUKsKR4KtqXMYY2bJlS5Ndu3Zt9vl8g/TXRuTS6z4KGQPGk4C3OBGfJ0l8niS8nkSMJxGvNxG8iRgDGMEgYPxJnv+6R0DEgMNLQmIxkughIdFjJLHYOBK9W3e46+90uzf6fEav3QgUriaDNg6Hw9miRYsd9erVyw/TOVUleHw+R16ht15ekbduQbG3boHHW9fjNck+Y0qp3hX2+ZHnf1grgeI6xlNrn118/qU0kuAhMbmAhFoFJNYqJLF2Acl180isXVRezC1atNiRnZ3t9Pl8bbDmVVeRSa/7SGUMePJrU5Rbl+L8uhTn18NbVAufJ6nCfSXo37KUzJ/q2bvKkWDIL9jaIuW7m1cze80KIDNgWYrLrbOu2ihcCYEDEP2FYK99vvyLvfWKvL59v8TDxXgTKc6vT3F+/f+sdyQWk1Qnh6R6udSql0Ny/TyrxsHifx8J2iYd6fS6jwTGQHF+bYpz61KcV4/i/Lp4CutifGG/fqSkPgHTDGuW14EBm/NwORfz3yThL00SwkdnO4xx+UWe2u784ka7CzyN8ou99eyOp1J8niQKdzemcHdjcgDEkFg7j1oN3NRptAv0C0apcvk8DvJ3OSnMbkThbifGl2B3SJVQFzjSv5TIxuWcC8wCPsbl3mFLZHHC3oTA5ewfmuO6MytTbNq0aY0mTpzYNjk52bz++uurV6xYUSvw8ddff13/1ltv3VqToWVlZSWdf/75KevWrauVnJzs69ixY+Grr776b5s2bTwV773Xpk2bEgYPHtyt5HFBQYFj3bp1tdatW/dbXWfTusf/75iOG9ZvSGzQsKEAnHrmuYy+dFypx5o/71Mev28iPq+Xzt17cu/jz1C/QcMKtwV64JEnkj+aNZsG9eoy/fl0DmjXBoAx19/FpeedwVGH9a3K0wtiBE9+PTz59cjd0ka8CcWJRdkFbZY8fxSz56zC5S63iUFFEJuv+bIsX748+aOPPnIGXu9t27bt8+677/4zcODAsDV3uN1uR2pq6oF//vlnXY/HI7t37/4tcPvbb7/tnDBhQjufzyfdunXLf+edd1Y3adLEBzD9rWlNb7/zznbG53Uc3L2zY+qku2nYoP4+5/D5fFw38RE+/vI7ROD6S0Zx9UXnVLgt0M5d2Qy/5Ga27dzF0QP68eyDtwGwdftOzrr8Vj5/+1mSkipufaiEhsBZ/sWLy/kdVnIwC5dbp3quYXFd5TplypTm48eP37hs2bK/BgwYkB/4eMuWLYmvvPJK85o+Z0JCgrnzzjs3ZmVl/bFixYq/UlJSCq+55pp2VT1Oq1atvMuWLftr2bJlf/21dOnSc0ePyRl07HHF2711+mRtz+2KJCTdctcDMmPuAmbMXVBmMpCXm4PrlmuZ9NI0Zi/IpHnLVkyZ/EiF2wLl7M5mxvsfJf0+bzrjLjybp16ZDsDn3yykbp3a+5kM7EuMJ8nhyWvQYMfil4BtuJzv4HIOxeWM6/ezqr6///67Viiu9+Li4iqVT05ONrfeeuumjIyMffrGuN1ux9VXX53ywQcfrPz333//aNWqVfEdt43vgHtt290rf+557XXXpcx59bHEld995GjTqjn3Tnqx1HNMe/9j/lqxihULPuSnOW/wyHOv8+fylRVuC/Tmhx/zv6MOZckXM1j2z2r+WPYPADe6HiP9tmtqKhkIlgAcAzwKrMDlXIbL+Qgu5xGhOFk8itsP0DFjxrRftGhR/Xvuuadtv379ugc/vuaaazpkZWXV7t69e8/jjjuuM1i/GK699to2/fr1696qVauDHn744eaTJ09u2rdv3+5t27btM2XKlMYlxx82bFjH3r179+jatWvPwYMHd16zZk0iQPv27T1DhgzZ07v2iCOOyF27dm212vELi73J63fmt126Mfug6e+83fT0cy9M8hpTparBb7+aR/deB9Gxc1cARl4wlk8++qDCbYEcCQl4fT6Kiz3k5uWTnJRIXn4+9056kfQJ11TnqVVFA2Ak8AmQhct5Dy5nSqhPqqLT+++/37Bnz549unbt2vOwww7rlpmZWRugtOsdYMaMGY1Lru9bb721dcn6NWvWJJ588smd+vTp06Nr1649r7322jYl29q2bdvnyiuvbNunT58eI0aM6FiV+OrUqWOGDRu2u2nTpvu0m7///vvOnj175vU7uE8Ruzc3v/WSEfVnzZrVlNxtrT6d91Wdfr270b2zdbpxF57N2zPnlnqO6bM+49LzhpOQkECTxk5GDjuJt2d+WuG2QEmJieTlF+Dz+SgsKiY5KYlPv/qOxo0ackT/g6rylPdHN+Bm4Adczj9xOa/H5WwSrpPHorhNCKZOnbq2d+/eeenp6Wt//fXXZcGPn3rqqTUpKSkFy5Yt++vLL7/8p2S/3NzchF9//XXZvHnzlk+cOLH9+vXrk3/77bdlb7311srx48d3KCn3/PPPr/3jjz+Wrlix4q+BAwfmpKWltQmOwePx8Nxzz7VITU3dWdm4jTG484oartqa03n55t19tucWtsr8aWFitnsXx5ww5D9lJ6ffzYgTBnLLlRez7t+sUo+3cf06WrfbW0HRpn0Htm3ZhMfjKXdboLp163HVZRcXHXHqhXz02ddcd8koJj7yPDddPrrUKssQag/cCazC5ZyHy3kuLmdyOANQkWv9+vWJY8eO7TR16tSsFStW/HXxxRdvPfvssw/0+XyUdb3v2rUr4bffflu2aNGipc8991zL1atXJwGMGjWq41VXXbVlyZIlS//888+/fv3113qvvPLKnh8EO3bsSFy8ePHSWbNmra6p+NdmrazXpUOrZDb9cTC7N3To1LZ5nY1btuHxeFizfhMHtN2Tr5DSvjUl24Kt2bCJA9q22lu2XRvWrN9U4bZA549I5Z/Va+l30rmccPQA2rZuwf1Pvsz946+qqadbVT2BJ4ANuJxv4nIOrGgHtS/tVFhFo0aN2gHQu3fvwuTkZN+55567E+Doo4/Oy87OTty2bVtCs2bNvC+//HKT6dOnNy0sLHQUFhZK48aN/3Nl+nw+LrjgggOcTqfnjjvu2FLReT1eX8K2nKJmO/OKmhcH3Rnw4TvTOHXESBIT9/4575/8PK3atMMYwzuvvcg1F53Dh1+GbiyQKy4ZU3zzmGG1ADJ//4t1GzczdPBArprwIFu27eTow/tx7dhzQ3b+IAIc71/W43I+BkzB5c4NVwAq8syfP79e165d8wcMGJAPcOWVV+649dZbO5R8yZdm9OjROwBat27tadeuXdGKFStqNW3a1Ltw4cKGN910U9JNN90EQF5enmPZsmW1S/a7+OKLtzscNfB7yxjI39GY3K0t6pNfP0l8gP19auvVrcN7L+5tPrzhrkcZP24M/2St5YEnXwHgjusu4eBeXcMdWi1gFDAKl3MRMBmYof2MKiduawiqq06dOnvuqk9ISDB169b1ATgcDkSE4uJimTt3bv0pU6a0mDt37t9///33nw8++ODawsLC/7zWF110Ufv169cnzZ49e1VCQum1/P369evevXv3Xgf1PeTgpZt2H7xld0G74GQgLzeHz+bM5PSR5/9n31ZtrF/2IsK5Yy5j3Zosdu3ct4Nu67bt2Lhu3Z7HG9auoVmLViQmJpa7rSwej4eb75nEpLtvZtoHH9O8aWPenfIwH37yFav+XVfmfiHUFngcWIPL6dIqRVUVwdd7cXHxnsHcfvnll6Ul/XjWrFnzx8MPP7yxpGyDBg1KvVUuMzOzdvfu3Xt279695+jRozuUVgYA4xOH4GDzH33YtaYTxfn1O7Rtxb/r95yCrLUbad2iGYmJiZS3LViHNq34N+BXf9a6DXTw1wqUt60sP/36B1u27+SUE4/h2jsf5pE7r+fhO67j2okPl7tfGBwKvAH8i8t5Cy5n7Yp2iHeaEJShUaNG3t27d1frVp3t27cn1KtXz9eyZUtPQUGBvPjii//prDRmzJj2q1evrv3pp5+urF27dqnpvsfrS5jz1fe73/vix+Rpc75MNMaUOgzIp7M/pGvPXnva+cH6Ut6+dW+lw7yPZ9G0WXMaNd73u/Cowcez9I/FrP7H6sM0/fWXGTpseIXbyvLYC9MYdcZQWrVoRm5ePuK/8VgEcvNsHZumCXAXVmLwOC7nPk04KrYNHjw4d8WKFXV+/vnn2gBTpkxp3LJly+KOHTsWV+V6dzqdvgEDBmTfcccde+ros7KyklauXFlhT7r+/fsXlCQRb7zxxpp9ChgDuduaJGf/21UEwefZ0+Q19H8D+WXJMpb9Y7VCPPvaDM45bUiF24KddcoJvPjmB3i9XnbsdDN91meMHHZShdtKU1xczPj7n+Txu24EIDevABFwOISc3LyKXo5waQU8DPyNyzkWlzMabsG0hc23He7frUKhdPjhh+d17do1v0uXLr3at29fGNiuWJERI0Zkv/nmm007derUu1GjRp5jjz1296ZNm5IBPvvss3qvvfZai44dOxb069evB0D79u0LP//885VgDRm8ZXdhi+25ha29voo7CM585w2Gn3vhf9YVFRVy9YUjKSoqxOFw0KhJUya/8tae7c88+gDNW7bi7NEXU69+A1wPT+b6S87H6/HQuVsP7n3iWYByt5VmZdZavv5hER+/8RQA5w8/mTMuuYl358zjqEMPpk+PLpV9CUOpHnADcDku58PAI7jcEfPJFfNsvObbtGnjeemll1ZdeOGFHT0ejzidTu/06dNXOhyOKl/v77777upx48a179KlSy8RMXXq1PE9//zz/x544IFVu60gUP6uhuze0PagwafV3bp9F9m7c2nXfyj/G3gobzx1Hw3q1+OlRydy+sU34fF66N2tM69Nuhug3G0AfU88h4/feIo2rZoz+sxUfl78J10GnY6IcONl5++5NsvbVppHnnudC85KpWXzpgDcc/MVnDz6WmvbHddX+6UIkXbAS8DNuJwTcLk/tDugSBOuuQy6JyYmftqlS5ecunXrFoT8hFHIGMO2nKJmW3MKW3u8vqjrCNcp2Z1T37MjLD0ICzyG1eu30vG7m6ids3Z/D7cOmABMw+W2v3E2huh1X0mFu+uSvaEdxXkN7A4l1Gr42t1fPwJpuNxf2x1IpNAmgwiwK6/IuXzz7l4b3fkHRGMyEOXaAa8DP+JyHmV3MCqOFOfXYvs/B7L9nx7xkAxEoMOBr3A5P8Hl7GN3MJFAEwIbeby+hKztuR3X7MjrXOTxaYcXex0GfIvL+RYuZ40PUKPUHsZA9saWbF3ei8LdjewORzEU+AWX825czpCMqBQtNCGwya68IueKzTm9svOLtdd7ZDkXWIrLeZ7dgagYVJxXi63Lu5Ozqd3eqYNVBEgEJgI/43L2tTkW22hCEGaBtQIeny+us9EI1hSYhss5C5ezpd3BqBiwp1ZgRS88+dExyVh8Ohj4yX+Lctx9PmtCEEZaKxB1TgX+wOUcYXcgKooV59dim9YKRJEkrFuUf8LlPNjuYMJJE4Iw8NcKpGitQFRqBryHy/mKDmyiqmRvX4GeFGutQBTqi9WEcFe81BbYOg5BSlpGSKZCzUpPjZjxDfKLvLX/3Z7buShohEEVdS4C+uJyDsflzrI7mGgVD9c8AF5PAjtXdaIod9+5wlU0SQJcwEn+a3+zzfGElNYQhNCuvKKGK7fmdK9OMvDzD9/y3Vfzajymv5f+yUUjTua0wQMYfvyRTLzpagry944geHD7xow4YSBnDzmas4cczS8/fl/msaZMfpTUo/qRelQ/Jt6b/p/bJe+b9BIHDhzGgQOHcXv606XuX1xczOkX38jBJ4xk+CU37ZmIpaCgkGOGj2XnruyaeMo1qR+Qics51O5AVOT5+eefa7dt27YPxXm12La8R6iTAZ/PxzV3PMSBA4fR+ahhPP3qO2WW/XvVGgYOG0PXQadz2Mnn/2dK4/K2Bfr4i2/pfdxZ9D7uLOZ+vfdz4ZV3ZvLAky/X3BOLTAOxagv62R1IKGlCECKb3AUt1+zI6+IrYzri0mYhC7Toh2/5bv4XNR5Xcu3a3Hbfw3z09U+8+9m35Ofl8epzk/9T5tX3P2HG3AXMmLuAQw4vfdKwzIXf8cms93n382/58MuFfDl/QWLGvAUAfLMwk7c/+pTf503nr6/eY+78HyjZFmju1z/QpFFDFs+bTqOGDfj0K+tD5t5JL3L1mJE0bhSRP66aABn+akRtD1b/IRgH2/7ugbco5DWC097/mL9WrGLFgg/5ac4bPPLc62V+mV8+/j4uO284K76dyfhxYxhzw12V2hZo4qPP8fEbT/LxG09y+0PPALB563beeO9jbh13Yan7xJj2WLcmn213IKES1wnBtGnTGnXq1KlXt27del555ZVtGzdufPDy5cuTAZYsWVJr8ODBnXv37t2ja9euPR944IE996aLSP+0tLRWffr06dG2bds+kydPblqybfHi32sfc9wJB51wzMB2Z554FG9PnbLnfAe3b8yzjz3IqNTjeDL9bv5e+icXDh/KyP87ljOOO4Ipkx8FYNmfS3h32qt8/OG7nD3kaJ6fZE0S8t3XX3Dh8KGcc/JgRp1yPD99v++XbEUO6HggXXv0BiAhIYHeB/djw9p9h1SvyNzZH3LK8LOpW7ceybVqcf45ZxW//dHeOdVHj0ilXt061KqVzMUjT6NkW6CkJGtOdYC8/AKSk5P4/a8VLFuZxdnljJ8eARxY1YizcTnDOr+z2j/lXfOXXXZZu969e/fo3r17z0MPPbTb4sWLawHk5ORIampqpwMPPLBXt27deh511FF7xvK98cYb2xxwwAG9e/Xq1WP6G6+0T3SQiPElAMz9+nsGnX4x/YeOYkDqaL767mcATjznSt6bs7f27+vvF9HvpKrPBDp91mdcet5wEhISaNLYychhJ/H2zH2vsy3bdrDo96WcP+JkAEakHs/aDZv5Z/WacrcFS0q0rtfcvHySk6wm9Rtcj/HQ7deWO+FZjKkLTMflvC8WfxDEzV8x2Pr16xOvvvrqlK+++mpZv379CiZPntx0165diWD9ej/33HM7vfHGG6v79etXsHv3bkf//v27H3XUUbnHHntsHkCtWrXMkiVLlv7666+1Bw0a1GPcuHHbi70madToC3o88OQUR8fOXcnPz2P0sBPp0/dQevc9BABHQgJvZXwJQG7Obl58+yOSa9WiID+fC84YwhFHH8tBhxzGWedfxO5sN7e6HgRg3b9ZPP/EQzw37T3qN2jImtWruOjMk/nk+8Uk16rej5G8vFw+eOcNrh0/8T/rLzv3NLweDwOOOparbplA3br79ofauGEd/Q47Ys/jAzq0882a9REAa9ZvYtCAvTVrKe3b8M6sufsc48RjjuC9jC84+ISRHHFIH4476jCGnnc1U5+4e5+yESoV+BKXMxWXe6vdwajylXfNA7hcrk1t2rRZB9bER1dffXWHBQsW/P3BBx843W53wsqVK/8E2Lx5cwLAO++845w1a1bjX3/JXNrIuNtfcPk1e34YrPp3Ha7HXmDuW8/QsEF9/lm9hqOHX0LWwjlcNHIYU2fM4sxTTgDg1emzuPic06r8fNZs2MQBATMRprRrw8JfluxTbu2GTf+Z+VBE6NC2FWvWb8LZsH6Z2zp3/O9kjA/fcR0XXm/VHjxx103M+fwbWjZrwoB+vascewy4HeiNy3k+LneO3cHUlLhNCL7++ut63bp1y+vXr18BwNVXX739lltuOQBg8eLFtf/555865557bqeS8rm5uQm///57nZKEYOzYsdsB+vXrV5CQkGCWr8pquGrDjpSVK5Y7xl81lr375bDq7+V7EoIzRu4d76agoID7b7+Z5X8uweFwsGnDepb9uYSDDjlsn3i/+3oea7NWcfGZqXvWiTjYuGEdB3Q8sMrPv7ioiFvHXcyRx/yP4//vlD3rP134O63bticvL5f7bruRJ+6byO0PPFbl41eGw+HgxUfu3PN40otvcvrQwXi8XkZdNYHCoiKuuvBsjhs0ICTnryGHAd/hcp6knQ0jW3nXPMCsWbMaPv/88y1yc3MTfD4fbrc7EeDQQw/NGz9+fO3zzz+/w7HHHrv7zDPPdAPMmzevwenDTnU38W7tgqeg3uXnj+Dbn34D4NOvvuefrLUcM/ySPed3OIQ16zdxxtD/ce2dj7Bx81Ya1K/HnHkL9swWGMmOPvwQfpzzOgC7c3I5efQ1fPrmM0x68U2++3kxLZs34fG7biI5OS465AOcBvyAyzkMl3u13cHUhLhNCMpjjKFhw4aeZcuW/VVWmbp16+6ZCCchIYH1O/MP9Ph8joaNGjNjbtlV+XXq7q1hfuqhe2ncuCnTP/2GxMREbrh0NEWFhWXGdMTRg0l/+qVyY1+5Yhm3XXMpAH0PPZwJ9z+6T5ni4mJuGXcxzVu0Yvzd6f/Z1rpte//zq8fIC8Zyz/jrSz1P6zbt2LB+7+Qk/65Z59gzp3rbVvy7LnBu9ornVP933QY+/vI7Pn3zaS68biKXnTec/gf14IhTL+TPr94rd98I0AX4HpdzKC7373YHo6ru77//Th4/fnyH77//fmmvXr0Kf/zxxzonnHBCN4CePXsWLVu27M85c+Y0+Pzzzxvedddd7RYvXvyXA5NQTwoa4ylIAPZM9Q1gMJx4zBG89cwDpZ7vrFNO4I33M2jetDHHHXUYTZs02qdM+tOv8s5HVs3aQ7dfy5DB/+3P06FNK/5dv4kjD7Vulc9aV/p11r5NKzZu2YbH4yExMRFjDGvWb6JD21Y0bFC/zG3lmZD+NLdfO5ZNW7bx0dz5fPXeFO569Dne/PBjLhpZ9dqOKNYbWIjLeQIu977VM1EmbvsQDB48OHf58uV1S9oJn3vuuabFxcUCcPDBBxfUr1/fG9g34I8//qhVUlUYyJ1f3ABxJPgMjpQDu1C/QQNmTn9zz/Y1q1fh3rmz1Biy3bto0boNiYmJZK38m4ULvt6zrV79BuzO3tvLfuCxx7Pw2/msWPrHnnVLft33TqsDu3bf0yGwtGTA4/Ew/qqxOBs1ZuJDk/7zIZa9axf5+dZMwD6fj7mzP6R774NKjf3EU05nzgczyMvLpaiwkGnvvJt0zjBr/vWzTjmRN97PIDcvn8LCIl6Z/hEl28py3cRHecJ1Ew6Hg9z8fETE+n9efrn7RZDWwDe4nMfYHYgqXXnX/M6dOxMSExNNhw4din0+H5MmTWpRst/KlSuTRITzzjvP/fzzz68zxrD672X1Txt8SKP3Mz5P2J2TizGGKdM+2HOuIcceybwFP/L7Xyv2rPvp173X7kUjh/Hq9FlMnTG7zOaCtKsv4rfP3+G3z9/ZJxkAK6l48c0P8Hq97NjpZvqszxhZSt+bFs2acEif7kx7/2MA3s/4gnatW9C5Y4dyt5VlYebvuLNzGPq/o8jNy6fkI8ThcJCTGzXXa01qgTVJUtTfgWBrDYGd9w63bdvW8+STT2adccYZnZOTk82xxx6bXbduXV/Tpk29SUlJzJ49+59rrrmm/TPPPNPS5/NJ48aNPTNmzFgFeEuOsSuvyLl2Z/6e+vrExESeevUdHr77Nqa99Cxen4/GjZvw4FMv4qTxPjFceu3N3H7d5cx+723aHdCRAQOP3rPtuKGnMOeD6Zw95GiO+79TueL6W0l/6kXuTbuRgvw8iouL6d6rT4U1BsHmzv6ALz6ZTdcevRg51PruKqlJWL1yBfem3YCI4PF66dH7IMa79tYgXHXBWYy7aQK9Du7HYUcOYsipZ3DmidYEgWeeOsRzyonHJAMMHngoI4edRJ/jrc64I4edxCknlv09+daHn3Bwzy706ma9lGlXXcSlt9xLUXExd15/aZWen82cwFx/FeLndgcTiSL1mu/WrVvRsGHDdnTv3r1X48aNPSeffPKukv0yMzPrTJw4sZ0xBq/XK2ePGO4e0Ml5ACkDE3/+9XcOGTKKhg3q8X//2ztZZueOHXjr6Qe4fPz95OUXUFRcTL/e3ffUGAzo15uEhAT+yVrLSccesU+slTH6zFR+XvwnXQadjohw42Xn06eH1d9x1mfzmfXZfF561Oof9EL67Yy54S4eeOoVGjaox6uPu/Ycp7xtwYqLixn/wJO8N+URAA7q2ZVOB7Sj93Fn0axJIz58KTTNi1GgKVZ/oqG43D/aHUx1iTGhnwI+UudF37lzp6Nx48Y+gDfeeKPRXXfd1XbVqlV/VmbfXXlFDdfuyO9sdChSADolu3Pqe3aEpcd9hM2pXpo8YAgu97d2B2KnSLzu9+eaB6AotzbbV3bDeLW5tRqi4NrdX7uxrv0f7A6kOuL6Tf3QQw+1+PDDD5v4fD6pX7++9/XXX69Ux5Ds/OIGa3dqMqDKVBdrrILjcLkjawS9OFfdax6wZirUZECVrwHwCS7n8dF47cd1DUF17C4orv/v9rwuPmPitv9FabSGoFTbgWNxuSv/CzSGxNJ1T3FBMtv/7o7PEzdd6EMhiq7d/bUDGBxtHQ3D9aXmA4wx0f2LOrfQU0eTAfvtyWHDkMzup6bAPFzOznYHYpOYuO7xFCax/Z9umgzsvyi6dvdXE6xrv5vdgVRFuKq+Nvh8PveWLVtatmjRYoeIRN27wePzJazZUXCg1+fTZKAUheJxJHpD/2c1BrbmepHCbJIKtoX8fDWgFdYHwwBc7i12BxNmUX/d4/OJuLM6ircoueLCqjxReO3urxZYo5kejstd+q1mESYsTQYAmZmZRzgcjucdDocTiLZfDLKzwNuy2IvOWFiGZgl5hbV9uWF5faQwm3a/PUb9XUvDcbqa8h1wHC53kd2BhFOUX/ckFu5q7vAW1LU7jlgRpdfu/voc+D9cbm+FJW0WtoQAIDMzsz7Qhigb/+D2L7ffs7vId5bdcUSyu2u9+fMgft13iMWaZgxJBdtI8EZlk/QruNxjKy4WW6L1uu+88NYra+VvvtbuOGJGdF+7+2syLvf1dgdRkbAmBNEoJS3jGuBJu+OIdC8kPTZ/SELmsXbHEQWux+WeXHExZSuX83TgA6KwVkNFrLG43K/YHUR5oipjD7eUtIzjgMftjkPFlMdwOU+0OwhVDpezD/AGmgyomvUcLmfp88lHCE0IypCSltEJeJc4H6tB1bgErOlTqz4jlQo9l7MZMAvQaa1VTUsGPsDlbG93IGXRhKAUKWkZ9bA+FJrYHYuKSY2BN3E5NdmMJNbf410gxeZIVOxqCXyEyxmRHVU1IShdOtDL7iBUTDscuLPCUiqcJgKD7Q5Cxbx+wCN2B1EaTQiCpKRlDAausjsOFRdux+U80u4gFOByHgLcZncYKm5cict5nN1BBNOEIIC/qeAVtDORCo8EYBoup7ZX28nlTAamov2FVPgI8HKkXfuaEPzXQ0BHu4NQcaUTelur3e4E+tgdhIo7KURY04EmBH7+poJxdseh4tJFuJyn2h1EXHI5+wNpdoeh4tbluJzH2x1ECU0I0KYCFRGexOWsY3cQcUWbCpT9SpoOGtgdCGhCUEKbCpTdUtBObeF2F9Db7iBU3DuACGk6iPuEICUtYyDaVKAiw606YFGYWE0F4+0OQym/y3E5T7A7iLhPCLAyM20qUJGgFtrBMFwmYd3loVSkmITLaet3clwnBClpGcOAiB5bWsWdk3E5T7M7iJjmcp4CDLI7DKWC9AIusDOAuE0IUtIyHMADdsehVCmewOVMsjuImGT9AnvQ7jCUKsPduJy17Dp53CYEwGh0eGIVmToCF9sdRIw6H+1IqCJXB2wcKTcuE4KUtIxawN12x6FUOW733xanaor1et5jdxhKVWACLmdDO04clwkBcCXWrR5KRar2wFi7g4gxet2raNAUuMWOE8ddQpCSltEQuN3uOJSqhAl2tifGFGvgF73uVbS4AZezVbhPGncJAXAD0MzuIJSqhHbAJXYHESNuBprbHYRSlVQPG6ZHj6uEICUtIxkdhEhFl9u0L8F+stpjb7A7DKWq6FJczjbhPGFcJQTAmUALu4NQqgraAiPtDiLKXQRExFjxSlVBEla/l7CJt4RAawdUNLrW7gCiljXuwDV2h6FUNV0ezn5EcZMQpKRlHAQcZXccSlXDobicR9odRJQ6BdD5IVS0ag6MCtfJ4iYhQGsHVHQLa9VhDNHaARXtwlZDGBcJgf9Ww/PsjkOp/XAWLmdju4OIKtbMkcfbHYZS+6kvLudh4ThRXCQEwIVAfbuDUGo/1MbmiU+i0Fh0JlMVGy4Nx0niJSHQ6lYVC8bYHUDUcDkTse4uUCoWnIvLGfIftTGfEKSkZRwO9LA7DqVqQF9/Nbiq2ClA2Ed6UypE6gPnhPokMZ8QADq3vIolZ9kdQJTQsRtUrAn5ezoeEoJhdgegVA060+4AIp7VXDDU7jCUqmHHhnoWxJhOCFLSMjoBveyOQ6ka1B+Xs6PdQUS4Y4BGdgehVA1LIsSJbkwnBGjtgIpNWktQPr3uVaw6NZQH14RAqeijCUH5QvqhqZSNTsblTAjVwWM2IUhJy2gEHG13HEqFwGG4nE3sDiIiuZy9gE52h6FUiDQBBoXq4DGbEAD/ByTaHYRSISDAsXYHEaG0VlDFupDVgMVyQqAfDCqWDbY7gAil172KdSF7j8dyQnCc3QEoFUKD7Q4g4ricLYABdoehVIh1weXsFooDx2RCkJKW0R5oYXccSoVQH+1HsI+jiNHPNKWChKR/XKxePP3tDkCpENN+BPvS617Fi5C812M1ITjU7gCUCgNNCP5LEwIVLzQhqAL9YFDxoK/dAUQYve5VvDgIlzOppg+qCYFS0au33QFEDJezPdDc7jCUCpNahGBY/phLCPwdCvWDQcWDpricre0OIkLojwAVb2r8PR9zCQH6waDii9YSWPS6V/FGE4JK0A6FKp5oQmDRhEDFG00IKkGnO1bxRBMCyyF2B6BUmB2Ey1mjw/PHYkLQ1u4AlAqjnnYHYDuXszHQ0u4wlAqz2tTwRF6xmBC0sTsApcKond0BRAC95lW8qtFOxTGVEKSkZTjQXwoqvrTE5RS7g7CZ3mmh4pUmBOVohk55rOJLEtb7Pp5pQqDilSYE5dCqQxWP4v0LUa97Fa9q9L0fawlBvH8wqvgU71+Iet2reKU1BOWI9w9GFZ/i/Qsx3p+/il+aEJRDPxhUPIr3jrT6Q0DFK20yKEe8fzCq+FTb7gBspj8EVLzSGoJy1LE7AKVskGx3ADZrYXcAStnEictZq6YOFmsJgd5yqOJRvCcE8V5DouJbjV3/sZYQJNkdgFI2qLFfCFFKfwioeFZj33uxlhDoB4OKR/FbQ+ByOoB4H6lRxbca+96LqS/Q2ckTNjWWnJ/sjiMetWBXB7tjiGPxmxDE2GeYUtWgCUFp+jiyWgID7I5DqTCLqeu4irR2QMW7GrsGYq3JwGt3AErZINfuAGyk17yKd56aOlCsJQQ19sIoFUVy7A7ANi63XvMq3mlCUIbddgeglA3i/X2vtQQqnmlCUIbtdgeglA3it4bAUmx3AErZSBOCMmhCoOJRvNcQuO0OQCmbFAN5NXUwTQiUin7xXkOwwe4AlLLJJlxuU1MH04RAqegX77+QN9odgFI2qdH3viYESkW/NXYHYDNNCFS80oSgHJoQqHiUZXcANtMmAxWvavS9H2sJwTr0FiQVX3bicsd7p0KtIVDxSmsIyuRyFwH/2h2GUmGk73dNCFT80oSgAivsDkCpMMqyO4AIoAmBileaEFRAEwIVT7SGQPsQqPilfQgqoAmBiicr7Q4gAmwEiuwOQikb1OgdRpoQKBXdfrc7ANtZExz9YXcYSoXZGlzuGr2zLhYTgmV2B6BUGC22O4AIkWl3AEqFWY2/52MvIXC51wJb7A5DqTD4F5d7l91BRAhNCFS80YSgkn6wOwClwkC/BPf6xe4AlAozTQgqSRMCFQ9+tDuACPI7Og2yii+aEFTS93YHoFQY/GR3ABHD5S4E/rQ7DKXCZC0u99aaPmisJgSL0F8LKrYVY73P1V7ahKLiRUje67GZELjc+cBvdoehVAh9j8udY3cQEUYTAhUvNCGoou/sDkCpEJprdwARSJtQVLz4ORQHjeWE4GO7A1AqhDQh2NevwGa7g1AqxPKA+aE4cCwnBF8D2XYHoVQIbMH68lOBXG4fkGF3GEqF2Oe43AWhOHDsJgQudzHwqd1hKBUCn+NyG7uDiFCz7A5AqRCbHaoDx25CYAnZC6eUjbS5oGyfAyH59aRUBPChCUG1ZQAeu4NQqgYVo/1jyuZy5wFf2B2GUiHyEy53yIbmj+2EwOXeid5toGLLpzU9w1kM0mYDFatCWusd2wmB5X27A1CqBk2zO4AoMAfQPhYqFoU02Y2HhOBNoNDuIJSqAdnor9+Kudwb0EGKVOxZjcv9RyhPEPsJgcu9A5hpdxhK1YAPQnW7UQyaaXcAStWwj0J9gthPCCwv2x2AUjVAmwsq73WsHtlKxYpXQ32CeEkI5gH/2h2EUvthHfCV3UFEDZd7LToOiYodP+Fy/x7qk8RHQmAN4hLy7EqpEHrWPxKfqrwX7Q5AqRoSlvdyfCQEllfRKkQVnfKAF+wOIgrNATbZHYRS+ykHeCccJ4qfhMDlXoPegqii02v+zrGqKlxuDzDF7jCU2k+vh2uq8/hJCCwP2h2AUlVkgEl2BxHFngOK7A5CqWoywJPhOll8JQQu96/oOPAqumTgcq+wO4io5XJvAmbYHYZS1TQXl3t5uE4WXwmBRWsJVDR5wu4AYsBkuwNQqprC+t6Nv4TA5Z4P/GB3GEpVwve43F/aHUTUc7kXAV/bHYZSVbSEMNdox19CYEm3OwClKiHN7gBiyG12B6BUFU3w3zIfNvGaEMwGfrY7CKXKkYHLvcDuIGKGy70QHc5YRY9vcbnnhPuk8ZkQWFnXDXaHoVQZfOgv2lCYAHjtDkKpShhvx0njMyEAcLm/Q3sfq8j0Ji73EruDiDku91LgNbvDUKoCs3C5v7fjxPGbEFjGo1Mjq8hSBEy0O4gYdhegM0aqSOXDqsmyRXwnBC53Fnpbl4osk/zvSxUKLvc64Bm7w1CqDG/gcv9p18njOyGwPABstjsIpYBVwN12BxEHHgDcdgehVJBCbK4d1ITA5d6NTR04lApyJS53nt1BxDxrXgi99VhFmqf9c+7YRhMCAJf7NXRIY2WvN3G5P7M7iDjyGPCb3UEo5bcKq3+LrTQh2OtyrGkmlQq37ehtsOHlchcDY4BimyNRygAX43Ln2h2IJgQlXO5/gVvtDkPFpZtxubfaHUTccbkXA/fZHYaKe0/7h9S3nSYEgVzu5wCttlXhNAeXe6rdQcSxB4Bf7Q5Cxa1/iKAhyjUh2NfFwC67g1BxYS1wod1BxDWX24M2HSh7lDQVRExHYk0Igrnc67GSAqVCyQuM8vd4V3ZyuX8H7rU7DBV3noy0+Uo0ISiNy/0h8LDdYaiYdhcu97d2B6H2eBD4xe4gVNz4BxtHJCyLJgRlmwDoXPQqFD7H+gJSkcJqOrgQiJjqWxWzioELI6mpoIQmBGVxub3AOcA6u0NRMWUjMBqX22d3ICqIy/0HVlIQ1jnoVdy52q7JiyqiCUF5rFvBzsSacEap/ZUHDMPl1qGyI5XL/R56K6IKnWdxuafYHURZNCGoiMv9I3CN3WGoqOfD6kS4yO5AVIXuAj60OwgVc74CrrM7iPJoQlAZVkZ3v91hqKh2Ey73R3YHoSrB5TbAaOB3u0NRMWMVcJa/r0rEEmO0uazSXM4XgUvsDkNFnadxubWWKdq4nCnAz0AzmyNR0W03cKSd0xpXltYQVM0VgP7KU1WRAVxvdxCqGlzuLKw+RDpokaouA5wfDckAaEJQNXvvPIiowSRUxFoAjPS/b1Q0ssaYv9ruMFTUugOXe5bdQVSWJgRV5XIXAMPQ9kVVvoVAaiTMYKb2k9WH6Ha7w1BR53Fc7gfsDqIqNCGoDpd7F3AcOrKZKt3PwFBc7t12B6JqiPXBrrcjqsp6Fpf7JruDqCpNCKrL5d6OlRR8Z3coKqL8AJyAy+22OxBVw1zuO4FH7A5DRbxXiNJmJk0I9of1oT8E+MLuUFREWACchMudbXcgKkRc7luBx+wOQ0WsV4FL/beuRh1NCPaX1UacCsy2OxRlq5lYzQQ5dgeiQszlvhkdl0Tt6zlgbDQPS67jENQUlzMReA0YZXcoKuweB26J5g8CVQ0u5+1ovwJlmYTLfYPdQewvTQhqmvUhcS8gdoeiQs4LXIvL/azdgSibuJzXYiWECXaHomxzNy63y+4gaoImBKHgcp4GTAPq2x2KCpkcrDEGPrY7EGUzl3Mo8A7gtDsUFVZ5wEW43DPsDqSmaEIQKi5nb2AW0NHuUFSNWwOchsv9m92BqAjhcnbDut672h2KCou1wOm43DF167l2KgwVa271w4CvbY5E1ayPgL6aDKj/cLmXA4cDc+0ORYXc98BhsZYMgNYQhJ7V2XAiMAFtZ4xmRcCtuNyT7Q5ERTCXMwF4GLjR7lBUSLwKXIHLXWR3IKGgCUG4uJwDgTeATnaHoqpsJVZ/gUy7A1FRwuUcAzwP1LI5ElUzvMDNuNyT7A4klLTJIFxc7u+BvsBUewNRVfQOcIgmA6pKXO6pwGCsZFJFtw1YY4xMsjuQUNMaAju4nCOAKUATu0NRZVoPXI3LPdPuQFQUcznrAenAVeityNHoNeB6//w1MU8TAru4nK2wxkU/3+5Q1H/4gGeBCTo5kaoxLudgrDHu9a6j6LABuAyXO8PuQMJJEwK7uZxHA88AfewORbEEaxzyH+0ORMUgq7bgIWAcWlsQyV4HrouXWoFAmhBEAutOhKuAe4CGNkcTj7KBB7DmLy+2OxgV41zO/wEvo7UFkWYjVq3AHLsDsYsmBJHEakZIB0ajHT7DoRCrduYB/3TWSoWHy1kfeBC4Aki0OZp4Z7D6CtyIy73T7mDspAlBJHI5u2ONXTASTQxCwYdVLXgXLvcau4NRccwa4fB+YITdocSpT4DbcLkX2x1IJNCEIJK5nD2xEoOz0MSgJhisaaon4HL/aXcwSu3hch6GVTt4nN2hxImFQBou93y7A4kkmhBEA5ezF3AX1q8ITQyqrgBrUKhJuNx/2R2MUmVyOU/CSgz62R1KjFqK9YNgpt2BRCJNCKKJy9kRq/PhWKCRvcFEhc1YfQSex+XeancwSlWKyylYzYX3AQfaHE2sWIf1o+o1XG6v3cFEKk0IopF1+9K5wOXAoTZHE4l+Bp4D3sLlLrQ7GKWqxeVMAs4GrsOaKE1V3RJgMvAmLneB3cFEOk0Iop3L2Q+4GDgTaGVzNHZaBbwJTMPlXmF3MErVKJfzSOBarOtc70oonw+rr9BkXO6v7A4mmmhCECtcTgcwCOsDYzjQ1t6AwmI7MAMrCfje7mCUCjmXszUwBrgEnSgt2Dqs0SBf1ruHqkcTglhktUEOxEoOUoEu9gZUYwyQiTXn/FzgB1xuj70hKWUD6xo/HisxSAXq2xuQbfKxPgteBj7R/gH7RxOCeOBytsGaea1kiaYEYQPwOdZF/zku9zab41EqsrictYD/AcOAU4F29gYUcpuBOcAsYB4ud57N8cQMTQjikZUgHAv0x5pDoTfQxtaYLNuB34BfgJ+AH3G519oakVLRxupXVJIcHEJszJuwBKtfwCzgJ1xu/eIKAU0IlMXlbIKVGPQGegEdgNb+pSWQUANnMVjZfRbwr3/J8i9LcLnX1cA5lFIlXM62WE0KR2L9AOhJzVzLoeQDlmM1Dy4EMnC5s2yNKE5oQqAqZnVYbI5Vi9AKqAsk+5daAf9PwmrTywF2+/8t+X82sF5vA1TKRi5nHeBgrOSgZOmJfXcu+IBlWF/+JctvuNw5NsUT1zQhUEqpeGYlCQdh9S1qHbC0Cfh/dTst5mHNIrgRqz/QxoBlJdaXf+7+hK9qjiYESimlymfNztgGaIZVE5iEVatQUrPgCViKsfoDbcDlzg5/sKq6NCFQSimllE6Uo5RSSilNCJRSSimFJgRKKaWUQhMCpZRSSqEJgVJKKaXQhEAppZRSaEKglFJKKTQhUEoppRSaECillFIKTQiUUkophSYESimllEITAqWUUkqhCYFSSiml0IRAKaWUUmhCoJRSSik0IVBKKaUUmhAopZRSCk0IlFJKKYUmBEoppZRCEwKllFJKoQmBUkoppdCEQCmllFJoQqCUUkopNCFQSimlFJoQKKWUUgpNCJRSKmaJyGEi8r2I5IqIEZG+IjJURH4TkQL/ukZ2x6kiQ6LdASillKp5IpIEvAsUADcAecBa4BvgT+AqoBDIFZEJwF/GmJk2xdoUuBg4FegBJAHLgCeMMdPtiCkeiTHG7hiUUkrVMBHpDiwFLjXGvORfNxT4BDjRGDMvoGwO8J4xZoxNsZ4CfAB8DHwFeIARwP+Ae4wxd9kRV7zRGgKllIpNLfz/7qpgXST4E+hijPm3ZIWIPAvMA8aLyMPGmFzboosT2odAKaVijIhMBeb7H77r7yvwNfCaf93P/nVTRcQA9YAL/euMf39ExOV/3FVEpomIW0S2isi9YmkvIh+JSLaIbBKRm4LiSBaRe0Qk079vrogsEJH/BZYzxqwOTAb86wwwE6gFdKrRF0iVSmsIlFIq9rwArAcmAE8CPwObgeXAZcBEYDWwEutX+EvAT8AU//4rg443Hav5IQ1IBe4AdgCXA18C44HzgEdF5GdjzDf+/RoClwBvAy8CDYCxwFwRGWCM+a2C59HK/++2yj91VV3ah0AppWKQiAzGao8/yxjznn/dGOBV4DBjzKKAsqX2IRARF3AXMMUYc7l/XQKQBbQFbjPGPORf3wjYAMwoOY6/bIIxpijgmI2wOgxmGGPGlhN/E6wkZLkx5pjqvAaqarTJQCmlVEVeKvmPMcYLLAIEeDlg/S6sGohOgWVLkgERcfi/5BP9+x9S1slExAG8CTQCrqnB56HKoQmBUkqpiqwJeuwGCowxwVX5bqBx4AoRuVBEfse6/XE7sBWr2cFZzvmeAoYClxhjFu9P4KryNCFQSilVEW8l14FVc2D9R+R8YCpWn4SxWF/yJ2L1Oyj1+0dE7gLGAWnGmDeqH7KqKu1UqJRSKlSdyc4EVgHDTUCHNRG5u7TCInIV4AImlfRNUOGjNQRKKaVysdrra1pJLUJgrcHhwJHBBUVkJNYdEW8CN4YgFlUBrSFQSimVCZwgIjdi3Smw2hjzYw0cdw4wHPhQRDKAjsAVwF9A/ZJCIjIAeB2rj8EXwHkiEnic740xq2ogHlUOTQiUUkrdiDUGwX1AHawBjGoiIZiKNZbA5cAQrETgfOAsYHBAuZ5AMtAceKWU41yE1fSgQkjHIVBKKaWU9iFQSimllCYESimllEITAqWUUkpRjYRARI4RkdkissE/C9bpldhnsIj8IiKFIvKPfzxtpZRSSkWI6tQQ1AMWA1dVprCIdAQysCbZ6AtMAl4SkSHVOLdSSimlQmC/7jLwz6N9hjFmZjllHgJSjTG9A9a9AzQyxgwtY59aWHNgB2qCNd2mUmr/NAA2GL3FSCkVIBzjEByJNd92oLlYNQVluQ1ryk2lVGi0A9bbHYRSKnKEIyFoBWwOWrcZaCgidYwx+aXs8yDweMDjBsC6tWvX0rBhwxCFqVTsy87Opn379gC77Y5FKRVZInKkQmNMIVBY8rhkCMuGDRtqQqCUUkqFQDhuO9wEtAxa1xLILqN2QCmllFJhFo6E4Afg+KB1J/rXK6WUUioCVLnJQETqA50DVnUUkb7ADmPMGhF5EGhrjLnAv/154GoReRhr0orjgLOB1P2KXCkVFTIzM+sDbdCB0JR9fMAuYFv//v19NscSsarTh+BQrDEFSpR0/nsNGAO0BjqUbDTGrBaRVOAJ4DpgHXCJMWZudQJWSkWPzMzMIxwOx/MOh8MJSIU7KBUixhiPz+ebn5mZObF///56h00pomK2QxFpCLjdbrd2KlRqP2RnZ+N0OgGcxpjsUJ4rMzOzvsPh+LZRo0YtW7RoscM/bomKcMYYPD6T6PGZRI/Xl+jxkeT1+hI9hkSfzyQYjBgQYxD2JnlGBGOtEJ9DxJeQgCfR4ShOcFCcmODwJDrEk+QQT0kn8XA/p6KiouTNmzc3zM/PX+Pz+Qb179+/KOyBRLiIvMtAKRUT2jgcDmeLFi121KtXTzsQRxiP15eQW+Stm1/krZdf7K1b5PHV8vh8yV6fKeV7QYL+LUVwuucNXOndszrBIZ5Eh6M4KUEK6yQn5NZNSsirWysxLynB4an+s6lYvXr1CpKSkopXrlzZ3OfzdQD+CeX5opEmBEqpUHEAojUD9vN/+dfLL/LUzS/21S0o9tYr9vqS7YjF6zOJXp83sdBDnZxCT6OS9YkJjqLaiY68OskJeXWSEnLrhSBJcDgcBiur0e++UuiLopRSMcYYw+4CT/3sguJGOQWeRkVeX/BQ8BHH4/Ul53h9yYFJQlKCo6h+rcRdDeskuRvUTtzt0OQypDQhUEqFTUpaRv9QHDcrPTUzFMetSd27d+/5ww8/LGvcuHFIerl7fD5Hdr7HmZ1f3Ci3yOP0+kxCVY/x0lOPMeu9d1izeiWPT3mD44buvRls+7at3HH9laz7dzVJycncfv+j9D/iqAq3BZs/71Mev28iPq+Xzt17cu/jz1C/QcOytiUXN2jYYmdeUQuHiLdercTshrUTdz3ouqP2zJkfNq5Xr5733XffXdW1a9cigBEjRqRcfvnlW0866aTcqr+CSm8DUkqpECouLgZg2bJlf9V0MlDo8SZtzi5o8c+WnC5LN+zuu25nXqfsguIm1UkGAA4fNJhnX3+X/ocP3Gfb5Afv5qBDDmX2gkzueewZ0q65bM9zK29boLzcHFy3XMukl6Yxe0EmzVu2YsrkRyrcBuAzJmF3QXHj5Ws3d3zvw5mt5yxY5Bk99vLChx99tDXAhx9+2LBOnTo+TQaqTxMCpVTcmDdvXr3+/ft369atW8+uXbv2nDZtWiOAb775pm6/fv26d+3atWefPn16fPbZZ/UAzjnnnAMmTpy4Z6TVZcuWJTdr1uzgwsJC+eijjxr07du3e48ePXp27ty51xNPPNGspNyIESNSzjrrrJRDDz20W9euXXsBiEj/bdu2JQBcdtll7Xr37t2je/fuPQ899NBuixcv3lOlLyL909LSWvXp06dH27Zt+0yePLlpybZffvml9qBBg7p07da9T9cePfvd+8jkgzZnF7Rfs259w5uvHCOjTjmeEScM5OmH76vW69OnX3/aHZBS6rbP5szkrPMvAqB330No3rIVmQu/q3BboG+/mkf3XgfRsXNXAEZeMJZPPvqgwm2BHAkJ+LxeducW1N+Vk9+E5PrNfs/a3PX+Bx5sP2nyZL2dcD9ok4FSKi5s3rw5YeTIkZ3ffPPNlUOHDs3xer1s27YtoaCgQEaOHHng008//e+IESOy586dW3/UqFGdV65cuWTs2LHbxo0bl3LPPfdsBnjhhReanXHGGdtr1aplBg4cmLdo0aJliYmJbN68OaFfv349hw0b5j7wwAOLAX7//fe6CxcuLLWJwOVybWrTps06gClTpjS++uqrOyxYsODvku21atUyS5YsWfrrr7/WHjRoUI9x48ZtL/R4k88YcWb3q26ewNDTzkwA2LljOwB33DCOS66+kUOPPAqPx8M1Y87hszkzOemU02vktdu1cwceTzHNWuwdhb5t+w5sXL+u3G3BNq5fR+t27fY8btO+A9u2bMLj8ZS7LTFx71dV3br1GH3pOEafdiJNm7fkviee5bEH72sw+orr2VyY2LtgZ972ZvVrba2dlFCIqhJNCJRSceGrr76q37Fjx4KhQ4fmACQkJNCyZUvvTz/9VMfhcDBixIhsgCFDhuQ0bdq0eOHChXWHDBmS4/F4mD9/ft2jjz46b8aMGU1nzpz5N8DmzZsTzzvvvJTVq1fXTkhIMLt27Ur89ddf65QkBKeddtrOspoIZs2a1fD5559vkZubm+Dz+XC73f/5LB47dux2gH79+hUkJCTy058rD9yyfWejoqIihp525p5yjZs0JS8vl5++m8+ObVv2rM/LzSVrZezeVTfywksYeeElAPz1+29s3rieowYfz7233ZS4Y/u2lv0GHNnysiuvcjerX2uLs05SSMfbiCWaECilVJDAwXNGjRq1/cUXX2yWnZ29s3Hjxp7DDjusAOCyyy474KSTTnJ/+umnKx0OBz179uyRn5+/pxm2fv363lIOzd9//508fvz4Dt9///3SXr16Ff744491TjjhhG6BZerWrWt25BY12ra7sHVCYqIjO7+oUZnd6/2Dy73x0efUql273Od10+UXsjZrFQBT3vmIRo2bVPRSANCocRMSEhLZtmXznpqA9WvX0Lptu3K3BWvdth0LF3y95/GGtWto1qIViYmJ5W4ri8fj4bH77uShp19izoczaNy0GRPuf5SxZ5/KsccPceYekOJMTnQUNKtfa1PTesnbK/Vk45j2IVBKxYXjjz8+599//6316aef1gfwer1s3rw54aCDDirw+Xx8+OGHDQE+//zzetu2bUs64ogj8gAuvfTS7RkZGY2ff/755qNHj95Wcjy3252QkpJS6HA4+OSTT+ovX768bmXi2LlzZ0JiYqLp0KFDsc/nY9KkSS2Cy6zent913c68Aws83j3HTDmwC7Xr1OWTme/tPdaO7dStV5/DBh7NK89O2rN+y6aNbN64b3P6Yy+8xoy5C5gxd0Glk4ESJ6WexrvTXgXgj99+YcumjXvuJChvW6CjBh/P0j8Ws/qfFQBMf/1lhg4bXuG2srw+5WlOPv1MmrVoSX5e3p5ETkTIz7P6FhZ5fLU37MpPWbE5p+fuguL6VXrScUZrCJRSYWPn7YHNmzf3vvPOOytvueWW9tdee63D4XAwceLE9aNGjXJPnz595XXXXddh/Pjx7WrVqmXefPPNlU6n0weQkpJSfPDBB+d+8cUXjV577bV/S4533333rb/++us7pKent+nVq1feQQcdVKne7QMGDMgfNmzYju7du/dq3Lix5+STT94FkFvoqbPJXdAOoNDjqxs8cEBiYiKTX36TB+8cz0tPP47D4eDsC8Zy1vkX8cCTU3j0ntsZfvyRiAh16tbjzvTHadm6bZVeoymTH+Xdaa+yc8c2/lm+lAfvvJXpn86nSdNmXD/BxYTrruDUo/uTmJzMA0++QFJSEkC525559AGat2zF2aMvpl79Brgensz1l5yP1+Ohc7ce3PvEswDlbivN2qzVLPrhW555/V0ATjnjbG649Hw+mzOTvocdTpcevf5TvtDjrbOpoOiAnQXewvf/zO7bvz/LqvTixAGdy0CpOBLmuQy6JyYmftqlS5ecunXrFoTyXNGsoNhba5O7oE12QXHVfrKrKjOeIrZsWIfrqy2s3+2dDdyWlZ76p91xRQptMlBKKRsUeXyJa3fkdfh7c04vTQZscSrwe0paxtSUtIwOFZaOA5oQKKVUmG3LKWz69+bdvXfmFTU31iSByh4O4ELgr5S0jHEpaRlx/bfQhEAppcKkyONLWrU1p/OGXfkpXlO90QRVSNQDngG+SEnLSLE5FttoQqCUUmGwPaewyd+bd/fKKfQ47Y5Flel/wJKUtIwr47G2QBMCpZQKoSKPL3HV1pwD1+/K76i1AlGhPvAsMC8lLeMAu4MJJ00IlFIqRLbnFDb5e8vu3oFT+qqocRzwR0paxhXxUlug4xAopcLH5QzJ9Me43BE1/bHPZ2TNzrwDsvOLm1ZcWkWw+sBzwMkpaRnnZaWn7rY7oFDSGgKlVNyYNm1ao06dOvXq3r17z59++qlOTR13zpw5Dd57772GYHUc/GdrTveqJAO//7qIs04axKnHHMolI4exeeOGMstOmfwoqUf1I/Wofjz10L2V3laiuLiY68eex1knDeKGS0fj8XgAKCwo4KIRJ5O9a1dlw44npwILU9IyDrQ7kFDShEApFTemTJnSfPz48RuXLVv214ABA/Jr4pjFxcV8+eWXDT7++GNnTqGn7j9bcnoUFHsrNYwxgM/nY8I1l3GL60Fmf7OIo/93Io/cPaHUspkLv+OTWe/z7uff8uGXC/l+/pd888XcCrcF+n7+FzRs1Jh3P/uWBg2dfPf1PACmTH6Ec8ZcSsNGjarxKsSFnsBPKWkZx9kdSKhoQqCUigtjxoxpv2jRovr33HNP2379+nUHeP/99xv27NmzR9euXXsedthh3TIzM2uD9Yu/e/fuPUv2/fnnn2u3bdu2D8Dy5cuTGzRo0PfKK69s27Nnzx4PPvhgi9dff735hzNnNjv0kH49nn48Pakqcf31+28kJCYyYODRAJx5/hjmz/uUwoJ9B3ecO/tDThl+NnXr1iO5Vi1OH3ken3z0foXbAiUmJlGQnwdAQX4eSUnJrFj6B6tX/s2QU8+oSujxqAkwNyUt4xq7AwkFTQiUUnFh6tSpa3v37p2Xnp6+9tdff122fv36xLFjx3aaOnVq1ooVK/66+OKLt5599tkH+nylzlj8Hzk5OQm9evUq+Ouvv5beeeedW8654KLC1OEjHTPmLuCK62+tUlybNqyjddv2ex7Xq9+AevUbsHXzpn3KbtywjjYBZdu078Cm9esq3BboyGP+R736DTjrpEHUb9iQAUcdw6P33MH4ux+sUtxxLBF4MiUtY0pKWkaVkr9IpwmBUiouzZ8/v17Xrl3zS5oOrrzyyh1btmxJWr16dYUf8omJiebKK6/c7vH5HKu25Xb2klAv9BHXDIfDwV0PT+bdz75lYvok3pn6Iv8bcjIej5e0qy/hxssu4MfvvrE7zGhwKdZARs3tDqSmaEKglFJBkpKSTGBNQX5+/n8+K2vXru3zIYkrt+R2z61goKFst5uzhxzN2UOO5vpLzt9ne6s27di4fu2ex7k5u8nZnU3zlq32Kdu6TTs2BJTdsHYNrdq2q3BbWTasW8OCLz9n5AWX8Myj9zPivDHc+/gzpE8cX+5+ao+jsTobxsR4BZoQKKXi0uDBg3NXrFhR5+eff64NMGXKlMYtW7Ys7tixY3G3bt0KN2zYUGvDhg2JAK+++mrQHQMiK7fmdCv0eOuAVc2/O7v0ySMbOp3MmLuAGXMXMOmlafts73lQXzzFxfz0/QIA3ps2lWNPGEqt2rX3KXviKacz54MZ5OXlUlRYyMzpbzJ02PAKt5Xl4btu45a77sfhcJCfl4cgiMNBQV6lZnJWlk7ANylpGZ3tDmR/6TgESqnwiaDxAtq0aeN56aWXVl144YUdPR6POJ1O7/Tp01c6HA5SUlKKx40bt+mwww7r0axZs+ITTjjBXbJfsdeXhIijyOPb84193NBTmPPBdM4ecjTH/d+pVepH4HA4eODJF7g37QYKCwtp0bIV909+fs/2qy44i3E3TaDXwf047MhBDDn1DM488SgAhpx6BseeMBSg3G2l+fjDd+naszedu/UA4OJx13PP+OsoLi7m0utuqXT8CoAOwPyUtIwTstJTl9odTHWJMcbuGCokIg0Bt9vtpmHDhnaHo1TUys7Oxul0AjiNMaX/pK0hmZmZ3RMTEz/t0qVLTt26dfftMh+FCou9yau25XYr9vqS7Y5FVZ3xFLFlwzpcX21h/W5vKE6xBfhfVnrqX6E4eKhpk4FSSlVCkceXtGpbbldNBlQ5WmB1NOxidyDVoQmBUkpVwD9BUbdir6+W3bGoiNcK+DIlLaOj3YFUVbUSAhG5SkSyRKRARH4UkQEVlL9eRJaLSL6IrBWRJ0Rk3x4zSikVYYq9voRV23K6FWkyoCqvHVZSUP5tHhGmygmBiIwEHgfuBg4BFgNzRaRFGeVHAen+8j2AscBI4IFqxqyUUmHhM0b+3Z7bObADoVKVlALMSknLqPQw1narTg3BjcCLxphXjTF/AVcAecDFZZQfCHxnjHnLGJNljPkMeBsot1ZBKaXstm5nfvu8Im99u+NQUasfMNXuICqrSgmBiCQD/YF5JeuMMT7/4yPL2O17oH9Js4KIdAJOBj4u5zy1RKRhyQI0qEqcSim1v7bsLmi+K68oZkahU7Y5KyUt4067g6iMqo5D0AxIADYHrd8MdC9tB2PMWyLSDPhWRMR/zueNMeU1GdwG3FXF2JRSEa7Pa336h+K4Sy5cUqPjG2TnFzfY7C5sX3FJpSrl7pS0jCVZ6akz7Q6kPCG/y0BEBgMTgHFYfQ6GA6kiUl7G9CDgDFiiqmOGUip6FRR7k9fuzOtkMFJWmbFnncKXn2ZU+djPPPoAGR/OAOC5x9N52HVbqeXmz/uUsWedUuXj22X+vE85bfAATj26PzdcOpqc3aUPceHz+XjwzltJPaofpww6hLenTqnUtkDZu3Yx9uxTGXHCQO6fcNOe9Tu2b2PsWadQXFxcs0+uZgjwRkpaRh+7AylPVROCbYAXaBm0viWw79RclnuBN4wxLxljlhhjPsRKEG4TkVLPb4wpNMZklyzA7irGqZRSVeb1Gce/23M7FxYVh2QU16tunkDqGWeH4tC2ycvNwXXLtUx6aRqzF2TSvGUrpkx+pNSyGR/MYNXfy5n1zSLenP0Frz3/FP8sX1rhtv8cY+YMDht4NO/P+57VK//m72XWGECP3nM71912F0lJETsBYX2sTobN7A6kLFVKCIwxRUAmcHzJOv+X+vHAD2XsVhcInk+0ZIioMjNwpZSqaSLS/9prr23To0ePnikpKb2fe+65JoHbrrnp1h4jhgyu82T63eTm7ObuW69j1CnHc+aJR3HP+OspLirac6wfv5vPqNTjOGXQITx6zx2UjPoaXHtw0+UX8tGMtwC484ZxTHvpuX3iKi4u5v4JN3Hq0f0Zdcrx/Pz9txU+l62bN3H5qOGccdwRXD5qOLeOu5jnHk8H4IRDe7Jl00YAbrnyIi44/SQAigoLOaZPJ4oKC/loxltcdu7pjL9qLCNOGMi5J/+Pdf9mVfUl5duv5tG910F07NwVgJEXjOWTjz4otezc2R8w/NwLSEhIwNm4MUNOPYNPP3q/wm2BEhOTKMjPw+fzUVxUSFJyMt99NY+GzkYcdMhhVY4/zFKA9yJ12uTqNBk8DlwqIheKSA/gOaAe8CqAiLwuIoETa88GrhSRc0Sko4iciFVrMNsYE5KxI5VSqiwiwtKlS//6+OOPV6SlpXVYvnz53pEHE5Jqv5XxJTfecS+P3Xsnhww4krfmfMG7n32Lz+fjzVf2zjGw6u/lvDZzLu9+/i2ZC7/jk5nvVTum99+cStaqf/jgix947YNPWPrH4gr3eeiuNA7ufxgffrmQ+yc9x6KF3+3ZdvigY/jx2/n4fD6W//UHu3dbMyj++vNCevTpS3Ita0iFPxf/wjXjJ/L+vO85/OhjeeW5SVWOfeP6dbRut7dVt037DmzbsgmPx1Nq2Tbt9nbNaNOuAxs3rKtwW6DU4WezNms1I4cew+GDBtOiVWtefOoxrrn1jirHbpNjsW7DjzhVrhYzxkwXkebAPVgjMv0GDDXGlHQ07MB/awTuA4z/37bAVqwk4fbqh62UUtVz1VVXbQPo2bNn0WGHHbb7888/b9ChY+ccgDNGnren3JdzM1ic+RNvvPgMAAUFBTgS9v6GOnXEOSQlJZGUlETq8LNZ+O18Tj7jrGrF9ON331jHS7Zyk9NHnsfMd/adGfE/+3w7nxvvuAeAZi1acszxQ/ZsO2LQYBZ++zUHdu1Ot569adKsOYt++JbFv/zM4YOO2VPuoEMG0K6DNXPvwYcMKLPdPpLUrVuPx154bc/jR1wTuGjcdazJWs3LTz8OwKXX3kS3nhHdXH9rSlrGh1npqT/bHUigarWTGWOeBp4uY9vgoMcerGwoIjMipVR8ExGzbmdeR4A6dQOGHDCGx6a8Tkqnys1qa91EBQmJifh8eys/CwurPq9TybGqu8/hg45lcvo9dOrSjcMHHUvTZi1Y+O18fs/8mdsfeGxPuVq19g6+6Ehw4C3lV/3KFcu47ZpLAeh76OFMuP/R/2xv3bYdCxd8vefxhrVraNaiFYmJ+369tG7bjg3r1nJwf2sYmg3r1tC6TbsKt5Vlya+Z7Ni+lWNPGMqY4f/H/ZNfwBjDxBvH8cp7Ve/0GUYJwNSUtIxDstJTC+0OpoROf6yUCpuavj2wOp5//vlmjz/++Ibly5cnL1q0qMG9j0zOzy/21gsu978hqbz67GTuTH+CxMREsnftYtfOHXTo2AmAjA9n8H+nn4nX4+Hjme8x+pIrAWif0pElvy7ihJOHsW7Nv/z280JOPPm0cmM6YtCxe46HMXv6HJRnwFHHMOvdt7nihvFs37qFb76Yy5nnjQGgRavWNGjYkPemvcqL78yiUZMmPHLPBPJycujR5+AqvV4Hdu3OjLkLytx+1ODjeeCOW1j9zwo6du7K9NdfZuiw4aWWPTH1dD54+3VOOuV0crKzmTv7Q5569Z0Kt5WmuLiYSQ+6ePiZlwHIz89DxEqM8vJyq/QcbdITcGHdZh8RNCFQSsUVr9dLjx49eubn5zvueyB9Y/0W7dqWNg38LXfdz6QH7+bsIUfjcDhISEzkhgl370kIOnbuyoVnDCV7104Gn3QyQ08bAcBFV1zHreMuZsQJAzmwa3d69z20wpiGj7qQf5YvZfhxR9DA2YhDBhzJ0iW/lbvPra4HufPGcZxx3BE0b9mKPn3706Chc8/2wwcdyzdfzKXdASkANGvegma9DsLhqNm7zevVb4Dr4clcf8n5eD0eOnfrwb1PPLtn+9lDjubp12bQolVrThkxkj8X/8Kpx/RHEEZfehVdevQCKHdbaV57/klOHXEOTZtbo+aPu+k2rrpwJAA33h41FdK3+JsOfrI7EAAp7UKINP7RCt1ut5uGDRvaHY5SUSs7Oxun0wng9N/SGzKZmZndExMTP+3SpUtO3bp1q15vHgIi0n/r1q2/NWvWzGuM4e8tOd0LSqkdiAYF+fkkJiWRmJjIrp07GD3sRO5/8gUO6ldxAhKvjKeILRvW4fpqC+t3R0yf9qVAv0hoOtAaAqVUXNqcXdgyWpMBgDVZK7nj+isxxlBcXMzZF4zVZCA69cDqY5dmdyCaECil4oYxJhMgv8hbe2tOYVu746nIgi8/46mH7t1n/cVX3cDQYcPLbdtXUeVmf9PBj3YGoQmBUirubHDntzOm7KGJI8XRx53E0cedZHcYKvQSgCeBw+0MIuRzGSil4pYPMJH2xZudX1w/t9DjrLikijnGAAZv8Ni5kWFASlrGCDsD0BoCpVSobPD5fO4tW7a0bNGixQ4RiYgezOt35LU3nsj8RlChY7we8rN3sjPPw7a8iOlQGOz+lLSMmVnpqbYEqAmBUiok+vfvn5OZmXnFrl27ns/OznYSAXOXFHpMXXehr67dcajw8/p8/L6pgHf+2I0nIlLTUnUDLgZetOPketuhUnEknLcdlsjMzKwPtMHmJsrcIp/jzq93zPb4TCc741Dh5zOQW+Rjd5Eh8r/x2AB0zkpPzQ/3ibWGQCkVUv37988BVtgdR0paxlhAkwEV6doA1wIPhfvE2qlQKRXzUtIyamMNE6tUNEhLSctoHO6TakKglIoH1wDlz5SjVORohA0DFWlCoJSKaSlpGXWA8XbHoVQVXZOSltE0nCfUhEApFevOB8L6wapUDagDXBbOE2pCoJSKddfaHYBS1TQuJS0jbJ3/NSFQSsWslLSM44HedsehVDW1A8I2eqEmBEqpWKa1Ayrahe09rAmBUiompaRltAVS7Y5Dqf00MCUto1c4TqQJgVIqVl2MNYucUtEuLJ0LNSFQSsWclLQMBzDW7jiUqiGj/YNrhZQmBEqpWHQicIDdQShVQxoThs6FmhAopWLRuXYHoFQNC/l7WhMCpVRM8TcXaGdCFWuOT0nLCOnU3ZoQKKVizZFAM7uDUKqG1cZqCgsZTQiUUrFmmN0BKBUip4by4JoQKKVijSYEKladkpKWIaE6uCYESqmYkZKW0RnobnccSoVIS+DwUB1cEwKlVCzR2gEV60LWbKAJgVIqlmhCoGJdyN7j1UoIROQqEckSkQIR+VFEBlRQvpGIPCMiG0WkUERWiMjJ1QtZKaX2lZKW0Rg4yu44lAqx3ilpGR1DceAqJwQiMhJ4HLgbOARYDMwVkRZllE8GPgdSgDOBbsClwPrqhayUUqUaBIRt7nilbHRsKA5anRqCG4EXjTGvGmP+Aq4A8rAmEinNxUAT4HRjzHfGmCxjzHxjzOLqhayUUqXqb3cASoVJSN7rVUoI/L/2+wPzStYZY3z+x0eWsdsw4AfgGRHZLCJ/iMgEESlzFjIRqSUiDUsWoEFV4lRKxaVD7A5AqTCxPyHAGv0rAdgctH4z0KqMfTphNRUkACcD9wI3AXeUc57bAHfAsq6KcSql4o/WEKh40TclLaPGp/YOx10GDmALcJkxJtMYMx24H6upoSwPAs6ApV3Io1RKRa2UtIxWQBu741AqTOoAPWr6oFXtgLMN8GINjhCoJbCpjH02AsXGGG/AuqVAKxFJNsYUBe9gjCkECksei4RsYCalVGzQ2gEVb/oDf9TkAatUQ+D/8s4Eji9ZJyIO/+MfytjtO6Czv1yJrsDG0pIBpZSqBk0IVLyp8fd8dZoMHgcuFZELRaQH8BxQD3gVQEReF5EHA8o/h3WXwWQR6SoiqcAE4Jn9C10ppfbQhEDFG/sTAn8fgJuBe4DfgL7AUGNMSUfDDkDrgPJrgSHAYcDvwJPAZCB9P+JWSqlAmhCoeFPjHQurNYiHMeZp4Okytg0uZd0PwBHVOZdSSpUnJS2jIdDW7jiUCrO6WAP+raypA+pcBkqpaKfJgIpXNXpnjSYESqlo17riIkrFpBp972tCoJSKdpoQqHilCYFSSgXQhEDFK00IlFIqgI5QqOKV9iFQSqkAWkOg4pXWECilVABNCFS80oRAKaUCaEKg4pUmBEopFSB4sjWl4kWTlLSM5Jo6mCYESqloV8fuAJSyUa2aOpAmBEqpaFetIdiVihE19v7XhEApFbVS0jIc6OeYim+aECilFFo7oJQmBEophX6GKVVj14BeTEqpaOaxOwClbOatqQNpQqCUilpZ6amaEKh4V2PXgCYESqloV2O/kJSKQpoQKKWUn9YSqHimCYFSSvll2x2AUjbxAnk1dTBNCJRS0W6j3QEoZZPNWempvpo6mCYESqlot8HuAJSySY2+9zUhUEpFO60hUPGqRt/7mhAopaKdJgQqXmlCoJRSAbTJQMUrbTJQSqkAWkOg4pXWECilVABNCFS80oRAKaUCaEKg4pUmBEopFWADOlqhik9ravJgmhAopaJaVnpqEbDU7jiUCrONWempW2rygJoQKKViQabdASgVZjX+nq9WQiAiV4lIlogUiMiPIjKgkvudIyJGRGZW57xKKVUGTQhUvLE/IRCRkcDjwN3AIcBiYK6ItKhgvxTgUWBB1cNUSqlyaUKg4o39CQFwI/CiMeZVY8xfwBVYsy1dXNYOIpIAvAncBayqTqBKKVWOxVgzvykVL+xNCEQkGegPzCtZZ4zx+R8fWc6uE4EtxpiXK3meWiLSsGQBGlQlTqVUfMlKT81DOxaq+LEpKz21xkforGoNQTMgAdgctH4z0Kq0HURkEDAWuLQK57kNcAcs66oYp1Iq/mizgYoXIXmvh/QuAxFpALwBXGqM2VaFXR8EnAFLuxCEp5SKLZoQqHgRkvd6YhXLb8Nqp2sZtL4lsKmU8gcCKcBsESlZ5wAQEQ/QzRizMngnY0whUFjyOGBfpZQqyyK7A1AqTELyXq9SDYExpggrMzm+ZJ2IOPyPfyhll2VAH6BvwDIL+Mr//7VVjlgppUr3M7DD7iCUCrFCrO/QGledJoPHgUtF5EIR6QE8B9QDXgUQkddF5EEAY0yBMeaPwAXYBez2Py6qmaehlIp3WempHuATu+NQKsS+ykpPzQnFgavaZIAxZrqINAfuwepI+Bsw1BhT0tGwA+CrsQiVUqryZgHn2R2EUiE0O1QHrnJCAGCMeRp4uoxtgyvYd0x1zqmUUpXwKVAMJNkdiFIhMitUB9a5DJRSMSMrPTUbmG93HEqFyK9Z6akhuw1fEwKlVKwJ2S8opWwWsuYC0IRAKRV7QvqhqZSNQprsakKglIopWempWcASu+NQqoatB34J5Qk0IVBKxaKZdgegVA2bnZWeakJ5Ak0IlFKx6HUgpB+eSoXZ1FCfQBMCpVTMyUpP/Qf42u44lKohS7LSU38M9Uk0IVBKxaqX7A5AqRryYjhOogmBUipWvY/ObaCiXwEwLRwn0oRAKRWTstJTC4FX7I5Dqf30TlZ66s5wnEgTAqVULHsaa8p2paLV5HCdSBMCpVTMykpP/Rf4yO44lKqmb7LSU38L18k0IVBKxbqw/cJSqoaF9b2rCYFSKqZlpad+A/xsdxxKVdE/hLl2SxMCpVQ8mGB3AEpV0Z1Z6alh7f+iCYFSKuZlpafOA+bZHYdSlfQLMD3cJ9WEQCkVL9LQ4YxVdLgt1PMWlEYTAqVUXMhKT80E3rM7DqUq8GVWeupndpxYEwKlVDy5HfDYHYRS5bjNrhNrQqCUihtZ6al/Ay/bHYdSZXg/Kz31J7tOrgmBUire3A3k2R2EUkG8WDVYttGEQCkVV7LSUzcCk+yOQ6kgL2elpy63MwBNCJRS8eg+YIXdQSjltxHrLhhbaUKglIo7Wemp+cBFgM/uWJQCLgvXjIbl0YRAKRWXstJTv0ebDpT9Xs9KT51jdxCgCYFSKr7dgTYdKPtsAK6zO4gSmhAopeKWNh0om12WlZ66y+4gSmhCoJSKa/6mgyfsjkPFnalZ6akZdgcRSBMCpZSymg5sveVLxZX1wPV2BxFMEwKlVNzLSk8tAMYAxTaHomKfDxiblZ7qtjuQYNVKCETkKhHJEpECEflRRAaUU/ZSEVkgIjv9y7zyyiullB2y0lMXAlfbHYeKeXdmpafOtTuI0lQ5IRCRkcDjWMN/HgIsBuaKSIsydhkMvA38DzgSWAt8JiJtqxOwUkqFSlZ66hTgWbvjUDHrnaz01AfsDqIs1akhuBF40RjzqjHmL+AKrHHBLy6tsDHmPGPMs8aY34wxy4BL/Oc9vrpBK6VUCF0HfGV3ECrmZFLG92SkqFJCICLJQH9gXsk6Y4zP//jISh6mLpAE7CjnPLVEpGHJAjSoSpxKKVVdWempHuAsYJXdsaiYsQk43X+ba8Sqag1BMyAB2By0fjPQqpLHeAhrMIZ55ZS5DXAHLOuqFqZSSlVfVnrqdmAYsNvuWFTUKwTOyEpPjfjvsbDeZSAiacA5wBnGmIJyij4IOAOWdmEITyml9shKT/0TOB8wdseiotoV/g6rEa+qCcE2rDmbWwatb4lVJVImEbkZazank4wxv5dX1hhTaIzJLlnQLF0pZYOs9NRZWGMUKFUdj2elp061O4jKqlJCYIwpwuoYsadDoIiUdBD8oaz9RORW4E5gqDFmUfVCVUqp8PP3Cp9sdxwq6rwO3GJ3EFVRnSaDx4FLReRCEekBPAfUA14FEJHXReTBksIiMh64F6t3ZZaItPIv9fc/fKWUCr2s9NTrgeftjkNFjRnAxVnpqVE1R0ZiVXcwxkwXkebAPVgdCX/D+uVf0tGwA/+dKORKIBl4L+hQdwOuqp5fKaVsMg6ohTUZklJlmQmcl5We6rU7kKoSYyK/v4z/1kO32+2mYcOGdoejVNTKzs7G6XQCOP39c1QVpKRlOLBqQy+wOxYVkWYDZ2alpxbZHUh16FwGSilVSf4q4IuAF+2ORUWc94AR0ZoMgCYESilVJf6k4HLgabtjURHjTeCcrPTUqJ4cSxMCpZSqoqz0VJOVnnoN1pgpKr69AFwQjX0GgmkfAqXiiPYhqHkpaRmjsZoQatkdiworD3BjVnrqU3YHUlO0hkAppfZDVnrqG8CxwEa7Y1FhswMYGkvJAGhCoJRS+y0rPfVH4FDgZ7tjUSH3F3B4VnrqF3YHUtM0IVBKqRqQlZ66ATgGq4OZik1zgCOz0lP/sTuQUNCEQCmlakhWempBVnrq+VjztkTVKHWqQg8Bp2Wlp8Zs3xvtVKhUHNFOheGTkpaRijWIUXO7Y1H7xQ1cmZWe+rbdgYSa1hAopVQIZKWnZgC9gHftjkVV26dA73hIBkBrCJSKK1pDYI+UtIyzgGeBZnbHoiolG+uWwpftDiSctIZAKaVCLCs99V2gJ/tO8qYiz1ysWoG4SgZAawiUiitaQ2C/lLSMkVjDHmttQWSJy1qBQFpDoJRSYZSVnjod7VsQaUr6CsRtMgBaQ6BUXNEagsiSkpZxFJAODLI7ljiVCaRlpafOszuQSKA1BEopZZOs9NTvstJTjwZOBZbYHU8c+RsYCRymycBemhAopZTNstJT5wB9gQuALFuDiW0bgSuAnlnpqTOy0lMjv4o8jLTJQKk4ok0GkS8lLSMZuBK4HR3UqKa4sUYanJyVnppndzCRShMCpeKIJgTRIyUtowFwKXA10NHmcKLVeuA54Lms9NQddgcT6TQhUCqOaEIQfVLSMhzAMOA6YLC90USNH4FJwPtZ6anFNscSNTQhUCqOaEIQ3VLSMnpj1RqMBhrbHE6k2Q28DbyYlZ66yO5gopEmBErFEU0IYkNKWkZtYARwCdaUy/HaQdwAC4GXgXey0lNzbY4nqmlCoFQc0YQg9qSkZTQHTsZqVjgJqG9vRCGXD3wBzAZmZ6WnbrQ5npihCYFScUQTgtiWkpZRCzgOa1yDU4F29kZUYzYDc7CSgM/1ToHQ0IRAqTiiCUF8SUnLOAQ4BTgS6E/03Ma4E2sUwYVABvCjjhkQepoQKBVHNCGIbylpGe2xEoPApYWtQcEOrC//PUtWeupqe0OKT5oQKBVHNCFQwVLSMtpiJQZdgNYBSxv/v/v7oZuDNULgBv+/JctKrC//f/fz+KqGaEKgVBzRhEBVVUpaRl32JgjNgCT/kuhfADwBSzGwHX8CkJWemhPumFX1aEKgVBzRhEApVZZ4vXdVKaWUUgGqlRCIyFUikiUiBSLyo4gMqKD8WSKyzF9+iYicXL1wlVJKKRUKVU4IRGQk8DhwN3AIsBiYKyKl9lQVkYFYw0m+DPQDZgIzRaR3NWNWSimlVA2rch8CEfkR+NkYc7X/sQNYCzxljEkvpfx0oJ4x5pSAdQuB34wxV1TynNqHQKkaoH0IlFJlSay4yF4ikox1e8qDJeuMMT4RmYc18EVpjsSqUQg0Fzi9nPPUAmoFrGoA1oeZUqr69BpSSpWlSgkB1i0nCVjDSAbaDHQvY59WZZRvVc55bgPuCl7Zvn37ykWplKpIE0CzA6XUHlVNCMLlQf5bq9AAWIc1LvduWyKqHI2z5kVLrNEW5w67A1FKRZaqJgTbAC/QMmh9S2BTGftsqmJ5jDGFQGHJYxEp+e/uSG731DhrXrTEGoVxKqXUf1TpLgNjTBHWWNPHl6zzdyo8HvihjN1+CCzvd2I55ZVSSikVZtVpMngceE1EFgE/AdcD9YBXAUTkdWC9MeY2f/nJwHwRuQlr1qpzgEOBy/YvdKWUUkrVlConBMaY6SLSHLgHq2Pgb8BQY0xJx8EOgC+g/PciMgq4D3gA+Bs43RjzRxVOW4g17kFhRQVtpnHWvGiJVeNUSkW1qJjLQCmllFKhpXMZKKWUUkoTAqWUUkppQqCUUkopNCFQSimlFJoQKKWUUooISghE5CoRyRKRAhH5UUQGVFD+LBFZ5i+/REROjrQ4ReRSEVkgIjv9y7yKnpcdcQbtd46IGBGZGeIQS85X1b97IxF5RkQ2ikihiKyIxL+9v/z1IrJcRPJFZK2IPCEitUMc4zEiMltENvj/jqdXYp/BIvKL//X8R0TGhDJGpVRkioiEQERGYg14dDdwCLAYmCsiLcooPxB4G3gZ6AfMBGaKSO9IihMY7I/zf1izPq4FPhORthEWZ8l+KcCjwIJQxhdwvqr+3ZOBz4EU4EygG3ApsD4CYx0FpPvL9wDGAiOxxuIIpXr+2K6qTGER6Yg1YNhXQF9gEvCSiAwJUXxKqUhljLF9AX4Eng547MD6kE8ro/x0YE7QuoXA85EUZyn7J2DNMHdBpMXpj+07rC+uqcDMCPy7XwGsBJJCHVsNxPo08EXQuseAb8MYs8EaBKy8Mg8BfwStewf4NNyvsS666GLvYnsNgf9XX39gXsk6Y4zP//jIMnY7MrC839xyyu+3asYZrC6QRAhnmtuPOCcCW4wxL4cqtkDVjHMY1hwYz4jIZhH5Q0QmiEhCBMb6PdC/pFlBRDoBJwMfhzLWagj7taSUikyRMP1xM6xfp5uD1m8GupexT6syyreq2dD+ozpxBnsI2MC+H8A1qcpxisggrJqBviGMK1h1Xs9OwHHAm1hfrp2BZ7GSrLtDEyZQjViNMW+JSDPgW7GmGEzEqsEKdZNBVZV1LTUUkTrGmHwbYlJK2cD2GoJ4ISJpWBM7nWGMKbA7nhIi0gB4A7jUGLPN7ngq4AC2AJcZYzKNMdOB+7GaEiKKiAwGJgDjsPocDAdSReROG8NSSqkyRUINwTbAC7QMWt8S2FTGPpuqWL4mVCdOAETkZiANOMEY83towtujqnEeiNVJb7b1QxbwJ4oi4gG6GWNWRkCcABuBYmOMN2DdUqCViCQba3ruUKhOrPcCbxhjXvI/XiIi9YApInK/v8khEpR1LWVr7YBS8cX2GgL/h3gmcHzJOhFx+B//UMZuPwSW9zuxnPL7rZpxIiK3AndizQi5KFTx7Uecy4A+WM0FJcss9vY6XxshcYLV6bGzv1yJrsDGECYD1Y21LgGzfvqVJDJC5Aj7taSUilB292o0xoB1O1YBcCHWLVovADuBlv7trwMPBpQfCBQDN2G14bqAIqB3hMU5Hmua2RFYbbUlS/1IirOU/acSnrsMqvp6tse6S+MprEQgFau9+/YIjNXlj/UcoCPWl+w/wPQQx1mfvYmdAW7w/7+Df/uDwOsB5TsCucDD/mtpHOABhoT6NdVFF10ia7E9gD2BwNXAv/4v0B+BwwO2fQ1MDSp/FrDcX/4P4ORIixPI8n8oBy+uSIqzlH3DkhBU8+9+JNYtpgVYtyBOABIiLVas5ri7/ElAPrAGeAZoFOIYB5fxnpsa8Lf9upR9fvU/r5XAmHC8nrrooktkLWKMQSmllFLxzfY+BEoppZSynyYESimllNKEQCmllFKaECillFIKTQiUUkophSYESimllEITAqWUUkqhCYFSSiml0IRAKaWUUmhCoJRSSik0IVBKKaUU8P/cTFOT0KTR0QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"cgrid",
"length",
"fourt",
"maxfactor",
"build_real",
"prebuild_gwn",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"",
"",
"fftma2",
"",
"",
"fftma2",
""
],
"type": "treemap",
"values": [
0.544398,
0.383407,
0.2805429999999995,
0.157936,
0.154748,
0.08265899999999979,
0.06792600000000004,
0.001345,
0.0008749999999999999,
0.000413,
0.000243,
9.6e-05,
9e-05,
8.8e-05
]
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QeUFFXChuGvwwRmiEMGBRTMmDNiXNOaV1dU1DX+KIoKCitmDKCAoq6Ka84RTBgwgysqiqioKCjBgCAgkpnU4T9Vw4wDDNRU07fmFrx9zp4jUHXr9nN7lneK2z2RdDqdFg8EEEAAAQQQQAABBBAwLhAhvo0bcwEEEEAAAQQQQAABBFwB4psXAgIIIIAAAggggAACAQkQ3wFBcxkEEEAAAQQQQAABBIhvXgMIIIAAAggggAACCAQkQHwHBM1lEEAAAQQQQAABBBAgvnkNIIAAAggggAACCCAQkADxHRA0l0EAAQQQQAABBBBAgPjmNYAAAggggAACCCCAQEACxHdA0FwGAQQQQAABBBBAAAHim9cAAggggAACCCCAAAIBCRDfAUFzGQQQQAABBBBAAAEEiG9eAwgggAACCCCAAAIIBCRAfAcEzWUQQAABBBBAAAEEECC+eQ0ggAACCCCAAAIIIBCQAPEdEDSXQQABBBBAAAEEEECA+OY1gAACCCCAAAIIIIBAQALEd0DQXAYBBBBAAAEEEEAAAeKb1wACCCCAAAIIIIAAAgEJEN8BQXMZBBBAAAEEEEAAAQSIb14DCCCAAAIIIIAAAggEJEB8BwTNZRBAAAEEEEAAAQQQIL55DSCAAAIIIIAAAgggEJAA8R0QNJdBAAEEEEAAAQQQQID45jWAAAIIIIAAAggggEBAAsR3QNBcBgEEEEAAAQQQQAAB4pvXAAIIIIAAAggggAACAQkQ3wFBcxkEEEAAAQQQQAABBIhvXgMIIIAAAggggAACCAQkQHwHBM1lEEAAAQQQQAABBBAgvnkNIIAAAggggAACCCAQkADxHRA0l0EAAQQQQAABBBBAgPjmNYAAAggggAACCCCAQEACxHdA0FwGAQQQQAABBBBAAAHim9cAAggggAACCCCAAAIBCRDfAUFzGQQQQAABBBBAAAEEiG9eAwgggAACCCCAAAIIBCRAfAcEzWUQQAABBBBAAAEEELAyvg856TLNnrtgnauz+45b64Sj9lP/gffr7WdvVdtWzVhNBBBAAAEEEEAAAQSsFrAyvidMmqLS0vIquGuHPqImjeqrT48Tq36vUYNCNWxQqPFffKejDt5bhQX5dQL9j3OuUe9zT9D+e+9UJ9fnoggggAACCCCAAALhEbAyvlfnO+r0/mrZvEgPDfu3VbLFJaXa84ieumvgxWuN7/LyhHJy4lbNm8kggAACCCCAAAII1I1AqOP71Xc+XmXbyYDbHtWk76ar7/ndNOSeZ/XLb3PVumVT9e91qpo2aaCb7nhSP8z4Vc2KGumSc0/QEX/bq0p91uz5uu2+5/Xpl9+puLhUHTZtpbNOPkLHHNqlxpWZ8NUUndn7lqo/q5efp8/fvE9XD35I3/3wk87tfqQG/ecp7b/3jhrY/1z3uGdefs/93y+/zVNhvXx13XN79T3/JDVv2tjXPI48vb+67rG9WrUo0hMj3taiJcu0zRbtNfiq8/TFtz/qv4+/ornzF6pjh7a6od9Z2rpTO3d855uFOx4YqTEffan5CxapUcP62mPnrXXZ+SepZbMm7jEvvvGhrhnykJ66+2rd8eBIfTNlhnJiMR24z866uve/6uxfGOrmy4OrIoAAAggggAAC2RXYoOL7pjuf0GvvfKJ9du+sq3ufrmgkqp79h2nWnPnaYrNNNKDvmWrRrImuv+1RvfXBBI0Zcbu7dWXh4qU67qyr1aRRA13T519q0ayxXn9vvO566EXdfGWPGgM8kUjq86+n6pxLh2jI1edrnz06q3HD+rp+2GP64JNJatemhXqcdpTatm6u9pu01H1PvKq7Hn5Rvc7+h478215uHN94++NKpdN64cEblJsTr/U8jj3zKi1dtkL/PGp/nX3KEZr9+x/qfsGN7r8OOBF+1SWnybnjfs5lQ+R8U/D08GvcV82Vtzyo98d9ocFX9VDH9m01b8FC3TDscdUvrKcn777KPWbU2x/rikH3a8uOm+r6vmdqm07t3efZ+9q7dWCXnXXLVT2y+wpkNAQQQAABBBBAYCMS2ODi+5mX3lvlDZiPj3hLg+95xt0actA+u7hL+9mX3+usPoPdu7s7de7khvF/HnpBrzw6UJ06tK1a/vMvH6ZZs+fptSf+usNd/bUxeepMdTvveg2/uXfVthPnGwBnDs/ce4122Kaje3hpWbn2Pe4i9271sAEXVg3xzfczdHLPGzT02p464qA9az0PJ75LSsv05tNDFIlE3PF6XXWn/vfJJH348l1q1LDQ/b27H3lJDz79ur58+wH3uLl/LHSjfJPWzavm8OQL7+jmu57Sp6/f60Z45b8mOAHf/R8HVx3nGDp37ce/Nlz5ebkb0ZcITxUBBBBAAAEEEMiewAYX3y+PHudu/6h8vPzmOF11y4Ma/dRgtWvb0v3tKdN+0QnnXqvht/TR/nvt6N4dd35vzMg7VpGtDHcnaIsaN1hDfW3x/fwrY/TVuw8pGq0I42+nzNRJ51+v6/ue5d6trv7Y68ieOuqQLu6d+trOw4lv59NdnPlXPpy72uM/n6z3R95e9XuPj3xbg+9+2vVw7oD/uWipuyVlwqSpWrR4qZLJlPuNwbLlxVXfsFTG93P/vU6dt96saqyXRn/obql56eGbtOXmm2TvFchICCCAAAIIIIDARiSwwcX36Pc+1Uej7l4jvt8fMczdlrFKfK+8Y31ar4H6avI05cRjqyy9syXE2V6ytuBcW3yvPodPJk7WuZcNVTweU3TlnerKC5Unkjp43110xw0XqbbzcOJ7s3atdccNvVaJ7y++/sG9G175qIzvCaP/q/y8PJ3W6yb9Onuerr30DG231WbuVpfX3/1EQ4Y/u0Z8v/b4ze41Kh+j3/9UfW+4193CsuO2FXf0eSCAAAIIIIAAAgj4EyC+995JF1xxh6bNnKX7hlxWo16bVs2Ul5uzxp/VNr4n//CTuvUYoH49T3bfgLn6o6BenvuNQW3nkUl8z5n7p44580rddPk5+sff962awv1Pvqo7H3xhjfh29oDv3HmLquNGvv6Brhv6iEY9OkgdO7Tx9yrjaAQQQAABBBBAAAFXgPjeeyc98NRruufRl/Xuc7e5n4RS+Zj3xyLl5+W4b8qs6VEZ3/cM6q0DulR8zrez53v1O99l5Ql1PbaXjju8q668+LRVhprx82z3DrOzJ7u288gkvn+YPkun9rpJdw+8xP3kEufh3NV3PqfcmcNbzwx194JXbju5tMeJOqf7kVVzvWHYY3rlrY/0yWvD3TvmPBBAAAEEEEAAAQT8CxDfe+9U9Skjm7ZpoUvPO1GtWjTV1Gm/uG9EdPY9V3+TZHVi5+MJD+veT6edcIh7N7lj+zYaPPyZNeLbOcd5U+e9j7+iS8/r5u4zLysv14hXx+rZV8ZoxP0DtFXHTWs9j0ziO5lK6+Bul2rHbTu5n/qyZOly/eehF9WmVVP3DaJDrznfjfJ3P5zofnyjc3f7gjOO0/bbbK6JX/+gAbc+oqMP6aLr+53l/1XGGQgggAACCCCAAAKuAPG98idTOiE97P7n3Z+YuaK41P3c68MO3EMXnnlcjVtOKl8/zps53xzzmZyfuPniwze6nzCy+p3vymOrf853fm6Ou++65xnHarcdt6p6OdZmHpnEd0G9fP1v/Ncaeu+z7ie4OB+B2OO0o3X4gXvorD63yLkzfuXFp7r70p34fuDWfnr0uTc18Zup7ud8H7zfbrr6ktOVn88nnfD/HQgggAACCCCAQKYCoYjvTJ8c5/kXqNx2Uv3TYfyPwhkIIIAAAggggAACNQkQ37wuVhEgvnlBIIAAAggggAAC5gSIb3O2oRyZ+A7lsjFpBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4jv8a8gzQAABBBBAAAEEEAiJAPEdkoVimggggAACCCCAAALhFyC+w7+GPAMEEEAAAQQQQACBkAgQ3yFZKKaJAAIIIIAAAgggEH4B4tvQGo56M2VoZIZFAAEEEEAAAQTMChx+UFS5uWavsbGOTnwbWnknvkeNThoanWERQAABBBBAAAEzAvvtHdXJx8eIbzO8Ir4NwRLfhmAZFgEEEEAAAQSMChDfRnmJb1O8xLcpWcZFAAEEEEAAAZMCxLdJXRHfpniJb1OyjIsAAggggAACJgWIb5O6xLcx3bXFdzQq3X97jhKJikun0tLceWmNHJXU5CnpjOZzyAFRtWkd0WPPhGOP+T57RvXRpxVvSL24R1yffZHS+M95g2pGi89JCCCAAAIIZFmA+M4y6GrDsefbkK9XfPe7LqGFi9JyYnyXHaI6s3tMV95YriVL/U/IpviORKT0Or6HcP78thtzdOnV5e4TLagnlSek8opf8kAAAQQQQACBOhYgvs0uAPFtyLe28V15+ev+Hdcrb6R09OFRvfFuShO/qrgTvGPnqI47Iqrrh6y8VV7DfKvHd5PGEV3RO6YHnkjqp1/SOvOUmDptFtH8P6QfZqTVrEh6+KmkWraI6F8nxdSooVRaKj39QlLTZ6a1aduIzj41pq8np7VFx4j750+P/Ouu/JGHRrX37lEpLX3/Q1rPvZRUIindPSRHb7yT1OF/i6nfteVq3Sqi07vFVFBQEdbOGFN+TOvCc2PaqXNUc+amdce9SZ3WLVZ153u3naI65u9RxaLS4qXS488l9fvctA7eP6pN2kSUkyM1bxZx/3z4w0kt+DOzfykwtOQMiwACCCCAwAYhQHybXUbi25Cv3/i+vn/c3XrSumVEnTaPaPhDFVtIzuoe0+/z0hr97tq3ZVTG9zMjk7r8krjeGVuxjeOAfaLac9eoht6dUMMGEV3ZJ6bJU9Pu9pRr+8U1dlxK//skpQ7tIup1bkz9r0+4Ue58I/Cf+xP69vu09tglqr/tF9XNdyS00/ZRHX9UxX87wd7z7Jgb1O99kNKdN+do3PiU+xycO9/X9IvrvbEpfTwhpT12jeqYw6O6emBC9QulW2/I0fmXVdzqrtx28sP0tAZcHtdNtyY074+09usS1b57RTVwWEIH7etEeUzX3VKuxUvkRv2yFdJLr4Vjm42hlxjDIoAAAgggYESA+DbCWjUo8W3It7bxHYtJzh3f7v+M6Yoby5WbE9Ggq+O67NpyN3CH3ZSjgbclNH/B2u/yVsZ3Xq70+zxVfb54jzNimv5TRRw7DydaozHp1TdTuvHKuHr9u7xqi8jVl8U14pWkli2X+veO66LLK+LYueN8cY+Y/j0gscY3AjtsF9FhB8U09K6E7hiU4wb7jJ8q5pmbI/eOeCol9+75kAE5Ou/S8rXGd05c2nmHqDuG83Duct97a44u6l+uvXeLatutI7r7gYrY/tv+UbXfNKKHnyS+Db18GRYBBBBAYCMWIL7NLj7xbcjXK76r3nCZkmb/ntZzLyf14/SKcO3bK65PJqTcbRX/PCamm25b+5YT53gnvo8+PKZ4XHLufn84viK2L70gro8/++vNjEceElWzZhF98FFKV/aJu3vOKx95eRE98XzFNo/ePZ2tIxXXbNs6UvVr5y715h0iKi2tOM/Zr+7sUb/x1or4vvn2hObOr/gz5475gftG5Xxz4WwTcbaz9Oiz9vguaiK1arlqUA8fmqMBgxPqvE3Eve6DT1TEtnMnvPqvDS0hwyKAAAIIILBRChDfZped+Dbk6xXflW+4rOny++4dde+GO9tNnAB/e8y6PwnEie8dt4vq2ZeSuuzCuBvrznk9z4ppyrS0xnxYcb6zv9qJ4VGjU7qhf9y9q7z6o3psrx7fZ5wS0+w5aXdby+oPJ74HDavYMtKkUUSDronrhqEJd2+3sw998HXxdca3c+d7lx2juvO+iuh3fqStE9/O3fkue6wa28S3oRctwyKAAAIIICCJ+Db7MiC+DfmuT3w7b1J0tmk4206cPc9/Llz3Gwurv+HyiEOi2nbLqG4bntBhB0W17VZR3X5vQo0bRnTVZTF9833Fnm9nT/Zb76f02cSUGtSXTjk+pseeS6pZ0V93ulePb+eNks4bQp1tJiWlcvdlJ5NyPzawenw7Ad/vorj6Xlvubjs5/qiYO5cL+5UrFpfuHJTjbmspLftrz/fUaWn3GwLnLroT8M4+c+cbkMH/qdjzzZ1vQy9UhkUAAQQQQGA1AeLb7EuC+Dbkuz7x7Uyp1//F1KAw4r650etRPb6drSDOlhJn24rzZsce/4qrbRvpt9nSrNlpd8/1Y8/+9WknRY0rPmv8nTEpjf0otco2k9Xj2/m1s3XFuRPt3EGfO1965OmkFi1OrxLfznFnnxbTVh0jWr5Cev6VpI49POZuU3Gej7Mdpt0mEfcu99GH/fVpJ7vuFNWxzqedxKQ/F0qPP5t097oT316vAP4cAQQQQACB7AkQ39mzrGkk4tuQ7/r+hEvnYwB//S2tMePW74fPVP/cbecTQ5w3QjqfSMIDAQQQQAABBBCoSYD4Nvu6IL4N+a5PfLdpFVGfnjFde3NCxSWZT9DZJnLicRWfEe5E+BW94+5+7y++Xr+gz3xGnIkAAggggAACtgsQ32ZXiPg25JtpfJ9wdEzOj193fsDMV99URHKrFhFdcE6sxpk6b2i89+Ga72Q72zy6nxDTjp0j7t7rz7+q+DH26/oJlIY4GBYBBBBAAAEEQiJAfJtdKOLbkG+m8W1oOgyLAAIIIIAAAgjUSoD4rhVTxgcR3xnTrftE4tsQLMMigAACCCCAgFEB4tsor4hvQ77EtyFYhkUAAQQQQAABowLEt1Fe4tsUL/FtSpZxEUAAAQQQQMCkAPFtUlfEtyle4tuULOMigAACCCCAgEkB4tukLvFtTJf4NkbLwAgggAACCCBgUID4Nogr4tuYbk3x7fyQGx4IILDhCJSXpTX6vZT42t5w1rS2z2TUaH5YWW2tOC58AsS32TXjDZeGfNcW34cufdTQFRkWAQSCFEjlFmh05EQ3vrsdndZ+C58M8vJcqw4FxjY+XSNfq8MJcGkEDAsQ32aBiW9DvuuK75IRDxu6KsMigEBQArmn9lolvved+5BKX3kqqMtznToSyD/udI1tfjbxXUf+XDYYAeLbrDPxbciX+DYEy7AIWCJAfFuyEAFPg/gOGJzL1YkA8W2Wnfg25Et8G4JlWAQsESC+LVmIgKdBfAcMzuXqRID4NstOfBvyJb4NwTIsApYIEN+WLETA0yC+AwbncnUiQHybZSe+DfluKPH9dXlUbWNpNY2mDUkxLALhFPAT3w+syNGHZXFdVFimr8qjVf+9aSylRamIto6nsoJQnJbuX5HrXiMekQ7LS+if+YmsjM0gFQLEN6+EjUGA+Da7ysS3Id+wxLfzV350HQaDl+XqH/kJbZmlODDEzbAIBC7gJ77PWpSv6xuUqV0sper//VpJXE4aH5elQH5oRY6WpCO6sKBMi9MRXbk0T30Ky7QtX79Ze30Q31mjZCCLBYhvs4tDfBvyzSS+Xy6J683SuBpF0jokL6kXS+Ia3qjEnaHz3x+UxRWRtH08qTMKyhWXdOaifJ1aL6Hx5THNTUZ0UF5Cx6/8i/yL8pieKnb+co+oZTSlngXlahJNy/kL/+dkVD8lI9olJ6WT65XrsRU5mlAek3N/e7t4SucXlunVkrieL85RUTSt0wvKtWdOxZxqmochRoZFwFqB2sb30GW57tdW61ha9SNp/ZiIuv+9f25Sr5bEFItIB+Ym3a/NmYmoG+O/JCNqFk3r0Lyk3iyNaU4yqm71yrVfbtL9Gq3p69X5KQKfl8fUPpZS85X/UuV887x7TlIH5fGZ1Nl6IRHf2ZJkHJsFiG+zq0N8G/L1G9+/JSO6emmebm9YqvrRtJy/sH9LRnV3oxL3L+6ni3M0sEGp8iNp3bYsV9vlpHREXkJnL8p3Q/2UeuX6MxXRhYvz9WjjYhWnI+q9JE83rLzb5oT0lERU/eqXaXRpXCOL4xrUsFQto2n3L+yninM0pEGJnLq/Ykmee7d7n9ykLl2Sp/MLyt073+uahyFGhkXAWoHaxrfzBM5YlK9hDUvd7VvV/9u5U+38nnPn2/nG2/nm1vn/gHqRtC5YnK8dc5xvmsv0XSKq+1bk6s6GJev8eq2O5WxBuWRJvq6rX+puHeORHQHiOzuOjGK3APFtdn2Ib0O+fuP7ndK4u0/TiWPn8VFZTM8U57jxPXx5rtrEUlX/NO3c0R5VEteABqVufF/ToEybxSr2jDp3woc0LNX3iajGlcV01crxStLOn9XT002K9XZpXBPLo1V/5vy1XJqW8p3b6pLuW5Hj3jlz7qBXj+91zcMQI8MiYK2AifienIjqssKK/w+4Zmme/p6XUJfcpPuNde8l+Xq8cbF753ttX6+VWGVp6dbludointKJWdrSYu1CBDwx4jtgcC5XJwLEt1l24tuQr9/4du54zU1F3btczmNqIqq7lue68X3zslz3n6or49jJbGdryuCGFfHt3MFutfKfmSt//VlZTM+X5Khh5K87XivS0h0NS90tKs74l6z8S97ZI/rEihzNSkXcbS3zUhH3L/0TVovvdc3DECPDImCtgIn4np6I6sKVX5fXLc3TMfkJ7ZqTdN+U2WtJvp5sXOzu6V7b16uDtTwd0S3LctU5ntJJ9cqt9QvrxIjvsK4c8/YjQHz70fJ/LPHt36xWZ/iNb+efnKvf9fq4rGKriRPf967Idd+odWTemp9asLb4/iER1fiymP698s539Uk713L+/OKVf8k7d7oT6Yh6Fpa5b750rtcimlojvtc1j1qhcBACG5BAXcX3ur5ey9PSDcvytHdu0t2WxiP7AsR39k0Z0T4B4tvsmhDfhnz9xve0RNS9w31Ho1IVRNIatCzPfQOlE9/OnuwRxRXbTOpFpHdL44pH0jogN7nWO9/1JHfLyE0NS9U6mpYz/v/KYjq7oNzdW1o9vm9bnqstYykdnZ/QT8mou9/c+afuU+uVq9+SPPcNnTvlJNc5D0OMDIuAtQLZiO9HV+QoJyL3a835uqzNne91fb2OKIm7d8n/r4A73qZeOMS3KVnGtUmA+Da7GsS3IV+/8e1M4/HiHHeftrPf2vlUA+dTSe6q9mknY8viSqbl7v++YOUnl6ztzrezDaXy005K0xH3DVznFJS7nye8enxXbnFxPhd4i1hKu+cmNXx5jnoVlrufiDKqJMd9Q6ezFcXZHlPTPAwxMiwC1gpkI76dz9G/dXmeu7Vkq3iqVvG9rq9X5w2cC1ORVT4+9NC8hM4kxrP2OiK+s0bJQBYLEN9mF4f4NuSbSXw7u7NXvufR3YLyZHGObm5QamiGDIsAAuuCl+2uAAAgAElEQVQj4Ce+1+c6nGuXAPFt13owGzMCxLcZ18pRiW9Dvn7j23kTVa/F+e7HCTo/9c75ZBHnbvVZ3LEytEIMi8D6CRDf6+cX1rOJ77CuHPP2I0B8+9Hyfyzx7d+sVmf4jW9nUGcvt7Otw/k0k81jKfUsLFeDap9WUqsLcxACCAQiQHwHwmzdRYhv65aECRkQIL4NoFYbkvg25JtJfBuaCsMigIABAeLbAGoIhiS+Q7BITHG9BYjv9SZc5wDEtyFf4tsQLMMiYIkA8W3JQgQ8DeI7YHAuVycCxLdZduLbkC/xbQiWYRGwRID4tmQhAp4G8R0wOJerEwHi2yw78W3Il/g2BMuwCFgiQHxbshABT4P4Dhicy9WJAPFtlp34NuRLfBuCZVgELBEgvi1ZiICnQXwHDM7l6kSA+DbLTnwb8iW+DcEyLAKWCBDflixEwNMgvgMG53J1IkB8m2Unvg35+onv/BPPNjQLhg1KoGTEw0FdiutYIlCb+OZrWyp7/1WlFsy3ZNXWfxrE9/obMoL9AsS32TUivg35+o3vwV13UFppRap+xqWM/7qmp776HFY/Zl1/7vyZ86h8Dl5jGaIPfNiLUkWK9vlX4NflgnUrUKv4PrWXZkS61e1E6/DqnbqWquSq7sR3Ha4Bl0YgEwHiOxO12p9DfNfeyteRmcT3gNkTfF2Dg+teYNeC5nq74S7Ed90vReAzqG18/5g4UVNHOz86a+N7HDMkQXxvfMvOM94ABIhvs4tIfBvyJb4NwVo2LPFt2YIEOB3i2xub+PY24ggEbBQgvs2uCvFtyJf4NgRr2bDEt2ULEuB0iG9vbOLb24gjELBRgPg2uyrEtyFf4tsQrGXDEt+WLUiA0yG+vbGJb28jjkDARgHi2+yqEN+GfMMS3wcMeFWf9DlYpY3qGZLYsIclvjfs9V3XswtLfP9WMknTl3+g/ZpeHPhiEd+Bk3NBBLIiQHxnhXGtgxDfhnyJb0Owlg1LfFu2IAFOJwzxXdefOER8B/iC5FIIZFGA+M4iZg1DEd+GfLMZ3x3GTtUmn8xQWf08/bbnZtpszFSNu/xw57MIteXrX6v5d3MUSae1cPPm+u6EXZSORtT+fz+q7acz3d8va5Cvb0/aTcVFhWr6w1xt9cokKRrRnJ02VftxP+qT3hV3vptN+V2d3vxW0WRaxUUF+u6fuyoZj2m/gW9o3BWHq6wwz9Xa6tVJ7u9P+3tnQ3rhGZb4Ds9aZXum2Yjv8Qsf1u+lk5VMl2vXRqeoQ8Hemrb8A327dJRyIvnKjRZq/6a9NXHxU6ofa67tGx7nPo2xC25Xm/wdVBgr0oRFTyoeyVdKCR3UtK/qx5vrxTm91Tp/Oy0s/1XbNzhWU5e/o4Ob9ddvJV+ucXy9WGM9N/s8bVF4gJYkfteSxBwd3vw6Ob8/ffn/9PXSl5RKJ9W+3h7arfFpKkut0Id/3q3S1DIlUiXq3PBYbV6wT428xHe2X3WMh0AwAsS3WWfi25BvtuK7cN5S7fbfD9ytIYmCXO3w+HgV/rFUH/U7TM2/n6NOoyfr04sPdD9de497xmjmAVvpz04t1OXWtzSu/9+VzIurzcSfFS1LuuHe9ZbRblQv2LKlNhk/ww3xcf0Pd4O9y7B39Pn5+2tZy4Zq/+GPavTTAn19+l7a+eGPNHeHTTR7t/auVtfBb2rSaXtpadvGhvTCMyzxHZ61yvZM1ze+ZxV/oa+XvqwjWtygZYn5+ujPe3VAsz4aMfsCdWvzXze8P134iHKjBdqk3s76+M8HdGyroUopqadnnamT2tyvn4s/VVFuBxXldNA3S19RcXKR9mh8hl75va82L+jqxvqvxROr4nva8rFrHO8E9QM/H61ube5Tk5xNNX7hQ2oQb6lOhQfohTkX6cQ2w924f3vejera9EJ9t/QNFcaaatsGR6g8VawRcy5Ut5XHrG5MfGf7Vcd4CAQjQHybdSa+DflmK76du9fO3Wongp1Hy0mz1OntyW58O3e+Y+UJJXPj7p9t8+KXKmlSoJ+7dtJ+g97QtMM7a+72bVVekOv+eeH8pdr9nrEaO+Bo99fRRFIHXf2KPrzi7yqaPl+tvvpVX55dcQcrVpaQsx/8/ZuOU+uJP6v5lN816fS91OC3Rdrh6U8rrs9DxPfG+yJY3/j+YvEziiimnRv99UN45pR+qy8WPaMjWw50YX8pnqApy97Woc2v0rO/natjW92qBWUz9P2yt3RI8yvcu+ZfL3lJUcW0LPmHmuZupn2Lernx3aXoPDXP3WKV+K7p+H2KeuqxX0/WWZuOcK85ackL7p341vmd9cXiZ3Vki5tWWeTX5l6h0tRy5UQr3ieyIvmne6e8cc4ma7wYiO+N9+uDZx5uAeLb7PoR34Z8sxXfzhaTen8ud7eTOI9GPy9Q5+c/d+M3d3mptnjjWxXOW+L+bMx6C5fr1y4dNfOgrdVg9iJ1GDNVTafN05K2TfT98Tsrd2mJtn92QsWWlZWPA695RR/3PVStJs3S5u9+r/LCilB3HvGScn186SFKx6LaZ8hb+t/VR7hbXpRKa/ph2xmSC9ewxHe41iubs81GfDv/YrVLo5OrpuXE8eeLntZRK+P75+LP9MOyd3VI8yv16aJH1SDWQn+UTVe7eru5W1Qen9VdR7e8RU1y2un7ZW/qj7JpVfG9b9OLVJTTfpX4rul4J76f+PVUnbHps9Xiu8zd1lJ9LpWTfG3uVdq10clqnb+9Jyfx7UnEAQhYKUB8m10W4tuQb7bie9NPZqjJjPn6+tQ93Zm2/HqWOr1VcefbudMdTaaq9nlv+8IXKm5S4MZ35SOSTGnz96ao/pzF7h7t3Yf/defbubt94LWjKu58z5ivFt/8pkn/2rtGkV0eHKdfunZSp9HfavLJu2tp60aG5MI1LPEdrvXK5mzXN75nlXyprxY/r6NaDnL3T4+eN8DdgvL87J7q1uZed9vJJwsfcLd47NDwePeO94RFj2txYrb+2foeRSMxPfzLCW40O3e+35x/vQpiRTqgaR/3zvfq8f23Zv+u8XjnU1Bqiu/ODY6pNpcCjZ53vboU9dCPy95XWXqFujTp4e7//mzRo+pa1NPd+rb6g/jO5iuOsRAIToD4NmtNfBvyzVZ8N5y1UDs98rE+uewQJfLi2vmRj9073E587/Dkp1rcvkg/77uFGsxZrB2eGO9uM5m/XRu1/+AHfXvK7krFY2r9xS9utDvbRvYdNFqTT9rN3fPtvCnTeYOlcyfcubu91+3v6vOe+2tFs/pyruucN/WYHV0hZ/tLsx/mqnDuEvdOOY8KAeJ7430lrG98O3LOGy7nlH6jdDqlXRt3V/t6e2r6ig/1zZKX3X3WBbEm7kcExiMV/yLlhHnLvK21f9NL3F874Tur+Cvlxxq6b6z8YMGd7p85W1pquvNd0/H7Nb1IY/64bY0737s0OsV9w+WkJSPdsG5fsKd2bdTd3ef9wYI7tCK1SMl0mTo3OFpbFB5U4wuB+N54vz545uEWIL7Nrh/xbcg3W/HtTG+L179Rq0m/qqRxgebs3E7txk3Tx/0OrdqCkopFtWTTIs3btrW2GzlRk0/czb1b3uLb2e4bKZ1PO/nuhJ21vEVD95NRtnx1knuP6rfdO7hvuvy85wHuHfPKTzuJlSfd0J96zE5a1KGpK+Rscdl34Bv66YCtNP3QbQ2phW9Y4jt8a5atGWcjvrM1F1vHIb5tXRnmhcC6BYhvs68Q4tuQbzbj2/m4wHSk4p90nah29nl/1sv5hBMedS1AfNf1CtTd9Ylvb3vi29uIIxCwUYD4NrsqxLch32zFt3PH2Xmz42cXHKDlLRtq25ET3Y8PnHp0xXYQHnUrQHzXrX9dXp349tYnvr2NOAIBGwWIb7OrQnwb8s1WfDvTa/vZTPeTSyKptPvZ2s7ndFd+fKCh6TNsLQWI71pCbYCHEd/ei0p8extxBAI2ChDfZleF+Dbkm834NjRFhs2CAPGdBcSQDkF8ey8c8e1txBEI2ChAfJtdFeLbkC/xbQjWsmGJb8sWJMDpEN/e2MS3txFHIGCjAPFtdlWIb0O+xLchWMuGJb4tW5AAp0N8e2MT395GHIGAjQLEt9lVIb4N+RLfhmAtG5b4tmxBApwO8e2NTXx7G3EEAjYKEN9mV4X4NuRLfBuCtWxY4tuyBQlwOsS3Nzbx7W3EEQjYKEB8m10V4tuQL/FtCNayYYlvyxYkwOkQ397YxLe3EUcgYKMA8W12VYhvQ77ZiO8BbXY3MrsBsycYGXdjHJT43hhXveI5r098b3tMbIODm/lhSsUL06s8L+J7g1tmntBGIkB8m11o4tuQb7bi+7p5P2d1hlM220vb/Dgqq2NuzIMR3xvv6q9PfG93Ykxv7JzYYPDOrJ+j8dclie8NZkV5Ihu7APFt9hVAfBvyzWp8T3oxO7Ns3klT9ulBfGdH0x2F+M4iZsiGWt/4fnHHhO75oyxkz7rm6X6zeSHxvUGsJE8CgQoB4tvsK4H4NuRLfBuCtWxY4tuyBQlwOsT3X9jEd4AvPC6FQAACxLdZZOLbkC/xbQjWsmGJb8sWJMDpEN/Ed4AvNy6FQKACxLdZbuLbkK/J+Hbe0hRZx7wXl6b0n0+XKj8e0VZNc3TMVvUqjmbbSdZXm/jOOmloBgx7fG9+x+Wa0XtwVry5850VRgZBwBoB4tvsUhDfhnxNxPcjXy1XMpVW13Z5Gj2tRAU5EXUqiqtpvajG/FSqNg1iSqelQzrmqzyZVqv6MQ36cImu3Lch8W1onYlvQ7AhGJb45s53CF6mTBGBjASI74zYan0S8V1rKn8Hmojvxyct137t89S8MKaR361QYU5E0/5M6O9b5GvGwoT+sXWBhny0RP/ep6Gcu+NPTFquXVvnarsWOcS3v+Wr9dHEd62pNrgDsxnfsRXL1GbEvXK+e07mF2j2SReqyWfvq/6UL5SORLW8U2clGhWpYOYUzT3qdMWKl6vdgwM186JBa7hudmd//XLete44LUc9puVbbK/chfNV8OM3ipWVaNFuB2jxzl1Veed782F9NePSW91xKv+78ecfqMHkz5RWREt27KIlO3VZ5/px53uDe3nzhDZyAeLb7AuA+Dbkayq+D+uYrwmzy9S6fkwdi+IaPmGZjtwyX3OXpXRox3wN/XiJ+nZpqPsnLtOBHfK1ZdP4X8+QbSdZX23iO+ukoRkwm/Hd7L0XVV7Uwo3iRl+Oc4O5/b0DNL3f7a5Hx1sv08xLBqnD3ddoRp8hajxhjGLFK7RgvyPX8Gr2/ssqb1Skxbvu5wb2zIsHqdHnH2jR7gcqVlqsdvffqJkX37zW+J7Ze7A2v62vpvcdVhHkd/b33J5CfIfmZctEEaiVAPFdK6aMDyK+M6Zb94km4/vPkpRenlLsbjmZ8ke5DtwsXyvK0lXx7WxLGfHdCnVqkqPG+RF1376QO9+G1pn4NgQbgmGzGd9tRvzXjeMVHbZyn3l86SK1fepO/Xz+de6v2/93gH47tbdavP6k/tz/aLV442nN7tZTiQaN15DKWfSHWr38sP742/FupM85/v9UNG608n+bqVRungpmfu/e6V7bne9f/u9qdbztMi3bckd37NwFv+vnHtcqlZe/1lUhvkPwgmWKCPgQIL59YGVwKPGdAVptTjER37W57jqP4c73ehOuPgDxnXXS0AyYzfh27nw720qcLSFNxr+rZdvsonYPDNT0vre5Hs6d7xmXDlXhj9+o8IevlDdvtn4554q1WjmxXtq6vRbvtI/KmrdR+/uu14w+Q5U7f7Y2few2d9zK+HbGdn4dLS12rzPtiru12Z2Xu8c7j7y5s1TacpN1rgvxHZqXLRNFoFYCxHetmDI+iPjOmG7dJxLfhmAtG5b4tmxBApxONuPb3fP97D1SNFK159u5a93gu4nuM1raeQ8t2m1/RVIpbXHT+Zp3RHc31Nf2KPrwDRV9/JamXX6ne067B25SeZPmKmvWWvWnfqk/DjxOLd581t1O0uL1pxRfulDlTVqowfcT3d9zrz35c3f4kjYdNP/QE4nvlQL5x52usc3P1sjXAnyxcSkEAhYgvs2CE9+GfIlvQ7CWDUt8W7YgAU4nm/Ed4LSNXIo730ZYGRSBOhMgvs3SE9+GfIlvQ7CWDUt8W7YgAU6nruM7tnyJe/d69YfzaSipvJWf7R+QB/EdEDSXQSAgAeLbLDTxbciX+DYEa9mwxLdlCxLgdOo6vgN8qp6XIr49iTgAgVAJEN9ml4v4NuRLfBuCtWxY4tuyBQlwOsT3X9jEd4AvPC6FQAACxLdZZOLbkC/xbQjWsmGJb8sWJMDpZCO+vytJBjhjc5f6T4t8jb8uqeKFzo/3+utxzJCESq7qrtSC+eYuHvDIvOEyYHAuVycCxLdZduLbkC/xbQjWsmGJb8sWJMDprG98528e4GQDuNR396eI7wCcuQQCQQgQ32aViW9DvsS3IVjLhiW+LVuQAKezPvEd4DTr9FLc+a5Tfi6OQMYCxHfGdLU6kfiuFZP/g4hv/2ZhPIP4DuOqZWfOxLe3I/HtbcQRCNgoQHybXRXi25Av8W0I1rJhiW/LFiTA6RDf3tjEt7cRRyBgowDxbXZViG9DvsS3IVjLhiW+LVuQAKdDfHtjE9/eRhyBgI0CxLfZVSG+DfkS34ZgLRuW+LZsQQKcDvHtjU18extxBAI2ChDfZleF+DbkS3wbgrVsWOLbsgUJcDrEtzc28e1txBEI2ChAfJtdFeLbkC/xbQjWsmGJb8sWJMDpEN/e2MS3txFHIGCjAPFtdlWIb0O+xLchWMuGJb4tW5AAp0N8e2MT395GHIGAjQLEt9lVIb4N+RLfhmAtG5b4tmxBApwO8e2NTXx7G3EEAjYKEN9mV4X4NuRLfBuCtWxY4tuyBQlwOsS3Nzbx7W3EEQjYKEB8m10V4tuQL/FtCNayYYlvyxYkwOkQ397YxLe3EUcgYKMA8W12VYhvQ77EtyFYy4Ylvi1bkACnQ3x7YxPf3kYcgYCNAsS32VUhvg35Et+GYC0blvi2bEECnA7x7Y1NfHsbcQQCNgoQ32ZXhfg25Et8G4K1bFji27IFCXA6xLc3NvHtbcQRCNgoQHybXRXi25Av8W0I1rJhiW/LFiTA6RDf3tjEt7cRRyBgowDxbXZViG9DvsS3IVjLhiW+LVuQAKdDfHtjE9/eRhyBgI0CxLfZVSG+DfkS34ZgLRuW+LZsQQKcDvHtjU18extxBAI2ChDfZleF+DbkS3wbgrVsWOLbsgUJcDrEtzc28e1txBEI2ChAfJtdFeLbkC/xbQjWsmGJb8sWJMDpEN/e2MS3txFHIGCjAPFtdlWIb0O+xLchWMuGJb4tW5AAp0N8e2MT395GHIGAjQLEt9lVIb4N+RLfhmAtG5b4tmxBApwO8e2NTXx7G3EEAjYKEN9mV4X4NuRLfBuCtWxY4tuyBQlwOsS3Nzbx7W3EEQjYKEB8m10V4tuQL/FtCNayYYlvyxYkwOkQ397YxLe3EUcgYKMA8W12VYhvQ77EtyFYy4Ylvi1bkACnQ3x7YxPf3kYcgYCNAsS32VUhvg35Et+GYC0blvi2bEECnA7x7Y1NfHsbcQQCNgoQ32ZXhfg25Et8G4K1bFji27IFCXA6xLc3NvHtbcQRCNgoQHybXRXi25Av8W0I1rJhiW/LFiTA6RDf3tjEt7cRRyBgowDxbXZViG9DvsS3IVjLhiW+LVuQAKdDfHtjE9/eRhyBgI0CxLfZVSG+DfkS34ZgLRuW+LZsQQKcDvHtjU18extxBAI2ChDfZleF+DbkS3wbgrVsWOLbsgUJcDrEtzc28e1txBEI2ChAfJtdFeLbkC/xbQjWsmGJb8sWJMDpEN/e2MS3txFHIGCjAPFtdlWIb0O+xLchWMuGJb4tW5AAp0N8e2MT395GHIGAjQLEt9lVIb4N+RLfhmAtG5b4tmxBApwO8e2NTXx7G3EEAjYKEN9mV4X4NuRLfBuCtWxY4tuyBQlwOsS3Nzbx7W3EEQjYKEB8m10V4tuQL/FtCNayYYlvyxYkwOkQ397YxLe3EUcgYKMA8W12VYhvQ77EtyFYy4Ylvi1bkACnQ3x7YxPf3kYcgYCNAsS32VUhvg35Et+GYC0blvi2bEECnA7x7Y1NfHsbcQQCNgoQ32ZXhfg25Et8G4K1bFji27IFCXA6xLc3NvHtbcQRCNgoQHybXRXi25Av8W0I1rJhiW/LFiTA6RDf3tjEt7cRRyBgowDxbXZViG9DvsS3IVjLhiW+LVuQAKdDfHtjE9/eRhyBgI0CxLfZVSG+DfkS34ZgLRuW+LZsQQKcDvHtjU18extxBAI2ChDfZleF+DbkS3wbgrVsWOLbsgUJcDrEtzc28e1txBEI2ChAfJtdFeLbkG9W4zuLc5yy2V7a5sdRWRxx4x6K+N5415/49l574tvbiCMQsFGA+Da7KsS3Id9sxbeJ6Q2YPcHEsBvlmMT3Rrns7pMmvr3Xnvj2NuIIBGwUIL7Nrgrxbcg3G/FtaGoMm0UB4juLmCEbivj2XjDi29uIIxCwUYD4NrsqxLchX+LbEKxlwxLfli1IgNMhvr2xiW9vI45AwEYB4tvsqhDfhnyJb0Owlg1LfFu2IAFOh/j2xia+vY04AgEbBYhvs6tCfBvyJb4NwVo2LPFt2YIEOB3i2xub+PY24ggEbBQgvs2uCvFtyDeT+DY0FYY1LHBRqkjRPv8yfBWGt02gtvE9I9LNtqkHNp9OXUtVclV3pRbMD+yapi+Uf9zpGtv8bI18zfSVGB+BuhMgvs3aE9+GfP3Gt6FpMGxAAiUjHg7oSlzGFoFaxfeJZ9sy3TqbR9n7rxLfdabPhRHITID4zsyttmcR37WV8nmcn/j2OTSHI4CABQK1iW8LpskUsizAne8sgzKclQLEt9llIb4N+RLfhmAZFgFLBIhvSxYi4GkQ3wGDc7k6ESC+zbIT34Z8iW9DsAyLgCUCxLclCxHwNIjvgMG5XJ0IEN9m2YlvQ77EtyFYhkXAEgHi25KFCHgaxHfA4FyuTgSIb7PsxLch33XFt6FLMiwCCAQokMot0OjIiRr9Xkrdjk5rv4VPBnh1LlWXAmMbn86nndTlAnBt4wLEt1li4tuQb43xfXjU0NVqOWwkUssD13JYOr1+56/v2WGZ//rOc32dOD8wgfKytBvfx6z+te28Bqp/vazr15Wvl8rjqx9b2z8zMb6juPq41WU38tf5qNHJwF5nXAiBoAWIb7PixLch35ri29ClGBYBBBBAAAEEEMiaAPGdNcoaByK+DfkS34ZgGRYBBBBAAAEEjAoQ30Z5RXwb8iW+DcEyLAIIIIAAAggYFSC+jfIS36Z4iW9TsoyLAAIIIIAAAiYFiG+TuiK+TfE68e0+nDdRVX/TlJ//9prc+oxdm3O9rr+2P6/N2LU5JtPr1+Y8W69fOfe6nl91w7XNpTbOmR5Tm+fv9xib5uJlWpvnlunz4TwEEECgFgKHHxRVbm4tDuQQ3wJsO/FNxgkIIIAAAggggAACCGQmQHxn5sZZCCCAAAIIIIAAAgj4FiC+fZNxAgIIIIAAAggggAACmQkQ35m5cRYCCCCAAAIIIIAAAr4FiG/fZJyAAAIIIIAAAggggEBmAsR3Zm6chQACCCCAAAIIIICAbwHi2zcZJyCAAAIIIIAAAgggkJkA8Z2ZG2chgAACCCCAAAIIIOBbgPj2TcYJCCCAAAIIIIAAAghkJkB8Z+bGWQgggAACCCCAAAII+BYgvn2TcQICCCCAAAIIIIAAApkJEN+ZuXEWAggggAACCCCAAAK+BYhv32ScgAACCCCAAAIIIIBAZgLEd2ZunIUAAggggAACCCCAgG8B4ts3GScggAACCCCAAAIIIJCZAPGdmRtnIYAAAggggAACCCDgW4D49k3GCQgggAACCCCAAAIIZCZAfGfmxlkIIIAAAggggAACCPgWIL59k3ECAggggAACCCCAAAKZCRDfmblxFgIIIIAAAggggAACvgWIb99knIAAAggggAACCCCAQGYCxHdmbpyFAAIIIIAAAggggIBvAeLbNxknIIAAAggggAACCCCQmQDxnZkbZyGAAAIIIIAAAggg4FuA+PZNxgkIIIAAAggggAACCGQmQHxn5sZZCCCAAAIIIIAAAgj4FiC+fZNxAgIIIIAAAggggAACmQkQ35m5cRYCCCCAAAIIIIAAAr4FiG/fZJyAAAIIIIAAAggggEBmAsR3Zm6chQACCCCAAAIIIICAbwHi2zcZJyCAAAIIIIAAAgggkJkA8Z2ZG2chgAACCCCAAAIIIOBbgPj2TcYJCCCAAAIIIIAAAghkJkB8Z+bGWQgggAACCCCAAAII+BYgvn2TcQICCCCAAAIIIIAAApkJEN+ZuXEWAggggAACCCCAAAK+BYhv32ScgAACCCCAAAIIIIBAZgLEd2ZunIUAAggggAACCCCAgG8B4ts3GScggAACCCCAAAIIIJCZAPGdmRtnIYAAAggggAACCCDgW4D49k3GCQgggAACCCCAAAIIZCZAfGfmxlkIIIAAAggggAACCPgWIL59k3ECAggggAACCCCAAAKZCRDfmblxFgIIIIAAAggggAACvgWIb99knIAAAggggAACCCCAQGYCxHdmbpyFAAIIIIAAAggggIBvAeLbNxknIIAAAggggAACCCCQmQDxnZkbZyGAAAIIIIAAAggg4FuA+PZNxgkIIIAAAggggAACCGQmQHxn5sZZCCCAAAIIIIAAAgj4FiC+fZNxAgIIIIAAAggggAACmQkQ35m5cRYCCCCAAAIIIIAAAr4FiG/fZJyAAAIIIIAAAggggEBmAsR3Zm6chQACCCCAAAIIIICAbwHi2zcZJyCAAAIIIIAAAgggkJkA8Z2ZG2chgAACCCCAAAIIIOBbgPj2TcYJCCCAAAIIIIAAAghkJkB8Z+bGWQgggJ4Jk/8AAAIhSURBVAACCCCAAAII+BYgvn2TcQICCCCAAAIIIIAAApkJEN+ZuXEWAggggAACCCCAAAK+BYhv32ScgAACCCCAAAIIIIBAZgLEd2ZunIUAAggggAACCCCAgG8B4ts3GScggAACCCCAAAIIIJCZAPGdmRtnIYAAAggggAACCCDgW4D49k3GCQgggAACCCCAAAIIZCZAfGfmxlkIIIAAAggggAACCPgWIL59k3ECAggggAACCCCAAAKZCRDfmblxFgIIIIAAAggggAACvgWIb99knIAAAggggAACCCCAQGYCxHdmbpyFAAIIIIAAAggggIBvAeLbNxknIIAAAggggAACCCCQmQDxnZkbZyGAAAIIIIAAAggg4FuA+PZNxgkIIIAAAggggAACCGQmQHxn5sZZCCCAAAIIIIAAAgj4FiC+fZNxAgIIIIAAAggggAACmQkQ35m5cRYCCCCAAAIIIIAAAr4FiG/fZJyAAAIIIIAAAggggEBmAsR3Zm6chQACCCCAAAIIIICAbwHi2zcZJyCAAAIIIIAAAgggkJkA8Z2ZG2chgAACCCCAAAIIIOBbgPj2TcYJCCCAAAIIIIAAAghkJkB8Z+bGWQgggAACCCCAAAII+BYgvn2TcQICCCCAAAIIIIAAApkJEN+ZuXEWAggggAACCCCAAAK+BYhv32ScgAACCCCAAAIIIIBAZgLEd2ZunIUAAggggAACCCCAgG+B/wfHqv8wgF52ygAAAABJRU5ErkJggg==",
"text/html": [
"<div> <div id=\"987c1502-aa6c-4db4-b1b7-73f544b3635e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"987c1502-aa6c-4db4-b1b7-73f544b3635e\")) { Plotly.newPlot( \"987c1502-aa6c-4db4-b1b7-73f544b3635e\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\",\"labels\":[\"Py_kgeneration\",\"generate\",\"gasdev\",\"fftma2\",\"covariance\",\"ran2\",\"cov_value\",\"cgrid\",\"length\",\"fourt\",\"maxfactor\",\"build_real\",\"prebuild_gwn\",\"clean_real\"],\"marker\":{\"colors\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#EF553B\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#636efa\",\"#636efa\",\"#ab63fa\",\"#636efa\",\"#636efa\",\"#ab63fa\",\"#636efa\"]},\"name\":\"\",\"parents\":[\"\",\"Py_kgeneration\",\"generate\",\"Py_kgeneration\",\"fftma2\",\"gasdev\",\"covariance\",\"\",\"\",\"fftma2\",\"\",\"\",\"fftma2\",\"\"],\"values\":[0.544398,0.383407,0.2805429999999995,0.157936,0.154748,0.08265899999999979,0.06792600000000004,0.001345,0.0008749999999999999,0.000413,0.000243,9.6e-05,9e-05,8.8e-05],\"type\":\"treemap\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('987c1502-aa6c-4db4-b1b7-73f544b3635e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 16"
]
},
{
"cell_type": "code",
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>2.908668</td>\n",
" <td>2.908668</td>\n",
" <td>2.908668</td>\n",
" <td>2.908668</td>\n",
" <td>1</td>\n",
" <td>-11.1</td>\n",
" <td>-11.1</td>\n",
" <td>-11.1</td>\n",
" <td>6.645455</td>\n",
" <td>6.645455</td>\n",
" <td>6.645455</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>2.172109</td>\n",
" <td>2.172109</td>\n",
" <td>2.172109</td>\n",
" <td>2.172109</td>\n",
" <td>1</td>\n",
" <td>-8.9</td>\n",
" <td>-8.9</td>\n",
" <td>-8.9</td>\n",
" <td>6.535644</td>\n",
" <td>6.535644</td>\n",
" <td>6.535644</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>0.000081</td>\n",
" <td>0.023144</td>\n",
" <td>0.000389</td>\n",
" <td>1.593934</td>\n",
" <td>4096</td>\n",
" <td>-5.6</td>\n",
" <td>0.7</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.150024</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>0.733791</td>\n",
" <td>0.733791</td>\n",
" <td>0.733791</td>\n",
" <td>0.733791</td>\n",
" <td>1</td>\n",
" <td>-2.2</td>\n",
" <td>-2.2</td>\n",
" <td>-2.2</td>\n",
" <td>6.949315</td>\n",
" <td>6.949315</td>\n",
" <td>6.949315</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>0.729820</td>\n",
" <td>0.729820</td>\n",
" <td>0.729820</td>\n",
" <td>0.729820</td>\n",
" <td>1</td>\n",
" <td>-2.1</td>\n",
" <td>-2.1</td>\n",
" <td>-2.1</td>\n",
" <td>6.949315</td>\n",
" <td>6.949315</td>\n",
" <td>6.949315</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>0.000079</td>\n",
" <td>0.001632</td>\n",
" <td>0.000092</td>\n",
" <td>0.482296</td>\n",
" <td>5268</td>\n",
" <td>-2.0</td>\n",
" <td>0.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000816</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>0.000081</td>\n",
" <td>0.000274</td>\n",
" <td>0.000089</td>\n",
" <td>0.317795</td>\n",
" <td>3564</td>\n",
" <td>-1.6</td>\n",
" <td>0.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.100000</td>\n",
" <td>0.000982</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.001416</td>\n",
" <td>0.001416</td>\n",
" <td>0.001416</td>\n",
" <td>0.001416</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.000329</td>\n",
" <td>0.000442</td>\n",
" <td>0.000383</td>\n",
" <td>0.001149</td>\n",
" <td>3</td>\n",
" <td>-0.0</td>\n",
" <td>-0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.000286</td>\n",
" <td>0.000307</td>\n",
" <td>0.000300</td>\n",
" <td>0.000899</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.000080</td>\n",
" <td>0.000082</td>\n",
" <td>0.000081</td>\n",
" <td>0.000242</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.000140</td>\n",
" <td>0.000140</td>\n",
" <td>0.000140</td>\n",
" <td>0.000140</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.000103</td>\n",
" <td>0.000103</td>\n",
" <td>0.000103</td>\n",
" <td>0.000103</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>0.000090</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" time memory \\\n",
" min max mean sum count min max \n",
"function \n",
"Py_kgeneration 2.908668 2.908668 2.908668 2.908668 1 -11.1 -11.1 \n",
"generate 2.172109 2.172109 2.172109 2.172109 1 -8.9 -8.9 \n",
"gasdev 0.000081 0.023144 0.000389 1.593934 4096 -5.6 0.7 \n",
"fftma2 0.733791 0.733791 0.733791 0.733791 1 -2.2 -2.2 \n",
"covariance 0.729820 0.729820 0.729820 0.729820 1 -2.1 -2.1 \n",
"ran2 0.000079 0.001632 0.000092 0.482296 5268 -2.0 0.5 \n",
"cov_value 0.000081 0.000274 0.000089 0.317795 3564 -1.6 0.5 \n",
"cgrid 0.001416 0.001416 0.001416 0.001416 1 0.0 0.0 \n",
"fourt 0.000329 0.000442 0.000383 0.001149 3 -0.0 -0.0 \n",
"length 0.000286 0.000307 0.000300 0.000899 3 0.0 0.0 \n",
"maxfactor 0.000080 0.000082 0.000081 0.000242 3 0.0 0.0 \n",
"build_real 0.000140 0.000140 0.000140 0.000140 1 0.0 0.0 \n",
"prebuild_gwn 0.000103 0.000103 0.000103 0.000103 1 0.0 0.0 \n",
"clean_real 0.000090 0.000090 0.000090 0.000090 1 0.0 0.0 \n",
"\n",
" cpu \n",
" median min max mean \n",
"function \n",
"Py_kgeneration -11.1 6.645455 6.645455 6.645455 \n",
"generate -8.9 6.535644 6.535644 6.535644 \n",
"gasdev 0.0 0.000000 100.100000 0.150024 \n",
"fftma2 -2.2 6.949315 6.949315 6.949315 \n",
"covariance -2.1 6.949315 6.949315 6.949315 \n",
"ran2 0.0 0.000000 0.100000 0.000816 \n",
"cov_value 0.0 0.000000 0.100000 0.000982 \n",
"cgrid 0.0 0.000000 0.000000 0.000000 \n",
"fourt 0.0 0.000000 0.000000 0.000000 \n",
"length 0.0 0.000000 0.000000 0.000000 \n",
"maxfactor 0.0 0.000000 0.000000 0.000000 \n",
"build_real 0.0 0.000000 0.000000 0.000000 \n",
"prebuild_gwn 0.0 0.000000 0.000000 0.000000 \n",
"clean_real 0.0 0.000000 0.000000 0.000000 "
]
},
"execution_count": 76,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_16-aa'])\n",
"overall_time[\"16\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"16\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 64,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACgS0lEQVR4nOzdd3gUxRvA8e/cpZBQjt5LaCEEUJAmCIpUIaJ0FERRbGAHhdjwLGhsP8EGoiJiBUUUiYiCggIiEHqvJ53Q0tuV/f2xlxBCAklIsneX9/M894TsbXnvyOy7OzM7ozRNQwghhBDezWR0AEIIIYS4cpLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQRamglJqtlLIZHYcApVQ3pZSmlOpmdCxC+BI/owMQorCUUvkdt/jGYg1ECCE8gJKx3IW3UkrdkWPRnUAvYFSO5b8DZwGTpmnpJRGbyJtSygQEABmaprmMjkcIXyEJXfgMpdT7wEOapimjYxEXU0qVQZK4EMVG2tBFqZCzDV0pFeJux31SKfWQUuqAUipFKfWbUqqe0j2vlDqilEpVSv2klKqcy377KqX+VkolK6USlVLRSqkW+YypolLqHaWUTSmV7j7WHKVU1WzrVFdKfaqUOqmUSlNKbVZK3ZVjP1f8WdwxLFJK9VZKbXIfa4dSalCO9Sorpd5SSm1VSiUppRKUUouVUlfnWC+znfw2pdQrSqmjQApQIbc2dKVUU6XUfKXUCfexjyilvlVKWbKt4+f+HPvd35dNKfWqUiowj8/SRSm11r2/A0qpO3Os56+UekEptde9zhml1EqlVK/8/P8J4WmkDV2UdiPRq3/fAyoDE4F5wB9AN+B1oAnwCPAWcE/mhkqpUcDnwBJgEhAMjAVWKqXaaJpmy+ugSqlywN9Ac2AWsAGoCtwC1AVOK6WCgOXu478PHASGArOVUhU1TZtWVJ/FrSkwF5jh/lx3A98ppW7SNO139zqNgAHAd+54agAPACuUUuGaph3Lsc/ngQz38QLd/875XQSgf4eB7thPAHWAm4GKQLx71U+Au4DvgbeBjsDT7u9wYI7dNnGv96n7s9zj/t5iNE3b7l7H6t7+E2AtUAFoB1yD3kwjhHfRNE1e8vKJF3rS0/J4bzZgy/Z7CKABsYAl2/JX3cs3AX7Zln8NpAOB7t/LAeeAmTmOUwOIy7k8l3hedB9nYC7vZTaFPeZeZ2S29/yB1UAiUL4oPot7mc297qBsyyoAx4AN2ZYFovdFyB5vCJAGPJ9tWTf3/vYDQTnWz3yvm/v31u7fh1zi+7ravc7HOZa/6V5+Yy6fpWu2ZdXcMb6VbdkmYJHRf7fykldRvaTKXZR232maFp/t93/dP7/UNM2RY3kA+p0j6J3vKgLfKKWqZr4Ap3vdy/WsHwxs1jRtQc43NE3L7NjSD/1u9Zts79mBd9EvKG4oos+S6RiQFY+maQnAHKCNUqqme1m65m4DV0qZlVJVgCRgN/qdbU6fa5qWmsvy7DJj7qOUCs5jnX7un//Lsfxt98+IHMt3aJr2d7bPcsodY6Ns68QBLZRSTS8TnxBeQRK6KO0O5fg9M7kczmN5JffPzCTwB3Aqx6s3UP0yx20MbLvMOg2AvdrFnch2Zns/u8J+lkz7sl1MZNrj/hkCeg91pdQTSqm96Hf5p9E/81WAhYsdzGXZBTRNO4ieqO9Fb2pY4u4LkH1/DQAXsC/HtifQE/PlvgvQa1Syf+bJ6Bdle9x9At5USl11uXiF8FSS0EVp5yzg8swe9JllZxT63XrO161FFWABFPazFMQz6Mn3L+AOoA/6591O7ueTy92dA6Bp2gT0i4JXgSD0WojtSqm6OVfNZ5yX/cyapv2FfmF1D/rF1b3ABqXUvfk8hhAeRTrFCVE4+90/YzVNW1rI7VteZp3/gKuUUqYcd+lh2d4vSk2UUirHXXqo+6fN/XMI8KemaWOyb6iUqoh+t15omqZtBbYCryilOgOrgAeB59A/qwm9ZiSzhgKlVA30u+xCfReapp0FPgM+c3dU/Au9s9wnhf0cQhhF7tCFKJwlQALwjFLKP+ebSqlql9l+PnC1Uipn72yUUpl3kb8ANYHh2d7zQ++lngSsKFzoeapNtt7iSqkK6IP1bHJXbYN+53vBnb1SaigXt8fnm1KqgvtzZbcVvYo985G0X9w/H8+x3nj3z+hCHLdK9t81TUtCr9IPzH0LITyb3KELUQiapiUopcYCX6BX036L3pZcH72D1irg4Uvs4k30u93vlFKzgBj0R81uQb8r3QzMRH8kbLZSqi36XfIQ4DrgcU3TEov4Y+0BPlVKtQdOoldF10B/fC3TImCyUuoz9N72rdAflztwBcftDryvlPrOHYMfelOGE/3CB03TNiulPgfud9cGrAA6oD/G9qOmaX8W4rg7lFLL0b/7s+iPrA1Bf1pCCK8jCV2IQtI07Wul1DEgEngK/c7uKPrz5Z9dZtskpVRX9MfXBqInplhgGXDEvU6qe/CVKPf7FdB7at+tadrsov9E7EW/+38TaIbeoW24pmlLsq3zKlAWGIFec7AB/QIm6gqOuxm9xqM/+p1+intZX03T1mRb7170C4fR6N/ZCeA19O+wMN5Fv4Dqjf5/9x969f6bhdyfEIaSoV+FECh9FL1tmqbdbHQsQojCkTZ0IYQQwgdIQhdCCCF8gCR0IYQQwgdIG7oQQgjhA+QOXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktCFEEIIHyAJXQghhPABktANppQKUUppSqknjY7F0ymlurm/q25GxyKEEJ5GEnoulFKj3Ykj85WmlNqjlHpfKVXD6Ph8nVJqnFJqtNFxCCEKTyn1jFJqgNFxlCZ+Rgfg4SYDB4EyQBdgLNBPKdVS07QUQyPzbeOA08DsHMv/AoKAjJIOSAhRYM8A3wM/GhxHqSEJ/dIWa5q23v3vT5RSZ4DxwK3AN8aF5T2UUgooo2la6pXuS9M0F5B25VEJIQpCKWUCAjRNk/LnwaTKvWD+cP9s6K6KfyLnCkqpzu73bi/sQZRuplIqQyk1KNvyq5RSK5RSqUqpI0qp55RSd7uPF5JjH32VUn8rpZKVUolKqWilVIsc68xWSiUppeoopX50//uUUuotpZQ5x7ompdTjSqnt7iaIk0qpj5RSlXKsZ1NKLVJK9VFKrQdSgQfc792tlPpDKRWrlEpXSu1QSo3NuT3QArghW5PHcvd7ubahK6WGKqVi3N/LaaXUl0qpOoX9rEIUN/ff8np3WdqvlHpAKWVVSmk51rsj29/2WaXUt0qpejnWWa6U2qaUCldK/amUSlFKHVVKTczluIFKqReVUvvcZfCwUuoNpVRgjvU0dxPjSKXUdiAduMn93pNKqdVKqTPuuGKUUkNybg+UBe7KVo5nZ3u/jlJqlvs8ku4+r9xzhV9rqSd36AXT2P3zDLAKGAm8k2OdkUAi8FNhDuBOLrOA4cBATdOi3cvrAH8CGvAakAzci17Qcu5jFPA5sASYBASjNxesVEq10TTNlm11s3u9f4EngZ7ABGA/MD3beh8Bo4HPgHeBhsDDQBul1HWaptmzrdsMvQbjI+BjYLd7+VhgO7AQcAD9gQ+VUiZN0z5wr/M48B6QBExxLzt5ie8rM6Z1wNNADeAx4Dr3Z40rxGcVotgopdoAvwLHgRfQ/y4nA6dyrPcs8DIwD/gEqAY8AvyVy992Jfc+f3CvPwR4XSm1VdO0xe79mdDLXhdgJrATaAU8AYQCA3KE2h0YBryP3gRmcy9/zL2fr4AA4DbgO6XUzZnnK2CUO+a17mOBXs5Qej+kNejnsvfdn7sv8KlSqoKmaVMv9x2KPGiaJq8cL/TEpQE9gKpAXfQEexpIAeoA97vXCcu2nT/6H+fsAhwrxL2fJ9EvsL51H6N3jvXeBVxA62zLKqNfXGhAiHtZOeAcMDPH9jWAuOzL0duoNeD5HOtuANZn+72Le70ROdbrk3M5eqHXgD65fNagXJb9CuzPsWwbsDyXdbu5990t2/d9EtiKXq2fuV6Ee70XC/pZ5SWv4n6hJ8NkoHa2ZU0Au35K1gAaoF/0PpNj25bu9Z7Jtmy5+297VLZlAegXDN9nW3YH4AS65NjnA+7tO2dbprnXDc8l/qAcv/u7y+CyHMuTcjsXoif6Y0CVHMu/cZ+jLjpPyCt/L6lyv7Sl6An6MHqiTUK/az6KfhWchn5HnqkP+gXAl4U4VgDwHXAz0E/TtN9yvH8T8I+maZsyF2iadhb9Kjm7XkBF4BulVNXMF3rh/Be4MZdjz8jx+99Ao2y/DwXigd9z7DMG/TvJuc+DmqYtyXkQLVs7ulLK4t7HCqCRUsqSS1yX0w6oDnyoZWvb0/S7hF3oiT2ny31WIYqNuwauJ/CjpmnHMpdrmrYPWJxt1UHoTaLzcpS5E8BeLi5zSWQ772ialoF+d5yzHO8EduXYZ2ZTYs59rtA0bUfOz5CjHFcCLOjl6Jp8fH4FDAZ+dv+aPY4l7n1ddj8id1LlfmkPAXvQr5RPArs1vWMWmqbFKaV+BkYAz7vXHwkc5XwBKYin0e+u+2qatjyX9xsA/+SyfF+O35u6f+YVQ0KO39M0TTuVY9k59Cq87Pu0ALF57LN6jt8P5raSUuo64EWgE3ozQHYW9IuGgmjg/rk7l/d2odcsZJefzypEcaqO/qRGznJLjmVNAYWevHNjz/H7Ec19m5vNOeCqHPtsTo6q/RyxZZdXOb4ZeA5oDWRve895/NxUQ7/huN/9yk8cIp8koV/aWu18L/fczAGGKqU6o1c53YJ+t+gqxLGWoN+FT1RKLdcK35s0s9ZlFPrVfE6OHL8787nPWC6sjcgu5wnioh7tSqnGwDL0RDsevdYjA+iH3oZXErVF+fmsQngCE3qC7Evuf7dJOX7P629b5djnVvTyl5vDOX7PrRx3RW8y+Av98dLj6BcXd6Pf3FxOZjn/Er2fT2625GM/IheS0K/Mr+jJbCR6dXYw8EUh97UGvTp4EXoHk4GapmVPvv+ht7PllHPZfvfPWE3TlhYylpz2o1cTrtIK//hZf/Sr+Vs0TTuUuVAplVsTQH6u9EH/TkDvhJezRqJZtveF8BSx6E11lyvL+9GT8UFN0/YU0bH3A1ejt3Xnt4zlNBg9/j6apmV1yFVK3Z3Lurkd4xR6p2FzEZ6fhJu0oV8Bd8L9Br0n6Ghgq6Zphb66dP+B34Z+p/6Fu1dqpiVAJ6VU68wFSqnKXHzXvAS9Wv0ZpZR/zmMopaoVIrR56D1xn8/5hlLKTylVMR/7yLyDyLpjcLeb53YiSEavlruc9egnyAezP3ajlOqLXrUYndeGQhhB0zQnet+cAUqp2pnLlVJN0O/GM/2AXmZecLc7k21dpZSqUojDz0Pv0HtfzjeUUkFKqbL52IcTPVFnPeqp9EdmB+Sy7kXl2P355wODlVItc4mjMOcn4SZ36FduDvAoeoeSSVe6M03TfnRf7c5BT8wPuN96A72X6u9Kqfc4/9jaIfTe7pp7+wSlP9v9BbBBKfUt+lVxffROYqvQHzcrSEwrlFIfAU+7Lyh+Q69ma4re0eYx9BGhLuU39Cr2n937Kod+YokFauVYNwYYq5R6Dr1dMVbTtIv6BGiaZldKTUJ/bG2FUuobzj+2ZuPiRwqF8ARWoDewSik1HT05Poz+dEdrAE3T9rv//l8DQpRSP6Lf2TYEBqI/CvZWAY/7BfrNxwx3zdgq97HD3Mv7oF8kX0o0epX9r0qpr9Hbux9CL6dX5Vg3BuiplBqP3qv9oKZp/wKR6OfLf5VSHwM70M9h16DXBFYu4OcSmYzuZu+JL84/ttYun+tvQ79yrVOIY4W4j/VkjuVj3cvfzLasNXrbVRp6e1ck+nOpGlAjx/bd0JsE4tDbwvahJ7622daZDSTlEpMV9+MzOZbfh17gU9AvNrYArwO1sq1jAxbl8Vn7A5vd8RwEJqLfoWc9duderwZ600OC+73l2T5T1mNr2dYfhv74WRr6Y3xf5vy/KOhnlZe8ivOF/oz3BvRxJPYBY9ATdGqO9Qah9yBPcr92oj+7HZptneXAtlyOMRuw5Vjm7y5329zl5ay7TE8GKmRbTwPezyP2e9A7C6e54xmdWzlCb/Za4T5faGR7hA39QuB99BuSDPS2+KXAfUb/33jzS7m/XHEFlFIbgbOapvUw4NhT0e/iy2l6dZYQwgu578JbaJrW9HLrCpEbaUO/Qkqpduh3znNK4FhBOX6vgt6bfaUkcyG8Ry5luSn6Ex/LDQlI+AS5Qy8kd4eOtuhDh1YFGmnZHjVzDyBxuQ4eSZqm5Xz85FLH3IRe4HeiV0uPAWoDPTRN+6sg8QshjKOUOo5eJX4AfTyFsehPgbTRNC2vZ8+FuCTpFFd4Q9DbnXYDt2sXPzdejzwGZsjmRfS2p/z6xX3czGFnNwBjJJkL4XV+BW4HaqK3o/+DPpyrJHNRaHKHXkyUUplzqF/KAU3TDpREPEIIIXybJHQhhBDCB0inOCGEEMIHSEIXQgghfIAkdCGEEMIHSEIXQgghfIAkdCGEEMIHSEIXQgghfECBBpaJiYkphz4ymVwIiMJyAcfatm2b7xHyhLGk3Is8SFn2MPl+Dj0mJuZak8k0w2QyWcg2p7UQBaS5XK54l8v1YNu2bdcYHYy4NCn34hKkLHuYfCX0mJiYciaTaWXFihVrVK9e/axSSkaj8XCapmF3av4ZDmdAhlMLcGqav8uF2enSzE5NM7tcmtml4efUNBNgQgMNTVUMikuunp4UDErLeimlYfazo/zsmM0OlL8dk59DM/vZMfk7MPlnYMrfzZumaSo2NrZyXFzcSZfL1UWu7j2XlHvvpWkaDpfm53RpJqdL83O6MDs1zc/l0kxOTTNrGib0Ak5VU5LTX0s3Z5X1zHJv9nNoJr8MTP4OzP52TH6uHMeQsuxh8lvlXttkMlmqV69+tmzZsqnFGpEoEE3TSLO7ApMzHOXS7M6gDIcrMMPpKmN3aIEaWrY7KnXhT8VF91sK8Aswu4Kcyv2uhv4CcPqjpYMjj0CU2YFfYCr+wckEBCcTUC4Fv8CM3FatXr362YSEBIvL5aqNPq+y8ExS7j1cusPpn253lUlzOMtkOFyBGQ5XmQynK/Di8p/dhYvrBqQlBziTyl602kVlXWmY/DLQL+QzMPvba5T3cybGOaub0uProU8aJQyU34RuApRcoRvP6dJMyemOsskZjrIpGc5yaXZnOadLMxfV/gtdp6o5/bCnlMeeUp6UzJ2ZHfgHJeMflExA2RQCyiVj9ne4/44U0ibr6aTce5DMsp+il/2yqXrZL8EJtjSFyx6Iyx4I+vWdyaHhn3aGkNVPbuC3QxuAte7Xv1jjZZ6KElboP4aQyOi2RRlIdraoiJji2rc3SslwlIlPtVdMTHNUTLc7y3rN2VVz+pGRZCEjyULyKX2ZX2CqIjhJuewOaZL1PsVV7qXMX8ylaSox1V4+Ic1hSclwls9wOIM8tewrtDJAZ/dLZ7WcBtYBa4DFWOPXGRNd6SF3SMVk0aJF5b///vsKhdnWpWkqPtVe/vDZlHo7jye02heb1OJUYnqdNLuz7MrlyxjWp2vWq2fb5gzve8NF+/jw7de4ul4ldm3fmudx9u7czpihNzPgxo4MuLEjSxf/rB/f5WK89W3Cuw3mqp7DuHHI/ew7eCjXfbz8zse0uHEI1958J/8dOZa1fPTjL7Bq3aaLN3CkB6m0s9X8087UCl8+ZilWy1Sslm5YLUVWyyBEYaxbt65MnTp1WpXU8UaNGlU/LCwsPPMVGBh4zUsvv1LrVGJ61fc//SIsLLzlNR3bt23a7dprqr81xRrkyqO/0/PjH2JIr+sY1qcrIyK68+/KFVnvbd0Ywx239GLYTdcz4MaOfDZ9Wq77OHjoKB1vvpMWNw7h1Xc/zVq+c+8Bbhn9eGE/YlWgL/o00WuxWv7DankHq6ULVovknmIg86EXkt1ux9/fP8/3//jjj/JxcXHmIUOGJOR3n0lpjrJnkzOqJqTZK7m03KvRr+vWg+u69cj6/eHRw2nfqesF62zdGMP2zRuoXbdensdKTU3hsXtH8so707mmQyecTifxcecAWPjbClat38zm37/F39+fV6Z+wjNRHzDvo9cv2EdCYhJf/vALO5Z/z1c/LOa9WXN5a/IT/P7XGoKDynBd+9aX/LxKc9QBHnO/zmC1LAIWoF/N59r+LoSv+OKLLw4BZDhcftv32ap1at2idpeIobWPx6fS9rpuzOsVgclkwp6RwV2D+hJ+VRt69L35ov089cKrVLBYANi5bQv333YrK7bsx2Qy8XLk44yb8DTdevcj/tw5br2xA9f36EPj0LAL9vHB7Hk8dNcwRg7qS3i3ITxyz22UKxvM4y+8xYyoZ4vqI9cHHne/TmC1LADmAyuwxufVO0cUgFdfJX355ZcVGzVq1KJZs2bhY8eOrVOpUqWrd+/eHQCwdevWwG7dujVp2bJl89DQ0PBXX321WuZ2Sqm2kZGRNVu1atW8Tp06raZNm1Yl873LbffEE0/UbtmyZfOHH3647tq1a4Patm3bLDw8vHnjxo1bTJw4sRbA6tWrg+bMmVNtwYIFlcPCwsKffPLJWgDz58+v0LZt22YtWrRo3qpVq+Y///xzebvT5XciPq3GrhMJLQ6cTgqLS82omlcyzyn2xHHWrvyLmwcPz1qWmprCa89P5Pmody657eIfv+eqNu24pkMnAMxmM5WrVNX7yilFenoGaekZaJpGQlISdWtVv2gfZrMZp8uJ3e4gOSWVAH8/UlJTeXnqx0Q980h+PkJ2VYC7gB+BI1gtr2O1NCroToRvu1SZv//+++u2bNmyeVhYWHi7du2abd68ORAgKSlJRURENGrcuHGLZs2ahV933XVNM/c3fvz42g0aNGjZokWL5l988UXl7MfKrbwCdO7cuelnn31WKXO9RYsWlW/evHl4QT6HS9PU2eSMigdOJTXZfSLxqs/nzKnd+YbuVK1eA4Cy5cpjcj85kp6ehj0jHaVyb6LKTOYASYk57h+UIjFBX5aamoy/fwCWipXIyd/fj5TUNOx2By6XC5PJxIw539P7+k40rF+nIB8tv2oCY4Gl6Mn9U6yWHpfZRlyG196hHz161O/hhx8O+fPPP3e1adMmbdq0aVXi4uL8ABwOB7fffnujL7744mCbNm3SEhMTTW3btg277rrrkm+44YYUgMDAQG3r1q07N27cWKZLly7Nx40bd0YpddntzGaztm3btp0A586dM61cuXJPUFCQlpSUpNq3b9+8T58+CT169Ei+8847T8XFxZlnzZp1GGDHjh0BL7/8cu0//vhjT+XKlV1rN26pEtGnV9Nf/9mKf2BAoRqTF373NV2696JK1axrDt6Z8gLDRt1Dzdp1L7nt/j278Q8I5OHRw4k9foymzVsw4flXqFZW0b/X9fy5ah01W/eifLmy1KlZjRXzP7loH2WDgxh/3x1c2/8ualavwudTX2LymzOY8MAoKpQvV5iPlKkaMBF4Cqvld+ADYBHWeNelNxO+7FJlHsBqtZ6oXbv2EYCZM2dWevjhh+v//fffe3/44QdLfHy8ef/+/dsBTp48aQb49ttvLQsXLqy0cePGHRUrVnQNHDiwYea+cpbXbdu2Bd54443NDh06tPXOO+88M2fOnCp33333OYBZs2ZVueOOO07n5zOkZDjKnEnKqJaQZq+cvUPbj3O/YvxzL12w7qb1//Jy5BMcsh1g2B33cGOffnnud+prVn5f9BMJ8XG8PXNO1sXAS29/wONjRvD+m69w7swZno96J+uiIbtH77mN0U+8wEdfzufJB0cRn5DE99FL+e2bD/Pzsa5UFeAe4B6slp3o5f1zrPHyGFwBee0d+vLly8s2a9YspU2bNmkADz/88Bl/f38NYPPmzWX27dsXdPvttzcKCwsLb9++fVhycrJ5y5YtQZnbjxkz5gxAmzZt0sxms3bo0CH//Gw3duzYrIKbkpJiuv3220NCQ0PD27Zt2/zYsWMBMTExwbnFu3DhQst///0X2Pm6Li3Cwlu2ufOOkSHKZFbHjh0uVDLXNI0f537FwNvuyFr2z19/cvzoYQYMH3nZ7Z1OB/+uXM7zr73D3F//onrNWkx5ZgIA6zfvYNvu/RyNWcKxDUvo0aUDD0ZOyXU/40YPY9Pv3/LrVx9w5PhJjhw/yU3dOvPQM68x9P6JvPvpN4X5eJkU0Bv4CdiF1fIQVkuu36/wfZcq8wALFy6s0Lp167CmTZu2eP3112vv3LkzGKBdu3Yp+/fvL3PHHXfU//jjjysFBARoAEuXLi1/6623nq1cubLLZDIxduzYU9n2pZfXzp3DwsLCwocMGdJYKcW+ffsC7rjjjnObNm0q+99///nHx8eb/vjjj4qZ55O8JKTay+8/ldRkX2xSi3MpGdWzJ/MN/64mJSmJrt17X7BN63Ydmb90NUv+3caOrZvY8O/qPPf/+NNWoldt5M3pnzF1ygvYM/QWq1kfvMOjkyaz5N9t/LDsH95742X279l10fa1alRjydcfsvG3b3hg1BAem/wmb08ez5+r1jP4vicZ8dAzF/SRKUbNgfeBo1gt72K1NLzcBuI8r71DvxRN06hQoYJj165dO/JaJzg4OOtEYDabNYfDofKzncViybpLHD9+fJ0qVao4tm/fvsPf35/evXs3TktLuyhBuzRNpTtVuc43dDe99v6nl/zO9+/ZxdOP3AfoBfqZKW/lut76NatIT0+n8w3na6nWrv6LnVu30LfTVQCcPH6Mh+8cxnNR/6Nbr74XbF+rdl3ad+5KjVq1AYgYOIyxdwxBAXO+X0T369pT0VIegLuG9qf3iHGXChuHw8GTL03lmw9f5csffqFalUp88OrT3Djkfm7u2ZVGDS5dY5APTdEL+ktYLdOBN7HGx1/pToVv2Lt3b8CkSZPqr169emeLFi3S//3336CePXs2AwgPD8/YtWvX9kWLFpX//fffK7zwwgt1N2/efFEZz16lrWkaXbp0Sfj5558P5na8fv36nfv4448rV6tWzdGpU6eEmjVrOnOu8/TTT9dc8ONP1VAmv8eeedGUve9Ldgu+/ZL+Q2/DbM69pa1ylap06d6L36J/ou21113ye7i2azdee34ie3ftoFbdevyxJJo3PpwFQN0GIVx1TXs2rf/3ojb07OZHL6NxSF1at2xG8xsGsTb6C9Zv3sHkN2fw+bSX8tyuiFUAHgHGYbV8B7yONX5TSR3cW3ntHXq3bt2Sd+/eHZzZTjZ9+vQqdrtdAVx99dVp5cqVc2ZvG9+2bVtgZlVbXgq6XVxcnF/dunUz/P392bx5c+CqVauyerVXqFDBmZCQYD6ZkFZ91/HEVm2v71X5n5V/mfbs3Ja1/daNFz+p0zg0jHlL/mbekr/zTOYAC779gluH3n7BSeCxyBdYun4Hi//ZwuJ/tlCjVm3enzPvomQO0Lv/ALZv3pjV5rbyz99pFt4CgEb16/LHqnVkZNgBWLT0b1o2a5xnLABvf/QlIwbeRM3qVUlOSc06OSoFySlFOiZJZeBZYD9WyxNYLQFFuXPhuS5V5s+dO2f28/PT6tevb3e5XEydOjWr08f+/fv9lVKMHDkyfsaMGUc0TePAgQMBvXr1Sly4cGHlc+fOmVwuFzNmzKiauU3//v0TVq1aVeHff//Nqp37888/s2qH7r333tNff/111S+//LLq3XfffUF1u6ZpnEpMr3rno09Xnff76oB5v63MM5knJSbw+y8LGTD8jguWH9y3B5dLv3dITkrk72W/Edq8xUXb2+12Dh08/7j31o0xnD19irr1Q6hgqUhQUDD/rvoLgHNnz7B143qaNGue53ccF5/ItE+/5oUn7gcgJTUNk8mEyWQiKSUlz+2KkRm4DdiI1fIrVsulr2hKuULfoRv93GidOnUc7777rm3gwIFNAgICtBtuuCEhODjYVaVKFae/vz8///zzvkceeaTeBx98UMPlcqlKlSo55s2bdwC46Eo6U0G3mzx58rHRo0c3+uabb6o0aNAg/dprr83qkRIxcKjr2+/mV76hU/sq3fv258HHJxL13se8HDmetNQU7HY7YS1aEfX+xW3Tl5OYEM+yxYuY//uqAm1nfepRuvW6iW69+1GrTj3GPPwEdw7og8lkonrNWkx+fSoAD40exs59B7m613D8/f2oWa0qM6KeyXO/+22HWf7Pen754j0A7hjUj4H3TuC7RUu5rt3VtGreNM9tr0AV4H/Aw1gtzwJzscZ76mO6PsPIcn+pMt+sWbOMW2655WxYWFiLSpUqOfr16xeXuV1MTEzQ5MmT62qahtPpVEOGDDnbsWPH1I4dO6b++++/ZVu3bh1erlw5Z48ePeLXrl0LQMuWLdNnzZp14IEHHmiQmppqstvtqkWLFik33njjQYAbb7wxxWw2899//wUOGjQoq9zHpWRYTiSk1c1wuMrk5zP9uvAHwltdTYOGF14wL/l5AUt+XoCfnx9Op5NeEbcy6PY7Adi+eSMfvv0qH8z5DofDzvPjx5KYkICfnx9BwcG89dHnVKhYEYA3p3/GO1Mm43Q4cDgcjBwzlqvbdsgznklTpmEd/wBBQXr4zz12L+36jiTA359P334hPx+pOPUB+mC1zAUmYo3P/VnaUiy/Y7mH+fn5/dq0adOk4ODgtBKIK1/OnTtnqlSpkgvgiy++qPjCCy/UOXDgwHYjY0pKdwQfj0utl2p3XlGvMKNUL3smoWZqQqGen8+vNIfGwaOnaLhqAmWSDhfVbtcBT2GNX3HZNUW+eGK598QyD5Cc7gg+Hp9WNyXDUd7oWAoqLOBUcoAjl6Ff86GYynJ+pAJvolfFG1J14Im8ug399ddfr75gwYLKLpdLlStXzjlnzpxc27tKQrrD6X88Lq1uQpq98uXX9lzKe4dvaw8sdz/LPglrfJ79IIT38qQyD5BudwYcj0+r4+3l3gsFAZPRe8ZPwhr/tdEBeQKvvkP3BJqmEZuYXv1UYnodlz5zmVerUfZMYo3UhGK9yyiBq3oHEAW8hDXeXhwHKA2k3OdN0zROJqTXOJ2UXtvby72X3qHntBp4DGv8eiODMJpX/yEaLSXDUWZvbFLYyYS0et5eqLPxhXZoP+A54F+slot7EglxBZLTHcF7TiY1j01Mq+tD5d7bdUYfXvYzrJZSW1sif4yFoGkaJ+LTau6PTQ5PszsLdWXrsTSvrXLPTRsgBqvlSRk7Wlwpl6apY3GptQ+cSg5LdzhlPATPo4DRwGaslusNjsUQcpIroDS7M3BfbFJYbGJanbznG/ZePveBIBC988xyGUpWFFZKhiNo78mk5qeT0mv5Yrn3MXWBP7FaXiptkz5JQi+Ac8kZFffFJjVP9bW78tKhK/qV+wNGByK8y6nE9Kr7TyU3T3c4gy6/tvAQJuB5YAVWSwOjgykphe/lbrUU23zoWOM9am5kTdM4Gpda92xyxsWDIAtvUg6YgdVyMzASa3y+Z8ITbsVV7j2szAM4XZrp8LmU+gmp9iqXX1t4qOuATVgt92ON/87oYIqbV9+hZ868FBYWFr527dqgnL+/8cYb1S6/l0vLcLj89p9KapaZzGNPHOfBkYO55Yb2DOl1HePvv5OzZ/I1L8MF0tPSeHzMSPpf346hvbvwwIiBF4z4NGbozfTtfHXWvOdffJz7JAl7d27n7sH9uLVbBwb16MTkCQ+TlqqPzJaSkszI/j0Z2rsLQ3t3YewdQzh6OPexGBZ8+yUDu1/LjdffXHbD1p1Zyye/OZ2vFywu8OfzcDcDq2WcaN+xe/fugJzlvU6dOq1Wr15dqLvq1AxHmb2xic0LmswvVR4BEuLiePqR++h/fTsG9ujE1Nesee5r/T+rGBHRnYE9OjGw+7VsjtEHvVn803yG9enKoB6dGNSjE59/9H6e+3gp8nEG9+zMvcNvITFBHylZ0zTGjRrCYZuhT/yVpIrAPKyWT3x9LgivTugzZ86sNmnSpOO7du3a0aFDh9Tsv8fGxvrNmjXrihJ6Ypq93L7YpPCUjPODxJjNZu5/7EkWrljH97+vom79BrzzyuRC7X/wyLtYuGId3/22km69+/LixEcveP+pya9mDQM76r7cx1IPKFOGp195g5+Wr+W731aSmpLCZ9OnAVCmTBAzv1nAd7+t5LvfVtL5hu688UJkrvuZ+e6bfLVoGa9MeS711Xf1sZ+3797Plp17GTHw4qFjfUAL9F7wXYwORFy5vXv3Bl5pec90Jim98v5Tyc0zHK4yDkfBpum+VHkEmPzkw4S1uIqf/1rPgmX/cMeYsbnuJ/bEcZ4fP5ZXpk5nwbJ/mLt4BQ2bNAOgZu06fPjF9/yw7B8+X/Ar330xi3X/rLxoH3t37eDQwQPMX7qadp26sOiHuQD88M0c2nfuSr2QUnc9Owa9k2wTowMpLl6b0EePHl1v/fr15V566aU6bdq0Ccv5+yOPPFLfZrOVCQsLC+/evXsT0K/YH3300dpt2rQJq1mz5lVvvPFGtWnTplVp3bp1WJ06dVrNnDkza6Lg/rcODLu2Q4dmA3p08n/4rmGcjj0JQJVq1bPmEAdo1aYdx44UfATCwDJl6Nq9d9aY51e1aV+o/TRo2JjQ5i0B/WKj5dVtOOa+CzeZTJQtpz9SrmkayUmJec6pbDaZyUhPJyUlRQUE+ONyuXjC+jbTXnqywDF5kWrAMqyWO40OROTP/PnzK4SHhzcPDQ0Nb9++fbOYmJgyALmVd4B58+ZVyizfEydOrJW5/NChQ379+vVr1KpVq+ahoaHhjz76aG2AY3Gpta9q3rTh21Mmm0bc3IPnn8g94eblUuXx0MED7NiykVH3P5S1fm5TmQLMm/MpfW8dQqOmehIPCAzMmve8Tftrs7YrX8FCSJOmWcfIzt/fH3tGOi6Xi9QUfS70UydPsPin+Yy676GL1i8lwtBr59oZHUhx8NqEPnv27MMtW7ZMiYqKOrxx48ZdOX9/7733DoWEhKTt2rVrxx9//LEvc7vk5GTzxo0bdy1dunT35MmT6x09ejRg06ZNu77++uv9kyZNqg9wIj615oSX3iz7zS9/8v3vq2jToRPT34m6KAan08m3sz+mW++85ynOr69mzbhoP9OiXmRwz848NfYejvxnu+w+UlKS+eHbLy7az/23D6D7Nc34bdGPPP3Km7lu+/izL/LAiIG8N+2jwMlP3MeHn88jokcXGtStXejP5CUCgM+xWl7FapHeyx7s6NGjfmPGjGk0e/Zs2549e3bcc889p4YNG9bY5XKRV3mPi4szb9q0adf69et3Tp8+vcbBgwf9AUaMGNHwoYceit26devO7du379i4cWPZd2d+Fno6Kb0WQPy5c3z181Jee+/jQsebszwe2LuLGrXq8Moz47mtXzceGDGIndu25Lrt/r27SU9L4/7bBzCsT1dee34iKSnJF6+3ZxdbYtZxbdcbLnovpHFT2nfqym19b+Doof+IGDSMN198hvHPvoSfn1cPEnqlqqE/9dLH6ECKmtcm9MIaMWLEWdAnXwgICHDdfvvt5wC6du2akpCQ4Ld1/9H6sYnpdRb/+D2397uRQT06seCbL9i9fdsF+9E0jSnPTqC8pSIjxzx4RTF98t7bHLYd5NHI81X3U6bN4Kfla/n+91Vc0/FaHrn7tkvuw56RwcRx99Dp+hvp0ffmC96b+c2PLIvZRZ/+g/jkvbdz3b5n3/7MXbyCRb/MTSkbFMRPS1bw8N3Deea19xj+4CSejcq7nc5HPA185+ttbN5sxYoVZUNDQ1M7dOiQCjB27NizsbGx/plJOjejRo06C1CrVi1H3bp1M/bs2ROYkJBgWrNmTYUJEybUDwsLC2/VqlX4f4ePlNuzd3/WCIm3DL09z9qs/MitPDqcTrZtiuGmWwbz7S/LGXXfWB4ZfRt2+8WDGTodDmLWruat6bP5atEfJMTHMf3tC28qTh4/yuNjRvLca/+jRq06ucbx8MTnmLfkb96aMZs1fy2nZu061K5Xn+fHP8T4++/k14U/FPozermywM++VjtX6hJ6UFBQ1nzmZrNZCw4O1n9XSimlOJucVm3D2n/4etZHvD9nHj8s+4cnJ79CRvqFI19GTZ7EyWNHefPDWZhMuX+Ndw7ozbA+XRnZv2ee8Xw+4z2WLV7EB3O+IyjofC6pWbtuZljcPvp+jhyyEXfubK77sNvtPDXuHqpVr8mkFy+uSQC9+n3wiDtZ9MO8PGPRaTz2wpv874XxLF+9nmMnTzN3xuscOR7Ln6vWXWZbrzcY/TEX6dXsI3KWd7vdnjXc9YYNG3Zu2bZj70/L17Fo5UbT/Y+db14KLpv73Er79+zK6qj66rO5N0flVR5r1a5L9Zq16NC5KwBdbuyFw57B8SMXD5las05dunbvTYWKFfH396fvrYPZsvF8+Ys9cZz7bx/IfY8+Se+bB1z2e0hKTODzj95j7ISn+fKT6bS79jre+HAWH017k5TUIp3e2Jv4o9fO5d6xyAv5bEKvWLGiMzExMV+DCjhdmunAqeSsOT4T4uMoW64cFStVxp6Rwfdfzb5g/ajJkzhsO8A7H3+Jf0De03HP+fE35i35m69+Xpr7+zM/YPHC+Xz09YKs9jEAh8PBmVOxWb8v/WUhVapWo2Kli0c0dDgcTHpoDJaKlZj8+tQL7ipOx54kIS4u6/clPy8gtHl43l8EMP/7hX7NmzSkVfOmJKemkbk7k0mRlFwqJjVqh96uLkndw3Tr1i15z549QevWrSsDMHPmzEo1atSwN2zY0F6Q8m6xWFwdOnRIeObZ5+ruP5UUlu5wBsWeOM7J40cvu23j0LCsjqrPTHnrovcvVR7Dr2pN2XLl2bNTr+3bujEGTdOoWfviu+t+A4awbvXfZKSnA7Dyz6U0c7fNnzp5gvtvH8DdYx/jlqG35+cjM+21F3ng8YkEBQWTmpKCUgqlFA67nYyMUj/dwWtYLdN8YTTJK3gO3fOeG82uY8eOKaGhoalNmzZtUa9evfTs7WrZuVya6cDppKap2XqyX9etJ9E/fMetN7THUqky13a5gdgTxwHYuG4N33w2k4ZNQrnjFv3Ou3a9Bkz95MsCxXfy+FHefvk56tYP4d7h/QHwDwjkq5+XkpGRzsN3DScjIx2TyUTFylWYNuv8ZEIfvPUq1WrUZNioe1jy8w8sW/wzoc1bMPwmfbTD1u068syUtzh+9AgvP/0ELqcTTdOo16AhU6bNzDOmhLg4Zn36VcCKbz4A4KZunfnk6wVc1XMYDevV4aYbOxfoM3qxq4E/sFp6YI0v+DOJvszAcl+7dm3HJ598cuCuu+5q6HA4lMVicc6dO3e/yWTKd3nP9NU3c4888sSEsP7dOpqUUgQFl+X5qLyrrvPrUuVRKcUr70znxYmPk56WSkBAIG9/NIeAwEAAHrpzKOMmPEOLq9vQul1HuvXuy/C+N2AymWgcGsZzr70DwIdvv8bxo0f4etYMvp41A4AR9zzIgOEjc41p47o1pKWl0en6GwG47a57mfTwvXw2fRo3DxpORUsFcCRd0ef2AY8CtbBaRmGNTzc6mMIq1bOtuTRNHTiV3CQlw1Gs8397kzrBpxOrpCV6+2xrRWUr0L20JnVfLffpDmfAgVPJzexOV97Va6WIj8y2VlSigQFY4wv2vKKH8PoqhsLSNA3b6eRGkszFJbQClmDN1h4ivFq6w+l/4FRyqCRzkYcIYI63Vr97ZdBXStM0bGdSGiWlOyoaHYvweNcA0dL73ftlOFz+7jvzQKNjER7tduADo4MojFKX0DVN49DZlJDENHuly69d+siD2Lm6DliA1VLa7upcgKZp3j+7mMPpMh84nRQqybxoZbXY5qPp1ss8iNXyqtFBFFSpG13geHxarXiZbEEUXG/gU2CU0YGUoGMulys+Nja2RvXq1c8qpbzyrK1pGkfi0hqk251ljI7FE6Upp3I5C/5fq2lwKtmJSk/AP80nu5k8jdVyCGv8DKMDya9SldDPJmdUOp2U7vNDn4licwdWSwzW+KlGB1IS2rZtmxQTE/NgXFzcjISEBAteWoGTkO6qkubQcn+wXGAyJ5j9XIXr2K3SE6i76W3MTp/pM5nT+1gth7HGRxsdSH4UOqG3+rxVsU2fuvWurUX+aExyuiPoWFxqSFHvV5Q6b2K1bMIav9zoQEpC27Zt18TExHRxuVy18cImuil/n737ZLJzotFxeLI5Zd7eWUc73rrAG2oa/mmnfTmZA5iBuVgtN3j6o9rgo3fou3fvDvjpp58sEydOPAX6FKhNmzQKn/rJV4S1aFWisaxY+iv/e2UyLqeTJmHhvPy/DyhX/uKO9X8tW8KHb7/Gvt07GTbqHiZaX8t6z+Vy8foLkaz843eUUoy890FuH33/RftIiIvjiftHEXf2DNd06MSzr+rDvJ49c5qnHhzNjK8X4O+f5yiZAHhnpWqJ8kOfirEd1viCz6bjhdq2bZsE7DE6joIKiYweAPj07EJFwS/dllbGFHv5FUuvssAirJY2WONPGB3MpXjdFXd+ZJ9K0aVpynYmuUlR1BUWdCrFlOQkrE89ytRPvuTnv2OoVqMmM6flPjlK/YaNefGt9xj9wCMXvRf9wzwO7N3Nwr/W89XPy/h8xnvs273z4vV+nEf7zl2Zv3Q1B/fvZe+uHQC89dKzPPb0C5dN5iLfqgE/YLVIm6yHComMbgF8hY+e40SJqwl84ekTOHn1H3t+plLs0eumlml2Z1mAZYt/ZtStvenb+WpmTjs/bOPp2JM8NfZuRtzcg8E9O/P+G69kvde301W88+oLFGYqxZV/LiWsxVU0bBIKwPA7x7D4p9wnQwhp1IRm4a0w5zIL0pKff2DQ7XdiNpuxVKpEn/4D+fWn+Ret5+fnT1pqCi6XC3tGOv4BAaz6cykVLBW56pr2+Yza+3s0l5C2gNd0lilNQiKjg4C5gDxqKIpST8Cjm2+8NqHnZyrFfzZsOTZt9tysR40SE+L54qff+HrRH3z+0bucPH4MgOeeGMfwO+/l60XLmPvrX2zfsonfFv2YdazCTqV4/OgRatWtm/V77Xr1OR17osB3+sePHqF23Xrn91O3PsePHblovYhBwzhsO8jwm66nY5duVK9Zi4/fe5tHJj6X72NJNi+Qu7BaLq5SEUabBrQwOgjhk17BaulodBB58do29NymUpw4cWL981MpKnUsLrVB9m36DRgCQKXKVahTP4Sjh/+jvMXC2lUrOHv6fBtSSnIytv3nh4K+0qkUS0pwcFne/ujzrN/ftD7D3eMe45DtIJ++/z8A7nt0As3CS7YfgY/7n7vn+2qjAxEQEhk9HLjP6DiEz/IDvsFqaY01PsHoYHLy2oR+WSZzgNOlXVADERB4vsnTbDLjdDqzBkT44qffCSyTe5PopaZSfPoR/dyROQFDdrXq1GXN38uzfj92+BBVq9fEL5dq9UupVacux44c5uq2HfT9HDlErdp1L7nN1o0xnD1ziht63sToQX2ZMu0jNE1j8vhxzPreK57A8BZ+wCyslqu9eVIHXxASGd0IyHv2ISGKRkPgI/QR5TyK11a5X2oqRVNwhQqJSYn5+mzBZcvRvnNXZn04NWtZUU2leF23HuzctpmD+/QOwnPnfMpNtwzK1+fLrlfEAH74Zg5Op5P4c+dY8vMC+vQfmOf6drudqa9ZeXLyFABSU1NQSp8CNSUlucDHF5fVDHjB6CBKs5DIaD/gW0DmZhAl4TaslruNDiKnQt+hF8ez4gWR11SKaQ5XUK3GLWo0Dg1jUI9O1K0fwruffXPJfb367kzeeulZBvXoRFFOpVi2XHmsb0zj8XvvwOlw0KRZc15+58Os94f16cr7n8+jes1a/LtyBc89MY7kpEQ0TeP36IU8O+VNuvXux82Dh7N98wb6X98WhWLUfQ/RtHneTYSfz3iX/oNvo0q16gCMm/A0D901HIDxz754yZg9v2HBYz2F1TIPa/wmowMppZ4E8tvzU4ii8B5Wy2qs8buNDiSTT02fqmkae2OTwjJ7tYuCaxB0KsmSnlSso2r54JSLmTYAHbDGO40OpDQJiYxujD7VbZDRsXijFQGPr2lgir3W6Di81AagPdZ4l9GBgBdXuefmdFJGVUnmwkDXABOMDqIUmoEkc2GMa/CgTpg+k9DtTpdfbGLapXuKictSyFBxV8iK1dLU6CBKi5DI6FHozwcLYZRXsFoqGh0E5D+hu0Cv0vZUx+JS6zhdmtnoOLxeCfwX+/CUi6DfKX7s6SNK+YKQyOgqwP+MjkOUelUBq9FBQP4TepymaY6MjAyPnA86Mc1eNj7VXtXoOET+ZLgAlwOzPdHoUIrLDcBoo4MoBd5AP5kKYbSHsFrCjQ4iv73cT7tcrhUnT56M8Pf3t5tMJo+5tdI0jSNnU0M0p0f0SfB66RlOU5qj+P57XRqcik8jOHYDfhkeNy5DUbJitXyFNT7D6EB8UUhkdEvkokl4Dj/gHaCP0UFcVtu2bV0xMTGTU1NTW+3fv78aHvR0U5pDK5uQ7pJJMoqI0y/BHOQszvFRNEypZ6m/e7avt9fXB+4H3jc6EB/1Kj7UB0j4hN5YLbdgjV9oVAD5emwtU0xMTAD6icojRphLSHeZX1hxNtrp0hpcfm2RH89XmrKpW8q51sV2AJeTgNRYTFrBxrP3UseBxljjU40OxJeEREZfB6w0Og5fIY+tFan9QLhRNXMFSsxt27bNAPZddsUSEhIZfTcgybwIOf0PpJZJSTI6DF9RCxgHvG10ID4myugAhMhDY+AJ4HUjDu61VVYhkdH+wPNGx+FrTGhe+zfhoSZhtRTrQD2lSUhk9M1AF6PjEOISJmG1GDIeijefvO9GHyRfFCHP6e7oM6oBjxodhC8IiYxWwBSj4xDiMiqh56cS55UJPSQyOgDI/yTfIt+UB3V49CFPYrVYjA7CB0QAVxkdhBD58DhWS4nnV69M6MAdQD2jg/BFZknoxaESMN7oIHzAU0YHIEQ+NQZuLemDemtCf8zoAHyVyZOHA/Ru47BaAo0OwluFREZ3AK43Og4hCqDE53XwuoQeEhndDal2KzYmL/yb8BJVgWFGB+HFnjA6ACEK6Dqslg4leUBvPHk/YnQAvswb/yC8yDijA/BGIZHRtYDBRschRCGU6F26V52/QyKjawO3GB2HL1OatKEXo2uxWtoYHYQXehDwNzoIIQphMFZLiY2V4lUJHbgXDxmlzleZ0CShF6/7jQ7Am7gfVbvH6DiEKCQzJdjny2sSurtgjzE6Dl9nkl7uxe02rBaZeyD/ugF1jQ5CiCswGqulRGYq9ZqEDnRGH0deFCOTb0+Y4gkqAgMMjsGb3GF0AEJcoUqU0Cxs3pTQpYdwCTBpXvU34a1GGx2ANwiJjC6DdIYTvuG2kjiIV5y83dXtQ4yOozTwij8I79cLq6WW0UF4gVsAGWFP+IJbsVqCi/sg3nL+7gLUNjqI0kCGfi0RJqCv0UF4AaluF76iLNC/uA/iLQldqttLiEmTXu4lRBL6JYRERlcAbjI6DiGK0MDiPoDHJ/SQyGgT0o5WYuQOvcT0wmqRRzDz1hN59lz4lr7F3dvd4xM60A6Q9sYSIo+tlRgLcK3RQXgwuTsXvqYC+mOYxcYbEnp3owMoTbzhD8KHSLV73krkMR8hSlixzsDmDedvSeglyKRp3vA34SskoeciJDK6OTLmhPBNEcW5c48+eYdERgcA1xkdR2liNjqA0qU1VktNo4PwQFLdLnxVg+J8ZNWjEzrQESj2Z/fEecrz/yZ8iUKSV26kul34so7FtWNPP3nfaHQApY2n/0H4oN5GB+BJ3E+1dDY6DiGKkSR0UTKUtKGXtHZGB+BhmgHljQ5CiGJUbE+3eOzJ2z3cq5zsSphMzlLiGpfEkJBeRMq88HXtsFqKJfd6bEIHGgHljA6itJE29BJnAloaHYQHkYQufF05oEVx7NiTT95XGR1AaeTJfxA+TP7Wz2tvdABClIBiaUf35PO3nOQMoGT6VCPI3zoQEhltBlobHYcQJUASuih+JmRyFgPI37quORBkdBBClABJ6KL4yVjuhmhldAAeoonRAQhRQsKxWop8HC+PTOghkdFB6J3iRAnzyD8I31cZq6WO0UF4ACnzorQwAzWKeqeeev6uj+fG5tOkDd0wUiMFDY0OQIgSVLeod+ipJ2+5WzGIVLkbRiYjkTt0UboUeZ6ThC4uIJ3iDFPV6AA8gNyhi9Kk1Nyh1zY6gNJKBpYxTDWjAzCSe2TIEKPjEKIEyR26KF4mTarcDVLa79CrII+sidKl1NyhS0I3iEImZzFIaU/oFY0OQIgSVmoSerFNAC8uTW7PDVPaE7rF6ACEKGGlpspdJmUxiLShG6ZUt6EjCV2UPqUmoZcxOoDSyqRJL3eDyB26EKVLEFaLX1HuUBK6uIDJc/8mfF0wVktp7hQmCV2IK+SpJ29J6Abx1D+IUqKC0QEYSBK6KI2KtEbUU8/fktANIm3owiCBRgcghAEkoYviI0O/GkozOgADOY0OQAgDFOn5tkgb5IuQv9EBlFYt0z9VAdjPBeCw+yunwx+7IwCHM1D/6QhQdlcADmcAdmcgdlegsjsDsLsCsWsBOFyBZGiByq4F4tACsGsB2LVAZVcB+u8E4MAfhwpQDuWP/vLDqfxwmvxxmvyU02TGaTLjMplxmTNfJlxmheZnQjMrNH+F5qe/8EP/ewlQymMvUPNLEroocffZJ9RoY9q7tpE6kR6iTjjrqlN+VVV8UAVSKgRir2JSWmWjY/RhpSKhpyNVcIZIJqh8cuaAXbmlFw9OOQqXyx+n3R+H3Q+nI0C/CLH7K4cjAIfDX78wcQaorIsUl/4zwxWo7C79wsThCsCulVEZ+sVI5oWIcmiB2FUAds0fBwE4lL9yEIDDlHlR4u++MDErp8kPp9nPfWFiwmU2o5lNuPxMuMzui5LMCxJ/heYH+Cvlyd9usXMYHUBptUer13CPs16e4+gHYE+vpc6crq9izzVUxxMbqeP2BuqkVlud8auiEoLLk2IJwFFVqVLdB8QjeGpCT0YSuiggDZMpA1NgBv6BOd7IuaKnctiMjsA4cofuoTLwD/xPq1nnP61mnb8vMctvMGnJtdXp0w3UyXON1fGUEHXC3kCdpKY6G1BZJZQtS1pFf5zVlJIhfrMpFXfoKYBU84jSJs3oAAwkd+heLoUyZfdpdcvu0+o2WHaJ9SqQlFBXnT7VUJ2Ib6iOpzY0nXDUU7GqBucCKqnEcsGkVzLjqq5UqWh6LRUJPdnoAIQoYZotKkISuvB5CZSrsEMrV2GHFqIvyLVuRtOqEn+6njp1NkSdSGhoOp4Wok4666lTpurqXKCF5PJBpFc2oVXz8r4zktCF8EGpRgdgsASjAxCeRKnTVKx6WqtYdaPWFFy5r2XC5azJ2RP1VOzZENOJpEbqRHoDdcJVV502V1NxZSqQYvHgjn0O9NroIuOpCb1IP6QQXiDW6AAMVto/vygEFybzMarWPKZVrfmvMzzP9S7s2HciqaE6ntFAndTqqNNGduw7gzW+SHv0eGpCl6t1UdqcMDoAg0lCF8WmEB374hqqE8nuHv3F1bGvyP/mPTWhHzU6ACFK2HGjAzCYJHRhuOwd+y61XmbHvhB1Mr6ROlbYjn2nijh8j03oh40OQIgSVqrv0G1REedCIqPtyKBSwgvkt2NfFRLO1FOnTjdUxxNzduwzoe2sVcRxeWpCP2R0AEKUsFKd0N1OAbWNDkKIoqHUGSxVzmiWKpu0Jrl17PvbVsRH9NTu/pLQRWkjCV2+A1G6FHlNtKcmdKlyF6WN9BuBg0YHIEQJKvIbV09O6J47QKcQRW+H0QF4gL1GByBECTpQ1Dv0yIRui4pIR3r9itIjGbAZHYQH2GN0AEKUEAews6h36pEJ3W270QEIUUJ22KIipEaqGE5wQnioPbaoiIyi3qknJ/QtRgcgRAmRi1edfA+itNhaHDuVhC6E8SSRAbaoiETkCRdROpS6hL7R6ACEKCGS0M/bbHQAQpSAUpfQdyCTtIjSYZPRAXiQf4wOQIgSULoSui0qwomc6ITv22eLipAnOs5baXQAQhSzWFtURLGMueCxCd1NrtaFr1thdAAeZi2QbnQQQhSjYivznp7QlxkdgBDFTBJ6Nu4xKGKMjkOIYrS8uHbs6Ql9BVDkz+oJ4UEkoV9Mqt2FL/uzuHbs0QndFhWRAqw2Og4hionNFhUhj2ldTBK68FUnbVERxTaAkkcndLffjQ5AiGIid+e5+wuwGx2EEMWgWMu8NyT0pUYHIEQx+dXoADyRLSoiHrnYEb7pj+LcuTck9PXAOaODEKKIpQPRRgfhwX40OgAhipgL+Kk4D+DxCd0WFeFCTnzC9/zuHupU5O4nZApl4VtW2aIiThTnATw+obt9Y3QAQhSx+UYH4MlsURFHkMfXhG/5vrgP4C0J/TfgtNFBCFFEHMBCo4PwAj8aHYAQRUSjBC7ivSKh26IiHJTA1Y0QJeRPW1TEWaOD8AI/GB2AEEXkH1tUxNHiPohXJHQ3qXYXvkIuTvPB/bzuWqPjEKIIlEiZ96aE/jdw2OgghLhCScjFaUF8YnQAQlwhOyVU5r0moduiIjTkRCi83zfSu71AvkG/CBLCW/1Y3L3bM3lNQnebgf4snxDearrRAXgTW1REEjDX6DiEuAIfltSBvCqhu+eQ/dnoOIQopLW2qIiNRgfhhT42OgAhCmmnLSpieUkdzKsSuts0owMQopBmGB2AN7JFRfwLbDU6DiEKoUTLvNcldFtUxJ/AFqPjEKKAzgHfGh2EF5MLeeFtkoHPS/KAXpfQ3aRwC2/zkS0qItXoILzYHOQpF+Fd5rgnGiox3prQv0ZGjhPeIxl42+ggvJktKsIOvGV0HELkUwYQVdIH9cqEbouKSAP+Z3QcQuTTh7aoCLkAvXIfA6eMDkKIfJhti4o4VNIH9cqE7vYucNLoIIS4jBTkzrJIuJssphodhxCXYQdeNeLAXpvQbVERyRj0pQlRADNsURGxRgfhQz4ASrRdUogC+twWFfGfEQf22oTuNgMo8WoNIfIpFXjD6CB8ibuTkdR4CE9lB6YYdXCvTui2qIgM4EWj4xAiD+/boiKkWajovY1cyAvP9JktKsJm1MG9OqG7fQ7sNjoIIXI4DrxsdBC+yN2WHml0HELkcA541sgAvD6h26IinMCTRschRA6TZBKW4mOLivgG+MfoOITIZrLRT7N4fUIHsEVFLAJ+NDoOIdxWAV8aHUQp8DigGR2EEOijlxo+8ZJPJHS3R5BpFoXxXMAj7ul+RTGyRUWsRS6chGd4xF1bbCifSei2qIgjwGSj4xCl3kyZUa1ETQTOGh2EKNW+sUVF/GV0EOBDCd3tXWCT0UGIUuskBneKKW1sUREn0GvnhDDCOTyoD5dPJXR3lccD6NWeQpS0B2xREXK3WMJsURFfAwuMjkOUSg/ZoiKOGR1EJp9K6JDVriYDT4iS9oUtKuIno4MoxcYCZ4wOQpQqc91PW3gMn0vobs8B64wOQpQah4FHjQ6iNHMP4POw0XGIUuMY+kWkR/HJhO6eavF2QJ4DFsXNBdxhi4qIMzqQ0s4WFfEt8J3RcYhS4R5bVMQ5o4PIyScTOoAtKmI/HngFJXzO657Sw1UAcB+wz+gghE/70BYVscToIHLjswkdwBYV8RXwhdFxCJ+1AnlU0qO4J28ZjD5trRBFbQMwwegg8uLTCd1tHLDH6CCEzzkEDLVFRTiMDkRcyBYVsQV40Og4hM85Cwy2RUWkGR1IXnw+oduiIpKA/ujPCwpRFFKBAbaoiFNGByJyZ4uK+AL40Og4hM9wArcbOZNafvh8QgewRUXsAYagz1UrxJW6R0aD8wpPAGuMDkL4hIm2qIjfjA7ickpFQgewRUX8gV79LsSVeMPdm1p4OFtURAZ6e/pho2MRXu0zW1TE/4wOIj9KTUIHsEVFfAK8bXQcwmstAp42OgiRf+5RvPoCcQaHIrzTn3hRf4xSldDdJgILjQ5CeJ2/gGG2qAgZVtjL2KIitgMDgXSjYxFeZR1wi7umxysoTSt9szyGREYHA0uALkbHIrzCeqC7LSpCBiryYiGR0YOAeYDZ6FiEx9sO3GCLivCq4YRL4x06tqiIFCAC/UQtxKXsAG6SZO79bFERP6BP3iTEpdiA3t6WzKGUJnQAW1REAtAH2GJ0LMJjHQR6eWPBFrmzRUV8CjwGlL6qSZEfJ4CenjSDWkGU2oQO4J7qsgeS1MXFjuDFBVvkzRYV8S4yzbK42An0C/j9RgdSWKU6oQPYoiJOA92BzUbHIjzGbuA6W1TEAaMDEcXDFhXxMXAn+oAhQhwEutiiIrYZHciVKPUJHcBdpXojek9mUbqtRy/Yh4wORBQv91wPw5EBp0q77ehl3mvvzDNJQndzT4XXG5hrdCzCMMuAG921NqIUsEVFzAcGAB47PrcoVv8C1/tK05ok9GxsURHp6POov2V0LKLEzQci3GP/i1LEFhXxC3oN3UmjYxElainQw92XyieUyufQ8yMkMvphYBpy0VMaTAPGy6AxpVtIZHQ94CegjdGxiGL3IfC4LSrCp5pbJKFfQkhk9AD0+dTLGRyKKB6pwH3utlQhMged+hx9Mifhe9KBh9yPL/ocSeiXERIZHQZ8D7QwOhZRpGzAQFtUxCaD4xAeJiQyWgFW4HlAGRuNKELHgEG2qIh/jQ6kuEhCzwf3Vft09MdchPf7HbjNl9rORNFzDxX7CVDJ6FjEFVsNDLZFRZwwOpDiJAm9AEIio8cA7wFBRsciCsUFvA48b4uKkOePxWW529W/AG4wOhZRKC7gf8Cz3jTJSmFJQi+gkMjoq4DvgFCjYxEFsh8YbYuKWGl0IMK7hERGm9BnaXwJ8Dc4HJF/NuAuW1REqRlfRBJ6IYRERgcBLwOPIzM3eYMZwJO2qIhkowMR3iskMrod8DXQ1OhYxGXNQu/FXqomVZKEfgVCIqPbA58CrYyOReTqCDDGFhXxm9GBCN8QEhldFpgCPIxczHuiWPQnVxYaHYgRJKFfoZDIaH/gaeBZIMDgcIROQ79Cn2CLiog3Ohjhe0Iio9ugd5TtaHQsAtDbyj9BbysvtSM9SkIvIiGR0eHAR0AXo2Mp5VYDj9miImSue1Gs3I+33Qe8BlQ2OJzSbDXwiC0qYoPRgRhNEnoRcw9G8zrSaa6kHQEm2aIivjY6EFG6hERGV0Mv86OR59ZL0gn0zopf2qIiJJEhCb1YhERG+wH3Ay8A1Q0Ox9elAW8CUbaoiBSjgxGlV0hkdCv0nvADDA7F16UA7wOvlLZOb5cjCb0YhURGl0e/ghwPBBscjq9JAT4G3rRFRRw1OhghMrl7w78M3GR0LD4mGfgAeMsWFXHK6GA8kST0EuCuknsEGAdUMTgcb5eIXqjfsUVFxBodjBB5CYmMvg54BehmcCjeLonzibzUdnjLD0noJcg9hOw96HfsDQ0Ox9ucQ58V7V333PVCeIWQyOgOwKPAUORJmII4BcxEv3g/Y3Qw3kASugFCIqPNwGDgSaC9weF4ui3ojwd9KXOVC28WEhldA3gQeACoZXA4nuxv9MGgvi8Nw7UWJUnoBnMPJXsXMBKoYXA4niIZfYa7j21REauMDkaIouQeu2IIemLvCpiMjcgjJKCPmT/DFhWxzehgvJUkdA/h7hl/E3py7w8EGhtRiXOiX5l/CcyVu3FRGoRERtcBhgG3U/pq6+zAb8C3wI9S5q+cJHQPFBIZXQkYBEQAPYHyxkZUbFLRC/SPwM/STiZKs5DI6EbAbe6Xrw4nnYo+ffEC4CfpD1O0JKF7OHf1XFf05N4PCDM2oit2FFiGnsSXyLPjQlzMPW1rH/erO947Ep0GbAWWA38AS2WSpOIjCd3LuK/iuwGdgU5Aczx3dCoN2Ilelb4SWGmLirAZGpEQXsY9fetVwI3oF/dtgBAjY7oEF3pH1hXoSfwvW1TEWUMjKkUkoXu5kMhoC3oBb+t+NQMaA5YSDiUB2IWewHehX5X/I4VZiKIXEhldEWjtfrVx/2xGyfa9OQZsQy/r29yvHVLrZhxJ6D4qJDK6KtAIPbk3dv+7GlAxx6vcZXaloT8DHov+XGhstn+fAPYAO21REceK9hMIIQrCPVlMNaC++1Uv289KQNlsr3Lun8GAA30I5fQcr2T0Mn4MOO7+mflvm1ysex5J6KWc+5n4CujV9s6cL1tUhNPA8IQQQuSTJHQhhBDCB8iABkIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuhBBC+ABJ6EIIIYQPkIQuLkspFaKU0pRSo42ORYjSRCnVXim1WimV7C6DrZVSNymlNiml0tzLKhodp/AMfkYHIIQQ4mJKKX/gOyANeAJIAQ4DfwHbgYeAdCBZKfUMsEPTtB8NirUKcA/QH2gO+AO7gHc0TZtrREylkSR0IYTwTI2BBsB9mqZ9AqCUugkoDzyvadrSzBXdCf174EcD4gToBEwBfgFeARzAYOBbpVS4pmkvGBRXqSIJXQghPFN198+4yyzzBNuBppqm/Ze5QCn1IbAUmKSUekPTtGTDoislpA3dwymluiml1rvby/YrpR5QSlmVUlq2de5WSv2hlIpVSqUrpXYopcbmsq92SqklSqnTSqlUpdRBpdSsHOtUVErNVkrFK6XilFKfAxXziC1MKfW9UuqsO771SqlbchxPU0rdlcu2fdzv3Xwl348QvkgpNRtY4f71O3dZWQ587l62zr1stvtcUBa4y71Mc29P5rlCKRWqlPrSXa5PKaVeVrp6SqmflFIJSqkTSqkJOeIIUEq9pJSKcW+brJT6Wyl1Y/b1NE07mD2Zu5dp6DUGgUCjIv2CRK7kDt2DKaXaAL8Cx4EXADMwGTiVY9Wx6FfIC9GruvoDHyqlTJqmfeDeV3XgN/e2UehX+CHAoGzHU8BPQBdgBrATGMj5k0j22FoAq4Cj7v0lA8OAH5VSgzVNW6Bp2nql1AH38pz7GA6cA5YU8GsRojT4CL1sPQO8C6wDTgK7gfvRzwMHgf3od8GfAGuBme7t9+fY31z08hwJRADPAWeBB4A/gEnASOAtpdQ6TdP+cm9XAbgX+Ab4GL26fwywRCnVQdO0TZf5HDXdP0/n/6OLQtM0TV4e+kJP0MlA7WzLmgB23BfA7mVBuWz7K7A/2+8DAA1od4nj3epe56lsy8zonXA0YHS25UuBLUBgtmUKPcnvybbsVSADqJRtWQB6Mv/U6O9YXvLy1BfQzV3uhmRbNjq3cgwkAbNz2YfVvf5H2ZaZ0TvXuYBJ2ZZXRO94NzvHugE59lkROHG58gtURr8I+cvo77K0vKTK3UMppcxAT+BHTdOOZS7XNG0fsDj7upqmpWbbzqKUqopeXddIKWVxvxXn/nmzu/dsbvqh3+FPz7ZvJ/BejtgqA92BeUB5pVRV9zGroN9xN1VK1XGvPhe9x+ugbLvojX5SkN6vQpSMTzL/4S7T69EvwD/NtjwOvQagUfZ1NU3LAFBKmdxl38+9/TV5HUwpZQK+Qi/njxTh5xCXIAndc1UHgoB9ubx3wTKl1HVKqaVKqWT0xH0K/c4YIDOhrwDmo1fdn3a3m92tlArMtqsGwHFN05JyHG93jt+boJ8MXnYfK/vrxWzxo2naZvTHV4Zn2344ehXcH7l+ciFEUTuU4/d4IE3TtJxV4fFApewLlFJ3KaW2oD8+dwa9nEdw/tySm/eAm4B73ecAUQKkDd3LKaUaA8vQk+Z49Kq0DPS77SdwX7Rpeh3YEKXUteht7H2AWcAEpdS1uSTxS8m8EHyLvNvAs190zAWedd/FJwK3AN9omuYowDGFEIXnzOcy0C/W9X8odQcwG71z25tArHu7p9Efq7t4Y6VeAMYBkZqmfVHoiEWBSUL3XLHoV8RNcnkv+7L+6L1Ib9E0LesqPGcv1Eyapq0B1qAn2BHo1WK3oVfJ/Qf0UEqVy5Hgm+XYzQH3T7uW7VnYS5iLXjMwGL1NrQLwbT62E0Lkj3b5VQplCHp5H+S+KQBAKfVibisrpR5Cb7efqmna68UUk8iDVLl7KHc711JggFKqduZypVQToG+2VTOvsrNfVVuAu7PvTylVyd2LPbtN7p+Z1e6/oF/kjc22nZkcbWCapsUCy4EHlFK1csaulKqWY/2dwFb0qvbh6L32/8q5nRCi0JLJ4/HSK5Tb+aUj+kAyF1BKDUfvkf8Vem2hKGFyh+7ZrOgdyFYppaaj9zh9GNgGtHav8xt6FfvPSqmPgHLAfeh3+NmT7V3AOKXUAvRHWsq710tAT+QAP6P3Uo9SSoUAO9A7s+XWVvYQsBLYqpT6GP0qvgZ6Qa8LXJ1j/bnAS+i1Dp9qmuYq0DchhLiUGKCnUmo8cAw4qGnav0Ww30Xo54AFSqlooCHwIPq5oVzmSkqpDsAc9Db2ZcDIHPcPqzVNO4AoVpLQPZimaTFKqb7obdUvo7ePT0YfKznMvc5updQQ9OEW30J/nGQ6eseV7IPGrAA6oFev10Dv/LIWGKlp2kH3vlzugWGmAnegV+MtBCYAG3PEtkMp1Q69Kn00eg/3WPd6L+Xycea6YwxGercLUdTGoz+D/gp6Z9rPgaJI6LPRnyV/AL3fzQ70c8NQ9MfqMoWjP45ajQvPO5nu5nxTnSgmKluziPASSqkfgRaapjU1OhYhhBCeQdrQPZxSKijH703Re7AvNyQgIYQQHknu0D2cUuo4erXXAfTnxMeid2Jro2naXgNDE0II4UGkDd3z/Qrcjt6OlQ78AzwjyVwIIUR2cocuhBBC+ABpQxdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8gCR0IYQQwgdIQhdCCCF8QIEGlomJiSkH1EYuBEoLF3Csbdu2SZddU/gsKffCA8i5KB/yPbBMTEzMtSaTaYbJZLKQbW5c4dM0l8sV73K5Hmzbtu0ao4MRJU/KvfAQci7Kh3wl9JiYmHImk2llxYoVa1SvXv2sUkqGl/MiDpfLbHdq/naH5u9wufwdLs3fpWHSNE1poNBQoKlq5kRHgCvdD5QGaJoyuU4lpAUknjmZELrigSkBaaeOA2eB44ANa3yGsZ9MFCcp995F0zTsLs3P4dL8HE6Xn9OFv8Pl8ne68HO6XH4Ol+bncmEms4CjqWDNaa+aeDoApTRzRRxHXNXRUJoyoZmUcppQTj+zcviZVUaA2ZQRYDbZ/cwqw6RK9tpO0zQVGxtbOS4u7qTL5eoid+q5y2+Ve22TyWSpXr362bJly6YWa0SiwFyappLTHcEZDldghtMVYHdqgXaHK8DucgU4nFqAS9NyVJWqHD91QX6O5AAtpWzWAg2qB2qk4CjnMgd+kPOwWC2Hgf3u1z5gL7ABa/x/RfoBhVGk3HuoDIfLLyXDUTY1wxmcancGpztcwXanK+DiNTPLuFn/keNMYEI5AsCMpuFvcmHX/M3ui3zIvHxzAfbMf7gA8DebMvzNpnR/s0oP8DOlB/mbU8sF+iX5mU3Oov6smapXr342ISHB4nK5agN7ius43iy/Cd0EKLlC9wxOl2ZKSneUS0p3lEtJd5RPc7jKappWLJfMWRfiF1+Rm9Bnf2sAdL/gHaslFljnfq0F1mGNP10c8YliJeXeA9idLr/kdEfZlAxn2TS7MzjN7gp2uFz+RXsU/f9Yy2ezit3pCnBfQJTPvjzAz5QW7O+XFBxoTioX6JdUxt+cXmQR6n+HCunLkafCz7ZmtbQtwjhy7Ds+ptj27YUcTpc5Md1RLjndUT4lw1k+3e4K0iieBF5EqgMR7pfOatmOPnPcr8BfUl3vnUIio4ul3NuiIqTMZ5Oc7ghKSLVXTEx3VEyzO4OL/YCqaE4oGQ5XmQxHRpm4VKoC+JmUPSjALyk4wJxUoYx/QlCAOa0IDiPy4JNXOrt37w544403qmVfVqdOnVarV68OKulY9u7dG9C9e/cmISEhLRs3btxiypQp1TPfe/7552s0bdq0RePGjVv06tWr8enTp82Z7yWnO4KPnEupu/tEYvgTT09u3al92yY9u3SscUv3zsGdmtdTb7747AXH0TSNe4ffQpcWDfKM5aOpbzKwRyfuuKUXx44cylr+/BPj2Liu2PuZtAAmAL8DZ7FaFmG1PIzVUr+4DyxEUQgLCws/d+5csZwzXZqm4lMyKhw+m1J/5/GEVvtPJYWfSkqvXdBkvm3TBu4a2IehvbswrE9X/l31V9Z7/x3czwMjBjK0dxcG9ujErwt/OL+hUjnb5QD4ce5XXF2vEn/8Gp21TNM0pv8viv7Xt2Nwz86MGdY/11i2b97IoF5d/Ht2blvp408/q7c3NrHF7hMJ4V/PX9jg9hEjGhbkc4n88cn50Pfu3Rs4a9asahMnTjxVlPu12+34++e/psvlcjFgwIDGEyZMOHHPPfecAzh8+LAfwIIFCyp8/fXXVdevX7+zUqVKrokTJ9Z6/Inxdd96f2ZafGpGlXSHK+vi475Hn+S+R58EICM9nZ7tmhMxcOgFx/ri4w+p16Ahu7ZtzjWWpMQEohfMY8Efa/hlwXd889nHTHj+Zf7560/KBAXRpv21QInVipfl/B38u1gtK4GvgHlY48+VVBBC5Edmud+1a9eOotyvy6WpcykZleJT7ZVSMpwVLu7rUjCapvHEfaN4+X8fcG3XbtgO7OOB2wfw0/J1lAkKYvL4cdw6bCSDbr+Ts2dOMyLiRrq0b0fNIBMopZGjaeXo4UP88M3nXHVN+wuO8/Wsj9izczs/LF2Nf0AAp2NP5hrPrA+nMunFKJpf1Zohva7jlqG3E5+YHPT2G1FB02Z9w+4TiWUsQX7nKgYHnC3jb5YauyLg1Xfo8+fPrxAeHt48NDQ0vH379s1iYmLKADzyyCP1bTZbmbCwsPDu3bs3yVx/3rx5lVq3bh1Wp06dVhMnTqyVufzQoUN+/fr1a9SqVavmoaGh4Y8++mjtzPfq1KnTauzYsXVatWrVfPDgwQW6qly4cGH5gIAALTOZA9SrV88BsHHjxqAOHTokWSpW1M4mZ1Tq1PPmCj/++GPV2MS0utmTeU5/LImmZu06hF/VOmvZvt07+XNJNPeMezzPWExmMy6nE4fdTmpKMv7+/qSmpjBz2ps89vQLBflYRU0BXYEZwAmslh+xWoZitZQxMijhmZYuXVq2bdu2zZo1axYeGhoa/uWXX1YE+Ouvv4LbtGkTFhoaGt6qVavmv/32W1mA2267rcHkyZNrZG6/a9eugKpVq16dnp6ufvrpp/KtW7cOa968eXiTJk1avPPOO1Uz1xs8eHDI0KFDQ9q1a9csNDS0BYBSqm1mLdr9999ft2XLls3DwsLC27Vr12zz5s2BmdsqpdpGRkbWbNWqVfM6deq0mjZtWpXM9zZs2FCmS9euYaFhza8Oa9Hymnfe+6BhUrqjYuzJE6anxt7NiJt7MLhnZ95/45UCfzdx585y7uxpru3aDYCQRk0oX8HCyuVLAdi9YztdbuwFQOUqVQlt3pJFPy3IvKnTNExZCd3lcvHixEeJfOkNAgIu7Gs3e8Z7PPb0C/i7l1etXoPc+Pn5kZaaSkZ6OmaTXvk4/Z0oRo55kAoWC+kOZ3BsYnqdPScTW+05mdj8REJajQyHyydvMkuK1yb0o0eP+o0ZM6bR7NmzbXv27Nlxzz33nBo2bFhjl8vFe++9dygkJCRt165dO/744499mdvExcWZN23atGv9+vU7p0+fXuPgwYP+ACNGjGj40EMPxW7dunXn9u3bd2zcuLHsrFmzKmVud/bsWb/NmzfvXLhw4cGCxLht27agypUr22+++eZGzZs3D+/Vq1fjHTt2BABcfU1719+rVldesWnv1YfPJjda8P28cslJicSfu/QN6oJvv2TAbaOyfrfb7bw06TGej3oHk9mc53bBwWUZdd84Rt3aiz9/W8zIMQ/y4Vuvcef9D1OufIWCfKziFADcCswDDmO1TMFqqWNwTMJDnDx50jx8+PAmU6ZMObp79+4dO3fu3NGrV6/EtLQ0NXz48MbPPffcsT179ux46623Do8YMaJJfHy8acyYMae/+eabrET90UcfVR04cOCZwMBArXPnzinr16/ftXPnzh2rVq3a9eabb9bav39/VhXcli1bgn///fe9Bw8e3J4zFqvVemLbtm07d+3ateP++++Pffjhhy9oOgoMDNS2bt26c9GiRXufeeaZ+ukZGer4uaQqA4cMDe8//K6y3y/9x+/731fRK+JWAJ57YhzD77yXrxctY+6vf7F9yyZ+W/Rjgb6fSpWrUK16DZb8vADQq99tB/Zx7LDevBbe6mqiF8wD4Mh/NjbHrOXIkUMK3B3OlHJl7uuLmR/Qul3HC24cQK/pO3s6luW//cLI/j0Z2b/nhVX32Tzw+EQ+ef9/PDhyEE88+xK7tm/l6KH/6NnvlovWTbM7g2MT0uruPpF4le1MckhyuqP4+w34IK+9GlqxYkXZ0NDQ1A4dOqQCjB079uzEiRPrZybp3IwaNeosQK1atRx169bN2LNnT2CVKlWca9asqTBhwgT/CRMmAJCSkmLatWtX1h3iPffcc8ZkKvi1j8PhUGvWrKmwYsWKne3atUt7/fXXqw0dfluz+b+tdDVt17XMXQ88wsN3DcdkNtP9Jr3/mNkv76R87MghNq1bwxsffJq17KN3XqfHTf1p1LQZRw8fynNbgOF33cvwu+4FYMeWTZw8fpTruvXg1Wef5OyZ0/Tu2ML/yTFDCvw5i0lV4BngKayW+cBUrPH/GhyTMNCff/5ZrmHDhmk33XRTEoDZbKZGjRrOtWvXBplMJgYPHpwA0KdPn6QqVarY16xZE9ynT58kh8PBihUrgrt27Zoyb968Kj/++ONegJMnT/qNHDky5ODBg2XMZrMWFxfnt3HjxqDGjRvbAW699dZzlSpVcuUWy8KFCyvMmDGjenJystnlchEfH3/BuXTMmDFnAFq0utpp9vNTK7fsuyo+Pt4vIz2dvgPOl7FKlauQkpLM2lUrOHs6Nmt5SnIytv37KKipn37F1Fdf5NMP3qFxaBht2l+L2U8P7eV3pvP2y88xrE9XatWpR4frbsDs56fflSulae6e7nt37WDp4p+Z9X30Rft3Opw4HA7S0tL46uelHD18iLsG9KFhk6Y0C291wbqNmjbjs/m/6Ns5nTw4chBTps5g8Y/f8/svCylbrjxPTZ5ChYoVs7bR0FRCqr1KQqq9SpC/OblKucATlYL941QJP/furbw2oRdGUFBQVuE0m82a3W7PGlhnw4YNO4ODg3N9PKd8+fK5PlsZExNTZuTIkY0A2rdvn/TFF19ckFEbNGiQ0bx585Q217TNOJmQVr3HoDtrPv300/7Jaen4+/tfkGC3bFhHjVq1L3m3/NO8r+nWuy+WSlmVB6xfs4oTx47w7ecf43A4SUpMpG+nq/hq0R9UrlI11/04HA7efuV5Xn//ExYtmEelKlV5ZspbPDSst3lQz2tp1KBunjEYwB+4DbgNq+Vf4HWs8QsMjkl4uOwJYMSIEWc+/vjjqgkJCecqVarkaN++fRrA/fff36B3797xv/76636TyUR4eHjz1NTUrCv3cuXK5Vru9+7dGzBp0qT6q1ev3tmiRYv0f//9N6hnz57Nsq/jH1jGfOhsSu34FHtVs9lPZdgdeZ9r3eegL376ncAyl25pmvDAXRy2HQBg5rc/UbFS5Qvebxbeiulffp/1+4AbO9IkNAyAOvXq87+Zc7LeG3vHEEK7dnUndNCUXuW+ce0/HDtyiFuu1x9oOH0qlv2Rj3M69gTD7hxDcNly3DxwWNY+W7fvyPbNGy9K6Nl9+cl0ekXcSnmLhZnvvsV3v61k0fy5fPnpdMZNeDrXbVLtzrJHzqU0jk0wpVUtF3iijElLvuSXI7y3yr1bt27Je/bsCVq3bl0ZgJkzZ1aqUaOGvWHDhvaKFSs6ExMT877VzcZisbg6dOiQ8Nxzz2W1qdtsNv/sVW95adu2bdquXbt27Nq1a0fOZA4wYOCgxBMnY4NWbNzV6mRCWr3ly5b4N2zaLKtj3amTJwBITU3hg7deY/TYx/I8lsvl4qd5XzEwW3U7wOwfFvPrmq0s/mcLs39YTLny5Vn8z5Y8kznAnJnv02/AEKpWr0FqSkrWyU+hSE7x6PFDOgI/YLWsx2q5yehgRMnq0aNH0n///Rf466+/lgP9ru/kyZPmq666Ks3lcrFgwYIKAL///nvZ06dP+1977bUpAPfdd9+Z6OjoSjNmzKg2atSorJ6f8fHx5pCQkHSTycTixYvL7d69O1/VvOfOnTP7+flp9evXt7tcLqZOnZr15IrD6TIDHDiTGh6XklEt++OlIY2bUiYomMU/nk+4586eIbhsOdp37sqsD6dmLY89cZyTx49edOy3P/qceUv+Zt6Svy9K5nD+nAIw/+vPCQoKpsN11wNw5lQsLpd+T7Nq+TIO7N3FrQOHuC9alKa5H0EfducYlsXsYvE/W1j8zxauatOOyVFTGXbnGAD63jqYVe52+fhz59i2KYamYS3y/L6OHPqPNX8vZ+gdd+Ow23E4HCilMJlMpCRfPkdnOF1ljsWnhtjOpIam2LUK51KdpepGtCCu4Dl0Y58Vr127tuOTTz45cNdddzV0OBzKYrE4586du99kMtGxY8eU0NDQ1KZNm7aoV69eevZ29Nx89913B8eNG1evadOmLZRSWlBQkGvGjBn/ZVa9FZSmaZxKSq92KoXaz0VNNY+7cxiaplGufAXeeP+TrPUeHDkIl6bhyMggYvBwbh99X9Z7D905lHETnqHF1W0AWPP3cpTJRMcuNxQmpCyHbQdZ/89KPpjzHQA3DxzGE/fdwW+LfuT69q20Vs2bXtH+S0hbYLG7d/yzWOP/utwGomgY+bx4tWrVnN9+++3+p556qt6jjz5qMplMTJ48+eiIESPi586du/+xxx6rP2nSpLqBgYHaV199td9isbgAQkJC7FdffXXysmXLKn7++edZoxi+8sorRx9//PH6UVFRtVu0aJFy1VVX5esOsEOHDqm33HLL2bCwsBaVKlVy9OvXLw7geHxqzTNJGTVB72GWczs/Pz+mffoVrz0/iU/e/x8mk4lhd45h6B138+q7M3nrpWcZ1KMTSimCgsvyfNT/qFGrYF1I5n/9OdELvgNNo2GTUN755IusC/YVS39l1gdTMZnNVKtRk/c/n0dQUBCkx7Nw6VJT9N/L/Ca8+elljgCPRk5m8viHmDtHX/fusY/Rqk3ewxO88UIkE62vopSifAUL/QYMYUiv6wgKLssbH87K92dzulz+SRmuSq/8fW7hvYuiH7FFRVzcJlDK5Xcs9zA/P79fmzZtmhQcHCwDA1zC2eSMSrEJaXUynK7Ay6/tWcICTicHOBLLZl+W5tA4ePQUDVdNoEzSYaNCu5zfgKewxm8xOhBfIuX+8jIv3k8nZtQq+tHbil95HGk1406UUWUCU1QFk2t3RpVyRseUF82RQeyxI1j/jOVoohP0QarG26Iidhocmsfw2ip3T5OU7gjeczKx+ZFzKY28MZl7ud7ABqyW97BaKhodjCgdzqVkWHadSGx5Ij6tvjcm8wso0LxvMr2bgC0hkdHTQiKjK1127VJAEvoVcmmaOnoutc7BU0nNS2SIRpEXM/AwsAerZdTlVhaisOxOl9l2Ornh4bMpTey+c/Guad7Zk9wPeBTYGxIZPS4kMjpffad8lST0K5Cc7gjaezKp+Znk9Joye4XHqAbMwWpZitXS5LJrC1EAZ5MzKu45mdgyIc1+cY80L6aUwoVXT8JTBfgA2BASGZ13d3sfJwm9EDRN41hcaq0Dp5KbpzucJT4+vMiXHsBmrJaxRgcivJ/d6fI7eDq50ZFzKY2dLs0Xe1nn1o/PG10FrAuJjH4sJDLaK6scroRP/A+WpJQMR5m9J5Oan05Kr+3hM54JCAY+xGpZiNVS7bJrC5GLs8kZlfacTGyRmGb33XZaBS4vrXPPRSAwFfglJDI693FpfZQk9HzSNI0T8ak1959KDk9zSFu5l+kPbJVn10VBOJwus/uuvJGP3pWfp8DlfZ3iLucmYGtIZHTEZdf0EYX+Iy2ueZHB8+ZGTrM7Aw+dTWmYZneWvfzawkPVAH7BankfeFLmYy+cnWHNi6XcN9+106PKfEqGo8x/Z3yq09tlKE3DZ+7Qs6sGLAqJjP4QeNIWFeHRI2ddKblDR58VrVWrVs0bN27cokmTJi0efPDBuk6nPoBSfKq9/L7YpOb5SeZHDv3Hbf26MaxPVwb16MSTD44mIS4u6/0VS3/l1m4d6N+1LU/cN4qkxIRc9/PVrI8Y1KMTg3t2Zkiv61j0w9wL3l//zypGRHRnYI9ODOx+LZtj1l60D7vdzuNjRjK0dxeeuG8UDocDgPS0NO4e3O+CuEoRBTwC/InVUqqq4nzd7t27A954440LmlXq1KnTavXq1QXu43IuOaPigVPJzQubzPNbzr+d/TGDe3bOOl98NeujrPdeffZJhvXpmvVq36TmBe9nKrJyrjRfvEPPbhywPiQyOu8h7XyAzyR0u71Qg7oBUKVKFcfcuXP379+/f/uWLVt2rFu3ruwHH3xQ5XRSepVDZ1KaujQtX49CVK9Rk9nzFzNvyd/8sOwfqtWoyfR3ogBISU7C+tSjTP3kS37+O4ZqNWoyc9qbue6nSWgYny/4lflLV/P+53N50/oMh236RG+xJ47z/PixvDJ1OguW/cPcxSto2KTZRftYvWIZFSpW4rvfVlK+giVrqMaZ097kttH3XTAhQinUGViP1VJstUyiZO3duzdw1qxZV9RPIrOz6+FzKY0z5ybPTJD5VZByHjFoGPOXrmbekr+Z8+MS5nz0Hju36WMjPTPlrawhXj/84nsUij43D7hoH0VZzl2+eYeeXTiwKiQyuofRgRQXr07oSqm2TzzxRO2WLVs2f/jhh+uuXbs2qG3bts3Cw8ObN27cuEX2Oc/Hjx9fOyIiolH37t2bNG7cuMW1114bevLkSTPAddddlxoeHp4BEBwcrLVo0SJ1r+1w1WNxqSEF6fgWEBhImSD9hsDpdF4wTvrKP5cS1uIqGjYJBWD4nWNY/FPu0w527HID5StYAKhZuy5VqlXnhHtc53lzPqXvrUNo1LRZ1jErWCwX7cPPz5+01BQA0lJT8PcPYM/ObRzcv5c+/Qfm9yP5srrA31gttxsdiMi/+fPnVwgPD28eGhoa3r59+2YxMTFlAB555JH6NputTFhYWHj37t2zHlecN29epdatW4fVqVOnVfbzwaFDh/z69evXqFWrVs1DQ0PDH3nk0Tq2M8mNTyel1+7b6SreefUFRtzcg+efKNhDEgUp55llHCA1JSXPi4eF339D5xu65zrveFGVc6XAWTr6+FqAxSGR0XcZHUhx8OqEDvqsadu2bdv50UcfHWnatGn6ypUr9+zYsWPn5s2bd/z888+Vli1bllVVvmnTprJff/31wf3792+vWrWqY+rUqRdd0f/333/+vyz+tWrnHv0KNQSiPSODYX26csPVjTl0cD9jx0cCcPzoEWrVPT+LWe169Tkde+KydwBr/l5OQnx81pju+/fuJj0tjftvH8CwPl157fmJpKRcPAR1p+tvpGy58gzt3YVyFSrQ4brreeul55j04muF+Vi+Kgj4GqslCqulVJzNvNnRo0f9xowZ02j27Nm2PXv27LjnnntODRs2rLHL5eK99947FBISkrZr164d2eduiIuLM2/atGnX+vXrd06fPr1G5vTKI0aMaPjQQw/Fbt26dWfMpi37Nm7dXn3+999XzNwu/tw5vvp5Ka+993GBYixoOf89+icG9uhE385Xc+f9D9O85VUXrfPj3K8YcNsduW5fhOVcKwV36Jn8gdkhkdEvGB1IUfP6hD527Nis2ZNSUlJMt99+e0hoaGh427Ztmx87diwgJiYmq0f6DTfcEF+zZk0nQMeOHZMOHDhwQRvZqdNn/CNuGdBy9NjHVGYCLSj/gADmLfmbPzfsIaRJU77/anbhPhiwd+d2Jk94iDc+/JTgYP26xOlwELN2NW9Nn81Xi/4gIT6O6W9HXbStyWTihTem8d1vK5kcNZVvZ3/MjX364XA4iXz4Xsbffyf/rpI5TdwmAV9gtfh2T2Yvt2LFirKhoaGpHTp0SAUYO3bs2djYWP/MJJ2bUaNGnQWoVauWo27duhl79uwJTEhIMK1Zs6bChAkT6oc1b96yffv2rQ7ZDpqyzz9+y9DbKYk5uHtF3MqCZf/w0/J1RC+Yh23/3gve3/DvalKSkujavXeu2xdZOfetx9byyxoSGf1ZSGS0dw/bm43XJ/TMGZUAxo8fX6dKlSqO7du379i9e/eOjh07JqalpWX9kZYpUyZrJCSz2aw5HI6s906cOlOmV5++Lbv1jjDdef9DuR5r/55dWZ1UXn32yUvG5R8QwIBhI1k0X+/QVqtOXY4fOZL1/rHDh6havSZ+frnnkP17dvHI3bfx4lvvc02HTlnLa9apS9fuvalQsSL+/v70vXUwWzauu2Qsx44c4u8/fmf4nffywVtTGDxyNC//7wOiJk+65HalzEhgPlZLKenVXDoEBQVlnR/MZrNmt9uzJqRavvrfo98tXeM/b8nfLFq5gfsfO1+mg8vmXkF3uXNAQct5pjr16tOqTVtWLF1ywfIF335J/6G3YTZfvhvPFZZz5Sw9d+jZjUZ/Xr2C0YEUBa9P6NnFxcX51a1bN8Pf35/NmzcHrlq1Kl//Scdiz5br27dfeOcbe5qyF+qcGoeGZXVUeWbKWxfv58ghUt3tWS6Xi98W/URoc71T5XXderBz22YO7tsDwNw5n3LTLYNyPc6Bvbt5+K5hPB81lU7X33jBe/0GDGHd6r/JSE8H9Da7Zs1bXvLzvfHC0zz1whRMJpPero9CmUyk5VJVX8rdgv5om8fOOFWadevWLXnPnj1B69atKwMwc+bMSjVq1LA3bNjQXrFiRWdiYmK+Oq9aLBZXh47Xpr74ymtNNHfnt7zmH8/pcueAgpTz/Xt2Zf377JnTrF31d9b5AiApMYHff1nIgOG5V7fndKXlvBTeoWfqCawMiYyue9k1PVyhqxg97VlxgMmTJx8bPXp0o2+++aZKgwYN0q+99trcnxfJJiHVXv61t/7XdNvmDSo1NYU/Fv8M6FVh9z166bvwnPbs3M77b7wC6Am9eaurmfTS6wCULVce6xvTePzeO3A6HDRp1pyX3/kwa9thfbry/ufzqF6zFq+/EEliYgLTXrMy7TUrAI89beW6bj1o3a4j3Xr3ZXjfGzCZTDQODeO5197JM6ZfFnxHaHhLmjRrDsA94x7npUmPYbfbue+xpwr0+UqJ7sBSrJa+WOPPGR2MpzHyefHatWs7PvnkkwN33XVXQ4fDoSwWi3Pu3Ln7TSYTHTt2TAkNDU1t2rRpi3r16qVnb0fP6WxyRqVXP5hd5s2Xnrni+cdzKkg5/2rWDDauXYO/vz+apnHHmAcvuID/deEPhLe6mgYNG1/2uFdczhWU0jv0TK2A5SGR0dfboiKOGR1MYZXq+dCT0x1BB08nN8vvY2m+zovnQy8OW4BupTmp+2K5P5ucUenouZRG3jwLSVHKnA/dXDEw0WaqEpTmMnlsP5Jc5kMvDruBbraoiBPFdYDi5FNV7gWRZncG2s4kh0oyF3m4CojGapFhfn3EueSMikfPpTaUZH4xBThLb5V7ds2ApSGR0VWNDqQwSmVCz3C4/A6eTm7q8+MziyvVCViA1RJgdCDiysSlZFiOnEttJBMq5UGhnKhSmQ9y0QL43Rs7yuX3P9AFaJrm/YXB4XKZDp5ODi09YzRfmawWmXw0zfio3sCXWC1ysvNSiWn2cofPpTaWZH4pGi7Nt8d+LaDWwE8hkdFelSfye4d6zOVyxcfGxtaoXr36WaWUV57dXZrG0bjUhml2l8xhnos05VQu5/n/Wk2DU8lOVHoC/mmnL7GlzxsKxAH3GxyHKKB0uzPg0NmUxr5wM1KslAKvPKsXq27A1yGR0UNtURGuy63sCfKV0Nu2bZsUExPzYFxc3IyEhAQLeOeVXHyaq1q6U5M20Twoc6LZ33Vh3yeVnkDdTW9jdvpEn6grcR9Wy0Gs8TLUnpdwujST7UxKE2lauzxN0nleBgEfAAUbA9gg+f5Db9u27ZqYmJguLperNl7Y9v7sn2deTEx3DTM6Dk82q8zUHQ20I+eHyNM0/NNOSzI/7xWsls1Y438xOhDDFNeENtb4In0cTtM0/juT3DDd4ZTauPyQ/nCX8mBIZPQGW1REwcYBNkCBrlzbtm2bBOwppliKjXvMXknml2FOt6WWMR03OgxPZkIf+70j1vjdRgdTGn355ZcVJ0+eXCcgIECbM2fOwcxhYHM6FpdWJyndUTG/+133z0oy0tK47saehYpry8b1vDzpcdLS0qhRqzZTps6gRq3aF623bdMG3rBGsnv7NjpdfyNTP/3qgvfX/7OK/73yPKlpqaBpWN98l6vbdrhgHbvdzlMPjubo4f+o26Ahb07/DD8/P9LT0nhw5CCmffp1aZ9NsTi8507qHjf+SnZed6ddUCGR0b0BnxuEXxjGAvyENZcp7kSxmzlzZrVJkyYd37Vr1468kvmZpPTKZ5LTa+Z3nw6Hg/X/rGTVimWFisnlcvHMI/fzlPU1fv5rPV1v7MWbLz6T67rVatTgqRde48kXplz0npFTI2te2i+qBAUC34dERlcyOpBL8emEHhIZXQv4Ai9t8xceqxnwlfR8L1mjR4+ut379+nIvvfRSnTZt2oTBxdOprvp3faVj8Wkh6/5ZybA+XbO23btrB3076TOZHT18iC4tGvDOqy8wvO8NfDv7Y7778jN+WfAdw/p0ZcbUNwoU144tmzD7+dGhs368IXeMZsXSX0lPu7ipqkatOrRq05aAgIs7T8vUyB4vBPgiJDLaY/OJz56QQiKj9epRqG50LMInRQCRRgdRmsyePftwy5YtU6Kiog5v3LhxV87pVEffc8/ZO+8Y2cjlcl32hJuYkECT0ObMXbyCO+4dy9A77qbfwKHMW/I3Dz4+sUBxnTh2hFp16mX9XrZcecqWK8+pkwUbbMzIqZFlTJl8iwCeNTqIvPhsQgcmoz92IERxsRZbJzFxWTmnU+03dFSFU7EniD1x+aG4/fz9iRjkWd1qjJwaWerbC+TFkMjownW2KGY+mdBDIqOvA543Og7h8/zRq97lUUiDnUlKr5yYdr4TnNlsxuk8P9535uyEmYKCgjCZ8nf6S4iPz5oy9fF7L575rGbtuhw/en6eg+SkRJISE6hWI9/N+Pp+jJwaWe7QC8IEfBMSGV3vsmuWMJ9L6CGR0WWBz/HBzyY8UjPg4nk0RbHLnE71n3/Xlj8Rn1Z/8U/zqVazNtVr1qZu/RCOHz3C2TP6gEiLfph7yX2VLVeexITcJ2esYLFkTZk69ZMvL3o//KrWOOx21q7+G4Dvv5zNDT1vIrBMmQJ9HiOnRpY79AKrCsw2OoicfHHAhbeAy883KETRGYvVsqhUPJ9exM+LX4nM6VTvGXNvY6fTaa5gqchb0z9DKUX1mrUY/eCjjOzfgypVq9PlMo+jdb/pZhb9MJdhfbrSvW//ArWjm0wmXn33I16OfIL09HSq16jJlGkzst5/6M6hjJvwDC2uboNt/17uu20AaakppKel0at9C+59+AmG33WvoVMjy6ivhdI9JDL6TltUxByjA8mUr+lTvUVIZPRNwGKj4/BWSwMmrG5iOt7Z6Di81EkgDGt8nNGBFBVvmD71dFJ6lWNxqSFGx+GtMqdPddYon3Ag3eLRk5GU0PSpBXUaCLNFRZwxOhDwoWrpkMjoisCnRschSq0awMUPF4tik+5w+p+IT/O4dkxvpMmjvYVVFQ9qcvOZhI7+KMHFQzMJUXIexGq5xuggSovDZ1NDXJpmNjoO76ckn1+Z0SGR0d2MDgJ8JKGHREY3AB4xOg5R6pmAD7Fa5OxYzM4kpVdOyXB4dBWx11DSJ64IfOQJU636REJHr+o0/MsUAugI3Gt0EL7MpWkqNjG9jtFx+AylNJeMLHOlQoHcx/stQV6f0EMio9sAI4yOQ4hsorBaqhgdhK86lZhe3e50BRgdh69QSmku708FniAyJDK6uZEB+ML/4ptIA5DwLJWRgY2KhcPpMp9OSq9ldBw+RnPJKbQoBACvGxmAVz+HHhIZ3RfoYXQcQuTiQayWd7DG/2d0IEWp1eetimWo2613bc3X8+0nE9JrOl3SEa5IKaW5ZKi4otI/JDL6GltUxAYjDu61d+juyVcMvRoS4hICAavRQfiSdIfT/2xKRg2j4/A5ehu60VH4EsOm6/bahA7cBbQyOgghLmEUVktTo4PwFSfi0+poWtFknjFDb+aPX6MLvN0Hb71K9IJ5AEz/XxRvWJ/Odb0VS39lzNCbryjGEqNg8a9L/G7t1oH+XdvyxH2jSErMfRhcl8vFa89PJOK6Ntzc5Rq+mT0z672/li3htn7daNe4Rp7fC0BCXBxjhvVncM/OTHlmQtbys2dOM2bozdjt9qL7bMa4xd23q8R5ZUIPiYwOAl42Og4hLsOMtKUXiZQMR5mEVHu+Oxo6HI5iieOhJ58hYqBnzdJ2pZKSU7Qnn3wycOonX/Lz3zFUq1GTmdPezHXd6B/mcWDvbhb+tZ6vfl7G5zPeY9/unQDUb9iYF996j9EPXPoJ4ugf59G+c1fmL13Nwf172btrBwBvvfQsjz39Av7+/kX7AY1hNeKgXpnQgUcBeWxFeIMRcpd+5U7Ep9XRgKvrVeL9N15h2E3X0//6dll3y7jf+/Dt1xgR0Z13o14kOSmRFyc+xoibezCk13W8NOlx7BkZWev/u2oFIyK6c3OXa3jrpefIHAY75937hAfu4qd5XwPw/BPj+PKT6RfFZ7fbmfLMBPp3bcuIm3uwbvXKy36mUydP8MCIQQzsfi0PjBjExHH3MP1/+nSpPduFE3viOABPjb2bOwf0BvRZ465v1YiM9HR+mvc1998+gEkPjWFwz87c3u9GjvxnK9gXCyxescIU3qKlq2GTUACG3zmGxT/9kOu6S37+gUG334nZbMZSqRJ9+g/k15/mAxDSqAnNwlth9rt01yw/P3/SUlNwuVzYM9LxDwhg1Z9LqWCpyFXXtC9w/B7KkLt0r0voIZHRZuBho+MQIp/MwONGB+HN0uzOwKT081OjohTzfv2L6V98T9Tzkzh6+FDWWyazma+j/2D8cy/z9svPc02HTny9aBnf/bYSl8vFV7POT5pyYO9uPv9xCd/9vpKYNatY/OP3hY5x/lezsR3Yxw/L/uHzHxazc9vmy27z+guRXN22PQv+WMOUqdNZv2ZV1nsdu1zPvytX4HK52L1jG4mJ+pSsG9etoXmr1gQE6sNubN+8gUcmTWb+0tV07HoDs6ZPLXDsh48fo06dulmDy9SuV5/TsSdyreU4fvQIteueH223dt36HD92pEDHixg0jMO2gwy/6Xo6dulG9Zq1+Pi9t3lk4nMFjt3DWUv6gF6X0IF+QF2jgxCiAO7EarEYHYS3OpWYXj3774NuHwVA3QYhtO3YmQ3/rs56b+DwkVn//mNJNLNnvMuwPl0ZftP1bFj7D4dsB7Le7z/4Nvz9/QkKCiZi0DDWrFxR6Bj/XfWXvr+AAPwDAhiQLY48t1m5Imu9qtVrcH2PPlnvXdulG2tWLmfXti00C29Jh85dWf/PStasXE7HLtdnrXfVNR2oW78BAFdf06FQd+gAmiq5Xu7BwWV5+6PP+e63lYyb8DQfvDGFu8c9xiHbQZ58cDRPPjia3Tu2llQ4xanE79K98bG1B4wOQIgCKgfcA+Q9F6bIlcPpMsen2qtecqVsqSgouNz5XzSNt2fOIaRRk3wdKzOnmf38cLnOz+aVnl7wieYKkx+zb9Oxyw1Mi3qJRk2b0bHLDVSpWp01K1ewJWYdz776dtZ6gYHnB8g0mU04c7mr3r9nF08/ch8Ardt15JkpF84lUq92bdfif9dnHfzY4UNUrV4Tv1yqzmvVqcuxI4e5um0Hfd0jh6hVu/D3V1s3xnD2zClu6HkTowf1Zcq0j9A0jcnjxzHr+4J3WvRAzwBDS+pgXpXQQyKj6wN9jY5DiEJ4GKtlGtZ4l9GBXIn8Pi9eVE4nZ1R1adoFNYk/zfuaseMjOXr4EBvW/sNT1tdy3fbGPhF89uE0no96Bz8/PxLi4og7d5b6DRsBEL1gHn0HDMHpcPDLj98z6t6xANQLacjWjevp2e8Wjhz6j03r1tCr362XjPPaLjdk7Q9Ny2pzv5QO113Pwu++4cEnJnHmVCx/LVvCkJGjAahesxblK1Tg+y8/4+NvF1KxcmXefOkZUpKSaN7q6svuO7vGoWHMW/J3nu/fdOMNzsdfnqIO7ttDwyahzJ3zKTfdMijXdXtFDOCHb+bQ++YBJCUksOTnBbz32bcFiieT3W5n6mtW3vhAnyQzNTUFpfQLm5SU5ELt0wMNCImMrmmLijhREgfzqoSOPka2NzYTCNEIuBlYaHQg3kLTNM4lZ1TLudzpdDLsputJTUlh0ktR1KlXP9ftn3phClNfe5FhfbpiMpkw+/nxxDMvZiX0hk1CuWvgTSTEnaNb737cdOtgAO5+8DEmjruHwT070zg0jJat21021kEj7mLf7p0M6n4t5S0VuaZDJ3Zu3XTJbSZaX+P58eMY2P1aqtWoSavWbSlf4XzLTMcuN/DXsiXUbRACQNVq1ana4ipMpqI9BVYoV1578Y2prsfvvcPkdDho0qw5L7/zYdb7w/p05f3P51G9Zi1uHjyc7Zs30P/6tigUo+57iKbNWwB6E8JzT4wjOSkRTdP4PXohz055k269++V63M9nvEv/wbdRpZreojJuwtM8dNdwAMY/+2KRfkYD+aHXzr1aEgdTmT07PV1IZLQf8B8yRWqxWRowYXUT0/HORsfhw5Zije9ldBD5FRMTE+bn5/dr06ZNk4KDgwte73yF4lPt5f87kxyafdnV9Srx9zYbFXygS0Jaaip+/v74+fkRd+4so27pxZR3P+KqNpe/gCgq5XGk1bbHOfb4Vy3n6ZlAc2QQe+wI1j9jOZrovPwGnsMGNLJFRRT7V+xNd+g3I8lceLce/L+9e4+So6zTOP6t7s4kgWBH0AASoBdYJQFCNLLoLojGC2gpCrrcPIByM1wV9Wjrslgr67HWFfDG6vEuq6CikhCaS1ACiNyOgSSEyAZCKlwCSSCTSsLcZ3r/qBYxDExm0lW/ujyfc3LCH3OqHjLT89Rb9db7etWpeOHopgUX1IZhRud58niwkos+dTbNZpP+/n6OO+X0RMv8BQ7aPzVeNeA9wM1xnyhLha7JcJJ1DnAC8PWRvrDo+gaGKlt6XvSqWsuSJzoN0ozdH29dwLf/66VrYJ127oUcdfSxr/hsOzmO+jx+p6JCj9TqjRrRFY5I1p1Edgp9CGi2a7nV0ejs6tu5SfYXGD989ns4fHbKf3U5GSn0ZhNoMpSNtFv7UK3e2Cnw3c1xniQThQ6ciSbDST68Ea+6P174sHWQbbBmaGgoXLdu3a5TpkzZ4CT4i3/j5u6dmwOZek6aSYMMOt2Dg6Vms2/kL7bUbDLQtYnNPYN0dmfyRZGJwIeBn8Z5kqwU+onWAUTa6CTgYusQI5k1a9aWRYsWzdm4ceP3Nm3aVIVkNs0ealJ6rmtwx2wOxLJlAoOl54e6K+tKsQ4c26DJ5p5BvvvnjfQMZvYn42RiLvTUz3Kv1Rv7Ao9a5ygCzXJPzKN4YWbWd1+0aNEkogmpidwlu/TujUevDvu1NXICXr9pzWNnP3Pdkxe+fs7bRv5qO0NN6OweynKZQ/QIa9fAd5+N6wRZGKGn/AGUyKjth1edhhf+xTrItpg1a9YWYEVS57vrmsZXkjpX0VU3dPUNrHliy1O76/FGAkrAu4CxrcSzjSdIu8y8tysyCkeO/CXFU6s3JqB/m0T1lyqZHvZmTKwD1FQXemtntdnWOURioNIa3ruAHa1DFElfOQs3anMj1gFqqgsdOATI/pJQIi91BF51gnWIFPqQdYCi6SuP0wg9OVNr9cb0uA6e9kLX7XbJq4nA4dYh0qRWb5SAD1jnKJq+kgo9YbHddlehi9jRbfe/dwAwZcSvkrbqK1cyv4BPxhSv0Gv1xk7AW6xziMToCOsAKXOIdYAi6i2PU6En64havTF+5C8bvdQWOvB2YJx1CJEYzcCrdliHSBEVuoGeUocKPVk7AIfFceA0F7put0vedQAzrEOkiArdQG9ZhW6gcIV+qHUAkQQY7JeZPq1bkAdZ5yiinlJHmnsgr2L5WU/zNzK2qf0iKaJRaWQG0R0LSVhPWYVu4IA4DprKb2St3tgLmGSdQyQBGqFHdGFjpFeFbmG/OCbGpfUbGcvVi0gKTcerxjLjNWNU6Ea6S+PL1hkKqALs3+6DqtBFbFWAmnWIFFChG+kpd2jtVxsHtvuAaS30adYBRBK0j3UAS609G9o+WpFt061Ct1KYQi/0LzgpnKL/vO8G6Lavke7yeBW6jcIU+j9YBxBJUNELfap1gCLrKXXo7QIb+S/0Wr1RQR9wKZZ9rQMY28M6QJH1lDu0IqeNvWv1RlsvplJX6ERlrttvUiRFH6Gr0A31OBqhG3GAXdp5wDQWes06gEjCdrUOYEx35Azplrup3Bd60X+5SfG82jqAMY3QjTRx6C2Pn2Cdo8B2bufB0ljo+uGSohmHV93ROoQhFbqRZqnZ7KNDCxvZyf0IXbd/pIgmWwcwpEI34pRweuiYaJ2jwHI/QtfVohRRkW+772YdoKgGyyVngIpmudvJ/QhdhS5FVORC1wjRSG9pnMrcVu5H6LrlLkW0k3UAC7V6wyFaz14MdJfGawBlSyN0EckNfd4N9ZTHaRKyLY3QRXKoaR3AiD7vhnpLHSp0W23t4DTe6tIVe8Km0Ll+TmX+X2rO2qIvQWqpqIWuVSEN9ZU0Qjc21M6DpbHQdcWegFezacMZlRsfOqF86047s3mG4/A260wFV9RCL+r/dyo0nbIuqGzlvtA1Qo/JJLo2nVpesPTkyi0TdqXzYMfhcOtM8oKiFtugdQARQ239+U9joafxuX5mTaS368TyrUs+Xr6pNNVZP9NxOMw6kwyrqIXe1hGKSMYMtPNgaSz0Z60DZF0H/b0fLt+x5IzyDYP7OE/PcBzeap1JRtRtHcCIRuhSZF3tPFgaC/0Z6wBZVGZw4P2lexZ/ojK/d5rz+IGOwz9ZZ5JR2WgdwELguz21eqMXPWqTYlKhS8RhaOjdpfuXnlOZt3mG89j0ktN8s3UmGbPQOoChdcCe1iFEDDzfzoOp0DOn2TystGzZeZW5nYc4D7+h7DRnWieStthgHcDQWlToUkwq9CKa5fzfw+dXrl17WGnZvhVn6CDrPNJWXXhhWz/YGbPWOoCIkefaebA0Fro+3C3TnWDlBZVrn5hdemDvDmdgf2B/60wSi/XWAYzpMy9FFbTzYKkr9MB3O4s8SWYfZ83q8yvXBkeV7nvdRKf/HwGt3pZ/Rb8rpUKXolrdzoOlrtBb1gJ7WYdIylRn/ZpzyvMeObp815RJTs80YG/rTJKoldYBjK2zDiBipBCF/gw5L/QpdK7/ROX65R8p37Hzq3j+QMfhddaZxMwj1gGMaYQuRbQ28N22rj+R5kLPncls7jyjcsOyE8oLJ+3CphmOwxHWmSQVHrUOYEyFLkXU1tE5pLfQ11gHaJfW+ukPnly5pWNXOmdq/XQZRtELfZV1ABEDQbsPmNZCX2IdYHtMpLfr+PLCJaeVbyzt6aw/2HH4F+tMkmpFv+UeEC2sUzXOIZKkoN0HTGuh32sdYLTGMdB3bPmOxWeWGwP7Ok8frPXTZRt14oVtfRc1awLfbdbqjSWgLXylUApzy/1Bos0qJloHeSVlBgfeV7p38ZzK/J7pzuqDtH66jEGm70a10WJU6FIsbb8zl8pCD3x3oFZvLIL0bfXpMDT0ztL9D55buW7Twc5KrZ8u2ytzd6Ni8oB1AJEENYH72n3QVBZ6y72kqNAPKz247LzK3A2t9dMPts4judH2D3VGLbYOIJKg5YHvtn1DprQXuqk3OSteWD99nDN4oHUeySUVeuQhoA/osA4ikoC74jioCn0r05zVKy+o/O7Jd5Ye2Evrp0vM1uCFT1qHSIPAd/tr9cZyYKZ1FpEE3B3HQVNb6IHvPl6rN54Bdov7XPs4a1afV5m76r2l+/aY6PRp/XRJikbnf+8BVOhSDIUboUP0C+/oOA68B+ufPqcyb8UHy3e9dpLTMx2tny7Ju9M6QMrcC3zcOoRIzJ4DVsRx4LQX+r20sdCn0Ln+rMr1f/lI+Y7JVZ4/yHHYvV3HFhmDG60DpIz+PaQI7gl8txnHgdNe6Pds7wGqbNl4euWGZSeVb92xtX663nWVNFiNFy63DpEmrcdsDwEHWGcRiVEsz88h/YV+J2NYEnJHujefUl6w9JTKgo7dovXTU/P6m0iLRqPDa6BCl3z7Y1wHTnWhB77bV6s3GsBJI33tBHq7TygvXHxa+SZnT2fdTK2fLimnQh9eA/icdQiRmKwD/hTXwVNd6C2/5WUKfRwDfceU/7j4rHJjYF9nzQytny4Z0Qfcah0ipe4CNgKTbWOIxGJu4LuDcR08C4V+E9AF7AAvrJ++ZE5lfrfWT5eMuh0v3GIdIo1ayz7fDBxvnUUkBtfEefDUF3rgu1371Off8I7SA/udW5m3eaazclrJac6yziWyHX5hHSDlbkCFLvnzLHBbnCdIfaEDPDz+1Gs6nMFfWecQaYMu4HfWIVLuRmAIKFkHEWmjuYHvDsR5gkx8YDqcwfnAZuscIm0wDy/Uz/IrCHx3PTFOHBIx8pu4T5CJQscLu4FrrWOItMHPrQNkxE+tA4i00QbgD3GfJBuFHvmJdQCR7bQOWGAdIiN+DWjioOTFvLhvt0OWCt0LbyPaYlEkq67CC2P/UOdB4LtbiHlGsEiCrk7iJNkp9MgV1gFExmgI+I51iIz5sXUAkTZYAfw+iRNlrdCvJFoKViRrrscLV1qHyJLAd+8EHrTOIbKdrohrM5atZavQvfB54GfWMUTG4HLrABmlu3KSZVtIcIJntgo9cgWQyNWOSJssbs0BkdH7OdFSsCJZdGXgu5uSOln2Ct0LVwDzrWOIjMI3rANkVeC7z6NX2CSbhkj4zlz2Cj3yH9YBRLbRGhKa4ZpjlwO91iFERunawHcfTfKE2Sx0L7wfmGcdQ2QbXIIX9lmHyLLAdx8Hvm+dQ2SUvpb0CbNZ6JEvoWfpkm4rgR9Zh8iJrxCtgy+SBbcFvntf0ifNbqF74RK0HKykm4cX9luHyIPAd9cC37LOIbKNLrI4aXYLPeKhUbqk0zLgKusQOfM1tA6FpN81ge+abC6U7UL3wgfRe+mSThfhhUPWIfIk8N1O4FLrHCKvoBf4vNXJs13okc+jq3ZJlzvwQk3ajMflwHrrECIv45uB766yOnn2C90L1xFNkBNJg37gbOsQedXatMW3ziEyjPVEkzfNZL/QI99Baz5LOlyGFy63DpFz/0P0BoFImlyc5Kpww8lHoXvhIHC+dQwpvAD4snWIvAt8twc4E02IlfR4CPiBdYh8FDqAF94O/MI6hhTaBXih3pVOQOC7C4EfWucQaflM4LuD1iHyU+iR84mW2hRJ2ly8UHsMJOuzwFPWIaTwfh347s3WISBvhe6FncBp1jGkcJ5FE+ES13peOcc6hxTaU6ToZzBfhQ7ghTcD37WOIYVyFl74jHWIIgp893q0gI/YaAKnttZHSIX8FXrks8Aj1iGkEH6MF2oJYlufRO+mS/K+GfjuH6xDvFg+Cz2amHQyYD5JQXLtYeAC6xBFF/jus+j7IMlaBtStQ2wtn4UO4IX3YrgEn+ReL3ACXvi8dRCBwHd/CfzcOocUQh/w0cB3e62DbC2/hQ7ghZcCV1vHkFw6t7Xjn6THWcAD1iEk9y4KfHepdYjh5LvQI2cAqfzHl8z6Fl6ofc5TJvDdbuAYorcOROKwkBRvEJT/Qo+epx8DbLCOIrlwC/Bp6xAyvMB3VwPHAQPWWSR3VgLHBb6b2l0U81/oAF74GHAikNpvhGTCI8DxraWGJaVaq8h9zjqH5MoG4H2tCZipVYxCB/DCBcC51jEks0Lg6NbiRZJyge9ejibJSXv0AccGvrvCOshIilPoAF74PbTVqoxeL3AsXviwdRAZFU2Sk3Y4M/Dd261DbItiFTqAF34Z+LZ1DMmMAeBf8cJbrYPI6LQmyX0I7e8gY3dJ4LtXWofYVsUr9Mgn0etsMrIh4BRtupJdge8+DrwbeM46i2TOVYHvXmwdYjSKWehe2AROBW6yjiKpNgcv1IVfxgW+uxw4EthknUUy404yuNFXMQsdwAv7iW7HXW+cRNLpM3jhD6xDSHsEvrsIcAHtVy8juQdw07gS3EiKW+gAXhhNdoJfW0eR1GgC5+GFl1kHkfYKfPdO4P2o1OXl3Q0c2dqaN3OcZrNpncGeVy0DPwQ+ZpxEbPUDp+o2e77V6o23Aw1gB+Moki5/At4b+O5m6yBjVewR+l9FC4WcBlxhHUXMdAEfVJnnX+C7twHvA7SxjvzVrcBRWS5z0Aj9pbyqh95VL5pO4P144V3WQSQ5tXrjrcBcYIpxFLF1LXBiFp+Zb02FPhyv+lHgR8B46ygSu8eIVoB7yDqIJK9Wb9SIJsYeYBxFbPyEaOGYXCznrFvuw/HCXwCzgbXWUSRWC4A3q8yLK/DdAPhn4EbjKJKsJvCfwOl5KXPQCP2VedWpRLfkZhknkfb7GvBFbbQiALV6owxcBlxgnUVitwk4JfDdedZB2k2FPhKvOoFoslzmFhmQYXUBp+GFv7IOIulTqzfOBr4FVKyzSCweIiMbrYyFCn1bedXjge8Bk42TyNgtB07EC5daB5H0qtUb7wauAarWWaStrgFOC3x3i3WQuKjQR8Or7k20JeNh1lFkVJrAN4Ev4IU91mEk/Wr1xuuJPuuHWGeR7TYIfD7w3Uutg8RNhT5a0SI0FwH/DpSN08jIngQ+hhf+wTqIZEut3qgAXyT6rOsWfDatB44PfHehdZAkqNDHyqseCnwfmGEdRV7W1cA5eOFG6yCSXbV6Yxbwv8A06ywyKnOBcwPfLcz2uSr07eFVK8CnAA/Y0TSLvNgq4FN44XXWQSQfavXGBOCrRFsvO8Zx5JU9DZwf+O5vrYMkTYXeDtGz9W8DH7COUnA9RK+jfVXPyiUOtXrjHcBPgb2Mo8hLNYn25Phc4LsbjbOYUKG3k1c9huhd1ppxkiJqABfghY9ZB5F8q9UbryK6cDwDzaNJixXAWYHv3m4dxJIKvd28agfwCaKJc1ojOn5LgX/DC7WvvSSqVm9MB/6baKMXsdFP9D24JPDdwt+VU6HHxatOAi4EPgu8yjhNHi0nmrvwG7xQP8RiplZvzAa+DrzROkuBNIk2Vbk48F0t3dyiQo+bV90F+ALRqH2ScZo8WAF8GbgaLxyyDiMCUKs3HOBkovXB9zSOk3fXAV8KfHexdZC0UaEnxatOBs4Czgem2obJpMVE8xOu0vrrklat2fAXAnV0Z67dbiQakf/ZOkhaqdCTFr3qdhzwabTpy0gGgfnAN/DCQk92kWyp1Rs7A3OILuB3M46Tdb8nKvK7rYOknQrdklc9DDgd+DCwk3GaNHmG6PWT7+OFT1iHERmrWr0xHvgo0QW89lzfdoNE+9RfFvjuHdZhskKFngZedQfgGKJncO+imK/CbAR+R7S620LdVpe8aU2eOwf4IFpK9uU8TXQx/4PAd3UxP0oq9LTxqrsDJxEV/FvId7l3EU1w+SVwI17YZ5xHJHa1euN1wJnAx9CaFQADwA3Az4DrAt8dMM6TWSr0NPOqrwaOJHrP9SjgtbaB2mIZsAC4BbgDL+wyziNiplZvvAk4tvWnaGvFPwBcCVwV+O466zB5oELPCq9aAt4MzCYauR9KNibbrAL+RFTgt+CFTxvnEUmlWr2xP38r9zxOmA2Jfg/cBNwU+O5TxnlyR4WeZdEa8ocSFfwhRFf4uxgmWgX8GVjU+nM/XrjBMI9IJtXqjb2IHru9h+gzbvm5Hqsm0Sj8JqJXzu7R7fR4qdDzxqu+FngDsB+wD7AvsDvRL4TXtP4eP4YjdxFNXHsOCIjKexXw2Av/7YVbti+8iAynVm/sS1Tsf72Anwl0WGYaxnNESzEvJbqgXxD47lrbSMWiQi+iaFnaXYDJRLNtS1v9cYBuoltkG4EQL+y3iCoiL9V6HW4mUcEfTLT7215Eq9RNjPn0/cDD/K28lwJLi7TveFqp0EVEcqRWb7yGqNj3etHfewA7AhOICn8C0Qj/xXu7N4HNwHrg2dbfw/33M4Hv6gI/hVToIiIiOVCyDiAiIiLbT4UuIiKSAyp0ERGRHFChi4iI5IAKXUREJAdU6CIiIjmgQhcREckBFbqIiEgOqNBFRERyQIUuIiKSAyp0ERGRHFChi4iI5IAKXUREJAdU6CIiIjmgQhcREckBFbqIiEgO/D+/16Y03tAIIQAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 65,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/oli/.local/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAIsCAYAAACN/bHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACNRElEQVR4nOzdd5gTxRvA8e/kGneU0NtRQu8KoqiIihUkigqCCvoTu9grnKgQe+xdELtYsQOnYkdEUZpIkSqR3rlcv0uZ3x+bO2O4zuU2l7yf58kD2Z3dfZPLJu/OzM4orTVCCCGEiG0WswMQQgghhPkkIRBCCCGEJARCCCGEkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBEIIIYRAEgIhRAxQSo1TSmmllM3sWISIVJIQiKgQ9IWvlVKDSlivlFJbAuvnmBGjEEJEMkkIRLTJB8aUsPxEoA1QULPhiAgxA0gG/jE7ECEilSQEItp8AYxSSsWHLB8DLAF21nxIh04pVdfsGGqjovdNa+3TWudrmc1NiFJJQiCizXtAE+C0ogVKqUTgPODdkjZQSlmUUjcrpVYppfKVUruUUi8ppRqFlHMppeYopQYrpRYrpfKUUiuUUoMD60cEnucrpZYopfqVcKyTlVLzlVI5SqkMpdTnSqkeIWUcgaaNnkqpd5VSB4CflVKXBpaXtN9JSimfUiq1rDdHKZWqlHpVKbVdKVWglNqklJoaeI+KynRUSn2olNqvlMpVSi1UStlD9jM4EMtopdQUpdQ2pVSWUuojpZRVKZWklHpaKbVbKZWtlHpdKZUUsg+tlHpeKTVWKbU26H07IaRce6XUi4EyeUqpfYH4bCHlipqNTgyU3w1sDVlnCyp/pFJqrlJqb2C/m5RSr4Xss65S6olAc1NBIIbblVKqlNdyjlJqZaDsKqXU0JBy9QPviytQZrdS6hul1BFl/d2EqAmhV1FC1HYu4FfgQuDLwLIzACvwPnBjCdu8BIwDXgeeBToA1wP9lFLHaa09QWU7YyQWLwFvA7cDs5VS1wAPAS8Gyt0JzFRKddNa+wGUUqcGYvobcGBUYd8ALFBKHaG1doXE9SGwHpgEKOAj4AVgLLAspOxY4Eet9bbS3hilVGvgd6AhMB1YA6RiJEspQKFSqgXwS+D5s8A+4BJgllLqPK31pyG7vRPIA5yB9+YGwAP4gUaB13kMxvu7CbgvZPsTgfMDxyoArgW+UkoN0FqvDJQ5ChiI8ffbCtiA8cCPSqmeWuvckH2+COwJHKvEmhWlVHPg60A5J5AR2O+IoDIKmAWcBLwK/AEMAR4LvG+3hOx2UGD7F4EsjM/ax0qpdlrrfYEy0zDe7+eB1RjJ6yCgB7C0pFiFqDFaa3nIo9Y/MH5wNHAkcB2QCSQH1s0Evg/83wXMCdpuUGC7MSH7GxK6PLCtBo4NWnZ6YFku0C5o+VWB5YODli0DdgGNg5YdBviAN4OWOQLbvlvC63wX2AZYgpb1C5QfV8579GbgWEeWsE4F/n0qsK9BQevqYSQxm4qOCwwOlFsBJITE5we+CNn/L4ArZJkOPPoHLWuHkWB8ErQsuYR4jwlse3EJn4H5QFwpnw9b4Pk5RZ+XMt6vswNl7gpZ/mHgNXYKeS0FIcsOCyy/PmhZBvC82eeLPORR0kOaDEQ0molx9X2mUqo+cCalNBcAowA38I1SqmnRA6O/QTbG1WGw1VrrX4Oe/xb493ut9eYSlncEUEq1AvoCb2it9xcV0lr/CXwDDCshtmklLHsLaB0S11iMH9GPS3mNKKUsGD+Cs7XWi0PXa62L2taHAb9rrX8OWpeNUaNgA3qGxqP/W4PyG0Ztxmsh5X4D2qqD+3b8qrVeEnSszcDnwBClVFxgWV7Q60hQSjUBNmD8uJZU1f6y1tpXwvJgGYF/z1RKJZRSZhhGAvVsyPInMF7jGSHLv9Vabwx6LX9iJKYdQ457dKC2RoiIIgmBiDpa6z3AtxgdCUcAcRjV7SXpgtGcsBuj+jj4UQ9oHlI++EcfrbU78N8tIeWKlhf1Q2gf+HdtCTH8BTRVB3cc3FRC2W+AHRhJQNEP/YXA51rrrBLKF2kGNABWllGmKM7SYixaH2xzyPOy3g8LxnsdbH0Jx1qH0WTRDEAplayUuk8ptQXjKnwvxt+nYQn7g5Lft1DzMBKoKcDeQF+OS0P6ObQHtpfwvlb0vQA4wL+fAYAJQG9gi1Lq90B/kY4lbCdEjZM+BCJavQu8DLQEvtRaZ5RSzoKRDIwtZf2ekOelXXmWtlyVsrwi8kIXaK19Sql3gSuVUtcCx2HUGLx9CMc5FDXxfjwHXAo8jdE/xI1RFf8+JV/UHPS+hQrUiJynlDoGOAujieg14Dal1DGBWpHKKvc1a61nKqXmA+diNDfdAUxUSo3QWn9ZyvZC1AhJCES0+hSj498xGJ3WSrMROBVYEFw1HQZF9793K2Fdd2Cv1jqngvt6C7gN44fsDIykZW452+zBqL7uXYE4S4uxaH116lLCsq4YfTKKkrHzMPpY3FZUQClVB6OG4JBorRcCC4G7lFJjgHeAC4BXMF7rqUqp+iG1BIf0Xmitd2B0PHwx0LlxKXAX/3aCFcIU0mQgolLgCm88Rge92WUUnYnRpHBP6AqlVLxSqmE1xbMDo5f6JcH7VEr1xrhS/KIS+/oT+BO4AhgJvK+19pazjR/4DDhLKXVk6Pqg2+i+AAYopY4NWlcXo5OkC6NnfHU6NviWO6VUW4zOfF8H9QPwcXDNwg0Yf7cqUUo1Cr11EOPvA1DUbPBF4BjXh5S7BaOGolI/4EqpOKXUf5o4tNa7ge1BxxTCNFJDIKKW1vrNCpSZp5R6CbhTKdUX41Y0D8aV6yjgJkrvf1BZd2D8iPyqlHqVf287dGMkLpXxFvB44P8VbS6YhJF8zFNKTcdoC2+F8ToHYXR4cxK4ZVMp9SywH+O2ww7AyEBiUZ1WAnMDxyq67RCMtv0ic4CLlVJujITkWIxanX1U3SXAtUqpTzFqieoDV2LUohQlZ7OBH4AHA+MXLMd4/84Gng7uQFhB9YGtSqmPAvvKDryOozBqfIQwlSQEIuZpra9RSi0BrsYYS8CLcTX8NrCgGo/zbWCgmnsx7pH3YHRum6i1rkhHuGDvAI8AG7XWv1fw+NuUUkcD92P0mWiAcQvjlxhV9GitdymlBgb2fQNQB6M24iytdXolY6yIeRj9AqZg3HK4GuP2yT+DytyEUUswNhDPAowf0vKaSco77gCM5oEWGEnZ78DYor+F1tqvlBqO8bc6H6MfgwsjsXuiCsfMxWgqOB2js6sF426Ja7XWUw/htQhRLYruPRZC1CKBWyN3APdpre83O56qUEpp4AWtdWiVvBDCBNKHQIjaaRxG+/YMk+MQQkQJaTIQohZRSp2MMTjQXcBn+uDhjoUQokokIRCidpmMMa7/Aow2fiGEqBbSh0AIIYQQ0odACCGEEJIQCCGEEAJJCIQQQgiBJARCCCGEQBICIYQQQiAJgRBCCCGQhEAIIYQQSEIghBBCCCQhEEIIIQSSEAghhBACSQiEEEIIgSQEQgghhEASAiGEEEIgCYEQQgghkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBLWeUsqmlNJKqdvNjiXSKaUGB96rwWbHIoQQkUYSgjBQSo0L/PAUPfKVUuuUUs8rpVqYHV+0U0pdq5QaZ3YcQoiqU0pNUkqdY3YcsSTe7ACi3GRgE1AHGASMB4YppXprrXNNjSy6XQvsBd4IWf4TkAwU1nRAQohKmwR8BHxmchwxQxKC8PpSa7048P9XlFL7gFuBs4H3zAur9lBKKaCO1jrvUPeltfYD+YcelRCiMpRSFiBRay3nXwSTJoOa9X3g3w6BpoRbQgsopQYG1l1Y1YMow3SlVKFSakTQ8sOUUvOUUnlKqa1KqbuVUpcGjmcL2ccZSqn5SqkcpVSWUipdKdUrpMwbSqlspVSqUuqzwP/3KKUeV0rFhZS1KKVuVkqtCjSh7FJKvaSUahRSzqWUmqOUGqKUWgzkAVcH1l2qlPpeKbVbKVWglFqtlBofuj3QCzgxqMnmx8C6EvsQKKVGKaWWBN6XvUqpt5VSqVV9rUKEW+CzvDhwLm1USl2tlHIopXRIuYuCPtv7lVLvK6XahpT5USm1UinVUyn1g1IqVym1TSk1oYTjJiml7lVKbQicg1uUUo8qpZJCyulAE+lYpdQqoAAYGlh3u1LqF6XUvkBcS5RS54VuD9QFLgk6j98IWp+qlHot8D1SEPheuewQ39aYJzUENatT4N99wAJgLPBUSJmxQBbweVUOEPhxeg04HzhXa50eWJ4K/ABo4GEgB7gC40QN3cfFwJvAXGAikILR3PGzUqqf1toVVDwuUO434HbgVOA2YCMwNajcS8A44HXgWaADcD3QTyl1nNbaE1S2G0YNykvAy8DawPLxwCpgFuAFzgJeVEpZtNYvBMrcDDwHZAMPBpbtKuP9KoppEXAn0AK4CTgu8FozqvBahQgbpVQ/4CtgBzAF43M5GdgTUu4u4H5gJvAK0Ay4AfiphM92o8A+PwmUPw94RCm1Qmv9ZWB/FoxzbxAwHfgL6APcAnQFzgkJ9WRgNPA8RhOeK7D8psB+3gESgQuAD5VSZxZ9XwEXB2L+PXAsMM4zlNEPayHGd9nzgdd9BvCqUqqB1vrp8t5DUQqttTyq+YHxw6eBU4CmQBuMH+i9QC6QClwVKNM9aLsEjA/3G5U4li2wn9sxErz3A8c4PaTcs4Af6Bu0rDFGcqIBW2BZPeAAMD1k+xZARvByjDZ6DdwTUnYpsDjo+aBAuTEh5YaELsf40tDAkBJea3IJy74CNoYsWwn8WELZwYF9Dw56v3cBKzCaJYrK2QPl7q3sa5WHPML9wPgxzQFaBy3rDHiMr3QN0B4jaZ4Usm3vQLlJQct+DHy2Lw5aloiRcHwUtOwiwAcMCtnn1YHtBwYt04GyPUuIPznkeULgHPwuZHl2Sd+FGInCdqBJyPL3At9RB31PyKNiD2kyCK9vMX7gt2D8UGdjXLVvw8jC8zFqBIoMwUgg3q7CsRKBD4EzgWFa669D1g8FftVa/1G0QGu9HyNLD3Ya0BB4TynVtOiBcXL/BpxUwrGnhTyfD3QMej4KcAPfhOxzCcZ7ErrPTVrruaEH0UH9CJRS1sA+5gEdlVLWEuIqz5FAc+BFHdS2qY2rlDUYiUGo8l6rEGETqAE8FfhMa729aLnWegPwZVDRERhNwjNDzrmdwHoOPueyCfre0VoXYlydh57HfwFrQvZZ1BQaus95WuvVoa8h5DxuBFgxzqMjKvD6FTASmB14GhzH3MC+yt2PKJk0GYTXdcA6jEx9F7BWGx3b0FpnKKVmA2OAewLlxwLb+PcEq4w7Ma7uz9Ba/1jC+vbAryUs3xDyvEvg39JiyAx5nq+13hOy7ABGFWTwPq3A7lL22Tzk+aaSCimljgPuBY7FaMYIZsVIOiqjfeDftSWsW4NRsxGsIq9ViHBqjnGnTOh5S8iyLoDC+PEviSfk+VYduMwOcgA4LGSfPQhpmgiJLVhp5/GZwN1AXyC470Ho8UvSDOOC5arAoyJxiAqShCC8ftf/3mVQkreAUUqpgRhVZsMxrlb9VTjWXIxagAlKqR911XvzFtUaXYxxNRHKG/LcV8F97ua/tSHBQr9gDrqjQCnVCfgO44f6Voxal0JgGEYbZk3UdlXktQoRCSwYP7BnUPLnNjvkeWmfbRWyzxUY519JtoQ8L+k8Ph6jyeMnjNuDd2AkJ5diXByVp+g8fxujn1NJ/qzAfkQJJCEw11cYP4ZjMarjU4AZVdzXQozq7DkYHXTO1VoH/3j/g9HOGCp02cbAv7u11t9WMZZQGzGqORfoqt8+eBbG1cRwrfXmooVKqZKaMCpypQHGewJGJ8bQGpFuQeuFiBS7MZoayzuXN2L8mG/SWq+rpmNvBA7HaOuv6DkWaiRG/EO01sUdmpVSl5ZQtqRj7MHodB1Xjd9PIkD6EJgo8IP9HkZP3HHACq11lbPbwAlyAUZNwYxAr+Aic4FjlVJ9ixYopRpz8FX7XIxmgUlKqYTQYyilmlUhtJkYPaHvCV2hlIpXSjWswD6KrmCKr1gC/QZK+iLJwahWLM9ijC/Ya4Jvm1JKnYFRNZpe2oZCmEFr7cPom3SOUqp10XKlVGeM2oAin2CcM1MC7e4ElVVKqSZVOPxMjA7RV4auUEolK6XqVmAfPowf+uJbdZVxy/M5JZQ96DwOvP6PgZFKqd4lxFGV7ycRIDUE5nsLuBGjQ87EQ92Z1vqzQLb9FsYP+9WBVY9i9BL+Rin1HP/edrgZ424DHdg+Uxn39s8Aliql3sfIytthdLJbgHG7YGVimqeUegm4M5CQfI1RTdgFo6PSTRgjkpXla4wmgtmBfdXD+GLaDbQKKbsEGK+UuhujXXW31vqgPhFaa49SaiLGbYfzlFLv8e9thy4OviVUiEjgAE4HFiilpmL8uF6PcXdNXwCt9cbA5/9hwKaU+gzjyroDcC7GrXyPV/K4MzAuXqYFauYWBI7dPbB8CEaSXZZ0jCaHr5RS72K091+HcZ4eFlJ2CXCqUupWjLsKNmmtfwPSML4vf1NKvQysxvgOOwKjJrJxJV+XKGL2bQ7R+ODf2w6PrGD5lRiZc2oVjmULHOv2kOXjA8sfC1rWF6PtLh+jvS8N475kDbQI2X4wRpNGBkZb4AaMH87+QWXeALJLiMlB4PankOVXYnxh5GIkK38CjwCtgsq4gDmlvNazgOWBeDYBEzBqCIpvmwyUa4HRdJIZWPdj0Gsqvu0wqPxojNsH8zFuw3w79G9R2dcqD3mE84Fxj/9SjHFENgCXY/zA54WUG4HRgz878PgL4979rkFlfgRWlnCMNwBXyLKEwHm3MnC+7A+c05OBBkHlNPB8KbFfhtHZOj8Qz7iSziOMZrt5ge8LTdAtiBiJxPMYFzSFGH0RvgWuNPtvU5sfKvDmChMppZYB+7XWp5hw7KcxahHqaaM6TghRCwVqAXpprbuUV1aIkkgfApMppY7EuHJ/qwaOlRzyvAnG3QQ/SzIgRO1RwrncBeOOmx9NCUhEBakhMEmgQ0x/jKFvmwIdddCtgoEBSMrrIJOttQ69faisY/6B8YXxF0a1+uVAa+AUrfVPlYlfCGEepdQOjCr9vzHG0xiPcRdOP611aWMPCFEm6VRonvMw2t3WAhfqg8cNaEspA3sEuRej7a2ivggct2jY5KXA5ZIMCFHrfAVcCLTE6EfwK8ZwxJIMiCqTGoIIpZSqw8Ej5YX6W2v9d03EI4QQIrpJQiCEEEII6VQohBBCCEkIhBBCCIEkBEIIIYRAEgIhhBBCIAmBEEIIIZCEQAghhBDU8MBES5YsqYcxMp4kIqKq/MD2/v37V3iERmEuOe9FgJy7Ea7GxiFYsmTJMRaLZZrFYrESNKe9EJWk/X6/2+/3X9O/f/+FZgcjyibnvQgi526Eq5GEYMmSJfUsFsvPDRs2bNG8efP9SikZDakW8Pr9Fo9PJ/p8/jifJt7n13FereP9fuL8fh3n0zpea130x1St4rIKkvy5SYBGKUD5UXFeLHE+VJwPS5xXG//6sMR7iEssxBJXqZi01mr37t2NMzIydvn9/kFytRG55LyvhbQG7Y3D54nH701Qfm8CPm882huPzxcPvni0BrRCo0AHkjylUWhQoJQGi4+4eA8q3ktcvFereI+2xPv27HfXO+B27/D7tZy7EaimmgxaWywWa/PmzffXrVs3r4aOKSpAa02h15+Y5/HVKfD66xR4/MkFXl+dQp+/js+vS/h8qJB//5Uc5/cl6cL/zMKGBsqaR9GSUEh8Yj7xSfnE18kjvk4+Ccn5xCV6S9ukefPm+zMzM61+v781xrzqIjLJeR+ptAZvXh0Kc1Lw5KXgyauLrzAJvzeh3G1L/wr4r6LzPuhMtsRp8vL3NLctuH0TszevA5YEPf7C4ZZZV01UUwmBBVByhWA+v9Yqp8BbN7vAWy+3wFc/z+Or69e6cpfp1RqQJ5FCTyKFOQ3+s9wS7yEhJYvEetkk1csiISXfqHWAwOdIIW3SkU7O+0igNXjy6uDJScGTWxdPXgreghS0v8bPH1VUn4BuijHL68Cg1bk4rMv5b5KwWpKEmiOzHUY5v9YqK99b30gAvPXzvf66WuvIb8v1exMoyGxMQWZjsgBl8ZGQkk1i3Sx0YoHZ4QkR0fxeC3kZVgoyG1KQZUX7zUv6Ky4FODbwKJKJwzoXmAV8gcO935TIYoSpCYEtLb1/OPbrctqXhGO/NWnOnDn18/Pz1XnnnZdZ2W29Pn+cO89jzcz3Nswp8Fr9Wv/nSuC1F59m9kfvk5CQQGJSHSbe66RPP+NP8eeyxdw/8Wby8/Np0ao1Dz49jRatWh90jJV/LOVRRxprV63k2BNO4ulX3ylel5eXz9UTH2TpyjUAdGyXyqtPTKFZk0YH7efqCQ/wy5I/ada4IZ+++gTWBvXRWjPs4ht4/oGJdLK1NQpqfxyF2VYKs60WryYhb7+346L7JjJ7+avALzjc/sq+T8IEDmtYznkc7kM659euXZv4+eefWydMmLCnaFlqamqfDz/8cMPAgQNrrLnD7XZb7HZ7p1WrVqV4vV6VlZX1R/D69957zzpp0qQ2fr9fdevWLe/999/f1LhxYz/AB+++3eSue+5po/0+y+HdO1veePpeGtSvd9Ax/H4/N01+jC++X4BScPMVY7j+0gvKXRfsQEYmI664nb0HMjh+QD9efPhOAPbsO8CoqyfwzXsvkpBQfutDBTQARgUePhzWBRjJwSwcbpnquZpJlatJPB5Pmeu///77+l988YW1ovvz+bVlX3ZB4417sjv/tSPr8G0ZeR2y8j2NQpOBNatWMPOtV3ln9rfMnDufC8ZdwcP3TACML4NJN1zFHY6Hmf3TYo4/6TQeu3dSicdr1qIFd0x5mNunPHjQupfe/pjcvHxWfDeTld9/SItmTXhs6psHlVu5ZgPrN21mxXczGTzwSGZ8nA7AK+9+ykkDj/w3GSiB0r74hIL944D5wDYc1qk4rKfhsEqtl6i09evXJ7322mvNqnu/5Z3noRITE/WECRN2pqenH9Q3xu12W66//nrbJ598svGff/5Z2bJlS8/dd05sh3tLatbGRT1vvOkm25zXn4jfuOBzS+uWzbj/6ZdLPMbbH3/B6nV/s27+p/w+ZwaPTX2LVWs3lrsu2DuffsFJxx3Jiu9msmbDJlau2QDArY4ncN55Q3UlA6HigBOAx4F1OKxrcFgfw2E9JhwHi0UxnRC8/fbbDTt27NirW7duPcePH5/aqFGjw9euXZsIsGLFiqTBgwd37t27d4+uXbv2fOihh4q/LJRS/dPS0lr26dOnR2pqap9nnnmmSdG68ra75ZZbWvfu3bvH9ddf3+b3339P7t+/f7eePXv26NSpU68JEya0Avjll1+S33rrrWaffvpp4+7du/e8/fbbWwF8/PHHDfr379+tV69ePfr06dNj9uzZ9bPyPXVde3M6rN6R2XdbRl6HnAKvVVN6k4BS4PV4ycvNBSAr011cA7D6zz+Ii49nwMDjATjvonHM+/YrCvLzD9pPi1ap9OnXn8TEpBKOocjNz8fj8eL1esnOyaVNqxYHlUuIj6eg0IPf7ycnN4/EhAR27NrDe599xa1XXVT2H++/WgLXAF8DW3FYH8RhbV+ZHYjY8PHHHzfo2bNnj65du/Y86qijui1ZsqQOwA033NDO5XLV6d69e8+TTz65c1H5mTNnNurbt2/31NTUPkXnJ8DmzZvjhw0b1rFPnz49unbt2vPGG28srkZLTU3tM378+NQ+ffr0GDlyZIfKxJecnKyHDx+e1aRJk4PazT/++GNrz549c/sd3qeQrF3NJlwxst6sWbOakLO35Vff/pDcr3c3unc2DnftJaN577O5JR7jg1lfc+XYEcTFxdG4kZXzh5/Oe599Ve66YAnx8eTm5eP3+yko9JCYkMBXPyygUcMGHNP/sMq85EPRDbgd+BWHdRUO6804rI1r6uDRKGavprZt2xZ//fXX23744Yc1/fr1y3/mmWeaZGRkxAN4vV4uvPDCjjNmzNjUr1+//KysLEv//v27H3fccTknnnhiLkBSUpJesWLFX8uWLaszaNCgHtdee+0+pVS528XFxemVK1f+BXDgwAHLzz//vC45OVlnZ2ero446qseQIUMyTznllJz//e9/ezIyMuJee+21LQCrV69OvP/++1t///3366wNG/Hb0j+bnz3s9C5f/vqnSkw6+Ee5NN169uGiK8czbGBfGjRsRGJiIq99ZFyZ79y+lVap/16V161Xn7r16rNn107atLdV+BhXXzSSXxYvp/nhpxBniePoI3pz/aXnHxxLZxsnDTySI4aMoUuHdky59Souu/VeHrvnZuLjq/zRbAFMAtJwWL8ApgJfSZOC2LZtW/zll1/e8euvv147YMCAvKlTpzYePXp0p/Xr16967rnnNt9+++1t16xZszp4m4yMjLg//vhjzY4dO+K7du3ae/z48Xs7dOjgGTNmTIc777xzh91uz/Z4PJx88sldXnvttUaXXXbZAYD9+/fHL1++/C+Lpfquuba4Ntbt0q5lIjtXHg7a0jG1GTt278Xr9bJ5207apxbnK9jatipeF3oubd6+k/apLf8t26Y1C5euKHddsItG2rnkpsn0O/1Czhk6mNRWzbn89nv5YsZz1fZ6K6kn8BTgxGH9GHgBh/sXs4KprWI2Ifjxxx/rduvWLbdfv375ANdff/2+O+64oz3A8uXL62zYsCH5wgsv7FhUPicnJ+7PP/9MLvphv/zyy/cB9OvXLz8uLk5v3rw5ISMjI6687caPH7+3aF1ubq7l0ksvbbt69epkpRQ7d+5MXLJkScopp5ySExrvrFmzrP9s3lxn4KDj+6As8QDKEseO7Vtp36FThV/31s3/8N2Xc5g9fwnNW7bivTemM+G6y3jzk4OvAqrq658W4vdrdi77BovFwrhbpjD5sak8MPG6g8o+MPG64uWfz/2Rtq1bYGvTmktvmUJmdg6jzzyN888eUpUwLMCZgYcLh/Ul4GUc7n1Vf2WiNps3b17drl275g0YMCAPYPz48fsnTJjQbtOmTaXWb1988cX7AVq1auVt06ZN4bp165KaNGniW7hwYYPbbrst4bbbbgOMc3nNmjV1ira77LLL9lVLMqA15O1vRM6e5vXIq5eg/Bj38pqrbkoyH738WPHzW6Y8zsRrx7HBtYWHnn0NgLtvuoLDe3Wt6dCSgDHAGBzWxcAzwEwc7sKaDqQ2itmEoCxaaxo0aOANvVoIlpKSUnxWxsXFaa/XqyqyndVqLb5SvfXWW1ObNGniXbVq1eqEhAROP/30Tvn5+QdV9+cWeuvk+izNjj3h5Djn86+UGfvGdWu484YrAeh75NFMevDx/6z/7otZdOnek+YtjauJs0ePxXnPRDyFhbRs3YYd27YUl83JziI7K5NmLVpSGdPf/pgx555BnTpGzcXYc8/goedeK3ObzKxsHp/2FnPffYGHn3udE4/pz0Ujh3H4aRcw/PQTSU6uU+b25bABDwN34bA+DzwuiYGoiOTk5OLzNS4uTns8nuLB3JYuXfpX8PdAsPr165d4q9ySJUvqjB07tiPAUUcdlT1jxozNJR5Y+5VFYWHXyj74vYkA7VJb8s38fwf4c23ZQavmTYmPjy9zXah2rVvyz7adHHvk4UbZrdtpF6gVKGtdaX5ftpLd+w5w5mkncPy5lzHj2QfQWjPulinM+7js76swOxKYATyGw/ok8BwO98Htn6JYzPYhGDx4cM7atWtTli9fngQwderUJh6PRwEcfvjh+fXq1fMF9w1YuXJl0q5du8q8daey22VkZMS3adOmMCEhgeXLlyctWLCg+F78Bg0a+NyZWYmb9uZ03LA7u9eAE05NXvjzPNb9tbJ4+xXLDu5Y3alrd2bOnc/MufMPSgYAUtvbWLb4N3JzjEHCfvp2Lu07diYhMZGeh/XF6/Hw+y/zAfjo7Tc48dShJNWp3I9xx/Zt+HreQrTWaK1J/+5nencruxYj7aHnmHzLVaQkJ5OTm4dSCqUUHo+Xwkp2zCpDPSAN2BToZyDtjTFk8ODBOevWrUtetGhRHYDp06c3atGihadDhw6ehg0b+rKysip0a57VavUPGDAg8+677y6uo3e5XAkbN24stydd//7989esWbN6zZo1q0tMBrSGnL2NEzP/6aoUqigZABh60kCWrljDmg2bAHjxzZlcEKg9K2tdqFFnnsrL73yCz+dj/wE3H8z6mvOHn17uupJ4PB4mPvgsT065FYCcXGO4EItFkZ2TW97bUVNaAo8C63FYL8dhrQ23YJrC1BoCM28PTE1N9T777LOuc889t3NiYqI+8cQTM1NSUvxNmjTxJSQkMHv27A033HBD2xdeeKGF3+9XjRo18s6cOfNvyhh3r7LbTZ48efu4ceM6vvfee03at29fcMwxx2QC5Ht8SSedObLuBx990vCME4/h5DPO4pqbJ+B87mXuT7uV/LxcPB4P3Xv1obwag1CnDD2TVcuXcqH9ZBITE0lOScH5nNEb2WKx8NCzL3F/2i0UFBTQvEVLHnxmWvG21/1vFNfeNoleh/fDtXE9V15wDvl5uRTk53PaUb1Iu+GKhFvGnYPj1qu5asID9D55FADdO9t46ZG7So1pwaI/yMvP57QTjM7C140bzYXXTeKRF9/g4pF2rA3qV+o1VkB9jH4G1+OwPgs8icN9oLoPIkpwiLcHHorWrVt7X3nllb8vueSSDl6vV1mtVt8HH3yw0WKxcPTRR+d27do1r0uXLr3atm1b8P33328oa18ffvjhpmuvvbZtly5deimldHJysn/atGn/dOrUqerZa15GA7K2px42+OyUPfsyyMzKoU3/oZw08EhmPPcA9evV5ZXHJ3POZbfh9Xnp3a0zbz59L0CZ6wD6nnYBX8x4jtYtm3HxeXYWLV9Fl0HnoJTi1qsuok+PLgBlrivJY1Pf4n+j7LRoZlwD3Xf7NQy7+EZj3d03V/mtCJM2wCvA7Tisk3C4PzU7oEhTU3MZdI+Pj/+qS5cu2SkpKRFTZXPgwAFLo0aN/AAzZsxoOGXKlNS///57lVnxeHz++B0Z+anuPE+Tsu4UiFTdEvdlJ3kzD77xuZrlezWbtu2hw4LbqJO9pfwNyucG7sWoUix1yGRROZF63kecgqwUMre3wZNb7ZlvpAnDuXsofgPScLh/NDuQSBHTfQgeeeSR5p9++mljv9+v6tWr53vrrbc2mRGH1pq92YVNd2flt/H5TRxGOHZZgSeBcTis1+Fw/2x2QCIGePKSyNzWhoKshmaHEqOOBn7AYf0KmIDDffDtFDEmphMCp9O50+l07jQzhpwCb/L2jLz2eR5fXTPjEAAcBvyEw/oWxhfEbrMDElFIa8ja2YLsXanUwprAKDQUOBWH9SHgARzuauu0VNvEbKdCs/n82rL1QG6bv/dk95RkIKIo4BJgLQ7rtTisco6I6uPJTWLP2u5k72wjyUBEiQcmA4twWPuaHItp5MvOBBm5hda1O7N6788pbGH+HcWiFA2BF4CfcVgrPtCDECXRGjJ3tGDPul548+QCIHIdDvyOw+rAYQ3L+MuRTBKCGuT3a7Vlf267zftzO3v9/pj7sNVSxwJ/4LBebnYgopby5CWxV2oFapEEYApGYnC42cHUJEkIakhuoTd53e6sngdyC6t9AhURdvWAV3BYP8FhPXjKRiFKUlwrsLYnHqkVqIX6YjQhTImV2gJzOxVG6FSo1W1PVkHTnZn57bSWq4Na7lygPw7rhTJOetXEzJTnPm8cB/7uSGFOg/ILiwiWADiA03FYR+Bw7zI5nrCK6RqCotkOu3fv3vP3339PDn3+6KOPHtLVvM+vLa69OR12uPPaFyUDu3fu4JqxIxl+4lGcd9px3HrV/9i/b295uyqRc/JEzjj2MA5v24g1q/57x8yCH77lwmEncd5px3HR8NNYu7r0O2pee/Fpzj35GEYPOZ6Lhp9WPAJiZWKd//3X9D1+aErvk0cx98d/fytfe/8zHnr21Sq9vgjVDpiHw3q72YGIyLJo0aI6qampffDkJrF3bY9wJwN+v58b7n6ETgOH0/m44Tz/+vulll3/92YGDh9H10HncNSwi/4zpXFZ64J98d3P9D55FDFwjpdkIEZtQT+zAwmnmE4Ipk+f3mzixIk71qxZs3rAgAF5wc93794dfyjzoxd4fQkbdmd3z8z3/Gd43Li4OK666XZmzVvER98soE279jz1wOQqHeO0YcN545Mvad2m7X+WZ2ZkcOeNV3H/Uy/y0TcLuPWue7nzhqtK3MeaVSuY+darvDP7W2bOnc8F467g4XsmVDrWFx9/mM/ffTXvixnPctcjLwCwa88+Znz0BROuvaRKry+CxWOMj/5qrFQliopRaAt71/fAV1jxKUir6O2Pv2D1ur9ZN/9Tfp8zg8emvlXqj/nVEx/gqrEjWPfzZ0y8dhzjbplSoXXBJj8+lS9mPEuMnOMlaYvRyXi02YGES8wmBOPGjWu7ePHievfdd19qv379uoc+L2l+9NTU1D433nhj6379+nVv2bLlYY8++mizZ555pknRfOnTp09vBJBT4E0ZMeqC3iNOPyH5vNOO4/pLRrN3t1HT1KRZc44YcGxxHH36Hcn2rSXPb1Ke/sccR4tWqQct3/LPJqyNGtO5Ww8Ajjh6IDu3b+OvFcsPKqsUeD1e8nKNccezMt20aNW60rHGJySQm5uncnLzSEwwfiNvcTzBI3fdeChTGUe6y4BvcFiblFtSRISiWsBu3br1HD9+fGqjRo0OX7t2bSLAVVdd1aZ37949unfv3vPII4/sVjTPSXZ2trLb7R07derUq1u3bj2PO+644rF8b7311tbt27fv3atXrx4fzHitbbyFeLQ/DmDuj78w6JzL6D90DAPsF/PDgkUAnHbBeD6a821xTD/+sph+p19Y6dfywayvuXLsCOLi4mjcyMr5w0/nvc8OnrV09979LP7zLy4aOQyAkfZT2LJ9Fxs2bS5zXaiE+Hhy8/KJsXM8VArwAQ7rAzisUdcEHDN/xVBvvPHGltWrV6fccMMNuy6++OIMgODnc+bMqV/S/Og5OTlxy5YtW7Ny5cqkI488steNN964448//lgzb968lHPOOafLqIvG+bcdyOt4h+NhS+MmTQF49YWnmPqUk3sefuo/Mfh8Pt5/42UGnz6sWl9buw4dcR/Yzx+Lf6PvkUfz49dfkJOdxbatm+nR57+dZrv17MNFV45n2MC+NGjYiMTERF77KP2gfZYX6y2THFxx4x114pTmqSm3Meebn2jRtDED+vWu1tcWgU4EFuKwnonDvdbsYETptm3bFn/99dfbfvjhhzX9+vXLf+aZZ5pkZGQUfwc6HI6drVu33grGxEfXX399u/nz56//5JNPrG63O27jxo2rAIomK3v//fets2bNarRs6ZK/Gmp32/9dfUNxYvj3P1txPPESc999gQb167Fh02aOH3EFroVzuPT84bwxcxbnnXkqAK9/MIvLLji70q9n8/adtA+aidDWpjULlx7cNLhl+87/zHyolKJdaks2b9uJtUG9Utd17tDuP/t59O6buORmo/Ygxs7xktwF9MZhvQiHO9vsYKpLzCYEVTVmzJj9AL179y5ITEz0X3jhhQcAjj/++NzMzMz4VZt2dG5gtfLlZx8x5+MPKCjIp7CggIaN/3sRqbXmwbtuo761IWMvv6ZaY6zfwMrjL73Js877yM3N4bAjjqJj1+7Exx08KvLWzf/w3ZdzmD1/Cc1btuK9N6Yz4brLePOTf680KhLrEUcPZMHcT3OTvJn1srJzGHbxDXz1zgs8/fI7LFi0nBbNGvPklNtITIzKGvbOGEnBeTjc35kdjCjZjz/+WLdbt265/fr1ywe4/vrr991xxx3ti9bPmjWrwbRp05rn5OTE+f1+3G53PMCRRx6ZO3HixDoXXXRRuxNPPDHrvPPOcwN8++239c8Zfpa7sW9PF7z5da++aCQ///4HAF/98AsbXFs4YcQVxce3WBSbt+3k3KEnceM9j7Fj1x7q16vLnG/nF88WGMmOP/oIfpvzFgAxeI6X5GzgVxzW4Tjcpgx7X91itsmgqkLnR09JSfFrrdmWkd9OKYXP52Xp77/y7msv8fxbM/nku1+5ffIDFBb8d24X5+SJ7Nq+jcdefA2LpeQ/w//OOZ3RQ45n7FmnVjrOAQOP57WP0nn/ix+5/Z4H2LNrBx27dD+o3HdfzKJL9540b2nM5Hr26LH8seg3PIWFlYo12CTn89x14+Xs3L2Xz+fO48Ppj9KkkZV3Pv2i0q+jFmkIfIXDOsbsQETlrV+/PnHixInt3nnnnU3r169f9e677/5dUFCgAHr27Fm4Zs2aVWeccYZ7wYIF9Xr16tVrz549cRZ0XF2V3xRvfl0wrq6LaDSnnXAMf3zzfvFj25K5dOnYjuTkOow681RmfJzOh3O+4eTjjqJJ44YHxeR8/nX6nnYBfU+74D+d+Iq0a92Sf7b9O/K6a+t22gXVGBRp27olO3bvxes15u3SWrN5207apbYsc11ZYvQcL0lvjIuBPmYHUh0kIShFRedH11rzz/5cW/D4ApnuDOrWq0fDRo3xFBby0Ttv/Gcb5+SJbHH9zVMvv01CYmLoLou99dnXzJw7n3dmf1tqmdLs2fXvF8X0Zx5jwMATaNeh40HlUtvbWLb4N3JzjFqvn76dS/uOnYvjqmisRRYu+RN3ZjZDTzqOnNw8ir4jLRYL2Tl5lX4dtUw8MAOH9WKzAxEHGzx4cM7atWtTivoGTJ06tYnH41EABw4ciIuPj9ft2rXz+P1+nn766eZF223cuDFBKcXYsWPd06ZN26q1ZtP6NfXOHnxEw4/Tv4nLys5Ba830tz8pPtaQE4/l2/m/8efqdcXLfl+2svj/l54/nNc/mMUbM2eX2lyQdv2lxcnEkMEDD1o/6sxTefmdT/D5fOw/4OaDWV9z/vDTDyrXvGljjujTnbc/Nn6sP07/jjatmtO5Q7sy15Umxs/xkjTHmCSp1t+BYPI4BJE1XkCwis6PvjvH26ZhPc9/Bqs5bvCppH/yIWefeBTWRo05ZtCJ7N65A4Blixby3uvT6dC5KxcNN678W7dtz9OvvF3pGO9Lu5n5333Dvj27GH/RSOrWrcecn5cC8OITD7P091/xeb0c1v8oHI89V7zdC48/RLMWLRl98WWcMvRMVi1fyoX2k0lMTCQ5JQXncy9XKdZCj4eJDz3LR9MfA+Cwnl3p2L4NvU8eRdPGDfn0lScq/RprIQvwBg5rHA73G2YHE2nMHC8gNTXV++yzz7rOPffczomJifrEE0/MTElJ8Tdp0sTXrVu3wuHDh+/v3r17r0aNGnmHDRuWUbTdkiVLkidPntxGa43P51OjR45wD+hobY9tYPyiZX9yxJAxNKhflzNOOq74WJ07tOPd5x/i6okPkpuXT6HHQ7/e3Xn3hYcAGNCvN3FxcWxwbeH0E4+p0uu5+Dw7i5avosugc1BKcetVF9Gnh9HfcdbX85j19Txeedy4K+gl512Mu2UKDz33Gg3q1+X1Jx3F+ylrXSiPnOOlaQJ8j8M6FIf7N7ODqSqldfhH04/GedG11mzen2tz53mkh3lAt8R92UnezHrhPk6EzaleGj9wFQ531N+gXZpIPO8PHDhgadSokR9gxowZDadMmZL6999/r6rwDgpz6rBvYze0T/pfVUEtOXcPRRYwBIf7V7MDqQr5UFeBJAOiAizAy4GagulmByMMjzzySPNPP/20sd/vV/Xq1fO99dZbFe8M5slNkmRAlKM+8CUO6ymRXANeGulDUEmSDIhKUMA0HNYryi0paoTT6dy5du3a1evXr1+1bNmyNYMGDcqt0Iae/ERJBkQFWYGva2NHw5pKCPyAjoax/LceyGsryYC5ilu5aqC5qxoUJQVnmB2ICaLjvPcWJLBvQzf83pi5ny5catm5eygaA9/isHYzO5DKqKlsd7vf73fv3r27RfPmzfcrpWrlp2F/TmGj/TmFzcsvGZvylc+ifeH902oNe3J8qIJMEvKrNgeECeKAmTisJ+BwLzM7mBpU+897v18pt6uD8hWWf4uNKFMtPXcPRXNgNg7r0TjcB8wOpiJqpFMhwJIlS46xWCzTLBaLFeOqqVYp8OnkzHx/89r3jVZzWsRlFST488M+hrsqyKTNH09QL+OvcB+qum0HjsHhjsreVCWp7ed9fEFGM4svP8XsOKJFLT53D8U3wBk43D6zAylPjSUEAEuWLKkHtKaW9V34cHV2l583572nQeY0L8P0Os8t7aT/OSKsB9GahPy9xPkiotN6VawABuFwZ5odSE2pred954UTxifl7brR7DiiRu0/dw/FMzjcN5sdRHlqNCGojWxp6S2B3zCmvRVl+DJx4oIeli3HlV8y5n0DDMPh9podiCiFw3oO8Am1sFZDRKzLcbhfMzuIstSqjL2m2dLSk4FZSDIgqtdpQMyO4BLxjN7hM5BkQFSvqTisBw85GUEkISjb88BRZgchotKNOKyVn+JOhJfD2hTjIiDsA2yJmJMIfILD2tbsQEojCUEpbGnpYzHmuxciXF7HYZXap0jhsMYDHwI2kyMR0asF8DkOa0R2VJWEoAS2tPQuwDSz4xBRrxHwXuCHSJhvMjDY7CBE1OsHPGZ2ECWRhCCELS09AXgPqTIUNWMgcL/ZQcQ8h/UI4E6zwxAxYzwO68lmBxFKEoKD3Qv0NzsIEVMm4rAePG+tqBkOayLwBjK3i6g5CngVhzWiLjwlIQhiS0s/Hphodhwi5ijgTRxWq9mBxKh7gFo37ryo9WxEWNOBJAQBtrT0JOA15D0R5mgJOM0OIuY4rP2BNLPDEDHrahzWU8wOooj8+P0rDehsdhAipl2Nw3qM2UHEDGkqEOYrajqob3YgIAkBALa09E7IVYIwnwKmy10HNWYK0NvsIETMa0+ENB1IQmB4HqhjdhBCYLRl32Z2EFHPaCqQ/kIiUlyNw3qq2UHEfEJgS0sfCQw1Ow4hgkzGYe1gdhBR7mmMaamFiBRP47Ca+psc0wmBLS29HsYXgxCRJAV41uwgopbDeiYwyOwwhAjRC/ifmQHEdEIA3AW0MTsIIUpwJg6r/GhVN+MK7GGzwxCiFPfisCaZdfCYTQhsaektAJnrXESyh8wOIApdhHQkFJGrHXCdWQeP2YQAo0NRRE4wIUTA8Tis0r+luhi3Gd5ndhhClGMSDmsDMw4ckwmBLS29FXCN2XEIUQEP4rAqs4OIEuMxbvESIpI1Ae4w48AxmRBgjDmQbHYQQlTAEcBIs4Oo9YyBX+4yOwwhKugWHNaWNX3QmEsIbGnpqcBVZschRCXch8Mqt8gdmtuBZmYHIUQF1cWYY6NGxVxCAExCBiEStUsP4Fyzg6i1jPbYW8wOQ4hKuhKHtXVNHjCmEgJbWnoz4HKz4xCiCuSOmKq7FIiIseKFqIQEjH4vNSamEgKMZMC0ezyFOATH47AebnYQtY4x7sANZochRBVdXZPjEsRMQmBLS7cAV5sdhxCHQH7YKu9MoJPZQQhRRc2AMTV1sJhJCIAzAJvZQQhxCMbgsDY2O4haRpIoUdvVWHNhLCUENdoWI0QYJANXmh1EreGwdgJOMTsMIQ5RXxzWo2riQDGRENjS0m0YNQRC1HbXyi2IFXY5IIM6iWhQIxcCMZEQYIw7ECuvVUS3doDp86ZHPIc1HuPuAiGiwYU4rPXCfZCo/5EMdCYcZ3YcQlSjGutkVIudCdT4SG9ChEk94IJwHyTqEwLgBKCV2UEIUY3OxWGVwbXKdr7ZAQhRzcL+mY6FhGC02QEIUZ0ydfI/Ts8Fp5kdR8QymgtklkgRbU4M9yyI8eHcudlsaelxyMQwIgpk6zqrZ/uO3TPVN7zTZt2iNzA2DWabHVeEOgFoaHYQQlSzBIxEd2a4DhDVCQEwEGhudhBCVEWOTlqT7jt654u+szu5dKueIavttrT0JJfTXmBKcJFtuNkBCBEmZyEJQZWdbXYAQlRGnk5c95X/qB0ves9uv1636Q50L6VoPeB0pJagJGeZHYAQYTIMhzUOh9sXjp1LQiCEyfJ1woav/Udue9F7dts1ul1XoGsFNz0TSQj+y2HtBXQ0OwwhwqQxMAiYF46dR21CYEtL7wp0NjsOIUpSoOP//s5/xJYXvGe3WaU7dKZqn9XB1RxWNJDmAhHtzkISgko7wewAhAhWqONdP/gP/+dF7zmtl+tOXTj0K9mutrT01i6nfXt1xBclJCEQ0W44cHs4dhzNCcHxZgcghEfHbf7Jf9jfL3jPbrVUd+1G9U+wNRh4t5r3WTs5rM2BAWaHIUSYdcFh7YbDvba6dywJgRDVzKstWxf4e294wXt2i991jx4Yww2Hy0lIQlDkOGJjbBUhjgckIagIW1p6a6CD2XGI2OHVlh2/+Xuse8F3dtNf/L17AW1q6NCDa+g4tUF/swMQoob0B16p7p1GZUKA1A6IGuDTauci3X3dC96zG8339+kNyowhsjvb0tLbuJz2rSYcO9JIQiBiRVg+69GaEAwyOwARnXxa7V6qu66Z6j2r4Q/+vr01lkiYQGcQ8L7ZQUQASQhErDgMhzUBh9tTnTuVhECIcvi12vuH7rR6mnd4g2/8RxymsUTaHSyHEesJgcPaFmhmdhhC1JAkoBfwR3XuNOoSgsD8BaHDvApRKX6t9q/QHVZN855Vb67/qMP8kZcEBOtldgARQGoHRKzpjyQE5eoIJJodhKh9/JqMv3T7ldO8Z9X5wn90Xx9xtaUvSm+zA4gAkhCIWNMfeLU6dxiNCUFpY78LcRCtca/RbVdO956ZONt/bF8v8bWxuamDLS09xeW055odiIkkIRCxpto/89GYEHQzOwAR2bQma71OXfGKb1j8Z75BhxeScJzZMR0iBfQAlpgdiImOMDsAIWrYYTis8Tjc3uraYTQmBFJDIA6iNTl/61bLX/WdEfex74TDC0gcaHZM1aw3sZoQOKyNgBZmhyFEDauD0US+rrp2KAmBiFpak+vSLZa/7jtDzfSdeHg+SdGWBASL5Y6Frc0OQAiTtEISgjJJQhDDtCZ/i262/A3fUN/7vpMOz6XOsWbHVEPCOTxypDNjQCghIkG1fvajKiGwpaXXB5qYHYeoWVpTsI2my9/ynu55x3fKYTkkH212TCaI5SpzSQhErJKEoAxNzQ5A1AytKdxJ4+UzvKcVvuU7rU82KbE+y10sJwTSZCBiVbV+9qMtIZDagSimNZ7dNFz+jveU/Dd8Q/pkUu8os2OKILGcEEgNgYhVUkNQBkkIoozW+PZi/eM930l5r3nP6JVB/SPNjilCNbKlpSe4nPZqHdu8lpCEQMQqSQjKIE0GUUBrfPup/+cHvpOyX/Ge0XM/Vhl0pnwKaA5sMzsQE0iTgYhV0mRQBqkhqKW0xp9BvRUf+k5wv+K199hNo35mx1QLtSA2EwKpIRCxSmoIyiAJQS2iNTqTuis/9h2/f7r3zO47aXy42THVcrFaQ9bc7ACEMIkVhzUJh7ugOnYWbQlBY7MDEGXTGp1F8qrPfcftm+Y9q+s2mvUxO6YoUsfsAEwSq69bCDAm85OEoATyxRChsnWd1bN8A/dM9Q3vvEU3l9n5wiNWZ/mMtu8xISojobp2FG0nksXsAMS/cnTSX+m+Y3a/6Bve0aVb9TQ7nhgQewmBw2rB6FApRKyqtt/xaEsI4swOILYpnacT133pH7D9Be/ZHTbq1B4Ys/CJmhFt53NFxOJrFiKYJASlkCsFE40uvKdPFnWtQFezYxExQ855Eeuq7RyItip2n9kBxLJAMiDMo80OwARyzotY562uHUVbQlBtb4wQtVDsJQQOt5zzItZJQlAK+XIQsSzP7ABMIrUEIpZJQlCKWP1CFAJgv9kBmCQW528QoogkBKXYa3YAQpjogNkBmMRtdgBCmMQD5FbXzqItIdhjdgBCmChWawi2mx2AECbZicNdbX2HJCEQInrEag3BDrMDEMIk1frZl4RAiOjgdTntWWYHYRJJCESskoSgDJIQiFgVq7UDIE0GInZV62dfEgIhokMsd6iVGgIRq6SGoDQupz0DKDQ7DiFMsNHsAEwkCYGIVZIQlGOT2QEIYYJ1ZgdgIkkIRKyShKAcf5kdgBAmiOWEQPoQiFglfQjKsdrsAIQwQSwnBDuQpkIRmzZX586iMSGQGgIRi2I3ITAmOFppdhhC1LDNONz7qnOH0ZgQSA2BiDU5Lqd9m9lBmGyJ2QEIUcOq/TMfjQnBGmJxGlgRy9abHUAEkIRAxBpJCMrjctpzgX/MjkOIGrTM7AAiwFKzAxCihklCUEHLzQ5AiBq0wOwAIsCfyDTIIrZIQlBBP5kdgBA16BezAzCdw10ArDI7DCFqyBYc7mofmVcSAiFqt/0Y/WaE9CMQsSMsn/VoTQiWAZlmByFEDfjF5bRLJ1qDJAQiVkhCUFEup92HVKOK2CCf83/9bnYAQtSQReHYaVQmBAHzzA5AiBogHQr/tQzYZXYQQoRZLmH6fYvmhED6EYhol0eYrhRqJYfbD6SbHYYQYfYNDnd+OHYczQnBIiDH7CCECKPvXU57ntlBRJhZZgcgRJjNDteOozYhcDntHmCu2XEIEUZh+2Koxb4BwnL1JEQE8CMJQZV9ZnYAQoTRHLMDiDgOdy7wndlhCBEmv+Nw7w7XzqM9IZgDeM0OQogwWCQTGpVKmg1EtAprrWBUJwQup/0A8L3ZcQgRBh+ZHUAEm4NMcCaiU1iT3ahOCAI+MDsAIcLgQ7MDiFgO93ZkkCIRfTbhcK8M5wFiISH4BCg0OwghqtFil9O+yewgItxnZgcgRDX7PNwHiPqEwOW0ZwBfmR2HENXoFbMDqAXewuiRLUS0eD3cB4j6hCDgZbMDEKKaZAHvmB1ExHO4tyAXAiJ6/I7D/We4DxIrCcEXgMvsIISoBu+6nPZss4OoJeRCQESLGvksx0RC4HLa/cBUs+MQohq8ZHYAtcgcYKfZQQhxiLKB92viQDGREAS8ioxgJmq3RS6nfZnZQdQaDrcXmG52GEIcordwuGukVjBmEgKX076PGsqyhAgTqR2ovKnIXUai9tLAszV1sJhJCAKeNzsAIaroAJLQVp7DvROYaXYYQlTRXBzutTV1sJhKCFxO+xJgodlxCFEFT7ucdpm9s2qeMTsAIaqoRj+7MZUQBDxodgBCVFIG8qNWdQ73YuBHs8MQopJWUMMz9sZcQuBy2ucgtQSidnna5bS7zQ6ilrvT7ACEqKRJONw1OidHzCUEAfeYHYAQFeRGagcOncO9EBnOWNQeP+Nw1/j05jGZELic9m+RKkRROzwdGH5bHLpJgM/sIISogIlmHDQmE4IAqSUQkc4NPG12EFHD4f4LeNPsMIQoxywc7l/MOHDMJgQup/1narjDhhCV9JjUDlS7KcgAZSJy+TFqskwRswlBwCRkRjQRmTYAj5sdRNRxuLcCL5gdhhClmIHDvcqsg8d0QuBy2pcC08yOQ4gS3ORy2gvMDiJKPYTRHCNEJCkAJpsZQEwnBAGTkAlQRGT53OW0f2F2EFHL4d4POM0OQ4gQz+NwbzYzgJhPCAL3d99idhxCBOQBN5sdRAx4AvjD7CCECPgbo3+LqWI+IQBwOe3vA1+bHYcQwMMup91ldhBRz+H2AOMAj8mRCKGBy3C4TR+aXBKCf12L9D4W5toAPGp2EDHD4V4OPGB2GCLmPY/DPc/sIEASgmIup30jMs+BMI8fuFQ6Eta4h4BlZgchYtYGIM3sIIpIQvBfjwCLzQ5CxKTHAmNjiJrkcHuRpgNhjqKmglyzAykiCUEQl9PuAcYAprfliJiyHJNvN4ppDvefwP1mhyFizrM43PPNDiKYJAQhXE77euAms+MQMSMXGONy2gvNDiTGPQwsNTsIETM2YOKIhKWRhKAELqf9VeA9s+MQMeEml9O+2uwgYp7RdHAJRoImRDh5gEsiqamgiCQEpbsKWGt2ECKqfeBy2l8xOwgR4HCvxEgKanQOehFzrjdr8qLySEJQCpfTng2MwhgoRojq9idwhdlBiBAO90fIrYgifF7E4Z5udhClkYSgDC6nfQVwKXLFIKrXLuCsQNIpIs8U4FOzgxBR5wcivH+aJATlcDntHwB3mx2HiBoFwLkup93UMctFGRxuDVyMUYsjRHX4GxgV6KsSsSQhqACX0/4Q8KrZcYiocJnLaf/V7CBEOYxhZM8G9podiqj1soDhONz7zA6kPJIQVNw1wLdmByFqtQdcTvu7ZgchKsjhdgHnIYMWiarTwEU43KvMDqQiJCGoIJfT7sX4cqgVf1gRcT5EBh+qfYwx5q83OwxRa92Nwz3L7CAqShKCSghMlTwM2GF2LKJWSQcucjnt0jm1NjJ6hd9ldhii1nkSh/shs4OoDEkIKinQGewkYLvZsYhaYS4wUkYirOWML3a5HVFU1Is43LeZHURlSUJQBS6nfS0wGNhmcigisn0LnCMzGEYJh/se4DGzwxAR7zVqaTOT0lpqMavKlpbeGePe0jZmxyIizg+A3eW0y8BW0cZhfRyodVd/oka8DlyBw+03O5CqkBqCQ+By2jcAJwJyT7kINh9j4CFJBqKRw3078KDZYYiIMxW4vLYmAyA1BNXClpbeAeOKsL3ZsQjTfQGcL6MQxgCH9S6kX4EwPI3DfYvZQRwqqSGoBi6nfRMwCFhmdizCVNOA4ZIMxAiH+0GMoWh9ZociTHVvNCQDIDUE1cqWll4XeAdjhDMROzSQ5nLaHzU7EGECh3Uo8D5gNTsUUaNygUtxuGeaHUh1kYSgmtnS0i3AI8DtZsciakQB8D+X0x41XwqiChzWbsAsoKvZoYgasQU4B4d7qdmBVCdJCMLElpZ+OUYnkwSzYxFhsw842+W0LzA7EBEBHNaGGDUFQ0yORITXL8AIHO5dZgdS3aQPQZi4nPZXgdOB/WbHIsJiKTBAkgFRzOHOAOzAkyZHIsLndeCkaEwGQGoIws6Wlm4D3gOOMTkUUX1eAm6SAYdEqRzWcRidTJNMjkRUDx9wOw7302YHEk6SENQAW1p6PMZ9y3cAyuRwRNVlAuNlxkJRIQ7rMcDbQCezQxGHZDtwCQ531M92KwlBDbKlpZ+OUeXU2uxYRKUtBMYEbjEVomIc1rqAE7gOuRiojd4Ebg40B0U9SQhqmC0tvTFGVeIos2MRFeIBHgbuD0yBLUTlOayDMca472ByJKJitgNX4XCnmx1ITZKEwCS2tPQLMToftTQ7FlGqBcDVLqd9ldmBiChg1BY8AlyL1BZEsreAm2KlViCYJAQmsqWlW4H7MKoT40wOR/zrADAReMXltMsJIqqXw3oS8CpSWxBpdmDUCswxOxCzSEIQAWxp6X2BF4FjTQ5FwLvALS6nfbfZgYgo5rDWw2iKugaINzmaWKcx+grcisN9wOxgzCQJQYSwpaUr4FKMKsWmJocTi1YDN7uc9m/MDkTEEGOEwweBkWaHEqO+BO7E4V5udiCRQBKCCBPodDgRoxmhrsnhxIKNgAN41+W019ppS0Ut57AehXE3wslmhxIjFgJpONzzzA4kkkhCEKFsaenNMMYtuA5IMTmcaLQVuB94Te4eEBHDYT0dIzHoZ3YoUeovYBIO92dmBxKJJCGIcLa09OYYicG1SGJQHXZjtN1Ocznt+WYHI8RBHFYFnA88gAxqVF22AlOAN3G4ZbrqUkhCUEsEJQZXAA3NjaZWWgm8AMxwOe05ZgcjRLkc1gRgNHATcJTJ0dRWK4BngHdwuOUCoBySENQytrT0ZOACYDzyJVEeH/A58LzLaf/B7GCEqDKH9VjgRuA85K6E8viB2cAzONxy3leCJAS1mC0t/QiM25bGIB0Qg+0FXgamupz2LWYHI0S1cVhbAeMwago7mhtMxNmKMRrkqzjcm80OpjaShCAK2NLSGwBjMRKD44jNUdByMa4K3gO+dDnthSbHI0T4GP0MTsFIDOxAPXMDMk0eMBdjoKcvpX/AoZGEIMrY0tJbY9zTfB5GchDNIyBmY9xH/AkwW/oGiJjksCYBJwHDgbOANuYGFHa7gDnALOBbHO5ck+OJGpIQRLHAmAZ2jC+Kk4Am5kZ0yDSwCpgHfA18LXcKCBHCYe3Hv8nBEURHjeEKjBrAWcDvONzywxUGkhDEiMBIiN2BQYHHcUT+LU0a4+6AHwOPn1xO+14zAxKiVnFYUzEuCo4F+gM9ifxaQz+wFliCMYBQOg63y9SIYoQkBDHMlpbeEiM5GAB0Czw6AgkmhJONMWjIKoxhhFcBv7mc9n0mxCJEdHJYk4HDMZKDokdPzLtzwQ+swfjxL3r8gcOdbVI8MU0SAvEftrT0eIxZ2IoShC4YUzQ3ARoH/VuZpMED7MEYFCj4sY1/k4AtMrOgECYwkoTDMM71VkGP1kH/r2qnxVyMWQR3ANuD/r8DY9jwP3C4pe9PhJCEQFSJLS29PkZi0ACwBB4Ko5q/ECMJ8AAZLqc9pmcQE6LWM2ZnbI0x8VpC4BHPvzUL3qCHB9gHbMfhzqz5YEVVSUIghBBCCCxmByCEEEII80lCIIQQQghJCIQQQgghCYEQQgghkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBEIIIYRAEgIhhBBCIAmBEEIIIZCEQAghhBBIQiCEEEIIJCEQQgghBJIQCCGEEAJJCIQQQgiBJARCCCGEQBICIYQQQiAJgRBCCCGQhEAIIYQQSEIghBBCCCQhEEIIIQSSEAghhBACSQiEEEIIgSQEQggRtZRSRymlflFK5SiltFKqr1JqqFLqD6VUfmBZQ7PjFJEh3uwAhBBCVD+lVALwIZAP3ALkAluAn4BVwHVAAZCjlJoErNZaf2ZSrE2Ay4CzgB5AArAGeEpr/YEZMcUipbU2OwYhhBDVTCnVHfgLuFJr/Upg2VDgS+A0rfW3QWWzgY+01uNMivVM4BPgC+AHwAuMBE4C7tNaTzEjrlgjNQRCCBGdmgf+zShnWSRYBXTRWv9TtEAp9SLwLTBRKfWo1jrHtOhihPQhEEKIKKOUegOYF3j6YaCvwI/Am4FliwLL3lBKaaAucElgmQ5sj1LKEXjeVSn1tlLKrZTao5S6XxnaKqU+V0plKqV2KqVuC4kjUSl1n1JqSWDbHKXUfKXUScHltNabgpOBwDINfAYkAR2r9Q0SJZIaAiGEiD4vAduAScCzwCJgF7AWuAqYDGwCNmJchb8C/A5MD2y/MWR/H2A0P6QBduBuYD9wNfA9MBEYCzyulFqktf4psF0D4ArgPeBloD5wOTBXKTVAa/1HOa+jZeDfvRV/6aKqpA+BEEJEIaXUYIz2+FFa648Cy8YBrwNHaa0XB5UtsQ+BUsoBTAGma62vDiyLA1xAKnCn1vqRwPKGwHZgZtF+AmXjtNaFQftsiNFhMF1rfXkZ8TfGSELWaq1PqMp7ICpHmgyEEEKU55Wi/2itfcBiQAGvBi3PwKiB6BhctigZUEpZAj/y8YHtjyjtYEopC/AO0BC4oRpfhyiDJARCCCHKsznkuRvI11qHVuW7gUbBC5RSlyil/sS4/XEfsAej2cFaxvGeA4YCV2itlx9K4KLiJCEQQghRHl8Fl4FRc2D8R6mLgDcw+iRcjvEjfxpGv4MSf3+UUlOAa4E0rfWMqocsKks6FQohhAhXZ7LzgL+BETqow5pS6t6SCiulrgMcwNNFfRNEzZEaAiGEEDkY7fXVragWIbjW4Gjg2NCCSqnzMe6IeAe4NQyxiHJIDYEQQoglwKlKqVsx7hTYpLX+rRr2OwcYAXyqlEoHOgDXAKuBekWFlFIDgLcw+hh8B4xVSgXv5xet9d/VEI8ogyQEQgghbsUYg+ABIBljAKPqSAjewBhL4GpgCEYicBEwChgcVK4nkAg0A14rYT+XYjQ9iDCScQiEEEIIIX0IhBBCCCEJgRBCCCGQhEAIIYQQVCEhUEqdoJSarZTaHpgF65wKbDNYKbVUKVWglNoQGE9bCCGEEBGiKjUEdYHlwHUVKayU6gCkY0yy0Rd4GnhFKTWkCscWQgghRBgc0l0GgXm0z9Vaf1ZGmUcAu9a6d9Cy94GGWuuhpWyThDEHdrDGGNNtCiEOTX1gu5ZbjIQQQWpiHIJjMebbDjYXo6agNHdiTLkphAiPNsA2s4MQQkSOmkgIWgK7QpbtAhoopZK11nklbPMw8GTQ8/rA1i1bttCgQYMwhSlE9MvMzKRt27YAWWbHIoSILBE5UqHWugAoKHpeNIRlgwYNJCEQQgghwqAmbjvcCbQIWdYCyCyldkAIIYQQNawmEoJfgVNClp0WWC6EEEKICFDpJgOlVD2gc9CiDkqpvsB+rfVmpdTDQKrW+n+B9dOA65VSj2JMWnEyMBqwH1LkQohaYcmSJfWA1shAaMI8fmB7//79s80OJJJVpQ/BkRhjChQp6vz3JjAOaAW0K1qptd6klLIDTwE3AVuBK7TWc6sSsBCi9liyZMkxFotlmsVisQKq3A2ECA/t9/vdS5YsuaZ///4LzQ4mUtWK2Q6VUg0At9vtlk6FQhyCzMxMrFYrgFVrnRnOYy1ZsqSexWL5uWHDhi2aN2++PzBuiahF/Frj9esEr1/HeX3+eJ+fBI0GjQKU1tCwsPiiW6OUJi7OrywWL3FxPhUX5ycuzovF4i/qHG4GrbXavXt344yMjF1+v3+Q1BSULCLvMhBCRIXWFovF2rx58/1169aVDsQRSGtNvsdfJ7fQm5Lv8Sd7fP5EIwHwJ/h8OsGndVx5+2iakVGhY6m4OI9KSChUCQkFKjGxQCUm5qs6dfItderkq7g4/6G+lvI0b958f2ZmptXv97cG1oX7eLWRJARCiHCxAEpqBiKD369VrseXnFfoS8nz+FLyPb6UQq8/2a91jfTt0D5fgvb5EsjPrxu6TiUkFFjq1MmxpKRkq5SUHEtycp6yWKr1cxP4HCqkL0upJCEQQogopLUmu8BbNyvfa80u8FoLPL6USM3MtMeT5PN4knxZWY0BUMpvSUrKtSSn5Fjq1c201K+fVd0JgjiYJARCiBpjS0vvH479upz2JeHYb3Xq3r17z19//XVNo0aNwlY97vH54zLzPNasfK81p9DbwOfXlfqOX/nHUh67905yc3JQSnHb5Ac5+rgTALjnlmv5df6PNG7SBIBjjh/MrXffX+b+7n/hBR6eNo1fP/yQw7t3B6D7kCEkJSZSJ8mYruaOK67gvKEh09pobfni66/r3f3UU/WAFg/ffrv/9DOGZWQ2apb99ivT1O5dOy1Op3NnZV6bKJ8kBEIIEUYej4eEhATWrFmzOhz7z/f4kg7kFjbOyvda8z2+g6rjK0przS1XXsz9T77AMccPxvX3Bq6+8Bw+/3ERdZKTARh3zQ1cdMX4Cu1v0YoVLFm5knatWx+07q3HHitOEEpz/wsv8OmLLwJwwc03W04cMixx1YbN7d778GPe/HBW7g53Ho1SEg/USYgrKHNHosKkLUUIETO+/fbbuv379+/WrVu3nl27du359ttvNwT46aefUvr169e9a9euPfv06dPj66+/rgtwwQUXtJ88eXLxSKtr1qxJbNq06eEFBQXq888/r9+3b9/uPXr06Nm5c+deTz31VNOiciNHjrSNGjXKduSRR3br2rVrLwClVP+9e/fGAVx11VVtevfu3aN79+49jzzyyG7Lly8vnt1VKdU/LS2tZZ8+fXqkpqb2eeaZZ5oUrVu6dGmdQYMGdenatVuvrt26Hzbl4Sd6r9uV1fuvjZtb33DF/+qOOfMURp46kOcffaDS703Ggf0c2L+XY44fDICtY2fqN7Dy84+hc9OVLzcvj1sfeojnp1R9jrqE+Hhy8/LIycsjMSGBrPg6lsfuncTNdzrwapWyJ6sgdd2urN4bdmd33ZdT0MivtdzWeoikhkAIERN27doVd/7553d+5513Ng4dOjTb5/Oxd+/euPz8fHX++ed3ev755/8ZOXJk5ty5c+uNGTOm88aNG1dcfvnle6+99lrbfffdtwvgpZdeanruuefuS0pK0gMHDsxdvHjxmvj4eHbt2hXXr1+/nsOHD3d36tTJA/Dnn3+mLFy4sMQmAofDsbN169ZbAaZPn97o+uuvbzd//vz1ReuTkpL0ihUr/lq2bFmdQYMG9bj22mv3AYwYMaLLjRPuKjj97NGJfq0tB/bvA+DuW67liutv5chjj8Pr9XLDuAv4es5nnH7mORV+fxo1bkKz5i2YO/tThpx1Liv/WIrr7w1s37K5uMw7r03jsw/epmVqG66/42669+pT4r7uevJJrhw9mjYtW5a4/spJk9Ba079PH+6/+WaaNW58UJkHb72VK+++G4BHJkz0f/7td8lNmjanT7//tjrlFnrr5xZ66+9053utyQn7mtRL2pMstQZVIgmBECIm/PDDD/U6dOiQP3To0GyAuLg4WrRo4fv999+TLRYLI0eOzAQYMmRIdpMmTTwLFy5MGTJkSLbX62XevHkpxx9/fO7MmTObfPbZZ+sBdu3aFT927Fjbpk2b6sTFxemMjIz4ZcuWJRclBGefffaB0voLzJo1q8G0adOa5+TkxPn9ftxu93++iy+//PJ9AP369cuPi4vTK9Ztar59z/6mBR5v4qnDRyX6A+PHNGrchNzcHH5fMI/9e3cXb5+bk4Nr44ZKv0dPv/oOTz90L6++8BSdunan31HHEBdvhHb9hLtp1qIlFouF776cw3X/G8XsnxYftI/vfvmFzTt28NRdd5V4jG/eeIO2rVrh8Xi497nnuPKuu/hs6tSDyh3Xvz8/vfsuAG6fzrv9yqvqvvj2R7z9ylT+WPwbjZs2447JD5KQmAiAz6/j9+cUttifU9giJTEuu1FK4p5GdRMPWOQulwqThEAIIUIED6IzZsyYfS+//HLTzMzMA40aNfIeddRR+QBXXXVV+9NPP9391VdfbbRYLPTs2bNHXl5ecTNsvXr1fCXte/369YkTJ05s98svv/zVq1evgt9++y351FNP7RZcJiUlRfu1VnuzCprGxSfE7crMb1voK+V3LZAczPj8G5Lq1Cnzdd129SVscf0NwPT3P6dho/9emXfr2Yepb39U/Pyck46mc1ejrb9Fq3/7Apxyxpk847wX18YNHN6u6X/2Me/33/njr7/oPmQIANt27eLca6/lucmTsQ8eTNtWrQBISEjguosv5vAzzywzZoA7n3gi8cobbmPf7t388PUXvDpzNi8+8TDpn37IOeePPah8bqGvXm5hXr2dmfltm9ZL2tGsXtKecg8ipA+BECI2nHLKKdn//PNP0ldffVUPwOfzsWvXrrjDDjss3+/38+mnnzYA+Oabb+ru3bs34ZhjjskFuPLKK/elp6c3mjZtWrOLL754b9H+3G53nM1mK7BYLHz55Zf11q5dm1KROA4cOBAXHx+v27Vr5/H7/Tz99NPNQ8vsyylssmZnVu+dmfnFw8DbOnWhTnIKX3727w/2gf37SKlbj6MGHs9rLz5dvHz3zh3s2rHtoGM/8dKbzJw7n5lz5x+UDADs2fVvx/2P332T5OQUBgTuMgje359LF+E+sJ+2tg4H7eO+m29m43ffsWbuXNbMnUtqixZ8+uKL2AcPJic3l4zMfwfI/PCLL8rtXPj78uXsz8mLP+6kU8nLyylO1iwWC7m5OWVu6/Pr+F2Z+W3X7Mzqsz+3sBEyfHaZpIZACFFjzLw9sFmzZr73339/4x133NH2xhtvtFgsFiZPnrxtzJgx7g8++GDjTTfd1G7ixIltkpKS9DvvvLPRarX6AWw2m+fwww/P+e677xq++eab/xTt74EHHth28803t3M6na179eqVe9hhh5X96xQwYMCAvOHDh+/v3r17r0aNGnmHDRuWAUYv/73ZhU0B9mR72jaw/re1IT4+nmdefYeH75nIK88/icViYfT/LmfURZfy0LPTefy+uxhxyrEopUhOqcs9zidp0Sq1Uu/Rx+++SfqnH4LWdOjclademVH8A3zPrdexb89u4uLiSKqTzGPT3qB+AytkZPHyzJns2L2byddfX+b+d+/bx4W33orf50Nrja1NG1556KFSy3s8HiY99bT/wVffswB07dGbNu1sjDjlWBo1bsJTL79dodfl9fsT9mUXtt6X6/O+tPjAeb99mO50Oe3eir4vsULmMhAihtTwXAbd4+Pjv+rSpUt2SkpKfjiPVZtprdmXU9hkT1ZBK4/Pn1T+FpGlS8bWsO4/v37DrC1x9eof6n60t5Dd27fi+GE327J8G4H7gHdcTnuJTTuxSJoMhBDCJDkF3pT1u7J7bM/Is9XGZKAmuOPqJIRht50wZuhdZktLPzoM+6+VJCEQQoga5vNry9YDuW3/3pPdI9/rq1Dfg5gUF+fNJL7snpKHpg/wiy0t/VlbWnq9MB6nVpCEQAghalBGbqF13a6sXvtzCptHfoOtubx1aqSpyQLcAKy2paWfVQPHi1iSEAghRA0o9PoTNu3N6bh5f25nj8+faHY8tUF2Qp2avCugLTDLlpY+05aWXvKISlFOEgIhhAizPVkFTdftyuqVle9pZHYstYfSB0gMZ3NBaUYBf9nS0q8w4dimkoRACCHCxOfXlk17czrucOe192sdZ3Y8tYmuUyfPizLrPWsIvGxLS//clpYeM0mcjEMghKgxf3XvEZbpj3us+Svipj/OK/TW+Wd/bqdCr9+Mq9xaLy8xOWzTRFfCcGCpLS39fJfT/rvZwYSb1BAIIWLe2rVrEx999NFmwctSU1P7/PLLL8lV2d++7ILGG/fk9DiUZOCeW67l8LaNyHS7S1z/+cx3Oa5nO0YPOZ7RQ47n8tFnVWhdMI/Hw82Xj2XU6YO45cqL8XqNsXoK8vO5dOQwMjMyqhr+IcuwJEVKPwsb8LMtLf1GswMJN0kIhBAxb/369UmvvfZas/JLls2vtdqyP7fdtoy8Dn6tLUU/sJX17ZeziU8o//b7o449vngo4ldnzq7wuiK/zPuOBg0b8eHXP1O/gZUFgamOpz/zGBeMu5IGDRtWKf5DFp9QmENcpCQEAAnAM7a09Bm2tPSorfGRhEAIETM+/vjjBj179uzRtWvXnkcddVS3JUuW1AG44YYb2rlcrjrdu3fvefLJJ3cuKj9z5sxGffv27Z6amtpnwoQJrYqWb968OX7YsGEd+/Tp06Nr1649b7zxxtYFXl/iht3Z3Y45vHuzpx6awpgzT+GeW8ZXOsZ9e3bz6nNPcvvkB6rlNZclPj6B/LxcAPLzcklISGTdXyvZtHE9Q846N+zHL42nTnKhaQcv20UYtQVtzQ4kHCQhEELEhG3btsVffvnlHd944w3XunXrVl922WV7Ro8e3cnv9/Pcc89tttls+WvWrFn9/fffF88bnJGREffHH3+sWbx48V9Tp05tsWnTpgSAMWPGdLjuuut2r1ix4q9Vq1atXvrHHw2ef2VGz3yPry6A+8AB3pn9LQ8/93Kl47x3wk3cfNe91K3AaL3LFi1k9JDj+d85p/P1nM8qvK7IsSecRN169Rl1+iDqNWjAgONO4PH77mbivQ9XOu7qlBmfHMm/Tf2Bxba09AFmB1LdpFOhECImzJs3r27Xrl3zBgwYkAcwfvz4/RMmTGhX9CNfkosvvng/QKtWrbxt2rQpXLduXVKTJk18CxcubHDbbbcl3HbbbaCUJTevIGnTxuI8guGjLvzPFMoV9cl7b9EytQ1HB2YYLMsJpw7h9LPOITk5hb/Xr+WasSNo2TqVw444qsx1wSwWC1Mefab4+duvTOWkIcPwen2kXX8FhYWFnH/JFRWKp9oo5c8goUp9N2pQc+A7W1r6cJfT/oPZwVQXSQiEEKIUycn/9nSPi4vTHo+neEK4pUuX/pXnj2u0PSPfpvnvmIMpdUseBXfjujXcecOVAPQ98mgmPfj4f9Yv+mU+S377hfnfzS1eNur043j61Xfp0fuw/5Rt1LhJ8f87dunGoJNPY9mi3zjsiKPKXFea7Vs3M//7b5j69kfcfct4Ro4dR88+h3PR2afz6Xe/lrpddfPXScnzQ90aO2DV1QO+sKWlj3Y57SV30qhlIrlaRgghqs3gwYNz1q1bl7xo0aI6ANOnT2/UokULT4cOHTwNGzb0ZWVlVeied6vV6h8wYEDmxLsnd96WkddBo9XunTvYtWNbudt26tq9uKNfaDIA8PBzL/P176v48tc/+fLXPwH48OsFByUDALt2bC/+/749u1m0YD7dA+XKWleaR6fcyR1THsRisZCXm4tCoSwW8nMrNKtztclJTK5NIzrXAT6xpaWPMTuQ6iA1BEKIGmPmeAGtW7f2vvLKK39fcsklHbxer7Jarb4PPvhgo8Vi4eijj87t2rVrXpcuXXq1bdu2ILgfQUmmvvFOzqS0ia1GnHIsSimSU+pyj/NJWrRKDetruO5/o7j2tkn0OrwfH7z5Cj988yUJ8fH4/X4uumJ8cdV+WetK8sWnH9K1Z286d+sBwGXX3sx9E2/C4/Fw5U13hPU1hTqgEmvbrI/xwAxbWnoDl9M+zexgDkVx9VckU0o1ANxut5sGDRqYHY4QtVZmZiZWqxXAqrXODOexlixZ0j0+Pv6rLl26ZKek1MgkNTVie0Ze673ZBa3KLxkbumRsrb6dJSblr09pFpbb+rS3kN3bt+L4YTfbsnzhOARAmstpfyRcOw83aTIQQogKkmQgvAqSkj1mx3CInLa09PvMDqKqJCEQQogK2JNV0FSSgfByx9WJhmbse2xp6deaHURVVCkhUEpdp5RyKaXylVK/KaXKvB9TKXWzUmqtUipPKbVFKfWUUipqR3sSQkSXjNxC6053Xnuz44hqljhvJvGRfrthRT1nS0s/2+wgKqvSCYFS6nzgSeBe4AhgOTBXKdW8lPJjAGegfA/gcuB84KEqxiyEEDUmO99bd+uBvI6R39uqdvMmJ+dH0XtsAd6zpaUfY3YglVGVGoJbgZe11q9rrVcD1wC5wGWllB8ILNBav6u1dmmtvwbeA6JulCchRHTJ9/iS/tmf09mvtTSvhllOfHLlR3KKbMnAbFtaehezA6moSn3IlVKJGMM2flu0TGvtDzw/tpTNfgH6FzUrKKU6AsOAL8o4TpJSqkHRAyh/DE8hhKhGhV5//Ka9OV18fh0N7doRTun9KjEam5GbAl/a0tIPeeKsmlDZD3pTIA7YFbJ8F9C9pA201u8qpZoCPytjLM94YJrWuqwmgzuBKZWMTQgR6RzW/uHZr7tC4xu8/fbbDSdPnpyamJio33rrrU1FwxiH8vm1xbUvp4vH56/QPfGLfv2Zwvx8jjvp1MpEXezPZYu5f+LN5Ofn06JVax58ehotWrUusez0Zx7n85nvADB0+AhumHhPhdYV8Xg83HHNOLZt+Yc27Tvw2NTXiY+PpyA/n2vGjuCZV9+t8VkOdZ2kfC8qWvoPhOoEzLGlpZ/kctpzzQ6mLGGvBlNKDQYmAddi9DkYAdiVUgd/Uv/1MGANerQJb5RCiFgwffr0ZhMnTtyxZs2a1aUlAwBb9ue2z/f4UiqyT6/Xy+Jff2bBvO+qFJPf72fSDVdxh+NhZv+0mONPOo3H7p1UYtklCxfw5ayP+fCbn/n0+4X8Mu97fgoMc1zWumCROOVxXmJK1eaJrj0GAG+YHUR5KpsQ7AV8QIuQ5S2AnaVscz8wQ2v9itZ6hdb6U4wE4U6lVInH11oXaK0zix5AViXjFEKI/xg3blzbxYsX17vvvvtS+/Xr1x1Kng55b3ZBk+9++KHx6CHHF2+7fs1qzjjWGPp325bNDOrVnqcemsL5Z5zI+2+8zIdvv84Xn37I6CHHM+3pRysV1+o//yAuPp4BA43jnXfROOZ9+xUF+QeP5TR39qecOWI0KSl1SUxK4pzzx/Ll5x+Xuy5YJE55nGFJSjTlwDVrlC0t/UqzgyhLpRICrXUhsAQ4pWhZ4Ef9FKC02S9SAH/IsqJhoqKtE4kQIkK98cYbW3r37p3rdDq3LFu2bE3J0yGf33lHRl678vaVlZlJ5649+ODLeVx0xXhGXXQpw84dxcy587nm5gmVimvn9q20Sm1b/LxuvfrUrVefPbsOvsbasX0rrYPKtm7bjp3btpa7LljETXkcH1+YQ1xtG664qp6xpaX3NDuI0lSls8yTwJtKqcXA78DNGDNTvQ6glHoL2Ka1vjNQfjZwq1JqGfAb0Bmj1mC21jps40cKIURZQqdDvvrqaw5MnJjWYWcFJimKT0jAPmJ02GMMh0ib8thTJ6UQiIUaAjDuPHjPlpZ+tMtpj7jhvCudEGitP1BKNQPuA1oCfwBDtdZFHQ3b8d8agQcAHfg3FdiDkSTcVfWwhRCiem3LyGtbVGcZFxeHz/fv9UphQcF/yiYnJ2OxVKyCNdPt5orRZwLQum17nn7l7f+sb9m6DTu2bSl+npOdRXZWJs1atDxoX61at2F7UNntWzbTMrVNuetKEwlTHmfF14m1WzoPAx4Hrjc7kFBV+kNorZ/XWrfXWidprY/WWv8WtG6w1npc0HOv1vperXVnrXWy1rqd1vo6rXXGoYcvhBBVEzwd8oGcwobvvvdes2YtW9O8ZWvatLOxY9tW9u/bC8CcTz4oc19169UnK7PkuaIaWK3FUx6HJgMAPQ/ri9fj4fdf5gPw0dtvcOKpQ0mqc/BdeKedeQ5zPplJbm4OhQUFfPbBOwwdPqLcdaUxfcpjpfwHSIzWuwvKcl0kjmQo99cKIWpOBW8PrAlB0yF38mpVp4G1IY9PfR2lFM1btmLcNTcy9qxTaNK0OYPKuZ3w5KFnMueTDxg95HhOPuOsSvUjsFgsPPTsS9yfdgsFBQU0b9GSB5/5dxbd4CmPjzp2EEPOOpfzTjsOgCFnncuJpw4FKHNdSSJhymN/neQ8v9HkHItes6WlH+5y2qtxushDI9MfCxFDZPrjg23Ynd0lt9ArXyxVdCjTH2dbm2TvUMn1qjGcUtXQ9MeV9YPLaT/Z7CCKxFrbjRBCFNufU9hIkgHzHFBJsXJ3QWlOsqWlX2J2EEUkIRBCxCSfX1t2ZubLoGdmSUwsyMeSYHYYEeAxW1p6Y7ODAEkIhBAxaqc7v5XX54+V290iTkFSSqHZMUSIZhij85pOEgIhRMzJK/Ql7c8pDB1xVdQgd1wd6dT+ryttaelHmR2EJARCiJizLSOvnUbLSKlmsVh8mcTH4u2GpVHA02YHIQmBECKmSEdC8/nqpORF/v1tNW6gLS39QjMDkCobIUSN6fNmn7BMf7zikhUVGt9AOhJGhuyEZKmdKdkjtrT0z1xOe6kzcYaT1BAIIWLGnuyCZtKR0HwHVOLBwzAKgLaYOKSxJARCiJjg82vLvuyCgycIqILLR53J91+lV3q7Fx5/iPRPZwIw9UknjzruLLHcvG+/4vJRZx5SjDXpi3nz6HvWWfSx27ng5pvJzM4usZzf7+emh53e0487Iu7MQUfw3hvT/7Pu4XsmYD+uH6HrgmVmZHD56LMYeepAHpx0W/Hy/fv2cvmoM/F4PNX74mreLba0dFPGZ5CEQAgRE/ZmFzTz+XWFmkm9Xm9YYrju9knYz62dsySWJjs3l2snT+aDZ55hRXo6rZo1w/nSSyWWfW/OHFb//bea9dNi3pn9HW9Oe44Na/8CIP2Tmfy9fi0lrQuW/tlMjhp4PB9/+wubNq5n/ZrVADx+313cdOcUEhJq/dAGrYBxZhxYEgIhRNTz+7Xam13Q8vC2jXj+0QcYPfQEzjrhyOKrdYDD2zbixSceZoz9ZJ513ktOdhb3TriJMWeewnmnHcd9E2/GU/jvrfO/LZjHGPvJnDnoCB6/726KhoEPrT247epL+HzmuwDcc8u1vP3K1IPi83g8PDjpNs46vj9jzjyFRb/8XO5r2rNrJ1ePGcG5Jx/D1WNGMOHay5j6pBOAU4/sye6dOwC4Y/yl/O+c0wFj1sYT+nSksKCAz2e+y1UXnsPE6y5n5KkDuXDYSWz9x1XJdxa+nj+fw3r0oFvHjgBcdcEFzPziixLLfvTVV5w3dpw/Li4Oa6NGDDnrXL76/GMA5s7+hBEX/o+S1gWLj08gPy8Xv9+Pp7CAhMREFvzwLQ2sDTnsCNPv3KsuE2xp6XE1fVBJCIQQUW9vTkHT4toBpZj51U9MnfERznsmsm3L5uJylrg43k3/nlvvvp8n7r+HIwYcy7tzvuPDr3/G7/fzzmv/Tjr09/q1vPnZXD785meWLFzAl599VOX4Pn7nDVx/b+CT737lzU++5K+Vy8vd5pEpaRze/yg+/X4hDz49lcULFxSvO3rQCfz28zz8fj9rV68kK8uYUnnZooX06NOXxMCIwauWL+WGiZP5+NtfOPr4E3lt6tOVjn3Lzp20a9Wq+Hn71q3ZuXdvibUsW3bu1E3a2oov4Vu3aceO7cZcCDu2baV1m7aUtC6YfcRotrg2cf7QEzh60GCat2zFy889wQ0T7q507BGsI3B+TR9U7jIQQkQ1rTX7sv8dhGjEhRcD0Ka9jf5HD2Tpb7+Q2rYdAOeeP7Z4u+/nprN8ye/MePkFAPLz87HE/XsNddbIC0hISCAhIQH7iNEs/Hkew84dVaUYf1vwk7G/RKO/4znnj+Wz9w+eKvk/2/w8j1vvvg+Aps1bcMIpQ4rXHTNoMAt//pFOXbvTrWdvGjdtxuJff2b50kUcPeiE4nKHHTGANu3aA3D4EQNKbbevLn7QGPfcV1lKSl2eeOnN4uePOSZx6bU3sdm1iVeffxKAK2+8jW49+xxSrBEgzZaW/p7Laa+xOzQlIRBCRLUDuZ5GHp+/9E5aQT9PySlBE+9pzRPT38LWsXOFjqOUsaO4+Hj8/n9n0ysoqPxEj0X7quo2Rw86kWec99GxSzeOHnQiTZo2Z+HP8/hzySLueuiJ4nJJQXMLWeIs+Eq4qt+4bg133nAlAH2PPJpJDz7+n/VtW7bku19/LX7+z/bttGzalPj4g39eWqa21du3buHw/gMA2L51M61aG3eBtkptQ2nrSrNi2RL279vDiacOZdyIM3jwmZfQWjP51mt57aPKd/qMMH0AOzCnpg4oCYEQosZUdLyA6rQ35M6Cz2e+y/hb09i2ZTNLf/+VOxwlDyN/0hA7r7/4DPc4nyI+Pp7MjAwyDuynXQejrTz905mccc55+LxevvjsIy6+YjwAbW0dWLFsMacOG87Wzf/wx6KFnDbs7DJjPGbQicX7Q+viPgdlGXDcCcz68D2uuWUi+/bs5qfv5nLe2HEANG/ZivoNGvDR26/z8vuzaNi4MY/dN4nc7Gx69Dm83H0H69S1OzPnzi91/WmDBnHLQw+x9u+/6daxI9Pff59RZ5xxcEGl/KecNcLyyXtvcfqZ55Cdmcnc2Z/y3OvvG/uxn0Np60ri8Xh4+mEHj77wKgB5ebkoZSRGubk5lXqNEexOJCEQQohDl1PgTc73+FKCl/l8PkYPPYG83Fwm3ucsbi4IdceUB3n64XsZPeR4LBYLcfHx3DLp3uKEoEPnrlxy7lAyMw4w+PRhDD17JACXXnMTE669jJGnDqRT1+707ntkuXGOGHMJG9b+xYiTj6G+tSFHDDiWv1b8UeY2ExwPc8+t13LuycfQrEVL+vTtT/0G1uL1Rw86kZ++m0ub9jYAmjZrTtNeh2GxVG/Xsfp16/KCw8H5N92E1+ejZ+fOvPzgg//Gcd55fPrii7Rsb8u3j7wgZeXyZZx1Qn8UiouvvI4uPXoBcObI81m1fGmJ60ry5rRnOWvkBTRp1hyAa2+7k+suMZrdb73r3mp9jSYaaEtLH+By2n+viYOpop6xkUwp1QBwu91uGjSQEUeFqKrMzEysViuAVWudGc5jLVmypHt8fPxXXbp0yU5JSal8vXk12Hogt+3+nMLmRc8Pb9uI+StdNLBay9qsVsjPyyM+IYH4+HgyDuzn4uGn8eCzL3FYv/ITkOrUJePgjn8lyW7QJHuHJble+SXDQ3sL2b19K44fdrMty1f+BpHjBZfTXiODFcldBkKIqKS1xp3niYh55sNhs2sjY+wnMer0QYwbcQaj/3d5jScDlXHAkmTKYDtR4HxbWnqNDK4gTQZCiKjkzvNYQwciWr7lgFnhVMn877/muUfuP2j5ZdfdwtDhI8ps248oCYkF+VgkIaiapsBQYHa4DyQJgRAiXPyA1tqcaYYP5HqamHHc6nT8yadz/Mmnmx3GISuok+wBzE0ItAY0/shvJS/JxUhCIISoxbb7/X737t27WzRv3ny/UqrGvop9fr8lKyevYW3oI1XbFfj95ZbZr+Pitbew3HJhozXe3Eyy8n0cyCs/3gh0li0t3epy2t3hPIgkBEKIsOjfv3/2kiVLrsnIyJiWmZlp5RAHpKmMPI+un1Xolyl2a4DKK7sZRivl35PtqaNr7s9fUhRk5fuYujiDfF+tTBLrAKOAV8J5EEkIhBBh079//4VLliwZ5Pf7W1ODnZjv/HbvO4U+HbUdCiPJ9G8fLXP9joYtl0858n/9aiicEvk1HMjz19ZkoMhFSEIghKjN+vfvnw2sq6nj2dLSU4Ejaup4sc6yY0eZ679qdERuLbvNL1KdYEtLb+ty2reE6wBy26EQItqcanYAwqDB/3X7o3qYHUeUUEBYe5hKQiCEiDaSEESInITkVZlJ9aTppvqcEs6dS0IghIg2Yf3SFBW3sGXPfWbHEGVOCufOJSEQQkQNW1p6T6CV2XEIw+yOx7U2O4Yo09KWll76BA+HqEoJgVLqOqWUSymVr5T6TSk1oJzyDZVSLyildiilCpRS65RSw6oWshBClEqaCyKET1m2r2vUrqvZcUShk8O140onBEqp84EngXsxevIuB+YqpZqXUj4R+AawAecB3YArgW1VC1kIIUolCUGEWN+wzQazY4hSYWsSq0oNwa3Ay1rr17XWq4FrgFzgslLKXwY0Bs7RWi/QWru01vO01surFrIQQhzMlpYeD5xodhzC8IXtmDpmxxClBtvS0uPCseNKJQSBq/3+wLdFy7TW/sDzY0vZbDjwK/CCUmqXUmqlUmqSUqrUF6SUSlJKNSh6APUrE6cQIiYdBcj86BFAQ/5PqX17mx1HlLISpnE2KltD0BSIA3aFLN8FtCxlm44YTQVxwDDgfuA24O4yjnMn4A56VGzCbSFELIvcuX9jzP46DVYWxCemmB1HFDs+HDutibsMLMBu4Cqt9RKt9QfAgxhNDaV5GCMLKnq0CXuUQojaLmy9r0XlzEvtm2t2DFHu8HDstLJDF+8FfECLkOUtgJ2lbLMD8Gitg8eu/AtoqZRK1FofNAWW1roAKCh6rpTMUSKEKJckBBFiToeBHc2OIcodFo6dVqqGIPDjvYSgXo5KKUvg+a+lbLYA6BwoV6QrsKOkZEAIIaqop9kBCCi0xG/cUa+p1OqGV49AJ9pqVZUmgyeBK5VSlyilegBTgbrA6wBKqbeUUg8HlZ+KcZfBM0qprkopOzAJeOHQQhdCCIMtLb0lxveMMNmfTTuFbfIdUSwJ48K6WlU6w9Baf6CUagbch9GR8A9gqNa6qKNhO8AfVH6LUmoI8BTwJ8b4A88Ajxxa6EIIUUyaCyLEnA4DG5odQ4zoBqyuzh1WqcpBa/088Hwp6waXsOxX4JiqHEsIISpAEoIIoMG9qEV3ud2wZnSp7h3KXAZCiGgg/QciwLZ6zVb5LXHV3rYtSiQJgRBClEASggjwTbsjtdkxxJBq70MgCYEQIhqkmh1ArNPgn9v+6O5mxxFD2lb3DiUhEEJEg9CxUUQNy42vs9qdVK+J2XHEkGq/q0YSAiFErWZLS0/BuPVZmOj3lj32mh1DjGlgS0uv1t9wSQiEELVdiVOvi5o1u8NxrcyOIcYooGF17lASAiFEbSfV1CbzKbXjrya2bmbHEYMaVefOJCEQQtR2VrMDiHUbrW02mB1DjJKEQAghgjQwO4BY96Xt6ESzY4hRkhAIIUQQSQhMpCH/xzb9ZHRCc1TrnQaSEAgharv6ZgcQyw4k1V+ZH58kd3mYQ2oIhBAiiL/8IiJcfkrtm2t2DDGsWptqJCEQQtR2HrMDiGWzOw7sYHYMMaygOncmCYEQorYrNDuAWLa9XrNqH0JXVJgkBEIIEUQSAhGrJCEQQogg0mQgYlW1JsOSEAghajupIRCxSmoIhBAiiCQEIlZJQiCEEEEkIRCxShICIYQIkm92AEKYRBICIYQIst3sAIQwyb7q3JkkBEKI2m4bMlqhiD0a2FKdO5SEQAhRq7mcdi+ww+w4hKhhO11OuzQZCCFEiM1mByBEDfununcoCYEQIhpIQiBijSQEQghRAkkIRKyRhEAIIUogCYGINZIQCCFECSQhELFGEgIhhCjB32YHIEQNk4RACCFK8BeQY3YQQtSQQmBdde+0SgmBUuo6pZRLKZWvlPpNKTWggttdoJTSSqnPqnJcIYQoictp9wFLzY5DiBqywuW0V/scHpVOCJRS5wNPAvcCRwDLgblKqeblbGcDHgfmVz5MIYQo129mByBEDVkSjp1WpYbgVuBlrfXrWuvVwDVALnBZaRsopeKAd4ApSFufECI8fjc7ACFqyOJw7LRSCYFSKhHoD3xbtExr7Q88P7aMTScDu7XWr1bwOElKqQZFD6B+ZeIUQsQkqSEQsWJROHZa2RqCpkAcsCtk+S6gZUkbKKUGAZcDV1biOHcC7qDH1krGKYSIMS6nfTOw0+w4hAizTODPcOw4rHcZKKXqAzOAK7XWeyux6cOANejRJgzhCSGiT1iunISIIL+6nPawzO4ZX8nyewEf0CJkeQtKzsw7ATZgtlKqaJkFQCnlBbpprTeGbqS1LgCKZ3EK2lYIIcryG3CW2UEIEUYLwrXjStUQaK0LMXo3nlK0TCllCTz/tYRN1gB9gL5Bj1nAD4H/V+tczkKImPeT2QEIEWZh+4xXtoYAjFsO31RKLcbo1XszUBd4HUAp9RawTWt9p9Y6H1gZvLFSKgNAa/2f5UIIUQ1+AQ4AjcwORIgw2E+k1BAAaK0/AG4H7gP+wLjSH6q1Lupo2A5oVU3xCSFEhQUGKPrK7DiECJPZLqfdG66dV6WGAK3188DzpawbXM6246pyTCGEqKA5wIVmByFEGHwSzp3LXAZCiGjzJRC2qyghTJIDfB3OA0hCIISIKi6n/QDwvdlxCFHNvnI57fnhPIAkBEKIaPSR2QEIUc3C2lwAkhAIIaLTp0izgYgehUB6uA8iCYEQIuq4nPa9GOOdCBENvnc57e5wH0QSAiFEtHrZ7ACEqCZv18RBJCEQQkSrT4HtZgchxCHaBXxYEweShEAIEZUCA7hMNzsOIQ7RdJfTXlgTB5KEQAgRzV4CPGYHIUQVeYBpNXUwSQiEEFHL5bTvpAZu1xIiTD5xOe011uwlCYEQItq9YHYAQlTRczV5MEkIhBBRzeW0zwf+NDsOISppmctpD9vMhiWRhEAIEQuklkDUNiVOIBhOkhAIIWLBW8AWs4MQooJ2AO/W9EElIRBCRL3ApDAOs+MQooLuDfdERiWRhEAIESveBP4yOwghyrEWeNWMA0tCIISICS6n3QdMMjsOIcoxKTCoVo2ThEAIETNcTvtnwK9mxyFEKRa6nHbTxs2QhEAIEWvSzA5AiFJMNPPgkhAIIWKKy2n/CfjS7DiECJEe+GyaRhICIUQsSgP8ZgchRICfCKi5koRACBFzXE77n8CzZschRMB0l9O+0uwgJCEQQsSqScAGs4MQMW8rJvcdKCIJgRAiJrmc9jzgckCbHYuIaeNdTnum2UGAJARCiBgW6MQl8xwIs7zvctrnmB1EEUkIhBCxLg342+wgRMzZCVxvdhDBJCEQQsQ0l9OeA1yBNB2ImnW5y2nfZ3YQwSQhEELEPJfT/gPwktlxiJgx3eW0f2F2EKEkIRBCCMMdwDqzgxBRbwNwq9lBlEQSAiGEAFxOezYwAsgxOxYRtbKAswPNVBGnSgmBUuo6pZRLKZWvlPpNKTWgjLJXKqXmK6UOBB7fllVeCCHM4nLaV2H0JxCiumngIpfTvtrsQEpT6YRAKXU+8CRwL3AEsByYq5RqXsomg4H3gJOAY4EtwNdKqdSqBCyEEOHkctrfB54xOw4Rdaa4nPZZZgdRlqrUENwKvKy1fl1rvRq4BsgFLiupsNZ6rNb6Ra31H1rrNRjZtwU4papBCyFEmN0OfGt2ECJqfAQ8YHYQ5alUQqCUSgT6E3SiaK39gefHVnA3KUACsL+M4yQppRoUPYD6lYlTCCEOhctp9wKjkU6G4tD9CYxzOe0Rf1trZWsImgJxwK6Q5buAlhXcxyPAdsrOvu8E3EGPrZULUwghDo3LaT8AnAUcMDsWUWvtI4I7EYaq0bsMlFJpwAXAuVrr/DKKPgxYgx5taiA8IYT4D5fTvg7jzoM8s2MRtU4BcJ7LaXeZHUhFVTYh2Av4gBYhy1tgDMNYKqXU7RhDhJ6utf6zrLJa6wKtdWbRA+NWDSGEqHEup/1H4ByML3ghKqIQGBn47NQalUoItNaFwBKCOgQqpYo6CP5a2nZKqQnAPcBQrfXiqoUqhBDmcDntXwPnAR6zYxERzwOMdjnt6WYHUllVaTJ4ErhSKXWJUqoHMBWoC7wOoJR6Syn1cFFhpdRE4H6MuxBcSqmWgUe9Qw9fCCFqRmBWuvMBr9mxiIjlBS5wOe2fmx1IVVQ6IdBaf4BxS859wB9AX4wr/6KOhu2AVkGbjAcSMW672BH0uL2qQQshhBlcTvunwFiMplMhgvmAsS6n/ROzA6kqpXXE3wlB4NZDt9vtpkGDBmaHI0StlZmZidVqBbAG+ueIKrClpV8EvIkM/y4MPuBil9P+ntmBHAr5MAshRCW5nPa3MQZZk5oC4Qcure3JAEhCIIQQVeJy2l8HhiN3QcWyHGCEy2mfYXYg1UESAiGEqKLAnPaDMOZoEbFlKzCotnYgLIkkBEIIcQhcTvufwABAbqmOHYuBAS6n/Q+zA6lOkhAIIcQhcjntO4ETgVrbw1xU2EfACS6nfYfZgVQ3SQiEEKIauJz2XIzBix41OxYRNg9hDDoUlUNZy22HQsQQue2wZtjS0scBz2MM2iZqv3zgapfT/pbZgYST1BAIIUQ1czntbwD9gN9NDkUcuhXAkdGeDIAkBEIIERYup309cBzGqK4yXkHt9BxG58FVZgdSE6TJQIgYIk0G5rClpR8DvA10MjsWUSHbgStcTvuXZgdSk6SGQAghwszltC/EmPflVZNDEeV7G+gda8kASA2BEDFFagjMZ0tLPxt4EWhtdiziP3YC10TTQEOVJTUEQghRgwI/ON2AR4BCk8MRxh0EDwFdYjkZAKkhECKmSA1BZLGlpXcFngbOMDmUWKSB94A7XU77ZrODiQSSEAgRQyQhiEy2tPQhGAMaHWZ2LDHiF+BWl9P+m9mBRBJpMhBCCJO5nPa5GOMWjMOYNEeExybgfJfTfpwkAweTGgIhYojUEEQ+W1p6HeAi4Fagh8nhRIv1GE0zr7qc9gKTY4lYkhAIEUMkIag9bGnpCrADtwGDzY2m1voJeAKY43La/WYHE+kkIRAihkhCUDvZ0tL7YyQGo4B4k8OJdB7gQ+BJl9O+xOxgahNJCISIIZIQ1G62tPR2wI3A/4BmJocTafYDrwDPuZx26YdRBZIQCBFDJCGIDra09HjgZOAC4FygoakBmccNfA58AHzjcto9JsdTq0lCIEQMkYQg+tjS0hOBocD5wHCgnrkRhV0WMBsjCZgrnQSrjyQEQsQQSQiimy0tPRmjI+II4ESiZ3jkfcA3GH0DvnA57fkmxxOVJCEQIoZIQhBbbGnpnYATAo/jqT2zLe4D5gM/Aj8AK1xOe+T/WNVykhAIEUMkIYhttrT01vybIPQHugNmf6lmYIwTsAhYCCx0Oe3rTY0oRklCIEQMkYRAhLKlpadiJAbdgQ5BDxvQqJoOsxvYCGwIPIr/73La91XTMcQhkoRAiBgiCYGoDFtaehxGJ8V6QP1S/vUCOYFHdgn/z5aOf7WDJARCxBBJCIQQpZHJjYQQQgghCYEQQgghqpgQKKWuU0q5lFL5SqnflFIDyik/Sim1JlB+hVJqWNXCFUIIIUQ4VDohUEqdDzwJ3AscASwH5iqlmpdSfiDwHvAqxnzfnwGfKaV6VzFmIYQQQlSzSncqVEr9BizSWl8feG4BtgDPaa2dJZT/AKirtT4zaNlC4A+t9TUVPKZ0KhSiGkinQiFEaSo1jaZSKhFjMIuHi5Zprf1KqW+BY0vZ7FiMGoVgc4H/t3enoVJXcRjHv4+2mxFh3QtlpEULFNhCYURYFoVC2EbiiwrCiOpFUZQZla1WtFJGRZEZLb6TNlqMihYzslUoI6Gy0htSUIRa2a8X54yN052rM/f+Z87F5wMHnHPPYZ47f2fmd//bmTbA8+wI7FjXNRrSh5mZtc/vITNrptV1tccAI4G+hv4+0k0t+tPbZHzvAM9zDXBDY+fYsWO3LqWZbckegKsDM9uk1YKgU+ay+V6F0cAPwD6kla5K5ZxDb7hkHW45f+l2EDMrS6sFwVpgI9DT0N8DrGkyZ02L44mIDcCmO1tJqv3z95KPezrn0BsuWYdhTjOzzbR0lUFE/AksAybX+vJJhZOBJU2mLakfn508wHgzMzPrsHYOGdwDPCnpI+BD4DJgFPAEgKQFwI8RcU0efz/wtqQrgJeA6cBRwIWDi25mZmZDpeWCICIWStoTuIl0YuCnwKkRUTtxcF/gn7rx70uaAdwC3EZa5nJaRCxv4Wk3kO57UPoCGc459IZLVuc0s2FtWCxuZGZmZtXyWgZmZmbmgsDMzMxcEJiZmRkuCMzMzAwXBGZmZkZBBYGkSyR9K2m9pKWSjt7C+LMlfZXHfyFpSmk5Jc2U9I6kX3NbvKXfqxs5G+ZNlxSSFlUcsfZ8rW733SXNk7Ra0gZJX5e47fP4yyStkLRO0ipJ90raqeKMx0t6QdJPeTtO24o5kyR9nF/PbySdX2VGMytTEQWBpHNINzy6ETgC+Ax4VdJeTcYfCzwLPA4cDiwCFkk6tKScwKSc8wTSqo+rgNck7V1Yztq8/YC7gHeqzFf3fK1u9x2A14H9gLOAg4CZwI8FZp0B3J7HHwJcAJxDuhdHlUblbJdszWBJ40g3DHsTmADcBzwm6ZSK8plZqSKi6w1YCjxY93gE6UN+VpPxC4EXG/o+AB4uKWc/80eSVpg7t7ScOdt7pC+u+cCiArf7RcBKYPuqsw1B1geBNxr67gbe7WDmIN0EbKAxdwDLG/qeA17p9Gvs5ubW3db1PQT5r74jgcW1voj4Jz+e2GTaxPrx2asDjB+0NnM22gXYngpXmhtEzuuBnyPi8aqy1Wsz52mkNTDmSeqTtFzSbEkjC8z6PnBk7bCCpPHAFODlKrO2oePvJTMrUwnLH48h/XXa19DfBxzcZE5vk/G9QxttM+3kbHQH8BP//wAeSi3nlHQcac/AhApzNWrn9RwPnAg8TfpyPQB4iFRk3VhNTKCNrBHxjKQxwLtKSwxuR9qDVfUhg1Y1ey/tJmnniFjXhUxm1gVd30OwrZA0i7Sw0+kRsb7beWokjQaeAmZGxNpu59mCEcDPwIURsSwiFgK3kg4lFEXSJGA2cDHpnIMzgKmSrutiLDOzpkrYQ7AW2Aj0NPT3AGuazFnT4vih0E5OACRdCcwCToqIz6uJt0mrOfcnnaT3QvpDFsiFoqS/gYMiYmUBOQFWA39FxMa6vi+BXkk7RFqeuwrtZL0ZeCoiHsuPv5A0CnhU0q35kEMJmr2XfvPeAbNtS9f3EOQP8WXA5FqfpBH58ZIm05bUj89OHmD8oLWZE0lXAdeRVoT8qKp8g8j5FXAY6XBBrT3Pf2edryokJ6STHg/I42oOBFZXWAy0m3UX6lb9zGqFjChHx99LZlaobp/VGBGQLsdaD5xHukTrEeBXoCf/fAEwt278scBfwBWkY7hzgD+BQwvLeTVpmdkzScdqa23XknL2M38+nbnKoNXXcyzpKo0HSIXAVNLx7msLzDonZ50OjCN9yX4DLKw45678V9gFcHn+977553OBBXXjxwF/AHfm99LFwN/AKVW/pm5ubmW1rgfYFAQuBb7LX6BLgWPqfvYWML9h/NnAijx+OTCltJzAt/lDubHNKSlnP3M7UhC0ud0nki4xXU+6BHE2MLK0rKTDcTfkImAd8D0wD9i94oyTmvyfm1+3bd/qZ84n+fdaCZzfidfTzc2trKaIwMzMzLZtXT+HwMzMzLrPBYGZmZm5IDAzMzMXBGZmZoYLAjMzM8MFgZmZmeGCwMzMzHBBYGZmZrggMDMzM1wQmJmZGS4IzMzMDPgX/4Cf+jXkhXgAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"build_real",
"prebuild_gwn",
"clean_real"
],
"level": "Py_kgeneration",
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"",
"fftma2",
""
],
"type": "treemap",
"values": [
4.518677,
3.283041,
2.4375840000000117,
1.231253,
1.223604,
0.7101290000000031,
0.48899400000001014,
0.002831,
0.001635,
0.001069,
0.000318,
0.000274,
0.000267,
0.000217
]
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3QeUVEW+x/Ffp4kMSTIKKBhBQZ85x9U1hzWsaU3LimLCsGYxoWDOa8Ccc8acMKCYUFFAVFSCBGWIEzq9U3cYJAwwPfT/MoXfPuedt0J33epPFfrlUt1EstlsVjwQQAABBBBAAAEEEEDAXCBCfJsbcwEEEEAAAQQQQAABBAIB4puNgAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQACBRhnfuxx8uiZO/n2pq7NJz3V0wJ7b6uzL79Brj16tju1asZoIIIAAAggggAACCDRqgUYZ38NHjFJVVXI+3IVX3aMWzZrotN4Hzv+xZmWlalpWqmGff6s9d95CpSVFKwR6v2Mv0KnHHaDttui1Qq7PRRFAAAEEEEAAAQT8EWiU8b0o355HnK22rVtq8LVnNSrZisoqbbZ7H910+clLjO9kMqVEIt6o5s1kEEAAAQQQQAABBFaMgNfx/cLrHy507KT/NfdqxLc/6IzjD9KgWx7VLxMmq33bVXR238O0SosyXXb9gxrz469q1bKZTjnuAO2+0+bz1cdPnKprbn9cH3/xrSoqqtRltXY6+pDdtffftqxzZYZ/OUpHnXrl/J8rLirUp6/crvMHDta3Y8bpuEP30IAbH9J2W/TU5WcfFzzvkWffDP7vlwlTVFpcpK03W19nHH+wWq/SPKd57HHE2dp60/XVrk1LPfDEayqfOVvrrtlZA8/7jz7/5nv97/7nNHnqdHXt0lGXnHm01unWKRjf/Wbh+juf1NsffKGpv5erWdMm2nTDdXT68QerbasWwXOefnmoLhg0WA/dfL6uv+tJfT3qRyViMe2w1YY6/9QjV9ifMKyYXx5cFQEEEEAAAQQQyK/AShXfl93wgF58/SNttUkPnX/qEYpGoupz9rUaP2mq1lx9VfU/4yi1adVCF19zr159d7jefuK64OjK9BmztO/R56tFszJdcNqRatOquV56c5huGvy0rji3d50Bnkql9elXo3Vsv0EadP7x2mrTHmretIkuvvY+vfvRCHXq0Ea9D99THdu3VudV2+r2B17QTXc/rb7H7Kc9dto8iONLr7tfmWxWT911iQoS8XrPY5+jztOs2XP1jz230zH/3F0Tf5umQ0+4NPjTARfh551yuNwd92NPHyT3m4KHb70g2DXnXnmX3nr/cw08r7e6du6oKb9P1yXX3q8mpcV68Obzguc8/9qHOmfAHVqr62q6+IyjtG63zsH7PPXCm7XDlhvqyvN653cHMhoCCCCAAAIIIPAXEljp4vuRZ95c6AOY9z/xqgbe8khwNGTHrTYKlvaTL77T0acNDO7u9urRLQjjGwc/pefuvVzdunScv/zH//dajZ84RS8+8Ocd7gX3xsjRP+mg/1ysW684df6xE/cbADeHR267QBus2zV4elV1Utvse1Jwt/ra/ifOH+Lr737UIX0u0VUX9tHuO25W73m4+K6sqtYrDw9SJBIJxut73g1676MRGvrsTWrWtDT4sZvveUZ3PfySvnjtzuB5k6dND6J81fat58/hwade1xU3PaSPX7otiPDaP01wAX/ofjvPf54zdHfth714q4oKC/5Cv0R4qwgggAACCCCAQP4EVrr4fnbI+8Hxj9rHs6+8r/OuvEtDHhqoTh3bBj88auwvOuC4C3Xrladpu817BnfH3Y+9/eT1C8nWhrsL2pbNyxZTX1J8P/7c2/ryjcGKRmvC+JtRP+ng4y/WxWccHdytXvCx+R59tOcuWwZ36us7Dxff7ttd3PxrH+6u9rBPR+qtJ6+b/2P3P/maBt78cODh7oD/UT4rOJIyfMRolc+YpXQ6E/zGYPacivm/YamN78f+d5F6rLP6/LGeGTI0OFLzzN2Xaa01Vs3fDmQkBBBAAAEEEEDgLySw0sX3kDc/1gfP37xYfL/1xLXBsYyF4nveHevD+16uL0eOVSIeW2jp3ZEQd7xkScG5pPhedA4ffTZSx51+leLxmKLz7lTXXiiZSmvnbTbS9ZecpPrOw8X36p3a6/pL+i4U359/NSa4G177qI3v4UP+p6LCQh3e9zL9OnGKLuz3L3Vfe/XgqMtLb3ykQbc+ulh8v3j/FcE1ah9D3vpYZ1xyW3CEped6NXf0eSCAAAIIIIAAAgjkJkB8b9FLJ5xzvcb+NF63Dzq9Tr0O7VqpsCCx2M/VN75Hjhmng3r315l9Dgk+gLnoo6S4MPiNQX3n0ZD4njT5D+191Lm67L/Har+/bzN/Cnc8+IJuuOupxeLbnQHfsMea85/35Evv6qKr7tHz9w5Q1y4dcttlPBsBBBBAAAEEEEAgECC+t+ilOx96Ubfc+6zeeOya4JtQah9TppWrqDARfCizrkdtfN8y4FRtv2XN93y7M9+L3vmuTqa09T59te9uW+vckw9faKgff54Y3GF2Z7LrO4+GxPeYH8brsL6X6ebLTwm+ucQ93F199z3lbg6vPnJVcBa89thJv94H6thD95g/10uuvU/PvfqBPnrx1uCOOQ8EEEAAAQQQQACB3AWI7y16zf+WkdU6tFG//xyodm1W0eixvwQfRHTnnhf8kOSCxO7rCXc99EwdfsAuwd3krp07aOCtjywW3+417kOdt93/nPr956DgnHl1MqknXnhHjz73tp64o7/W7rpavefRkPhOZ7La+aB+6rlet+BbX2bOmqMbBz+tDu1WCT4getUFxwdR/sbQz4Kvb3R3t0/4175af9019NlXY9T/6nu01y5b6uIzj859l/EKBBBAAAEEEEAAgUCA+J73N1O6kL72jseDvzFzbkVV8L3Xu+6wqU48at86j5zU7h/3Yc5X3v5E7m/cfPruS4NvGFn0znftcxf8nu+igkRw7rrPv/bRxj3Xnr8d6zOPhsR3SXGR3hv2la667dHgG1zcVyD2Pnwv7bbDpjr6tCvl7oyfe/Jhwbl0F993Xn2m7n3sFX329ejge7533nZjnX/KESoq4ptO+HcHAggggAACCCDQUAEv4ruhb47X5S5Qe+xkwW+HyX0UXoEAAggggAACCCBQlwDxzb5YSID4ZkMggAACCCCAAAJ2AsS3na2XIxPfXi4bk0YAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8+7+GvAMEEEAAAQQQQAABTwSIb08WimkigAACCCCAAAII+C9AfPu/hrwDBBBAAAEEEEAAAU8EiG9PFoppIoAAAggggAACCPgvQHz7v4a8AwQQQAABBBBAAAFPBIhvTxaKaSKAAAIIIIAAAgj4L0B8G63h869kjEZmWAQQQAABBBBAwFag86oR9ewRsb3IX3R04tto4V18Pz8kbTQ6wyKAAAIIIIAAAnYCJ/07Tnwb8RLfRrDEtxEswyKAAAIIIICAuQDxbUdMfBvZEt9GsAyLAAIIIIAAAuYCxLcdMfFtZEt8G8EyLAIIIIAAAgiYCxDfdsTEt5HtkuI7GpXuuC6hVKrmwpmsNHlKVk8+n9bIUdkGzWaX7aPq0D6i+x7x44z5VptF9cHHNR9IPbl3XJ98ntGwT/mAaoMWnxchgAACCCBgIEB8G6DOG5L4NrJdVnyfeVFK08uzcjG+0QZRHXVoTOdemtTMWblPqDHFdyQiZZfyewj389dcmlC/85PBGy0plpIpKVnzjzwQQAABBBBAoBEIEN92i0B8G9nWN75rL3/RWXE993JGe+0W1ctvZPTZlzV3gnv2iGrf3aO6eNC8W+V1zHfB+G7RPKJzTo3pzgfSGvdLVkf9M6Zuq0c0dZo05sesWrWU7n4orbZtIjry4JiaNZWqqqSHn0rrh5+yWq1jRMccFtNXI7Nas2sk+PmHn/zzrvwef4tqi02iUlb6bkxWjz2TViot3TwooZdfT2u3nWI688Kk2reL6IiDYiopqQlrN8ao77M68biYevWIatLkrK6/La3DD4rNv/O9ca+o9v57VLGoNGOWdP9jaf02Oaudt4tq1Q4RJRJS61aR4OdvvTut3/9o2J8UGC05wyKAAAIIILDSCBDfdktJfBvZ5hrfF58dD46etG8bUbc1Irp1cM0RkqMPjem3KVkNeWPJxzJq4/uRJ9P67ylxvf5OzTGO7beKarP/i+qqm1NqWhbRuafFNHJ0NjiecuGZcb3zfkbvfZRRl04R9T0uprMvTgVR7n4jcOMdKX3zXVabbhTVTttGdcX1KfVaP6r996z53y7Y+xwTC4L6zXczuuGKhN4flgneg7vzfcGZcb35TkYfDs9o0/+Lau/dojr/8pSalEpXX5LQ8afX3OquPXYy5oes+v83rsuuTmnKtKy23TKqbTaP6vJrU9pxGxflMV10ZVIzZiqI+tlzpWde9OOYjdEWY1gEEEAAAQTMBIhvM1oR30a29Y3vWExyd3wP/UdM51yaVEEiogHnx3X6hckgcK+9LKHLr0lp6u9LvstbG9+FBdJvUzT/+8V7/yumH8bVxLF7uGiNxqQXXsno0nPj6ntWcv4RkfNPj+uJ59KaPUc6+9S4TvpvTRy7O84n947prP6pxX4jsEH3iHbdMaarbkrp+gGJINh/HFczz4KEgjvimYyCu+eD+if0n37JJcZ3Ii5tuEE0GMM93F3u265O6KSzk9pi46jWWyeim++sie2dtouq82oR3f0g8W20fRkWAQQQQOAvLkB8220A4tvIdlnxPf8Dlxlp4m9ZPfZsWt//UBOuZ/SN66PhmeBYxT/2jumya5Z85MQ938X3XrvFFI9L7u730GE1sd3vhLg+/OTPDzPusUtUrVpF9O4HGZ17Wjw4c177KCyM6IHHa455nNrHHR2puWbH9pH5/+zuUq/RJaKqqprXufPq7oz6pVfXxPcV16U0eWrNz7k75jtsE5X7zYU7JuKOs/Q+bcnx3bKF1K7twkF961UJ9R+YUo91I8F173qgJrbdnfAF/9loCRkWAQQQQACBv6wA8W239MS3ke2y4rv2A5d1XX6bLaLB3XB33MQF+GtvL/2bQFx89+we1aPPpHX6ifEg1t3r+hwd06ixWb09tOb17ny1i+Hnh2R0ydnx4K7yoo8FY3vR+P7XP2OaOCkbHGtZ9OHie8C1NUdGWjSLaMAFcV1yVSo42+3OoQ+8KL7U+HZ3vjfqGdUNt9dEf0GB5OLb3Z3fctOFY5v4Ntq0DIsAAggggMA8AeLbbisQ30a2yxPf7kOK7piGO3bizjz/MX3pHyxc8AOXu+8S1XprRXXNrSntumNU660d1XW3pdS8aUTnnR7T19/VnPl2Z7JffSujTz7LqKyJ9M/9Y7rvsbRatfzzTvei8e0+KOk+EOqOmVRWKTiXnU4r+NrABePbBfyZJ8V1xoXJ4NjJ/nvGgrmceGZSsbh0w4BEcKylqvrPM9+jx2aD3xC4u+gu4N05c/cbkIE31pz55s630UZlWAQQQAABBOoQIL7ttgXxbWS7PPHtptT33zGVlUaCDzcu67FgfLujIO5IiTu24j7s2PvIuDp2kCZMlMZPzAZnru979M9vO2nZvOa7xl9/O6N3PsgsdMxk0fh2/+yOrrg70e4O+uSp0j0Pp1U+I7tQfLvnHXN4TGt3jWjOXOnx59LaZ7dYcEzFvR93HKbTqpHgLvdeu/75bSf/1yuqfdy3ncSkP6ZL9z+aDs66E9/L2gH8PAIIIIAAAvkVIL7z67ngaMS3ke3y/g2X7msAf52Q1dvvL99fPrPg9267bwxxH4R030jCAwEEEEAAAQQQWJIA8W23N4hvI9vlie8O7SI6rU9MF16RUkVlwyfojokcuG/Nd4S7CD/n1Hhw3vvzr5Yv6Bs+I16JAAIIIIAAAj4IEN92q0R8G9k2NL4P2Csm99evu79g5suvayK5XZuITjg2VudM3Qcab7u77jvZ7pjHoQfE1LNHJDh7/emXNX+N/dL+BkojDoZFAAEEEEAAAY8EiG+7xSK+jWwbGt9G02FYBBBAAAEEEECg3gLEd72pcn4i8Z0zWf1eQHzXz4lnIYAAAggggEDjEyC+7daE+DayJb6NYBkWAQQQQAABBMwFiG87YuLbyJb4NoJlWAQQQAABBBAwFyC+7YiJbyNb4tsIlmERQAABBBBAwFyA+LYjJr6NbIlvI1iGRQABBBBAAAFzAeLbjpj4NrKtK77dX3LToO/5c1/Sna/Hsr5nMJ/Xasicw57fsq634HtY0TYN8eQ1jULg+SHp4G917bV+tGY+tftuwT1V3x+rff2i+9G9fkk/trSfW1BoSc9zz2noXBvFCuR/EmPGZjTq+2z+B2ZEBBqJAPFttxDEt5HtkuL7b7PuNboiwyKAQGMUmLnZQTr3msIgvvsdOFnx4a82xmkypxwEkt230u1vdSW+czDjqf4JEN92a0Z8G9kuLb4rn7jb6KoMiwACjUkgtvpaqjjxxoXiO3XWwY1pisylAQKx/oOJ7wa48RK/BIhvu/Uivo1siW8jWIZFwCMB4tujxcphqsR3Dlg81VsB4ttu6YhvI1vi2wiWYRHwSID49mixcpgq8Z0DFk/1VoD4tls64tvIlvg2gmVYBDwSIL49Wqwcpkp854DFU70VIL7tlo74NrJdWeL7q2RUHWNZrRLlU/1GW4VhV2KBXOL73eqYBs8t0K6FKW1TkNblswvUKprVJWVV+rA6FvxYvh5PVsb1WlVcyazUM5HR8SXVKsrjlyrla56NdRziu7GuDPPKpwDxnU/Nhccivo1sfYnvjKR5X35Wp8TA2QXaryilteLumTwQQCAXgVzi++rZBeqeyOjvhSkNqYprZDKqM5pU66d0VA9XxHVek+pcLr3E5w6rjunRyoQualKl4khWV80p1LrxtP5RlMrL+H+FQYjvv8Iq8x6Jb7s9QHwb2TYkvp+tjOuVqriaRbLapTCtpyvjurVZZTBD97/frY7L3ZxaP57Wv0qSiks6qrxIhxWnNCwZ0+R0RDsWprT/vP+Ifp6M6aGKuFKKqG00oz4lSbWIZvViZVw/p6Mal45oo0RGhxQndd/chIYnY3L3t7vHMzq+tFovVMb1eEVCLaNZHVGS1GaJmjnVNQ8jRoZFwGuB+sa3+3X1bGVCJZGs1otn9HUqGtyV7hbPaHw6qjnZiNaMZXRkSVK3zEmoVyKj71JRzc5G1LukOvg1PSkTVfd4WseVJAMzdyf9qcqE0lkFd9BPLq0O/gTrh3RUqay09rzfULvXusA/qTQ/ce/1gtVz8sR3PaF4mtcCxLfd8hHfRra5xveEdETnzyrUdU2r1CSa1VWzCzQhHdXNzSqDKH64IqHLy6pUFMnqmnl3yHYvTOmY8qIg1P9ZnNQfmYhOnFGke5tXqCIb0akzC3VJWbU6xTJBSI9KRXVmk+rgrtqTFXENaFqlttGsPg0iPaFBZZVydX/OzMLgbvdWBWn1m1mo40uSwZ3vpc3DiJFhEfBaoL7x7d7koNkF2rwgrW0L0nqpKq5f0lH1KamWu1P9ZnUsuPPtfuzM4Nd1VRDPN8wp0C/piK4sqwp+43zsjGLd2LRSiYjUe0aRrmtaGfwav31uIviNe+95Yb4g6hWzC7RJIqOdC7nzXd/NRnzXV4rn+SxAfNutHvFtZJtrfL9eFdeXyZo4do8PqmN6pCIRxPetcwrUIZbRvgvc0X6+Mq7+ZVVBfF9QVq3VYzXHQtyd8EFNq4K7Yu/P+w+2+/HKrPu5Yj3coiI46/lZMjr/j7Hdf7Srspp/5tP9h7p1NBvcQV8wvpc2DyNGhkXAawGL+O4/q0B3N6/5E7FHKxKalZX+PS+qT5pRpH5Nav59UJGViued43b/Lni7Oq4LmlQt5PlEZVzfJWO6oKwqiHMe9RMgvuvnxLP8FiC+7daP+DayzTW+3R87T87U3Olyj9GpqG6aUxDEt7sz9X0qOj+OXWa7oykDm9bEt7uD3W7eByJr//mT6pger0yoaeTPD0rOzUrXN60Kjqi48U+Z98fMM7MRPTA3ofGZSPAf4CmZSHDu9IBF4ntp8zBiZFgEvBawiO8rZxfMP47mjoW5DD+yuOaoySkzi4LjJWvEMsGRsS9TNZ/omJOJBEdPLiyriW/3b4V75iY0KRPRGaXVKqS8c9pnxHdOXDzZUwHi227hiG8j21zj2531HpmK6vR5Qey+3cAdNXHxfdvcguDoyB51/LHwkuJ7TCoa/HH1WXV8SMtdy/28+4+0e7g73alsRH1Kq4MPX7rrtYlmFovvpc3DiJFhEfBaYEXF96R0RM9UxoNjZ6WRrN6rjumdqvj8+L6vIhEcU3P/Doh5LbxiJk98rxh3rhquAPFt5018G9nmGt9jU9HgDvf1zaqCD10NmF0YfIDSxbc7k/1ERc0xE/fHyG9UxRWPZLV9QXqJd76LpeDIyGVNq9Q+mpUb3/0H+JiSZPChzgXj+5o5BVorltFeRSmNS0eD8+ZbFqR1WHEyOF/qPtDZK5Fe6jyMGBkWAa8F8hHf7rMW7sPYl5VV6dd0VPW58+3+pMwdYzu7SXXwYU33ORF3h3xAWZW+TUU1eG4iOJ5GeDdsexHfDXPjVX4JEN9260V8G9nmGt9uGvdXJIJz2u68tfvQlfsWgpsW+LaTd6rjwTcXuPPfJ8z75pIl3fl2x1Bqv+2kKhsJvlLs2JKk1olnFovv2iOMJt3MAAAgAElEQVQu8YiCb1TYpCCtW+ck1Lc0GXwjyvOVieADne4oijseU9c8jBgZFgGvBfIR3+WZiM6ZVSh33Mx96LI+8e3+HeKeNzsTCb7h5NDipAbNKdCOBWn9noloaHVsofBeLZYJjrHxqJ8A8V0/J57ltwDxbbd+xLeRbUPi253DrD166Y6gPFiR0BXzzmgaTZNhEUDAUCCX+DacBkPnWYD4zjMowzVKAeLbblmIbyPbXOPbfeix74yi4OsE3V0o980i7m710XV8NZjRlBkWAQTyLEB85xm0kQxHfDeShWAapgLEtx0v8W1km2t8u2m4s9zuWIf742X3bQV9SpMqW+DbSoymyrAIIGAkQHwbwa7gYYnvFbwAXD4UAeLbjpn4NrJtSHwbTYVhEUBgBQkQ3ysI3viyxLcxMMM3CgHi224ZiG8jW+LbCJZhEfBIgPj2aLFymCrxnQMWT/VWgPi2Wzri28iW+DaCZVgEPBIgvj1arBymSnzngMVTvRUgvu2Wjvg2siW+jWAZFgGPBIhvjxYrh6kS3zlg8VRvBYhvu6Ujvo1siW8jWIZFwCMB4tujxcphqsR3Dlg81VsB4ttu6YhvI1vi2wiWYRHwSID49mixcpgq8Z0DFk/1VoD4tls64tvINpf4LjrwGKNZMOyKFKh69WllZ5avyClw7RUsUJ/4ds9JbLz1Cp5peJeveu1ZZWf8Ed4FDa5EfBugMmSjEyC+7ZaE+DayzTW+B269gdFMGHZFCPRrsY4yfQ8hvlcEfiO6Zn3jO3LCjfplREkjmrnNVNbcLqm5ZxxIfNvwMioCeRUgvvPKudBgxLeRbUPiu//E4UazYdiwBWZ2P4L4Dhu9EV4vl/h+5dLCRvgO8julfa7JEN/5JWU0BMwEiG8zWhHfRrbEtxGsJ8MS354slPE0ie+FgYlv4w3H8AjkUYD4ziPmIkMR30a2xLcRrCfDEt+eLJTxNIlv4tt4izE8AmYCxLcZLXe+rWiJbytZP8Ylvv1YJ+tZEt/Et/UeY3wErASIbytZEd9WtL7E9/b9X9BHp+2sqmbFVhR/yXGJ77/ksi/2pht7fH8x43F1Kt5EqxSsHsqCcewkFGYugkBeBIjvvDDWOQjHToxsiW8jWE+GJb49WSjjaTbm+M4qq4gixgLc+Q4VmIshkEcB4juPmIsMRXwb2eYzvru8M1qrfvSjqpsUasJmq2v1t0fr/f/uJmWltV76Sq2/neT+CEPT12itbw/YSNloRJ3f+14dP/4p+PHqsiJ9c/DGqmhZqlXGTNbaz42QohFN6rWaOr//vT46tebOd6tRv6nbK98oms6qomWJvv3H/ykdj2nby1/W++fspurSmm9jWPuFEcGPj/17DyM9/4clvv1fw3y8g3zE9yfl92pm6jdVpMu1SfMjtErBGnr39xtUECnV3PQf6tXsQCUzczWuYpi2adk3mPbTk07W7m0v0+czHg1eV5mZqbVLd1a30u2Dn2tftIFaF3TThMoRWrvJzkpEivVx+b0qjjZVZWa2dml9tqozc/Xq1EuDO+Pu+qWxltq0+VH6ce4H+n72m0qpWl2KN1f3sj31afmDwXPS2WqtUbqNupZsUycfd77zsasYA4FwBIhvO2fi28g2X/FdOmWWNv7fu8HRkFRJgTa4f5hKp83SB2fuqtbfTVK3ISP18ck7SIpo01ve1k/br60/urXRlle/qvfP/rvShXF1+OxnRavTQbhvfeWQIKp/X6utVh32YxDi75+9WxDsW177uj49fjvNbttUnYd+r2bjftdXR2yuDe/+QJM3WFUTN+4caG098BWNOHxzzerY3EjP/2GJb//XMB/vYHnj+4/kOH1a/pD+1vo8zU5N1bTqsZqVnqJsNqMNmu6nWakpemvaIO3dbpCenHiiDuhws8qT4/Vp+QPaudXZGj3nDa3bZDfNTU/XK1P6a//2N+ixib21W5v+ahbvEES8i+9MNq3iWHO1SHTS0D9uVufiTdWqYE0999sZ+mfHu4J/vzw64Tgd0vEuPT7xPzqww20Bz7ezXlb7oh4aNv1u7d7mEmWV0VOTTtYB7W9URNHFCInvfOwqxkAgHAHi286Z+DayzVd8u7vX7m61i2D3aDtivLq9NjKIb3fnO5ZMKV0QD35u3ae/UGWLEv28dTdtO+Bljd2thyav31HJkoLg50unztImt7yjd/rvFfxzNJXWjuc/p6Hn/F0tf5iqdl/+qi+O2Sr4uVh1Su48+FuX7av2n/2s1qN+04gjNlfZhHJt8PDHNdfnsUQB4pvNEfw6Wn0tVZx4o869plCdVo2o34GTlTrr4IVw3HPcX7JT1/d8j5v7kSZVfaMtWvx7/ms+nH6HOhRtENx1do+HJxylQzveq4+m36VVi3ppYtU3ale4rlYr3jiI8GSmInjehMqvdFCH24L4PrjD7UFQ18a3C+VRs19TIlKk36q+De6mtyvsrjemXam92w4MXu9et1+76/TC5HOCuK59jJs7TO7ufOvCtYIfmpmcpF1bn6+iWLPFNgHxza8LBPwRIL7t1or4NrLNV3y7IybFf8wJjpO4R7Off1ePxz8N4rdgTpXWfPkblU6ZGZzeLJ4+R79u2VU/7biOyiaWq8vbo7XK2Cma2bGFvtt/QxXMqtT6jw6vObIy77HDBc/pwzP+pnYjxmuNN75TsrQm1N0jXpnUh/12UTYW1VaDXtV75+8eHHlRJqsfdu1uJLdyDEt8rxzruLzvYnnj+/fqnzS8/L7gTvWs1G/BMZFUtjo43tGz6QGamZoUBPReba+Uu0v+9cxnNT35i/Zud5UmVHyhH+YO1farnCY3zpvTrtRBHW6fF993BG+tNr5duO/c6hyVxdvotamXqWvpdmpf2GOx+D64wx3BHfCDOvxPikT0efmjWqN06+DYibs77x5/JH9Wy0TNn5It+iC+l3dH8XoEwhMgvu2siW8j23zF92of/agWP07VV4dtFsy07Vfj1e3Vmjvf7k53NJ2Zf857vac+V0WLkiC+ax+RdEZrvDlKTSbNCM5ob3Lrn3e+3d3tHS58vubO949T1ebrCRpx5BZ1imx01/v6Zetu6jbkG408ZBPNar/4XS0jSi+HJb69XLa8T3p549tN6OPpdweRXZmZFZz5blXQVe/8fn1wl7oiPUMbNz9MrQq6BXN/9rfT1bZwXW3R4jjNSf+u16cOCJ7vjpj8VPGh1i/bR5+U3ycX0QvG98TKrzSlarSaJjqoJNZC4yu+0ParnKK3fr92oTvf7nU/zh2qUbNfVzabVpeSLYIz38PLHwh+c+B+Y9Ay0SWYE/Gd9+3EgAiEKkB823ET30a2+YrvpuOnq9c9H+qj03dRqjCuDe/5MLjD7eJ7gwc/1ozOLfXzNmuqbNIMbfDAsOCYydTuHdT53TH65p+bKBOPqf3nvwTR7o6NbDNgiEYevHFw5tt9KNN9wNLdCXd3tze/7g192mc7zW3VRO667nWj9+4ZCLnjL63GTFbp5JnBnXIeSxcgvtkhTiAf8b0ySXLne2VaTd7Lyi5AfNutMPFtZJuv+HbTW/Olr9VuxK+qbF6iSRt2Uqf3x+rDM/82/whKJhbVzNVaasp67dX9yc808sCNg7vlbb6ZGHyQ0n3bybcHbKg5bZoG34yy1gsjgi8Ym7BJl+BDl5/22T64Y177bSexZDoI/dF791J5l1UCIXfEZZvLX9a47dfWD39bz0ht5RmW+F551nJ53gnxvbAe8b08u4nXIhCuAPFt5018G9nmM77d1wVmIzXfx+ui2p3z/qSv+4YTHo1VgPhurCsT7ryIb+I73B3H1RDInwDxnT/LRUcivo1s8xXf7o6z+7DjJydsrzltm2q9Jz8Lvj5w9F41x0F4NE4B4rtxrkvYsyK+ie+w9xzXQyBfAsR3viQXH4f4NrLNV3y76XX85Kfgm0simWzw3drue7prvz7QaPoMu5wCxPdyAq4kLye+ie+VZCvzNv6CAsS33aIT30a2+YxvoykyrKEA8W2I69HQxDfx7dF2ZaoILCRAfNttCOLbyJb4NoL1ZFji25OFMp4m8U18G28xhkfATID4NqMV8W1kS3wbwXoyLPHtyUIZT5P4Jr6NtxjDI2AmQHyb0RLfVrTEt5WsH+MS336sk/UsiW/i23qPMT4CVgLEt5WsiG8rWuLbStaPcYlvP9bJepbEN/FtvccYHwErAeLbSpb4NpMlvs1ovRiY+PZimcwnSXwT3+abjAsgYCRAfBvBivg2k81HfPfvsInZ/PpPHG42NgNLxDe7wAksT3w37xRRh15RbyF/fCetypnEt7cLyMT/8gLEt90W4AOXRrb5iu+Lpvyc9xmO7LKZeox9Ie/jMuCfAsQ3uyEf8d3llKieq0p5h3lc04SGnpsivr1bOSaMwJ8CxLfdbiC+jWzzGt8jns7fLNuspZFbHEt850+0zpGIb2NgT4Zf3jvfLr63/XWuJ+/2z2l+162U+PZu1ZgwAgsLEN92O4L4NrIlvo1gPRmW+PZkoYynSXwvDLzPNRnNPeNAZWf8YSxvO3ys/2Dd/lZXjfo+a3shRkdgBQoQ33b4xLeRLfFtBOvJsMS3JwtlPE3im/g23mIMj4CZAPFtRstXDVrREt9Wsn6MS3z7sU7WsyS+iW/rPcb4CFgJEN9WsnzbiZmsZXy7P+iMLGPmY35P6bGRc1QUj6h764R2X7O45hWc+TZb8wUHJr5DYW70F/Etvot/HqPSsd9o2k77L5ctZ76Xi48XI9AoBIhvu2Xg2ImRrUV8P/T1HM2ozGjH1Yv09rgqFcYimjY3rdO3bKoBQ2doo/YFctG90+pFalIQUeuSqEoLorr0vRm6aLtmxLfRWtc1LPEdInYjvlQ+4ztaXal2zwxWpqhU2XhcU3f+h9o/faeqV2mrxPRpmrLn4Wr31J0af+TpKv1hpIp/GqVpOx+wkE6nOy/Tr8eco0g6pY4P36BpOx2gFh++okxRiapXaaeK1boG8R1JpzV73Q1VsVo3udf88u/z1eqNpxRNVitRPk1Tdz5A1a07LFGe+G7Em5KpIVBPAeK7nlANeBrx3QC0+rzEIr4f/Wau1mkVV692BXpmVIWS6ayGT6zW6VuU6Zbhs3XJ9s30U3lKH/5apcM3KFUqIw3+Yra261yodVoliO/6LFyenkN85wnS82HyGd/NPh8aRHP5Jjuo4PfJKv55tCKplMo33VGtX3tCc7qupxYfv6nf9j1GbV56UFN3PVippi0WEmzx4atKNW+laMUcZWNxVa66upp/8pbSpWVqMupLTdntkDrje+LBJ6rTXQM0e73/U7RyripX7aryjbcjvvnApee/Qpn+0gSIb7v9QXwb2VrFt7u73awoIhfip2xWpivfn6kje5bqrs9n68LtmmlceUrv/VylA7uX6Lbhs3VwjxJ1LIv9+S45dmK04gsPS3yHwtzoL5Lf+H5PkVRS5ZvupKKJ41T426+KpKqDf2792uOa0219RZNVKpgyQcW//qAJh568mE+scq7aPndv8LqJh/RVh8f/pym7HqR0SRN1GnylJu95eBDfymY1Z831VdF5LXW59UKNP6Kf2j91h3496izFXLhHY8oUFhHfxHej/zXIBBsuQHw33G5ZryS+lyXUwJ+3jO/OzWO69N0Z6t4mofLKbHC85NupyYXiO5OVfpmRUtsmMTUrjOqQHiXc+W7gWjbkZcR3Q9RWvtfkM76jVZVq/+TtSpU1VzaRCM5lt3v6LiVbtlF85nT9tv+/lY1E1PXqfpqy+6Ga1b3uvyHXjZEpLNbkvY4M7pS7c97u6Erxz99rZs8tgmMlc1dfJ/g5F99NR3ykcX36q+0L9wdRnpg+VVP2PCJ4zZIeHDtZ+fYy7+ivJ0B826058W1kaxHfeZkqd77zwrisQYjvZQn9NX4+n/Htkxjx7dNqMVcE6hYgvu12BvFtZEt8G8F6Mizx7clCGU9zRcZ32befqXDSz3++w0hE03bcz/gd1wxPfIfCzEUQMBUgvu14iW8jW+LbCNaTYYlvTxbKeJorMr6N39pShye+V6Q+10YgPwLEd34c6xqF+DayJb6NYD0Zlvj2ZKGMp0l8LwzMXy9vvOEYHoE8ChDfecRcZCji28iW+DaC9WRY4tuThTKeZj7i+6WqlPEs8z/8UU0TGnpuSpUzie/86zIiAuEIEN92zsS3kS3xbQTrybDEtycLZTzN5Y3v9hss6++yNX4DyzH8T+9liO/l8OOlCKxoAeLbbgWIbyNb4tsI1pNhiW9PFsp4mssT38ZTWyHDc+xkhbBzUQQaJEB8N4itXi8ivuvFlPuTiO/czVamVxDfK9NqNvy9EN8L2xHfDd9LvBKBsAWIbztx4tvIlvg2gvVkWOLbk4UynibxTXwbbzGGR8BMgPg2oxXxbWRLfBvBejIs8e3JQhlPk/gmvo23GMMjYCZAfJvREt9WtMS3lawf4xLffqyT9SyJb+Lbeo8xPgJWAsS3layIbyta4ttK1o9xiW8/1sl6lsQ38W29xxgfASsB4ttKlvg2kyW+zWi9GJj49mKZzCdJfBPf5puMCyBgJEB8G8GK+DaTJb7NaL0YmPj2YpnMJ0l8E9/mm4wLIGAkQHwbwRLfdrDEt52tDyMT3z6skv0ciW/i236XcQUEbASIbxtXNyrfdmJkS3wbwXoyLPHtyUIZT5P4Jr6NtxjDI2AmQHyb0RLfVrTEt5WsH+MS336sk/UsiW/i23qPMT4CVgLEt5Usd77NZIlvM1ovBia+vVgm80kS38S3+SbjAggYCRDfRrAcO7GDJb7tbH0Ymfj2YZXs50h8E9/2u4wrIGAjQHzbuLpROfNtZEt8G8F6Mizx7clCGU+T+Ca+jbcYwyNgJkB8m9ES31a0xLeVrB/jEt9+rJP1LIlv4tt6jzE+AlYCxLeVLHe+zWSJbzNaLwYmvr1YJvNJEt/Et/km4wIIGAkQ30awHDuxgyW+7Wx9GJn49mGV7OdIfBPf9ruMKyBgI0B827i6UTnzbWRLfBvBejIs8e3JQhlPk/gmvo23GMMjYCZAfJvREt9WtMS3lawf4xLffqyT9SyJb+Lbeo8xPgJWAsS3lSx3vs1kiW8zWi8GJr69WCbzSRLfxLf5JuMCCBgJEN9GsBw7sYMlvu1sfRiZ+PZhleznSHwT3/a7jCsgYCNAfNu4ulE5821kS3wbwXoyLPHtyUIZT5P4Jr6NtxjDI2AmQHyb0RLfVrTEt5WsH+MS336sk/UsiW/i23qPMT4CVgLEt5Usd77NZIlvM1ovBia+vVgm80kS38S3+SbjAggYCRDfRrAcO7GDJb7tbH0Ymfj2YZXs50h8E9/2u4wrIGAjQHzbuLpROfNtZEt8G8F6Mizx7clCGU+T+Ca+jbcYwyNgJkB8m9ES31a0xLeVrB/jEt9+rJP1LIlv4tt6jzE+AlYCxLeVLHe+zWSJbzNaLwYmvr1YJvNJEt/Et/km4wIIGAkQ30awHDuxgyW+7Wx9GJn49mGV7OdIfBPf9ruMKyBgI0B827i6UTnzbWRLfBvBejIs8e3JQhlPk/gmvo23GMMjYCZAfJvREt9WtMS3lawf4xLffqyT9SyJb+Lbeo8xPgJWAsS3lSx3vs1kiW8zWi8GJr69WCbzSRLfxLf5JuMCCBgJEN9GsBw7sYMlvu1sfRiZ+PZhleznSHwT3/a7jCsgYCNAfNu4ulE5821kS3wbwXoyLPHtyUIZT5P4Jr6NtxjDI2AmQHyb0RLfVrTEt5WsH+MS336sk/UsiW/i23qPMT4CVgLEt5Usd77NZIlvM1ovBia+vVgm80kS38S3+SbjAggYCRDfRrAcO7GDJb7tbH0Ymfj2YZXs50h8E9/2u4wrIGAjQHzbuLpROfNtZEt8G8F6Mizx7clCGU+T+Ca+jbcYwyNgJkB8m9ES31a0xLeVrB/jEt9+rJP1LIlv4tt6jzE+AlYCxLeVLHe+zWSJbzNaLwYmvr1YJvNJEt/Et/km4wIIGAkQ30awHDuxgyW+7Wx9GJn49mGV7OdIfBPf9ruMKyBgI0B827i6UTnzbWRLfBvBejIs8e3JQhlPk/gmvo23GMMjYCZAfJvREt9WtMS3lawf4xLffqyT9SyJb+Lbeo8xPgJWAsS3lSx3vs1k8xrfeZ7lyC6bqcfYF/I8KsMtKEB8sx+cAPFNfPMrAQFfBYhvu5Xj2ImRbb7i22h66j9xuNXQjCuJ+GYbEN+L74F9rslo7hkHKjvjD683SKz/YN3+VleN+j7r9ftg8ggsTYD4ttsfxLeRbT7i22hqDBuCAPEdArIHl+DON3e+PdimTBGBOgWIb7uNQXwb2RLfRrCeDEt8e7JQxtMkvolv4y3G8AiYCRDfZrR84NKKlvi2kvVjXOLbj3WyniXxTXxb7zHGR8BKgPi2kuUDl2ayxLcZrRcDE99eLJP5JIlv4tt8k3EBBIwEiG8jWL7n2w62IfGd1cr/4Z2IInbojWjkfi3WUabvIcrOLG9Es2IqYQvkEt+/jCieNz33a8T9u6D2/7sfXvDH3D/X9fOL/njtr7VljRWeyprbJfnAZXjcXAmB5RIgvpeLb6kv5sy3kW2u8W00DYZdgQJVrz5NfK9A/8Zw6frGd2LjrRvDdEOZQ9Vrz/JtJ6FIcxEElk+A+F4+v6W9mvg2ss0lvo2mwLAIILCCBeoT3yt4ily+AQJ81WAD0HiJdwLEt92SEd9GtsS3ESzDIuCRAPHt0WLlMFXiOwcsnuqtAPFtt3TEt5Et8W0Ey7AIeCRAfHu0WDlMlfjOAYuneitAfNstHfFtZEt8G8EyLAIeCRDfHi1WDlMlvnPA4qneChDfdktHfBvZLi2+jS7JsAgg0AgFZm52kM69plCdVo2o34GTFR/+aiOcJVPKRSDZfSv+evlcwHiulwLEt92yEd9GtkuKb6PLMSwCCDRigeeHpIP47rV+tBHPkqnlIjBmbEajvl/5vx42FxOeu3IJEN9260l8G9nWFd9Gl2JYBBBAAAEEEEAgrwLEd145FxqM+DayJb6NYBkWAQQQQAABBMwFiG87YuLbyJb4NoJlWAQQQAABBBAwFyC+7YiJbyNb4tsIlmERQAABBBBAwFyA+LYjJr6NbF18z39ks1IksvA/u3+q/TH38wv+s/vfdb1maWPU9zULjtGQ1yw6r4aM0dDXLLpWyzKqz9quqDGWdt26jHN97/kYozH5LWud8rEv8zXG8v5absi/D+qzVjwHAQQQyEGg86oR9eyxQLvk8FqeunQB4psdggACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQKzg/hYAAADDSURBVEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAAeKbPYAAAggggAACCCCAQEgCxHdI0FwGAQQQQAABBBBAAAHimz2AAAIIIIAAAggggEBIAsR3SNBcBgEEEEAAAQQQQAAB4ps9gAACCCCAAAIIIIBASALEd0jQXAYBBBBAAAEEEEAAgf8H2cc+MFUOnukAAAAASUVORK5CYII=",
"text/html": [
"<div> <div id=\"1109b423-6acd-47fa-8105-1f774368a62d\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"1109b423-6acd-47fa-8105-1f774368a62d\")) { Plotly.newPlot( \"1109b423-6acd-47fa-8105-1f774368a62d\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"build_real\", \"prebuild_gwn\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"\", \"fftma2\", \"\"], \"type\": \"treemap\", \"values\": [4.518677, 3.283041, 2.4375840000000117, 1.231253, 1.223604, 0.7101290000000031, 0.48899400000001014, 0.002831, 0.001635, 0.001069, 0.000318, 0.000274, 0.000267, 0.000217]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('1109b423-6acd-47fa-8105-1f774368a62d');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 32"
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>22.135483</td>\n",
" <td>22.135483</td>\n",
" <td>22.135483</td>\n",
" <td>22.135483</td>\n",
" <td>1</td>\n",
" <td>53.6</td>\n",
" <td>53.6</td>\n",
" <td>53.6</td>\n",
" <td>24.085573</td>\n",
" <td>24.085573</td>\n",
" <td>24.085573</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>16.686848</td>\n",
" <td>16.686848</td>\n",
" <td>16.686848</td>\n",
" <td>16.686848</td>\n",
" <td>1</td>\n",
" <td>48.0</td>\n",
" <td>48.0</td>\n",
" <td>48.0</td>\n",
" <td>13.146080</td>\n",
" <td>13.146080</td>\n",
" <td>13.146080</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>0.000081</td>\n",
" <td>0.023022</td>\n",
" <td>0.000377</td>\n",
" <td>12.362677</td>\n",
" <td>32768</td>\n",
" <td>-6.2</td>\n",
" <td>3.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.420267</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>5.445881</td>\n",
" <td>5.445881</td>\n",
" <td>5.445881</td>\n",
" <td>5.445881</td>\n",
" <td>1</td>\n",
" <td>5.6</td>\n",
" <td>5.6</td>\n",
" <td>5.6</td>\n",
" <td>57.504022</td>\n",
" <td>57.504022</td>\n",
" <td>57.504022</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>5.433282</td>\n",
" <td>5.433282</td>\n",
" <td>5.433282</td>\n",
" <td>5.433282</td>\n",
" <td>1</td>\n",
" <td>4.9</td>\n",
" <td>4.9</td>\n",
" <td>4.9</td>\n",
" <td>57.609158</td>\n",
" <td>57.609158</td>\n",
" <td>57.609158</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>0.000078</td>\n",
" <td>0.001366</td>\n",
" <td>0.000094</td>\n",
" <td>3.885548</td>\n",
" <td>41552</td>\n",
" <td>-3.0</td>\n",
" <td>1.7</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.071948</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>0.000081</td>\n",
" <td>0.000219</td>\n",
" <td>0.000094</td>\n",
" <td>2.323766</td>\n",
" <td>24624</td>\n",
" <td>-2.1</td>\n",
" <td>0.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.520748</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.002485</td>\n",
" <td>0.003625</td>\n",
" <td>0.002885</td>\n",
" <td>0.008655</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.001855</td>\n",
" <td>0.001855</td>\n",
" <td>0.001855</td>\n",
" <td>0.001855</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.000294</td>\n",
" <td>0.000552</td>\n",
" <td>0.000456</td>\n",
" <td>0.001369</td>\n",
" <td>3</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.000529</td>\n",
" <td>0.000529</td>\n",
" <td>0.000529</td>\n",
" <td>0.000529</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.000089</td>\n",
" <td>0.000093</td>\n",
" <td>0.000091</td>\n",
" <td>0.000455</td>\n",
" <td>5</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.000230</td>\n",
" <td>0.000230</td>\n",
" <td>0.000230</td>\n",
" <td>0.000230</td>\n",
" <td>1</td>\n",
" <td>0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.000172</td>\n",
" <td>0.000172</td>\n",
" <td>0.000172</td>\n",
" <td>0.000172</td>\n",
" <td>1</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" time memory \\\n",
" min max mean sum count min \n",
"function \n",
"Py_kgeneration 22.135483 22.135483 22.135483 22.135483 1 53.6 \n",
"generate 16.686848 16.686848 16.686848 16.686848 1 48.0 \n",
"gasdev 0.000081 0.023022 0.000377 12.362677 32768 -6.2 \n",
"fftma2 5.445881 5.445881 5.445881 5.445881 1 5.6 \n",
"covariance 5.433282 5.433282 5.433282 5.433282 1 4.9 \n",
"ran2 0.000078 0.001366 0.000094 3.885548 41552 -3.0 \n",
"cov_value 0.000081 0.000219 0.000094 2.323766 24624 -2.1 \n",
"fourt 0.002485 0.003625 0.002885 0.008655 3 0.0 \n",
"cgrid 0.001855 0.001855 0.001855 0.001855 1 0.0 \n",
"length 0.000294 0.000552 0.000456 0.001369 3 0.0 \n",
"build_real 0.000529 0.000529 0.000529 0.000529 1 0.0 \n",
"maxfactor 0.000089 0.000093 0.000091 0.000455 5 0.0 \n",
"prebuild_gwn 0.000230 0.000230 0.000230 0.000230 1 0.2 \n",
"clean_real 0.000172 0.000172 0.000172 0.000172 1 0.0 \n",
"\n",
" cpu \n",
" max median min max mean \n",
"function \n",
"Py_kgeneration 53.6 53.6 24.085573 24.085573 24.085573 \n",
"generate 48.0 48.0 13.146080 13.146080 13.146080 \n",
"gasdev 3.0 0.0 0.000000 100.100000 0.420267 \n",
"fftma2 5.6 5.6 57.504022 57.504022 57.504022 \n",
"covariance 4.9 4.9 57.609158 57.609158 57.609158 \n",
"ran2 1.7 0.0 0.000000 100.100000 0.071948 \n",
"cov_value 0.5 0.0 0.000000 100.100000 0.520748 \n",
"fourt 0.5 0.0 0.000000 0.000000 0.000000 \n",
"cgrid 0.0 0.0 0.000000 0.000000 0.000000 \n",
"length 0.0 0.0 0.000000 0.000000 0.000000 \n",
"build_real 0.0 0.0 0.000000 0.000000 0.000000 \n",
"maxfactor 0.0 0.0 0.000000 0.000000 0.000000 \n",
"prebuild_gwn 0.2 0.2 0.000000 0.000000 0.000000 \n",
"clean_real 0.0 0.0 0.000000 0.000000 0.000000 "
]
},
"execution_count": 77,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_32-aa'])\n",
"overall_time[\"32\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"32\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 67,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACf3UlEQVR4nOzdd3gUVRfA4d/d3SQklKX3EnpIQECaIL0qEZUuIIqiKNhRIR8qrj127IoNxQaKSImCgIoKooCAdBAIHUJJr1vm+2M2cQmBFJLM7ua8z7NP2NkpZ0Jmz9wy9ypN0xBCCCGEbzMZHYAQQgghLp0kdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdCGEEMIPSEIXQggh/IAkdFEmKKXmKKVijY5DgFKqt1JKU0r1NjoWIfyJxegAhCgqpVRBxy3uU6KBCCGEF1AylrvwVUqpG3MtugkYAIzPtXwFcBYwaZqWWRqxiQtTSpmAQCBL0zSX0fEI4S8koQu/oZR6E7hL0zRldCzifEqpckgSF6LESBu6KBNyt6ErpULd7bgPKaXuUkrtV0qlKaV+VEo1ULrHlFJHlFLpSqlFSqmqeez3aqXUb0qpVKVUslIqRikVUcCYKiulXlVKxSqlMt3H+lQpVd1jnZpKqQ+VUieVUhlKqS1KqZtz7eeSz8Udw1Kl1ECl1Gb3sXYopYblWq+qUuolpdRWpVSKUipJKfWDUqptrvWy28lvUEo9rZQ6CqQBlfJqQ1dKNVdKLVBKnXAf+4hS6iullNVjHYv7PPa5f1+xSqlnlVJBFziX7kqpv9z726+UuinXegFKqceVUnvd65xRSv2ulBpQkP8/IbyNtKGLsm4cevXvG0BVYBowH/gJ6A08DzQD7gFeAm7N3lApNR74BFgOTAdCgMnA70qp9pqmxV7ooEqpCsBvQCvgI+BvoDpwLVAfOK2UCgZ+cR//TeAAMBKYo5SqrGnaa8V1Lm7NgXnAu+7zugX4Wil1laZpK9zrNAGuB752x1MLuANYrZQK1zTtWK59PgZkuY8X5P537t9FIPrvMMgd+wmgHnANUBlIdK/6AXAz8A3wMtAF+J/7dzg0126budf70H0ut7p/bxs1TdvuXsfm3v4D4C+gEtARuBy9mUYI36Jpmrzk5Rcv9KSnXeCzOUCsx/tQQAPiAKvH8mfdyzcDFo/lXwCZQJD7fQUgHpid6zi1gITcy/OI5wn3cYbm8Vl2U9h97nXGeXwWAKwFkoGKxXEu7mWx7nWHeSyrBBwD/vZYFoTeF8Ez3lAgA3jMY1lv9/72AcG51s/+rLf7fTv3+xEX+X21da/zfq7lL7qX98njXHp4LKvhjvElj2WbgaVG/93KS17F9ZIqd1HWfa1pWqLH+z/dPz/TNM2Ra3kgeskR9M53lYEvlVLVs1+A071ufj3rhwNbNE1bmPsDTdOyO7YMRi+tfunxmR14Hf2GolcxnUu2Y0BOPJqmJQGfAu2VUrXdyzI1dxu4UsqslKoGpAC70Uu2uX2iaVp6Hss9Zcc8SCkVcoF1Brt/vpJr+cvun5G5lu/QNO03j3M55Y6xicc6CUCEUqp5PvEJ4RMkoYuy7lCu99nJ5fAFlldx/8xOAj8Bp3K9BgI18zluU2BbPus0AvZq53ci2+nxuaeinku2fz1uJrLtcf8MBb2HulLqAaXUXvRS/mn0c74MsHK+A3ksO4emaQfQE/Vt6E0Ny919ATz31whwAf/m2vYEemLO73cBeo2K5znPRL8p2+PuE/CiUuqy/OIVwltJQhdlnbOQy7N70GdfO+PRS+u5X9cVV4CFUNRzKYwZ6Mn3V+BGYBD6+W4n7++T/ErnAGia9iD6TcGzQDB6LcR2pVT93KsWMM58z1nTtF/Rb6xuRb+5ug34Wyl1WwGPIYRXkU5xQhTNPvfPOE3TVhZx+9b5rHMQuEwpZcpVSg/z+Lw4NVNKqVyl9Bbun7HunyOAnzVNm+i5oVKqMnppvcg0TdsKbAWeVkp1A9YAdwKPop+rCb1mJLuGAqVULfRSdpF+F5qmnQU+Bj52d1T8Fb2z3AdFPQ8hjCIldCGKZjmQBMxQSgXk/lApVSOf7RcAbZVSuXtno5TKLkV+D9QGRnt8ZkHvpZ4CrC5a6BdUF4/e4kqpSuiD9Wx2V22DXvI9p2SvlBrJ+e3xBaaUquQ+L09b0avYsx9J+9798/5c6011/4wpwnGreb7XNC0FvUo/KO8thPBuUkIXogg0TUtSSk0G5qJX036F3pbcEL2D1hrg7ovs4kX00u7XSqmPgI3oj5pdi14q3QLMRn8kbI5SqgN6KXkEcCVwv6ZpycV8WnuAD5VSnYCT6FXRtdAfX8u2FJiplPoYvbd9G/TH5fZfwnH7Am8qpb52x2BBb8pwot/4oGnaFqXUJ8Akd23AaqAz+mNs32ma9nMRjrtDKfUL+u/+LPojayPQn5YQwudIQheiiDRN+0IpdQyIAh5GL9kdRX++/ON8tk1RSvVAf3xtKHpiigNWAUfc66S7B1+Jdn9eCb2n9i2aps0p/jNiL3rp/0WgJXqHttGapi33WOdZoDwwFr3m4G/0G5joSzjuFvQajyHoJf0097KrNU1b57Hebeg3DhPQf2cngOfQf4dF8Tr6DdRA9P+7g+jV+y8WcX9CGEqGfhVCoPRR9LZpmnaN0bEIIYpG2tCFEEIIPyAJXQghhPADktCFEEIIPyBt6EIIIYQfkBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoQshhBB+QBK6EEII4QckoRtMKRWqlNKUUg8ZHYu3U0r1dv+uehsdixBCeBtJ6HlQSk1wJ47sV4ZSao9S6k2lVC2j4/N3SqkpSqkJRschhCg6pdQMpdT1RsdRlliMDsDLzQQOAOWA7sBkYLBSqrWmaWmGRubfpgCngTm5lv8KBANZpR2QEKLQZgDfAN8ZHEeZIQn94n7QNG2D+98fKKXOAFOB64AvjQvLdyilFFBO07T0S92XpmkuIOPSoxJCFIZSygQEapom158Xkyr3wvnJ/bOxuyr+gdwrKKW6uT8bU9SDKN1spVSWUmqYx/LLlFKrlVLpSqkjSqlHlVK3uI8XmmsfVyulflNKpSqlkpVSMUqpiFzrzFFKpSil6imlvnP/+5RS6iWllDnXuial1P1Kqe3uJoiTSqn3lFJVcq0Xq5RaqpQapJTaAKQDd7g/u0Up9ZNSKk4plamU2qGUmpx7eyAC6OXR5PGL+7M829CVUiOVUhvdv5fTSqnPlFL1inquQpQ099/yBve1tE8pdYdSyqaU0nKtd6PH3/ZZpdRXSqkGudb5RSm1TSkVrpT6WSmVppQ6qpSalsdxg5RSTyil/nVfg4eVUi8opYJyrae5mxjHKaW2A5nAVe7PHlJKrVVKnXHHtVEpNSL39kB54GaP63iOx+f1lFIfub9HMt3fK7de4q+1zJMSeuE0df88A6wBxgGv5lpnHJAMLCrKAdzJ5SNgNDBU07QY9/J6wM+ABjwHpAK3oV9oufcxHvgEWA5MB0LQmwt+V0q11zQt1mN1s3u9P4GHgP7Ag8A+4B2P9d4DJgAfA68DjYG7gfZKqSs1TbN7rNsSvQbjPeB9YLd7+WRgO7AYcABDgLeVUiZN095yr3M/8AaQAjzjXnbyIr+v7JjWA/8DagH3AVe6zzWhCOcqRIlRSrUHlgHHgcfR/y5nAqdyrfcI8BQwH/gAqAHcA/yax992Ffc+v3WvPwJ4Xim1VdO0H9z7M6Ffe92B2cBOoA3wANACuD5XqH2BUcCb6E1gse7l97n38zkQCNwAfK2Uuib7+woY7475L/exQL/OUHo/pHXo32Vvus/7auBDpVQlTdNm5fc7FBegaZq8cr3QE5cG9AOqA/XRE+xpIA2oB0xyrxPmsV0A+h/nnEIcK9S9n4fQb7C+ch9jYK71XgdcQDuPZVXRby40INS9rAIQD8zOtX0tIMFzOXobtQY8lmvdv4ENHu+7u9cbm2u9QbmXo1/0GjAoj3MNzmPZMmBfrmXbgF/yWLe3e9+9PX7fJ4Gt6NX62etFutd7orDnKi95lfQLPRmmAnU9ljUD7PpXsgbQCP2md0aubVu715vhsewX99/2eI9lgeg3DN94LLsRcALdc+3zDvf23TyWae51w/OIPzjX+wD3Nbgq1/KUvL4L0RP9MaBaruVfur+jzvuekFfBXlLlfnEr0RP0YfREm4Jeaj6KfhecgV4izzYI/QbgsyIcKxD4GrgGGKxp2o+5Pr8K+EPTtM3ZCzRNO4t+l+xpAFAZ+FIpVT37hX5x/gn0yePY7+Z6/xvQxOP9SCARWJFrnxvRfye593lA07TluQ+iebSjK6Ws7n2sBpoopax5xJWfjkBN4G3No21P00sJu9ATe275nasQJcZdA9cf+E7TtGPZyzVN+xf4wWPVYehNovNzXXMngL2cf82l4PG9o2laFnrpOPd1vBPYlWuf2U2Jufe5WtO0HbnPIdd1XAWwol9Hlxfg/BUwHFjifusZx3L3vvLdj8ibVLlf3F3AHvQ75ZPAbk3vmIWmaQlKqSXAWOAx9/rjgKP8d4EUxv/QS9dXa5r2Sx6fNwL+yGP5v7neN3f/vFAMSbneZ2iadirXsnj0KjzPfVqBuAvss2au9wfyWkkpdSXwBNAVvRnAkxX9pqEwGrl/7s7js13oNQueCnKuQpSkmuhPauS+bsm1rDmg0JN3Xuy53h/R3MVcD/HAZbn22YpcVfu5YvN0oev4GuBRoB3g2fae+/h5qYFe4JjkfhUkDlFAktAv7i/tv17uefkUGKmU6oZe5XQtemnRVYRjLUcvhU9TSv2iFb03aXaty3j0u/ncHLneOwu4zzjOrY3wlPsL4rwe7UqppsAq9EQ7Fb3WIwsYjN6GVxq1RQU5VyG8gQk9QV5N3n+3KbneX+hvW+Xa51b06y8vh3O9z+s67oHeZPAr+uOlx9FvLm5BL9zkJ/s6/wy9n09e/inAfkQeJKFfmmXoyWwcenV2CDC3iPtah14dvBS9g8lQTdM8k+9B9Ha23HIv2+f+Gadp2soixpLbPvRqwjVa0R8/G4J+N3+tpmmHshcqpfJqAijInT7ovxPQO+HlrpFo6fG5EN4iDr2pLr9reR96Mj6gadqeYjr2PqAtelt3Qa+x3Iajxz9I07ScDrlKqVvyWDevY5xC7zRsLsbvJ+EmbeiXwJ1wv0TvCToB2KppWpHvLt1/4Degl9TnunulZlsOdFVKtcteoJSqyvml5uXo1eozlFIBuY+hlKpRhNDmo/fEfSz3B0opi1KqcgH2kV2CyCkxuNvN8/oiSEWvlsvPBvQvyDs9H7tRSl2NXrUYc6ENhTCCpmlO9L451yul6mYvV0o1Qy+NZ/sW/Zp53N3ujMe6SilVrQiHn4/eoff23B8opYKVUuULsA8neqLOedRT6Y/MXp/Huuddx+7zXwAMV0q1ziOOonw/CTcpoV+6T4F70TuUTL/UnWma9p37bvdT9MR8h/ujF9B7qa5QSr3Bf4+tHULv7a65t09S+rPdc4G/lVJfod8VN0TvJLYG/XGzwsS0Win1HvA/9w3Fj+jVbM3RO9rchz4i1MX8iF7FvsS9rwroXyxxQJ1c624EJiulHkVvV4zTNO28PgGaptmVUtPRH1tbrZT6kv8eW4vl/EcKhfAGNmAgsEYp9Q56crwb/emOdgCapu1z//0/B4Qqpb5DL9k2BoaiPwr2UiGPOxe98PGuu2ZsjfvYYe7lg9Bvki8mBr3KfplS6gv09u670K/Ty3KtuxHor5Sait6r/YCmaX8CUejfl38qpd4HdqB/h12OXhNYtZDnJbIZ3c3eG1/899haxwKuvw39zrVeEY4V6j7WQ7mWT3Yvf9FjWTv0tqsM9PauKPTnUjWgVq7te6M3CSSgt4X9i574OnisMwdIySMmG+7HZ3Itvx39gk9Dv9n4B3geqOOxTiyw9ALnOgTY4o7nADANvYSe89ide71a6E0PSe7PfvE4p5zH1jzWH4X++FkG+mN8n+X+vyjsucpLXiX5Qn/G+2/0cST+BSaiJ+j0XOsNQ+9BnuJ+7UR/druFxzq/ANvyOMYcIDbXsgD3dbfNfb2cdV/TM4FKHutpwJsXiP1W9M7CGe54JuR1HaE3e612f19oeDzChn4j8CZ6gSQLvS1+JXC70f83vvxS7l+uuARKqU3AWU3T+hlw7FnopfgKml6dJYTwQe5SeISmac3zW1eIvEgb+iVSSnVELzl/WgrHCs71vhp6b/bfJZkL4TvyuJaboz/x8YshAQm/ICX0InJ36OiAPnRodaCJ5vGomXsAifw6eKRompb78ZOLHXMz+gW/E71aeiJQF+inadqvhYlfCGEcpdRx9Crx/ejjKUxGfwqkvaZpF3r2XIiLkk5xRTcCvd1pNzBGO/+58QZcYGAGD0+gtz0V1Pfu42YPO/s3MFGSuRA+ZxkwBqiN3o7+B/pwrpLMRZFJCb2EKKWy51C/mP2apu0vjXiEEEL4N0noQgghhB+QTnFCCCGEH5CELoQQQvgBSehCCCGEH5CELoQQQvgBSehCCCGEH5CELoQQQviBQg0ss3HjxgroI5PJjYAoKhdwrEOHDgUeIU8YS657cQFyLXuZAj+HvnHjxitMJtO7JpPJisec1kIUkuZyuRJdLtedHTp0WGd0MOLi5LoXFyHXspcpUELfuHFjBZPJ9HvlypVr1axZ86xSSkaj8XJZTpfF7nAFZTm1QIfLFeByYXK6NLNL0yxOTTO7XFicmmZCw6ShKYD6gUmp5R1J5TXQ9O9upaFMTkxmB8rswGR2YApwYLLYNZPFgdlix2TRl6mCfddrmqbi4uKqJiQknHS5XN3l7t57yXXvm1yaht2hBdpdrgCnS7M4XZpZv/bRf6JZXC7NBPr40TXNqVkhrpRA/RpWmr5YuTBbnCiLHbPFoZksdkwBdswWB8riRCm5lr1QQavc65pMJmvNmjXPli9fPr1EIxKFkulwBqRmOitk2J3BmQ5XuSyHq5zd6QpyaZpH9ajK9ZNzKk+zlwYFWFzl9HfuRZoCpwmcAYBewebKKwqlYQlMxxKcRkBIGoEhqQSUT8dkyjMB1KxZ82xSUpLV5XLVRZ9XWXgnue69mMPpMqdmOctn2p3lMh2uoCyHq1yW01XO4XQFnn/h5fEd4BZkxhWsZYWc90H2/I2O8z7RcCf4WuXM9lRXev3qOz4exJL5S7AlZl3KOYlLU9CEbgKU3KEby6VpKi3TGZKa5SifluWskJ7lrOBwuQKMjgs0hSMzBEdmCBkJOQsxB2UQEJxGQHAqgeVTCayQhlK4/44U0ibr7eS69xKappGW5QxOzXJUSM9ylk/PclbIcrqCDApH4XIE4nIEmhwa5qxkKp/84xsgC5v1H2C9x2sntkSZ2rmUFHm2tdComA7FGYin2OjIjSW1b1+TnuUsl5RhtyZnOKzpdmcFTdN8pR1T4cwMxpkZTEZCNX2J2UFQxUQITgWfOQ/hoaSue7nmz5dhdwYmptsrJ2c4rBl2Z4Vza928UiDQ0f2a7F6Wis36J7AYWIgt8ZBRwZUF3v4H4rOWLl1a8ZtvvqlU2O00TSM5w17+SHxa/Z3Hk1rvjUuOOJmUUT8ty1FR0zS15pdVjBrUI+fVv0MrRl/dK2f7tg2qMLx/t5zP//5zbZ7HWfXDUkYMuJJRg3owtO8VvPH8U7jc/SlS09K55YHHadNvFGE9hxH17OtcqK/FHdOepk2/UfQdOYnEpOScc7j6xrvZF3s418k5LWQkVDOlHGsYmBZXP+zXO9/HZr0Lm7VhYX9PQhS39evXl6tXr16b0jre+PHjG4aFhYVnv4KCgi63PfVMgyPxafV3nUiK2HMyuc3Bk/ENBnXvWGnEwO4X/K5OT09j+l0Tuab75Qzp2ZEVMYtyPjt4YB93jB3KyIHdGdqvK8sWf5vnPuITkugzYhJt+o1iyv+ey1l+6kw8vUfcjt1uL+pplgf6ArOAg9isG7FZH8NmbV3UHYoLk/nQi8hutxMQcOHa7p9++qliQkKCecSIEUkF2V96lrPcmdTM6knpjqoXq0a/snc/ruzdL+f93RNG06lrj3PW+XjBD1SyWi96vCt69KLPoMGYTCbsWVncPOxqFi1pah5/dVeeff1DnE4X/6ych8Ph4NpbHuCbpSsZOWTAOfvYtutf9h44xNZV83ny1dnMXRDD3bfcwAdfLKRPt440DW1wkQg0ZXamd0efYvZNbNatwNfAh9gSj100eCH8wNy5cw8BpGQ4yu/cd7BGjw6tg3tGjqh5NvW/ZuhZz9lo17EL27f8fcH9fPLemwQGBrH09785cuggN17bn07delC5SlVmTp3CdaPGMWzMTZw9c5qxkX1o3+kKatWpe84+Pl/4PX2u7MjMBybRd+Qktu36l9ZhzZhqe5no/91z0e+6Qrrc/XoSm/Vf4DtgIbAOW2KePXREwfl0Cf2zzz6r3KRJk4iWLVuGT548uV6VKlXa7t69OxBg69atQb17927WunXrVi1atAh/9tlna2Rvp5TqEBUVVbtNmzat6tWr1+a1116rlv1Zfts98MADdVu3bt3q7rvvrv/XX38Fd+jQoWV4eHirpk2bRkybNq0OwNq1a4M//fTTGgsXLqwaFhYW/tBDD9UBWLBgQaUOHTq0jIiIaNWmTZtWixcvqXQqObP63pPJYXvjkiPOpmbVKkybeNyJ4/z1+69cM3x0oX935StUxGTS//szMzOwZ2ViMuld1bfs2MNVfbqhlCIgIIABPa5g7oKY8/YRYLGQmWXH5XKRmpZOYEAAx0+e4svvljF10o2FDakN8CT6Xfy32KwDsFmlWl6c42LX/KRJk+q3bt26VVhYWHjHjh1bbtmyJQggJSVFRUZGNmnatGlEy5Ytw6+88srm2fubOnVq3UaNGrWOiIhoNXfu3Kqex8p9vS5ZsqQiQLdu3Zp//PHHVbLXW7p0acVWrVqFF+Y8shwuy4nEjFq7TiRF7D+dEvb553OrdevVl+o1a+Wss+63X4g7cZzBQ0dedF/Llyxk5PhbAKjfsBGdunbnp2VLAdi9Yzvd++g34lWrVadFq9YsX7LwvH0EWCykpWfgcrnIzLITGBDAsp/XUKVyJa7ocFlhTq0wmgEPAWuAw9isT2Gz1i+pg5UFPltCP3r0qOXuu+8O/fnnn3e1b98+47XXXquWkJBgAXA4HIwZM6bJ3LlzD7Rv3z4jOTnZ1KFDh7Arr7wytVevXmkAQUFB2tatW3du2rSpXPfu3VtNmTLljFIq3+3MZrO2bdu2nQDx8fGm33//fU9wcLCWkpKiOnXq1GrQoEFJ/fr1S73ppptOJSQkmD/66KPDADt27Ah86qmn6v700097AstXKrd+87Zao669qvkPa7cQGFS0vi2Lv/6C7n0HUK16jXOWTxpzHU6Hg85X9uKuh2cQElI+z+03b/iTp6Ie4FDsfkbdeCtDIq9y4Eigw2Wt+HrpSoYP7ofd4eC75T+T4K5O99SyWSh9unXk8kFjad64IY9PncStU5/gxcfux2Ip8p+WBRjqfv2Lzfoe8DG2xDNF3aHwDxe75gFsNtuJunXrHgGYPXt2lbvvvrvhb7/9tvfbb7+1JiYmmvft27cd4OTJk2aAr776yrp48eIqmzZt2lG5cmXX0KFDG2fvy/N6rVq1qmvbtm1Bffr0aXno0KGtN91005lPP/202i233BIP8NFHH1W78cYbT+cXv6ZpJKbbrWdTs2qkZjoraR79SL6b9zlTH30yZ92kxEReffZx3p77Dfv37r7ofk8cPUKdev/VhtWt34DjR48AEN6mLTEL53PL5Ps4cjCWLRv/om6D81u4bhweyc33zaT9wDFcf1Vv6tWpycSHnuD7uW/kd1rFpS7wKPA/bNalwNvACmyJ0iGzEHy2hP7LL7+Ub9myZVr79u0zAO6+++4zAQEBGsCWLVvK/fvvv8FjxoxpEhYWFt6pU6ew1NRU8z///BOcvf3EiRPPALRv3z7DbDZrhw4dCijIdpMnT865cNPS0kxjxowJbdGiRXiHDh1aHTt2LHDjxo3nP/4BLF682Hrw0KFy3br3bNvx8vatJt86vqpSJo4fO1Kk89c0je/mfc7QG84tCS9b9w9fff8Ln3y3nPizp3n16ZkX3Ee7jl1YsHIty//cxo6tm/l9zTozQNRdt9CwXm26XHMTkTfdS+d2rbGY807QT0+/i80rvuLr2S+w4tc/aVC3FqH163LLA48z/PaHmLdoeZHOz60Z8CJwFJv1M2zWbpeyM+HbLnbNAyxevLhSu3btwpo3bx7x/PPP1925c2cIQMeOHdP27dtX7sYbb2z4/vvvVwkM1J/qWrlyZcXrrrvubNWqVV0mk4nJkyef8tiX9eDBg0HdunULCwsLCx8xYkRTpRT//vtv4I033hi/efPm8gcPHgxITEw0/fTTT5Wzv0/y4tI0dTols9ruk8kRh86mNUvJdFg9k/nff64lLSWFHn0H5mzz3GMPc9vdU8+7WS+sp159h62bNjJqUA9efGIGna/shTmPa7l8SDDfvP8iW1bO44mHJvPo828xfcoE/o09zMhJ0xg5aRpbtpfKE6Zm4DpgObADm/V2bFajevP7HJ8toV+MpmlUqlTJsWvXrh0XWickJCTni8BsNmsOh0MVZDur1ZrTzjN16tR61apVc2zfvn1HQEAAAwcObJqRkXFONbGmaSSk2SunOM21u/bsa45+84OLxr5vzy7+d8/tgJ5wZzzzUp7rbVi3hszMTLr16nfO8uw79ZCQ8oy+aSJPTr//oscDvSque98BLFwcEzC4SxjBweV47cmHcz6PfvNjIlo0ueg+kpJTeOndT1n+xVs898bH9LqiAzcOH0zbATdw7cBeBAeXyzeOiwgCxgHjsFl/AmZgS/zzUnYo/MvevXsDp0+f3nDt2rU7IyIiMv/888/g/v37twQIDw/P2rVr1/alS5dWXLFiRaXHH3+8/pYtW867xpXH4EiaptG9e/ekJUuWHMjreIMHD45///33q9aoUcPRtWvXpNq1a5/3aNb//jejzsLvvquByWy573825dn3xdPCrz5jyMgbMJvNOcs2r1/H5vXreOXpx8jMzCQxIZ5re3Vi8er1521fu159jh89TI1atQE4duQwXXv2AaBeg4a8MvvTnHUn3ziCrr365BlHtr82bSPuTDzXDOhJj6G3Mvf1p9E0jQkPPM7qBRf//ipmYcBs4Gls1reAt7El5lsTUpb5bAm9d+/eqbt37w7Jbid75513qtntdgXQtm3bjAoVKjg928a3bdsWlF3VdiGF3S4hIcFSv379rICAALZs2RK0Zs2anF7tFStWdCYkp4TsPpkccTg+rekVPfsFrvt9NXt2bsvZfuum85/UadoijPnLf2P+8t8umMwBFn41l+tGjjnnSyApIYH09DQAXC4Xy5csJKx13u1fB/7dg8ul35ukpiTz26ofiQhv5QQ9Oael6+OIHDh0lHc+/ZoH7xh/wVgAop59g5kPTCIkOJjUtHSU/rw5druDrKL3kM1LX2AdNusi6Slbtlzsmo+PjzdbLBatYcOGdpfLxaxZs2pmb7dv374ApRTjxo1LfPfdd49omsb+/fsDBwwYkLx48eKq8fHxJpfLxbvvvls9e5shQ4YkrVmzptKff/6ZUzv3888/59S+3Xbbbae/+OKL6p999ln1W2655Zwk43C6zMcS0uveePf0WvNXrA2Yv/y3CybzlOQkVny/mOtHn1vT9sMf/+S8nn/rQ5o2b5lnMgcYGHkdX8/9GIAjhw6y/o/f6TMoEoAzp+JyrvM1v6xi/95dDL5uxAV/x3a7nenPvM4rj08FIDUtA6XAZFKkpKZdcLsSVhN4AtiPzfoINmtwfhuUVUUuoRv93Gi9evUcr7/+euzQoUObBQYGar169UoKCQlxVatWzRkQEMCSJUv+veeeexq89dZbtVwul6pSpYpj/vz5+/lv/KPzFHa7mTNnHpswYUKTL7/8slqjRo0yr7jiiiSAxHR7xR6Dh1eft+DGctf3u5K+Vw/hzvunEf3G+zwVNZWM9DTsdjthEW3Ir8Sel+SkRFb9sJQFK9acs/zAvj08FfUASikcTietWl/GdFt0zud33TSSKQ/OIKJte5YvWcjyJQuxWCw4nU4GRF7HrTePteNIKLf/4FFG3Tkdi8WMxWLmVduDtGvd8oLxrFm/mfSMDAb0vEI/zoRRjLlrBs+/PYfxwyOxVqpY6HMsgGuBa7BZvwRmYkvcXxIHEecy8rq/2DXfsmXLrGuvvfZsWFhYRJUqVRyDBw9OyN5u48aNwTNnzqyvaRpOp1ONGDHibJcuXdK7dOmS/ueff5Zv165deIUKFZz9+vVL/OuvvwBo3bp15kcffbT/jjvuaJSenm6y2+0qIiIirU+fPgcA+vTpk2Y2mzl48GDQsGHDkkAv1Z9KzqxxKiWzrtOlFei7ddnibwlv05ZGjZsW+PcQd+I4d988ivnLfwPg5jvv4fEH7yHyyvaYzGb+99QLVKmql0lWr1zGR2/NwmQ2U6NWbd78ZD7lgi+cD19851NuGhlJrRr69k8+dCeDx9+rf/bo/QWOsYRUBJ4G7sBmfQT4TNrYz1XQsdzDLBbLsubNm6eEhIRklEJcBRIfH2+qUqWKC2Du3LmVH3/88Xr79+/fblQ86XZn0PGE9AYpmY6LPzPmpZoEJSRXsMeXSPb1lOHQOHD0FI3XPEi5lMP5b5A/O/Ah8JQ88lZ8vPG697ZrPieutCzryaSM+lkO1yW1LRmhSWBiSgXH2QpF2bYEruXC2Ag8iC1xdWkf2Fv5dBv6888/X3PhwoVVXS6XqlChgvPTTz/Ns72rpDmcLvOJpIy68an2GpqMgGaEAOBO4GZs1ieBF2W4Sf/kLdd8ttRMR/DxxIwGaVmOEr8RFufpAPyCzboImIYtsczPC+HTJXRvcDols9rJpIz6Ba1i82Y+XELPbQNwK7bErSWx87JCrvsLc7o007GE9HrxaVk181/bu/lwCd2TA3gXeARbYoEG8/JHPtspzmiZdmfgvriU5scS0kP9IZmDX0123RHYiM36BDZroNHBCP+SmJZVac/J5Ah/SOZ+xALcDfyDzdojv5X9lST0IjiVnFl9b1xKRGqWo9BjtYtSEwDMRE/snYwORvg+h8tlOngmtdHBs2nN7U6X3Ch6p0bo1fDRZfFmXhJ6IWQ5XJZ9p1KaHU9Mb+QDMx8JXWvgD2zWF7BZfa7DkvAOien2intPpkQkptur57+2MJgJmA78ic1aqCF5fZ0kpQJKSMuqtDcuOSLVR3uwl3Fm4GFgEzZrK6ODEb5D0zSOJaTXPXgmtYWUyn1OO/QauvvKyrwQRW/7tVlLbD50bIleMzeypmmcSMyocyols27+awsvF4Z+1z4eW+KifNcW5yup696LrvlsdqfLfOhMWhNpWvNp5dCnbo3EZp3g74+1+nQJPXvmpbCwsPC//vorOPf7F1544ZIGQnY4XeYDp1ObeSbzuBPHuXPccK7t1YkRA65k6iR9WsLCyszI4P6J4xjSsyMjB3bnjrFDOXTg/LFR/lzzK+0bVeOzD9654L6SEhL43z23M6RnR4b268qs52w5n/2zaQMjB3ZnSM+O3Db6Wk4ez/vveeFXn3F5t37l2w8cw99bd+Ysn/niO3yx8IdCn58XqwgsdHeYKxN37WXB7t27A3Nf7/Xq1Wuzdu3aIo0qlpLhKL83LiW8sMl8787t3DJ8MNf17sywfl2Z+eDdZLhHXQRo26AKw/t3Y9SgHowa1IO//1yb537S0lJ5bOpdDO/fjet6d2bWczayn0g6evgQE0dew5XhDRk16OL9v56Mup/h/btx2+hrSU5KBPRCypTxIzgca+gTf6VtAHqHuZ5GB1KSfDqhz549u8b06dOP79q1a0fnzp3TPd/HxcVZPvrooyIn9LQsR/DeuJRWuQeJMZvNTLrvIRavXs83K9ZQv2Gji06AcjHDx93M4tXr+frH3+k98GqemHbvOZ8nJyXy2nNP0L3vgAvsQTfzobsJi7iMJb9uYOGqP7hx4mRAH/51xj2TeNj2HEt+3UCPPgN48YkZee5j9usv8uuKxamvPfkQz77+EQDbd+/jn517GTv06iKdnxdT6B3mvsNmldKXH9i7d2/QpVzvnuKSMmocOJ3a0uF0BTocjkJtG1iuHP97+gUW/fIXX//4O+lpaXz8zmvnrPPxgh9yhne+vEve8w19+MYruFxOvlmxhm9WrGHPjm2siNErlSpUqMhdDz/Cc2+8f9FY9u7awaED+1mwci0du3Zn6bfzAPj2y0/p1K0HDUIbX3R7P1QNWIHNOs7oQEqKzyb0CRMmNNiwYUOFJ598sl779u3Dcr+/5557GsbGxpYLCwsL79u3bzPQ79jvvffeuu3btw+rXbv2ZS+88EKN1157rVq7du3C6tWr12b27NlVAM6mZlUZOXpMqxGDegWNGHAld988itNxJwGoVqMml3fumhNHm/YdOXbkUKHjDypXjh59B+ZMCHFZ+07n7ee5x6Yx6d4HqVy5al67AODQgf3s+GcT4yfdlbMse07lHf9sxmyx0Lmbfhc/4sYJrF65jMyM8x8pNpvMZGRkqtS0DAIDA3C5XDxge5nXnnyo0OfmQ65Fr4K/8Li2wqssWLCgUnh4eKsWLVqEd+rUqeXGjRvLAeR1vQPMnz+/Svb1PW3atDrZyw8dOmQZPHhwkzZt2rRq0aJF+L333ltX0zQOnU1r1D6iRcNXnp2pxl7Tj8cemFyo+Bo1bkqLVvoUA2azmdZt23PscOG/H3bv3MaVvfqhlCIgIIArevRh6QI9IVurVOHyzl0JvsC0yNkCAgKwZ2XicrlIT0slICCQUydP8MOiBYy//a6LbuvHAoHPsFmLVgrzcj6b0OfMmXO4devWadHR0Yc3bdq0K/f7N95441BoaGjGrl27dvz000//Zm+Xmppq3rRp066VK1funjlzZoOjR48Gbt68edcXX3yxb/r06Q1PJmXUPBKf1uRh23Pqy+9/5psVa2jfuSvvvBp9XgxOp5Ov5rxP74GDL/l8Pv/o3XP2syJmESaTKd9979+7i1p16vH0jKncMLg3d4wdxs5t/wBw4ti58ySXr1CR8hUqcurkifP2c/8jTzBkxI0h0W99zMwHbuftT+YT2a87jer7fdeBMOAvbNZrjA5EXNzRo0ctEydObDJnzpzYPXv27Lj11ltPjRo1qqnL5eJC13tCQoJ58+bNuzZs2LDznXfeqXXgwIEAgLFjxza+66674rZu3bpz+/btOzZt2lT+9dlzwhLSsqoDJMbH8/mSlfmWgi8mLS2Vb7+ae941PGnMdYwc2J0Xn3iEtLTUPLcNb9OOH2MWkZWZSVpqCj8vjyl0wSG0aXM6de3BDVf34uihg0QOG8WLT8xg6iNPYrH4xdAZl+IJbNY52KwBRgdSnHw2oRfV2LFjz4I++UJgYKBrzJgx8QA9evRIS0pKsuw9fLIBwA/ffcOYwX0Y1q8rC7+cy+7t287Zj6ZpPPPIg1S0VmbcxDsvKaYP3niZw7EHuDdKv2k8HXeS919/iWm2828icnM4nWzbvJGrrh3OV9//wvjbJ3PPhBuwF3KGs/5XD+GPn79PXb3gA8oHB7No+WruvmU0M557g9F3TueR6DeLdG4+ohKwCJv10v4jRYlavXp1+RYtWqR37tw5HWDy5Mln4+LiArKTdF7Gjx9/FqBOnTqO+vXrZ+3ZsycoKSnJtG7dukoPPvhgw7CwsPA2bdpEHDx8pOLef/flFHmvHTnmnOlUC8uelcW0KbfStWcf+l39373isnX/8NX3v/DJd8uJP3v6gs11t065nzr16nPjtf25++bRtG7XAXMRkvDd0x5l/vLfeOndOaz79Rdq161H3QYNeWzqXUyddBPLFn9b5HP0AzcDy7FZKxsdSHEpc7dpwcHBOfOZm81mLSQkxKVpGofj0xsppXA6Hfz91x988dF7fLroR6pVr8EvP37P2y8/d85+omdO5+Sxo8z64HNMprzvi266fiAZ6ekEBAbx+ZKVea7zybtvsOqHpbz35XcEB+uzM+7YuplTcScZfZVeVR5/9iy/rPiB+DOnuWf6Y+dsX6dufWrWrpNTrd69zwAc9iyOHzlM7br6PMnZUlOSSUlOypk3+ULue/xFXnl8Kr+s3cCxk6eZ9+7z3HzfTH5es54+V/rtGC0m4B1s1orYEl80OhhRPHJf73a7PWe467///nunKSAoIPZ0aossp+uc7B1SPu+RUPft2cX/7rkdgHYdu+Q5xbHdbufhKbdSo2Ztpj9x7k15do1ZSEh5Rt80kSen35/nccoFB5+z7YdvvUrTFmH5nu+FpCQn8cl7b/DO5wv48M1X6XjFlUQOG8XIQT24JbIbFfyqnFoofYC12KyR2BJ9vpeg3yb0ypUrO5OTky86/zmAy6WpA6dTm6ZkOipnL0tKTKB8hQpUrlIVe1YW33w+55xtomdO53DsfmZ98DkBgRd+NPXT73686LE/nf0WPyxewOwvvqOS9b++dz37DeLnTf/NM/DYA1NoGdGGG287vz0v/LJ2lK9QkT07t9GiVWu2btqIpmnUrluP+o1Ccdjt/LX2Nzp368E3n82hV/+rCCp3ofFVNOYtWk6rZo1p06o5i39cTXYhxeD5kEvTC9isVmyJjxodiDhX7969U6dMmRK8fv36cp06dcqYPXt2lVq1atkbN25sP378eEBBrncAq9Xq6ty5c9KMRx9tcPtDj1dxujRL3InjaJqLWnXqXXTbpi3CcqYtzYvD4WD6XROxVq7CzOdnnVPKT0pIICAokODgEFwuF8uXLCSs9WV57iclOQmzxUJwcAhHDh3k67kfMevDLwpyenl67bknuOP+aQQHh5CeloZSSp9m2W4nK8uuj6tYdrUC1mGzDsKWuNnoYC7FJTyH7n3PjXrq0qVLWosWLdKbN28e0aBBg0zPdjUP6kSKI7RaRcc5t+NX9u5PzLdfc12vTlirVOWK7r2IO3EcgE3r1/Hlx7Np3KwFN17bH4C6DRox64PPChXfyeNHefmpR6nfMJTbRg8BuGhJ3tP8uR9x6uQJ7npoBkopnn71HZ6Ydj+ZGekEBgbx8nufEhgUBMCzr7/HU1EPkJmZSc1atXnmtXcvuN+z8Qm89cl8fvzibQCu6t2ND75YyGX9R9G4QT2u6pN3j1w/9Ag2azC2xAeNDsTrGHjd161b1/HBBx/sv/nmmxs7HA5ltVqd8+bN22cymQp6veeY+8VXx+6b+lDL6/pcoZRSBIeU57HoV/JN6PlZvuRbVv2whBatIhh9lf6EVHZJ/sC+PTwV9YCeSJ1OWrW+jOkezWp33TSSKQ/OIKJte44cOsjDk2/BYrFgNpt56PFnCYtoA0B6ehrX9uyEPSuT5OQkBnSK4Jrho7gv6vE8Y9q0fh0ZGRl07dkHgBtuvo3pd9/Gx++8xjXDRmO1VgLH2Us6bz9QE1iJzdrHlyd1KrOzrbk0TR04ldpMBo34T9Og+OTy9gR/mG2tuLyELfFho4Mwij9e9wDpdmfQgVMpLR0urWyXS938ZLa14hIH9MaWuDPfNb1QmesUB3qHtoNnUmUEKJGfh7BZ8++ZKHxGht0ZeOBUqiRzcSE1gZ+wWVsYHUhRlLmE7n7WNDQ54782cyEuYjo265NGByEuXabDGXjgdGpLh8slyVxcTG30AWjqGx1IYZW5hH4kPr1hYrq9mtFxCJ/yGDbrzUYHYQAXoGma5vND5NqdLsv+UzLBSnHLabEtQNOtj2mI/kjbhUf18kJ+28s9L8cS0uvGp2UVy/CQosyZjc26H1vihbs4+59jLpcrMS4urlbNmjXPKqV88lvbpWkciU9vnOVwBRkdizfKVA6TxVn4/1pNg1OpTlRmEgEZhZ/PwgeEAzHYrP2wJfrEIz5lJqGfTsmsdjols07+awqRp0D0SV26YEvcZ3QwpaFDhw4pGzduvDMhIeHdpKQkK/oY+D4nKdNVPcOhhRgdh7dymtPMwa68R6zLj8pMov7mlzE7/abPZG5XAPOxWa/FlujKd22DFTmht/mkTYlNn7r15q3F+mhMcoa9/PGEjEbFuU9RJlUDlmCzdsWWmGh0MKWhQ4cO6zZu3Njd5XLVxQeb6J769ewdp9Kc9xsdhzd7POjLf3qysfAjRmkaARmn/TmZZ4tEn8zJZnAc+fLLEvru3bsDFy1aZJ02bdqpTIcz4NDZtGZXdW2jXv3g85xnOUvL6pXLeOXpmbicTpqFhfPUK29RoeL5netdLhfPPx7F7z+tQCnFuNvuZMyESQD8umo5b7/8HP/u3smo8bcyzfbceduDPnDFA5PGk3D2DJd37sojz74MwNkzp3n4zgm8+8VCAgKkP9AlaoV+xx6JLbFwU3H5qA4dOqQAe/Jd0cuERsUMB+4zOg5v58g4llbO7BePnJWkx7BZ/8CWuNzoQC7G5+64CyJ7KkWXpqmDZ9KaOV1asdy4FHYqxbTUFGwP38usDz5jyW8bqVGrNrNfy3tU0Zhv57N/724W/7qBz5es4pN33+Df3fqjkA0bN+WJl95gwh33XPR4Md/Np1O3HixYuZYD+/ayd9cOAF568hHu+9/jksyLz0DgtXzXEoYJjYppD3yKjzYTCK9jAj7HZm2Q75oG8umEnt9UiuERrdtOunFUTtvZqh+WMP66gVzdrS2zX/tvDObTcSd5ePItjL2mH8P7d+PNF57O+ezqrpfx6rOPU5SpFH//eSVhEZfRuJn+SOPomybyw6K8J0NYvuRbho25CbPZjLVKFQYNGcqyRQsACG3SjJbhbfKdnMFiCSAjPQ2Xy4U9K5OAwEDW/LySStbKXHa5347BbpQp2Kxldg5KbxYaFVMBmA9Iu7koTtWAr7FZvfZJCZ9N6PlOpdi4iX3+j2vMr3/8Zc42yUmJzF30I18s/YlP3nudk8ePAfDoA1MYfdNtfLF0FfOW/cr2fzbz49LvcrYr6lSKx48eoU79/x5lrNugIafjTuRZ0j9+9Ah16/9381e3fkOOHztSqONFDhvF4dgDjL6qJ12696Zm7Tq8/8bL3DNNhiUvIS9js0YYHYQ4z1tAs3zXEqLwugAvGx3EhfhsG3peUylOmzat4YEDBwKcLiyYzOfdRQ2+fgQAVapWo17DUI4ePkhFq5W/1qzm7Om4nPXSUlOJ3fffUNCXOpViaQkJKc/L732S8/5F2wxumXIfh2IP8OGbrwBw+70P0jK8dPsR+LEgYK6753vh5qsVJSI0KmYscJPRcQi/djc26+/YEucZHUhuPpvQLybRTp6PpwUG/TfLmNlkxul05gyIMHfRigvOQlbUqRTr1KvPut9+yXl/7PAhqtesjSWPqvM69epz7Mhh2nborK975BB16hZ9oKKtmzZy9swpevW/ignDruaZ195D0zRmTp3CR9/E5LmN99+yeKX2wOOAVIMYLDQqpjHwjtFxiDLhA2zWLdgSdxkdiCefrXLv3bt36p49e4LXr19fDiB7KsXgqnWqBoVUDE5OTirQfkLKV6BTtx589PasnGVxJ45z8vjRfLfNnkpx/vLf8pwX+cre/di5bQsH/tU7CM/79EOuunZYnvsaEHk93375KU6nk8T4eJYvWcigIUMLdA652e12Zj1n46GZzwD67ExK6VOgpqUV7XlTcVFR2KxXGB1EWRYaFWMBvgRkfgZRGioAX2KzFmjK3tJS5BJ6cT8rXlh5TaX46edfHT2Tam/SvFUETVuEMaxfV+o3DMWzHT0vz74+m5eefIRh/bpSnFMplq9QEdsLr3H/bTfidDho1rIVT736ds7nowb14M1P5lOzdh2uGT6a7Vv+ZkjPDigU42+/i+at9ObZP39fzaMPTCE1JRlN01gRs5hHnnmR3gMH53ncT959nSHDb6BajZoATHnwf9x182gApj7yxCWdk8iTGfgUm7Wdr4wo5YceQW/fFKK0tEN/LPIVg+PI4TfTp7o0Te09mdwq0+EKNjoWX9UsKD45RKZPvRRvY0uUnu+lLDQqpiXwD/pofqKQ3g6YtXqw+a9eRsfho1KAVtgSC9eDuYT4bJV7bicTM2pLMhcGm4zNOtDoIMqgt5FkLoxRAXjd6CCy+UVCz7Q7A0+nZtU2Og5R5in0zjJyY1lKQqNibgT6Gh2HKNOGYrMOMToIKHhCd4E+l7g3OpaY3kDTNL+4OSkL/HjKRYAGwINGB1EWhEbFVMaLnwkWZcob2KyGD2RU0CSYoGmaIysry+uqtRLT7ZWSMxyVjY5DFFyWC3A5MNuTjQ6lpEzHZq1ldBBlQDRQ0+gghAAaoT++aqiC9nI/7XK5Vp88eTIyICDAbjKZvKJo5dI0jp5Nb6g5vX5WO5+QaXKaTI6S/a91aXAqMYOQuL+xZBXs0UIfVAF4ArjT6ED8VWhUTDvgdqPjEMLDVGzWudgStxkVQIESeocOHVwbN26cmZ6e3mbfvn018JIxSNLsrkopWVqQ0XH4C82cYg5ypZf0UTCln6Xh7jkovOK+sKTchs36GrbEnUYH4qeexk/6AAm/YUHvIGdYn44CP4feoUOHo+55kRsWZruSsuNUVoX3/k5c5Z/NsMZ4MXj2P2GuPZ1L9CAuJ4HpcZg0v5951Ay8CFxjdCD+JjQqpiv6HNVCeJs+2Kw9sCX+ZsTBC5WYO3TokAX8m++KpWB4VMxMZFSo4pV1ML2c8qvnwo0Wic3aF1viT0YH4meeNToAIS7iUWCQEQf2ySqr0KiYSsD9RschRAG8hM3qFU1U/iA0KqY/0NvoOIS4iIHYrIbMV+2TCR24F6hidBBCFEB7YJTRQfiRZ4wOQIgCMGSyJp9L6KFRMRWBB4yOQ4hCkL/XYhAaFTMYKNk+HkIUjyHYrJeV9kF9LqED9wBVjQ7CHyn8u9u5gbpgs8rEIZfuIaMDEKKAFAaU0n0qoYdGxQQDU42OQ4giuN/oAHyZ+7nzPkbHIUQhDMdmDSvNA/pUQgfGAtWMDkKIIhiBzXpp8/GWbdJsIXyNCZhR2gf0JTI1pfBVFuTvt0hCo2JqAKONjkOIIhhTmsNA+0xCD42K6YbeY1gIXzVJZmIrkomAjAgpfJEFuKm0DuYzCR2YZHQAQlyiasA4o4PwJaFRMSZkTHzh224trQP5REIPjYqxAiONjsPfKTQZAKXk3Wd0AD6mB/pMVkL4qjBs1m6lcSCfSOjoneEMn2tWiGLQ2ojnU33YGKMDEKIY3FIaB/GVhC7VlMKfjDA6AF8QGhVjQX5Xwj+MwGYNLOmDeH1CD42KqQ10NToOIYrRcKMD8BEDkMdUhX+oDFxV0gfx+oQODMU34vR5SsaJKy3hpT3ghI+S6nbhT24o6QP4QqKU0kwpkR5xpUr+ri/CPSrk9UbHIUQxuhabtUT7gnl1Qg+NiqkG9DI6DiFKgLQNX9wAoKLRQQhRjMqj/12XGK9O6MC16A/mC+Fv2mGzNjE6CC820OgAhCgBJTofgbcn9GFGByBECZJq9wvrb3QAQpSA3iW5c69N6KFRMWakur1USRt6qbve6AC8UWhUTH2gpdFxCFECLsNmLbEnN7w2oaOP2y5taKVKRoorZZ2wWcsZHYQXKtF2RiEMpCjBgqo3J3QpnQt/FwBcbnQQXkiq24U/K7F2dG9O6D2NDkCIUiCDJnkIjYpRQD+j4xCiBPUuqR17ZUJ3X9TdjY5DiFIgCf1cTYBSmz9aCANEYLPWKIkde2VCB1oDVY0OoqxRIGPFlT5J6Odqb3QAQpQwRQmV0r01oUvp3ABKOroboS42a0Ojg/AiktBFWVAiTcremtBleklRlkgp/T+S0EVZ0KokduqtCT3c6ACEKEWS0P8jCV2UBS1KYqfemtAjjA5AiFLU2egAvIF7quTaRschRCmoj80aXNw79bqEHhoVUxOZA9kQ0oBumKZGB+Al2hkdgBClRAHNi3unXpfQkdK5gaSTu0FqlsTdug+SGxtRlpSJhC7t56Iskp7u0MDoAIQoRcXeju6NCb1Eev8J4eUaGR2AF5CbGlGWlImELnfpoiwKNToALyAJXZQlZSKh1zM6gLJKOsUZSkroktBF2VIm2tDrGh1AWSUjxRmqTCf00KgYM3Lti7KlBjarpTh36FUJ3T0pS02j4xDCAGU6oaM/f242OgghSln54tyZVyV0oApyUYuyqawn9EpGByCEASoU5868LaFXNzoAIQxS2egADFasJRUhfIRfl9BlylQDKWlCN1KI0QEYTBK6KIv8OqGXMzqAskzJSHFGMmOzBhkdhIGKtepRCB/h11XuxdrjTwgfU5ZLqWX53EXZVax/996WQAOMDkCIC9E0HECmBnYNZddQdhfK4cJkd2FyOPWX04HZ6cTktGNx2jWLy45Zs2NxZRGgZRLgytQCyCKATPcrXQskg0D1r1YvKNrokzSOJHRRFvl1Qve2eEQp0DQ0wA5k6okSu5aTKJXDicnuxOR0YnY6MDsdmJx2zeK0Y9HsWFx2LFoWFlemFqBleiTKTD1RkkGgyiDAlKkFqgwCTekEqgwt0JxJoDmDAP2nFmjOICAgiwBLJgEBWVqAxf0+0I4lMAtLACgLJfs3GlCGE7o0t4myqFir3L0tgXpbPGXKJldzV3WVtN6umZ16idLyX8kyj2SZridLUyYBKkMLNOmJM9CkJ8dAcyYB5gw9WVoysxMlAZZMzRKQSWCAO1EGOrBYgED3qywry49sZhkdQFn1sP2Oy2c5hh+oQnJ6FZWcUV0lZVUlyVFNJTurqiStCinKqlLNFUgzl1cZgcFklQvEHmzBGWJCq6iU1K5cgmLtDOttCdTb4ilTHndM6PW4Y4LRYZRlZTmhZxgdQFmVSnDFPVqDikCRZlA24XJWJC25skpJqUJKalWVlFlVJWdUI8leTSU5q6pkVxWSqaxSTJVIs5RX6ZYQMoOC3DcFZpwVFFRUqkz+/duLc2felkDL4n+oENnKcik10+gARNG4MJkTqVA5UatQ+SAU6aYAIIT0VKt+Y5BaVSVnVCE5o5pKzKqukhxVSXJVUSlaFZJVJZVmrki6JURlBJYjq1wgjhAzzvLu2gJfa7pJK86deVtCL9aTE8LHpBgdgIGkhF7GpRFcPo3g8se1akW+KQjAkVWR1OTKKjWlKslpVVVyZlWVlOmuLXBVUcmuqiRjVanmiqRZyquMgOBzagtcFdBrC0prUI7U4tyZtyX0RKMDEMJAyUYHYCApoYtLZscSeBZrtbOatdp+KNKNgcLlqkB6slWlpVQhObWKSs6oSnJmNZWUVV0lOqqSrFVRyVpllaIqkWap4G5CKEdWuQAcIWZc5RVaJaUK9NSWX5fQk4wOQAiDZMZGRxZre5qPkRK68AoaJlMy5Ssla+UrHaFGkWsLypGZUSmnb0FyelWVnFlNry1wVFVJrqoq2ZWklU8YV4yxe1tClxK6KKvKcukcynZzg/BDGQSVyyCoXJxWpQZwoRuDlOJM6N42UpwkdFFWlfWEdtzoAIQwQHxx7szbErpUuYuyqqyX0OMAh9FBCFHKzhbnzrwqobvbEKWnuyiLThkdgJFioyNdwEmj4xCiFJ2NjY4s1kdVvSqhux0xOgAhDBBrdABe4JjRAQhRivYX9w69MaEX+0kK4QNijQ7AC0hCF2WJJHQh/FSs0QF4AUnooiw5UNw7lIQuhHeINToALxBrdABClCIpoQvhp2KNDsAL7DQ6ACFKUZlI6MVeDSGEl7MDR40OwgvsMDoAIUpRmUjo+4wOQIhStsf92FZZdwB5bFWUDcmUQK2c1yX02OjIZOCg0XEIUYo2Gh2AN3Df1Gw1Og4hSsHfJXET73UJ3e1vowMQohRJQv/PZqMDEKIUrC+JnUpCF8J4ktD/s8noAIQoBWUqoW8wOgAhSokTSWKe/jA6ACFKQYnkOG9N6H9S5FlohfApu2KjI6Uj2H+2AmeMDkKIEnQmNjqyRB7P9sqEHhsdGQ/sNjoOIUqBVLd7iI2O1IDVRschRAkqkep28NKE7iZVb6IsWGN0AF7oZ6MDEKIErSipHXtzQi+xkxbCi6w0OgAv9IvRAQhRgpaV1I69OaEvB2SwDeHPDpRUW5qP204Znx9e+K1DsdGRJTYiotcm9NjoyLPoneOE8FdSC5UHdzu6VLsLf1RipXPw4oTu9r3RAQhRgmKMDsCLLTI6ACFKwA8luXNvT+glevJCGCgTWGV0EF5sMZBhdBBCFCM7JXzNe3tC/xs4aXQQQpSAX2KjI1ONDsJbxUZHplDC1ZNClLKf3XOVlBivTujutjSplhT+aL7RAfiAr40OQIhi9FlJH8CrE7rb50YHIEQxywC+MToIH7AEqXYX/iEV+LakD+ILCf1n4JDRQQhRjJbERkcmGR2Et3NXTy43Og4hisHC0mhi8/qE7q52L/GqCiFKkfw9F5zU0Al/MLc0DuL1Cd3tU6MDEKKYnEae3iiM74DjRgchxCU4Tik90eITCT02OnI3MsiM8A/zY6Mj7UYH4Svcv6sPjI5DiEvweWx0pLM0DuQTCd1NSunCH3xidAA+6D3AYXQQQhSBE3i7tA7mSwn9CyDF6CCEuAR/xEZH/mV0EL4mNjryKHqPdyF8zcLY6MgDpXUwn0nosdGRCUjVm/BtrxgdgA97y+gAhCiCUr3mfSahu81Cqt6EbzoALDQ6CF8VGx25CthpdBxCFMIfsdGRf5TmAX0qocdGRx5ERo8Svun10uoY48eeMToAIQqh1GvkfCqhu71kdABCFFIi8KHRQfiBL4FdRgchRAEYUiPncwk9Njryb+Ano+MQohDeL+lJGcqC2OhIF/CU0XEIUQDPGFEj53MJ3e0FowMQooBSkVql4vQV0pYuvNsOYI4RB/bJhB4bHbkc+M3oOIQogFdioyNlCuBi4i6lP2l0HEJcxAyj+sv4ZEJ3izI6ACHycRp40egg/NB8YLvRQQiRh7Wx0ZGLjDq4zyb02OjItcBio+MQ4iKelrbz4ucupT9gdBxC5GG6kQf32YTuNg15Ll14pwPAO0YH4a9ioyNXAAuMjkMID0tioyN/NzIAn07o7klb3jU6DiHyMDM2OjLL6CD83FQgzegghAAygAeNDsKnE7qbDYg3OgghPPyFzONd4mKjIw8BzxodhxDozWt7jQ7C5xN6bHTkGfSqdyG8gRO4MzY6UjM6kDLiJeBfo4MQZdpWvORRap9P6ACx0ZEfIIPNCO/wemx05CajgygrYqMjM4F7jI5DlFku4PbY6Ei70YGAnyR0t9uR9jRhrIPATKODKGtioyOXAe8bHYcok96OjY780+ggsvlNQo+NjtwPPGZ0HKJMuz02OjLF6CDKqAeQqndRuo4AM4wOwpPfJHS3WYDX3C2JMuUj96NUwgCx0ZGpwHj0PgxClDQXcLO3jTPhVwndPeDEREAeFxKl6QD6I1TCQLHRkeuQKVZF6Xg+NjrS6/pt+VVCB4iNjtyOfLmK0pMFjIqNjkw0OhAB6LOx/WV0EMKvrcNL+8r4XUIHiI2OfAuYZ3QcokyYFhsducHoIIQuNjrSAYwDEgwORfins8Bo99+Z1/HLhO52O7DH6CCEX1sYGx35mtFBiHPFRkf+C4xBb+cUorhowHj3gEZeyW8Turuzwggg3ehYhF+KBW41OgiRN/ejbIZOlCH8zlOx0ZHfGx3ExfhtQgeIjY7cCtxtdBzC79jRq90SjA5EXFhsdORLwGdGxyH8wpfow4x7Nb9O6ACx0ZEfAbONjkP4ldtioyOl45VvuB1Yb3QQwqf9DtziC8M5+31Cd7sL+MHoIIRfsMVGR35qdBCiYGKjIzOAocAxo2MRPmkvcL17iGGvpzTN6286ikVoVEx5YDXQwehYhM+aExsdeYvRQYjCC42KaYN+/VcxOhbhM04DXd2dLH1CWSmhZ48kFYk+CIgQhbUKmGR0EKJo3P1prkHmexAFk45eMveZZA5lKKEDxEZHngSuAs4YHYvwKduA4d4yo5IomtjoyLXAMGQkSXFx6cC1sdGRa4wOpLDKVEIHiI2O3ANcizzOJgpmH3C1jATnH2KjI5cDI9GfVBAit+xkvtLoQIqizCV0yLlTvwZJ6uLi/gV6x0ZHHjE6EFF8YqMjF6OPJueVo30Jw/h0Mocy1CkuL6FRMX2BpUCw0bEIr7MH6BsbHXnU6EBEyQiNiokEvkauf+EHyRzKaAk9m3u2nEhA5rAWnnYDfSSZ+7fY6MgYYAAQb3QswlAp+EEyhzJeQs8WGhXTFfgeqGxwKMJ4u9BL5seNDkSUjtComNbAcqCu0bGIUncMuCY2OnKT0YEUhzJdQs8WGx35B9AXiDM6FmGojeht5pLMy5DY6MhtQDdkMqey5h+gi78kc5CEnsP9n9oZ/RElUfYsBXq5H20UZUxsdORBoDvgc48qiSJZBnT3tw6vktA9uC/qbkCM0bGIUvU2+iASqUYHIowTGx15CugDvGV0LKJEzQaGuGfk9CvShp6H0KgYE/AS8IDRsYgS5QDuj42OlC9wcY7QqJibgHeRHvD+JBN4IDY68h2jAykpktAvIjQqZhLwJhBgdCyi2MWjT4G6wuhAhHcKjYppD3wLhBocirh0e4FRsdGRm40OpCRJlftFxEZHzgb6A37VziJYC7STZC4uxt2vpgMyU6Ov+wK43N+TOUgJvUBCo2KqAh+gT8MofJcLiAYej42OlFHCRIGFRsXcgd4MV8HoWESBpQP3xUZHvm90IKVFEnohuC/qV5F2NV90HBgfGx25yuhAhG8KjYppDMwBehocisjfOuC22OjI7UYHUpqkyr0QYqMj3wM6oj+/KHzHMqCtJHNxKWKjIw8AvdE7y8o8EN4pGbgHuLKsJXOQEnqRhEbFBAFPoV/YFoPDERd2FngY+Dg2OlL+0EWxCY2KaYn++JOU1r3HUmBKbHTkYaMDMYok9EsQGhXTBngHuNLoWMR55gIPup8tFqJEhEbFjAReBBoZHUsZdhK9rXye0YEYTRL6JQqNilHArcDzQDWDwxH64ymTpXpdlJbQqJhywENAFFDe4HDKklTgFeBFfxwkpigkoReT0KiY6sALwARAGRtNmZSBXlJ6JjY6MtPoYETZExoVUw/9KYpxyHdASXIA7wNPyFDN55KEXsxCo2K6oF/UvQ0OpaxwAB8BT8p0p8IbhEbFXAY8AoxAOh4Xt2+AGbHRkXuNDsQbSUIvIaFRMVcBzwLtjY7FT2nAPGCmXNzCG7k7zs0AxiKdZy+FAz2RvxQbHbnR6GC8mST0EuRuX78OsAFtjY3Gr3wPPFIWRn4Svs/9/HoUenNcoLHR+JRk9Kr112KjIw8ZHYwvkIReCjwS+/1AL2Oj8VlOYAH6Xfp6o4MRorBCo2JqAjcDtwPNDQ7Hmx0BXgPej42OTDQ6GF8iCb2UudvX7gZuREacK4gE4GPg9djoyFhjQxHi0rlv8HsDk4BhSKkdwA4sQR+J7wcZmrloJKEbxD0+/ERgCjKbU162oM9T/llsdGSa0cEIURLcT8eMB0YBXSh7veP/QJ885avY6MjTRgfj6yShG8w993p/4Ab0yV8qGxqQsWKBr4AvYqMjtxocixClKjQqpg5609xQoA/+OW2zHfgdfQa7b9zD6YpiIgndi4RGxQQCg4DRwLVARWMjKhVxwNfod+l/yBCtQkBoVIwViASuQa+er2NoQJfmIPp8Cj8Aq2KjI1MMjsdvSUL3Uu7Rpwa7X/3wn2p5DdgErAB+BFbHRkc6jQ1JCO/mfgSuF9DN/fLWTnUOYDuw3v36LTY6cqexIZUdktB9RGhUTBOgL3py7wvUNDaiQjmInsBXot+hS1uZEJfA3fbeHmjl8QoHapRiGKeB/cBuYIP7tSk2OlJmojOIJHQf5O4lGwF0Bi53vy7DO8aRPoJeAs95xUZHHjQ2JCHKhtComGroyb0B+k1/LffP7FcN9KdrzOiD3Xj+NKGPj56YxysevY/LfuAAsF/GT/c+ktD9hDvJhwKt0e/UGwH1gXrunzUovh60Z9ETdyz6xR2LXs22SUrfQghhDEnoZYS7w11d96si+l16MFDO42c59F6oae5XqsfPVPQqtmOx0ZEZpR2/EEKIi5OELoQQQvgBmQlICCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAld5EspFaqU0pRSE4yORYiyRCnVSSm1VimV6r4G2ymlrlJKbVZKZbiXVTY6TuEdLEYHIIQQ4nxKqQDgayADeABIAw4DvwLbgbuATCBVKTUD2KFp2ncGxVoNuBUYArQCAoBdwKuaps0zIqaySBK6EEJ4p6ZAI+B2TdM+AFBKXQVUBB7TNG1l9oruhP4N8J0BcQJ0BZ4BvgeeBhzAcOArpVS4pmmPGxRXmSIJXQghvFNN98+EfJZ5g+1Ac03TDmYvUEq9DawEpiulXtA0LdWw6MoIaUP3ckqp3kqpDe72sn1KqTuUUjallOaxzi1KqZ+UUnFKqUyl1A6l1OQ89tVRKbVcKXVaKZWulDqglPoo1zqVlVJzlFKJSqkEpdQnQOULxBamlPpGKXXWHd8GpdS1uY6nKaVuzmPbQe7PrrmU348Q/kgpNQdY7X77tfta+QX4xL1svXvZHPd3QXngZvcyzb092d8VSqkWSqnP3Nf1KaXUU0rXQCm1SCmVpJQ6oZR6MFccgUqpJ5VSG93bpiqlflNK9fFcT9O0A57J3L1MQ68xCAKaFOsvSORJSuheTCnVHlgGHAceB8zATOBUrlUno98hL0av6hoCvK2UMmma9pZ7XzWBH93bRqPf4YcCwzyOp4BFQHfgXWAnMJT/vkQ8Y4sA1gBH3ftLBUYB3ymlhmuatlDTtA1Kqf3u5bn3MRqIB5YX8tciRFnwHvq1NQN4HVgPnAR2A5PQvwcOAPvQS8EfAH8Bs93b78u1v3no13MUEAk8CpwF7gB+AqYD44CXlFLrNU371b1dJeA24EvgffTq/onAcqVUZ03TNudzHrXdP08X/NRFkWmaJi8vfaEn6FSgrseyZoAd9w2we1lwHtsuA/Z5vL8e0ICOFznede51HvZYZkbvhKMBEzyWrwT+AYI8lin0JL/HY9mzQBZQxWNZIHoy/9Do37G85OWtL6C3+7ob4bFsQl7XMZACzMljHzb3+u95LDOjd65zAdM9lldG73g3J9e6gbn2WRk4kd/1C1RFvwn51ejfZVl5SZW7l1JKmYH+wHeaph3LXq5p2r/AD57rapqW7rGdVSlVHb26rolSyur+KMH98xp379m8DEYv4b/jsW8n8Eau2KoCfYH5QEWlVHX3Mauhl7ibK6XquVefh97jdZjHLgaifylI71chSscH2f9wX9Mb0G/AP/RYnoBeA9DEc11N07IAlFIm97VvcW9/+YUOppQyAZ+jX+f3FON5iIuQhO69agLBwL95fHbOMqXUlUqplUqpVPTEfQq9ZAyQndBXAwvQq+5Pu9vNblFKBXnsqhFwXNO0lFzH253rfTP0L4On3MfyfD3hET+apm1Bf3xltMf2o9Gr4H7K88yFEMXtUK73iUCGpmm5q8ITgSqeC5RSNyul/kF/fO4M+nUeyX/fLXl5A7gKuM39HSBKgbSh+zilVFNgFXrSnIpelZaFXtp+APdNm6bXgY1QSl2B3sY+CPgIeFApdUUeSfxism8EX+LCbeCeNx3zgEfcpfhk4FrgS03THIU4phCi6JwFXAb6zbr+D6VuBOagd257EYhzb/c/9Mfqzt9YqceBKUCUpmlzixyxKDRJ6N4rDv2OuFken3kuG4Lei/RaTdNy7sJz90LNpmnaOmAdeoIdi14tdgN6ldxBoJ9SqkKuBN8y1272u3/aNY9nYS9iHnrNwHD0NrVKwFcF2E4IUTBa/qsUyQj0632Yu1AAgFLqibxWVkrdhd5uP0vTtOdLKCZxAVLl7qXc7VwrgeuVUnWzlyulmgFXe6yafZfteVdtBW7x3J9Sqoq7F7unze6f2dXu36Pf5E322M5MrjYwTdPigF+AO5RSdXLHrpSqkWv9ncBW9Kr20ei99n/NvZ0QoshSucDjpZcor++XLugDyZxDKTUavUf+5+i1haKUSQndu9nQO5CtUUq9g97j9G5gG9DOvc6P6FXsS5RS7wEVgNvRS/ieyfZmYIpSaiH6Iy0V3esloSdygCXovdSjlVKhwA70zmx5tZXdBfwObFVKvY9+F18L/UKvD7TNtf484En0WocPNU1zFeo3IYS4mI1Af6XUVOAYcEDTtD+LYb9L0b8DFiqlYoDGwJ3o3w0VsldSSnUGPkVvY18FjMtVfliradp+RImShO7FNE3bqJS6Gr2t+in09vGZ6GMlh7nX2a2UGoE+3OJL6I+TvIPeccVz0JjVQGf06vVa6J1f/gLGaZp2wL0vl3tgmFnAjejVeIuBB4FNuWLboZTqiF6VPgG9h3uce70n8zidee4YQ5De7UIUt6noz6A/jd6Z9hOgOBL6HPRnye9A73ezA/27YST6Y3XZwtEfR63Bud872W7hv6Y6UUKUR7OI8BFKqe+ACE3TmhsdixBCCO8gbeheTikVnOt9c/Qe7L8YEpAQQgivJCV0L6eUOo5e7bUf/Tnxyeid2NprmrbXwNCEEEJ4EWlD937LgDHo7ViZwB/ADEnmQgghPEkJXQghhPAD0oYuhBBC+AFJ6EIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+IFCDSyzcePGCkBd5EagrHABxzp06JCS75rCb8l1L7yAfBcVQIEHltm4ceMVJpPpXZPJZMVjblzh1zSXy5Xocrnu7NChwzqjgxGlT6574SXku6gACpTQN27cWMFkMv1euXLlWjVr1jyrlJLh5XyEpmnYnVqA3ekKtDu1ALvLFehwagH6f7tm0kBpGkoDVdOcklXOlRaYs6kyu04lZVqSzxxPabn6jjcCMs+eAOKB48B+bIknjDovUfLkuvctTpfL5HBicbhcAQ6XZnG4NIvTpVkcTs3i1LQAp1OzONHMuK93QJXDaa9LvOOMuZJKdAYGKoVmQmlK4TIpnBaTyW4xK7vFpOwWk8lusSh7gEnZLSblzDXfeYnSNE3FxcVVTUhIOOlyubpLST1vBa1yr2symaw1a9Y8W758+fQSjUgUmt3psqRlOYOzHK4gu9MVmOV0BdodriC7Swt0Ol2B534LKy5U0AoyubRgV0b5nAUa1Cynkaa0EKcl5KmAzLPnbmCzpqJPGrMf2AfsATYC/2BLzCq+MxQGkeveS2XYnUFpWc6Q9CxHSLrdFZLpcJZ3ujTz+Wt6XO95NJiYMFFOmTCZA4AAswY4PT7PcqFXdoPnP1BKaRaTygowmzKDA82pIYHm1PKBltRAi8lRHOeXl5o1a55NSkqyulyuuujfNSKXgiZ0E6DkDt072J0uS3KGo2JKpqNiWpajYpbDVa6kjpVzE5733Xh5oI375SkLm/UfYAOwHvgL2I4tUf5+fItc914g0+4MTMlylE/PcpbPsLtCMuzOEJeWV/IuKg3tAhf4BbfQNGV3akF2pysoLctR6Yx7eYDZlFUuwJwaHGhOLe9O8iZT8fz9uP8OFdKX44KKPtuazdqhGOPIte/EjSW2bx/kTuAVUjMdlVJLOIEXk0Cgo/t1p3vZSWzWlcBy4EdsiSeNCk4UXWhUTIlc97HRkXLNu2maRkqmo3xSuqNycqa9cmlc78V1x6Y37bkCkzPsVQAUSgsKMKVXDLIkWEMC4kMCLRnFdCiRB7+809m9e3fgCy+8UMNzWb169dqsXbs2uLRj2bt3b2Dfvn2bhYaGtm7atGnEM888UzP7s0ceeaR206ZNI8LCwsLbtm0b9vPPP4eAfkEnpGVZD59Na7D7RHJ49Gvvtm1Up3rTAT261Li+35XlJo4akrP/919/iVGDeuS8urVqyItPPJJnLE9G3c/w/t24bfS1JCclkn2sKeNHcDj2QIn+HoBawDjgU+A4NutmbNbnsVk7l/SBhSgOYWFh4fHx8SXynel0aaazqVmVD55JDd1xPKntgdOpYWdSM2sXNplv2/w3Nw8dxMiB3Rk1qAd/rvk157ODB/Zxx9ihjBzYnaH9urJs8bc5n3mW0BPiz57znTKkZ0cuD61OYnw8AOOG9M/5bFi/rrRtUIU9O7edF8uRQwcZO6Sfurpn55Dnnnu27r9xKRG7jie1XrVmQ6O+/fq3lJk+i59fzoe+d+/eoI8++qjGtGnTThXnfu12OwEBAQVe3+Vycf311zd98MEHT9x6663xAIcPH7YArF27Nvjjjz+usXPnzu1Wq9X19ttvV7333vtCf/h1XVJiur2a06Wd83/TqWsPZn34+XnHuP3eh7j93ocAyMrMpH/HVkQOHXneent37eDQgf0sWLmWd2e9wNJv5zFmwiS+/fJTOnXrQYPQxuj93UqFAtq6X9OwWfcBXwJfYEvcWVpBCFEQ2df9rl27dhTnfh0ulyk+1V41Kd1eJc3urKhp2iX1MtM0jQduH89Tr7zFFT16E7v/X+4Ycz2LfllPueBgZk6dwnWjxjFszE2cPXOasZF96NapE6H1AvDMrZWrVGX+8t9y3n/y7hts+HMN1ipVAPh8ycqcz1bELOLdV5+nRavW58Uz75MPuOHm2xg8dCRD+17BmFsmoZWvEPTYjOlBjz73CjuPJ19WsZwlwRocEF+xnCW5NDvZ+SufLqEvWLCgUnh4eKsWLVqEd+rUqeXGjRvLAdxzzz0NY2Njy4WFhYX37du3Wfb68+fPr9KuXbuwevXqtZk2bVqd7OWHDh2yDB48uEmbNm1atWjRIvzee++tm/1ZvXr12kyePLlemzZtWg0fPrxxYeJbvHhxxcDAQC07mQM0aNDAAaCUwuFwqITEJMvplMxqx84m161Zv1Hw2dSsWrmTeUH9tDyG2nXrEX5Zu/M+CwgIwJ6VicvlIj0tlYCAQE6dPMEPixYw/va7inK44tQUeBTY4S65P4zNWjO/jUTZs3LlyvIdOnRo2bJly/AWLVqEf/bZZ5UBfv3115D27duHtWjRIrxNmzatfvzxx/IAN9xwQ6OZM2fWyt5+165dgdWrV2+bmZmpFi1aVLFdu3ZhrVq1Cm/WrFnEq6++Wj17veHDh4eOHDkytGPHji1btGgRAaCU6nD69GkzwKRJk+q3bt26VVhYWHjHjh1bbtmyJSh7W6VUh6ioqNpt2rRpVa9evTavvfZatezP/v7773JX9ugR1iKsVbvwiDbtX3vzrUapWY5Kp06eUA9PvoWx1/RjeP9uvPnC04X+3STEnyX+7Gmu6NEbgNAmzahYycrvv+gJePeO7XTvMwCAqtWq06JVa5YuXmhWgHaRRxIXzvuMoaPH5/3ZV3MZekPen1kCLKSnp+Gw29FcLpTJxNdzP6Jrzz7Ub9gIh8sVEJ+WVSP2TGqLHceT2h6NT6+XaXcG5rkzUSA+m9CPHj1qmThxYpM5c+bE7tmzZ8ett956atSoUU1dLhdvvPHGodDQ0Ixdu3bt+Omnn/7N3iYhIcG8efPmXRs2bNj5zjvv1Dpw4EAAwNixYxvfddddcVu3bt25ffv2HZs2bSr/0UcfVcne7uzZs5YtW7bsXLx4caHqpbdt2xZctWpV+zXXXNOkVatW4QMGDGi6Y8eOQIA2l3dSEyZNyQpr2bJNRPMmoZ+8/25Q1JPPX3Bfm9avY9SgHtx0/UB+XPpdnuss/Oozrr/AxRXatDmduvbghqt7cfTQQSKHjeLFJ2Yw9ZEnsVi8qqKmLfACcBibdS42ayejAxLe4eTJk+bRo0c3e+aZZ47u3r17x86dO3cMGDAgOSMjQ40ePbrpo48+emzPnj07XnrppcNjx45tlpiYaJo4ceLpL7/8MidRv/fee9WHDh16JigoSOvWrVvahg0bdu3cuXPHmjVrdr344ot19u3bl1MF988//4SsWLFi74EDB7bnjsVms53Ytm3bzl27du2YNGlS3N13393Q8/OgoCBt69atO5cuXbp3xowZDTMys0xHzybXGDpiZPi1o28u/83KP8zfrFjDgMjrAHj0gSmMvuk2vli6innLfmX7P5sveJ1fSJWq1ahRsxbLlywE9Or32P3/cuzwIQDC27QlZuF8AI4cjGXLxr846v5Mu0A+37zhT5ISE+jZf9B5n504doSN69YSOWxUntuOveUOfloWw/jrB3LTHXeTkpTEiu8Xc+Ntk89b1+nSLGdSM2vvPpncZv+plGYJaVmVpEq+8Lzqm7wwVq9eXb5FixbpnTt3TgeYPHny2WnTpjXMTtJ5GT9+/FmAOnXqOOrXr5+1Z8+eoGrVqjnXrVtX6cEHHwx48MEHAUhLSzPt2rUrp+3q1ltvPWMyFf7ex+FwqHXr1lVavXr1zo4dO2ZEP/9CzZGjb2j57Yrfnfv2Hwhe/sP3LPltIzVr1+HLObOZdtetfPLtsvP207P/IAYOuZ7g4BD2793NneOGUbtuPS67/L9cd+zIITavX8cLb314wXjunvYod097FICfl39P7br1qNugIY9NvYvUlGTGXdvXcsu1vQp9niUkELgRuBGb9U/gDWA+tkS7sWEJo/z8888VGjdunHHVVVelAJjNZmrVquX866+/gk0mE8OHD08CGDRoUEq1atXs69atCxk0aFCKw+Fg9erVIT169EibP39+te+++24vwMmTJy3jxo0LPXDgQDmz2awlJCRYNm3aFNy0aVM7wHXXXRdfpUoVV16xLF68uNK7775bMzU11exyuUhMTDznu3TixIlnAMJbX+YyWyxqzT//XpaYlGjOyszk6utH5KxXpWo10tJS+WvNas6ejstZnpaaSuy+fymsWR9+zqxnn+DDt16laYsw2ne6ArP7hv2pV9/h5aceZdSgHtSp14DOV/bKuZm/UAl94VefMWT46Dxv+hfN/5Ke/QdRpWq1PLaEGrVq8+7nC3LeP3TnBB587GnWr/2N+XM/IjAwkHujZlK3/jn3QqRkOqwpmQ5roMWUUa180Mlq5QPPFFdPeX/nswm9KIKDg3MuTrPZrNnt9pyBdf7++++dISEhef7RVKxY0ZnX8o0bN5YbN25cE4BOnTqlzJ0795Dn540aNcpq1apVWrv2l9uPxqfX6zvsxpoz/hdlSknPZNX3i2keFk7N2nrN/3WjxhH92HTsWVkEBJ5b6+R5wTRp3pLufQewaf2f5yT0RfO/oPfAq3PauS4mJTmJT957g3c+X8CHb75KxyuuJHLYKMYOvCLwhgFdCA72uk70XdyvF7FZXwTewZYovWXFBXm2x44dO/bM+++/Xz0pKSm+SpUqjk6dOmUATJo0qdHAgQMTly1bts9kMhEeHt4qPT095869QoUKeV73e/fuDZw+fXrDtWvX7oyIiMj8888/g/v379/Scx1zYDlL7JnUBsnp9qpms4Ush+PCj5m5v4PmLlpBULmLX3sP3nEzh2P3AzD7q0VUrlL1nM9bhrfhnc++yXl/fZ8uNGsRBkC9Bg15ZfanOZ9NvnEEzXr01ACVV/N9WmoKPy79ji+WrsojZI1FX3/OI8+8fNF4s638fjH1G4USFtGG6/t04fMlK9n+z2befvk5nn71nTy3yXK4yh1PTG8Ul5xRr0pI4KkKFldCgQ5WhvlslXvv3r1T9+zZE7x+/fpyALNnz65Sq1Yte+PGje2VK1d2JicnF+g5TavV6urcuXPSo48+mtOmHhsbG+BZ9XYhHTp0yNi1a9eOXbt27cidzAGuu35oyomTccGrN+2+7ExqZu1fV/1oaty8JQEBAdRrFMqmDX+SlqoPePTryuU0atLsvGQOcPL4sZx/nzkVx/o1vxHW+rKcZS6Xi0XzP79gW1Zurz33BHfcP43g4BDS09JQSqGUwu5wqCy7VxeA6wCvAPuwWe/GZg3KbwPhP/r165dy8ODBoGXLllUAcDqdnDx50nzZZZdluFwuFi5cWAlgxYoV5U+fPh1wxRVXpAHcfvvtZ2JiYqq8++67NcaPH386e3+JiYnm0NDQTJPJxA8//FBh9+7dIQWJIz4+3myxWLSGDRvaXS4Xs2bNyunvYXe6LACxZ9LDk9LtVT1LCKFNm1MuOIQfvvsv4cafPUNI+Qp06taDj96elbM87sRxTh4/et6xX37vE+Yv/435y387L5kDnDr53+CNC774hODgEDpf2RPQvztcLr1Ms+aXVezfu4vrho5wQd4l9GVLFtIiPILGzVqcd5y/1vyK0+Gga88+F/o15UhKTOTzD9/lzvunA5CRnoYymTApE2mpqflu73RpltMpmXViz6S3SLO7Kp1MdRS8Z3IZcwnPoRv7rHjdunUdH3zwwf6bb765scPhUFar1Tlv3rx9JpOJLl26pLVo0SK9efPmEQ0aNMj0bEfPy9dff31gypQpDZo3bx6hlNKCg4Nd77777sHsqrfCcro0U1xyRs2zaar2o9GzzHfdPApN06hQsRIvvPkBAP2uuobtW/5mTGRfAgMDCQ4JIfqN93P2cddNI5ny4Awi2rZn3icf8POKHwiwWHC5XNx422S6uC9SgHW//YIymejSPf/q8k3r15GRkZFzId5w821Mv/s2Pn7nNW4Yfp3dWqmiL3RKqYteBT8Nm/UZ4COpii8dRj4vXqNGDedXX3217+GHH25w7733mkwmEzNnzjw6duzYxHnz5u277777Gk6fPr1+UFCQ9vnnn++zWq0ugNDQUHvbtm1TV61aVfmTTz45mL2/p59++uj999/fMDo6um5ERETaZZddln92ATp37px+7bXXng0LC4uoUqWKY/DgwQkAxxLS655NzaoFeSdIi8XCax9+znOPTeeDN1/BZDIx6qaJjLzxFp59fTYvPfkIw/p1RSlFcEh5Hot+hVp16hXqd7Tgi0+IWfg1aBqNm7Xg1Q/m5tRWrF65jI/emoXJbKZGrdq8+cl8ygUHAymsWP69WvXjj9hefD1nX999NZdhY27O8zgLv5rLdaPGUZCmyFnPPc6dU6Pcx9KfzBkb2ZeAgABsL75R4HPTNM2ckqVVif49YdmU72OmAV/ERkdKVbyHgo7lHmaxWJY1b948JSQkRKo6L0DTNM6mZlU9mZRZ3+Fy+dxdZLPA+JQQR0IFz2UZDo0DR0/ReM2DlEs5bFRo+dkPPIgt8TujA/Enct3nz6Vp6lRyZo3TKZl1ivp0ipFCcGY1NsU592i1A+2aKsbR54qf5sgi7tgRbD/HcTTZCfow0w/FRkf+Ymxk3sNnq9y9TXKGvcLeuJRWRxPSG/tiMvdxTYCF2KwrsFlbGR2MKBvOpGRW3X0iufXJpIwGvpjMPV3ssTUv1gH4OTQqZkloVIxc90hCv2RZDpflwOnUJgdOp7bMsDsL1AYnSkx/YAs263PYrPJ/IUpElsMVsP9USrOjCemN7U6XLzRR5cvH662vAbaGRsXMCo2KKfXRQL2JJPRLkJCWZd0blxyRPW6x8AoBQBSwHZu1v9HBCP9yJiWz6t6TyREpmQ6r0bEUJ03z+WHazMB9wKbQqJgyO5y0JPQicLk0dehsWsNDZ9Oa+XpVmx8LBX7EZn0dm7VM37WLS+dZKncW60xn3sHlm1XueWkJrA2NinkyNCqmzDV9SkIvpNRMR/CeuOTwhLSsGvmvLQymgHuAv7FZOxodjPBNp1Myq/ljqdyPmYHHgHWhUTHhRgdTmiShF5CmaZxIzKi1/1RqKx+YvlScKwz4A5t1Jjar35WuRMnIcrgs+0+lNDuWkB7qj6XyMuByYGNoVMyDoVExZSLXFbm6uKTmRQbvmxs5y+EKOHQ2rXFalqOi0bGIIrMATwD9sFlHYkuMy28DkQebtWSue4PHtcgtJdMRcuhMWjN5YsXnlQNeAoaERsWMi42OPH+0Hj9SJu5a8rN48eKKbdq0adW0adOIZs2aRdx55531nU591Mf41KzKe+OSIwqSzI8cOsgNg3vnzBP80J0TSEpIAPRhFO8cN5xelzWle0SjAsV15vQp+rRvwf0Tx+UsW/XDUkYMuJJRg3owtO8VvPH8U+Q1loDdbuf+ieMYObA7D9w+HofDAUBmRga3DB+cE1cZ1BPYKPOw+6bPPvuscpMmTSLCwsLC//rrr2LrG7F06dKK33zzTSXQO74dOJ0aVphk/s+mDYwc2J0hPTty2+hrzxnd0dO2zX9z0/UD6dK87jnXdbYNf6xhbGRfhvbrytC+V7Bl41/nrVP813aZGCe9F/BXSRZEvYHfJHT7JQxZWq1aNce8efP27du3b/s///yzY/369eXffPPNaofPpjU4HJ/W1OkqWHVbzVq1mbPgB+Yv/41vV/1BjVq1eefVaAAslgBumXIf7335XYHjeirqAXr2O3eWoyt69MoZ+nH+sl/547df+GlZzHnbrl29ikqVq/D1j79TsZKVNe4pFGe/9iI3TLidSpUrFzgOP1Qf+BWb9VajAxGFM3v27BrTp08/vmvXrh3ZEzNdKrvdzk8//VTx+++/tx6JT6t/NCG9cWHmJne5XMy4ZxIP255jya8b6NFnAC8+MSPPdWvUqsXDjz/HQ48/c95ncSeO89jUyTw96x0WrvqDeT+spnGzluetV9zXdlnI5m51gV9Do2KGGx1ISfHphK6U6vDAAw/Ubd26dau77767/l9//RXcoUOHluHh4a2aNm0a4Tnn+dSpU+tGRkY26du3b7OmTZtGXHHFFS1OnjxpBrjyyivTw8PDswBCQkK0iIiI9D0Hj9aOT8sq1JzcgUFBOcMbOp3OnHHSsz/rcmVPKlYqWL+ab7+aS70Gjbi8c9dzlpevUDFnuMXMzAzsWZnnTESRzWIJICM9DdDHTg4ICGTPzm0c2LeXQUOGFua0/FUQ8CE269vYrFKt6gMmTJjQYMOGDRWefPLJeu3btw8DWLBgQaXw8PBWLVq0CO/UqVPLjRs3lgO9xB0WFpbTIWr9+vXl6tWr1wZg9+7dgRUrVmw3efLkeuHh4a2ee+65mp9++mmN7xYtqtG/e5da7856oVBx7fhnM2aLhc7degAw4sYJrF65jMyM8wfXq1WnHm3adyAw8PxpCOZ/+iFXXzeCJs31JB4YFEQl6/nfF8V+bftL//aCCQG+Do2KyfuOy8f5dEIHfda0bdu27XzvvfeONG/ePPP333/fs2PHjp1btmzZsWTJkiqrVq0qn73u5s2by3/xxRcH9u3bt7169eqOWbNmnddTPfbgocDvf1hWvXu/q4vU8c2elcWoQT3o1bYphw7sY/LUqELv48ihg3wz92PucU91mtvmDX8yvH83+rRvQeduPekzaPB563Tt2YfyFSoycmB3KlSqROcre/LSk48y/YnnCh2Pn5sMLMNmlf4RXm7OnDmHW7dunRYdHX1406ZNu44ePWqZOHFikzlz5sTu2bNnx6233npq1KhRTbMnILmYlJQUc0RERMaOHTt2Pvy/RxJHjZ/I4KGj1Pzlv3Hn/dMKFdeJY0eoU69BzvvyFSpSvkLFcyZKKYh9e3eTmZHBpDHXM2pQD557bBppaecPL1/813aZqHL3pIBnQqNiPgmNivGLgYGy+XxCnzx5cs7sSWlpaaYxY8aEtmjRIrxDhw6tjh07Frhx48acEcN69eqVWLt2bSdAly5dUvbv33/ObXLc6TOB11x7XcSEyfepiLbtixRPQGAg85f/xs9/7yG0WXO++XxOobbXNI3HH7qbqKdfyCnt59auYxcWrFzL8j+3sWPrZv7+c+1565hMJh5/4TW+/vF3ZkbP4qs579Nn0GAcDidRd9/G1Ek38eeaX4tyiv6oL/AzNqs8iuhDVq9eXb5Fixbp2VXvkydPPhsXFxdw4MCBfGtcLBaLNnny5DOJ6fZK++JSWmlKGT6ehNPhYONfa3npnTl8vvQnkhITeOfl6PPWk2u72NwErAqNiqludCDFxecTevaMSgBTp06tV61aNcf27dt37N69e0eXLl2SMzIyciqUypUrl3MnajabNYfDkfPZyVNnyg0cdHXr3gMjTTdNuivPY+3bs4tRg3owalAPnn3koYvGFRAYyPWjxrF0wbxCnU9KchJ7d25n+pRbubrrZbzy9GP88evP3H7DdeetW7Vadbr3HcCPMYsuus9jRw7x208rGH3Tbbz10jMMHzeBp155i+iZ0wsVm5/rAKzBZg01OhBx6QICAjTPkrrnPOcA5cqVcyVlOCsfOpPWzJXPI2lJiYk51/39t9143ue169bn+NH/Ji5KTUkmJTmJGrVqFyrm2vXq06PvQCpVrkxAQABXXzecfzatv+g2cm1fsu7oneXO76zgg3w+oXtKSEiw1K9fPysgIIAtW7YErVmzplJBtjtx+kzIVVcPDu/Wp7+adN+FE3XTFmE5HdJmPPPSeZ8fO3KIdHfblsvl4seli2jRKqJQ51CxkpVft+7nhz/+4Yc//mHqo0/RtWcf3v9KT9oH/t2TM6dxakoyv636Md9jvPD4/3j48WcwmUx6uz4KZTKRkUd1XhnXHD2ptzY6EJG/3r17p+7Zsyd4/fr15QBmz55dpVatWvbGjRvbW7ZsmXns2LGgY8eOWQA+/vjjaudsrJQ6Ep/eREPv/Fa+QkWSk5LyPE4lqzXnup/1wWfnfR5+WTscdjt/rf0NgG8+m0Ov/lcRVK5wrXaDrx/B+rW/kZWZCcDvP6+kZauL/ykWz7VdthrR89AYWO0PE7wUuZrJ254VB5g5c+axCRMmNPnyyy+rNWrUKPOKK67I+wr1kJxhL//sC6+22Lblb5WensZPPywBYEDkddx+78VL4bnt2bmdN194GtATeqs2bZn+5PM5n48YcCXxZ8+QkpzMgE4RdOrWnWdfew+AUYN68OYn86lZu06e+862fMlCli9ZiMViwel0MiDyOoaNuemC63+/8GtahLemWUv9b/XWKffz5PT7sNvt3H7fw4U6vzKiLvAbNusAbIkbjA7G63jR8+J169Z1fPDBB/tvvvnmxg6HQ1mtVue8efP2mUwmQkND7VOmTDnRqVOnVtWrV7f3798/MXu7xHRnFaWUSfPo3933qmtY+u08Rg3qQd+rhxSqHd1kMvHs6+/xVNQDZGZmUrNWbZ557d2cz++6aSRTHpxBRNv2xO7by+03XE9GehqZGRkM6BTBbXc/wOibb6Ndxy70Hng1o6/uhclkommLMB597tULHre4rm1NlaWO7hdUC/glNCqmb2x05HajgymqMj0fekJalvVwfHoTTdP8qqaiqHx4PvSScBbojS1xq9GBGMUfr/vTyZnVjiWmhxodh7cIwZnVyHI2a6ejRoX81zZWHvOhl4Q4oF9sdOS2kjpASSqziSwhLct6+Gx6U0nm4gKqAiuwWVsYHYgoHmdSMqtKMhf5qAmsDI2K8cnrvkwms9RMR7Bn+5kQF1ALWCUd5Xzf2dSsKscS0hsbHYfwCbXQk3pDowMprIImdBegFWb0JG+V5XAFHDyT1twlJfMCyWmRKUDTjJ+qj57U6xkdiCiaxHR7paPx6Y3L7F9wvnz+a70kNEBP6rWMDqQwCtop7pjL5UqMi4urVbNmzbNK+eZABC6Xpg7Hpze2O2XChbxkKqfJ5Pzvv1bT4FSqE5WZREDG6Yts6feaAN9js16JLTHF6GBEwaVnOcsdPpsmtXEX4ZNf5qWjOfBjaFTMlbHRkT5x3RcooXfo0CFl48aNdyYkJLyblJRkxUdv6RIzXDUznVqxTejgbzRzqjnIlXbOMpWZRP3NL2N2+kWfqEtxGfAZNuswbIn5D0UmDOdwuswHz6Tm+5y5kJx+EZcBc4ARBsdRIAV+bK1Dhw7rNm7c2N3lctXFB9veZ/5yJiohw3Wz0XF4s5eDPvonjB2dchZoGgEZpyWZ/+c64DmgzI7asTOsVYnMVtVq185ifRxO0zRiz6Q1yXK6zh80XZxDy2MuCHGO4aFRMTNioyOfNTqQ/BTqOfQOHTqkAHtKKJYSExoVMwWQZJ4PLeNwejlzmXo0rSimYbPuwJb4idGBiP/s3r07cNGiRdZp06adAjgSn96gV4fwSq9+8DlhEW1KNZbVK5fxytMzcTmdNAsL56lX3qJCxfPHuHK5XDz/eBS//7QCpRTjbruTMRMmAfDsIw+xecOfOese2LeX+2c8wbhb7zhnH3a7nYfvnMDRwwep36gxL77zMRaLhcyMDO4cN4zXPvyirM+sWFyeCo2K2RQbHfmD0YFcjM+VtAsrNCrmauB1o+MQfmU2Nmt3o4MQ/9m7d2/QRx99VAPgVHJm9cLOlHgh2XONF1Raagq2h+9l1gefseS3jdSoVZvZr72Y57ox385n/97dLP51A58vWcUn777Bv7t3AjDjmZdyRqd7e+43KBSDrrn+vH3INMmlxgR8ERoV08zoQC7GrxN6aFRMG2AeIG1oojgFAvOxWf1mUgdfcaHpUu+5556GsbGx5cJatWo9ctj1jbLXX/XDEsZfN5Cru7Vl9mv/Ddd8Ou4kD0++hbHX9GN4/245IzwCXN31Ml599nHGXtOPxx6YXKj4fv95JWERl9G4mf4Y8+ibJvLDom/zXHf5km8ZNuYmzGYz1ipVGDRkKMsWLThvvcXffEm3Xn2pXvP8DtfFM5WqVLkXUGXgu9CoGK8dhMdvE3poVExFYBEg02KKklAHvbOMKCUXmy71jTfeOBQaGpq5YNU68+sff5mzTXJSInMX/cgXS3/ik/de5+TxYwA8+sAURt90G18sXcW8Zb+y/Z/N/Lj0u5ztEuPj+XzJSp574/1CxXj86BHq1K+f875ug4acjjuRZ0n/+NEj1K3/37Srdes35PixI+et9928z7n+hvMnhYHimUpVesQVSgRefN0bPmVgCXoVfdB9IUpKJDbrfdgSXzM6kLIgr+lSp02b1jBnulSTJdDpOnd8icHX652Tq1StRr2GoRw9fJCKVit/rVnN2dNxOeulpaYSu+/fnPfXjhyD8oLOYn//uZa0lBR69B2Y5+fZU6lm++yDd86ZSjUrK4vRN99Glyt7llbIZcHw0KiY/8VGRxZ1AvoS45cJPTQqZggw0eg4RJnwPDbramyJm40OpCxLc2BFqfNqHAOD/pvxzGwy43Q6cwZJmrtoxQVnRAspn3et6r49u/jfPbcD0K5jl/NmXaxTrz7rfvsl5/2xw4eoXrM2Fsv5X7V16tXn2JHDtO3QWV/3yCHq1K1/zjoLv/qMISNvwGzOv9UweyrVdz77hkcfmMzwcRMIb9OWG68byMJVf1xwOw3fHFfEYE+GRsV8HxsducXoQDz5XZW7e7L6wtWTCVF0QcBX2KzljQ7E311outS69RsqylWskZyc7+SKgJ6sO3XrwUdvz8pZFnfiOCePH8132/ymUL6ydz92btvCgX/1h4HmffohV107LM99DYi8nm+//BSn00lifDzLlyw8p907JTmJFd8v5vrReVe35ybTJJcqC/BRaFSMVxWKvSqYYvIe+li8QpSWlujPp99rdCAlrbifFy+MvKZL/eqrr/YdTcwMbRYWYWraIoxh/bpSv2Eonu3oeXn29dm89OQjDOvXFaUUwSHleSz6FWrVubQRfstXqIjthde4/7YbcTocNGvZiqdefTvnc89pkq8ZPprtW/5mSM8OKBTjb7+L5q0ictZdtvhbwtu0pVHjpvke95KmUjW+ZcFXXQ48BEQbHUi2Ak2f6itCo2JGA18ZHYev+jLg6V+7mndIY1vRuICu2BL/MjqQ4uIL06fGJWXUOJGU4XOTaHiLEJxZdQOTM/7Nqnz+g/JeppSmTy2sDKBtbHSkV4zP4jdV7qFRMZUB6ZwkjGJCfz7dH2u9vFKG3RkYl5xZP/81xcX4T5HOEOWAD0OjYryinsNvEjrwAlLVLozVFrjf6CDKAk3TOByf1lhmTSwOXpGLfFl3YIrRQYCfJPTQqJgewG1GxyEE8ITMn17yTqVk1kjPcnrtAB++REroxSLaG+ZP9/mEHhoVEwjMRm4zhXcIAd40Ogh/5nRpplPJmXWNjkMIDxWAd40OwucTOnAHEGZ0EEJ4iMRm7W90EP7qZFJGbadLk74KxUSTslBxuTo0KqaPkQH4dEIPjYoJogxPZSm82kvYrD59fXkju9NlOZuaJX1lhLd6xsiD+/pd7m3ApT04KkTJaAvcCHxqdCDFqc0nbUpkPvStN28t0PPtJxIz6khHuOIlJfRi1TU0KiYyNjoyxoiD++yF4W47jzI6DiEu4gls1kCjg/AXGXZnYEKavYbRcQiRj6eNeozNZxM6cCsgz6AKbxYK3G50EP7iRGJGPQ2tWL4oJ468hp+WFb4Q9dZLzxKzcD4A77wSzQu2/+W53uqVy5g48ppLirG0aChWr1zGdb07M6RHBx64fTwpFxhG1+Vy8dxj04i8sj3XdL+cL+fMLtBnnpISEpg4agjD+3fjmRkP5iw/e+Y0E0deg91uL94TLH3tgBFGHNgnE7q7dJ73lSSEd5khpfRLl5rpCE7KsFct6Pp5TVdaHO56aAaRQ0eVyL6NkpKSomwP38usDz5jyW8bqVGrNrNfezHPdWO+nc/+vbtZ/OsGPl+yik/efYN/d+/M97Nz9vHdfDp168GClWs5sG8ve3ftAOClJx/hvv89TkBAQMmdbOl5MjQqJv8ZdYqZTyZ0YAJg+DN/QhRAXWCs0UH4uhOJGfUB2jaowpsvPM2oq3oypGfHnNJy9mdvv/wcYyP78nr0E6SmJPPEtPsYe00/Rgy4kien3489Kytn/T/XrGZsZF+u6X45Lz35KNnDYOcuvT94x80smv8FAI89MIXPPnjnvPjsdjvPzHiQIT06MPaafqxf+3u+53Tq5AnuGDuMoX2v4I6xw5g25VbeeUUfFrx/x3DiThwH4OHJt3DT9fr0qVmZmfRs04SszEwWzf+CSWOuZ/pdExnevxtjBvfhyMHYQv1eAZatWGUJi7iMxs1aADD6pon8sOjbPNddvuRbho25CbPZjLVKFQYNGcqyRQvy/cyTxRJARnoaLpcLe1YmAYGBrPl5JZWslbns8k6Fjt9LhaH3oSlVPpfQQ6NiAoAZRschRCE8mP8q4kJSMx3BqVmO/8YaV4r5y37lnbnfEP3YdI4ePpTzkcls5ouYn5j66FO8/NRjXN65K18sXcXXP/6Oy+Xi84/+e1R4/97dfPLdcr5e8Tsb163hh+++KXKMCz6fQ+z+f/l21R988u0P7NyW/6yazz8eRdsOnVj40zqemfUOG9atyfmsS/ee/Pn7alwuF7t3bCM5OZmU5CQ2rV9HqzbtCAwKAmD7lr+5Z/pMFqxcS5cevfjonVmFjv3w0WOmOvX/a72s26Ahp+NO5FnLcfzoEerWb/DfuvUbcvzYkXw/8xQ5bBSHYw8w+qqedOnem5q16/D+Gy9zz7RHCx27l3vcna9KjS/2cr8JaGR0EEIUQmts1quwJS4zOhBfdDol85zH1IaNGQ9A/UahdOjSjb//XEu9BnqF3dDR43LW+2l5DFs2/sXc998CICMjA5P5vzLMkOE3EBAQQEBAAJHDRrHu99UMHjqySDH+ueZXfX+BeuvK9aPH8d1Xn118m99XM/XRJwGoXrMWPfsNyvnsiu69Wff7LzRtEUbL8NZUrV6DDX/8zpa/19Ol+3/zJ112eWfqN9S/Dtte3vmC7dbeJCSkPC+/90nO+xdtM7hlyn0cij3Ah2++AsDt9z5Iy/A2RoVYXBoDo4GL/yEUI59K6O65Zx8xOg4hiuBhQBJ6IdmdLktShuPibece3eSCQzxGg9U0Xp79KaFNmhXoWErpOzJbLLhc/83mlZlZ+InmsvdV1G26dO/Fa9FP0qR5S7p070W16jVZ9/tq/tm4nkeefTlnvSB3SR3AZDbhzKNUvW/PLv53j943s13HLufN416/Xj3Xil//zHl/7PAhqtesjcVyfnqoU68+x44cpm2Hzvq6Rw5Rp279fD+7kK2bNnL2zCl69b+KCcOu5pnX3kPTNGZOncJH3xjy5FdxuwtJ6Bd0A/pdjxC+pi82a3tsiZuMDuRSFPR58eJyOjmzhqad27N90fwvmDw1iqOHD/H3X3/wsO25PLftMyiSj99+jceiX8VisZCUkEBC/FkaNm4CQMzC+Vx9/QicDgfff/cN42+bDECD0MZs3bSB/oOv5cihg2xev44Bg6+7aJxXdO+Vsz80LafN/WI6X9mTxV9/yZ0PTOfMqTh+XbWcEeMmAFCzdh0qVqrEN599zPtfLaZy1aq8+OQM0lJSaNWmbb779tS0RRjzl/92wc/79+/nmPbI4xz4dw+Nm7Vg3qcfctW1w/Jcd0Dk9Xz75acMvOZ6UpKSWL5kIW98/FW+n+XFbrcz6zkbL7z1IQDp6Wkopd/YpKWlFuocvdgVoVExHWKjI0vluvG1hH6z0QEIcQnuQiYRKjBN04jP47lzp9PJqKt6kp6WxvQno3Oq23N7+PFnmPXcE4wa1AOTyYTZYuGBGU/kJPTGzVpw89CrSEqIp/fAwVx13XAAbrnzPqZNuZXh/bvRtEUYrdt1zDfWYWNv5t/dOxnW9woqWitzeeeu7Ny6+aLbTLM9x2NTpzC07xXUqFWbNu06ULGSNefzLt178euq5dRvFApA9Ro1qR5xGSZT8XZ9qlCxorK98Br333YjToeDZi1b8dSrb+d8PmpQD978ZD41a9fhmuGj2b7lb4b07IBCMf72u2jeKgLgop/l5ZN3X2fI8BuoVqMmAFMe/B933TwagKmPPFGs52iwu9Afsy5xKrtnp7cLjYqpDRwBSv1RgLLiy4Cnf+1q3tEz/zVFESUBdbAlphkdSEFs3LgxzGKxLGvevHlKSEhI4eudL1F8alblw/FpTT2XtW1Qhd+2xVLJar3QZj4jIz0dS0AAFouFhPizjL92AM+8/h6Xtc//BqK4hODMqhyYlXUsK9jrZ67THFnEHTuC7ec4jiY789/Ae2QAdWKjIxNK+kC+VEIfhSRz4dsqAcMoxTY1X3Y2Lau60TGUpEOx+3j0/slomobdbmfUTRNLNZln840inU8rh/7o6tv5rXipfCmhy7O8wh9MQBJ6vjIdzsDUTMd5xfAth+ONCKfIfvvpR954/qnzlt961wNcde2wi7Ztlw6FJlNPl4Zb+H97dx5lR1mncfxbfbsTWS9rABXmioIgwxqQJSLRGRm1RFBBFB2iiAKOzgyKcMGBKQGl0BkHlAEHBxBENgERuYKKkITFI5AQiCEhSCjIwhIIqexL973zR90cM5EknXRV/d6qej7n9AmHA1XPSafz3HrrXVToiUaztStwsHUOkRS8j6C+M0E80zrIILSBzpqT0vIwb9GKbfO+ZxYOf/+RHP7+I61jrEdB+rzTATq0izmkcGCj2do7Cv3JWd6kEIUOfNo6gEhKekj2UjA9ZnGQ5rTb7fiVV17ZYcSIEfM8z8vtr9L5C5ds3Rlo53W7yhqg7a1gpdfpd3yPsU6H/iULWLhsgNeXFvbPxeeBr2V5g6IUuobbpUyOpwCFPnLkyEUTJkw4df78+T9asGBBnZwe5QY69L62ZGCTPO5VdcNoe8Nr/b0LB1w/bqDDwmUDXPHYfJYNFPMRHTiGjAvd+VnujWZrH2D9+yjKkGmWe64aBPHz1iEGY8KECZuT7Emfy2Nc+NDrJ8xZ2H9uHvequp2WvTZ7r81nzb+3f9+1ry9zQLsDry9tF7nMV9kzCv1pWV28CE/oejqXMjoKuMw6xGCMHDlyETA9r/s9+vOW5svkxFu8bOWIgcXLZ7cLtQysyHwgs0J3+sVJ95D4T1nnEMnAUdYBXNRotrYERlvnqJJ+ak73QMl8OMuLu/6NfDc6iEXKaTRBfQvrEA76IOD6C91SWalCz9PhjWYrs59717+RR1gHEMnIMMD19UwWPmodoFI8WEmv6z1QJn3AB7K6uOvfSL1LkzJToa+me5pipkOSsqYOKzt6Qs9ZZn/GXf9GHmIdQCRDo6wDOOZgYGvrEFXieZ7eoeeveoXeaLbeSrJURqSs3kVQ38o6hEM0Imegn16dkZGvnRrN1n5ZXNjZQkdP51J+HnCodQiH5H8ySeV1NCnORib95vI3Up/WpQoOsw7gEBV63jw6A6R8wLoMxr5ZXNTljWX0hC5VoPfoQKPZqgPvsM5RNR3wNMvdxH5ZXNTJb2R3tutI6xwiOTiIoF6Q464ydQCFOfarRDzop6Z36Pnbu9Fspd6/ThY6sA+gwxmkCjYHdrEO4QANtxvwgH4tW7OwGbBb2hd19Rup9+dSJXtaB3CACt1IPz0uv3ots/3SvqCrha7351Ile1gHcIAK3YKnZWuG9kv7gq4WutNH+YmkrNJP6N0Jcbta56giD+inR4VuY7+0L+hqoe9sHUAkR5UudDSHwNSAJsVZ2S/tCzpX6I1maxiwvXUOkRxVfchdO0Ja8ToM6B26lR0bzVaqk7+dK3TgrWj5ilTL9gT1Kh8ZqkI30oNHPzUVup0RaV7M1UIXqZpUf7ALRoVuRevQre2Q5sVU6CJuSPUHu2DeYh2gqvrxesDTiKid0j+hV/kvNqmuKv+51xO6kX5P+7gbK32hb2MdQMSACl1y19Zwu7XSD7mr0KWKVOiSO61BN1f6J/StrQOIGKjkn/vuARVV/jBjqu31aoa7rdIXup7QpYqqumxtU9w+xrnU9IRurvRD7pV8UpHKq2qh91kHqLK2p0I3lmrfuVjoIlWkQpfc6aQ1c6l+oHKx0JdZBxAxoEKX3PWjd+jGUt0DwMVCX2odoIre7s1+fo+eF+rWOSqsqsWmQjGkIXdzqXawiz9MKvTcdDpH9zw84ey+Gzo78PqBnsffWCeqMBd/FvPQsQ5Qbdolzliqv/8u/iWiQs/YZixd+PXenz/+2dq9Ow/z+g+0ziMArLAOYGTAOoCIoXaaF3Ox0PUOPSO7ezOfu6Dvmhfe7U07wPN4r3Ue+X+q+kFWhS5VtjzNi7lY6FX9iy0jnc7Heh6c0Oy7kRHMH+l5vM06kbyhqv65V6FLlanQZf02Z8mCM3pvmXRC7b5dNKxeCAutAxjRiJxUWekLXT/gQ7CH98KMC/qunnWgN13D6sWywDqAhSj0FzaaraXAJtZZRAyUvtD1hL7BOp1ja+MfO7P3pp7tiQ/wPHa1TiQbrJKF3vUy0LAOIWLglTQvpkIvsC1YHJ/Ze/OkT9Xub/R5AwdZ55Ehedk6gKEXUaFLNc1K82IuFvoi6wCu29N7/tkL+66efYD3zAGexxHWeSQVM60DGHrJOoCIkdIX+rPWAVzk0W4fVxv32Jm9N/du5y04AHi7dSZJlQpdpHpKX+hTrQO4ZEsWxWf13jTpk7Vxb+vzBt5tnUcysQINuYtUUbkLPQr9OY1mawGwpXUWS+/yomcv7Lt69v7en0dqWL30ZhPEVd4CVU/oUlXlLvSuaUDlnkY92u3ja2MfPaP3lmHbeQv2R8PqVVHl4XZQoUs1LYtC/9U0L6hCd0CdRfObvTc+cWxt/K593sDB1nkkd5F1AGNzrAOIGJid9gVdLfRKvEff25vxzIV9V7+0jzdDw+rV9qR1AGPTSA6pcPE4Z5GspDrcDu4W+jTrAFnpoT3wqdp9j3699+fDt/UW7g/sZp1JzFW60KPQX9xotqYDe1hnEcnR9LQv6Gqhl+4JfSsWvn527w1PfKL2wDt6vfYh1nnEKU9YB3DARFToUi2PpH1BVwv9WWAl0GcdZKj29f48/YK+a17e23vuQM9jtHUecc7LBHGq2z8W1ETgBOsQIjmqRqFHod/faLb+DOxpnWVj9NAe+Ezt3ke/1nvrJlt7i/YFdrfOJM7S03lionUAkRwtAaakfVEnC71rKgUr9K1ZMO+bfTc8eUzPg7tpWF0GaZJ1AEc8bh1AJEcTo9AfSPuiLs8qfdQ6wGDt7z3z9F3Dznlg4vBTNz22Nn50r9d+i3UmKYwHrQO4IAr9+cBz1jlEcpL6cDu4/YR+N3CRdYi1qTHQ/9navY+d3nvrJlt5i/cF3mmdSQpnABhvHcIhE4G3WYcQyUEmhe7sE3oU+k+QwcL7odqG+LXv910+9unhY+Z+q+/aQ7plLrIxJhHEsXUIh0ywDiCSk0xGoF1+Qge4B/iCdQiAA7zp0y7su/rVPb0XNFtd0nK/dQDHjLUOIJKDV6PQn5HFhV0v9F9jWOg1BvrH1H776L/03rZZ3Vuyj1UOKa2x1gEc80dgLrC9dRCRDGU2b8bZIfeu35GsR8/VtsSvXtJ32bjpw8fMPa/vp4eqzCUDA8AD1iFcEoV+m+RDvEiZ/TKrCztd6FHoLwQeyut+B3nTpt497KyHHht+2hbH1B4+oua1d8rr3lI54wjiBdYhHHSXdQCRDA0Av8rq4q4PuUPyiX10VhfvpX9lMqx++5Zbekv+Nqv7iKzhNusAjvoNsAIYZh1EJAMPRKH/WlYXd/oJvSuTIbjtmD/3B30/HPv08DGvndt3/WEqc8lRG/iFdQgXdUfltJRPyuqOLC/ufKFHoT8FeCGt6x3sPfXUb4ad+dCjw79c/2jtD6NrXmfHtK4tMkgPE8QvWodwmIbdpazuyPLiRRhyh2STmVM29n/upX/lSbV7Hvlq7y+22sJbuleKuUQ2hobb1+1XwCXWIURS9ngU+s9neQPnn9C77tiY/2kH5r1yWd+lY58ePmbeOX03jFKZiyNutw7gsu4a3aesc4ikLPPXbEV5Qv8tybD7LoP5jw/tmTLlW70/mb+bN/sgbQIjjrmfIE7tFVKJ3QhcYB1CJEV3ZH2DQjyhd9en/u+6/ps++lecWrvzocnDvzDlxmHf3mv3ntmjPE8zZcU5V1oHKIhrSJb4iJTB1Cj0J2d9k0IUetdVQP+a/3JH5r18ed8lY6cNHxM3+27SsLq4bC4abh+UKPRnk2z9LFIGP8rjJoUp9Cj057Dagvz39EyefO+wMx7+w/CvbPPh2iOja15H20WK664liFdYhyiQq6wDiKRgCXBdHjcqyjt0ADZh2RUn1e4ZcVrvnVtv7i3b2zqPyAbooOH2DfUrYA7wZusgIkNwcxT68/O4UWGe0AGmvumke7/Rd8t2m3vL3mWdRWQD3U8QP2Mdokii0O8np6FKkQxdkdeNClXoBHEH+IF1DJGN8B/WAQrqSpKtYEWK6OEo9DM5+/yNFKvQE9cCr1uHENkAEwniu61DFFEU+i8Dt1jnENlI38/zZsUr9CBeDPyXdQyRDfAd6wAFd4l1AJGNMIOcz2woXqEnLgEyO7FGJEVT0VK1IYlCfwIZHjkpkpFLu3uo5KaYhR7EC4HvWccQGYSLunM/ZGi+SXJKnUgRzAJ+nPdNi1noicuAV6xDiKzDs8AN1iHKoLvLln4vpSjOi0J/ad43LW6hJ+/SL7aOIbIOZxHE2r40PecBK61DiKzHZJLJ27krbqEnLicZ2hBxzXiCWMekpigK/efQ5jzivrPyfne+SrELPYiXAWdYxxBZQxs43TpESV1IspWmiIt+H4W+2RLVYhc6QBDfDNxnHUNkNdcRxBOtQ5RRFPovAZda5xB5Ax3gTMsAxS/0xFfRuzVxw2LgHOsQJXcx2lxK3HNjFPqmH+TLUehB/BTwQ+sYIsAFBPGL1iHKLAr9GDjLOofIapaTLK00VY5CTwSA/iIVS48D/2kdogqi0P8x8DvrHCJdF0ehH1mHKE+hJ5vNfNk6hlTWAHAyQdxvHaRCvggssg4hlTeRZLKmufIUOkAQ3wH8xDiFVFOoiXD5ikL/eYwnIUnlLQdOjELfiTlc5Sr0xD8DkXUIqZQngfOtQ1TUj4D7rUNIZZ0bhf4U6xCrlK/Qk6H3MWjfZ8nHcuBEglhndhuIQr8DnEyyukAkTw/h2JyZ8hU6QBCPx7HfaCmt0wniJ6xDVFkU+jOAs61zSKUsBsZY7Qi3NuUs9MS/AY9Zh5BSu5EgvsI6hADJYU3jrUNIZXwjCv1nrUOsqbyFngyBfhyYax1FSmka8CXrEJLoDr1/Gi1dlez9Lgp9Jz/Il7fQAYJ4JnAcoKVEkqYlwLEEsZZMOSQK/TnAx0jmNYhk4XngM9Yh1qbchQ4QxOPQAS6SrlMIYmdmtspfRKH/R+BU6xxSSguBo6LQd3bUt/yFDhDElwI/tY4hpXAhQXy9dQhZuyj0fwL8wDqHlEobOCEK/cnWQdalGoWeOAX4g3UIKbTrCOJzrUPIoHwd+L11CCmNM6PQv8s6xPpUp9CDeCnwEeAp6yhSSPeRrHeWAohCvx84HnjOOosU3lVR6BdiGXR1Ch0giOcB/wC8YB1FCmUK8HGC2IntHWVwotB/DTgabTojG28ccJp1iMGqVqEDBPEs4EjgVesoUggzgQ8RxLF1ENlw3XeexwLayU821AzgE67s0z4Y1St0gCB+GvDRJ3dZt5nA6O7yRymoKPTvIVmjPmCdRQrjReBD3VGewqhmoQME8SPAh0mWIoisaVWZz7AOIkMXhf7t6IwHGZyXgfdHoT/dOsiGqm6hw6o93/8eeN06ijhFZV5CUej/jGR3v451FnHWXJIyn2YdZGNUu9Bh1ZP6+9AWsZJQmZdYFPpXASehJ3X5a68AfxeFfmFXQqnQge5pWe8F5lhHEVNTgPeozMutu/HMieiduvzFLOC9rm8csz4q9FWCeBpwOFC49yaSivuBUQSxljRWQHf4/QSgMDOYJTPPAodHof+0dZChUqGvLnkyOwTtMFU11wMf1NK0aolC/xbgA0ChZjJLqqaQlHlkHSQNXqej+SF/Jaj3kuwFXZgNBWSjfZsg/jfrEGKn0WztCtwJ7GWdRXJ1B3BiFPqlWemkQl+XoP4V4BKgZpxE0rcEOI0gvs46iNhrNFtbADeS7E8h5dYBvgWcH4V+qQpQhb4+Qf1I4AZgW+sokpqnSc4z/5N1EHFHo9nqAb5LcrCLlNNC4B+j0P+ldZAsqNAHI6jvTPLpfZR1FBmym4AvEsSLrIOImxrN1ueA/wGGGUeRdD0DHB2F/lTrIFlRoQ9W8l79fOAsNJmwiFYApxPEl1sHEfc1mq1RwG3ADtZZJBW/JjnPvNQTX1XoGyqoHwFcB+xiHUUG7QngcwTxJOsgUhyNZms74AqSw12kmAaAEDgvCv3SbyakQt8YQX0r4PvA542TyLqtBC4ELtLRp7KxGs3Wp4HLgG2ss8gGmQKcFIX+I9ZB8qJCH4qgPprkXdvuxknkr00APk8QF3rnJ3FDo9naCbgS+Ih1FlmvfpKn8gui0K/Usbkq9KEK6sOBc4AmmkTjgiUkT+XfI4j7rcNIuXQnzF0C1G2TyFo8TvJUPsk6iAUVelqC+h4k79tGGyepqg7wM+BsgniWdRgpr0aztTNwFckuc+KG5SSTlr8bhX5lP8ir0NMW1I8CLkK7TuXpYeBfCeJHrYNIdTSarU8C3wHebp2l4h4GTi7zcrTBUqFnIaj3kJzmdD6ws3GaMouAJkF8s3UQqaZGs9UHnAKcB2xvHKdq/gScG4X+HdZBXKFCz1JQfxPwT8DZaKe5ND1H8mR0rWaviwu6W8d+A/gasJlxnLKbAfw7cEMVlqJtCBV6HoL6piRL3E5Hw3NDMZVka87rNeFNXNRotnYkKZuTgV7jOGUzB7gAuCoKfX2QfwMq9DwlQ/EfA84gOaZVBmc8ybr/Owli/YEV5zWarXeSFPtxqNiH6jXgYuCyKPSXWodxmQrdSlAfBXyZpOA3MU7jonnAtcCVBPE06zAiG6M7I/4rwJeArWzTFM4zwH8D10Shv8A6TBGo0K0F9TpwPPA54FDbME54gGSznlsJ4uXWYUTS0Gi2NgPGAKcCexvHcVkbuJtkZ77flO1406yp0F0S1HcnKfbjgHfYhslNB3iE5CCM2wjiGcZ5RDLVaLYOJZkZ/0k0OrfKC8A1JE/jz1uHKSoVuquC+p4k20weBRwG1GwDpaoNPATcCtyujWCkihrN1lbAMd2vI6leucckp6BdA/xeM9aHToVeBEF9W+BDJD/0o4BdbQNtsA4wGbgfGAuMJ4jnmSYScUij2dqUZOe5Y0g+yG9nGig704C7gBbwYJV3dcuCCr2IgvqOJE/th5EU/AG4tY/8POBJYBLJDPVxKnCRwWk0WzWSn+ujSQq+aB/gV7ccGEe3xKPQ1yu1DKnQyyCo95K8c98D2HO1X98JbJnRXdvAS8BMko1enux+PaEhdJH0dGfKHwgc1P0aCWxtGmrtZpEckPI48BhwXxT6i20jVYcKveySWfRv7n6NINmecjuSoh/W/epb7ddeYCmwGFi02q+LgLkkBT4TmKPNXUTy12i2PJINqlYV/IEkZ0fkeV57m2RZ2eOrf0Wh/2qOGWQNKnQRkRJoNFubkHxwf8tavnYkmXg3bLWvGjBAUtDt7j/PB15e7eulN/jnWXrydo8KXUREpAR6rAOIiIjI0KnQRURESkCFLiIiUgIqdBERkRJQoYuIiJSACl1ERKQEVOgiIiIloEIXEREpARW6iIhICajQRURESkCFLiIiUgIqdBERkRJQoYuIiJSACl1ERKQEVOgiIiIloEIXEREpgf8D1YrRPLmILzAAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 68,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/oli/.local/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAIsCAYAAACN/bHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACX10lEQVR4nOzdd3hT1RvA8e9JOmgpDXuDZc8qyFARBSdIFRUQFBwoooKoiAp1Qdx140TRnzKcKA6kKIIDEUWloiJboOwNTXebcX5/3LTW7pakN23ez/Pkgdx77rlv0ow355x7jtJaI4QQQojgZjE7ACGEEEKYTxICIYQQQkhCIIQQQghJCIQQQgiBJARCCCGEQBICIYQQQiAJgRBCCCGQhEAIIYQQSEIghBBCCCQhEEIEAaXUWKWUVkrFmB2LEIFKEgJRIxT4wNdKqf7F7FdKqd3e/YvNiFEIIQKZJASipskGRhezfQDQEsip2nBEgJgPRAA7zQ5EiEAlCYGoaZYAVyilQgptHw0kAQeqPqQTp5SqbXYM1VHe86a1dmuts7Ws5iZEiSQhEDXN+0AD4IK8DUqpMGAE8F5xByilLEqpyUqp9UqpbKXUQaXU60qpeoXKJSulFiulBiql1iilspRS65RSA737h3nvZyulkpRSPYs517lKqZVKqQylVIpS6nOlVJdCZezero2uSqn3lFLHgR+VUtd7txdX731KKbdSqkVpT45SqoVS6n9KqX1KqRyl1A6l1Czvc5RXpq1S6iOl1DGlVKZSarVSKq5QPQO9sYxUSs1QSu1VSqUppT5WStmUUuFKqZlKqUNKqXSl1NtKqfBCdWil1MtKqTFKqc0FnrezC5U7SSn1qrdMllLqqDe+mELl8rqNBnjLHwL2FNoXU6B8b6XUUqXUEW+9O5RSbxWqs7ZS6llvd1OON4a7lVKqhMdymVLqb2/Z9UqpwYXK1fE+L8neMoeUUsuUUqeW9ncToioU/hUlRHWXDPwMXAV86d12EWADPgBuL+aY14GxwNvAi0AbYBLQUyl1ptbaWaBse4zE4nXgHeBu4Aul1C3A48Cr3nL3AguUUp201h4ApdT53pi2A3aMJuzbgFVKqVO11smF4voI2ArcByjgY+AVYAywtlDZMcD3Wuu9JT0xSqnmwK9AXWA2sAlogZEsRQK5SqkmwE/e+y8CR4HrgEVKqRFa608LVXsvkAUkeJ+b2wAn4AHqeR/n6RjP7w7g4ULHDwBGec+VA0wEvlJK9dVa/+0t0wfoh/H32wPEABOA75VSXbXWmYXqfBU47D1XsS0rSqnGwNfecglAirfeYQXKKGARcA7wP+APYBDwtPd5u7NQtf29x78KpGG81hYqpVprrY96y7yG8Xy/DGzASF77A12A34uLVYgqo7WWm9yq/Q3jC0cDvYFbgVQgwrtvAfCt9//JwOICx/X3Hje6UH2DCm/3HquBMwpsu9C7LRNoXWD7Td7tAwtsWwscBOoX2HYy4AbmFthm9x77XjGP8z1gL2ApsK2nt/zYMp6jud5z9S5mn/L++7y3rv4F9kVhJDE78s4LDPSWWweEForPAywpVP9PQHKhbdp761VgW2uMBOOTAtsiion3dO+x1xTzGlgJWEt4fcR471+W93op5fm61Fvm/kLbP/I+xnaFHktOoW0ne7dPKrAtBXjZ7PeL3ORW3E26DERNtADj1/fFSqk6wMWU0F0AXAE4gGVKqYZ5N4zxBukYvw4L2qC1/rnA/V+8/36rtd5VzPa2AEqpZkAPYI7W+lheIa31X8AyYEgxsb1WzLZ5QPNCcY3B+BJdWMJjRCllwfgS/EJrvabwfq11Xt/6EOBXrfWPBfalY7QoxABdC8ej/9uC8gtGa8Zbhcr9ArRSRcd2/Ky1Tipwrl3A58AgpZTVuy2rwOMIVUo1AP7B+HItrqn9Da21u5jtBaV4/71YKRVaQpkhGAnUi4W2P4vxGC8qtH251npbgcfyF0Zi2rbQeU/zttYIEVAkIRA1jtb6MLAcYyDhMMCK0dxenA4Y3QmHMJqPC96igMaFyhf80kdr7fD+d3ehcnnb88YhnOT9d3MxMWwEGqqiAwd3FFN2GbAfIwnI+6K/Cvhca51WTPk8jYBo4O9SyuTFWVKMefsL2lXofmnPhwXjuS5oazHn2oLRZdEIQCkVoZR6WCm1G+NX+BGMv0/dYuqD4p+3wlZgJFAzgCPesRzXFxrncBKwr5jntbzPBcBx/n0NAEwFugO7lVK/eseLtC3mOCGqnIwhEDXVe8AbQFPgS611SgnlLBjJwJgS9h8udL+kX54lbVclbC+PrMIbtNZupdR7wHil1ETgTIwWg3dO4Dwnoiqej5eA64GZGONDHBhN8R9Q/I+aIs9bYd4WkRFKqdOBSzC6iN4C7lJKne5tFamoMh+z1nqBUmolcDlGd9M9wDSl1DCt9ZclHC9ElZCEQNRUn2IM/DsdY9BaSbYB5wOrCjZN+0He9e+ditnXGTiitc4oZ13zgLswvsguwkhalpZxzGGM5uvu5YizpBjz9vtSh2K2dcQYk5GXjI3AGGNxV14BpVQtjBaCE6K1Xg2sBu5XSo0G3gWuBN7EeKznK6XqFGolOKHnQmu9H2Pg4avewY2/A/fz7yBYIUwhXQaiRvL+wpuAMUDvi1KKLsDoUniw8A6lVIhSqq6P4tmPMUr9uoJ1KqW6Y/xSXFKBuv4C/gJuBIYDH2itXWUc4wE+Ay5RSvUuvL/AZXRLgL5KqTMK7KuNMUgyGWNkvC+dUfCSO6VUK4zBfF8XGAfgpmjLwm0Yf7dKUUrVK3zpIMbfByCv22CJ9xyTCpW7E6OFokJf4Eopq1LqP10cWutDwL4C5xTCNNJCIGosrfXccpRZoZR6HbhXKdUD41I0J8Yv1yuAOyh5/EFF3YPxJfKzUup//HvZoQMjcamIecAz3v+Xt7vgPozkY4VSajZGX3gzjMfZH2PAWwLeSzaVUi8CxzAuO2wDDPcmFr70N7DUe668yw7B6NvPsxi4RinlwEhIzsBo1TlK5V0HTFRKfYrRSlQHGI/RipKXnH0BfAc85p2/4E+M5+9SYGbBAYTlVAfYo5T62FtXuvdx9MFo8RHCVJIQiKCntb5FKZUE3Iwxl4AL49fwO8AqH55nuXeimocwrpF3Ygxum6a1Ls9AuILeBZ4Etmmtfy3n+fcqpU4DHsEYMxGNcQnjlxhN9GitDyql+nnrvg2ohdEacYnWOrGCMZbHCoxxATMwLjncgHH55F8FytyB0UowxhvPKowv0rK6Sco6b1+M7oEmGEnZr8CYvL+F1tqjlBqK8bcahTGOIRkjsXu2EufMxOgquBBjsKsF42qJiVrrWSfwWITwibxrj4UQ1Yj30sj9wMNa60fMjqcylFIaeEVrXbhJXghhAhlDIET1NBajf3u+yXEIIWoI6TIQohpRSp2LMTnQ/cBnuuh0x0IIUSmSEAhRvUzHmNd/FUYfvxBC+ISMIRBCCCGEjCEQQgghhCQEQgghhEASAiGEEEIgCYEQQgghkIRACCGEEEhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBEIIIYRAEgIhhBBCIAmBEEIIIZCEQAghhBBIQiCEEEIIJCEQQgghBJIQCCGEEAJJCIQQQgiBJARCCCGEQBICIYQQQiAJQbWnlIpRSmml1N1mxxLolFIDvc/VQLNjEUKIQCMJgR8opcZ6v3jybtlKqS1KqZeVUk3Mjq+mU0pNVEqNNTsOIUTlKaXuU0pdZnYcwSTE7ABquOnADqAW0B+YAAxRSnXXWmeaGlnNNhE4AswptP0HIALIreqAhBAVdh/wMfCZyXEEDUkI/OtLrfUa7//fVEodBaYAlwLvmxdW9aGUUkAtrXXWidaltfYA2ScelRCiIpRSFiBMay3vvwAmXQZV61vvv228XQl3Fi6glOrn3XdVZU+iDLOVUrlKqWEFtp+slFqhlMpSSu1RSj2glLree76YQnVcpJRaqZTKUEqlKaUSlVLdCpWZo5RKV0q1UEp95v3/YaXUM0opa6GyFqXUZKXUem8XykGl1OtKqXqFyiUrpRYrpQYppdYAWcDN3n3XK6W+VUodUkrlKKU2KKUmFD4e6AYMKNBl8713X7FjCJRSVyilkrzPyxGl1DtKqRaVfaxC+Jv3tbzG+17appS6WSllV0rpQuWuLvDaPqaU+kAp1apQme+VUn8rpboqpb5TSmUqpfYqpaYWc95wpdRDSql/vO/B3Uqpp5RS4YXKaW8X6Ril1HogBxjs3Xe3UuonpdRRb1xJSqkRhY8HagPXFXgfzymwv4VS6i3v50iO93PlhhN8WoOetBBUrXbef48Cq4AxwPOFyowB0oDPK3MC75fTW8Ao4HKtdaJ3ewvgO0ADTwAZwI0Yb9TCdVwDzAWWAtOASIzujh+VUj211skFilu95X4B7gbOB+4CtgGzCpR7HRgLvA28CLQBJgE9lVJnaq2dBcp2wmhBeR14A9js3T4BWA8sAlzAJcCrSimL1voVb5nJwEtAOvCYd9vBUp6vvJh+A+4FmgB3AGd6H2tKJR6rEH6jlOoJfAXsB2ZgvC6nA4cLlbsfeARYALwJNAJuA34o5rVdz1vnJ97yI4AnlVLrtNZfeuuzYLz3+gOzgY1ALHAn0BG4rFCo5wIjgZcxuvCSvdvv8NbzLhAGXAl8pJS6OO/zCrjGG/Ov3nOB8T5DGeOwVmN8lr3sfdwXAf9TSkVrrWeW9RyKEmit5ebjG8YXnwbOAxoCLTG+oI8AmUAL4CZvmc4FjgvFeHHPqcC5Yrz13I2R4H3gPceFhcq9CHiAHgW21cdITjQQ490WBRwHZhc6vgmQUnA7Rh+9Bh4sVPZ3YE2B+/295UYXKjeo8HaMDw0NDCrmsUYUs+0rYFuhbX8D3xdTdqC37oEFnu+DwDqMbom8cnHecg9V9LHKTW7+vmF8mWYAzQtsaw84jY90DXASRtJ8X6Fju3vL3Vdg2/fe1/Y1BbaFYSQcHxfYdjXgBvoXqvNm7/H9CmzT3rJdi4k/otD9UO978JtC29OL+yzESBT2AQ0KbX/f+xlV5HNCbuW7SZeBfy3H+ILfjfFFnY7xq30vRhaejdEikGcQRgLxTiXOFQZ8BFwMDNFaf11o/2DgZ631H3kbtNbHMLL0gi4A6gLvK6Ua5t0w3ty/AOcUc+7XCt1fCbQtcP8KwAEsK1RnEsZzUrjOHVrrpYVPoguMI1BK2bx1rADaKqVsxcRVlt5AY+BVXaBvUxu/UjZhJAaFlfVYhfAbbwvg+cBnWut9edu11v8AXxYoOgyjS3hBoffcAWArRd9z6RT43NFa52L8Oi/8Pt4IbCpUZ15XaOE6V2itNxR+DIXex/UAG8b76NRyPH4FDAe+8N4tGMdSb11l1iOKJ10G/nUrsAUjUz8IbNbGwDa01ilKqS+A0cCD3vJjgL38+wariHsxft1fpLX+vpj9JwE/F7P9n0L3O3j/LSmG1EL3s7XWhwttO47RBFmwThtwqIQ6Gxe6v6O4QkqpM4GHgDMwujEKsmEkHRVxkvffzcXs24TRslFQeR6rEP7UGONKmcLvWwpt6wAojC//4jgL3d+jvT+zCzgOnFyozi4U6pooFFtBJb2PLwYeAHoABcceFD5/cRph/GC5yXsrTxyinCQh8K9f9b9XGRRnHnCFUqofRpPZUIxfq55KnGspRivAVKXU97ryo3nzWo2uwfg1UZir0H13Oes8xH9bQwoq/AFT5IoCpVQ74BuML+opGK0uucAQjD7MqmjtKs9jFSIQWDC+YC+i+NdteqH7Jb22VaE612G8/4qzu9D94t7HZ2F0efyAcXnwfozk5HqMH0dlyXufv4Mxzqk4f5WjHlEMSQjM9RXGl+EYjOb4SGB+JetajdGcvRhjgM7lWuuCX947MfoZCyu8bZv330Na6+WVjKWwbRjNnKt05S8fvATj18RQrfWuvI1KqeK6MMrzSwOM5wSMQYyFW0Q6FdgvRKA4hNHVWNZ7eRvGl/kOrfUWH517G3AKRl9/ed9jhQ3HiH+Q1jp/QLNS6vpiyhZ3jsMYg66tPvx8El4yhsBE3i/s9zFG4o4F1mmtK53det8gV2K0FMz3jgrOsxQ4QynVI2+DUqo+RX+1L8XoFrhPKRVa+BxKqUaVCG0BxkjoBwvvUEqFKKXqlqOOvF8w+b9YvOMGivsgycBoVizLGowP2FsKXjallLoIo2k0saQDhTCD1tqNMTbpMqVU87ztSqn2GK0BeT7BeM/M8Pa7U6CsUko1qMTpF2AMiB5feIdSKkIpVbscdbgxvujzL9VVxiXPlxVTtsj72Pv4FwLDlVLdi4mjMp9PwktaCMw3D7gdY0DOtBOtTGv9mTfbnofxxX6zd9dTGKOElymlXuLfyw53YVxtoL3Hpyrj2v75wO9KqQ8wsvLWGIPsVmFcLliRmFYopV4H7vUmJF9jNBN2wBiodAfGjGSl+Rqji+ALb11RGB9Mh4BmhcomAROUUg9g9Kse0loXGROhtXYqpaZhXHa4Qin1Pv9edphM0UtChQgEduBCYJVSahbGl+skjKtregBorbd5X/9PADFKqc8wflm3AS7HuJTvmQqedz7Gj5fXvC1zq7zn7uzdPggjyS5NIkaXw1dKqfcw+vtvxXifnlyobBJwvlJqCsZVBTu01r8A8Rifl78opd4ANmB8hp2K0RJZv4KPS+Qx+zKHmnjj38sOe5ez/N8YmXOLSpwrxnuuuwttn+Dd/nSBbT0w+u6yMfr74jGuS9ZAk0LHD8To0kjB6Av8B+OLs1eBMnOA9GJisuO9/KnQ9vEYHxiZGMnKX8CTQLMCZZKBxSU81kuAP73x7ACmYrQQ5F826S3XBKPrJNW77/sCjyn/ssMC5UdiXD6YjXEZ5juF/xYVfaxyk5s/bxjX+P+OMY/IP8A4jC/4rELlhmGM4E/33jZiXLvfsUCZ74G/iznHHCC50LZQ7/vub+/75Zj3PT0diC5QTgMvlxD7DRiDrbO98Ywt7n2E0W23wvt5oSlwCSJGIvEyxg+aXIyxCMuB8Wb/barzTXmfXGEipdRa4JjW+jwTzj0ToxUhShvNcUKIasjbCtBNa92hrLJCFEfGEJhMKdUb45f7vCo4V0Sh+w0wrib4UZIBIaqPYt7LHTCuuPnelIBEjSAtBCbxDojphTH1bUOgrS5wqaB3ApKyBsika60LXz5U2jn/wPjA2IjRrD4OaA6cp7X+oSLxCyHMo5Taj9Gkvx1jPo0JGFfh9NRalzT3gBClkkGF5hmB0e+2GbhKF503oBUlTOxRwEMYfW/ltcR73rxpk38HxkkyIES18xVwFdAUYxzBzxjTEUsyICpNWggClFKqFkVnyitsu9Z6e1XEI4QQomaThEAIIYQQMqhQCCGEEJIQCCGEEAJJCIQQQgiBJARCCCGEQBICIYQQQiAJgRBCCCGo4omJkpKSojBmxpNERFSWB9jXq1evcs/QKMwl73vhJe/dAFdl8xAkJSWdbrFYXrNYLDYKrGkvRAVpj8fj8Hg8t/Tq1Wu12cGI0sn7XhQg790AVyUJQVJSUpTFYvmxbt26TRo3bnxMKSWzIVVDWmvcWlvcbh3i8uhQtwcLoDQaQNUmR4fiVBqlUQqU8mAJcaNCXFisLizWE/67a63VoUOH6qekpBz0eDz95ddG4JL3fTWkNWiXFbczBI8rVHlcobhdIWhXCG53CLhD0BrQCo0C7U3ylEahQYFSGixurCFOVIgLa4hLqxCntoS4Dx9zRB13OPZ7PFreuwGoqroMmlssFlvjxo2P1a5dO6uKzikqSGtNttNdK8vpichyuiOcbk+Y261DjS9/HeL26BCd/wFQVP2wtPRwV2pUyWdQ2psYOLGEuLCE5hJaK4uQiGxCI7IICXeWJ87GjRsfS01NtXk8nuYY66qLwCTv+0ClNbiyapGbEYkzKxJnVm3cueF4XKFlHqsK/VuSvPVTXf9uslg1WdmHG8esunsHX+zaAiQVuG3E7pBVV01UVQmBBVDyCyFwON2ekMxcd2RWrjsi2+WOyHF6InPdnlpal/yFf+K0wuMKNT50coxNBZd0UhY31vBsQsKzCKmVTXhUOmFRGaj/huR9HSmkTzrQyfs+EGgNzqxaODMicWbWxpkViSsnEu2p8vdP3ltZoRtirPLar8DuTOy2P/lvkrBBkoSqI6sdBgm3R1vSsp1R6Tmu6IwcV3SOyxNR9lFVTHusuLJq48qqDUA6gPIQFplOWFQa4XXSCIvKMDVGIaoDj8tCVoqNnNS65KTZ0B6r2SGVQyRwhveWJxW7bSmwCFiC3XHMlMiChKkJQUx8Yi9/1JucEJfkj3qr0uLFi+tkZ2erESNGpFbmeK01GbnuyLRsZ3RGjjs6K9cdldfc/9arM/ni4w8IDQ0lLLwW0x5KILan8af4YuEHzHv9ZdxuNw0aNebhZ1+mWYtWRer/7ecfufWaK4hp1z5/289L3ic8FL7/aQ0XXXMbndqe9O++RXOIiKhVpJ6bpz7KT0l/0ah+XT7937PYouugtWbINbfx8qPTaBfTykJuRjS5GdGkHwRl8Sgdlml1ZjjrJS9pRa9emyrz/AiT2G1+ec9jd5zQe37z5s1hn3/+uW3q1KmH87a1aNEi9qOPPvqnX79+Vdbd4XA4LHFxce3Wr18f6XK5VFpa2h8F97///vu2++67r6XH41GdOnXK+uCDD3bUr1/fA/Dhe+80uP/BB1tqj9tySuf2ljkzHyK6TtEePI/Hwx3Tn2bJt6tQCibfOJpJ119Z5r6CjqekMuzGuzlyPIWz+vbk1SfuBeDw0eNccfNUlr3/KqGhZfc+lEM0cIX35sZuW4WRHCzC7pClnn1MmlxN4nSW3l3+7bff1lmyZImtInVqrUnLdkbtOpbZesP+1FO2H07vcjgtp0VmrqtOXjKwaf06Fsz7H+9+sZwFS1dy5dgbeeLBqQDs+GcLzz82g1fnf8wn3/zMpSNH89h9d5V4vph27VmwdGX+LTLi30aHTm1P4o9lH+TfiksG/t70D1t37GLdNwsY2K838xcmAvDme59yTr/etIspmoigPRblyoqyOtPqNU7+7GvstrXYbQ9gt3WoyHMlREFbt24Nf+uttxr5ut6y3ueFhYWF6alTpx5ITEwsMjbG4XBYJk2aFPPJJ59s27lz599NmzZ1PnDvtNY4drdI2/Zb19vvuCNm8dvPhmxb9bmledNGPDLzjWLP8c7CJWzYsp0tKz/l18XzeXrWPNZv3lbmvoLe/XQJ55zZm3XfLGDTPzv4e9M/AEyxP0vCvbf5KhkozAqcDTwDbMFu24Td9jR22+n+OFkwCuqE4J133qnbtm3bbp06deo6YcKEFvXq1Ttl8+bNYQDr1q0LHzhwYPvu3bt36dixY9fHH388/8NCKdUrPj6+aWxsbJcWLVrEvvDCCw3y9pV13J133tm8e/fuXSZNmtTy119/jejVq1enrl27dmnXrl23qVOnNgP46aefIubNm9fo008/rd+5c+eud999dzOAhQsXRvfq1atTt27dusTGxnb54osv6gBk5bpr7T2e1WLjgbTYHUcyOqVk5jZye3SxrT9KgcvpIiszE4C0VAdNmjUH4J/NG+nQuRuNmjQF4KxzLuTH75aTctw/rXShISHk5DrxeDxkZGYRFhrK/oOHef+zr5hy09XlraYH8AjGB8Sv2G13YLc18UvAotpbuHBhdNeuXbt07Nixa58+fTolJSXVArjttttaJycn1+rcuXPXc889N7/Za8GCBfV69OjRuUWLFrF570+AXbt2hQwZMqRtbGxsl44dO3a9/fbbm+fta9GiReyECRNaxMbGdhk+fHibisQXERGhhw4dmtagQYMi/eYLFy60de3aNbPnKbG5pB1sNPXG4VGLFi1qQMaRpl8t/y6iZ/dOdG5vnG7idSN5/7OlxZ7jw0VfM37MMKxWK/Xr2Rg19ELe/+yrMvcVFBoSQmZWNh6Ph5xcJ2GhoXz13Srq1Y3m9F4nV+Qhn4hOwN3Az9ht67HbJmO31a+qk9dEQTuGYO/evSGTJk2K+e677zb17Nkz+4UXXmiQkpISAuByubjqqqvazp8/f0fPnj2z09LSLL169ep85plnZgwYMCATIDw8XK9bt27j2rVra/Xv37/LxIkTjyqlyjzOarXqv//+eyPA8ePHLT/++OOWiIgInZ6ervr06dNl0KBBqeedd17GtddeezglJcX61ltv7QbYsGFD2COPPNL822+/3VK/fn3PX+v+jjjv3HM7fZe0IdtjCald3sfdqWssV4+fwJB+PYiuW4+wsDDe+tj4Zd6xa3c2/f0nydv/IaZtexZ/ugCtNfv37KZuvaLvs907kxl10QCsFiuXjhzN9PGX5+/btnMPpw4ajdVq4fqRQ5k4dmTRWNrHcE6/3pw6aDQd2rRmxpSbuGHKQzz94GRCQir10uzjvT2L3fYZMBO748fKVCRqnr1794aMGzeu7ddff725b9++WbNmzao/cuTIdlu3bl3/0ksv7br77rtbbdq0aUPBY1JSUqx//PHHpv3794d07Nix+4QJE460adPGOXr06Db33nvv/ri4uHSn08m5557b4a233qp3ww03HAc4duxYyJ9//rnRYvHdb67dydtqd2jdNIwDf58C2tK2RSP2HzqCy+Vi194DnNQiP18hplWz/H2F30u79h3gpBZN/y3bsjmrf19X5r6Crh4ex3V3TKfnhVdx2eCBtGjWmHF3P8SS+S/57PFWUFfgeSABu20h8Ap2x09mBVNdBW1C8P3339fu1KlTZs+ePbMBJk2adPSee+45CeDPP/+s9c8//0RcddVVbfPKZ2RkWP/666+IvC/2cePGHQXo2bNnttVq1bt27QpNSUmxlnXchAkTjuTty8zMtFx//fWtNmzYEKGU4sCBA2FJSUmR5513XpGBc4sWLbLt3LkzvF+/fl2wWENQlhBlDWHHzp21T2rTrtyPe8+unXzz5WK+WJlE46bNeH/ObKbeegNzP/mKk9q044EnnuOByRNwu1ycdd6F1LHZsIYUHY/UpfvJfP3r39SJtnFw/15uvXYknRqEhFw7dACnxnZmz5ovsUXXYc++gwy59jYa1q/LyKEXFqnn0Wm38ui0WwH4fOn3tGrehJiWzbn+zhmkpmcw8uILGHXpoHI/Pi8rMBwYjt32O/AC8AF2R25FKxI1x4oVK2p37Ngxq2/fvlkAEyZMODZ16tTWO3bsKLF9+5prrjkG0KxZM1fLli1zt2zZEt6gQQP36tWro++6667Qu+4yutQyMzMtmzZtyu8Xu+GGG476JBnQGrKO1SPjcOMosqJClQcw/6KN2pERfPzG0/n375zxDNMmjuWf5N08/uJbADxwx42c0q1jVYcWDowGRmO3rcF47y+Q9375BG1CUBqtNdHR0a7CvxYKioyMzH9XWq1W7XK5VHmOs9lsnrz/T5kypUWDBg1c69ev3xAaGsqFF17YLjs7u9jL/lweHdLv7HPcCa++HV7apYHbtmzi3tvGA9Cj92nc99gz/9n/zZJFdOjclcZNjV8Tl44cQ8KD03Dm5hIaFsYFcZdyQdylABw5dJC3Z71Aq5i2FBZVJzr//02ateCiS4ez6pffrNcOHfCfgUwtmzfhqksHs/LXtcUmBHlS09J55rV5LH3vFZ546W0GnN6Lq4cP4ZQLrmTohQOKHYNQTqcCc4EnsdteA2ZhdxyqbGUiuEREROS/X61Wq3Y6nfmTuf3+++8bC34OFFSnTp1iL5VLSkqqNWbMmLYAffr0SZ8/f/6uYk+sPcqisHDw71g8rjCA1i2asmzlvxP8Je/eT7PGDQkJCSl1X2Gtmzdl594DnNH7FKPsnn209rYKlLavJL+u/ZtDR49z8QVnc9blNzD/xUfRWjP2zhmsWPhmqcf6WW9gPvA0dttzwEvYHdllHBPUgnYMwcCBAzM2b94c+eeff4YDzJo1q4HT6VQAp5xySnZUVJS74NiAv//+O/zgwYOlXrpT0eNSUlJCWrZsmRsaGsqff/4ZvmrVqvxv2ejoaHdqaqo1M9cVkXwko03PswY1/3nVyvDNG9blJwPr1hYdWN2uY+f8QX6FkwGAFifFsHbNL2RmGJOE/bB8KSe1bU9oWBgAhw8eAMDtdjPzCTujrr2RiIjIIvUcPngAj8f4rMxIT+OHb5ZySvduboD9Bw/n70tLz2Dx8pX07N6ptKeO+MdfYvqdNxEZEUFGZhZKKZRSOJ0ucis4MKsETQE7sAu77SXstsa+qFRUHwMHDszYsmVLxG+//VYLYPbs2fWaNGnibNOmjbNu3brutLS0cl2aZ7PZPH379k194IEH8tvok5OTQ7dt21bmSLpevXplb9q0acOmTZs2FJsMaA0ZR+qHpe7sqBQqLxkAGHxOP35ft4lN/+wA4NW5C7jS23pW2r7Crrj4fN549xPcbjfHjjv4cNHXjPIm66XtK47T6WTaYy/y3IwpAGRkZqMUWCyK9IzMsp6OqtIUeArYit02DrutOlyCaQpTWwjMvDywRYsWrhdffDH58ssvbx8WFqYHDBiQGhkZ6WnQoIE7NDSUL7744p/bbrut1SuvvNLE4/GoevXquRYsWLCdf+ffKqKix02fPn3f2LFj277//vsNTjrppJzTTz89/xLDy4aPzP7go4XNTu3Zs8G5F13CLZOnkvDSGzwSP4XsrEycTiedu8WS8HLFMvDzBl/M+j9/56q4cwkLCyMiMpKEl/4djTzj7kns37uH3JwczjrvQm6f9mD+Pvs9tzPwgsEMvHAIy79cxIL5bxNiteJyu7kw7lKuv3qkC3caC5d8w6x5H+fvu+Li87l+1KUlxrTqtz/Iys7mgrONwcK3jh3JVbfex5OvzuGa4XHYoutU6DGWIRyYBIz1/mp4BrsjzZcnEKU4wcsDT0Tz5s1db7755vbrrruujcvlUjabzf3hhx9us1gsnHbaaZkdO3bM6tChQ7dWrVrlfPvtt/+UVtdHH320Y+LEia06dOjQTSmlIyIiPK+99trOdu3aVT57zUqJJm1fi5MHXhp5+GgKqWkZtOw1mHP69Wb+S49SJ6o2bz4znctuuAuX20X3Tu2ZO/MhgFL3AfS44EqWzH+J5k0bcc2IOH77cz0d+l+GUoopN11NbBfjIp3S9hXn6VnzuPaKOJo0Mn4DPXz3LQy55nZj3wOTK/1U+ElL4E3gbuy2+7A7PjU7oEBTVWsZdA4JCfmqQ4cO6ZGRkQHTZHP8+HFLvXr1PADz58+vO2PGjBbbt29fb2ZMTrcnZH9KVouULGdDM+OojE5hR8uYutg3sl2aHXsP02bVXdRK332i1R0GHgVek35G3wrU933AyUmLJHVfS5yZPs18A5GP37sn6hcgHrvje7MDCRRBPYbgySefbPzpp5/W93g8Kioqyj1v3rwdZsWiteZQWk7jw2k5zT1aS5NW1WmEMfBoMnbbdOBd7A7zR22Jms+ZFU7q3pbkpNU1O5QgdRrwHXbbV8BU7I6il1MEmaBOCBISEg4kJCQcMDsOR5Yzer8jq1Wuy1PpkXPihLXBGIA0HrvtRpkFTfiN1pB2oAnpB1tQymJhosoMBs7HbnsceBS7wyeDlqqjoB1UGAhynO6w7YfT2+08mtFBkoGAcTbwF3bbNBl8JHzOmRnO4c2dST/QUpKBgBICTAd+w27rYXIsppGEwCRH0nMabD2U3i09x1XX7FhEEbWABODXYP5wED6kNaTub8LhLd3yF+8SgegUjPe9HbvNL/MvBzJJCKqYy+2x7jiS0XZfSlaMR2t5/gPbqRi/GB7HbpMWHFE5zqxwjkirQDUSCszASAxOMTuYqiRfSFXIkeWss+Vgere0bGc9s2MR5RYC3AskYbd1MzsYUY3ktwps7opTWgWqoR4YPwhmBEtrgbmDCgN0KVRf82it9qVktTiWkSuL7lRfXTF+MUzC7njb7GCqq6BZ8tztsnJ8e1tyM6LLLiwCWCjGhGYXYrcNw+44aHI8fhXULQR5qx127ty566+//hpR+P5TTz11wsuhZuW6w7ceTO+SlwwcOrCfW8YMZ+iAPoy44Eym3HQtx44eKauaYiVMn8ZFZ5zMKa3qsWn9f6+Y2bljG9dediGXnN2b0XHn8s/mjaXWpbXmxlFD6d/tpPxte3fvoudJDRg56Kz82+7k4q/MfH3m05zSf1Dk6Rdfy849+/K3j508g1W//VGpxxeAIoG3vn/w7Cdi4hMjyiwtgspvv/1Wq0WLFrE4M8M5srmLv5MBj8fDbQ88Sbt+Q2l/5lBefvuDEstu3b6LfkPH0rH/ZfQZcvV/ljQubV9BS775ke7nXkH3c69g6ff/rhv01gef8fiL//PdAwtM/TBaC3qaHYg/BXVCMHv27EbTpk3bv2nTpg19+/bNKnj/0KFDISe6ProjMzd62+H0Ljkud/6Xh9Vq5aY77mbRit/4eNkqWrY+iecfnV6p+i8YMpQ5n3xJ85atiux7JP5Oho8eyxc/rOH6iXcwfcqtpdY1/41XaXVS0ZVaa0dF5U+FvGDpSlrFFC2TnpZK4qcLSFqxJHPidSN56a0PAVj2w2oiI2pxZp8elXp8gShTh22+xTn5DmBVTHziSWUeIIKKQls4srUL7txwf5/rnYVL2LBlO1tWfsqvi+fz9Kx5JX6Z3zztUW4aM4wtP37GtIljGXvnjHLtK2j6M7NYMv9Flsx/kfuffAWAg4ePMv/jJUydeJ3vH2DgaQX8iN1WdOnWGiJoE4KxY8e2WrNmTdTDDz/comfPnp0L3y9uffQWLVrE3n777c179uzZuWnTpic/9dRTjV544YUGeeulz549O39swMWXDevS7/TTOgw7v5910nUjOXLIaGlq0Kgxp/Y9Iz+O2J692ben+PVNytLr9DNp0qxFke1Hjxxmw19/EDfMeN2eP2QoB/bvZdeO7cXW88/mjXy3NJEbJk6uVBwWqxWP243T6SQjM4uw0BAys7J4ZOYbJNx3W6XqDERa47g49/Fa2YRHAD2BpJj4xPPNjkuUX14rYKdOnbpOmDChRb169U7ZvHlzGMBNN93Usnv37l06d+7ctXfv3p3y1jlJT09XcXFxbdu1a9etU6dOXc8888z8uXynTJnS/KSTTurerVu3Lh/Of6tViIUQtMcKsPT7n+h/2Q30GjyavnHX8N2q3wC44MoJfLx4eX5M3/+0hp4XXlXhx/Lhoq8ZP2YYVquV+vVsjBp6Ie9/9lWRcoeOHGPNXxu5evgQAIbHncfufQf5Z8euUvcVFhoSQmZWtvc9bnSp32l/lifvv72yy5VXR5HAh9htj2K31bgBokGbEMyZM2d39+7dMxMSEnavXbt2U+H7L7300q6YmJjsTZs2bSg4r3lGRoZ17dq1m5YvX755+vTprfbu3Rv2xx9/bHrvvfe2TZs2rbXWmp1HM066+6GnIt9f8h0fL1tFz75nMOv5hCIxuN1uPpjzBgMvHOLTx3Zw314aNm6S/yZVStG0eUv279tTpKzT6eThaXfwYMLzWKxFL7vPysxkdNy5jLpoAK/NfAq3u+hSDpGRtblm/ETOGjw88vOvv+eOG0cz/enXuOvma/6z8mF1d59r3KbtunnBVoEGwFcx8Yk3mhWTKL+9e/eGTJo0KWbhwoXbNm/evKFz587ZKSkp+d9kdrv9wN9//71x06ZNG2666aZDkyZNag3wySef2BwOh3Xbtm3rN2/evOGTTz7ZDvDBBx/YFi1aVG/t70kb161YlHVg7878LoLtO/dgf/Z1lsx/kaSv3uO9lx9j9KT7ycnJ5fpRQ5mzYFF+XG9/uIgbrix5rY+S7Np3gJMKrEQY07I5u/YWnWdt974D/1n5UClF6xZN2bX3QKn7CnvqgTu4bvIMxt5p55kH72Txsh9o0rA+fXt2r3DsNcD9wKfYbTXnAw6zBxVWQ6NHjz4G0L1795ywsDDPVVdddRzgrLPOykxNTQ1Zu3VPh5DIOtFffvYxixd+SE5ONrk5OdSt3+A/9Witeez+u6hjq8uYcbeY8EgMrz//JOcNvoS2HTqxd/d/fxU0atyEr3/bQIOGjXAcP87UW29g3uyXuX7CHUXqGXXdjUwff3lmuCs1KumvDezZf5DBA/tx631PcOjIcc46rSe3j6v4r6BA8b375BXvu88bUMwuK/BGTHxig+SEuCerOi5Rft9//33tTp06Zfbs2TMbYNKkSUfvueee/ARv0aJF0a+99lrjjIwMq8fjweFwhAD07t07c9q0abWuvvrq1gMGDEgbMWKEA2D58uV1Lht6iaO++3AHXNm1b756OD/++gcAX333E/8k7+bsYf/mihaLYtfeA1w++Bxuf/Bp9h88TJ2o2ixevjJ/tcBAdtZpp/LL4nmAsYrpkGtu46t3X2HmG++y6rc/adKoPs/NuIuwsKAYkA9wKfAzdttQ7A7Tpr33paBtIaiswuujR0ZGegBcHkKVUqRl50b//uvPvPfW67w8bwGffPMzd09/lNyc/67tkjB9Ggf37eXpV9/CYin+z3DtZRcyctBZjLmkYq3STZq34Mihg7hcLsBIPg7s20Oz5i2LlF2zehXvz5nNRWeczNhhF5GelsZFZ5zMsaNHCAsPp0FDYxiFrV49Lhs5ht9//bnUc7tcLu5+eCYzH7qbdz5ZQqMG9fho9lN8+uV3bN9ZtIWiOjiuo/64wTm1fxnFEmLiE5+ukoCEz23dujVs2rRprd99990dW7duXf/ee+9tz8nJUQBdu3bN3bRp0/qLLrrIsWrVqqhu3bp1O3z4sNWCttZW2Q1xZdcG49d1Ho3mgrNP549lH+Tf9iYtpUPb1kRE1OKKi89n/sJEPlq8jHPP7EOD+nWLxJTw8tv0uOBKelxw5X8G8eVp3bwpOwv8kk/es4/WBVoM8rRq3pT9h4785/Ng194DtG7RtNR9pbkv4WXuv30cBw4d4fOlK/ho9lM0qGfj3U+XlPlc1zDdgdXYbbFmB+ILkhCUoCLro+c43WHbDqd3zruf6kihdlQUdevVx5mby8fvzvlP+YTp09idvJ3n33iH0LCwwtXlm/fZ1yxYupJ3v1heYpniNGjYiC7dTybxkwUALF+yiCZNm9O6TdsiZed88iVfrV7Hlz//xZxPviSqTh2+/Pkv6jdoyNEjh3E6jWm9c3Ny+OarxXTudnKp53729XcYfflgmjZuSEZmVv6HpFKQkZlVoccRCNxaHRqck9Dcg6U8r4W7Y+IT34qJT5QpjwPQwIEDMzZv3hyZNzZg1qxZDZxOpwI4fvy4NSQkRLdu3drp8XiYOXNm47zjtm3bFqqUYsyYMY7XXnttj9aaHVs3RV068NS6CxOXWdPSM9BaM/udT/LPNWjAGSxf+Qt/bdiSv+3XtX/n///6UUN5+8NFzFnwRYndBfGTrs9PJgYN7Fdk/xUXn88b736C2+3m2HEHHy76mlFDLyxSrnHD+pwa25l3Fhpf1gsTv6Fls8a0b9O61H0lWZ30F47UdAafc6b3PW5st1gspGdUv/e4DzTGWCSp2l+BYPI8BIE1X0BB5V0f3en2hG4/ktHW6fbkf7OfOfB8Ej/5iEsH9MFWrz6n9x/AoQP7AVj722ref3s2bdp35Oqhxi//5q1OYuab71Q4xofjJ7Pym2UcPXyQCVcPp3btKBb/+DsADyY8z4NTbuXNl58jKqoODz/7cv5x9ntuZ+AFg8scu7D2t9W8+szjWK1WXG43ffudxfjb7iqx/D/bk9X3P69hyfyXALh62BAuv/EuPlq8nDN7n1LquuqBSGtc45137T9I/YrMVnY9UD8mPvHK5IQ4WfK3EDPnC2jRooXrxRdfTL788svbh4WF6QEDBqRGRkZ6GjRo4O7UqVPu0KFDj3Xu3LlbvXr1XEOGDEnJOy4pKSli+vTpLbXWuN1uNXL4MEfftraTiOkX8tvavzh10Gii69TmonPOzD9X+zatee/lx7l52mNkZmWT63TSs3tn3nvlcQD69uyO1Wrln+TdXDjg9Eo9nmtGxPHbn+vp0P8ylFJMuenq/PfYoq9XsOjrFbz5jHEF0+sJ9zP2zhk8/tJbRNepzdvP2fPrKW1fYU6nk2mPv8jHs43GsJO7dqTtSS3pfu4VNKxfl0/ffLZSj6UGaAB8i902GLvjF7ODqSyltf9Xeq2p66LnuNyh2w9ndHK6PX6/xKg66BR2ND3cler3QTZVtab6B65zVsS7xhc3bqA8vgeGJifEpfkwpGolEN/3x48ft9SrV88DMH/+/LozZsxosX379vXlriA3oxZHt3VCu2X8VSVU1XvXRGnAIOyO0vtWA5R0GVRSrssjyUANtsvTaPUJJAMAA4FPY+ITS+4TElXuySefbNypU6euHTp06Pbcc881nTdvXvkHgzkzwyUZEGWoA3zpt1l4/UwSgkowkoF0SQZqqFxt3RmX+3gXH1R1HvBOTHyivM8CREJCwoHNmzdv2Lp16/q1a9du6t+/f2a5DnRmh0kyIMrJBnxdHQcaygdVBeW6PCHbD6d3zJVkoEbSmqwrcmfkpFHb5qMqrwBe8lFd1Y0H0FpX8xX+XDmhHP2nEx5X0FxP5y/5PdRV0FVtsvrAcuy2TmYHUhGS7VaA26MtO45kdMh1e2Qp3BrqWdcVSX/q9mVdYlhRE2PiEw8mJ8Q97ON6A90+j8fjOHToUJPGjRsfU0pVv28Bj0cpR3Ib5c6Vrp8TpDUcznCjclIJza7c+i3VTGPgC+y207A7jpsdTHlIQlBOWmt2HcuMyXG5I82ORfjHn562K192X36Wn6p/yJsUvO6n+gNOr1690pOSkm5JSUl5LTU11QZUu5aCkJyURhZ3tixk5SMqJ5WWfzyL1R0QY0yrQgeMqY4vwu4oOs1rgJGEoJz2O7Kbp2U765VdUlRHGTp84xW5M/r6+TSvxsQnHklOiFvo5/MEjF69eq1OSkrq7/F4mlPNuijbr546ITzr4O1mx1FjaE1o9pFgSgbyXAA8C0w2OY4ymZoQxM6N9ctIzHXXrTuha503b94c9vnnn9umTp16GOBYRm69PrGdmj3/5rt07la140RWLP+K5x6djsftpn3nrjzy3CtE1Sm6qqrH4+HJGfH8+O0ylFKMufEWrhp7U5n7CkpNSeHOm64h5dhRTu17Bvc/blxTfOzoEe65ZSyvvfcpoaE1rxvVo0mJy308KpdQf48LsQDzY+ITtyYnxP3l53MFjF69eqUDW8osGEjstsuAmrMylzDbHdhtf2F3vGV2IKWpVhl7Vdm6dWt43tLHGTmuyL0pWTG+qDdvetDyysxIx37P7cx88x2+WJlEoyZNmf1C8bPjJn6ygO1bN7PohzW8+8U3zH3tJf7ZvLHMff+p47MF9Ol3FguX/8SObVvZumkDAM88fD933DujRiYDWqOnum7ekqybFV1D2j8igI9j4hOLZnUiMBijw+dTDbs4RECbhd1WdMrJABLUCcHChQuju3bt2qVjx45d+/Tp0ykpKakWwL9LH3fpFnfxJZ211haAb778gmsuvZCL+p3C7Beeya/nyKGD3DPhekZffB7Dz+/Hy089mr/vojNO5vnHZzD64vN48M4JFYrvx++W07nbybRp3xGAUdeO48vPPym27NIvPmHYVdditVqx1avHoEsu56vPF5a5r6CQkFCyszLxeDw4c3MIDQtj1XfLibbV5eRT+1Qo9upiuefUFR+7B/i7q6CwDsD/qvicojzstobAIqBGrWInAkIY8Al2W1X9+KiwoE0I9u7dGzJu3Li2c+bMSd6yZcuGG2644fDIkSPbeTwe8pY+XrTiV/eLb7+f/yshLdXB/M+/5r3F3zL39Rc5uH8fAA/cOZFR197Ie4u/4cOvfmD9X3/w9eLP8s/lOH6cd79YzhMvvVGhGPfv3UOzlv8uSNS8VWuOHDpQbEvD/r17aN7y39dZ85at85c7Lm1fQXHDRrI7eQejBp/Naf0H0rhpM9546Vlum/pAheKuLo7qOmtvdk7x1yDCsoyIiU+U/ulAYreFAB8BMSZHImquJsDn2G0BOTg9aAcVrlixonbHjh2z+vbtmwUwYcKEY1OnTm29Y8cOo13cYg3Ndv53EpIhl40AoF79BrRoHcPe3TupY7Px66oVHDtyKL9cZkYGydv+Xfpg6BVX/WcltEAVGVmbZ1+fm3//aft9XD/xDnYl7+B/Lz8HwPjb76JT12o330YRbq0ODMp5smU5Fy3yl2di4hN/SU6Iq7Zzn9cw0zFmmBTCn3oCTwO3mh1IYUGbEJQm10M4ylLkuQkL/3f6AavFitvtzp9gY/7nywivVfz0BJG1i2993LZlE/feNh6AHr1P477HnvnP/mYtWrJ65ff59/ft3kXDxk0JCSn6Z2vWoiX79uzmlF5G6/e+PbvylzsubV9J1q1N4tjRwww4fzBjh13EYy+8jtaa6VMm8tbHiaUeG+i0xjnWOe3wEeqandmEAgti4hN7JifEHTM5luBmt50K3Gt2GCJoTMBuW4jd8a3ZgRQUtF0GAwcOzNiyZUvEb7/9Vgtg9uzZ9Zo0aeJsfVKM2xNWp1laWmq56omsHUWffmfx1qsz87cdOrCfg/v3lnlsu46dWbB0JQuWriySDACcOfA8Nv79Jzv+MQZofzjvfwweOqzYui6Iu4xP3p+H2+3Gcfw4S7/4lEGXXF7mvuI4nU5mPmHn7umPAZCVlYlSYLEoMjMzynxcgW6++4KfVnpONjsZyNMamGd2EEHNbgsD5iA/kETVUcD/sNsCaqyKqW+AE7088EQ0b97c9eabb26/7rrr2rhcLmWz2dwffvjhtgOpOS3bdu4W1q5jZ4addwYtW8fw4tvvl1rX4y/O5pmH72fYeWeglCIisjYPJjxHk2YtTijG2lF1sD/1ApNvvBq3y0X7Tl145PlX8/ePHHQWL89dQOOmzbh4+CjW//k7l5zdC4XimvG30qFLN4BS9xVn7msvcsnwK2nQyFgSfuJd93LrdaMAmHL/Qyf0mMy2w9Pk5+mu609k0SJ/iIuJT7w+OSHubbMDCVIPAoGSIIrgEYPRdVCx0eZ+JMsfF+DIckbvPJrRwew4qqtAX/44R4fsODXn9YYZRNTxY3iVlQJ0TU6I2292IEHFWJVuNdI6IMyhgQuwO74xOxAI4i6Dwlxuj3Xvcd/MNyACj9ZkDMt9yB2gyQBAXeDVsgoJH5KuAmG+vK6DgPhckoTAa29KViuXx1PzZt4RACS4rvpjvW7T3uw4ynBZTHxi8YNEhD/MALqbHYQIeidhdB2YThICIC3bWduR5WxgdhzCP5I8HX543X3JmWbHUU4vxMQnBtRAoxrJ6CqYZnYYQnjdjN12vtlBVFVCELDromut2e/Ibm12HKL8KrKmerquteHK3AdP929EPtUS45er8K+ZgJlzUAhR2EzsNlN/pFdV31nArot+PNNZLysrJyBnjapuspXbot3+/dNWZE11j1bHhuQ+Ee0kpLqtZT85Jj5xTnJC3HqzA6mR7LaLgf5mhyFEId2AazHGtZiiSq4yAEhKSjrdYrG8ZrFYAmZddA2Wo5nuFh4tXSe+0MSalhPqyfb3ioH5a6pHpRRdoCmP1ngmO2/9/XPPmb39HY+fLEpOiLvU7CBqHOMX2J/I2AERmHYBHbE7csw4eZUlBABJSUlRQMCsi25fcez2Y1nugLkGtLp7o9aLv7fVu07160nKuab6Enff7yc6Jw/0ayz+1zc5Ie43s4OoUey2a4G5ZZYTwjx3YXc8Z8aJqzQhCCQx8YnNgH8A6S7wkaVhU1d1suwxffDeIW1LOi3nlZ4aS0AknidgaXJC3GCzg6gxjMsMt2CM6hYiUB0F2mJ3lG+6XB+q7h+YJ+IhJBmocVzasm9wTkJMDUgGAAbFxCdKX7fvTECSARH4GgD3mHHimvChWWEx8YktgLFmxyF8S2tyr3XGHz+GrSZdQvqI2QHUCMbEL/ebHYYQ5XQndlvTqj5pUCYEwO0YK82JGuQt90U//+TpXvIiDdXTwJj4xPPMDqIGuBtoZHYQQpRTbYw1NqpU0CUEMfGJdYCbzY5D+NY/nuY/PeK6JtAWLfIVaSU4EXZbNHCn2WEIUUHjsduaV+UJgy4hAG4CbGYHIXwnW4duG5r76Clmx+FHZ8TEJ55rdhDV2PVAQMwVL0QFhFLFKyEGVUIQE58YAtxhdhzCd7Qm/bLcR1QmtWqbHYufyeWxlWHMO3Cb2WEIUUk3Y7f5fW6XPEGVEABXAq3MDkL4ziOua/7apFu3NTuOKnBpTHxilQ8yqgEuBtqZHYQQldQIGF1VJwu2hOBuswMQvvOLp/OKt9wX9TM7jioSCowzO4hqSFoHRHV3e1WdKGgSgpj4xAFATe5nDiqpOuLvMbn3BUsykOemmPjEoHnPnjC7rR0gV2iI6q4HdlufqjhRMH24XGN2AMI3PFoduSgnoYGLkGC7dLQ1MMTsIKqRcQTIuilCnKDxVXGSoEgIYuITw4HhZschTpzWeCY5b9+1l0bNzI7FJLeYHUC1YLeFYFxdIERNcBV2W5S/TxIUCQHGr6q6ZgchTtwXnjN+WOI5zb8LKAW2i2LiE2X63bJdDMggTFFTRGEMiverYEkIxpgdgDhxB3S93253Tqqpkw+VlwW4yuwgqoFRZgcghI/5/TVd4xOCmPjEaCDO7DjEiXFpy57BOQntQUmfMFxqdgABzegukFUiRU0zwDvrpt/U+IQAY+xALbODEJWnNTmjc+9PTaFOPbNjCRCnyZwEpTob6SIUNU8ofk50gyEhqLJJHYR/vO6++JdfdZeuZscRQBRwidlBBLChZgcghJ/49X1foxOCmPjE+sA5ZschKm+zp+WqBNfos82OIwBJt0HJJFkSNdUQ7Darvyqv0QkBMBDw25Mn/Ctbh269LPeRnmbHEaDOi4lPrOnrN1Sc3dYNCIaprEVwqg/091flNT0hkBXiqimtSR2a+2hIFuGRZscSoGoBF5odRACS7gJR0/mtBUwSAhGQprvGbtiiW7UxO44AJ90GRUlCIGo6v73Ga2xC4B2F3cXsOETFrXJ3WzHffeHpZsdRDUgLQUF2W2Ogr9lhCOFnHbDbOvmj4hqbECCtA9VSiq7917XO+DPNjqOaaBYTnxhjdhAB5Exq9meaEHnO8kelNfnNIwlBNePW6vBFOQmN3VhDzI6lGpHk6V+9zA5AiCril9e6JAQiIGiNe4Jz8p79NJAJdypGEoJ/SUIggoUkBOUVE5/YApABadXIJ56zVn7t6SOXGFacjLX4lyQEIlicjN3m8+Xfa2RCAPQwOwBRfnt1g1/vct4S7IsWVVa3mPjEMLODMJ3d1gpoZHYYQlSRcKCbryutqQnByWYHIMrHqa27Lsp5opMsWlRpYUCs2UEEAGkdEMHG56/5mpoQnGJ2AKJsWpM9KvfBzFSibGbHUs3Jl6E8ByL4SEJQTt3NDkCU7WX3Zb/9rjt2NjuOGkBaxCQhEMFHEoKyxMQnWoEOZschSrfec9KPz7pG+uVa2iAUY3YAAeBUswMQooqdjN3m00u0a1xCgPHhKIOsAlimDts8PNcuv+h8J8bsAExlt9UDmpgdhhBVrBY+XsirJiYEfpnSUfiG1jguzn28VjbhEWbHUoOcZHYAJmtudgBCmKSZLyuriQmBdBcEsPtc4zZt182D/QvM16Ji4hMbmB2EiXz6oShENSIJQRlkprsA9b375BXvu887zew4aqgYswMwkSQEIlhJQlCGhmYHIIo6rqP+uME5tb/ZcdRgMWYHYCLpMhDByqev/ZqYEARz02lAcmt1aHBOQnMPFqvZsdRgwdwNIy0EIlhJC0EZpIUggGiNa7zzrv0Hqd/Y7FhquNZmB2AiSQhEsJKEoAzSQhBAPnSfs+pbz6kyc6T/RZkdgImky0AEK+kyKIO0EASIXZ5Gq+Nd42XRoqoRzJdxSguBCFbSQlCG+mYHICBXW3fG5T7exew4gkgwJwTSHSWClQ27LdxXldWohCAmPrEu4NOpHEXFaU3WFbkzctKoLYsWVZ1gTghqmR2AECby2cy8NSohILg/FAPGs64rkv7U7TuaHUeQCebXvvwIEMEs1FcV1bSEwG12AMHuT0/blS+7L5f5BqpecCYEdpsFUGaHIYSJfJYQS0IgfOYXTxfXFbkz+podR5AKzoRAWgeE8Nl7oKa9mSQhMNF019izQcmvNXMEa0IgrzcR7Hz2HpAWAuFDkgyYKFhf+8H6uIXI4/JVRZIQCFEzpJodgCnsDp99GApRTUlCUAJJCESwSjM7ABPJ+14EM0kISiAfDCJYBWcLgcFpdgBCmEgSguIkJ8S5kKRABKdgbiFwmB2AECZxApm+qqxGJQReh8wOQAgTBHMLwT6zAxDCJAewO7SvKquJCYF8OIhgFMwtBPvNDkAIk/j0tV8TEwL5cBDBKJhbCOQ9L4KVJARlkBYCEYyOmx2AieQ9L4KVT1/7khAIUTMkmx2AiaSFQAQraSEog3w4iGCUbHYAJpL3vAhWkhCUQVoIRDDaaXYAJpKEQAQrSQjKsNfsAISoYvuTE+KyzA7CRPIjQAQrGUNQhq2Az67LFKIa2Gx2ACbbD+SaHYQQJtjly8pqXEKQnBCXTnD3p4rgs8nsAExlLHD0t9lhCFHFdmF3HPVlhTUuIfBaZ3YAQlSh4E4IDElmByBEFfP5a14SAiGqvw1mBxAAJCEQwUYSgnL6w+wAhKgiHuA3s4MIAL+bHYAQVUwSgnKSD0gRLNYnJ8SlmB1EAPgLWQZZBBdJCMojOSFuJ3DY7DiEqAKrzA4gINgdOcB6s8MQoorsxu7w+XdcjUwIvKRPUQSDH80OIIDIe14EC7+81mtyQrDC7ACEqALSQvAvSQhEsJCEoIK+MjsAIfxsT3JCXLLZQQSQX80OQIgq4pdxcjU2IUhOiPsDmeNc1GzSOvBfa4GDZgchhJ9l4qcW8BqbEHh9bXYAQviRJAQF2R0eINHsMITws2XYHdn+qLimJwRfmh2AEH602OwAAtAiswMQws++8FfFNT0hWAa4zQ5CCD/4PTkhbofZQQSgZYBffj0JEQA8SEJQOckJcceQgUaiZvrY7AACkt2RCXxjdhhC+Mmv2B2H/FV5jU4IvORqA1ETSUJQMuk2EDWV31oHIDgSgoVmByCEj61LTojbanYQAWwxoM0OQgg/8GuyW+MTguSEuPXI2gaiZpHWgdLYHfuQSYpEzbMDu+Nvf56gxicEXm+bHYAQPiQJQdk+MzsAIXzsc3+fIFgSgveRkceiZtiQnBC3wewgqoF5GCOyhagp/P7DNigSAu/ysJ+aHYcQPvCG2QFUC3bHbmRAsag5fsXu+MvfJwmKhMBLug1EdZeOvI4rQpInUVNUyWs5mBKCb4BdZgchxAmYl5wQ5zA7iGpkMXDA7CCEOEHpwAdVcaKgSQiSE+I8wByz4xCikjTwstlBVCt2hwuYbXYYQpygedgd6VVxoqBJCLxeA3LMDkKISlienBC30ewgqqFZQK7ZQQhRSRp4sapOFlQJQXJC3H7gLbPjEKISXjI7gGrJ7jgALDA7DCEqaSl2x+aqOllQJQReTwJOs4MQogK2I8v6nogXzA5AiEqq0tdu0CUEyQlxO4F3zI5DiAp40TsGRlSG3bEG+N7sMISooHXA0qo8YdAlBF5PIMsii+phL/C62UHUAPeaHYAQFXQfdkeVrskRlAmBd2EY6VcU1cFjyQlxMsvmibI7ViPTGYvq40fsjsVVfdKgTAi8HkNWRBOBLRl40+wgapD7kJZBUT1MM+OkQZsQeFdBlEViRCCbkZwQJwNgfcXu2AjMNTsMIcqwCLvjJzNOHLQJgdc0ZF4CEZjWAvPNDqIGmoEsdCYClwejJcsUQZ0QJCfE7QCeMzsOIYpxV3JCnHRp+ZrdsQd4xewwhCjBfOyO9WadPKgTAq/HgX1mByFEAYuTE+K+MzuIGuxxQNaEEIEmB5huZgBBnxAkJ8SlA3ebHYcQXhnA7WYHUaPZHceABLPDEKKQl7E7TF2AL+gTAoDkhLj3gWVmxyEEcJ+3K0v417PAH2YHIYTXdozxLaaShOBfE5HBRsJcPyJrFlQNu8MJjEWmMRfm08AN2B0ZZgciCYFXckLcPxh9i0KYIRsYJwMJq5Dd8SfwqNlhiKD3MnbHCrODAEkICnsCWG12ECIozUhOiNtidhBB6HGMSzyFMMM/QLzZQeSRhKCA5IQ4F3AVMgJZVK01GH3aoqrZHS6k60CYI6+rINPsQPJIQlBIckJcMnCL2XGIoJELXJ+cECdT6prF7vgLeMTsMETQeRG7Y6XZQRQkCUExkhPiPgDmmB2HCAp3JSfE/W12EIIngN/NDkIEjX8wcUbCkkhCULJJgPTpCn+al5wQ97LZQQjyug6uAwKm+VbUWE7gukDqKsgjCUEJkhPiMjDGE+SaHYuokdYiXVOBxe74GyMpkCs9hD9NMmvxorJIQlCK5IS435FZDIXvHQWGJSfEZZkdiCjE7vgYuRRR+M+r2B2zzQ6iJJIQlCE5Ie4lZDEU4Tse4Crv4FURmGYAn5odhKhxvgPuMDuI0khCUD53AF+YHYSoER5IToiTabIDmd2hgWuAv8wORdQY24ErvGNVApbSWrrLyiMmPrE2sALoZXYsotpakJwQN8rsIEQ52W0xwG9AQ5MjEdVbGnCGmcsal5e0EJSTd5DhxcBOs2MR1dJSjF+dorqwO5KBEcikRaLyNHB1dUgGQBKCCklOiDsADEFmMhQV8yPGIEK5YqW6MeaYn2R2GKLaegC7Y5HZQZSXJAQVlJwQtwEYhlyOKMrndyAuOSEu4K45FuVkjAq/3+wwRLXzHHZHtVowTxKCSkhOiPsWuBxZLlmUbiMwKDkhLtXsQMQJMj7Y5XJEUV6vYnfcZXYQFSUJQSUlJ8QtwRhTIL/8RHF2AOcnJ8QdMTsQ4SN2x4PA02aHIQLeW1TTbiZJCE5AckLcN8BgjFGkQuTZg5EM7DM7EOFjdsdUZGVKUbK3gfHeS1erHUkITlByQtxK4AIgxeRQRGDYBPRLTojbbnYgwk/sjruBx8wOQwScWcA47A6P2YFUlsxD4CMx8Yk9gWVAA7NjEab5DRgi3QRBwm67HxlXIAwzsTvuNDuIEyUtBD6SnBC3FhgI7Dc5FGGOpcC5kgwEEbvjMYxZTN1mhyJM9VBNSAZAWgh8LiY+sQWwCDjV7FhElZkN3JqcEBfQ05IKP7HbBgMfADazQxFVKhO4HrtjgdmB+IokBH4QE58YCczFmOVM1FwamJacECcjz4Od3dYJ44dAR7NDEVViN3AZdsfvZgfiS9Jl4AfeSWhGYqyaJhlXzXQcuEySAQGA3bEZOA2j60jUbD8BfWpaMgDSQuB3MfGJQ4B3gHpmxyJ85mfgyuSEuF1mByICjN1mBZ4CppgdivCLt4FbsDtq5Ey1khBUgZj4xLbAJ8ApZsciTojGmJjmfhkvIEplt40FXgPCTY5E+IYbuBu7Y6bZgfiTJARVJCY+MRx4BLgL6aqpjo4A1yYnxH1pdiCimrDbTsdoHWxndijihOwDrsPuWG52IP4mCUEVi4lPPAOYgww+qk5+AEYnJ8TtNTsQUc3YbbWBBOBWQJkcjai4ucBk7I4UswOpCpIQmCAmPjECY6azO5DWgkCWATwEPJecECfXmovKs9sGYsxx38bkSET57ANuwu5INDuQqiQJgYli4hPPwhikIk2Kgecz4A4ZOCh8xmgteBKYiLQWBLJ5wB3B0ipQkCQEJvPOWfA4RpNiiMnhCNgJ3JacEPeF2YGIGspuOwf4H9JaEGj2Y7QKLDY7ELNIQhAgYuITO2H8erjU7FiClBNjFbtHvPNICOE/dlsU8ARwC/JDwGwaY6zAFOyO42YHYyZJCAJMTHzi2RiXtvU1O5YgsgyYnJwQt8HsQESQMWY4fAwYbnYoQepL4F7sjj/NDiQQSEIQgGLiExUwCqMrQZoV/Wc5YE9OiFtldiAiyNltfTCuRjjX7FCCxGogHrtjhdmBBBJJCAJYTHxiGDAJmAY0NjmcmmQZRiLwk9mBCPEfdtuFGIlBT7NDqaE2Avdhd3xmdiCBSBKCasA7qdFo4E4g1uRwqjNJBETgs9vyWggfRa5A8pU9GGvLzMXukEuISyAJQTUTE594HkZiMAS5dKk8nMCnwMzkhLifzQ5GiHKz20IxFkm7A+hjcjTV1TrgBeBd7I5ss4MJdJIQVFPeqxLuAK4DIk0OJxDtAmYDbyYnxB00OxghTojddgZwO8aS6nJVQuk8wBfAC9gd35kdTHUiCUE1FxOfWBfjV8QY4CyCu9UgG6M1YA6wPDkhzmNuOEL4mN3WDBgL3Ai0NTeYgLMHYzbI/2F3yIRilSAJQQ0SE5/YGrgK41dEb5PDqSrZwLfA58CHyQlxDpPjEcL/jHEG52EkBnFAlLkBmSYLWIox0dOXMj7gxEhCUEPFxCeeBAzz3k4DQs2NyKf2AInAYuCb5IS4LJPjEcI8dls4cA4wFLgEaGluQH53EOO9vwhYjt0hE4n5iCQEQcA7PfIZwADv7TSq1zrtOcAaYAmQmJwQJ5OICFESu60n/yYHp1IzuhHXYYwLWAT8it0hX1x+IAlBEPJexngaRnJwNsaljE1MDepfuRhv/jXeWxLwd3JCnNPUqISojuy2FhhdCmcAvYCugNXUmMrmATZjvPdXA4nYHcmmRhQkJCEQQP7gxE7eW+cC/2+P71sTXBgLiez23vYAWzESgHXJCXG5Pj6fEALAbosATsFIDvJuXTHvygUPsAnjyz/v9gd2R7pJ8QQ1SQhEqWLiE61AI6AeULfQv3n/j8ZYIMSN8QZ3Ywz2yyxwO4jxxb8bOJCcECeDf4QIBEaScDLQAWhW4Na8wP8rO2gxEyP53w/sK/D//cA2jC//jBMJX/iOJARCCCFKZ6zO2BxoiDFAORSjVSGvZcFV4OYEjgL7sDtSqz5YUVmSEAghhBACi9kBCCGEEMJ8khAIIYQQQhICIYQQQkhCIIQQQggkIRBCCCEEkhAIIYQQAkkIhBBCCIEkBEIIIYRAEgIhhBBCIAmBEEIIIZCEQAghhBBIQiCEEEIIJCEQQgghBJIQCCGEEAJJCIQQQgiBJARCCCGEQBICIYQQQiAJgRBCCCGQhEAIIYQQSEIghBBCCCQhEEIIIQSSEAghhBACSQiEEEIIgSQEQgghhEASAiGEEEIgCYEQQtRYSqk+SqmflFIZSimtlOqhlBqslPpDKZXt3VbX7DhFYAgxOwAhhBC+p5QKBT4CsoE7gUxgN/ADsB64FcgBMpRS9wEbtNafmRRrA+AG4BKgCxAKbAKe11p/aEZMwUhprc2OQQghhI8ppToDG4HxWus3vdsGA18CF2itlxcomw58rLUea1KsFwOfAEuA7wAXMBw4B3hYaz3DjLiCjbQQCCFEzdTY+29KGdsCwXqgg9Z6Z94GpdSrwHJgmlLqKa11hmnRBQkZQyCEEDWMUmoOsMJ79yPvWIHvgbnebb95t81RSmmgNnCdd5v2Ho9Syu6931Ep9Y5SyqGUOqyUekQZWimlPldKpSqlDiil7ioUR5hS6mGlVJL32Ayl1Eql1DkFy2mtdxRMBrzbNPAZEA609ekTJIolLQRCCFHzvA7sBe4DXgR+Aw4Cm4GbgOnADmAbxq/wN4Ffgdne47cVqu9DjO6HeCAOeAA4BtwMfAtMA8YAzyilftNa/+A9Lhq4EXgfeAOoA4wDliql+mqt/yjjcTT1/nuk/A9dVJaMIRBCiBpIKTUQoz/+Cq31x95tY4G3gT5a6zUFyhY7hkApZQdmALO11jd7t1mBZKAFcK/W+knv9rrAPmBBXj3eslatdW6BOutiDBhM1FqPKyX++hhJyGat9dmVeQ5ExUiXgRBCiLK8mfcfrbUbWAMo4H8FtqdgtEC0LVg2LxlQSlm8X/Ih3uNPLelkSikL8C5QF7jNh49DlEISAiGEEGXZVei+A8jWWhduyncA9QpuUEpdp5T6C+Pyx6PAYYxuB1sp53sJGAzcqLX+80QCF+UnCYEQQoiyuMu5DYyWA+M/Sl0NzMEYkzAO40v+AoxxB8V+/yilZgATgXit9fzKhywqSgYVCiGE8NdgshHAdmCYLjBgTSn1UHGFlVK3AnZgZt7YBFF1pIVACCFEBkZ/va/ltSIUbDU4DTijcEGl1CiMKyLeBab4IRZRBmkhEEIIkQScr5SagnGlwA6t9S8+qHcxMAz4VCmVCLQBbgE2AFF5hZRSfYF5GGMMvgHGKKUK1vOT1nq7D+IRpZCEQAghxBSMOQgeBSIwJjDyRUIwB2MugZuBQRiJwNXAFcDAAuW6AmFAI+CtYuq5HqPrQfiRzEMghBBCCBlDIIQQQghJCIQQQgiBJARCCCGEoBIJgVLqbKXUF0qpfd5VsC4rxzEDlVK/K6VylFL/eOfTFkIIIUSAqEwLQW3gT+DW8hRWSrUBEjEW2egBzATeVEoNqsS5hRBCCOEHJ3SVgXcd7cu11p+VUuZJIE5r3b3Atg+AulrrwSUcE46xBnZB9TGW2xRCnJg6wD4tlxgJIQqoinkIzsBYb7ugpRgtBSW5F2PJTSGEf7QE9podhBAicFRFQtAUOFho20EgWikVobXOKuaYJ4DnCtyvA+zZvXs30dHRfgpTiJovNTWVVq1aAaSZHYsQIrAE5EyFWuscICfvft4UltHR0ZIQCCGEEH5QFZcdHgCaFNrWBEgtoXVACCGEEFWsKhKCn4HzCm27wLtdCCGEEAGgwl0GSqkooH2BTW2UUj2AY1rrXUqpJ4AWWutrvftfAyYppZ7CWLTiXGAkEHdCkQshqoWkpKQooDkyEZowjwfY16tXr3SzAwlklRlD0BtjToE8eYP/5gJjgWZA67ydWusdSqk44HngDmAPcKPWemllAhZCVB9JSUmnWyyW1ywWiw1QZR4ghH9oj8fjSEpKuqVXr16rzQ4mUFWL1Q6VUtGAw+FwyKBCIU5AamoqNpsNwKa1TvXnuZKSkqIsFsuPdevWbdK4ceNj3nlLRDXj0Rq3R4e43Nrq1jrE48ECKI1WAFHO/KFgGqW0slo9ymJxaavVraxWt7JYTP+7a63VoUOH6qekpBz0eDz9paWgeAF5lYEQokZobrFYbI0bNz5Wu3ZtGUAcoNwebcnKdUdkOd0ROS53hNOtQ11uT6jbo0PcHh3q1tpa2vF1U45qvMlBsZTSymJxqZAQpwoLy1GhYdkqPCxHhYXlWMLDs1VYmMvnD6oYjRs3PpaammrzeDzNgS1Vcc7qRhICIYS/WAAlLQOBIyvXHZ6Z66qd7fRE5LjcETkuT4TT7Qnz60m1VtrtDtVudyg5OZGFdyuLxaPCwzMtERHpKiIiw1K7doYlLMzp6zC8r0OFjGUpkSQEQghRQ+W6PKGp2c7o9BxXncwcd7TL4wk1O6bCtMdj0VlZUZ6srKi8bcoa4lS1amVYIiPSrXXqpFoiI6WFqQpIQiCEqDIx8Ym9/FFvckJckj/q9aXOnTt3/fnnnzfVq1fP469zuDweS1qWKzo9xxWdkeuqk+vy1KrI8evWJvHkjHhyc3PIzcnh0pGjuX7CHQBMvvFq9u3emV92y8b1zHzzHTr0PaVIPZ0HDSI8LIxa4caSNPfceCMjBhtL1/yzcyfj77+foykpREdFMfvRR+navv1/jtduV+iXXy6p+8Dzz9cFeOKeqa7Bgwc5LHXqpLw8Z07ogYMHrQkJCQcq8thE2SQhEEIIP3I6nYSGhrJp06YN/qjf7dGWlMzcuo4sZ72MXLdN61L688vwSPxkJt51LwMvHILj+HEuPacvZ583iHYdOzPzzXfyy63/cy0TrxnBmQPPh8zDxdY17+mnOaVz5yLbb3v4YW4YMYJrLruMT7/+mpseeIAfP/igaCyvvMKnr74KwJWTJ4dc0O+MBvu2b2/w6fvvk/jOO6muo0ed1rp1jyur1W8JVrCRvhQhRNBYvnx57V69enXq1KlT144dO3Z955136gL88MMPkT179uzcsWPHrrGxsV2+/vrr2gBXXnnlSdOnT8+faXXTpk1hDRs2PCUnJ0d9/vnndXr06NG5S5cuXdu3b9/t+eefb5hXbvjw4TFXXHFFTO/evTt17NixG4BSqteRI0esADfddFPL7t27d+ncuXPX3r17d/rzzz/zV3dVSvWKj49vGhsb26VFixaxL7zwQoO8fb///nut/v37d+jYsWPXjp06xz6U8GznjftTT/lzS3KbCTdcU/equHPV8PP78fJTj1buCVKKtFTj4pOsrAxCQ8Ow1a1XpNinH8wnbthIQsMqNvzg0NGj/L5+PVddfDEAl11wAXsOHGDbrl1FyoaGhJCZlUVGVhZhoUZPx7SnnuKRO+/Empsb7dy/PyZ706ZTcnfuinGnpkZXhyvmAp20EAghgsLBgweto0aNav/uu+9uGzx4cLrb7ebIkSPW7OxsNWrUqHYvv/zyzuHDh6cuXbo0avTo0e23bdu2bty4cUcmTpwY8/DDDx8EeP311xtefvnlR8PDw3W/fv0y16xZsykkJISDBw9ae/bs2XXo0KGOdu3aOQH++uuvyNWrVxfbRWC32w80b958D8Ds2bPrTZo0qfXKlSu35u0PDw/X69at27h27dpa/fv37zJx4sSjAJcPG9bhzqn3Z1542agQl8cTevzY0TCP1jxw50RunDSF3mecicvl4raxV/L14s+48OLLKvQcPfzsK0weN5qXn36U40eP8mDC8zRs/N+Z57Ozsvhq0ULe/nhJqXWNv+8+tNb0io3lkcmTaVS/PnsOHKBpo0aEhBhfPUopWjVrxu79+2nXuvV/jn9syhTGP/AAAE9NncqSFSto3KABfWJj/y2ktcWdltrAnZbaQIWEOK3R0Uet9esfttSqlVuhBy4ASQiEEEHiu+++i2rTpk324MGD0wGsVitNmjRx//rrrxEWi4Xhw4enAgwaNCi9QYMGztWrV0cOGjQo3eVysWLFisizzjorc8GCBQ0+++yzrQAHDx4MGTNmTMyOHTtqWa1WnZKSErJ27dqIvITg0ksvPV7SeIFFixZFv/baa40zMjKsHo8Hh8Pxn8/icePGHQXo2bNnttVq1Vu2J0fvOnisSa7TFXbu0CvCXB6j2nr1G5CZmcGvq1Zw7Mih/OMzMzJI3vZPhZ+jt155ntunTWfI5VewZ2cyN1wRR9eTe9Cu479N/8uWfE7rNu3p0KVbifUsmzOHVs2a4XQ6eeillxh///18NmtWhWI5s1cvfnjvPQDSMjK4fOJEPp81i5fnz+fntWtp3KABT06dmt96oF2uUNexY01dx441tURFpYQ0bHjAGhWVUeEnIYhJQiCEEIXkrbAKMHr06KNvvPFGw9TU1OP16tVz9enTJxvgpptuOunCCy90fPXVV9ssFgtdu3btkpWVld8NGxUV5S6u7q1bt4ZNmzat9U8//bSxW7duOb/88kvE+eef36lgmcjISA3gyMyNtoaEWnYdy+qQ5Syhq9zbVD7/82WE1yp9DOFdN1/H7uTtAMz+4HPq1qufv+/4saN8uzSRp159C4CWJ8Vw8ql9+GPNL/9JCD774B0uv/LqUs/TqlkzAEJDQ7n1mms4xdtF0LJpUw4cPozL5SIkJAStNbv3788vX5IZL7zA1PHjOXj0KIu/+46v3nqLR155hQ8WL+bayy8vUt6Tnl43Nz29rqVWrQxrgwYHrXXrHi/1BAKQMQRCiCBx3nnnpe/cuTP8q6++igJwu90cPHjQevLJJ2d7PB4+/fTTaIBly5bVPnLkSOjpp5+eCTB+/PijiYmJ9V577bVG11xzzZG8+hwOhzUmJibHYrHw5ZdfRm3evLnINfbFOX78uDUkJES3bt3a6fF4mDlzZuMiZTKd9TcfSOu681hmB7xTPse060CtiEi+/Ozjf8sdO0pk7Sj69DuLt16dmb/90IH9HNy/t8i5n319LguWrmTB0pX/SQYAom11iYiI5JdVP+TXvW7tGtp36pJfZteO7az/6w8uunR4iY8vIzOTlNR/J8H8aMmS/MGFjRs0oEeXLry/eDEAny1bRosmTYp0FxT0659/kpqezoX9+5ORmZmfrFksFjIyM0s8DsCTnV3buXdv25zNm2PdKSn1kOmzSyUtBEKIKmPm5YGNGjVyf/DBB9vuueeeVrfffrvFYrEwffr0vaNHj3Z8+OGH2+64447W06ZNaxkeHq7ffffdbTabzQMQExPjPOWUUzK++eabunPnzs2/7u7RRx/dO3ny5NYJCQnNu3XrlnnyySeXq3m6b9++WUOHDj3WuXPnbvXq1XMNGTIkJW/fsYzcegAH03JbR9v+28AQEhLCC/97lycenMabLz+HxWJh5LXjuOLq63n8xdk88/D9DDvvDJRSRETW5sGE52jSrEW5nx+r1crTs97m+cem43a5cLlcjBk3gVN69c0v89mH73D+kEuIqvPfKeQXf/cdid9/z6yHHuLQ0aNcNWUKHrcbrTUxLVvy5uOP55d9afp0bnrgAZ5+803q1K7N6488UmJMTqeTB55/nnefM5bMie3UiZiWLel9+eU0qFuXD2bOLNdj0y5XmPvIkebq2DFX2DvvDNq46qfNXTZtlFGIhchaBkIEkSpey6BzSEjIVx06dEiPjIzM9ue5qrv0HFfk/pSsVllOd1TZpQNLh5S9pU9dHCByPB52HT6M9dHHsOzfvwaI77Jp4zdmxxVIpMtACCFMkuNyhyYfzWiz/XB6l+qYDFRjvYHlGzt3+Xpj5y7dzQ4mUEhCIIQQVczt0ZZ9KVnNtx5M756a5axf9hHCTy4A1m7s3OXpjZ271DY7GLNJQiCEEFXIkeWss/lgWrcj6TnNPFrLZ7D5QoC7dzdkQezc2CFmB2MmeTEKIUQVcHu0ZfexzFY7j2Z0dPl7hUFRIRpSHxtl7QUkxs6NnRc7NzYoW20kIRBCCD9Lz3bV3nowrevxzNwilxgK8y3uq/44Fq3ypmS8BtgQOzd2mJkxmUESAiGE8BOP1mpvSlbzHUfSO+e6PeFlHyGqWkY4f79zrqV/oc1NgIWxc2Pnx86NDZqxBTIPgRCiymzs3MUvyx932bQx4JY/zsp11dp1LKtNjstdrgmLRNXT4Hr0Kmu4VqqkH8dXAz1j58aOWHfduk1VGZsZpIVACBH0Nm/eHPbUU081KritRYsWsT/99FNEZeo7lpFbb9vhjC6VSQbeenUml597OiMHncXVQy9g3dric53MzAwenHIrw8/vx6UD+zLzCTt588r8mfQrIwedxchBZ3H5eWfwcPxkcnNyiq3n4fjJDD+/HzeOGkpaqgMArTUTrxnB7uQdFQ2/Wvm9nfpxWzPVoYxi3YDfYufGjqqKmMwkCYEQIuht3bo1/K233mpUdsnSaa3ZezyzxZ7jmW09WltcLleFjt+0fh0L5v2Pd79YzoKlK7ly7I088eDUYsv+76Xn8HjcfLxsFR8vW8WWDX+zLPFzADp27c67i79lwdKVLFy2imNHjvDhvP8VqWPrpg3s2rGdhct/ovcZ/Vn8yYcAfPL+PPr0O4tWMW0q+AxUHy4Lu56/3HJaOYtHAR/Ezo19IXZubI1tWZeEQAgRNBYuXBjdtWvXLh07duzap0+fTklJSbUAbrvtttbJycm1Onfu3PXcc89tn1d+wYIF9Xr06NG5RYsWsVOnTs1fgWfXrl0hQ4YMaRsbG9ulY8eOXW+//fbmLrfHuv1wRoe+J3du+vzjMxh98Xk8eOeECsWnFLicLrK8c/SnpTpo0qx5sWU3b/ybMwech1KK0NBQTj/rHBYvNL7QIyIiCfWuAujMzSUnO/s/CzblCQ0NxZmbg8fjISszg9DQMA4fPMCXny/kmvG3Vij26ualoZbDuaGqoi1AtwNfxs6NreePmMwmCYEQIijs3bs3ZNy4cW3nzJmTvGXLlg033HDD4ZEjR7bzeDy89NJLu2JiYrI3bdq04dtvv81fNzglJcX6xx9/bFqzZs3GWbNmNdmxY0cowOjRo9vceuuth9atW7dx/fr1G9au/aPOi2/O65qR64oGcBw/zrtfLOeJl96oUIydusZy9fgJDOnXgwv6dOOdN2YR//CTxZbtGtuDrxM/Jzcnh8yMdL5bmsi+Pbv+fby7d3HFhf0ZcEp7oupEM+racUXqiGnXgT5nnMWVFw1g766dxA0bydMP3ceU+x8mJKTG/hBmTwN++rmLpbLjWc4HfomdG9upzJLVjCQEQoigsGLFitodO3bM6tu3bxbAhAkTjh06dCg070u+ONdcc80xgGbNmrlatmyZu2XLlvDU1FTL6tWro++6667WnTt37hp78sndd+7eE7X9n3/y5xYYesVVxf4iL8ueXTv55svFfLEyiWW/refq8ROYeusNxZa9YeJkmrVoydVDz2fSdaPo3qMX1gJf4i1ateajr3/k29834czNYfmXXxRbz6SpD7Bg6UqeeW0Oq3/4nqbNW9C8VWsenHIrU266lq8WfVLhxxHItMWS+tBoa1njBsrSAVgdOzf2Ql/EFChqbgoohBAnKCIiwpP3f6vVqp1OZ/6CcL///vtGpwqts+tYZvvCi8RF1i5+WYJtWzZx723jAejR+zTue+yZ/+z/ZskiOnTuSuOmRu/EpSPHkPDgNJy5uYSG/Xcuo1oREUx7KCH//v9eeZ52HTsXOWdk7SgGDR3Gks8+KnXZ4vS0VOa+/hKz3l3I/15+nt6nn0ncsJFcMegsBl5wEbUiKjW+MuB80ztsiyNK9fZBVXWBxbFzY69ed926BT6oz3TSQiCECAoDBw7M2LJlS8Rvv/1WC2D27Nn1mjRp4mzTpo2zbt267rS0NGt56rHZbJ6+ffum3nv/gzHeZEAdOrCfg/v3lnlsu46dWbB0JQuWriySDAC0OCmGtWt+ITMjHYAfli/lpLbtiyQDYHyBZ2UZYw327NrJR/Pf4tqbJgGwa8d2nE4nYIwh+ParRDp27lZqbC888RA3T55KREQkWZmZKKVQSuFyOnE6c8t8bNWBJ8TqTOzh9OWlr6HAe7FzY6/1YZ2mkRYCIUSVMXO+gObNm7vefPPN7dddd10bl8ulbDab+8MPP9xmsVg47bTTMjt27JjVoUOHbq1atcopOI6gOP+b9/6xe6beE3P5uaejlCIisjYPJjxHk2YtTijG8wZfzPo/f+equHMJCwsjIjKShALjEG699gom3nUf3U7pyZ5dO7lnwvWEhIRgtVq5e8bjdO4WC8CvP/3Ae2+9jtVqxeV2c9qZZ3PTHfeUeN61v60mOzubM84+B4Arr7uRaZNu5O1ZL3DxsFHUibad0OMKCErptFpaGUM3fcoKzImdGxux7rp1r/u47iqlCjd1BSKlVDTgcDgcREdHmx2OENVWamoqNpsNwKa1TvXnuZKSkjqHhIR81aFDh/TIyMhsf56rKh3LyK2393hWG4329RdLtdQhZa+mGjwXabXDMtYd2V37yX+eZH/ufr+cw5XWedzGSR+95ZfKq4B0GQghRDkdTc+pv/d4ZltJBqqZ0NDcw7Vy/TpjpDu72Y9Ze659IyY+caI/z+NPkhAIIUQ5HEnPabA3JatN4LepisKO1rW4PX5M4tzZzX7M3HFbP7BYgJdj4hOLXuNZDVQqIVBK3aqUSlZKZSulflFK9S2j/GSl1GalVJZSardS6nmlVK3KhSyEEFXLkeWM3p+SfZLZcYiKc0VFpDusuX67RKJQMgCggNkx8YlX+euc/lLhhEApNQp4DngIOBX4E1iqlCp2WU+l1GggwVu+CzAOGAU8XsmYhRCiymTmuiJ2H8tsJ90E1ZDV6tpXu0qTgTwW4O2Y+MQz/XVuf6hMC8EU4A2t9dta6w3ALUAmUPzsGdAPWKW1fk9rnay1/hp4Hyi1VUEIIcyW6/KEJh/J7ODRWrpXq6G0umHZLuUp1+WkFVVKMpAnHPg0Jj4xxh/n94cKvciVUmFAL2B53jattcd7/4wSDvsJ6JXXraCUagsMAZaUcp5wpVR03g2oU5E4hRDiRLk92rLjSEZ7l8dT4kyGInDpiPDMw6HZxc8QdYLKkQzkaQQsjolPrBaXx1V0HoKGGNdcHiy0/SBQdIosQGv9nlKqIfCjMubyDAFe01qX1mVwLzCjgrEJIQJc7NxYX04Kk2/ddet8Or+B1prkoxltK7N8sQgASnkORHv8Ms9OBZKBPN2AD2LiEy9JTohz+yMmX/F7M5hSaiBwHzARY8zBMCBOKfVgKYc9AdgK3Fr6N0ohhPjXnuNZrTJyXCXOxjPuiov59qvECtf7yjOPk/ipMcvtrOcSeMp+b7HlViz/inFXXFzh+s2QvGcP/UaO5LQRI+h9+eWMmTKF4w5HsWUfffVVWp99NqeNGMFpI0Zw/bRp+fsmP/po/vbTRoygXq9evPruu0XqcDqdjLz9dk4bPpwrJ08mb4np7JwcLrjuOo47HGTbamVkKVfR6R1PUCWSgTwXAc/6Oh5fq2gGdQRwA00KbW8CHCjhmEeA+VrrN7331ymlagOzlVKPebsc/kNrnQPk5N2vzCIhQghRGUfTc+ofTs1s7I/V/m69+z6f12m2Zo0b8828eUTUMi4cuzshgcdmzeKZ+Phiy4+Ki+PpAolAnpkPPJD//wNHjtB18GCGDRpUpNyyn36ins3Gghdf5OYHH+TrVasYMmAAT7z+OrdcdRX1GjXM2VHL910FJ5AM5LkjJj5xY3JCXMDOZlihB6a1zgWSgPPytimlLN77P5dwWCRQ+Es/r9lEvumFEFVGKdXr9ttvb96lS5euMTEx3WfNmlW/4L47Jt/ZasCZZ7R5MeEhMtLTeGjqHYy++DxGXHAmD0+bjDP33zn9f1m1gtFx53Jx/1N55uEHyJv1tXDrwV03X8fnC94D4ME7J/LOm7OKxOV0Onnsvru45KxejL74PH776ccyH8vhgwe4efQwLj/3dG4ePYypE29g1nPGYkfn9+7KoQPGbHz3TLieay8zFuXLzcnh7Ni25Obk8PmC97jpqsuYdus4hp/fj6uGnMOenckVfUoJDwvLTwbcbjcZWVkn/CPu3c8/5/x+/WjasGGRfaEhIWRlGxNfZmVnExYayrrNm9myYwfDBw/miM3i0T7+bvFBMpDnhZj4xJN9EpQfVObBPQeMV0pdp5TqAswCagNvAyil5imlnihQ/gtgglLqSqVUG6XUBRitBl9orQO6P0UIUfMopdi4ceOGJUuWbImPj2+9efPm/KZld0h43fcSv2XKA4/w7CMPcmrfM3hv8Td89PWPeDwe3n3rtfx6tm/dzNzPlvLRsh9JWr2KLz/7uNIxLXx3Dsnb/+GTb35m7idfsvHvP8s85skZ8ZzSqw+ffruax2bOYs3qVfn7Tut/Nr/8uAKPx8PmDX+TlpZGeloqa39bTZfYHoSFhwOw/s/fuW3adBYu/4nTzhrAW7NmVir+XKeT00aMoNVZZ7Ft504emFjyZH2ffP01pw0fzkXjxrHi11+LLTPvs8+4btiwYvedd8YZRNWuzWnDhxMdFcXAvn2Jf/ppnp42DVediPRUH8854MNkAIwrD96NiU8MyHl4KtwmprX+UCnVCHgYaAr8AQzWWucNNGzNf1sEHgW0998WwGGMJOH+yocthBCVc+uttx4B6Nq1a26fPn3Sli1bVqdTp05HAS4ddU1+cvDt0kT+TPqV+W+8AkB2djYW67/fCZcMv5LQ0FBCQ0OJGzaS1T+uYMjlV1Qqpl9W/WDU513V8LJRY/jsg3dKP+bHFUx54GEAGjZuwtnn/du8fnr/gaz+8XvadexMp67dqd+wEWt+/pE/f/+N0/qfnV/u5FP70rK1Md/SKaf25f05sysVf1hoKL98/DG5TidTHn+c/330EVNuKHol+o0jRzJt/HhCQ0P5ee1arpw8mZXvv0/r5s3zy6xKSiItI4PBZ51V7LksFguv2u3591+eP5+Lzz0Xl9auq+68vXZObi5XjbuK0846rVKPpSAfJwN5umPMzTPZh3X6RKU6ybTWLwMvl7BvYKH7LoxJiR6qzLmEEMKflFI6NctZByAiskDXs9Y8O3seMW3bl7ceAKwhIXg8/zZ+5uRUfF2nyjS5FzzmtP4DeCHhYdp26MRp/QfQoGFjVv+4gr+SfuP+x/8d2xbubSkAsFgtuL0D9AratmUT9942HoAevU8rdtnmPGGhoVx72WXcarcXmxAU7AI4o2dPTuncmd/Xr/9PQjD3k0+4euhQrNaypw/YtW8fS1eu5PPXXuMa+wMMv26E6nZKN0YPHs3nP35e5vGl8VMykOf2mPjExOSEuGV+qLvSZPljIUSV8fXlgZXx2muvNXzuuef2bd68OWzNmjV1Xnjp5X17jmd1KFzunEFxvP3qCzyY8DwhISGkpqSQcvwYrdu0BSDx0wVcdNkI3C4XSz77mGtunABAq5g2rFu7hvOHDGXPrp388dtqLhhyaakxnd5/QH59aJ0/5qA0fc88m0Ufvc8td07j6OFD/PDNUkaMGQtA46bNqBMdzcfvvM0bHyyibv36PP3wfWSmp9Ml9pQKPV/tOnZmwdKVJe7ftW8fDevVJTIiAo/Hwydff033jh2LLbvnwAFaNm0KwD87d/LXpk106/DvU5+ans6ny5bx80cflSu2uxMSeHLqVIiKyEzNzYxUKJRSZGVmVeARFuXnZACMMQ5zY+ITY5MT4o766RwVJgmBECKouN1uunTp0jUrK8vyxBNP7Ips1LJ5WraryORD98x4jJlPPMTIQWdhsViwhoRw530P5ScEbdp35LrLB5OacpyBFw5h8KXDAbj+ljuYOvEGhp/fj3YdO9O9R+8yYxo2+jr+2byRYeeeTh1bXU7tewYb1/1R6jFT7U/w4JSJXH7u6TRq0pTYHr2oE/3vlZKn9R/AD98speVJMQA0bNSYht1OxuLj77h1Wzbz0IsvAuDRmh5duvDMvf9eTnnaiBF8+uqrNG/cmIdeeom1GzZgtVqxWiw8f//9dIiJyS/70Zdf0rNrV9qfVPayER8mJhLbqRNdO3Tw7KvjDr3x9huZMWUGzlwnN0+5udKPpwqSgTzNgNeBEX4+T7mpvJGxgcw7W6HD4XAQHV0tJnwSIiClpqZis9kAbFrrVH+eKykpqXNISMhXHTp0SI+MjKx4u7kfKKV6HT58+I+GDRu6AY5n5NbdfTyzndlxVUZ2VhYhoaGEhISQcvwY1wy9gMdefJ2Te5adgPhSh5S9GhPXeciqF5G+P7zsyww9Tg+H9hziyX+eZH/u/mLLVGEyUNB1yQlx86rwfCWSFgIhRFBye7Rlf2p2K7PjqKxdydt4YPIEtNbGZD3XjqvyZMB0YWHZB8qRDJSHSckAwFMx8YmfJSfE+TVBLw9JCIQQQUNrnT+GYb8jq7nL7fH5bHa+tPLbr3npyUeKbL/h1jsZPHRYqX37weBwXeMSthNlYjIAxsR+04G7TTj3f0hCIIQIOpm5rlrHM5zFLtkeSM4690LOOvdCs8MISM7oiPQ0y4m3DpicDOS5PSY+8Y3khLjNJsbg/7UMhBAi0OxLyW6lTez3FicoJMS5LzLnhBeeCpBkACAUeN7kGCQhEEIEl+MZuXUzc10yOrkaS6kbkutGn9D3VwAlA3kuiolPNHVFq0B5IoQQwu88WqsDqdmyemo15omslXEsJKf2idQRgMlAnudj4hNNG9ciYwiEEFXHbuvln3od5Zrw6Gh6bgOn2xNedkkRkCwW9/46J7assdXVPClzx/BATAYA2gO3AyVPB+lHgfiECCGEz2mt+eCjj5tfds5pjBx0Fls3rvdZ3b/9/COrvlte6eP/WruGKy7szyVn9+bGUUM5uH9fiWVnv/AMcWf2JO7MnkWuQChtXx6n08nkcWO44sL+3Dn+Glze6YpzsrO5fvgQUlNSKv04/C3TFp6Vo9xFJpEqrxAVnpO6a1TPAE0G8kyLiU88oRaQygrkJ0UIIXzmWEZu/Q/nvx168x33sGDpSjp06eaTel0uF2t+/pFVK76p1PEej4f7bruJe+xP8MUPazjrnAt4+qH7ii2btHoVXy5ayEfLfuTTb1fz04pv+eGbpWXuK+inFd8QXbceH339I3Wibaz63khkZr/wNFeOHU903bqVehx+F35icw6EWyIznbkR4aAC/XuvITDBjBMH+hMjhBAnTGvN7bff1vr3X1fz4lOPcO1lxqV8q77/hlEXDWDEBWdyw4g4tm3ZBBi/+EcO+ne1va2bNnDRGcYy9nt376J/t5N4/vEZjLpoAB/MeYOP3nmbJZ9+xMhBZ/HazKcqFNuGv/7AGhJC337G+UZcPZYVy78iJ7vo5I5Lv/iUi4eNJDKyNmHh4Vw2agxffr6wzH0FhYSEkp2VCUB2ViahoWFs2fg3O7ZtZdAll1co9qqj9EEblb4qpJY1Kj0rq06krnwVVe3umPhEny7jXB4yhkAIUeMdz3TWm/bwU9YtGzcwZtwEzh0cx9Ejh7n3tvH8b8EXdOjSjcRPF3D3LWP55Jufy6wvLTWV9h27cOd9D3nvO0hLdTDV/kSFYzuwbw/NWvw7YWLtqDrUjqrD4YMH8tchyLN/3x569jk9/37zVq35atEnZe4r6Iyzz2H5kkVccWF/Yk/tTd8zz2biNSN45LlXKhx7VcmNrpWeYcmuU5lja1mj0jMybFGQ6+uw/KkJMI4SVhX2F2khEELUaFprDqflNCu8fd3aNXTo3DW/6yDu8pEcPrifQwdK7r/PExIaStywkb4PtgpYLBZmPPUCH339I9MTZvLBnDc4Z9AQXC438ZNuZMpN1/LLqh/MDvNfISG5+yIrd1XBv8lAtTQlJj6x7DWgfUhaCIQQNVpKprNujstdoeZXq9WK2+3Ov5+bk/Of/REREeVeNTDV4eDGkcbl5c1bncTMN9/5z/6mzVuyf+/u/PsZ6Wmkp6XSqEnTInU1a96SfQXK7tu9i6YtWpa5ryT79uxi5bfLmPXOxzxw5wSGjxlL19hTuPrSC/m0HC0lVeF43RCXh5wKX1lQzZMBgDbAcGBBVZ1QWgiEEDXa0YzcYqcoPvnUPmzdtIGtmzYA8OXnC2nUtDmNmzanZesY9u/dw7GjRwBY/MmHpZ6jdlQd0lKLX5sm2mZjwdKVLFi6skgyAND15B64nE5+/clYl+Djd+Yw4PzBhNeqVaTsBRdfxuJPFpCZmUFuTg6fffgug4cOK3NfSZ6acS/3zHgMi8VCVmYmCoWyWMjOzCj1uKrirl0r43hIxWckrAHJQJ57qvJk0kIghKg65ZwvwFeyne6wzFxXsX3P9Rs05IkXZ/PAnRNwu1xE2+ryzKy3UUrRuGkzxt5yO2MuOY8GDRvT/5zzSz3PuYMvZvEnHzJy0Fmce9El3DJ5arljtFgsPP7i6zwSfyc5OTk0btKUx154LX//rddewcS77qPbKT3pc0Z/Bl1yOSMuOBOAQZdczoDzBwOUuq84Sz79iI5du9O+UxcAbpg4mYen3YHT6WT8HVX6PVQ8i8W9P8pZ4TkjalAyANA7Jj6xT3JC3G9VcTKltS/WivIvpVQ04HA4HERHy4yjQlRWamoqNpsNwKa19utyq0lJSZ1DQkK+6tChQ3pkZGTRIfNVYG9KVvOj6UXHDwjf6ZCyV+OHdSEy6kekHwyr2GWGpSUD2pXLoX17sH93iL1p7uKKBKpXkhPiJlXFiaTLQAhRI2mtcWQ6G5odh6g4XSssy5fJQDV3VVVNZywJgRCiRnJkOW0uj6fSs9oJkyilD0ZXbOGiGpwMANQHqmTRI0kIhBD+4gG01uYsM3w809nAjPOKE5MTXSs90+Iq99iBcicDWgMaT+D3khfnuqo4iQwqFEL4yz6Px+M4dOhQk8aNGx9TSlXZR7HL47GmpWfV1VTPT//qJMfjAV89z6Ghzr0hWVEeZ/nqC7dEZqanR5Q96ZDWuDJTSct2czzL44NAq9xFMfGJjZIT4g778ySSEAgh/KJXr17pSUlJt6SkpLyWmppqg6qbNzbTqaPTcz3VZp7a6kxlHffZ85xe26qz0t3lqi9Ehec4c3MjNY5ylNakZbuZtSaFbHe1TBJDgTHATH+eRBICIYTf9OrVa3VSUlJ/j8fTnCrsorx/+ZG5OW7dt6rOF8xe/+Zpl9L6hL9L9jUN+/3poZ5Ty1PW6mqeZKxamF6uuj0ajmd5qmsykOda/JwQyGWHQgSRqrzs0Cwx8YnRwBGMX1XCz5Z8drdLneCPSw8cHX+HVaVFqvpllXVnN/sxc8dt/QJ8CWN/aZWcELfHX5UH4xMqhKjZLkCSgWrlw7MtGyUZKJcL/Vl5sD6pQoiaK87sAET5OSL5/dMzLf3LKifJAACD/Fl5MD+xQogaJiY+UQElz9crAoqGbPsYa5mXh0oykO/8mPhEvz0Hwf7kCiFqlp6ATFVcTfzYTa3e21CdVFoZSQb+oz7Q21+VV+oJVkrdqpRKVkplK6V+UUqVOppXKVVXKfWKUmq/UipHKbVFKTWkciELIUSJpLugmsgN4Z9X4yxnllZGkoFi+a3boMJPslJqFPAc8BBwKvAnsFQpVewSo0qpMGAZEAOMADoB44G9lQtZCCFK5Nc+VuEbGvTTwyyZbqsqcfCnJAMlCpyEAJgCvKG1fltrvQG4BcgEbiih/A0YzRyXaa1Xaa2TtdYrtNZ/Vi5kIYQoKiY+MRToZXYcomzbmvHjn+0sJ5e0X5KBUp3uvbTW5yr0ZHt/7fcCludt01p7vPfPKOGwocDPwCtKqYNKqb+VUvcppaylnCdcKRWddwOKXc9cCCEKOAWoZXYQonQexaHHRlklGag8K9DDHxVX9AlviBHMwULbDwJNSzimLUZXgRUYAjwC3AU8UMp57gUcBW5+m4hBCFFjyMyE1cC8cy3/ZEQoW3H7JBkot1P8UWlVPOkW4BBwk9Y6SWv9IfAYRldDSZ4AbAVuLf0epRCiupOEIMAdi2LNkr6WfsXtk2SgQnr4o9KKTjd5BHADTQptbwIcKOGY/YBTa+0usG0j0FQpFaa1LrJMldY6B8jJu6+UrFEihChTD7MDECXTkDljjLXYlmRJBiqshz8qrdCT7/3yTgLOy9umlLJ47/9cwmGrgPbecnk6AvuLSwaEEKKivAMKu5gdhyjZN6eo3w7WV0VaeyUZqJRuMfGJPl+csDJ/gOeA8Uqp65RSXYBZQG3gbQCl1Dyl1BMFys/CuMrgBaVUR6VUHHAf8MqJhS6EEPm6AGFmByGKlx3K5jcHF51zQJKBSgsHOvu60gpnGFrrD5VSjYCHMQYS/gEM1lrnDTRsDXgKlN+tlBoEPA/8hTH/wAvAkycWuhBC5OtudgCieBo8CVdY3R6L+s/3jSQDJ6wH8LcvK6xUk4PW+mXg5RL2DSxm28/A6ZU5lxBClEOM2QGI4m1sxcoNJ6kBBbdJMuATJV66WVnyxxBC1ARyJVIAciv2P3mF9dT/bJNkwFfa+LpC+YMIIWqCVmYHIIp6c5BlV1a4yp9YTpIBn/L5a17+KEKImkBaCALMIRu/fNPTclrefUkGfE4SAiGEKIYkBAFEQ5p9jLV13n1JBvyiqa8vPZQ/jhCiWouJT6yFMa26CBBf9lZrj9hUM5BkwI8sQCNfVyiEENWZtA4EkKwwNsw939IfJBmoAo19WZn8kYQQ1V0LswMQBg2uR6+0WrVSFkkGqoS0EAghRAFRZgcgDH+1Uau2tlCdJBmoMpIQCCFEATJlcQBwWdjz9HBLH0kGqlSkLyvz+eIIQghRxSQhCACz4iwHstzNkyUZqFJWX1YmCYEQoroLNzuAYLevPj99376FR5KBKufThED+cEKI6k5aCEykIeXhS9pkSjJgCpmHQAghCpCEwESfde/wy07HhHMlGTCFdBkIIUQB0mVgojfa3TQElDI7jiAlXQZCCFFAqNkBBDUlyYCJJCEQQogCcswOQAiTSEIghBAFOMwOQAiT5PqyMkkIhBDVXYrZAQhhkqO+rEwSAiFEdZdidgBCmEQSAiGEKCDF7ACEMIkkBEIIUYCMIRDBShICIYQoIMXsAIQwiSQEQghRgAPQZgchRBXTwHFfVigJgRCiWktOiPMAh8yOQ4gq5khOiHP7skJJCIQQNcEOswMQoort83WFkhAIIWqC7WYHIEQV2+jrCiUhEELUBJIQiGAjCYEQQhRji9kBCFHFJCEQQohi+PzDUYgAt8HXFUpCIISoCTYilx6K4OEBNvu60kolBEqpW5VSyUqpbKXUL0qpvuU87kqllFZKfVaZ8wohRHGSE+IygN1mxyFEFdmZnBCX5etKK5wQKKVGAc8BDwGnAn8CS5VSjcs4LgZ4BlhZ8TCFEKJMa80OQIgq4pcussq0EEwB3tBav6213gDcAmQCN5R0gFLKCrwLzEBGAwsh/EN+bIhg8Zc/Kq1QQqCUCgN6AcvztmmtPd77Z5Ry6HTgkNb6f+U8T7hSKjrvBtSpSJxCiKAkCYEIFqv8UWlFWwgaAlbgYKHtB4GmxR2glOoPjAPGV+A892LMT55321PBOIUQwed3IMPsIITwM02AJAQVopSqA8wHxmutj1Tg0CcAW4FbSz+EJ4SoQZIT4lzAL2bHIYSfrU9OiPPpokZ5QipY/gjgBpoU2t4EOFBM+XZADPCFUipvmwVAKeUCOmmttxU+SGudA+Tk3S9wrBBClGYlcK7ZQQjhRz/4q+IKtRBorXOBJOC8vG1KKYv3/s/FHLIJiAV6FLgtAr7z/l8uExJC+JKMIxA13Tf+qriiLQRgXHI4Vym1BvgVmAzUBt4GUErNA/Zqre/VWmcDfxc8WCmVAqC1/s92IYTwgf+3d//BUpX3HcffX1BMRMBkqJAa7GKSJk5txx+tnUvTBmtSLadN1cbBSVs1iRgrdmIKowupVTCWg1FjIxisqNSMUSYmQ2qvkZQkOloRlQTUUUji9CgioFQDVLig3Kd/PGd12dy93N27Z5+zez6vmWe4e+5z7vncu+ze7z3nPM/zOPA2zb23ieRdP/DjrL54w/cQOOeWA7OB+cA6/F/6ZzjnKjcaHgN8oEX5RESGLJ2gKJMbrkRyYG0SR7/K6os3VUU75xYBi+p8bupB9r2gmWOKiAzRfcAnQocQycADWX5xrWUgIt3mu2hdA+lOy7P84ioIRKSrJHG0BXgsdA6RFns6iaNMV/VUQSAi3eg7oQOItNi9WR9ABYGIdCNdNpBuo4JARKRRSRy9jB+CKNINnkji6H+yPogKAhHpVrpsIN0i87MDoIJARLrX3VRNgS7SofrJeHRBhQoCEelKSRy9SpveSEUy9IMkjl5px4FUEIhIN7s5dACRYfp6uw6kgkBEulYSR08x8MJrIp1gfRJHmS1mVEsFgYh0u2+EDiDSpJvaeTAVBCLS7e4D2nINVqSFtgLfbucBVRCISFdL4uhtYEnoHCINuiWJo33tPKAKAhEpgiXA7tAhRIaoD/hmuw+qgkBEul4SR68Bi0PnEBmiZUkcbW/3QVUQiEhRLAR2hQ4hchBvAvNCHFgFgYgUQhJH/0ub79oWacINSRxtDXFgFQQiUiTXA6+FDiFSxzbga6EOroJARAojiaOdwPzQOUTquCqJo/8LdXAVBCJSNEuAn4cOIVLjeWBpyAAqCESkUNJ5CS4PnUOkxhVJHO0PGUAFgYgUThJH3wdWhM4hknooiaP7Q4dQQSAiRXUJ8KvQIaTw9gIXhw4BKghEpKCSONoCzAqdQwpvfhJHG0OHABUEIlJgSRzdAawKnUMKaz1wXegQFSoIRKToZuBnhxNpp7eAz6U3ueaCCgIRKbQkjhLgK6FzSOHMS+LoZ6FDVFNBICICNwOPhg4hhfE4EIcOUUsFgYgUXhJH/cC5+KljRbK0Czgv9JwDA1FBICICJHG0GZgO5OaarnQdB/xdEke/CB1kIE0VBGY208wSM+szszVmdsogfWeY2SNm9kbaVg3WX0QklCSOHgbmhM4hXeuadFKsXGq4IDCz6cCN+PWaT8IPm1hpZkfV2WUqcA9wKtADbAJ+aGZHNxNYRCRLSRxdD9wXOod0nfuBq0OHGEwzZwj+EbjNOXenc+45/AxLu4HPD9TZOfc3zrlbnHPrnHMbgAvT457WbGgRkYx9DtgQOoR0jY3A3yZx5EIHGUxDBYGZjQJOpmoiD+dcf/q4Z4hf5nDgUOD1QY5zmJmNrTRgTCM5RUSGI12C9mwg2FK00jV2AmemS2/nWqNnCMYDI/n1O3G3AROH+DUWAq8w+Oxgc4AdVe3lxmKKiAxPEkfPA+fgJ5ARaYbDjyjoiLNNbR1lYGZl/NCes5xzfYN0XQCMq2ofbEM8EZEDJHH0IHAe0B86i3Skf8jzTYS1Gi0ItgP7gQk12ycAWwfb0cxmA2Xgz5xzTw/W1zm31zm3s9Lw4zZFRNouiaN7gZmhc0jHKSdxtDh0iEY0VBA45/YBa6m6IdDMKjcIrq63n5ldDlwJnOGce6q5qCIiYSRxtAT4p9A5pGNcm8TRwtAhGtXMJYMbgRlmdr6ZHQd8ExgN3AlgZneZ2YJKZzO7ArgGPwohMbOJaTti+PFFRNojiaNrgRtC55DcuymJo44sHhsuCJxzy4HZwHxgHXAC/i//yo2GxwAfqNrl74FR+HG9W6ra7GZDi4iEkMTRbOCO0Dkkt5YmcfTl0CGadUgzOznnFgGL6nxuas3jUjPHEBHJqYvSfwece0UK6x7gi6FDDIfWMhARaUC6KM2F+MunIgC34Cce6ujRKE2dIRARKbJ0xrlZpXLv68BXQ+eRYBwwN4mj3C1l3AydIRARaVJ6o+EX0AqJRbQPv3JhVxQDoIJARGRYkji6A/hLNM1xkewE/jyJo7tDB2klFQQiIsOUzmj4CTTNehFsBv44iaMfhw7SaioIRERaIImjnwInAg+GziKZeRLoSeJo0Nl2O5UKAhGRFkniaDswDT8z6/7AcaS1FgEfT+JoU+ggWTHncr08MwDpEsg7duzYwdixY0PHEelYO3fuZNy4cQDj0nVCJCOlcu+p+LHptWu/SGfZBcxI4mh56CBZ0xkCEZEMJHH0E/wlhIdDZ5GmPQGcWIRiAFQQiIhkJomjLfjF365BQxM7ST+wAPijJI5eCB2mXXTJQKRAdMkgnFK59/eA24BTQmeRQT0HXJzE0SOhg7SbzhCIiLRBemd6D/AlNGdBHu0G5gAnFLEYAJ0hECkUnSHIh1K5dxKwGD+hkYTXC1yaxFESOkhIKghECkQFQb6Uyr2fAb7BgUvGS/u8DHwpiaPvhQ6SB7pkICISSBJH9wEfAeYCbwSOUyS7gYXAcSoG3qUzBCIFojME+VUq944DZgGXAWPCpulae/BLFV+XxNGrocPkjQoCkQJRQZB/pXLveKAMzATeEzhOt9gDLAEWJnG0LXSYvFJBIFIgKgg6R6nc+5v4SwmfB94bOE6n6gNuBeIkjraGDpN3KghECkQFQecplXvfD8zAnzGYFDhOp3gJuB24LZ0cSoZABYFIgagg6Fylcu8hwF8BXwQ+CVjYRLmzHz988FbgwSSO+gPn6TgqCEQKRAVBdyiVeycDFwLnA0cHjhPaS8BS4I4kjjaHDtPJVBCIFIgKgu5SKvcafirks4Gz8EMYi2Ab8H3gu8AqnQ1oDRUEIgWigqC7lcq9v4MvDM4CTgocp9WeA34ArAAeUxHQeioIRApEBUFxlMq9vwWcDkxJW6edPXgZWAP8CHggiaMXA+fpeioIRApEBUFxpfMb9KRtCvAHwOFBQ71rB/Ak8ESlaXRA+6kgECkQFQRSkY5a+AjwoZp2LDAZOKzFh9wNvAgkVf8mwHpgYxJH+f9l1OVUEIgUiAoCGYpSuXcEfvTCJOB9wJHpv2PxkyRV2ij85D978L/w99R8/CawGUiSOHqtrd+ENEwFgUiBqCAQkXq02qGIiIioIBAREZEmCwIzm2lmiZn1mdkaMzvlIP3PMbMNaf9nzGxac3FFREQkCw0XBGY2HbgRmIef+GI9sNLMjqrTfwpwD36hiRPxk0qsMLPjm8wsIiIiLdbwTYVmtgZ40jl3afp4BLAJuNk5Fw/Qfzkw2jn3F1XbHgfWOecuHuIxdVOhSAvopkIRqeeQRjqb2SjgZGBBZZtzrt/MVuEnuxhID/6MQrWVwJmDHOcwDhwDOwb8m5mINE+vIRGpp6GCABgPjMQvLFFtG/CxOvtMrNN/4iDHmQNcVbtx0iQtBS7SIu8HVB2IyDsaLQjaZQEHnlUYg5/X+oPAriCJhkY5W69TsnZaztdDBxGRfGm0INgO7Acm1GyfAGyts8/WBvvjnNsL7K08NrPKh7vyfN1TOVuvU7J2YE4RkQM0NMrAObcPWAucVtmW3lR4GrC6zm6rq/unPjVIfxEREWmzZi4Z3Aj8u5k9hV+V6jJgNHAngJndBWx2zs1J+/8r8LCZzQJ6gXOB3wcuGl50ERERaZWGCwLn3HIz+w1gPv7GwHXAGc65yo2DxwD9Vf0fM7PPAl8F/gX4BXCmc+7ZBg67Fz/vwd6DdQxMOVuvU7Iqp4h0tI5Y3EhERESypbUMRERERAWBiIiIqCAQERERVBCIiIgIKghERESEHBUEZjbTzBIz6zOzNWZ2ykH6n2NmG9L+z5jZtLzlNLMZZvaImb2RtlUH+75C5KzZ71wzc2a2IuOIleM1+rwfaWaLzWyLme01s5/n8blP+19mZhvNbI+ZbTKzr5vZezLO+Cdmdr+ZvZI+j2cOYZ+pZvbT9Of5SzO7IMuMIpJPuSgIzGw6fsKjecBJwHpgpZkdVaf/FOAe4HbgRGAFsMLMjs9TTmBqmvNU/KqPm4AfmtnROctZ2a8EXA88kmW+quM1+ryPAv4LKAGfAT4KzAA25zDrZ4E47X8c8AVgOn4ujiyNTrPNHEpnM5uMnzDsJ8AJwE3AUjM7PaN8IpJXzrngDVgDLKp6PAL/Jl+u03858J812x4HluQp5wD7j8SvMHde3nKm2f4b/4trGbAih8/7xcALwKFZZ2tB1kXAj2q23QA82sbMDj8J2GB9FgLP1my7F3iw3T9jNTW1sC34GYL0r76TgVWVbc65/vRxT53deqr7p1YO0n/YmsxZ63DgUDJcaW4YOf8ZeNU5d3tW2ao1mfPT+DUwFpvZNjN71szmmtnIHGZ9DDi5clnBzI4FpgEPZJm1CW1/LYlIPuVh+ePx+L9Ot9Vs3wZ8rM4+E+v0n9jaaAdoJmethcAr/PobcCs1nNPMPo4/M3BChrlqNfPzPBb4U+Bu/C/XDwO34IusednEBJrI6pz7tpmNBx41v8TgIfgzWFlfMmhUvdfSWDN7r3NuT4BMIhJA8DMERWFmZfzCTmc55/pC56kwszHAt4AZzrntofMcxAjgVeAi59xa59xy4Fr8pYRcMbOpwFzgEvw9B2cDkZldGTCWiEhdeThDsB3YD0yo2T4B2Fpnn60N9m+FZnICYGazgTLwSefc09nEe0ejOT+Ev0nvfv+HLJAWimb2NvBR59wLOcgJsAV4yzm3v2rb88BEMxvl/PLcWWgm6zXAt5xzS9PHz5jZaODfzOza9JJDHtR7Le3U2QGRYgl+hiB9E18LnFbZZmYj0ser6+y2urp/6lOD9B+2JnNiZpcDV+JXhHwqq3zDyLkB+F385YJK+w/evet8U05ygr/p8cNpv4rfBrZkWAw0m/Vwqlb9TFUKGSM/2v5aEpGcCn1Xo3MO/HCsPuB8/BCtW4E3gAnp5+8CFlT1nwK8BczCX8O9GtgHHJ+znFfgl5n9a/y12ko7Ik85B9h/Ge0ZZdDoz3MSfpTGzfhCIMJf7/5KDrNenWY9F5iM/yX7S2B5xjmP4N3CzgFfTj8+Jv38AuCuqv6TgTeB69LX0iXA28DpWf9M1dTU8tWCB3gnCFwKvJj+Al0D/GHV5x4CltX0PwfYmPZ/FpiWt5xAkr4p17ar85RzgH3bUhA0+bz34IeY9uGHIM4FRuYtK/5y3FVpEbAHeAlYDByZccapdf7PLat6bh8aYJ+fpd/XC8AF7fh5qqmp5auZcw4REREptuD3EIiIiEh4KghEREREBYGIiIioIBARERFUEIiIiAgqCERERAQVBCIiIoIKAhEREUEFgYiIiKCCQERERFBBICIiIsD/AzHpvgFuWRPXAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"prebuild_gwn",
"build_real",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"fftma2",
"",
""
],
"type": "treemap",
"values": [
47.638534,
35.573628,
26.105192999998817,
12.06057,
12.036319,
7.93339000000048,
4.906137000000049,
0.016257,
0.003691,
0.0027419999999999996,
0.00091,
0.000599,
0.00051,
0.000403
]
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"text/html": [
"<div> <div id=\"d5169320-a173-4c90-abbf-ab16fdb31b03\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"d5169320-a173-4c90-abbf-ab16fdb31b03\")) { Plotly.newPlot( \"d5169320-a173-4c90-abbf-ab16fdb31b03\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"prebuild_gwn\", \"build_real\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [47.638534, 35.573628, 26.105192999998817, 12.06057, 12.036319, 7.93339000000048, 4.906137000000049, 0.016257, 0.003691, 0.0027419999999999996, 0.00091, 0.000599, 0.00051, 0.000403]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('d5169320-a173-4c90-abbf-ab16fdb31b03');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 64"
]
},
{
"cell_type": "code",
"execution_count": 78,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file log_64-aa\n",
"Executing file log_64-ab\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>304.2</td>\n",
" <td>304.2</td>\n",
" <td>304.2</td>\n",
" <td>178.629961</td>\n",
" <td>178.629961</td>\n",
" <td>178.629961</td>\n",
" <td>178.629961</td>\n",
" <td>1.0</td>\n",
" <td>17.667643</td>\n",
" <td>17.667643</td>\n",
" <td>17.667643</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>303.8</td>\n",
" <td>303.8</td>\n",
" <td>303.8</td>\n",
" <td>139.743243</td>\n",
" <td>139.743243</td>\n",
" <td>139.743243</td>\n",
" <td>139.743243</td>\n",
" <td>1.0</td>\n",
" <td>20.362745</td>\n",
" <td>20.362745</td>\n",
" <td>20.362745</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>2.6</td>\n",
" <td>2.6</td>\n",
" <td>2.6</td>\n",
" <td>38.884135</td>\n",
" <td>38.884135</td>\n",
" <td>38.884135</td>\n",
" <td>38.884135</td>\n",
" <td>1.0</td>\n",
" <td>8.035698</td>\n",
" <td>8.035698</td>\n",
" <td>8.035698</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>-1.8</td>\n",
" <td>-1.8</td>\n",
" <td>-1.8</td>\n",
" <td>38.781881</td>\n",
" <td>38.781881</td>\n",
" <td>38.781881</td>\n",
" <td>38.781881</td>\n",
" <td>1.0</td>\n",
" <td>8.055999</td>\n",
" <td>8.055999</td>\n",
" <td>8.055999</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>-19.3</td>\n",
" <td>4.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000081</td>\n",
" <td>0.023745</td>\n",
" <td>0.000409</td>\n",
" <td>103.849151</td>\n",
" <td>262144.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.567746</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.0</td>\n",
" <td>2.4</td>\n",
" <td>0.0</td>\n",
" <td>0.025649</td>\n",
" <td>0.041650</td>\n",
" <td>0.031247</td>\n",
" <td>0.093742</td>\n",
" <td>3.0</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>-9.5</td>\n",
" <td>2.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000091</td>\n",
" <td>0.000309</td>\n",
" <td>0.000105</td>\n",
" <td>16.534301</td>\n",
" <td>156816.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.044064</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>-19.3</td>\n",
" <td>2.4</td>\n",
" <td>0.0</td>\n",
" <td>0.000078</td>\n",
" <td>0.002609</td>\n",
" <td>0.000102</td>\n",
" <td>32.804563</td>\n",
" <td>333450.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.118282</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.003262</td>\n",
" <td>0.003262</td>\n",
" <td>0.003262</td>\n",
" <td>0.003262</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>2.1</td>\n",
" <td>2.1</td>\n",
" <td>2.1</td>\n",
" <td>0.001021</td>\n",
" <td>0.001021</td>\n",
" <td>0.001021</td>\n",
" <td>0.001021</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.7</td>\n",
" <td>0.7</td>\n",
" <td>0.7</td>\n",
" <td>0.000743</td>\n",
" <td>0.000743</td>\n",
" <td>0.000743</td>\n",
" <td>0.000743</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.001870</td>\n",
" <td>0.001870</td>\n",
" <td>0.001870</td>\n",
" <td>0.001870</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000348</td>\n",
" <td>0.000635</td>\n",
" <td>0.000448</td>\n",
" <td>0.001343</td>\n",
" <td>3.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000104</td>\n",
" <td>0.000123</td>\n",
" <td>0.000112</td>\n",
" <td>0.000447</td>\n",
" <td>4.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory time \\\n",
" min max median min max mean \n",
"function \n",
"Py_kgeneration 304.2 304.2 304.2 178.629961 178.629961 178.629961 \n",
"generate 303.8 303.8 303.8 139.743243 139.743243 139.743243 \n",
"fftma2 2.6 2.6 2.6 38.884135 38.884135 38.884135 \n",
"covariance -1.8 -1.8 -1.8 38.781881 38.781881 38.781881 \n",
"gasdev -19.3 4.0 0.0 0.000081 0.023745 0.000409 \n",
"fourt 0.0 2.4 0.0 0.025649 0.041650 0.031247 \n",
"cov_value -9.5 2.2 0.0 0.000091 0.000309 0.000105 \n",
"ran2 -19.3 2.4 0.0 0.000078 0.002609 0.000102 \n",
"build_real 0.0 0.0 0.0 0.003262 0.003262 0.003262 \n",
"prebuild_gwn 2.1 2.1 2.1 0.001021 0.001021 0.001021 \n",
"clean_real 0.7 0.7 0.7 0.000743 0.000743 0.000743 \n",
"cgrid 0.0 0.0 0.0 0.001870 0.001870 0.001870 \n",
"length 0.0 0.0 0.0 0.000348 0.000635 0.000448 \n",
"maxfactor 0.0 0.0 0.0 0.000104 0.000123 0.000112 \n",
"\n",
" cpu \n",
" sum count min max mean \n",
"function \n",
"Py_kgeneration 178.629961 1.0 17.667643 17.667643 17.667643 \n",
"generate 139.743243 1.0 20.362745 20.362745 20.362745 \n",
"fftma2 38.884135 1.0 8.035698 8.035698 8.035698 \n",
"covariance 38.781881 1.0 8.055999 8.055999 8.055999 \n",
"gasdev 103.849151 262144.0 0.000000 100.100000 0.567746 \n",
"fourt 0.093742 3.0 0.100000 0.100000 0.100000 \n",
"cov_value 16.534301 156816.0 0.000000 100.100000 0.044064 \n",
"ran2 32.804563 333450.0 0.000000 100.100000 0.118282 \n",
"build_real 0.003262 1.0 0.000000 0.000000 0.000000 \n",
"prebuild_gwn 0.001021 1.0 0.000000 0.000000 0.000000 \n",
"clean_real 0.000743 1.0 0.000000 0.000000 0.000000 \n",
"cgrid 0.001870 1.0 0.000000 0.000000 0.000000 \n",
"length 0.001343 3.0 0.000000 0.000000 0.000000 \n",
"maxfactor 0.000447 4.0 0.000000 0.000000 0.000000 "
]
},
"execution_count": 78,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_64-aa', 'log_64-ab'])\n",
"overall_time[\"64\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"64\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 70,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAAChAklEQVR4nOzdd3gUVRfA4d/d9FCW3svSQghdmjRBUBFioSMoig0FOyrEhmsltk+xIiqCIAiKSImAAoqAooCCSm+hQ2jpbct8f8wmLiEhhSSzuznv86whs1POrLl7Zu7cojRNQwghhBDezWR0AEIIIYS4fJLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQhRBCCB8gCV0IIYTwAZLQRZmglJqplIo1Og4BSqneSilNKdXb6FiE8CX+RgcgRFEppQo6bvHVJRqIEEJ4ACVjuQtvpZS6Lcei24FrgdE5lv8InANMmqZllEZsIm9KKRMQCGRqmuY0Oh4hfIUkdOEzlFLvAw9omqaMjkVcTCkVjCRxIUqMPEMXZULOZ+hKKYvrOe4TSqkHlFIHlFKpSqkflFL1le45pdRRpVSaUmqxUqpKLvvtr5Rap5RKUUolKaVilFItCxhTJaXU20qpWKVUhutYXyilqrmtU0Mp9ZlS6pRSKl0ptU0pdUeO/Vz2ubhiWKaUuk4ptdV1rB1KqcE51quilHpTKfWPUipZKZWolFqulGqbY72s5+S3KKVeVkodA1KBirk9Q1dKNVNKLVRKnXQd+6hS6iullNltHX/Xeex3fV6xSqlXlVJBeZxLD6XUH679HVBK3Z5jvQCl1PNKqb2udc4qpdYrpa4tyP8/ITyNPEMXZd2t6NW/7wFVgInAAmAN0Bt4DWgKPAS8CdyVtaFSajQwC1gJTAJCgXHAeqVUe03TYvM6qFKqPLAOaAHMAP4EqgE3AfWAM0qpEOBn1/HfBw4Cw4CZSqlKmqZNLa5zcWkGzAemuc7rTuBrpdT1mqb96FqnMTAQ+NoVT03gPmCtUipC07TjOfb5HJDpOl6Q6985P4tA9M8wyBX7SaAucANQCUhwrfopcAfwDfAW0AV4yvUZDsqx26au9T5znctdrs9ti6Zp213rWF3bfwr8AVQEOgJXoD+mEcK7aJomL3n5xAs96Wl5vDcTiHX73QJoQBxgdlv+qmv5VsDfbflcIAMIcv1eHjgPTM9xnJpAfM7lucTzgus4g3J5L+tR2COudW51ey8A+BVIAioUx7m4lsW61h3stqwicBz4021ZEHpbBPd4LUA68Jzbst6u/e0HQnKsn/Veb9fv7Vy/D73E59XWtc4nOZa/4Vp+dS7n0tNtWXVXjG+6LdsKLDP671Ze8iqul1S5i7Lua03TEtx+/931c46mafYcywPR7xxBb3xXCZinlKqW9QIcrnXza1k/BNimadqinG9ompbVsGUA+t3qPLf3bMC76BcUvYrpXLIcB7Lj0TQtEfgCaK+UquValqG5noErpfyUUlWBZGA3+p1tTrM0TUvLZbm7rJj7KaVC81hngOvn/3Isf8v1MzLH8h2apq1zO5fTrhgbu60TD7RUSjXLJz4hvIIkdFHWHc7xe1ZyOZLH8squn1lJYA1wOsfrOqBGPsdtAvybzzoNgb3axY3Idrq9766o55Jln9vFRJY9rp8W0FuoK6UeU0rtRb/LP4N+zm0AMxc7mMuyC2iadhA9Ud+D/qhhpastgPv+GgJOYF+ObU+iJ+b8PgvQa1Tcz3ky+kXZHlebgDeUUm3yi1cITyUJXZR1jkIuz2pBn1V2RqPfred83VxcARZCUc+lMJ5GT76/ALcB/dDPdzu5f5/kd3cOgKZpj6NfFLwKhKDXQmxXStXLuWoB48z3nDVN+wX9wuou9Iure4A/lVL3FPAYQngUaRQnRNHsd/2M0zRtVRG3b5XPOoeANkopU4679HC394tTU6WUynGXHub6Gev6ORT4SdO0u903VEpVQr9bLzJN0/4B/gFeVkp1AzYA9wPPop+rCb1mJKuGAqVUTfS77CJ9FpqmnQM+Bz53NVT8Bb2x3KdFPQ8hjCJ36EIUzUogEXhaKRWQ802lVPV8tl8ItFVK5WydjVIq6y7ye6AWMMLtPX/0VurJwNqihZ6nOri1FldKVUQfrGerq2ob9DvfC+7slVLDuPh5fIEppSq6zsvdP+hV7Fld0r53/Xw0x3oTXD9jinDcqu6/a5qWjF6lH5T7FkJ4NrlDF6IINE1LVEqNA2ajV9N+hf4suQF6A60NwIOX2MUb6He7XyulZgBb0Lua3YR+V7oNmI7eJWymUqoD+l3yUKA78KimaUnFfFp7gM+UUp2AU+hV0TXRu69lWQZMVkp9jt7avjV6d7kDl3HcPsD7SqmvXTH4oz/KcKBf+KBp2jal1CxgrKs2YC3QGb0b23eapv1UhOPuUEr9jP7Zn0PvsjYUvbeEEF5HEroQRaRp2lyl1HEgCngS/c7uGHr/8s/z2TZZKdUTvfvaIPTEFAesBo661klzDb4S7Xq/InpL7Ts1TZtZ/GfEXvS7/zeA5ugN2kZomrbSbZ1XgXLAKPSagz/RL2CiL+O429BrPG5Ev9NPdS3rr2naRrf17kG/cBiD/pmdBKagf4ZF8S76BdR16P/vDqFX779RxP0JYSgZ+lUIgdJH0ftX07QbjI5FCFE08gxdCCGE8AGS0IUQQggfIAldCCGE8AHyDF0IIYTwAXKHLoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASehCCCGED5CELoQQQvgASegGU0pZlFKaUuoJo2PxdEqp3q7PqrfRsQghhKeRhJ4LpdQYV+LIeqUrpfYopd5XStU0Oj5fp5Qar5QaY3QcQoiiU0o9rZQaaHQcZYm/0QF4uMnAQSAY6AGMAwYopVppmpZqaGS+bTxwBpiZY/kvQAiQWdoBCSEK7WngG+A7g+MoMyShX9pyTdM2u/79qVLqLDABuBmYZ1xY3kMppYBgTdPSLndfmqY5gfTLj0oIURhKKRMQqGmalD8PJlXuhbPG9bORqyr+sZwrKKW6ud4bWdSDKN10pVSmUmqw2/I2Sqm1Sqk0pdRRpdSzSqk7Xcez5NhHf6XUOqVUilIqSSkVo5RqmWOdmUqpZKVUXaXUd65/n1ZKvamU8suxrkkp9ahSarvrEcQppdTHSqnKOdaLVUotU0r1U0ptBtKA+1zv3amUWqOUilNKZSildiilxuXcHmgJ9HJ75PGz671cn6ErpYYppba4PpczSqk5Sqm6RT1XIUqa6295s6ss7VdK3aeUsiqltBzr3eb2t31OKfWVUqp+jnV+Vkr9q5SKUEr9pJRKVUodU0pNzOW4QUqpF5RS+1xl8IhS6nWlVFCO9TTXI8ZblVLbgQzgetd7TyilflVKnXXFtUUpNTTn9kA54A63cjzT7f26SqkZru+RDNf3yl2X+bGWeXKHXjhNXD/PAhuAW4G3c6xzK5AELC7KAVzJZQYwAhikaVqMa3ld4CdAA6YAKcA96AUt5z5GA7OAlcAkIBT9ccF6pVR7TdNi3Vb3c633O/AEcA3wOLAf+MhtvY+BMcDnwLtAI+BBoL1SqrumaTa3dZuj12B8DHwC7HYtHwdsB5YAduBG4EOllEnTtA9c6zwKvAckA6+4lp26xOeVFdMm4CmgJvAI0N11rvFFOFchSoxSqj2wAjgBPI/+dzkZOJ1jvWeAl4AFwKdAdeAh4Jdc/rYru/b5rWv9ocBrSql/NE1b7tqfCb3s9QCmAzuB1sBjQBgwMEeofYDhwPvoj8BiXcsfce3nSyAQuAX4Wil1Q9b3FTDaFfMfrmOBXs5QejukjejfZe+7zrs/8JlSqqKmae/k9xmKPGiaJq8cL/TEpQF9gWpAPfQEewZIBeoCY13rhLttF4D+xzmzEMeyuPbzBPoF1leuY1yXY713ASfQzm1ZFfSLCw2wuJaVB84D03NsXxOId1+O/oxaA57Lse6fwGa333u41huVY71+OZejF3oN6JfLuYbksmwFsD/Hsn+Bn3NZt7dr373dPu9TwD/o1fpZ60W61nuhsOcqL3mV9As9GaYAddyWNQVs+leyBtAQ/aL36RzbtnKt97Tbsp9df9uj3ZYFol8wfOO27DbAAfTIsc/7XNt3c1umudaNyCX+kBy/B7jK4Oocy5Nz+y5ET/THgao5ls9zfUdd9D0hr4K9pMr90lahJ+gj6Ik2Gf2u+Rj6VXA6+h15ln7oFwBzinCsQOBr4AZggKZpP+R4/3rgN03TtmYt0DTtHPpVsrtrgUrAPKVUtawXeuH8Hbg6l2NPy/H7OqCx2+/DgATgxxz73IL+meTc50FN01bmPIjm9hxdKWV27WMt0FgpZc4lrvx0BGoAH2puz/Y0/S5hF3pizym/cxWixLhq4K4BvtM07XjWck3T9gHL3VYdjP5IdEGOMncS2MvFZS4Zt+8dTdMy0e+Oc5bjncCuHPvMepSYc59rNU3bkfMccpTjyoAZvRxdUYDzV8AQYKnrV/c4Vrr2le9+RO6kyv3SHgD2oF8pnwJ2a3rDLDRNi1dKLQVGAc+51r8VOMZ/BaQwnkK/u+6vadrPubzfEPgtl+X7cvzezPUzrxgSc/yermna6RzLzqNX4bnv0wzE5bHPGjl+P5jbSkqp7sALQFf0xwDuzOgXDYXR0PVzdy7v7UKvWXBXkHMVoiTVQO+pkbPckmNZM0ChJ+/c2HL8flRz3ea6OQ+0ybHPFuSo2s8Rm7u8yvENwLNAO8D92XvO4+emOvoNx1jXqyBxiAKShH5pf2j/tXLPzRfAMKVUN/Qqp5vQ7xadRTjWSvS78IlKqZ+1orcmzap1GY1+NZ+TPcfvjgLuM44LayPc5fyCuKhFu1KqCbAaPdFOQK/1yAQGoD/DK43aooKcqxCewISeIPuT+99tco7f8/rbVjn2+Q96+cvNkRy/51aOe6I/MvgFvXvpCfSLizvRb27yk1XO56C388nN3wXYj8iFJPTLswI9md2KXp0dCswu4r42olcHL0NvYDJI0zT35HsI/TlbTjmX7Xf9jNM0bVURY8lpP3o14Qat6N3PbkS/mr9J07TDWQuVUrk9AijIlT7onwnojfBy1kg0d3tfCE8Rh/6oLr+yvB89GR/UNG1PMR17P9AW/Vl3QctYTkPQ4++naVp2g1yl1J25rJvbMU6jNxr2K8bvJ+Eiz9AvgyvhzkNvCToG+EfTtCJfXbr+wG9Bv1Of7WqVmmUl0FUp1S5rgVKqChffNa9Er1Z/WikVkPMYSqnqRQhtAXpL3OdyvqGU8ldKVSrAPrLuILLvGFzPzXP7IkhBr5bLz2b0L8j73bvdKKX6o1ctxuS1oRBG0DTNgd42Z6BSqk7WcqVUU/S78SzfopeZ513PnXFbVymlqhbh8AvQG/Tem/MNpVSIUqpcAfbhQE/U2V09ld5ldmAu615Ujl3nvxAYopRqlUscRfl+Ei5yh375vgAeRm9QMulyd6Zp2neuq90v0BPzfa63XkdvpfqjUuo9/uu2dhi9tbvm2j5R6X27ZwN/KqW+Qr8qboDeSGwDenezwsS0Vin1MfCU64LiB/RqtmboDW0eQR8R6lJ+QK9iX+raV3n0L5Y4oHaOdbcA45RSz6I/V4zTNO2iNgGaptmUUpPQu62tVUrN479ua7Fc3KVQCE9gBa4DNiilPkJPjg+i9+5oB6Bp2n7X3/8UwKKU+g79zrYRMAi9K9ibhTzubPSbj2mumrENrmOHu5b3Q79IvpQY9Cr7FUqpuejPux9AL6dtcqy7BbhGKTUBvVX7QU3Tfgei0L8vf1dKfQLsQP8OuwK9JrBKIc9LZDG6mb0nvviv21rHAq7/L/qVa90iHMviOtYTOZaPcy1/w21ZO/RnV+noz7ui0PulakDNHNv3Rn8kEI/+LGwfeuLr4LbOTCA5l5isuLrP5Fh+L3qBT0W/2PgbeA2o7bZOLLAsj3O9EdjmiucgMBH9Dj27251rvZrojx4SXe/97HZO2d3W3NYfjt79LB29G9+cnP8vCnuu8pJXSb7Q+3j/iT6OxD7gbvQEnZZjvcHoLciTXa+d6H23w9zW+Rn4N5djzARicywLcJW7f13l5ZyrTE8GKrqtpwHv5xH7XeiNhdNd8YzJrRyhP/Za6/q+0HDrwoZ+IfA++g1JJvqz+FXAvUb/v/Hml3J9uOIyKKX+As5pmtbXgGO/g34XX17Tq7OEEF7IdRfeUtO0ZvmtK0Ru5Bn6ZVJKdUS/c/6iFI4VkuP3quit2ddLMhfCe+RSlpuh9/j42ZCAhE+QO/QicjXo6IA+dGg1oLHm1tXMNYBEfg08kjVNy9n95FLH3Ipe4HeiV0vfDdQB+mqa9kth4hdCGEcpdQK9SvwA+ngK49B7gbTXNC2vvudCXJI0iiu6oejPnXYDI7WL+43XJ4+BGdy8gP7sqaC+dx03a9jZP4G7JZkL4XVWACOBWujP0X9DH85VkrkoMrlDLyFKqaw51C/lgKZpB0ojHiGEEL5NEroQQgjhA6RRnBBCCOEDJKELIYQQPkASuhBCCOEDJKELIYQQPkASuhBCCOEDJKELIYQQPqBQA8ts2bKlPPrIZHIhIIrKCRzv0KFDgUfIE8aSci/yIGXZwxS4H/qWLVuuNJlM00wmkxm3Oa2FKCTN6XQmOJ3O+zt06LDR6GDEpUm5F5cgZdnDFCihb9mypbzJZFpfqVKlmjVq1DinlJLRaDyc3en0y7A7g+wOLcDh1PztTs3P6cTfoTn9HJrm73Ti59QwaWhK01CAauoXl6mctgBw/f9VSsPkZ0f52TH5OTD521B+Dkx+ds3kb8fkb8M/KBNV8Bs3TdNUXFxclfj4+FNOp7OHXN17Lin33snudPpl2p2BNr3s+zmdmr9Dw8/h1PycaH4Op+anafih6QW9hn9qenlnfLBe7pWGQkOZNL3c+9vQy7pdM/nbMAXY8PO3Y/J3Sln2PAWtcq9jMpnMNWrUOFeuXLm0Eo1IFEqGzRGYmukIzbA7gjPszuAMuzPYZncGOzTN78I1s26u/P77Ncf9VrA/JpNT89OHic/iCAD0yjVnriFo+AVm4B+chn9wGgEh+ss/OAOV+w1djRo1ziUmJpqdTmcd9HmVhWeScu/B0vWyXy7D5gjOcDiDMu3OYJvDGexw5lX21YWLXL8G+JsyQ+yOwIsOoAEO1+siSsPkn1kzyD8zxZHSsNbWqSNZ+sNirAlxl31iosgKmtBNgJIrdGNpmkZqpiMkJcNePiXTUSEt01He7nQGGByWwpEZjCMzmIzEym6LnfgHpxFYLomgCokEVUzGZNIAXH9HCnkm6+mk3HsIp1NTKZn2cikZjnKpmfbyaTZHeYdTM3ByLU3htAWZ7JlBfrYUysfvnA5Mx2o+Amx2vTYBm7EmnDcuzrKlyH8QlqiYDsUZiLvY6MgtJbVvb5OWaQ9OSLObUzLsFdNsjnLOi+68PZVmwp5WDntaOVLP1AKlERCSTFD5RLSgDKOjE0VTUuVeyvzFUjLsIYlptkpJGXZzhs0ZqqF5QxuG+q7XoOwlVvN2YAnwHbAJa4JcIJYQuUMqIcuWLavwzTffVCzsdpqmkZRuK3/0fGq9nScSW+2NS24Zl5ReLyXTXtGpaX4bfl7N8H49s1/XdGjBiP69srdf8vU8hlzTTX//+qtYt+aHXI/z+4ZfGHVDXwb1uZJBfbvy9iuTcTj1OvWDh4/R4fpRtLv2Flr1GcawsRM5H5+Y635eevsTWl49lCtvuJ1DR49nLx/z6PNs2LTV/cwUttQKJMfVNSUcbhyYFle/+boHpmI1D8FqDirs5yREcdu0aVNw3bp1W5fW8UaPHt0gPDw8IusVFBR0hfWlVxocPpfaYMfxxDb7TydHHDkdX6d/z07lhvXrkWcyf++1l/4r8/16snzxwuz3Fn01hyHXdOMKSzXmfPpRnrEcPHyMLjfcTsurh/Lqu59lL9+59wA3jXn0ck+1JfAU8DtwBKv5Q6zm67Caja5d9DkyH3oR2Ww2AgLy/ntcs2ZNhfj4eL+hQ4fmnglzSEq3lYtPtVVJSrdXvlQ1evfefeneu2/27w+OGUGnrj0BSDh/nujJk1iydhPVatTkzz9+Y8LY2/l568VTLFc0V+L1Dz6jXkMLGenpjB01kC/m1zDdPSKSOjWrs37RDEJCggF4ZPIbWP/3MVNffPKCfSQmJTPn2+/Z8fM3fPntct6bMZ83Jz/Gj79sJDQkmO6d2uV9wprT5G9Pvg64DojHal4IfAmsxZqQ+9N6IXzI7NmzD2uaRmK6veKu/Yeq9erYOuSqyKHV41Mzs9d5Z4qVdh27sH3bn3nu5477H+ahSc8BcOrEcQb1uZIre/amcpWqRLRpyxsffc5nH7x9yVg+mLmAB+4Yzq2D+xPReygP3XUL5cuF8ujzbzIt+pniOWFdXWCc65WA1bwc/c79e6wJScV5oLLIq+/Q58yZU6lx48YtmzdvHjFu3Li6lStXbrt79+5AgH/++Seod+/eTVu1atUiLCws4tVXX62etZ1SqkNUVFSt1q1bt6hbt27rqVOnVs16L7/tHnvssTqtWrVq8eCDD9b7448/Qjp06NA8IiKiRZMmTVpOnDixNsCvv/4a8sUXX1RftGhRlfDw8IgnnniiNsDChQsrdujQoXnLli1btG7dusXiJUsqxiWmV999Mini4JmU8POpmTUK80w87uQJ/lj/CzcMGQGAU3OiaRopKXpj06TEBGrWrpPrti1ataFeQwsAQcHBNI9oTeyRYwogKCgwO5k7HA5SUtNy7a/k5+eHw+nAZrOTkppGYIA/qWlpvPTOJ0Q//VBBTwOgEnA3sAY4jNX8BlZzu8LsQJQNlyrzY8eOrdeqVasW4eHhER07dmy+bdu2IIDk5GQVGRnZuEmTJi2bN28e0b1792ZZ+5swYUKdhg0btmrZsmWL2bNnV3E/Vs7yunTp0goA3bp1a/b5559ntxdZtmxZhRYtWkQU5jzSbY7A4/FpdXadTGp96GxKs3lz51Tu1qsP1WrUzF5n47qfiTt5ggGDhl1yXxXN5ux/p6WmoGkaTldtW/OI1jRu1hxTPj1RAgL8SU1Lx2az43Q6MZlMTPviG667qiuNGtQtzKkVhhm4BfgKOIHV/ClWc4k9yi0LvPYO/dixY/4PPvig5aefftrVvn379KlTp1aNj4/3B7Db7YwcObLx7NmzD7Zv3z49KSnJ1KFDh/Du3bun9OrVKxUgKChI++eff3b+9ddfwT169Ggxfvz4s0qpfLfz8/PT/v33350A58+fN61fv35PSEiIlpycrDp16tSiX79+iX379k25/fbbT8fHx/vNmDHjCMCOHTsCX3rppTpr1qzZE1iuYvCmrf/WHH7T9c2W/7qNwKCi1Tgv+XouPfpcS9Vq+jVH5SpVeXbKW9zSvzfmSpVIT09n+rxF+e7nTNwpVn2/hMe+mOrE1Qw+M9NG58jRHDp2gjYtmrHk84uv8MuFhjDh3tu48sY7qFWjKrPeeZHJb0zj8ftGU7FC+SKdE/oV/BPAE1jNfwBvAt9iTci1ra0oOy5V5gGsVuvJOnXqHAWYPn165QcffLDBunXr9n777bfmhIQEv/37928HOHXqlB/AV199ZV6yZEnlv/76a0elSpWcgwYNapS1L/fyWqVKFee///4bdPXVVzc/fPjwP7fffvvZL774ouqdd955HmDGjBlVb7vttjP5xa9pGudSMqucT7VVS820V3B/77v5XzLh2Rezf09MSODtV5/nw9nfcGDv7nw/my9nfMz8WZ9y6sRxrK9Pzf5OKKiH77qFMY89z8dzFvLE/aNJSEzmm5hV/DDvw0Lt5zKUQ7+ovxureTPwETAXa0J6aQXgC7z2Dv3nn38u17x589T27dunAzz44INnAwICNIBt27YF79u3L2TkyJGNw8PDIzp16hSekpLi9/fff4dkbX/33XefBWjfvn26n5+fdvjw4YCCbDdu3LjsgpuammoaOXKkJSwsLKJDhw4tjh8/Hrhly5bQ3OJdvHix+dDhwyHdelzVtuMV7VuMu2t0FaVMnDh+tEjnr2ka383/kkG33Ja9LCkxgS8/+5gvl65ixcZ/sL7xLo/dMxpbZmae+0lOSuThO0cy5v6H6dSudXZjlcDAALb++BWntq4ivImFj+cszHX78WOGs/XHr1jx5QccPXGKoydOcX3vbjzw9BSGjZ3Iu5/NK9L5uXQGFgB7sJofxGrO9bMVZcOlyjzAkiVLKrZr1y68WbNmLV977bU6O3fuDAXo2LFj6v79+4Nvu+22Bp988knlwMBADWDVqlUVbr755nNVqlRxmkwmxo0bd9ptX+ZDhw4FdevWLTw8PDxi6NChTZRS7Nu3L/C22247v3Xr1nKHDh0KSEhIMK1Zs6ZS1vdJbpxOTcUlptfYdTKp9bH4tEY5k/mfv/9KanIyPftcl71synNPcs+DEwqcmG+96z6WrN3EF9+t4NP3/0f8+XMF+1Bdateszsq5H/LXD/O4b/RQHpn8Bm9NnsBPGzYz5N4nGPXA0xe0kSlhHYHP0GvrXsRqrpnfBkLntXfol6JpGhUrVrTv2rVrR17rhIaGZn8R+Pn5aXa7XRVkO7PZnP18d8KECXWrVq1q3759+46AgACuu+66Junp6RfUTmddlac4/et0vaqPKfr9Ty8Z+/49u3jqoXsBaNexC0+/8mau623euIGMjAy69frvefrGdT9ToaKZxs2aA9D72v5Yn3iI48eO0LBRk4v2kZKcxPjRQ+l93QBuH/sAcOyidQIDA7hzxE3cO/FlJo4fk2fcdrudJ158h3kfvsqcb7+netXKfPDqU1w9dCw3XNOTxg3rXfK889EYeA94Aav5Q+A96e8q3O3duzdw0qRJDX799dedLVu2zPj9999DrrnmmuYAERERmbt27dq+bNmyCj/++GPF559/vt62bdsuKuPKbdwETdPo0aNH4tKlSw/mdrwBAwac/+STT6pUr17d3rVr18RatWpdVIP01FNP1V703ZLqmEwBjzxlvaDti7tFX83hxmG34Of3XweWrZs2snXTRv738nNkZGSQEH+em3p1YsnaTZf8HJpHtKZGrTps/m091wy46ZLr5mVhzGqaWOrRrlVzWvQazB8xs9m8bQeT35jGrKkv5r+D4lMdeA6YiNX8JfAa1gQZt+ISvPYOvXfv3im7d+8OzXpO9tFHH1W12WwKoG3btunly5d3uD8b//fff4OyqtryUtjt4uPj/evVq5cZEBDAtm3bgjZs2JDdqr1ChQqO+KSU0N0nk1odi09rdOVVff03rl/Lnp3/Zm//z18X99RpEhbOgpXrWLByXZ7JHGDRV7O5edjIC74E6jWwsHvHP5yJOwXAti1/YHfYqVX74mdgqSnJjB89lG69r2HsI09c8N6ho8dJTdPHEXE6nXy9bBVtWjS7aB/u3vp4DqMGXU+tGtX0Z+6uL0elICW12MYkqQI8CxxytZSVK/cy5FJl/vz5837+/v5agwYNbE6nk3feeadG1nb79+8PUEpx6623JkybNu2opmkcOHAg8Nprr01asmRJlfPnz5ucTifTpk2rlrXNjTfemLhhw4aKv//+e3bt3E8//ZRdQ3TPPfecmTt3brU5c+ZUu/POOy+obrc5nP5Hz6fWu/XBqFoLftwQsGDlujyTeXJSIj9+v4SBI267YPny3/7Ofr32wWc0adY8z2S+f8+u7H8fiT3Iru1/Z1/UF1Z8QhJTP5vL84+NBSA1LR2TyYTJZCI5NbVI+ywGQcBdwHZXua+R3wZlVZHv0I3uN1q3bl37u+++Gzto0KCmgYGBWq9evRJDQ0OdVatWdQQEBLB06dJ9Dz30UP0PPvigptPpVJUrV7YvWLDgAHmMewRQ2O0mT558fMyYMY3nzZtXtWHDhhlXXnlloqZpnEnOqNq9/5Aa8xfeFjjwmu706X8j9z86kej3PuGlqAmkp6Vis9kIb9ma/O7Yc5OUmMDq5ctY+OOGC5a3aN2Wex96nHtvuRl/f3/8/P1548PPCQrWG7hZn3yY3tdeT+/rBvDlZ9P4d+ufpKWmsmb5UgBG3dDbb/Ijd/H3jr088/oHADidGle0CufdHC3c3e2PPcLPv23m+9nvAXDb4AEMuudxvl62iu4d29I6n4uBIghGbyV7G1ZzNPA/edZWOows95cq882bN8+86aabzoWHh7esXLmyfcCAAfFZ223ZsiVk8uTJ9TRNw+FwqKFDh57r0qVLWpcuXdJ+//33cu3atYsoX768o2/fvgl//PEHAK1atcqYMWPGgfvuu69hWlqayWazqZYtW6ZeffXVBwGuvvrqVD8/Pw4dOhQ0ePDgRACnpqm4xIwaZ5Izahd0vIgVS74lonXbXGvQ8hJ38gQP3jGcBSvXAfD2q89z7MhhAvz98fPz56mXXs9O6IsXzOX9N14hMSGen36IYdbH7/Pu5/No0apNrvue9MpUrBPuy24U++wj99Cx/60EBgTw2VvPFzjGEuLPf+X+NfRyLyMYuinoWO7h/v7+K5o1a5YcGhrqMV+c58+fN1WuXNkJMHv27ErPP/983QMHDmw3Kp7kDHvo8fi0huk2h1c+623lfyzT5My8eAjIYpZu1zh47DSNNjxOcPKR4tjlYfR+rvNk0Iri44nl3tPKfJZzKZmVTyWm17M5nCVefopbg8Dk5Er200VqxVoCZbkwjqJXyX8hXV11Xv0M/bXXXquxaNGiKk6nU5UvX97xxRdf5Pq8q6TZHE7/E/FpdePTbNXyX1uUgAbofdgfxmqegDXhV6MDEiXDU8p8lqR0W7kTCen1022OckbGUUbVAz4HHsVqfhJrwo9GB2Q0r75DN5qmaZxOzqh+OjGj7sWToXgfL75Dz+kr4CGsCfl2JRJ5k3KfN7vD6Xc8Pq2eL1zEe/Edek7fA2OxJlzcureM8NpGcUZLybCH7jmV3OJkQnoDX0jmPuYW9AY0NxsdiPA951MyK+05ldzSF5K5jxkA/IPVPNLoQIwiCb2QNE3jRHxa7QOnU8Iz7N75rLyMqAF8h9X8BVa3obSEKCK7w+kXeyal0ZHzqU08YJZDkbvKwFys5q+wmivnu7aPkYReCOk2R9DeuOTw08kZdbxk5iMBo4F/sZqvNToQ4b3iUzPNe04lt0xMt1XJf23hAUagl/t+RgdSmiShF9CZ5Iyq++KSI6Txi1eqB/yA1fwRVrP8/xMFpmkax86n1j18LrWp3JV7nTrAClff9TJRm1r0Vu4lOYi+NcFj5kZ2ODXTkXOpDeXK3CfcD/TGah6ENWFXvmuLi5VUufegMp8l0+70P3wupUlqpqPIExMIjzAO6IvVfBvWhEsPteflvPoOPWvmpfDw8Ig//vgjJOfvr7/+euFmKMghw+YI3BeXHO6ezONOnuD+W4dwU69ODL22OxPG3s65s4VvTJ2Rns6jd9/KjVd1ZNh1Pbhv1CAOHzyQ/f6n773FTb060a5BFdasiMlzP5eaH33vzu0XvNe/axt6tmqU637WrfmB1r1uDmjVZxgrf/6v19eMr767YH5kHxAO/IHVPNDoQETx2b17d2DO8l63bt3Wv/76a0he21xKUrqt/L645IjCJvO9O7dz55AB3Ny7M4P7dmXy4w+Snvbf2Cdt61e+YO7yP3/Pu4fl5t82MCqyD4P6dmVQnyvZtkUf9CY1NYXnJjzAkGu6cXPvzrwzxUpevZVejHqUIdd0454RN5GUmADotQ7jRw/lSKyhPf5KWxjwC1bzLUYHUpK8OqFPnz69+qRJk07s2rVrR+fOndPcf4+Li/OfMWNGkRN6Urqt/L7TyS0y7I4LvhD8/PwY+8gTLFm7iW9+3EC9Bg15++XJRTrGkFvvYMnaTXz9w3p6X9efFyY+nP1elx69+fCLr+nQpdsl99G9d9/soWIXrFxHeOs2DBioT7fYrEXLC97r2bdfnlMxfvjmFJZ9+ZHt+9nv8sxr+ihxp06fZfY33zNx/B1FOj8PVgH4Fqv5ZaxmaQvhA/bu3Rt0OeXd3cmE9JqxZ1LD7E5ngN1uL9S2gcHBPPXy6yz++Q++/mE9aampfP7R1AvW+Xzh8uwyeUUe5Tvu5AmemzCOl9/5iEWrf2P+8rU0aqqP/vbZe//D6XTwzY8b+ObHDezZ8S8/xiy+aB97d+3g8MEDLFz1Kx279mDZt/MB+HbeF3Tq1pP6ltwv7n1YMHqDuaJ9YXsBr03oY8aMqb958+byL774Yt327duH5/z9oYceahAbGxscHh4e0adPn6agX7E//PDDddq3bx9eq1atNq+//nr1qVOnVm3Xrl143bp1W0+fPr0ywJmkjKq3jBzVfPj1vf2HXtudB+8Ynj0+etXqNbiic9fsOFq378jxo4cLHX9QcDA9+1yXPeZ5m/adLthP6/YdsucrL6ic86O7y0hP5/vvvmbQLaNz3dY/IIDUtHSlz2uuPyp8zPoWrz3zMP7+Xj3+UF4U8AzwTVl5vuYLFi5cWDEiIqJFWFhYRKdOnZpv2bIlGCC38g6wYMGCylnle+LEibWzlh8+fNh/wIABjVu3bt0iLCws4uGHH67j1DQVezbF0qFVWL3/vTpZjbqhL889Nq5Q8TVs1ISwFq0A/eK/Vdv2HD9S+O+HBV98Rv+bh2YP4RoYFJQ97/nunf/SvVdflFIEBARwZc+rWbZw/kX7CAgIwJaZgdPpJC01hYCAQE6fOsnyxQsZfe8DhY7JRyj0SZ6+wGr2ulH98uO1CX3mzJlHWrVqlRodHX3kr7/+2pXz9/fee++wxWJJ37Vr1441a9bsy9ouJSXF76+//tq1atWq3ZMnT65/7NixwK1bt+6aO3fu/kmTJjU4ej61/vGENMuT1inM+/4nvvlxA+07d+Wjt6MvisHhcPDVzE/ofd2Ayz6fL2dMu+z95Jwf3d3q5Uup18BCeMvWuW772NNW7nz4af8xj1l587nHWPbjL9SsVoXO7VtdVkxeYDCwHqv54hlshEc5duyY/91339145syZsXv27Nlx1113nR4+fHgTp9NJXuU9Pj7eb+vWrbs2b96886OPPqp58ODBAIBRo0Y1euCBB+L++eefndu3b9/x119/lXt3+qzwxDRbVYCE8+f5cukqprz3SZHjTU1N4duvZl9UrseOvJlh1/XgjReeITU1Jddt9+/dTUZ6OmNHDmR4v55MeW5i9roRrdvxQ8xiMjMySE1J5qeVMbneVFiaNKNT157c0r8Xxw4fInLwcN544WkmPPOir16kF8ZoYBVWc9V81/QiXpvQi2rUqFHnQJ98ITAw0Dly5MjzAN2790hLTEz0jz1+ugbA8u++YeSAqxnctyuL5s1m9/Z/L9iPpmm88szjVDBX4ta777+smD597y2OxB7k4aii1wTlNj+6u0Xz5zBoRO7vAVzRpRsbl39l+33ZF7Ru0ZTXPpzJy5Me4J1PvmTY2Ik8+Ew0mZm2Isfn4dqjP1dvYXQgIm9r164tFxYWlta5c+c0gHHjxp2Li4sLyErSuRk9evQ5gNq1a9vr1auXuWfPnqDExETTxo0bKz7++OMNwsPDI1q3bt3y0JGjFfbt25ddU3PTsJEXTKdaWLbMTCaOv4uuV11N3/43ZC9fsfFvvvr+Z2Z9t5Lz587k+bjOYbez5Y9fefOjmXy5bA2JCfF89JZ+U3HX+EepXbcet910DQ/eMYJW7Trgl0eCfnDisyxYuY43p81k4y8/U6tOXerUb8BzEx5gwtjbWbHk2yKfow/oCWzEag4zOpDiUuYSekhISPYg/n5+flpoaKjT4dRMsefSmimlcDjs/PnHb8yd8THvf7GAb1f/xhOTXyYz48KRL6MnT+LU8WO88eEMTKbcP8bbB17H8H49ufXGa/KMZ9a091i9fBkffPE1ISFFr/nNbX70LEcPH+LvPzfTf2Duz89zejr6fZ55+G5Oxp1h8cq1fD39dapWNvPlou+LHJ8XqAP8jNWcexWG8Eo5y7vNZsse7vrPP//cufWf7fsX/fSHWrb+L+U+jXBoudzbwu3fsyu7QdurzzyR6zo2m40nx99F9Rq1mPTChTV7tevW1/cfWo4Rt9/Nn3/8lus+atWtR88+11GxUiUCAgLof/MQ/v5Lb6AdHBLCpBeiWbByHTO+iaFSlSo0CQu/5OeQnJTIrI/fY9zjTzHn04/oeGV3Xv9wBh9PfYO0tDI9YVlT9KTe2+hAioPPJvRKlSo5kpKS8h2S1eF0mg6cTg5LzbRXyFqWmBBPufLlqVS5CrbMTL75cuYF20RPnsSR2AO8/ckcAgLzfgzzxXc/sGDlOr5cuir396d/wPIlC/l47qLs52NFldv86Fm+mz+HPtdHFugYG7f8TUJiMtdf3d01r7m+3GQykZzi8wW/BvATVvMVRgciLta7d++UPXv2hGzatCkYYPr06ZVr1qxpa9Soka2g5R3AbDY7O3funPj0M8812H86OdzmcAbFnTzBqRP5DwHeJCw8u0Hb06+8edH7drudSQ/cjblSZSa/9s4Fd/mJ8fGkpelzijudTlYuXUR4HtOYDhg4lE2/riMzIwOA9T+tornr2XxyUmL2fo4ePsTXs2dw+9gHLxn31CkvcN+jEwkJCSUtNRWlFEop7DabL9e8FVRl9P7q/Y0O5HJdRj90z+s36q5Lly6pYWFhac2aNWtZv379DPfnam7UiSR74+oVLmzJ3r33NcR8+zU39+qEuXIVruzRi7iTJwD4a9NG5n0+nUZNw7jtJv3Ou079hrzz6ZxCxXfqxDHeeulZ6jWwcM+IGwEICAzKTv7Tp77J13M+5/y5M+zbvZMpz01k/oq1VKlajQ/efJXqNWsxfPRdQN7zo4P+xbHk67m8/M60fGPKtNmY9Oq7fDP9DQDaRITRuGE9WvUZRrUqlVj06VuFOkcvVRVYjdV8PdaE340OxuMYWO7r1Klj//TTTw/ccccdjex2uzKbzY758+fvN5lMBS3v2WbP/erEIxOeCLv56iuVUoqQ0HI8F/0/ata+vKYUK5d+y+rlSwlr0ZIR118FQLuOXXj6lTc5uH8PL0U9pidSh4MWrdowyfrfHfwDtw9j/ONP07Jte9p17ELv6/ozon8vTCYTTcLCeXbK24CexJ8cdyf+/v74+fnxxPOv5tk2BvTvrPT0dLpedTUAt9xxD5MevIfPP5rKDYNHYDZXBPvpyzpvHxAELMJqvhlrwkqjgymqMjvbms3h9D9wOiUsZ7e0ssyHZlsrDknAAKwJ640OxCi+WO4B0jIdwQfOJDd3OLUy3zIMfGq2teKQDtyMNeEHowMpCp+tcr8Um8Ppv/90cnNJ5uISKqBXw/UxOhBRfNJtjqCDZ1LCJJmLPASjT+p0tdGBFEWZS+gOp2Y6eCalaabdGWx0LMLjlQOWyDN135BhcwQePJMSJmOyi3yEAIuxmjsaHUhhlamErmkah86mNJYJVkQhlAOWYTU3MDoQAzgBTdO8f2bBTLvT/8CZlDCbw+lzg4kYKfuJbQEe3XqZCsByrOZLdx/wMGWq2unI+bSGyRl2mRtbFFZt4Hus5u5YExKMDqYUHXc6nQlxcXE1a9SocU4p5ZXf2k6nxpH4tEaZdmeQ0bF4okxlN6U7Cv+/VtPgdIoDlZFIQHrh57PwAtXQZ2nsjjXBKxoIlJmEfiI+rXZ8amY1o+MQXqslsBCruT/WhDLRz6dDhw7JW7ZsuT8+Pn5aYmKiGX3YTK+TkOGsnmHXZHjfPNj80vzKOZOLtK3KSKTe1rfwc/hMm8mc6qM/duuGNcHj++0WOaG3ntW6xKZP/eeOf4q1a8yZ5Iyqp5Mz6hTnPkWZ1Bf4BBhjcBylpkOHDhu3bNnSw+l01sELH9G9+Mu5cWdSHQ/nv2bZ9VDgsr8Hqp87FXpDTSMg/YwvJ/Ms7YCP8IJy75N36Lt37w5cvHixeeLEiaeT0m3lTsSnN+zftQ1vf/rlJftrloS1q1bwv5cn43Q4aBoewUv/+4DyFSpetJ7T6eS156NYv+ZHlFLces/9jBwzNt/33CXGx/PY2NHEnzvLFZ278syrer/xc2fP8OT9Y5g2dxEBAdIe6DLdgdV8EGvCC0YHUlo6dOiQDOwxOo7CskTFDAUeMjoOT5fufyot2N8rapSNdAdW80asCfkP6GEgr7viLoisqRQz7U7/I+fSmmgUT6Oewk6lmJqSjPXJh3nn0zksXbeF6jVrMX3qG7muG/PtAg7s3c2SXzbz5dLVzJr2Hvt278z3vQv28d0COnXrycJVv3Jw/1727toBwJsvPsMjTz0vybz4WLGabzY6CJE3S1TMFcAsvPQxgfBIU7GaOxsdxKV4dULPbyrFNm3atB5/x4jsLLZ6+VJG33wd/bu1ZfrU/4ZtPBN3iifH3cmoG/oy5JpuvP/6y9nv9e/ahrdffZ6iTKW4/qdVhLdsQ6Om+tj/I26/m+WLc58MYeXSbxk88nb8/PwwV65MvxsHsWLxwnzfc+fvH0B6WipOpxNbZgYBgYFs+GkVFc2VaHNF4WvUxCXNwGquZ3QQ4mKWqJiKwDeAPDcXxSkQfbplj22L5bUJPd+pFBs3cSz4Yb3p3c/nZW+TlJjA7MU/MHfZGmZ9/C6nThwH4NnHxjPi9nuYu2w181f8wva/t/LDsu+ytyvqVIonjh2ldr3/vvPr1G/AmbiTud7pnzh2lDr16v+3br0GnDh+NN/33EUOHs6R2IOMuP4quvToTY1atfnkvbd4aOKzhYpbFEgVYA5Ws9eWIR/2EdDI6CCET6oPfIXVXKB5A0qb1z5Dz20qxYkTJzY4ePBgQIaDEJTponMbMHAoAJWrVKVuAwvHjhyigtnMHxvWcu5MXPZ6qSkpxO7/byjoy51KsbSEhpbjrY9nZf/+hvVp7hz/CIdjD/LZ+/8D4N6HH6d5hEwoVkx6Ac8CLxodiNBZomJGA6OMjkP4tL7Ay8BTRgeSk9cm9LzYnZp/Yia5tmgPDPpvcDg/kx8OhyN7QITZi38kKDj3weMuNZXiUw/dC/w3AYO72nXrsXHdz9m/Hz9ymGo1auGfy9zFtevW4/jRI7TtoD+iOX70MLXr1Mv3vbz889cWzp09Ta9rrmfM4P68MvVjNE1j8oTxzPgm5pLbikKZjNW8piyP+e4pLFExjYEPjI5DlAmTsJrXYU3wqDmlvba6MK+pFAMq1agTWr6CX1JSYoH2E1quPJ269WTGh+9kLyuuqRS79+7Lzn+3cXCf3kB4/hefcf1Ng3Pd17WRA/l23hc4HA4Szp9n5dJF9LtxUL7v5cZms/HOFCtPTH4FgLS0VJQCk0mRmpqS73mJQvEDvsRqrmx0IGWZJSrGH5iLPsKXECVNAdOwmos0qU1JKfIdenH3FS+s3KZSnDF7XlxyhrNBsxYtaRIWzuC+XanXwIL7c/TcvPrudN588RkG9+1KcU6lWK58BayvT+XRe27DYbfTtHkLXnr7w+z3h/fryfuzFlCjVm1uGDKC7dv+5MarOqBQjL73AZq1aAlwyfdyM2vau9w45BaqVq8BwPjHn+KBO0YAMOGZMtPbqjQ1AD4FhhgdSBk2GehidBCiTKmPXvX+qMFxZPOZ6VPtDqffnlPJLWXihaKT6VMv20CsCYuNDqKssUTFtAC2AVL2i8DqP/OXMf4/XGV0HF7KCXTBmrDZ6EDAi6vcczoen1ZPkrkw2FSsZukqVfo+QJK5MIYJmO4prd59IqEnptkqxKfZPLZvoCgzGgLPGB1EWWKJirkN8Mq5q4XPaI+HVLsXNKE7QZ9+1NM4nZo6Fp/W0Og4RMH58JSLAE9gNTc3OoiywBIVUwl4y+g4hABewGo2PA8VNKHHa5pmz8ws+eerhXUqMb2WzSHTInqTTCfgtONnSzI6lJIQCLxvdBBlxKtADaODEAIoB3yY71olrKCt3M84nc61p06digwICLCZTCaPuLWyO51+pxPSanlizYE3StecylTCn6VTg9MJ6YTG/Yl/ZsG6Fnqha7CaR2BNmG90IL7KEhXTHrjP6DiEcDMAq3kI1oSLx+UuJQVK6B06dHBu2bJlclpaWuv9+/dXx0MmPEjKdFZJs2k+0Q7AE/ibziuTVrgJaApPw5R2jga7Z6Lw6Qux/2E1L8OaIB3/S8bL+EgbIOFTXsJqXoQ1wWnEwQvcD71Dhw7HXPMiNyjMdiVl+b6Uesv3pXrUKD3ebnnQMycDySjZCUecDgLT4ij5CwfD1QHGA7lPryeKzBIV0w0YYHQcQuSiBTAMMKR2rlCJuUOHDpnAvnxXLAVDvo55HumqUqyCM2NtgcrnE21pegKr+QOsCalGB+JjXs5/FSEM8xxW89dG3KV7ZZWVJSqmAzDC6DiEyEcN4H6jg/AllqiYPkg3NeHZWgJDjTiwVyZ04BU85Dm+EPmYiNUcYnQQPkTuzoU3eA6rudRzlNcldEtUTBugn9FxCFFANZHW2MXCEhXTH+hqdBxCFEArDJjbwesSOjDB6ACEKKSJWM25z80rCuNJowMQohAml/ZdulcldEtUTC1gpNFxCFFItYGxRgfhzSxRMW2RZ+fCu7QGcp8vu4R4VUIHHkAfiUsIb/OIEc/UfMijRgcgRBFMLM2DeU1Ct0TFhCAthoX3agz0MToIb2SJiqmK1MwJ79QZq7lNaR3MaxI6cDsgM6oJb3aP0QF4qbsBma9BeKtSe9zmTQn9AaMDEOIyDcJqrmp0EN7EEhWjkF4CwrvdWlpdV70ioVuiYq5Ab2AghDcLQq9pEgXXC/1xhRDeqhL6cLAlzisSOnCH0QEIUUyk2r1wbjE6ACGKwejSOIjHJ3RLVIw/0iBG+I4IrOZuRgfhDVxlv9QH5xCiBPTBaq5d0gfx+IQOXANUNzoIIYrRXUYH4CWuQRrCCt9gAkaVxkE8nVS5CV9zI1azN5Q9o8kETMKX3FrSB/DoLxVLVEwQMNDoOIQoZjWAzkYH4cksUTGBwCCj4xCiGLXHam5Ukgfw6ISOPtSj2egghCgBNxgdgIe7Din7wvdcU5I79/SEfp3RAQhRQiShX9r1RgcgRAko0wn9WqMDEKKEtMVqrm90EB6sr9EBCFEC+pTknA4em9AtUTG10eeUFcJXyV16LixRMXWAcKPjEKIEVAPaldTOPTahI3fnwvdJQs+d3J0LX1Zi1e6S0IUwTh+sZpl05GKS0IUvK5MJvUQbDwjhAYKB9kYH4YEkoQtf1qOkLuQ9MqFbomKaA7WMjkOIUnCl0QF4EktUTGOgntFxCFGCQoESGf7ZIxM6cIXRAQhRSroaHYCHkRoLURZcVRI79dSE3s7oAIQoSU6N83Fapc2LHN0DjY7Fw7Q1OgAhSkFESezUvyR2WgzkKl34DE0j6TzlD/zrbBT/k7Nd4M/OdvUOarXrAx2Bjo9FxVSJjY48Z3ScHqKd0QEIUQpalMROJaELUYw0jfQkQvbt0hqcW+toa1rjbF97l1a/kYbpUneeVwCrSitGD9fO6ACEKAVhWM1+WBMcxblTj0volqiYesiUicILaBr2NIL279Xqxq1ztmaNo32Nv7XGje34F3ZApPZIQscSFVMZkNHzRFkQBDQC9hXnTj0uoSN358IDaRrOTAIOHtRqnfjV2dK52nlFlc3OsKYZBDYHml/m7kvkeZoXamd0AEKUohaUgYTe2ugAhLBpfkeOaNWP/u5skbnKeYV5ozOiSQohTYAmJXA4Swns0xtd7oWREN6kBbC0OHfoiQm9odEBiLLFoamTJ6h6aLMzLH2144py652tGp+nYn1Kr/rXUkrH8XRS3S7KkmJvGOeJCV0KtSgxTk2dO4354FZn06TVzvah6xxtGp6gai2MHcioviUqxj82OtJuYAyeQMq+KEvKREKXUaJEsdC7i1XY/4/eXSzoZ2fberF6d7EqRseWgx/6332swXEYTRK6KEuKfUZBT0zoUqhFoWV1F9upNTy71tHW/ydnu9q7tPoWDVM7o2MroEZIQpeLeVGWmLGag7AmZBTXDj0qoVuiYsoDlYyOQ3g2V3exfXu0eqfXO1ux2nFFjb+1xk0c+BW2u5gnsRgdgAeQhC7KGjMQV1w786iEjtydixzcu4ttcLZyrHG2r7bZGdYkg8BwSqDKykBlOplZomKqoc8+J0RZ4tMJva7RAQhj2TS/w0e0Gkc3OlvYVjvbl3R3MU9S0egADFbV6ACEMIC5OHfmaQnd0xoriRLk0EwnTlDlyCZn89TVjisqrHe2ahxPhQZAA6NjM0AFowMwWKjRAQhhAJ9O6OWNDkCUDFd3sQN/OZslr3G2C/3F0bbhSarUBmobHZuHKOt/+5LQRVkkCV14Nk0j8TwVDvzjbBS/xtkuaK2zbf1YrXY9pAbmUuQOXYiyx6cTejmjAxCFo2mkJRG6b4fW8NxaRxv/n1yzi4FqZ3RsXkYSuhBlT7G2nfG0hB5odAAib5qGLZWg/Xu1eqdds4vV/Ftr3NiBn4y/f/nKeu2UJHRRFvn0HbokdA+haTgzCDh4UKt9YoOzpXONs33VLb7ZXcxTlPWEHmJ0AEIYoFhrpT0toQcYHUBZttHZ4vBRrfrhVc4rKv3ubFFWuot5CofRARjMaXQAZVW0fWSnT+yRJ8qrtPQKpKVXUKmZFUm1mVWKvSIp9ooqxVmRVGcFlUYFUlU5la7KkW4KIcM/WGX6B2ELCMAe6I8j2A9nsAlniIJQpeQGrQBsxbkzT0voUqgNdLvtqV5Gx1CGFdvwj14q3egAyqp0gkKOUT0EzbVAu+TqBeaHwx5Kekp50tPKq7T08qRlVFCpGRVJtVVUKbaKpDrMKsVRkRStokrVypNGeZVmcl0s+IW4XSwE4AjywxFsQgtRaKFK+cwgRMVa7j0toacaHYAQBinrCT3N6ABE8XLg559EOXMS5czFfbFgwukIISO1PGlp5VR6WgVSMyqoNPeLBbeahVStAqmUV+mqPGl+oWSYglWGfxC2gEDsgQHYg/xwBvvhDFZooUCIUqjiiTRfPp3QU4wOQAiDSEIXooCcmPxSCKmQQkiF4r5YAE0LJSMllPRU98cQFUjNrKhSsy4WHBVJdVbMulggTZVT6aZQ0k0hKtM/mMzAQGwBATiC/HEEmXCGmNBC0B9FmNwOlllcUYMkdCE8RbEWbC8kVe7CQyiVSnC5VILLndEq6YuK7WIBgslI0y8W0tOCsMX/WHy79riELlXuoqySO3QhyoB0gkLSCQo5p5mhmMu9Kf9VSpXcoYuyqqwndLmYF2VRYnHuTBK6EJ4hwegADHba6ACEMEB8ce7M0xJ6sV6tCOFFThodgMFOI+0IRNlzvDh35mkJ/YjRAQhhkFNGB2Ck2OhIjWL+chPCwzmBo8W5Q09L6McBu9FBCGGAsn6HDnDM6ACEKEUnY6Mji3WkOI9K6LHRkQ6kUIuyqViv1L2UfAaiLDlc3Dv0qITuUuwnKYQXkL97uZgXZUuZSOiHjA5AiFKWCZwwOggPIG1oRFkiCV0IH3TI1SisrNtldABClKLY4t6hJyb0WKMDEKKU/W10AB5iu9EBCFGKthX3Dj0xof9jdABClLJiL9jeKDY68ggywI4oGzTKSELfhnRdE2WLJPT/SG2FKAv2xUZHJhX3Tj0uocdGR6YDO42OQ4hSJAn9P38ZHYAQpaBE/s49LqG7bDE6ACFKSXxsdKQ0BP2PJHRRFpSphP6n0QEIUUqkivlCm4wOQIhSUKYSutyhi7JC7kgvtAOZeU34No0SynGemtC3Ag6jgxCiFPxsdACexNUf/yej4xCiBG2NjY48UxI79siEHhsdmYrcuQjf50ASem7WGB2AECXox5LasUcmdJdVRgcgRAnbEhsdGW90EB5IErrwZZLQhfBBq40OwBPFRkfuRcZ1F74pHVhfUjv35IS+Hkg1OgghSpBctOZN7tKFL1rvGmulRHhsQo+NjsxACrXwXWnABqOD8GDLjQ5AiBJQYtXt4MEJ3SXG6ACEKCHrXRetInfLkBo64XsWl+TOJaELYYxvjA7Ak8VGR6YA3xsdhxDF6K/Y6MjdJXkAj07ortmX/jA6DiGKmQ1J6AUx3+gAhChG80r6AB6d0F1mGx2AEMVsZWx05Dmjg/ACMUCy0UEIUQw04KuSPog3JPSv0O9ohPAVJX6l7gtioyPT0J+lC+HtNrhqnEuUxyd01xB50uJV+IpUSrhhjI8p8bsaIUpBqVzEe3xCd5Fqd+ErlroafImCiQGOGx2EEJchE/i6NA7kLQl9KRBvdBBCFIO5RgfgTWKjI+3Ax0bHIcRlWBAbHVkqMwh6RUJ39dddYHQcQlymI0hXzKL4GP0uRwhvNLW0DuQVCd3lQ6MDEOIyTYuNjpRpgQspNjryFLDQ6DiEKILfYqMjN5fWwbwmocdGR25Dxr4W3isT+NToILzY+0YHIEQRlNrdOXhRQnd50+gAhCiiubHRkXFGB+GtYqMjfwX+NDoOIQrhKKVcs+RVCT02OnIl8LfRcQhRBG8ZHYAPkAt64U0+dDXqLDVeldBd5ItReJuVsdGR/xodhA+YD2w3OgghCuA8BrT78saEPg84ZnQQQhTCFKMD8AWx0ZFOwGp0HEIUwOux0ZEJpX1Qr0vosdGRNuBto+MQooB+iI2OXGt0ED5kIbDN6CCEuISTwLtGHNjrErrLB+h9eoXwZBrwlNFB+JLY6EgNeN7oOIS4hFdjoyNTjTiwVyb02OjIdOBZo+MQIh8LYqMjpWV2MYuNjlwMlFrfXiEK4TAGjmzolQndZQ6w1egghMiDHbnoLElRRgcgRC5eiI2ONGxUQ69N6K4GMhONjkOIPHwWGx25z+ggfFVsdORqZDho4Vn+BGYZGYDXJnSA2OjIH4GVRschRA6pwItGB1EGTACSjQ5CCMAJ3G/00M5endBdnkT/MIXwFC/GRkfKlJ8lLDY68hjSjU14hmmx0ZGbjA7C6xN6bHTkP8BHRschhMs2ZPCj0jQVkEF7hJFOAE8bHQT4QEJ3eQp93FwhjOQE7i3t4R7LMtdn/YDRcYgybYIRg8jkxicSemx0ZBJSqIXx3vOEareyJjY68hdgutFxiDLph9joyK+MDiKLTyR0gNjoyCXoYz0LYYTDSDc1Iz0G7DE6CFGmxAP3Gh2EO59J6C4PAKeMDkKUSQ/ERkdKi2uDuEbmuhWwGR2LKDPGx0ZHHjY6CHc+ldBjoyPPAvcbHYcocz6LjY5cZnQQZV1sdORmZFhYUTq+jI2OnGd0EDn5VEIHiI2O/A74xOg4RJnxL/CQ0UGIbK8BMhmOKEn7gHFGB5Ebn0voLg8DfxkdhPB5KcCw2OjINKMDETrXCJK3oz/fFKK4ZQIjXA2xPY5PJnTX5C1DkEItSta42OjIXUYHIS7keq55C2DoqF3CJ03w5AmXfDKhA8RGRx5Ev1LXjI5F+KTPY6MjZxsdhMhdbHTkSvRRJIUoLtNioyM/MDqIS/HZhA4QGx25FIg2Og7hc7YDDxodhLi02OjIt4EZRschfMIqvKCtjE8ndJfngDVGByF8xlngZlc3KeH5xgHrjQ5CeLVd6G1lPH4ESKVpvl8jbYmKqQpsAJobHYvwaplA39joSEkQXsQSFVMd2AQ0NDoW4XXOAl1ioyP3Gx1IQZSFO/Ss/un9AJkBS1yOuyWZe5/Y6MjTQCRwzuhYhFfJBAZ7SzKHMpLQAWKjIw8B1wMeMYi+8DpPx0ZHzjE6CFE0sdGR24EByPzpomBswHDXPAFeo8wkdMieavVmIMPoWIRXeS82OnKK0UGIyxMbHfk7Uv5F/hzAqNjoyMVGB1JYZSqhA8RGR65FH/PZaXQswivMAx41OghRPGKjI9cAg9CrU4XIyQmMjo2O/MboQIqizCV0gNjoyIXorV99v0WguBxfohduufjzIbHRkcuBochELuJCGnCXJ47RXlBlMqEDxEZHTgfuREaTErmbCdweGx0pfx8+yDVGxWBAhu0VoCfz+2KjI2cZHcjlKBPd1i7FEhUzFJgLBBgdi/AYnwJjY6Mjy3bhKAMsUTHdgKVAFaNjEYbJQL94X2B0IJerzCd0AEtUzABgIRBsdCzCcB+hz20uBaOMsETFtABWAvWNjkWUunhgoKttldeThO5iiYq5GlgClDc6FmGYt2OjIycYHYQofZaomLrACqCV0bGIUnMEuD42OnKH0YEUlzL7DD2n2OjIn4BrgTNGxyJKnR39rlySeRkVGx15DOgJrDM6FlEq/ga6+lIyB0noF4iNjtwIdAF86n+yuKR4YEBsdOSHRgcijBUbHRkPXAPI34Jv+x7o6bqI8ylS5Z4LS1RMReAroL/RsYgStQ+4UeY0FzlZomJuAz4GQo2ORRQbB/pkXdG+2kZGEnoeLFExJuAVIMroWESJ+BkYEhsdKeN7i1xZomJaozeWbWZ0LOKynQRGxkZH/mx0ICVJEno+LFExQ9D7JEtjOd/xLvBEbHSkDCwiLskSFWNGL/8DjY1EXIa1wC2x0ZEnjQ6kpElCLwBLVExz9FHDOhgdi7gsccAY10hhQhSIJSpGAeOB14ByBocjCs4BRAPPl5UBoiShF5AlKiYAmAw8BfgZHI4ovBXoyfyU0YEI72SJimkMfAb0NjgUkb9/gTtjoyM3Gx1IaZKEXkiWqJgrgdlAU6NjEQWSgd4OYqqvNoQRpUfu1j2eDXgVeDU2OrLMTcAjCb0ILFEx5YD/AWONjkVc0t/oQzpuMzoQ4Vvkbt0jbUGfXOVvowMxiiT0y2CJiukPvAc0MToWcYFUwIo+8pvd4FiEj3LdrY8EpgANDA6nLIsHXkKvhSsTz8rzIgn9MlmiYoKAx4GnkSo4T7AUeCg2OvKQ0YGIssESFRMCTEB/tCO9YUpPJvogQC9J91OdJPRi4hoL+g30K3ZR+vYAj8RGR64wOhBRNlmiYmoDLwNjkFE4S9pCYFJsdOR+owPxJJLQi5klKqYnej/ndgaHUlacRu+a8n5ZbAQjPI8lKqYd8DxwM6CMjcbnbAAmxkZH/mp0IJ5IEnoJcI0ydwvwDBBhcDi+6ix6jcj7sdGRKUYHI0ROlqiYCGASMArwNzgcb6YBy4DXY6Mj1xsdjCeThF6CXI1mhgDPAm0NDsdXnAPeAt6LjY5MMjoYIfJjiYppCDwJ3A0EGxyON7GhD+j1hq/NilZSJKGXAldivxE9sXcyOBxvdQa9R8E7sdGRiUYHI0RhWaJiagD3AXcBFmOj8WjngM/Ry/pRo4PxJpLQS5klKuZa4EEgEhlxriB+Q2/J+nVsdGSG0cEIcblcF/h9gHuAQUCQsRF5BA34CfgU+FbKetFIQjeIJSqmPvrANHcBdQwOx9OkoFe1fSiDwghfZomKqQLcCtwJtDc4HCPsQh9580vpanr5JKEbzBIV4wf0Qy/QNwGBxkZkGA3YCMwFvpBqdVHWuJ613+R69QICjI2oRDiBP9AbuS2TC/biJQndg1iiYioBA9C7u/QHKhgaUMlzAOvQ+5Quio2OPGZwPEJ4BNe0rdejJ/d+QFVjI7osCcBKIAZYHhsdedrgeHyWJHQPZYmKCQSuRp+H+SZ8p1o+HfgFPYl/FxsdGWdwPEJ4NNcz9wigp+t1JdDY0KAubR96bdvvrp9bZQjm0iEJ3Qu4CnQ7oAfQzfXylrGj04FNwM/AGuA3afAixOWxRMVUAzoDbYDmbq8qpRhGEnry3ov+LPx34PfY6MizpRiDcCMJ3Uu5hprNSu5XAi0As6FB6Y3ZdgE7gK3oozr9GRsdaTMyKCHKCktUTFX+S+51gGro1fXV3P5dFb2tjsrlBZCI3nXsfI6fZ4ADuJK41K55HknoPsTVzzUsx6sZUBeoxOUPQ+lEH6EtDn3I1f3oyXun6+dhmXNcCCGMIQm9jLBExfjz31V6JaCi6xWC3sLc6fYz62VHT+Cn0ZP42djoSGdpxy6EECJ/ktCFEEIIHyBT/AkhhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoQshhBA+QBK6EEII4QMkoYt8KaUsSilNKTXG6FiEKEuUUp2UUr8qpVJcZbCdUup6pdRWpVS6a1klo+MUnsHf6ACEEEJcTCkVAHwNpAOPAanAEeAXYDvwAJABpCilngZ2aJr2nUGxVgXuAm4EWgABwC7gbU3T5hsRU1kkCV0IITxTE6AhcK+maZ8CKKWuByoAz2matiprRVdC/wb4zoA4AboCrwDfAy8DdmAI8JVSKkLTtOcNiqtMkYQuhBCeqYbrZ3w+yzzBdqCZpmmHshYopT4EVgGTlFKva5qWYlh0ZYQ8Q/dwSqneSqnNrudl+5VS9ymlrEopzW2dO5VSa5RScUqpDKXUDqXUuFz21VEptVIpdUYplaaUOqiUmpFjnUpKqZlKqQSlVLxSahZQKY/YwpVS3yilzrni26yUuinH8TSl1B25bNvP9d4Nl/P5COGLlFIzgbWuX792lZWfgVmuZZtcy2a6vgvKAXe4lmmu7cn6rlBKhSml5rjK9Wml1EtKV18ptVgplaiUOqmUejxHHIFKqReVUltc26YopdYppa52X0/TtIPuydy1TEOvMQgCGhfrByRyJXfoHkwp1R5YAZwAngf8gMnA6RyrjkO/Ql6CXtV1I/ChUsqkadoHrn3VAH5wbRuNfoVvAQa7HU8Bi4EewDRgJzCI/75E3GNrCWwAjrn2lwIMB75TSg3RNG2RpmmblVIHXMtz7mMEcB5YWciPRYiy4GP0svU08C6wCTgF7AbGon8PHAT2o98Ffwr8AUx3bb8/x/7mo5fnKCASeBY4B9wHrAEmAbcCbyqlNmma9otru4rAPcA84BP06v67gZVKqc6apm3N5zxquX6eKfipiyLTNE1eHvpCT9ApQB23ZU0BG64LYNeykFy2XQHsd/t9IKABHS9xvJtd6zzptswPvRGOBoxxW74K+BsIclum0JP8HrdlrwKZQGW3ZYHoyfwzoz9jecnLU19Ab1e5G+q2bExu5RhIBmbmsg+ra/2P3Zb5oTeucwKT3JZXQm94NzPHuoE59lkJOJlf+QWqoF+E/GL0Z1lWXlLl7qGUUn7ANcB3mqYdz1quado+YLn7upqmpbltZ1ZKVUOvrmuslDK73op3/bzB1Xo2NwPQ7/A/ctu3A3gvR2xVgD7AAqCCUqqa65hV0e+4myml6rpWn4/e4nWw2y6uQ/9SkNavQpSOT7P+4SrTm9EvwD9zWx6PXgPQ2H1dTdMyAZRSJlfZ93dtf0VeB1NKmYAv0cv5Q8V4HuISJKF7rhpACLAvl/cuWKaU6q6UWqWUSkFP3KfR74wBshL6WmAhetX9GddzszuVUkFuu2oInNA0LTnH8Xbn+L0p+pfBS65jub9ecIsfTdO2oXdfGeG2/Qj0Krg1uZ65EKK4Hc7xewKQrmlazqrwBKCy+wKl1B1Kqb/Ru8+dRS/nkfz33ZKb94DrgXtc3wGiFMgzdC+nlGoCrEZPmhPQq9Iy0e+2H8N10abpdWBDlVJXoj9j7wfMAB5XSl2ZSxK/lKwLwTfJ+xm4+0XHfOAZ1118EnATME/TNHshjimEKDpHAZeBfrGu/0Op24CZ6I3b3gDiXNs9hd6t7uKNlXoeGA9EaZo2u8gRi0KThO654tCviJvm8p77shvRW5HepGla9lV4zlaoWTRN2whsRE+wo9CrxW5Br5I7BPRVSpXPkeCb59jNAddPm+bWF/YS5qPXDAxBf6ZWEfiqANsJIQpGy3+VIhmKXt4Hu24KAFBKvZDbykqpB9Cf27+jadprJRSTyINUuXso13OuVcBApVSdrOVKqaZAf7dVs66y3a+qzcCd7vtTSlV2tWJ3t9X1M6va/Xv0i7xxbtv5keMZmKZpccDPwH1Kqdo5Y1dKVc+x/k7gH/Sq9hHorfZ/ybmdEKLIUsije+llyu37pQv6QDIXUEqNQG+R/yV6baEoZXKH7tms6A3INiilPkJvcfog8C/QzrXOD+hV7EuVUh8D5YF70e/w3ZPtHcB4pdQi9C4tFVzrJaIncoCl6K3Uo5VSFmAHemO23J6VPQCsB/5RSn2CfhVfE72g1wPa5lh/PvAieq3DZ5qmOQv1SQghLmULcI1SagJwHDioadrvxbDfZejfAYuUUjFAI+B+9O+G8lkrKaU6A1+gP2NfDdya4/7hV03TDiBKlCR0D6Zp2halVH/0Z9UvoT8fn4w+VnK4a53dSqmh6MMtvoneneQj9IYr7oPGrAU6o1ev10Rv/PIHcKumaQdd+3K6BoZ5B7gNvRpvCfA48FeO2HYopTqiV6WPQW/hHuda78VcTme+K8ZQpHW7EMVtAnof9JfRG9POAoojoc9E70t+H3q7mx3o3w3D0LvVZYlA745anQu/d7LcyX+P6kQJUW6PRYSXUEp9B7TUNK2Z0bEIIYTwDPIM3cMppUJy/N4MvQX7z4YEJIQQwiPJHbqHU0qdQK/2OoDeT3wceiO29pqm7TUwNCGEEB5EnqF7vhXASPTnWBnAb8DTksyFEEK4kzt0IYQQwgfIM3QhhBDCB0hCF0IIIXyAJHQhhBDCB0hCF0IIIXyAJHQhhBDCB0hCF0IIIXyAJHQhhBDCBxRqYJktW7aUB+ogFwJlhRM43qFDh+R81xQ+S8q98ADyXVQABR5YZsuWLVeaTKZpJpPJjNvcuMKnaU6nM8HpdN7foUOHjUYHI0qflHvhIeS7qAAKlNC3bNlS3mQyra9UqVLNGjVqnFNKyfByXsKpadgcWqDN4QzI+ml3agFoKA1NaaA0DQWaqYZfSmawMyUQlAZomjI5TydmBCSdPZncfO3YDwIyzp8CzqPPt3wAOI41Qf4WfJSUe+/icDqV3UGA3ekMsDs1f4dT87c7NX+7Q/N3aFqAw6n5OzTND73MA6hgHLb66nhgkn/V1JO20GCTUk4FKIXTpHD4m0w2fz9l8zcpm7/JZAvwV7YAP2XzN5kcpXlumqapuLi4KvHx8aecTmcPuVPPXUGr3OuYTCZzjRo1zpUrVy6tRCMShZZpdwak2RwhmXZnYKbdGWRzOANtDmeQzaEF2p3OgAvXVuR1oxVk0pwhzozQ7AUa1AjWSFVaiMO/nDUg43zOTdKxmg8C+9ET/G7gT2Ar1oT04jo/YRgp9x4q3eYITM10lEvLdISm2RyhGXZHqMOp5fJ97lbecyn6JmVSIUqpdH9/DWeAnxP83N/PdKJXdoP7P1BKOQNMyhbgZ8oIDvRLLRfol1wuyD8lwM9kL65zzKlGjRrnEhMTzU6nsw6wp6SO480KmtBNgJIrdM+QaXcGJKXbKqRk2CukZDoq2BzOoJI6llI5/3GBYKCF6+XOhtW8HdgMbAL+AP7GmuBEeBMp9x4gw+YITMl0lEvLtIem2ZzlMmyOUNeddjHQy3Vh/wdrmmbKdGhBmQ5nUEqmveJZ1/IAP1NmcIBfSmigX3JooF9KuUD/VJOpeP5+XH+HCmnLkaeiz7ZmNXcoxjhy7DthS4nt2wvZHE7/pHR7heQMe4XUDHuFTIcz2OiY8hEAtHO97nEtO4PVvAr4AfgBa8IxY0ITl8MSFVMi5T42OlLKvIumaSRn2MslptkrJWXYKmXaS768a8XUPMJVOxiYlG6rDKBQWlCAKbVCkH+COTTgfGigv9TclSCfvNLZvXt34Ouvv17dfVndunVb//rrryGlHcvevXsD+/Tp09RisbRq0qRJy1deeaVG1nvPPPNMrSZNmrQMDw+PaNu2bfhPP/0UCuDUNHU+JbPSkXOpDXadTGy580Ri26PnUxufPJtQPbJX5+Dh/Xpm7//YkcPcPewGukc0wH15bl6MepQh13TjnhE3kZSYAOhfHuNHD+VI7MESOX831YBbgBnAUazmf7Ga38Jq7obVLI2thMcLDw+POH/+fIl8Zzqcmul8SmalQ2dTLDtOJLY9eCYl/GxKRq3CJvN/t/7JHYP6Mey6Hgzv15PfN/yS/d6hg/u5b9Qghl3Xg0F9u7Jiybdk3Zu7J/T48+cY3q9n9uvGqzpyhaUaCecvfOT2+4ZfaN+wKnM+/SjXWI4ePsSoG/uq/ld1Ljdlyqt19sUlt9x1IrHl6g2bG/bpe03zwpyXKBifnA997969QTNmzKg+ceLE08W5X5vNRkBAQP4rujidTgYOHNjk8ccfP3nXXXedBzhy5Ig/wK+//hry+eefV9+5c+d2s9ns/PDDD6s8/Mgjlu9/3piUmG6r6nBeXKX2zhQr7Tp2Yfu2P7OXlS9fgQeefIbkpETef/3lPGPZu2sHhw8eYOGqX5n2zuss+3Y+I8eM5dt5X9CpW0/qWxoB8QU+t2LQ0vWaAMRiNX8FzMOa8HdpBiFEfrLK/a5du3YU534dTs10LiWzSmK6rVJqpqOipmmXdWGraRqP3Tual/73AVf27E3sgX3cN3Igi3/eRHBICJMnjOfm4bcyeOTtnDt7hlGRV9Otc2ea1gHN7el6pcpVWLByXfZ+Z017j82/b8BcuXL2sqTEBKZOeYEefa7NM575sz7lljvuYcCgYQzqcyUj7xyLVq588HNPTwp+dsr/2HEisXWFIP94c0jA+QrB/skq98d6ohC8+g594cKFFSMiIlqEhYVFdOrUqfmWLVuCAR566KEGsbGxweHh4RF9+vRpmrX+ggULKrdr1y68bt26rSdOnFg7a/nhw4f9BwwY0Lh169YtwsLCIh5++OE6We/VrVu39bhx4+q2bt26xZAhQxoVJr4lS5ZUCAwM1LKSOUD9+vXtAEop7Ha7ik9I9D+dlFHt2LnkujXqNgw5n5pZI7dkvnHdz8SdPMGAQcMuWG6uXJkrOnclJLTcJWMJCAjAlpmB0+kkLTWFgIBATp86yfLFCxl97wOFOa2SYAGigG1Yzduxmp/Baq6TzzaiDFq1alW5Dh06NG/evHlEWFhYxJw5cyoB/PLLL6Ht27cPDwsLi2jdunWLH374oRzALbfc0nDy5Mk1s7bftWtXYLVq1dpmZGSoxYsXV2jXrl14ixYtIpo2bdry7bffrpa13pAhQyzDhg2zdOzYsXlYWFhLAKVUhzNnzvgBjB07tl6rVq1ahIeHR3Ts2LH5tm3bstuxKKU6REVF1WrdunWLunXrtp46dWrVrPf+/PPP4B49rwoPC2/RrkXLVu2nvv9Bw5QMu/n0qZPqyXF3MuqGvgy5ptslL87zEn/+HOfPneHKnr0BsDRuSoWKZtb/vAqA3Tu20+NqPQFXqVqNsBatWLb4Wz+4dJX7ovlzGDRi9AXLpjw3kbEPP06lSlXy3M4/wJ+0tFTsNhua04kymfh69gy6XnU19Ro0xO5wBp5PzawRezal+c4TiW2OxafVzbA7Agt94iKb1yb0Y8eO+d99992NZ86cGbtnz54dd9111+nhw4c3cTqdvPfee4ctFkv6rl27dqxZs2Zf1jbx8fF+W7du3bV58+adH330Uc2DBw8GAIwaNarRAw88EPfPP//s3L59+46//vqr3IwZM7IvR8+dO+e/bdu2nUuWLClUvfS///4bUqVKFdsNN9zQuEWLFhHXXnttkx07dgQCtGrf0TRm7HhbePPmrVuFNW74xScfBUa9+Fqu+0lMSODtV5/nmVffKtJnBWBp0oxOXXtyS/9eHDt8iMjBw3njhaeZ8MyL+Pt7VEVNBPAy+l37PKzmbkYHJDzDqVOn/EaMGNH0lVdeObZ79+4dO3fu3HHttdcmpaenqxEjRjR59tlnj+/Zs2fHm2++eWTUqFFNExISTHffffeZefPmZSfqjz/+uNqgQYPOBgUFad26dUvdvHnzrp07d+7YsGHDrjfeeKP2/v37s6vg/v7779Aff/xx78GDB7fnjMVqtZ78999/d+7atWvH2LFj4x588MEG7u8HBQVp//zzz85ly5btffrppxukZ2Sajp9LrjZo6LCIG0fcXu6bVb/5ffPjBq6NvBmAZx8bz4jb72HustXMX/EL2//eyg/LvivU51O5SlWq16jJyqWLAL36PfbAPo4fOQxAROu2xCxaAMDRQ7Fs2/IHx47q7+XVe3nr5t9JTIjnqmv6ZS/7MWYxJpOJ3tcNuGQ8o+68jzUrYhg98Dpuv+9BkhMT+fH7Jdx2z7iL1rU7tYCzyRm19pxMan3gdHKThDRbxYKOkSL+41Hf5IWxdu3acmFhYWmdO3dOAxg3bty5iRMnNshK0rkZPXr0OYDatWvb69Wrl7lnz56gqlWrOjZu3Fjx8ccfD3j88ccBSE1NNe3atSv72dVdd9111mQq/LWP3W5XGzdurLh27dqdHTt2TI9+7fWaw0bcEr7wx/WOAwcOBq9c/j1L122hRq3azJs5nYkP3MWsb1dctJ8pzz3JPQ9OoGq16hzYu7vQcWR5cOKzPDjxWQB+Wvk9terUpU79Bjw34QFSkpO49aa+/nfedFWR91/MAtCfud+C1fwn8B56lXyGsWEJo/z000/lGzVqlH799dcnA/j5+VGzZk3HH3/8EWIymRgyZEgiQL9+/ZKrVq1q27hxY2i/fv2S7XY7a9euDe3Zs2fqggULqn733Xd7AU6dOuV/6623Wg4ePBjs5+enxcfH+//1118hTZo0sQHcfPPN5ytXrpxrz4wlS5ZUnDZtWo2UlBQ/p9NJQkLCBd+ld99991mAiFZtnH7+/mrD3/vaJCQm+GVmZNB/4NDs9SpXqUpqagp/bFjLuTNx2ctTU1KI3b+Pwnrnsy9559UX+OyDt2kSFk77Tlfi57pgf+ntj3jrpWcZ3q8ntevWp3P3Xvj76e9pefRlXfTVHG4cMiL7ov9M3Ck+efdNPl2wLN9YqtesxbQvF2b//sT9Y3j8uZfZ9Os6FsyeQWBgIA9HTaZOvf+uhTQgOcNeKTnDXinQ35RetVzQqarlA8+apKdFgXhtQi+KkJCQ7MLp5+en2Wy27IF1/vzzz52hoaG5/tFUqFAh10EUtmzZEnzrrbc2BujUqVPy7NmzD7u/37Bhw8wWLVqktm1/hf3o+dT6Vw++rfrTT0WplLSMgNXfL6FZeAQ1auk1/zcPv5Xo5yZhy8wkIPDCWqetmzayddNG/vfyc2RkZJAQf56benViydpNRfockpMSmfXxe3z05UI+e/9tOl7ZncjBwxl13ZWBt1zbmZAQj2tEfwXwOfA6VvObwPtYE1INjkl4MPfnsaNGjTr7ySefVEtMTDxfuXJle6dOndIBxo4d2/C6665LWLFixX6TyURERESLtLS07Cv38uXL51ru9+7dGzhp0qQGv/76686WLVtm/P777yHXXHNhIy+/wGD/2LMp9ZLSbFX9/PzJtNvz7mbm+g6avfhHgoIvXfYev+8OjsQeAGD6V4upVPnCKu/mEa35aM432b8PvLoLTcPCAahbvwH/m/5F9nvjbhtK06uu0iD3KvfUlGR+WPYdc5etzl6245+tnI47xYjr9Qa458+d4+cfl3P+7BkemvRcnnGv+n4J9RpaCG/ZmoFXd+HLpavY/vdWPnxrCi+/nXujuky7M/hEQlrDuKT0ulVCA+PK+zsTLvnhCO+tcu/du3fKnj17QjZt2hQMMH369Mo1a9a0NWrUyFapUiVHUlJSgfppms1mZ+fOnROfffbZ7GfqsbGxAe5Vb3np0KFD+q5du3bs2rVrR85kDnDzwEHJJ0/Fhfzy1+7W51Iya6xb/YNq1Kw5AQEB1G1o4a/Nv5Oaog949MuqlTRs3PSiZA6w/Le/s1+vffAZTZo1L3IyB5g65QXue3QiISGhpKWmopRCKYXNbleZNluR91sKqgOvAQewmidgNZd6rwVhnL59+yYfOnQoaMWKFeUBHA4Hp06d8mvTpk260+lk0aJFFQF+/PHHcmfOnAm48sorUwHuvffeszExMZWnTZtWffTo0Wey9peQkOBnsVgyTCYTy5cvL7979+7Q3I98ofPnz/v5+/trDRo0sDmdTt55553snis2h9MfIPZsWkRimq2q+x2CpUkzgkNCWf7dfwn3/LmzhJYrT6duPZnx4TvZy+NOnuDUiYt7dr718SwWrFzHgpXrLkrmAKdPncz+98K5swgJCaVzd73W7ezpOJxO/Z5mw8+rObB3FzcPGuqE3BP6iqWLCItoSaOmYdnLrurbj5/+2pP9fXTtgJu479GJl0zmiQkJfPnZNO5/dBIA6WmpKJMJkzKRmpKS53ZZHE7N/3RyRp2DZ9PCUm3OiqdS7AVvmVzGXEY/dGP7itepU8f+6aefHrjjjjsa2e12ZTabHfPnz99vMpno0qVLalhYWFqzZs1a1q9fP8P9OXpuvv7664Pjx4+v36xZs5ZKKS0kJMQ5bdq0Q1lVb4XlcGqmU4npNc+lqprPRr/j98Adw9E0jfIVKvL6+58C0Pf6G9i+7U9GRvYhMDCQkNBQot/7JHsfD9w+jPGPP03Ltu0veay0tFRuuqoTtswMkpISubZTS24YMpxHop7Pdf2/Nm0kPT2drlddDcAtd9zDpAfv4fOPpnLLkIE2c8UK3tAopSbwFvAEVnM08LFUxZcOI/uLV69e3fHVV1/tf/LJJ+s//PDDJpPJxOTJk4+NGjUqYf78+fsfeeSRBpMmTaoXFBSkffnll/vNZrMTwGKx2Nq2bZuyevXqSrNmzTqUtb+XX3752KOPPtogOjq6TsuWLVPbtGmTf3YBOnfunHbTTTedCw8Pb1m5cmX7gAED4gGOx6fVOZeSWRNyr8L29/dn6mdfMuW5SXz6/v8wmUwMv/1uht12J6++O503X3yGwX27opQiJLQcz0X/j5q16xbqM1o4dxYxi74GTaNR0zDe/nR2dm3F2lUrmPHBO5j8/Khesxbvz1pAcIh+DbN8+XL/mJWrsb7xbva+vvtqNoNH3lGo4+fmnSnPc/+EKIJD9Ovvex9+glGRfQgICMD6xnsF3o+maX7JmVrl6PXxy8d/H/Mk8FVsdKRUxbsp6Fju4f7+/iuaNWuWHBoaKgMD5EHTNM4mZ1aNS0qva3dqXncV2TQwPjnUfr68+7J0u8bBY6dptOFxgpOPGBVafg4DT2JNWGB0IL5Eyn3+nJqmTidlVD+TnFE796FXPVuocmQ2VYcDj5jqpp23B3p0jZdmzyTu+FGsP8VxLMkB+giUT8RGR67LZ9Myw2ur3D1NYpqt/J5TyS2OJ6RZvDGZe7kGwHys5rVYzW2MDkaUDWeTM6rsPpnU6lRien1vTObutDzGdvZwnYFfLFExiyxRMc2MDsYTSEK/TBl2R8DBM8lNYs+mNM+wOwr0DE6UmKuALVjN/8NqLp/v2kIUQabdGXDgdHKTY/FpjWwOpzc8osqXl9dbDwS2W6Ji3rJExXh0LUNJk4R+Gc6lZFbedyq5ZVK6vZLRsYhs/sBjwC6s5v5GByN8y9nkjCp7TyW1TM7wrTKvaV55h+4uAH3UyT8tUTEdjQ7GKJLQi8Dh1EyHzqY0PHo+tXHxzXokilld4Hus5mlYzZceRk+IfLjuypsei09r5Itl3svv0N2FA79ZomKet0TFePVjkKKQhF5IyRn20L2nkiIS0mzV8l9beID7gK1YzV2NDkR4J7e7crPRsZQUL32Gnhd/wAr8aomKKVOTwEhCLyBN0ziRkFbr4OmU8MwSnH9clIimwDqs5lexmqXBoiiQTLvT35fvyt058xgpzst1Av6yRMU8ZImK8cXzu0iRqyRKal5k8Ly5kTPsjoAj59IapWbaKxgdiygyP+Ap4Gqs5iFYE44bHZBXsppLptwbPK5FTskZ9tDDZ1Ob2p3OMnEBeJkTvXmyEOBd4CZLVMwdsdGRPl3u5Q4dfVa01q1bt2jSpEnLpk2btrz//vvrORz6qI9ZDd8KksyPHj7ELQN6M7xfTwb37coT948hMT4e0IdRvP/WIfRq04QeLRtecj8f/S+a3m2bZs9H/NRD92a/d/Z0HI/dO5qh13Zn4NVd8pyL2Gaz8ejdtzLsuh48du9o7HY7ABnp6dw5ZEB2XGXQlegt4bsbHYgovDlz5lRq3Lhxy/Dw8Ig//vij2Fo0L1u2rMI333xTEfQq9oNnUsILk8z//mszw67rwY1XdeSeETdx6kTueWP54oXZ3w+D+3Zl1sfvX7SOpmncM+KmS35PfPzOGwzq25XbbrqW40f/G6TyucfG89emjQUN+79j+uYdurtrgD8sUTFXGB1ISfKZhG67jCFLq1atap8/f/7+/fv3b//77793bNq0qdz7H3xQ7fDZ1EI1fKtRsxYzFy5nwcp1fLv6N6rXrMVHb0cD4O8fwJ3jH+Hjed8VKKYBg4ZlD/E4xW0EuTdffIYmzZrzzY8bmBuzhiVfz+XfrX9etP2va1dTsVJlvv5hPRUqmtngmkJx+tQ3uGXMvVSsVKlAcfioWsBPWM2GzxsrCmf69OnVJ02adGLXrl07siZmulw2m401a9ZU+P77783HzqfWPRaf1qgwc5M7nU6efmgsT1qnsPSXzfS8+lreeOHpXNetVacuH87+hm9X/8asRSv4evYMNv22/oJ1Zn/yIfUb5j1Tc3JSIjGLFvDND+sZcfvdzPtc/3747ZefCA4JoX2nKwsa+n/nUOgtvFJd9H7rA40OpKR4dUJXSnV47LHH6rRq1arFgw8+WO+PP/4I6dChQ/OIiIgWTZo0aek+5/mECRPqREZGNu7Tp0/TJk2atLzyyivDTp065QfQvXv3tIiIiEyA0NBQrWXLlml7Yo/Wik/LLFTDt8CgoOzhDR0OR/Y46Vnvdel+FRUqXl67mt07/qVHH31O49DQclzRpRvLvp1/0Xr+/gGkp+nzl6SnpRIQEMienf9ycP9e+t046LJi8BEBwPtYzZ9jNXvcbDTiYmPGjKm/efPm8i+++GLd9u3bhwMsXLiwYkRERIuwsLCITp06Nd+yZUsw6Hfc4eHhEVnbbtq0Kbhu3bqtAXbv3h1YoUKFduPGjasbERHRYsqUKTW++OKL6t8tXly9b48utaa983qh4trx91b8/P3p3E2fsGTobWNYu2oFGekXD67XvtOVVKuhT89eoaIZS9Nm2dObAuzbvZOfVsZw1/hH8zyeyc8Pp8OB3WYjLTWFgIAA0tJSmT71DR55Kvchn/PjA93WCqoc8K0lKmaS0YGUBK9O6KDPmvbvv//u/Pjjj482a9YsY/369Xt27Nixc9u2bTuWLl1aefXq1dldlrZu3Vpu7ty5B/fv37+9WrVq9nfeead6zv0djD0U9P3yFdV69O1fpIZvtsxMhvfrSa+2TTh8cD/jJkQV6bx+WLaYYdf14J4RN/HHr/+NbBjRph3ff/cNTqeTc2fP8OvaNRd8IWTpetXVlCtfgWHX9aB8xYp07n4Vb774LJNemFKkeHzYGOAHrGafbcHsK2bOnHmkVatWqdHR0Uf++uuvXceOHfO/++67G8+cOTN2z549O+66667Tw4cPb5I1AcmlJCcn+7Vs2TJ9x44dOyc+9UzC8NvvZsCg4WrBynXc/+jEQsV18vhRatetn/17ufIVKFe+wgUTpeRm/55d/L1lE1f27AXoNQUvTnqE56LfxuSXd6VgaGg5Rt87ntE3X8tPPyzn1rvv58M3p3D72AcpX6FioWLPUgaq3N0pINoSFfOZJSrGp9pIeH1CHzduXPbsSampqaaRI0dawsLCIjp06NDi+PHjgVu2bMkeva1Xr14JtWrVcgB06dIl+cCBAxck7VOnzwbdePPAiDHjHlH5TYqSl4DAQBasXMdPf+7B0rQZ33w5s9D7GHbbnSz/bRtf/7CeB554monj78p+Tvb4cy+TlpLCiOuv4qmH7qVj1+7Z8x27M5lMPP/6VL7+YT2To9/hq5mfcHW/AdjtDqIevIcJY2/n9w2/FOkcfVBP4Bes5tr5rik8xtq1a8uFhYWlZVW9jxs37lxcXFzAwYMH8/2S9vf318aNG3c2Ic1WYV9ccgsNVap9lk+dOMajd9/Ks1P+m4Dl47dfo+/1N9K4Wf49rUbccQ8LVq7joznfcOrEcU6dOEb33n159ZkneOL+MXw54+NCxVPGEnqWu4AfLVExF09b56W8PqFnzagEMGHChLpVq1a1b9++fcfu3bt3dOnSJSk9PT37DzU4ODh7/AQ/Pz/Nbrdnv3fy9NmQfv37t+x9XaTp9rG5P1rdv2dXdkO1V5954pJxBQQGMnD4rSxbeHF1eH6q1ahJQID+ndS+05WEt2zDjr+3AlC5SlVeevtDvv5hPR/PXYRSiiau+Y7zcvzoYdat+ZERt9/DB2++wpBbx/DS/z4gerJP1joVVRtgA1azjAntAwICAjT3O3X3ec4BgoODnYnpjkqHz6Y2c+bTRiYxISG73D96z20XvV+rTj1OHPtv4qKU5CSSkxKpXrNWrvuLO3mCsSMHce/DT3DdDQOzl2/euIF5M6fTv2sbxgzuT3JSEv27tuHc2TO57gfAbrfz1svPMdE6hWWLFlC5ajXenDaTNSuWcfRQ7KVO6wLOslPlnlMvYKOvjAXvUyPpxMfH+4eHhycHBASwbdu2oA0bNlTs0aNHUn7bnTh9ttyA/gOad+t9jRr7SN6JuklYOAtW5j2xz/Gjh6lctRohIaE4nU5+WLaYsBYtC30ep04cy75qP3RwP7t3/ENT1+PA+PPnKFe+AgEBAez8929+Wvk985evveT+Xn/+KZ58/hVMJpP+XB+FMplITy3QbJFlSSNgPVZzf6wJF7c0FB6ld+/eKePHjw/ZtGlTcKdOndKnT59euWbNmrZGjRrZ/Pz8OH78eNDx48f969SpY//888+rXrCxUuro+bTGGnrjt3LlK3D8aO6zCVY0my9Z7iPatMNus/HHr+vo3K0n38yZSa9rrico+OKmGadPnWTsyIHcOe4Rbho28oL3Zn67PPvfx44cZsT1PVn+29+X/Ay+mP4+AwYOpVqNmhe02VFKkVaI8u1DI8UVRTP0xnJXx0ZH7jI6mMtR5ITuaX3FASZPnnx8zJgxjefNm1e1YcOGGVdeeWViftskpdvKv/rG283+3fanSktLZc3ypQBcG3kz9z586bvwnPbs3M77r78M6C1fW7Ruy6QXX8t+f+i13Tl/7izJSUlc26klnbr14NWpetXY8H49eX/WAmrUqs17r7/Mjr+34u/vj8nPj6dffgNL46YA/Lt1C69NjsLP35/QcuV548MZed4JAHy/6GvCIlrRtHkLAO4a/ygvTnoEm83GvY88WajzKyNqAD9jNffDmvCb0cF4HA/qL16nTh37p59+euCOO+5oZLfbldlsdsyfP3+/yWTCYrHYxo8ff7JTp04tqlWrZrvmmmsSsrZLSHdUVkqZNLc01uf6G1j27XyG9+tJn/43Fuo5uslk4tV3P+alqMfIyMigRs1avDJ1Wvb7D9w+jPGPP03Ltu358K0pnDh2lLkzpjF3hr7OqLvuZ+CIWwt9/kdiD7L5t/V88MXXANwwaDiP3XsbPyz7jnadutCsgDcTmp7Py+odepZawE/entTL9Hzo8amZ5iPn0xprmub1jx6KgxfPh14SEoA+ZflO3RfL/ZnkjKrH49MsRsfhKUKVI7OJOhLwj9Pi8Qk9l/nQS8JJoE9sdOTOkjpASSqziexcSmblI+fSmkgyF3kwo7d+L/wzE+GRziZnVJFknoMCUGW8xv0CtYA1lqiYpkYHUhRlMpklpdvKHYtPa5T1/EyIPFQFVklDOe93LiWz8vH4tLxHaynLVFl/hH6RWsAqS1RMPaMDKayCJnQnoBVm9CRPlW5zBB4+l9rUF86lNGQ/kSnAoxkfVQtYjdVsMToQUTQJabaKx86nNSqzf8H5kjv0XDRE79J20VglnqygjeKOO53OhLi4uJo1atQ4p5R3/gE4nE7TkfPpje0Op0+17i8uGcpuMjn++1+raXA6xYHKSCQgPe+uM2VAffS51btiTUjId23hMdIyHUFHzqU2lto4UQThwEpLVEzP2OhIr+gSVKDE1qFDh+QtW7bcHx8fPy0xMdGMd7aIVPHpjhqZDmTq0zxofil+Qc7UC5apjETqbX0LP4dPtIm6HC2A+VjNkVgTSqxFjig+dofT79DZlHz7mZd5XnqDVkraA58Dw40OpCAKfKfaoUOHjVu2bOnhdDrr4IXP3p/96ezkxAznyPzXLLveDJrxdzg7OmUv0DQC0s9IMv9PP+Bt4GGjAzHKzvAWJTJ9aotdO4u1O5ymacSeTW2c6XDKBXy+JKHnY5glKmZSbHTka/mvaqxCVT136NAhGdhTQrGUGEtUzCOAJPN8aOlHUoP9ylTXtKJ4CKt5J9aE3OetFYbYvXt34OLFi80TJ048DXD0fFr9Xh0iKr796ZeEt2xdqrGsXbWC/708GafDQdPwCF763we5jrHudDp57fko1q/5EaUUt95zPyPHjAXgyxkfs/DLmSilUEoxZtzD3DB4xEX7sNlsPHn/GI4dOUS9ho1446PP8ff3JyM9nftvHczUz+bmO7Oi5pUVrqXuVUtUzF+x0ZE/GB3IpXjdnXZhWaJiIoH/GR2H8CnvYjX3NToI8Z+9e/cGzZgxozrA6aSMaudTM2sUx37tdnuh1k9NScb65MO88+kclq7bQvWatZg+9Y1c1435dgEH9u5myS+b+XLpamZNe499u/Xuz03Dwpm1aAULV/3K+7Pm84b1aY7EHrxoH8U0TbLcoefPBMyzRMV4dE8Jn07olqiYNsBX+Ph5ilLnD8zFas57iD5RIvKaLvWhhx5qEBsbGxzeokWrYYMHNsxaf/XypYy++Tr6d2vL9KlvZu/nTNwpnhx3J6Nu6MuQa7plj/AI0L9rG95+9XlG3dCX5x4bV6j41v+0ivCWbWjUNAyAEbffzfLF3+a67sql3zJ45O34+flhrlyZfjcOYsXihQB06dEre6rlWnXqUbV6DU6eOHbRPoplmuQyO4x7oVUBFlmiYkLzXdMgPpvoLFExVYGlQPn81hWiCGoAX2A1y7dhKbnUdKnvvffeYYvFkrFw9Ua/dz+fl71NUmICsxf/wNxla5j18bucOnEcgGcfG8+I2+9h7rLVzF/xC9v/3soPy77L3i7h/Hm+XLqKKe99UqgYTxw7Su16/3VfrlO/AWfiTuZ6p3/i2FHq1Ptv2tU69Rpw4vjRi9bbuO5nEhMSyG0GyGKaJlnu0AuuLfCp0UHkxZe7b30INDA6COHTrgUmAh7fWMYX5DZd6sSJExtkT5dq8g90OC8c+XHAwKGAPkth3QYWjh05RAWzmT82rOXcmbjs9VJTUojdvy/795uGjcye6MRIe3duZ/LjD/D6h58RGlruovezpknOMufTjy6YJjkzM5MRd9xDl+5X5XkMeYZeaCMtUTFbYqMj3zI6kJx8MqFbomJuwUu6GQiv9zJW81qsCRuNDqQsS7VjRqmLahwDg/6b8czP5IfD4cgeJGn24h9znRENILRc7hV7+/fs4qmH7gWgXccuPP3Kmxe8X7tuPTau+zn79+NHDlOtRi38/S/+qq1dtx7Hjx6hbYfO+rpHD1O7zn939/v37OKhO2/hhTff54rOXXONx13WNMkfzfmGZx8bx5BbxxDRui233Xwdi1Zfap4haeVeBFMsUTE/xEZH/mN0IO58rsrdEhVTG/jA6DhEmeEPzMNqNhsdiK/r3bt3yp49e0I2bdoUDJA1XWqdeg0UwRWqJyXlO7kioCfrTt16MuPDd7KXxZ08walcnlHnlDWF8oKV6y5K5gDde/dl57/bOLhP7ww0/4vPuP6mwbnu69rIgXw77wscDgcJ58+zcumi7OfeB/bu5sE7hvNc9Dt0verqAp1XUadJlmxeJAHAZ5aoGI8a48AX79A/RW+8IERpsQBvAGMNjqPEFXd/8cLIbbrUr776av+xhAxL0/CWpiZh4Qzu25V6DSy4P0fPzavvTufNF59hcN+uKKUICS3Hc9H/o2btupcVY7nyFbC+PpVH77kNh91O0+YteOntD7Pfd58m+YYhI9i+7U9uvKoDCsXoex/InvL0teejSEpKZOoUK1OnWAF45Ckr3Xvn3rnisqZJloFliqoT8Bhw8ZWdQQo0faq3sETF3AV8ZnQc3mpuwMtru/nt6GV0HF5KA3phTVhndCDFxRumT41LSq9+MiFd2soUUajJkWnxP2vfkVnDY1tuZyml6VMLKw1oExsduS/fNUuBz1S5uwbRz73DpxAlTwHTsZoDjQ6krEi3OQLjEjO8bkYsT+M7t3SGCAE+sUTFeETLQp9J6OiDx0hVuzBSOPC00UGUBZqmcfR8aiOnpvnSd5hBpMr9MvXGQx63+URhsETF9AVuMzoOIYCnsJrDjQ7C151JzqyWmumQMSaKgWTzYvG6JSrm8hpgFAOvT+iWqJhgQMbVFp4iEPl7LFEOp2aKS0o3/MvTFyi3/4rLUhEPKPden9CBJ4FmRgchhJveWM03Gx2Er4pLTK/pcGq+2EPHEJpUuReXGy1RMb2NDMCrE7olKqYiMMHoOITIxWtYzZJ0ipnN4fQ/m5IpY+gXE8nkxe7l/FcpOd7+hfMgUMnoIITIRXPgHmCa0YEUp9azWpfIfOj/3PFPgfq3n0xIry0N4YqPQoZ+LWbdLVEx/WOjI5cbcXCvLRiWqJhy6J36hfBUz2E1hxgdhK9ItzkC41Nt1Y2Ow9doHjBmvY95yagDe21CB8YB1YwOQohLqAM8ZHQQvuJkQnpdDa1Yss/dw25gzYqYQm/3wZuvErNoAQAf/S+a161P5bre2lUruHvYDZcVY2nIqnJfu2oFN/fuzI09O/DYvaNJzmMYXafTyZTnJhLZvT039LiCeTOnF+g9d4nx8dw9/EaGXNONV55+PHv5ubNnuHvYDdhstmI7P4N0sETFFHDu2uLllQndEhUTAjxhdBxCFMCTcpd++VIy7CGJ6bYCjzOR23SlxeGBJ54mcpDvzPukgMSkVKxPPsw7n85h6botVK9Zi+lTcx+jK+bbBRzYu5slv2zmy6WrmTXtPfbt3pnvexfs47sFdOrWk4WrfuXg/r3s3bUDgDdffIZHnnqegICAEjvfUvSiJSqm1POrVyZ04F6gptFBCFEA1YAxRgfh7U4mptcDaFu/Mu+//jLDr7+KG6/qmH23nPXeh29NYVRkH96NfoGU5CRemPgIo27oy9Bru/PipEexZWZmr//7hrWMiuzDDT2u4M0XnyVrGOycd++P33cHixfMBeC5x8Yz59OLeyfZbDZeefpxbuzZgVE39GXTr+vzPafTp05y36jBDOpzJfeNGszE8Xfx0f+iAbimYwRxJ08A8OS4O7l94HUAZGZkcFXrxmRmZLB4wVzGjhzIpAfuZsg13Rg54GqOHoot1OcKsOLHNf7hLdvQqGkYACNuv5vli7/Ndd2VS79l8Mjb8fPzw1y5Mv1uHMSKxQvzfc+dv38A6WmpOJ1ObJkZBAQGsuGnVVQ0V6LNFZ0KHb+HagXcUtoH9bqEbomKCUKfg1oIbzEBq9nrypqnSM20h6Rk2CtmL1CKBSt+4aPZ3xD93CSOHTmc/ZbJz4+5MWuY8OxLvPXSc1zRuStzl63m6x/W43Q6+XLGf20UD+zdzazvVvL1j+vZsnEDy7/7psgxLvxyJrEH9vHt6t+Y9e1ydv67Ld9tXns+irYdOrFozUZeeecjNm/ckP1elx5X8fv6tTidTnbv+JekpCSSkxL5a9NGWrRuR2BQEADbt/3JQ5Mms3DVr3Tp2YsZH71T6NgPHzuuatf7bwTdOvUbcCbuZK61HCeOHaVOvfr/rVuvASeOH833PXeRg4dzJPYgI66/ii49elOjVm0+ee8tHpr4bKFj93BWS1RMqTY898ZW7ncCMqiE8CZNgUHAxbcrIl+nkzIuqI0bPHI0APUaWujQpRt//v4rdevr87MMGnFr9nprVsawbcsfzP5En005PT0dk99/11U3DrmFgIAAAgICiBw8nI3r1zJg0LAixfj7hl/0/QXqQ/kPHHEr330159LbrF/LhGdfBKBajZpc1bdf9ntX9ujNxvU/0yQsnOYRrahSrTqbf1vPtj830aXHVdnrtbmiM/UaNASg7RWd83xu7UlCQ8vx1sezsn9/w/o0d45/hMOxB/ns/f8BcO/Dj9M8orVRIRaXZsBQ4KvSOqBXJXTX1c4ko+MQogieRBJ6odkcTv/EdPuln527NZMLCXUbDVbTeGv6F1gaNy3QsZSrtbefvz9O53+zeWVkFH6iOVWEluPu23Tp0Yup0S/SuFlzuvToRdVqNdi4fi1/b9nEM6++lb1ekOtOHcDkZ8KRy131/j27eOqhewFo17HLRfO416tbV1vxy6bs348fOUy1GrXw9784PdSuW4/jR4/QtkNnfd2jh6ldp16+7+Xln7+2cO7saXpdcz1jBvfnlakfo2kakyeMZ8Y3hW+06IEeQBJ6nkajzz0thLfpgtXc09unVy1of/HiciY5o7qmXdiyffGCuYybEMWxI4f584/feNI6Jddtr+4XyecfTuW56Lfx9/cnMT6e+PPnaNCoMQAxixbQf+BQHHY733/3DaPvGQdAfUsj/vlrM9cMuImjhw+xddNGrh1w6YH/ruzRK3t/aFr2M/dL6dz9KpZ8PY/7H5vE2dNx/LJ6JUNvHQNAjVq1qVCxIt/M+ZxPvlpCpSpVeOPFp0lNTqZF67b57ttdk7BwFqzM+8/uumv62B9/5gUO7ttDo6ZhzP/iM66/aXCu614bOZBv533BdTcMJDkxkZVLF/He51/l+15ubDYb70yx8voH+ozXaWmpKKVf2KSmphTqHD1YD0tUTJvY6Mi/S+Ng3pbQpQuQ8Gb3AV6d0EuTpmmcT7m437nD4WD49VeRlprKpBejs6vbc3ry+Vd4Z8oLDO/XE5PJhJ+/P489/UJ2Qm/UNIw7Bl1PYvx5el83gOtvHgLAnfc/wsTxdzHkmm40CQunVbuO+cY6eNQd7Nu9k8F9rqSCuRJXdO7Kzn+2XnKbidYpPDdhPIP6XEn1mrVo3a4DFSqas9/v0qMXv6xeSb2GFgCqVa9BtZZtMJmKtzlG+QoVsL4+lUfvuQ2H3U7T5i146e0Ps98f3q8n789aQI1atblhyAi2b/uTG6/qgEIx+t4HaNaiJcAl38vNrGnvcuOQW6havQYA4x9/igfuGAHAhGdeKNZzNNgD6GW/xKmslp2ezhIVEwbsNjoOXzY34OW13fx29DI6Dh+WBtTm/+3deZQdZZ3G8W/dvt0tCXjZZEcvhh2FYEgkyKIwIlKA4AyLM4CAIjAyKip4PSCWHiClHkVlFBQMIOOCiKJwFdkzgDLZCSQQCFAJ2Qgk6UrI1tudP6ojAbJ0p+vWr5bnc04f4JDUfXI6t5/7vvW+b3lhaB2kPyZNmrRvuVy+d6+99np9yJAhA593HqSlKzsrLy9Z+ab58oN234ZHnw54Z6Wyod+WGatXraLc2kq5XKZj6RLOOumjXP3jn3HgwZv+ABGXoaWezu3KqzrndG6Z+ifXNbo7WTR/Lt7Di5i3vGfTvyE9VgC7BL67/s39McrSCD3xLQAiMdsCOB1I/8qlFFiyojPXp8LNCV7gii9dRKPRoKuri9PO/kyiZb6Wjn5tuqFE7/sbm/1CKnSRZJ2DCn2T1nT3tK5Y0/22YfiTLy+1iLPZHn3oPq77zttPAj3v85dw3Emf3Oi97aRkY442885FhR6p1uoHAvtZ5xCJwWi8yr544bPWQfqhF2i8dVFaEpas6MzFsc5HHH0sRxx9rHWMjcpMoTcaQIPezAR+k9HVWn3fwHeb+r7PRKGj0bnkyzlAzTpEP8zv7e0NFy1atOMOO+ywxHGSe252x/KV2zS6e5N6ucLqKfU4nY3uUqO7c9O/2FKjQffKZSxf3cPSVZn9e3EuTd52nZVCP906gEiM/pUMFPqIESNenzRp0oUdHR03LFu2rALJ3GztbdDy2soenX+fgDanx+kodbeEPe2b/sWmGixf3cP1EztY3ZPNITrR+76phZ76Ve7VWn0kMN46RxFolXui9scL3/7kihSaNGnSlkRPjkvk+Fr/8aVnzF/e/c0kXqvodmfRvFGtL7x6Z9fo4dZZNqa3AUtX9Wa5zNfaJ/Dd55p18SyM0DXdLnl0EpCJQh8xYsTrQNN+CL3VhDvqhyb1WkXX1ruqa3HrsjXzejK1DSzLjqeJ76VUPzCiWqs7QH6eVSjyhhOtA6RRtVbfCviIdY4i6aJF+9aSc3wzL57qQgcOBzZ+GLBINo3Gq+RiJXfMjgParEMURQOn0dloTXsP5MmR1Vp9aLMunvZv5AnWAUSapAS41iFS6CTrAEXi0KCLctp7IE/agWOadfG0fyM/aB1ApIma9sbOor6nKepDTsJU6Ilr2rR7ar+R1Vq9BIywziHSRIdbB0iZUcA21iGKpouW1PZATn28WRdO8zdyPyD1DwwQGYQ98Co7W4dIkVHWAYpGU+4m3l2t1Tf8GLpBSPM3Um9uKYIPWQdIkeSfTCJ0NlToBg5rxkXT/I1UoUsRaNr9DSr0hDk4dFHOwnkkeTO8GRdNc6GPtA4gkgCN0Pnn/vO9rXMUjuPoHrqNg5px0VR+I6u1ejtwoHUOkQQchFdptQ6RAiNI6Kx4eUODBt2UW6xzFNCBfQenxSqVhQ4cDOiHnBRBK7CndYgU0HS7AQeHTi2Ks7AV8N64L5rWb6Sm26VI9rcOkAIqdBMNumnRPXQbw+O+YFoLXQvipEj2sw6QAip0Aw0adDdaNOVuI/b76GktdL25pUgKXejVWv2dwDDrHEUUrXLXCN3I8LgvmLpC71soEPu9BZEUK/qU++7WAYrKAadLi+KsFGKEvj162pIUS9G3a+1qHaCoGrqHbundfTu6YpPGQt/FOoBIwobgVSrWIQzpPW/EwaFHhW5phzgvlsZC16d1KaKdrAMYUqGb0QjdWO4LXW9uKSIVuiTPgW5KKnQ7KnSRHCpyoWtWzkgPJadBSSf02cl9oW9rHUDEQJELXR/ijWi63dy74rxYGgt9a+sAIgZU6JK4rkartqzZyv0IfWvrACIGtrQOYKHv3Ikif5gx1Y1OiTOW+0Iv8vYdKa5Y96NmyBaApn2N6JQ4c7kv9K2tA4gYKOphSkX9c6dCt1NWodvaLs6LpbHQt7IOIGKgqCN0PSbZUI+2rFmL9ZZHGgu90zqAiAEVuiROp8SZi3XLYBoLfaV1gCLahdcW7F2aq9kRO0WdelahGNI9dHOxFnoav5krrAMUyQedGTOubh3bMcyZP8px2Nk6T4EVdbVxwzpAsTk6VMaWCl0Gp0Rvz1kt90/4cvmOoRVn5fut8wgAa6wDGOmxDiBiKNYPtCr0AtmKFeHXy7+ZelrLI8PKTu+h1nnkTVZbBzCiQpcii/WDfBoLXffQYzbMmTd7TOtNs0c6Mz/gOBxlnUfWS4UuUjyxvu/TWOgaocfk2NKEKd9s/WXXLiw+xHF4j3Ue2ajl1gGMrLIOIGIo9yN0FfogtNG15sKWuydcWP7zu4Y4nQdb55F+W2YdwELguyuqtfoKYKh1FhEDKnR5u+3peNVrvXX6x0vjD2hxGodb55EBK2Sh91kIDLMOIWLgtTgvlsZC1z30ATjImfXcNa2/WLS/M3uk4/Bh6zyy2RZYBzCkQpeimhvnxdJY6Bqhb1KjcWrLuAm18m/atnOWDwf2tk4kgxbrGztjFloHEDHycpwXS2OhL7UOkFZDWL3iK+U7Jp7Vcv972pzuUdZ5JFYqdJHiyf0I/VnrAGmzu7No3lXlsbOOLE0brm1nuaVCFyme3Bf6M0Av6TxnPlFHlKY9/e3yzcurziujHIddrfNI0yzFC4u8dkSFLkWV7yn3wHdXVWv1lyjoIpkWerrPbbl3/BfLf6hs5ax6n3UeScQ86wDGirwgUIpreeC7YZwXTF2h95lOwQp9a5Z3XF7+1ZOntDy2d9npPcw6jyTqeesAxuZbBxAxEPtttrQW+gzgJOsQSdjHmfPSmNab5h7szBqh++OFNc06gLFniY6ALeoT56SYYi/0tN6nnm4doNnc0hOTnmj//MR722rVD5RmHeE4DLHOJGaesg5gKfDdVWgxrBTPrLgvmNYRei4LvZ3O1ReX75pwfkt953c4XSOs80hqFH2EDjAZOMA6hEiCJsR9wbQW+rPkaKX7Tix55VutNz/70dLk95WcxhHWeSRVVgIvWIdIgSnAWdYhRBI0Pu4LprIw+6bgXrTOMViHODOf+VvbZY//o/3ibT7WMumoktPYzjqTpM50vLDXOkQKTLYOIJKg5URbtGOV1hE6RNPue1qHGCiH3t5PtTw0/tLy7UO2cVYcaJ1HUm+KdYCUmAo0AMc4h0gSJga+G/sH+VSO0PvMsA4wEENZtfzb5ZvHPdf+6XnXtI49VGUu/TTOOkAa9O3HzfysnEg/xT7dDukeoT9uHaA/qs6Cl68p/+LF0aUZB2vbmWwGFfobJlOw8yeksApX6A8SLRhK5Xauo0uTp3nlW1fu7rw6ynHY3TqPZNIsvLDop8StazJwqnUIkQQUq9AD311drdUfAk6wzrJWme6u81vq4y8u37XtUGeNptRlsDQ6f7OHrAOIJGB+4LtNeRhTagu9z92koNC3JVx8ZettT59Y+se+LU7jQ9Z5JDcesQ6QMhOAV4AdrYOINNHfm3XhNC+KA7jH8sUPcF6a9ee2yx+d1H7RkJNb/n5Ui9PQDxqJ08PWAdIk8N0G8BfrHCJN9qdmXTjVhR747nwS35/aaJxSenTihPaLJtfbL9/zwNJLRzgOWySbQQpgou6fr9fd1gFEmqiLJg5U0z7lDtEf/gPNfpEtWLPyi+U7J57bcu9u7U73Ic1+PSm8P1gHSKn7gTVAu3UQkSZ4JPDdjmZdPNUj9D5NnXbflVcXjG397rjp7eeuubB8z5HtTvd7m/l6In3utA6QRoHvvo4WC0p+3dXMi2dhhD4RWADsHOdFDy1Nn35VeWw4zFkwynHivbbIJszAC5+zDpFi9wDHWocQiVmDJhd66kfocS6UKdHb8+mWe/8xrf2zT/+27eoD9iwtOMxxMvGhRvJF0+0bp/vokkfj+9aFNU3qC73PoKbdt2JFOKZ847jn2s9e+K3WX45+p7PyfXEFE9kMv7cOkGaB7wbA09Y5RGL2x2a/QFZGp/cRPZ1mq4H8pmHOvNljWm8KRjozR+hYVkmJyXjhk9YhMuDXwDXWIURi1PRCz8QIPfDdlcBt/f31HytNmPp4+3+Nf6Dt0t1HlWYe5Ths2cR4IgNxo3WAjLgF6LEOIRKTaYHvNn3dTCYKvc9PNvY/2+ha84WWOx+b0X7OzJ+1XTt8V2fxKMfJ1J9P8m8F0chTNiHw3QXokBnJj58l8SKZKbzAd2ewnu0s29Px6k9afzTumfZzln259c7Dhzid+xjEE+mP2/HCZdYhMuQm6wAiMXidAcwwD0ZW7qGv9VOI7oUf5Mx6bkzrTYv2c+aM1P1xyQhNtw/MX4C5wG7WQUQG4deB7y5P4oUyM0Lv88dTSo/eP6n9gql/ar9y7/1Lcw53HJ0oJZnwJF74hHWILAl8txu4wTqHyCBdn9QLZarQA9/turbt+nHbOcuHW2cRGaDvWgfIqJ8THQUrkkXjAt+dmtSLZarQ+1xPtLhIJCteAG63DpFFge++CvzWOofIZvp+ki+WvUL3wiXAWOsYIgPwXbxQW7A234+sA4hshpkk/Ajw7BV6xAdWW4cQ6Yf5RHuqZTMFvjuFBA7lEInZD/uOLk9MNgvdC+eziX3pIinxA7yw0zpEDlwB9FqHEOmnORh8kM9moUfGEB0HK5JWC9Eq7Vj0nUORyF5ekRhcHvhu4rPI2S10L1wM/MA6hshGfAMv1ALO+HwT0GyHpN0U4FcWL5zdQo/8AFhsHUJkPaahxZuxCnx3NgkdoSkyCJcmfe98rWwXenSM5tXWMUTW46t4oe75xu8qtG1V0uvewHcftHrxbBd65DrgKesQIuv4K154v3WIPAp8dxHwQ+scIuvRC1xmGSD7he6F3cBFgMkUh8hb9ABftQ6Rc98DlliHEHmLWwPfNR1cZr/QAbzwceBW6xgiRNvUZliHyLPAd0P0oUnSZSXwDesQ+Sj0yKXoU7vYepFoJbY0WeC7NwP3WucQ6XNN4LvzrEPkp9C98DWgZh1DCu0CvHCVdYgC+Ryg58uLtfFEp5eay0+hR24C7rMOIYV0I174gHWIIgl892WimTkRK6uAswPfTcWzGvJV6F7YAM4BXjNOIsUyG/iKdYgiCnz354DZNiEpvK8HvjvTOsRa+Sp0AC9cAJxvHUMKowc4By/UMcR2Pgu8bh1CCudh4MfWIdaVv0IH8MK7iKbfRZrNwwsfsQ5RZIHvBmj9jCRrGXCu1YlwG5LPQo98CXjeOoTk2n3ANdYhBICfEo2YRJJwSd9RxKniNBqp+oARL68yHHgcGGKcRPJnPjAcL3zVOohEqrX6jsBEYDfrLJJr9wS+e6J1iPXJ8wgdvHAqcK51DMmdHuBTKvN0CXz3FeAUIPHHVkphvEi08DqV8l3oAF74O6Jnp4vE5Wt44f9ah5C3C3x3IloUK80RAicEvpvaJ3zmv9AjVwD3WIeQXLgBL/y+dQjZsMB3/4fo0coicekBTg989xnrIBtTjEKPHmP5H8Cz1lEk0/4KXGwdQvrlMnTIlMTnksB3/2YdYlPyvSjurbzKHsBjwC7WUSRzngSO0H7z7KjW6tsAE4Bh1lkk064PfPc/rUP0RzFG6Gt54UvAseghLjIw8wBXZZ4tge8uBT6BDp2RzfcA8AXrEP1VrEIH8MLpwPHoTS798xpwHF5o/iQlGbjAd6cTrXxfY51FMmcmcGrgu93WQfqreIUO4IX/B5yM3uSycYuBf8ELn7YOIpsv8N0HgNOAzPxgFnNzgeMD3+2wDjIQxSx0AC98EPgUepPL+i0BPooXPmkdRAYv8N0/A2cCvdZZJPXmAx8JfPdF6yADVdxCB/DCPwKfRAdRyJstJSrzKdZBJD6B794OnIdKXTZsIVGZz7IOsjmKtcp9Q7zK0cCfgC2to4i5DqIyn2gdRJqjWqufCdwCtBhHkXRZAByT9r3mG6NCX8urjCLaZ7ytdRQxMwf4OF44wzqINFe1Vj8DuA0oW2eRVJhNVOYvWAcZjGJPua/LC8cDHyaacpHimQocqjIvhsB3f0u0hqbTOouYmwkcnvUyBxX6m3nhU8Bo4CnrKJKo+4Ej8cIF1kEkOYHv/h44BtBDdoprKnBk4LtzrYPEQYX+Vl4YAIcBd9kGkYT8Eh0aU1iB7z4GjEQf4ovoDqKR+SLrIHHRPfQN8SoO8G2iB7tI/nQTPTVND/EQqrX6lsCvgJOss0jT9QJXBL6bu6dwqtA3xaucBtwMDLGOIrGZD5yOFz5mHUTSo1qrl4CrgZp1FmmaDuDfA9/9q3WQZlCh94dXORC4HdjXOooM2iPAGXjhK9ZBJJ2qtfpZwI1Au3UWidUM4OTAd5+3DtIsuofeH144DTgEGGsdRTZbA/gO0VGuKnPZoMB3byPa8aJFkvlxF3BonsscNEIfOK9yKnAD2q+eJS8B5+GFj1gHkeyo1urbAv9NtL1NsqkH+BZwVeC7uS87Ffrm8Cq7EI3WP2YdRTaqAVxPtPhNT9eTzVKt1f+N6O/R9tZZZECmAecFvjvJOkhSVOiD4VXOBL4P7GAdRd4mIBqVP2wdRLKvWqvvQDQzd4p1FtmkTqLFjWMC3+2yDpMkFfpgeZWtAR/4HODYhhGi7Wg/BS7XqFzi1ncO/HXA1sZRZP3GE43Kp1sHsaBCj4tX+SDRJ/jhxkmK7G/AJXhhZh+uIOlXrdV3BW4CjrPOIv+0CrgSuDbw3R7rMFZU6HHyKi3ABcA3gJ2M0xTJ88CX8cJ7rINIcVRr9VOAMcA+1lkKbhxwft5XsPeHCr0ZvMoQ4AvA19DUXDMtJvqB+mO8sFD3yiQdqrV6GfgM4KEP8Ul7kujEN32Q76NCb6bo/vplwBfRSXNxWkK0GPE6ncEuaVCt1YcCXwEuBbY0jpN3zxFNr/+uCFvRBkKFngSvshNRqV8AbGOcJssWAtcC16vIJY36VsNfSbRIttU4Tt7MIdpTfmuR75NvjAo9SdFU/DnAl4C9TLNky9PAT4Bb8MLV1mFENqVaq+9JVOxnoGIfrFeAa4AbAt/V8+s3QoVuIXqS2wnAJURHTGq729utAX4P3KCHqEhWVWv1nYHPAxcC2xnHyZoZRB/kbw18d4V1mCxQoVvzKnsAZ/V97WmcJg1eAH4OjMULX7MOIxKHaq2+BXAmcBFwsHGcNOsB7gauC3z3IeswWaNCTxOvMho4GzidYt1rfwm4A7gDL5xoHUakmaq1+kiiEfsZaLHsWi8QPab6lsB351mHySoVehp5lVbgSOB4wCWf+1xnEU2p34EXTrYOI5K0aq1eAU4ETiZ6LkTRVscvIRqN3wKM04r1wVOhZ4FXGUZU7C7wIWCobaDNshB4qO/rQbwwsI0jkh7VWv0dwDFE5X4isKNpoOZ5CrgHqANPaLV6vFToWROdRvd+4NC+r9FEK+bTtLCuG3gGmAJMAB7CC2fYRhLJhmqtXiJ6b58MfALY2zTQ4KwCHiQq8Hrguy8b58k1FXoeeJVtic6Q35toen6fvn+vAi1NfOU1RHtDZwPPAlOJSnw6Xrimia8rUhjVWn1HYORbvtL6KNeAN34OjAceCXxXW00TokLPM6/SBuwB7EJ0LOWORFtntiNadLcFUCYq/fI6X73A8nW+lq3zz7lEBT4bWIQX6i+QSMKqtXqVNxf8fkSPcU5qpm7tLNxUovKeAkwNfLcjodeX9VChi4jkQLVWbwV2BnYDdl3na+1/7wi8A2hb56uF6AP82q8eYCnRYS4b+loIzA18V7NwKaNCFxERyYGSdQAREREZPBW6iIhIDqjQRUREckCFLiIikgMqdBERkRxQoYuIiOSACl1ERCQHVOgiIiI5oEIXERHJARW6iIhIDqjQRUREckCFLiIikgMqdBERkRxQoYuIiOSACl1ERCQHVOgiIiI58P+1OJY5QD+jkAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 71,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/oli/.local/lib/python3.6/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAIsCAYAAACN/bHNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACLrUlEQVR4nOzdd3xTZfvH8c+Vpi20pQHZu6BsqiKKCxQnaNUHRUFBLW5RXDioO+qjVh/3wvVTESdupSqKA/cAVxEBBSp705TuNLl/f5wUa+mmycm43q9XXqXnnJzzTWiSK/e5z32LMQallFJKxTaH3QGUUkopZT8tCJRSSimlBYFSSimltCBQSimlFFoQKKWUUgotCJRSSimFFgRKKaWUQgsCpZRSSqEFgVJKKaXQgkApFQNEZJKIGBFJszuLUuFKCwIVFaq84RsRGV7DehGRVYH1s+3IqJRS4UwLAhVtSoEJNSw/FOgGlIU2jgoTM4GWwN92B1EqXGlBoKLN+8ApIuKstnwCsABYH/pIu05Eku3OEIkqnzdjjM8YU2p0NjelaqUFgYo2LwNtgaMqF4hIAnAy8FJNdxARh4hcLiK/i0ipiGwQkSdEpE217fJEZLaIjBSR+SJSIiK5IjIysP6kwO+lIrJARIbUcKzDReRLESkSkXwReUdEBlTbxh04tTFQRF4SkW3AVyJyVmB5Tfu9TkR8ItK1ridHRLqKyP+JyFoRKRORFSIyPfAcVW7TW0ReE5GtIlIsIt+JSEa1/YwMZBknIjeLyBoR2S4ir4uIS0QSReQBEdkoIoUi8qyIJFbbhxGRR0RkoogsqfK8HVJtu54i8lhgmxIR2RLIl1Ztu8rTRocGtt8IrK62Lq3K9vuKyBwR2RzY7woReabaPpNF5N7A6aayQIarRERqeSxjRGRhYNvfRWR0te1aBZ6XvMA2G0XkYxHZp67/N6VCofq3KKUiXR7wLXAa8EFg2TGAC3gFuLSG+zwBTAKeBR4CegFTgCEicrAxxltl2z2wCosngBeAq4D3RORC4A7gscB21wKzRKSfMcYPICJHBjItB9xYTdiXAF+LyD7GmLxquV4D/gSuAwR4HXgUmAj8XG3bicDnxpg1tT0xItIF+AFoDTwJLAa6YhVLSUC5iHQEvgn8/hCwBcgE3hWRk40xb1Xb7bVACZAdeG4uAbyAH2gTeJwHYD2/K4Bbq93/UGB84FhlwEXAhyIyzBizMLDNfsBBWP9/q4E0YDLwuYgMNMYUV9vnY8CmwLFqbFkRkQ7AR4HtsoH8wH5PqrKNAO8ChwH/B/wCjAL+F3jerqi22+GB+z8GbMf6W3tDRHoYY7YEtnkc6/l+BFiEVbwOBwYAP9WUVamQMcboTW8Rf8P6wDHAvsDFQAHQMrBuFvBp4N95wOwq9xseuN+EavsbVX154L4GOLDKsqMDy4qBHlWWnx9YPrLKsp+BDcBuVZbtCfiAGVWWuQP3famGx/kSsAZwVFk2JLD9pHqeoxmBY+1bwzoJ/Lw/sK/hVdalYBUxKyqPC4wMbJcLxFfL5wfer7b/b4C8astM4Da0yrIeWAXGm1WWtawh7wGB+55Rw9/Al0BcLX8faYHfx1T+vdTxfP0nsM311Za/FniMu1d7LGXVlu0ZWD6lyrJ84BG7Xy9601tNNz1loKLRLKxv38eJSCvgOGo5XQCcAniAj0WkXeUNq79BIda3w6oWGWO+rfL794GfnxpjVtawvDeAiHQG9gaeM8ZsrdzIGPMb8DFwbA3ZHq9h2fNAl2q5JmJ9iL5Ry2NERBxYH4LvGWPmV19vjKk8t34s8IMx5qsq6wqxWhTSgIHV85h/t6B8j9Wa8Uy17b4HusvOfTu+NcYsqHKslcA7wCgRiQssK6nyOOJFpC3wF9aHa01N7U8ZY3w1LK8qP/DzOBGJr2WbY7EKqIeqLb8X6zEeU235XGPMsiqP5TeswrR3tePuH2itUSqsaEGgoo4xZhMwF6sj4UlAHFZze036YJ1O2IjVfFz1lgJ0qLZ91Q99jDGewD9XVduucnllP4SegZ9LasjwB9BOdu44uKKGbT8G1mEVAZUf9KcB7xhjttewfaX2QCqwsI5tKnPWlrFyfVUrq/1e1/PhwHquq/qzhmMtxTpl0R5ARFqKyK0isgrrW/hmrP+f1jXsD2p+3qqbh1VA3QxsDvTlOKtaP4eewNoanteGPhcA2/jnbwDgGmAwsEpEfgj0F+ldw/2UCjntQ6Ci1UvAU0An4ANjTH4t2zmwioGJtazfVO332r551rZcalneECXVFxhjfCLyEnCeiFwEHIzVYvDCLhxnV4Ti+XgYOAt4AKt/iAerKf4Vav5Ss9PzVl2gReRkETkAOB7rFNEzwJUickCgVaSx6n3MxphZIvIlcCLW6aargWkicpIx5oNa7q9USGhBoKLVW1gd/w7A6rRWm2XAkcDXVZumg6Dy+vd+NazrD2w2xhQ1cF/PA1difZAdg1W0zKnnPpuwmq8HNyBnbRkr1zenPjUs64vVJ6OyGDsZq4/FlZUbiEgLrBaCXWKM+Q74DrheRCYALwKnAk9jPdYjRaRVtVaCXXoujDHrsDoePhbo3PgTcD3/dIJVyhZ6ykBFpcA3vMlYHfTeq2PTWVinFG6svkJEnCLSupnyrMPqpZ5ZdZ8iMhjrm+L7jdjXb8BvwLnAWOAVY0xFPffxA28Dx4vIvtXXV7mM7n1gmIgcWGVdMlYnyTysnvHN6cCql9yJSHesznwfVekH4GPnloVLsP7fmkRE2lS/dBDr/weg8rTB+4FjTKm23RVYLRSN+gAXkTgR+dcpDmPMRmBtlWMqZRttIVBRyxgzowHbzBORJ4BrRWRvrEvRvFjfXE8BLqP2/geNdTXWh8i3IvJ//HPZoQercGmM54F7Av9u6OmC67CKj3ki8iTWufDOWI9zOFaHt2wCl2yKyEPAVqzLDnsBYwOFRXNaCMwJHKvyskOwzu1Xmg2cISIerILkQKxWnS00XSZwkYi8hdVK1Ao4D6sVpbI4ew/4DLg9MH7Br1jP33+AB6p2IGygVsBqEXk9sK/CwOPYD6vFRylbaUGgYp4x5kIRWQBcgDWWQAXWt+EXgK+b8ThzAwPV3IJ1jbwXq3PbNGNMQzrCVfUicBewzBjzQwOPv0ZE9gduw+ozkYp1CeMHWE30GGM2iMhBgX1fArTAao043hiT08iMDTEPq1/AzViXHC7CunzytyrbXIbVSjAxkOdrrA/S+k6T1HfcYVinBzpiFWU/ABMr/y+MMX4ROQHr/2o8Vj+GPKzC7t4mHLMY61TB0VidXR1YV0tcZIyZvguPRalmUXntsVIqggQujVwH3GqMuc3uPE0hIgZ41BhTvUleKWUD7UOgVGSahHV+e6bNOZRSUUJPGSgVQUTkcKzBga4H3jY7D3eslFJNogWBUpHlJqxx/b/GOsevlFLNQvsQKKWUUkr7ECillFJKCwKllFJKoQWBUkoppdCCQCmllFJoQaCUUkoptCBQSimlFFoQKKWUUgotCJRSSimFFgRKKaWUQgsCpZRSSqEFgVJKKaXQgkAppZRSaEGglFJKKbQgUEoppRRaECillFIKLQiUUkophRYESimllEILAqWUUkqhBYFSSiml0IIg4olImogYEbnK7izhTkRGBp6rkXZnUUqpcKMFQRCIyKTAB0/lrVRElorIIyLS0e580U5ELhKRSXbnUEo1nYhcJyJj7M4RS5x2B4hyNwErgBbAcGAycKyIDDbGFNuaLLpdBGwGnqu2/AugJVAe6kBKqUa7DngdeNvmHDFDC4Lg+sAYMz/w76dFZAswFfgP8LJ9sSKHiAjQwhhTsqv7Msb4gdJdT6WUagwRcQAJxhh9/YUxPWUQWp8GfvYKnEq4ovoGInJQYN1pTT2IWJ4UkXIROanK8j1FZJ6IlIjIahG5QUTOChwvrdo+jhGRL0WkSES2i0iOiAyqts1zIlIoIl1F5O3AvzeJyD0iEldtW4eIXC4ivwdOoWwQkSdEpE217fJEZLaIjBKR+UAJcEFg3Vki8qmIbBSRMhFZJCKTq98fGAQcWuWUzeeBdTX2IRCRU0RkQeB52SwiL4hI16Y+VqWCLfC3PD/wWlomIheIiFtETLXtTq/yt71VRF4Rke7VtvlcRBaKyEAR+UxEikVkjYhcU8NxE0XkFhH5K/AaXCUid4tIYrXtTOAU6UQR+R0oA0YH1l0lIt+IyJZArgUicnL1+wPJQGaV1/FzVdZ3FZFnAu8jZYH3lbN38WmNedpCEFq7B35uAb4GJgL3V9tmIrAdeKcpBwh8OD0DjAdONMbkBJZ3BT4DDHAnUASci/VCrb6PM4AZwBxgGpCEdbrjKxEZYozJq7J5XGC774GrgCOBK4FlwPQq2z0BTAKeBR4CegFTgCEicrAxxltl235YLShPAE8BSwLLJwO/A+8CFcDxwGMi4jDGPBrY5nLgYaAQuD2wbEMdz1dlph+Ba4GOwGXAwYHHmt+Ex6pU0IjIEOBDYB1wM9bf5U3ApmrbXQ/cBswCngbaA5cAX9Twt90msM83A9ufDNwlIrnGmA8C+3NgvfaGA08CfwDpwBVAX2BMtaiHA+OAR7BO4eUFll8W2M+LQAJwKvCaiBxX+X4FnBHI/EPgWGC9zhCrH9Z3WO9ljwQe9zHA/4lIqjHmgfqeQ1ULY4zemvmG9cFngCOAdkA3rA/ozUAx0BU4P7BN/yr3i8f6436uEcdKC+znKqwC75XAMY6utt1DgB/Yu8qy3bCKEwOkBZalANuAJ6vdvyOQX3U51jl6A9xYbdufgPlVfh8e2G5Cte1GVV+O9aZhgFE1PNaWNSz7EFhWbdlC4PMath0Z2PfIKs/3BiAX67RE5XYZge1uaexj1Zvegn3D+jAtArpUWbYH4LXe0g1AT6yi+bpq9x0c2O66Kss+D/xtn1FlWQJWwfF6lWWnAz5geLV9XhC4/0FVlpnAtgNryN+y2u/xgdfgJ9WWF9b0XohVKKwF2lZb/nLgPWqn9wm9NeympwyCay7WB/wqrA/qQqxv7WuwqvBSrBaBSqOwCogXmnCsBOA14DjgWGPMR9XWjwa+Ncb8UrnAGLMVq0qv6iigNfCyiLSrvGG9uL8HDqvh2I9X+/1LoHeV308BPMDH1fa5AOs5qb7PFcaYOdUPYqr0IxARV2Af84DeIuKqIVd99gU6AI+ZKuc2jfUtZTFWYVBdfY9VqaAJtAAeCbxtjFlbudwY8xfwQZVNT8I6JTyr2mtuPfAnO7/mCqnyvmOMKcf6dl79dfwHsLjaPitPhVbf5zxjzKLqj6Ha67gN4MJ6He3TgMcvwFjgvcCvVXPMCeyr3v2omukpg+C6GFiKValvAJYYq2Mbxph8EXkPmADcGNh+IrCGf15gjXEt1rf7Y4wxn9ewvifwbQ3L/6r2e5/Az9oyFFT7vdQYs6nasm1YTZBV9+kCNtayzw7Vfl9R00YicjBwC3Ag1mmMqlxYRUdj9Az8XFLDusVYLRtVNeSxKhVMHbCulKn+uqXasj6AYH3418Rb7ffVJvA1u4ptwJ7V9jmAaqcmqmWrqrbX8XHADcDeQNW+B9WPX5P2WF9Yzg/cGpJDNZAWBMH1g/nnKoOaPA+cIiIHYTWZnYD1bdXfhGPNwWoFuEZEPjdN781b2Wp0Bta3ieoqqv3ua+A+N/Lv1pCqqr/B7HRFgYjsDnyC9UE9FavVpRw4FuscZihauxryWJUKBw6sD9hjqPnvtrDa77X9bUu1feZivf5qsqra7zW9jkdgnfL4Auvy4HVYxclZWF+O6lP5On8Bq59TTX5rwH5UDbQgsNeHWB+GE7Ga45OAmU3c13dYzdmzsTronGiMqfrh/TfWecbqqi9bFvi50Rgzt4lZqluG1cz5tWn65YPHY32bOMEYs7JyoYjUdAqjId80wHpOwOrEWL1FpF+V9UqFi41Ypxrrey0vw/owX2GMWdpMx14G7IV1rr+hr7HqxmLlH2WM2dGhWUTOqmHbmo6xCavTdVwzvj+pAO1DYKPAB/bLWD1xJwG5xpgmV7eBF8ipWC0FMwO9givNAQ4Ukb0rF4jIbuz8rX0O1mmB60QkvvoxRKR9E6LNwuoJfWP1FSLiFJHWDdhH5TeYHd9YAv0GanojKcJqVqzPfKw32AurXjYlIsdgNY3m1HZHpexgjPFh9U0aIyJdKpeLyB5YrQGV3sR6zdwcOO9OlW1FRNo24fCzsDpEn1d9hYi0FJHkBuzDh/VBv+NSXbEueR5Tw7Y7vY4Dj/8NYKyIDK4hR1Pen1SAthDY73ngUqwOOdN2dWfGmLcD1fbzWB/sFwRW3Y3VS/hjEXmYfy47XIl1tYEJ3L9ArGv7ZwI/icgrWFV5D6xOdl9jXS7YmEzzROQJ4NpAQfIRVjNhH6yOSpdhjUhWl4+wThG8F9hXCtYb00agc7VtFwCTReQGrPOqG40xO/WJMMZ4RWQa1mWH80TkZf657DCPnS8JVSocuIGjga9FZDrWh+sUrKtr9gYwxiwL/P3fCaSJyNtY36x7ASdiXcp3TyOPOxPry8vjgZa5rwPH7h9YPgqryK5LDtYphw9F5CWs8/0XY71O96y27QLgSBGZinVVwQpjzPdAFtb75fci8hSwCOs9bB+slsjdGvm4VCW7L3OIxhv/XHa4bwO3X4hVOXdtwrHSAse6qtryyYHl/6uybG+sc3elWOf7srCuSzZAx2r3H4l1SiMf61zgX1gfnEOrbPMcUFhDJjeBy5+qLT8P6w2jGKtY+Q24C+hcZZs8YHYtj/V44NdAnhXANVgtBDsumwxs1xHr1ElBYN3nVR7TjssOq2w/DuvywVKsyzBfqP5/0djHqje9BfOGdY3/T1jjiPwFnIP1AV9SbbuTsHrwFwZuf2Bdu9+3yjafAwtrOMZzQF61ZfGB193CwOtla+A1fROQWmU7AzxSS/azsTpblwbyTKrpdYR12m5e4P3CUOUSRKxC4hGsLzTlWH0R5gLn2f1/E8k3CTy5ykYi8jOw1RhzhA3HfgCrFSHFWM1xSqkIFGgFGGSM6VPftkrVRPsQ2ExE9sX65v58CI7VstrvbbGuJvhKiwGlIkcNr+U+WFfcfG5LIBUVtIXAJoEOMUOxhr5tB/Q2VS4VDAxAUl8HmUJjTPXLh+o65i9Ybxh/YDWrnwN0AY4wxnzRmPxKKfuIyDqsJv3lWONpTMa6CmeIMaa2sQeUqpN2KrTPyVjn3ZYAp5mdxw3oTi0De1RxC9a5t4Z6P3DcymGTfwLO0WJAqYjzIXAa0AmrH8G3WMMRazGgmkxbCMKUiLRg55HyqltujFkeijxKKaWimxYESimllNJOhUoppZTSgkAppZRSaEGglFJKKbQgUEoppRRaECillFIKLQiUUkopRYgHJlqwYEEK1sh4WoiopvIDa4cOHdrgERqVvfR1rwL0tRvmQjYOwYIFCw5wOByPOxwOF1XmtFeqkYzf7/f4/f4Lhw4d+p3dYVTd9HWvqtDXbpgLSUGwYMGCFIfD8VXr1q07dujQYauI6GhIEcLvN1T4TXyF3++s8OGs8PudFcbE+3zGaQwCCBgxQCdHgc/pL4tDxIAYREyhI7W8xCSIwyEVcQ7xxwkVzjiHN8HpKHdI4z8fjDGycePG3fLz8zf4/f7h+m0jfOnrPgIZA6YiDp/Xib8iXvwV8fgqnJgKJz6fE3xOjAGMYKzXvnVHMQgGBOv17/AR5/QizgrinBVGnF7jcPo2bfWkbPN41vn9Rl+7YShUpwy6OBwOV4cOHbYmJyeXhOiYqoGMMZR6fS2Ky31JJV5fcqnX36LC70+o8Jl4vzFxO98jUAdU09JZXuz0lyRR+bZvoEBaFeV7JXnHAgB8gI/4OEd5gtNRmhDnKE2Md5S2cMaVtoiPK01wOrx15e3QocPWgoICl9/v74I1r7oKT/q6D1fGQEVJC8qLkvCWJOEtScZXnoi/Ir7e+0q1n7WpnD+14p9FjjhDSemmDmlfX7WC91YuBRZUuf2B26OzrtooVAWBAxD9hmA/YwwlXl/L4nJfUkm5L6nU60suq/C39BsTlPO7Phy1vm14ff4Er8+fUASpVZc7RPyJTkdJUoJze0oL5/aURGdhnEP8lesDf0eCnpMOd/q6DwfGgLekBd6iJLzFyXhLkqgoS8L4Q/76qWwUFEw7rFleD6qyuhi361f+XSQs0iIhdHS2wxhQVuGL95R4W28vrXAVl/tamSB9+Nekwkijj+U3xlHi9SWXeH3JW4rKOgliWsQ7ipITndtTEp3bHX5TZwuCUjHPX+GgJN9FWUFryra7MP4aWvrCThJwYOBWqQC3aw7wLvA+bs9WW5LFCFsLgrSsnKHB2G9edsaCYOw3lGbPnt2qtLRUTj755ILG3tcYQ1G5L6nAKgJal1X4WlZd/9zjD/Huay9jjKFn7z249d5HSXW5AHjvjVd4/olH8Pl8tG3fgVvvfYTOXbvvdIw1q1Zy09SLWPz7b3Tt3pNZc77cse7zb+ZzzBmX0K93T8qITzQIz7/9ES1attxpP7dmXc6v83+gTdt23P/UTFqlujDGcPGZp3Dtbf+je1ovDEZKvL6UEq8vZXNhWWd8XrOt1Ff+wLdbz/vltZyH8rIz/m7sc6Rs4nYF5TWP27NLr/klS5YkvPPOO65rrrlmU+Wyrl27pr/22mt/HXTQQSE73eHxeBwZGRm7//7770kVFRWyffv2X6quf/nll13XXXddN7/fL/369St55ZVXVuy2225+gFdfeqHt9Tfe2M34fY69+u/heO6BW0htlbLTMfx+P5fd9D/e//RrRODycycw5axT611X1bb8Ak469yo2b8tnxLAhPHbntQBs2rKNUy64ho9ffoz4+PrPPjRAKnBK4ObD7foaqzh4F7dHp3puZtrkahOvt+4vuZ9++mmr999/39XQ/fmNkfzictfKLUU9/1i3fc/lmwoHbC4s61y9GPj2i894Z9ZLzHznI9769DsGpu/NI3ffBsCKv5Zy/+0389jM13nzk2/5z7gJ3H7dlTUeLyWlFRdffT13PvxUjev79e7JLx+/wjsff+GbNefLGouBPxcvYuWK5bwx9xv2PXA4s998FYA3X36e/Q4aQfe0XjXu2xgjXh+Jm4p8U4EVaVk5X6Rl5ZyflpXTuqHPl1JV/fnnn4nPPPNM++beb32v8+oSEhLMNddcsz4nJ2envjEej8cxZcqUtDfffHPZ33//vbBTp07eG66d1gPPqq7bl/048NLLLkub/ey9zmVfv+Po0qk9tz1Q82vzhTfeZ9HS5Sz98i1+mD2T/01/nt+XLKt3XVUvvvU+hx28L7mfzGLxXytYuPgvAKa67yX72kuaqxioLg44BLgHWIrbtRi363+4XQcE42CxKKYLghdeeKF17969B/Xr12/g5MmTu7Zp02avJUuWJADk5uYmjhw5co/BgwcP6Nu378A77rhjx5uFiAzNysrqlJ6ePqBr167pDz74YNvKdfXd74orrugyePDgAVOmTOn2ww8/tBw6dGi/gQMHDth9990HXXPNNZ0Bvvnmm5bPP/98+7feemu3/v37D7zqqqs6A7zxxhupQ4cO7Tdo0KAB6enpA957771WJeW+Fqu3FXf7Y13Bniu3Fu+RX+JtV+H31/pqXLpoIUP2O4DklFYAjDj8KGa/OQuAv5b8QZ/+g2jfsZO17rCj+eqzueRv27mVztWmDfsMO5CWScl1Psd1nTKIj4/HW16G3++npLiI+PgENm1YzwfvvMEZ511c536rEGAE8ASwPi0r5820rJyT0rJyEhq6AxU73njjjdSBAwcO6Nu378D99tuv34IFC1oAXHLJJT3y8vJa9O/ff+Dhhx++R+X2s2bNarP33nv379q1a3rl6xNg5cqVzmOPPbZ3enr6gL59+w689NJLu1Su69q1a/rkyZO7pqenDxg7dmzNVW0tWrZsaU444YTtbdu23em8+RtvvOEaOHBg8ZC90svZvqH9NeeOTXn33XfbUrS504dzP2s5ZHA/+u9hHe6izHG8/PacGo/x6rsfcd7Ek4iLi2O3Ni7Gn3A0L7/9Yb3rqop3OikuKcXv91NW7iUhPp4PP/uaNq1TOWDono15yLuiH3AV8C1u1++4XZfjdu0WqoNHo5jtQ7BmzRrnlClT0j777LPFQ4YMKX3wwQfb5ufnOwEqKio47bTTes+cOXPFkCFDSrdv3+4YOnRo/4MPPrjo0EMPLQZITEw0ubm5f/z8888thg8fPuCiiy7aIiL13i8uLs4sXLjwD4Bt27Y5vvrqq6UtW7Y0hYWFst9++w0YNWpUwRFHHFF05plnbsrPz4975plnVgEsWrQo4bbbbuvy6aefLm3dpo35/qff2p9wzNF9Pvj2N0lITGzw4x6w5968OvP/2LxxA23bdyDnrdcoKtyOZ9s2+g4czOKFv5K3/C/Seu/B7LdmYYxh3epVtG7TuNfZsr9Xs8+oCZQ7Wjr+M24C4zPP3WmbtN37sN+BIzj1mEPp0Wt3LrxiGjdfOYWp19+K09mkP81E4MTAbVtaVs7rwON52Rk/NWVnKrqsWbPGec455/T+6KOPlgwbNqxk+vTpu40bN273P//88/eHH3545VVXXdV98eLFi6reJz8/P+6XX35ZvG7dOmffvn0HT548eXOvXr28EyZM6HXttdeuy8jIKPR6vRx++OF9nnnmmTZnn332NoCtW7c6f/311z8cjub7zrUqb1lynx6dEli/cC8wjt5d27Nu42YqKipYuWY9PbvuqFdI6955x7rqr6WVa9fTs2unf7bt1oXvfsqtd11Vp4/NIPOymxhy9GmMGT2Srp07cM5Vt/D+zIeb7fE20kDgfiAbt+sN4FHcnm/sChOpYrYg+Pzzz5P79etXPGTIkFKAKVOmbLn66qt7Avz6668t/vrrr5annXZa78rti4qK4n777beWlR/s55xzzhaAIUOGlMbFxZmVK1fG5+fnx9V3v8mTJ2+uXFdcXOw466yzui9atKiliLB+/fqEBQsWJB1xxBFF1fO+++67rr//XtnioOEj0hFHHCDiiGPd2tX07LV7gx/3sINGkHn+FC6ZdCqOuDgOH50BQJwzjp69dueGO+/jhssn46uoYMQRR9PK5SLO2bj+SPuk92f1/A9Idbl8c1c74y4+cxytd2vLqONP3GnbKdfcwJRrbgDgsznv06lLV7p078GNUy+mqHA7Rx83htEnnNSo4we0Ac4DzkvLyvkMq5nxg7zsDO3xHqPmzZuX3Ldv35Jhw4aVAEyePHnrNddc02PFihW1tqidccYZWwE6d+5c0a1bt/KlS5cmtm3b1vfdd9+lXnnllfFXXmmdUisuLnYsXry4ReX9zj777C3NUgwYAyVb21C0qUMKJSnx4uefy3ftk5zUktef+t+O36+4+R6mXTSJv/JWccdDzwBww2XnstegvqGOlghMACbgds0HHgRm4faUhzpIJIrZgqAuxhhSU1Mrqn9bqCopKWnHqzIuLs5UVFRIQ+7ncrl2XD43derUrm3btq34/fffF8XHx3P00UfvXlpautNlemVeX0Kxz9H2wEMPj8t+5Ok6sy9buphrLzkPgL333Z/rbr9np23GZ5674xv7bz/9SMfOXUhpZV35d1TGfzgq4z8AbN64gWenP0j3tN477aMulR2ZDA5/x85d4475z1h++uHbGguCSoXbC5jxxMNMf/EN/u+R+9n3gIPJOGkcp4wawcijjqmxD0IjHBa4/Z6WlXM38GJedoZeyqTq1bJlyx2v17i4OOP1encM5vbTTz/9UfV9oKpWrVrV+Pe1YMGCFhMnTuwNsN9++xXOnDlzZY0HNn5xCA42LEzHX5EA0KNrJz7+8p8B/vJWraNzh3Y4nc4611XXo0sn/l6zngP33cvadvVaegRaBepaV5sffl7Ixi3bOO6oQxhx4tnMfOi/GGOYdMXNzHuj7verINsXmAn8D7frPuBh3J5SOwOFu5jtQzBy5MiiJUuWJP3666+JANOnT2/r9XoFYK+99ipNSUnxVe0bsHDhwsQNGzbU+VW5sffLz893duvWrTw+Pp5ff/018euvv95xPX5qaqrPU1DgXLW1uPvSDYWDhx1yZPJ3X81j6R8Ld9w/9+edO1bv3rc/s+Z8yaw5X9ZYDABs2rAegJKSYh69504mTb5sp3U+n48H7nQz/sxzadkyqa6HvZN1Gzbh9/sx4vAXFW7ni0/m0H9Q3ecVH7zzFi64/BpatkyipLgYEUFEqPB68XqbrbgfBMwAlqRl5ZydlpWjBXEMGTlyZNHSpUtb/vjjjy0AnnzyyTYdO3b09urVy9u6dWvf9u3bG9QU5nK5/MOGDSu44YYbdrTR5+XlxS9btqzennRDhw4tXbx48aLFixcvqrEYMAaKNu+WUPB3XxGkshgAGH3YQfyUu5jFf60A4LEZszj1P6PqXVfdKccdyVMvvonP52PrNg+vvvsR4084ut51NfF6vUy7/SHuu3kqAEXFpYiAwyEUFhXX93SESifgbuBP3K5zcLsi4RJMW9j6hmjn5YFdu3ateOihh/JOPPHEPRISEsyhhx5akJSU5G/btq0vPj6e9957769LLrmk+6OPPtrR7/dLmzZtKmbNmrWcf8bf2klj73fTTTetnTRpUu+XX365bc+ePcsOOOCAAoAKv99x1AknJ7z6+pu7HTVifw4/5nguvPwash9+ituyplJaUozX66X/oHTqazGoyYUTT8JvDBXl5WSMHc9pk87bse7mq6awbs1qysvKGHHE0Vw67cYd69xXX8rIo0Yz8uhjKSkp5oRD9sNbXsb27QUctd8gzhh7TPw9113MG+9/wvTnX8cR50wo9jk4OuM/jBk/sdY8P//4HaWlpRx4yGEAnJp5LtOmnMuz0x/kuJPG0yq1wRdbNNTuwP8BN6Rl5dwGPKenEkJkFy8P3BVdunSpePrpp5dnZmb2qqioEJfL5Xv11VeXORwO9t9//+K+ffuW9OnTZ1D37t3LPv3007/q2tdrr7224qKLLurep0+fQSJiWrZs6X/88cf/3n333Zs+RkZJfirb13bdc+R/kjZtyadgexHdho7msIP2ZebD/6VVSjJP33MTY86+kgpfBYP77cGMB24BqHMdwN5Hncr7Mx+mS6f2nHFyBj/++jt9ho9BRJh6/umkD+gDUOe6mvxv+vOceUoGHdtb34FuvepCjj3jUmvdDZc3+akIkm7A08BVuF3X4fa8ZXegcBOquQz6O53OD/v06VOYlJQUNk0227Ztc7Rp08YPMHPmzNY333xz1+XLl/9uVx6/38jG7WUdthSVdfL5TcR9ex2YsKHYWVG8ozmhwplUvKi8Y+OaFxrAVJSzce1q3J9tZM32Zmn5/wG4OC87Y35z7ExZwvV1H3bKtidRsLYb3uJWdkcJttIKw4o1m+j19ZW0KFxld5zvgSzcns/tDhIuIu5DpzndddddHd56663d/H6/pKSk+J5//vkVduQwxrClsLztxu1lXeu6ZDDS+HFEyrfuYcD3aVk5TwHX5WVn6GhoKvi8JYkUrOlG2fbWdkeJUfsDn+F2fQhcg9uz8+UUMSamC4Ls7Oz12dnZ6+3MUOr1JazeVpJWXF4Rdd8OTOQUBGD1p7kAODktK+da4Gk9jaCCwhjYvr4jhRu6/jNboLLRaOBI3K47gP/i9sTs0Ogx26nQbsYYNhaUdvhrY+GgaCwGAPyNn8YgHLQFngS+S8vK2dfuMCrKeIsT2bSkP4Xru2kxEFacwE3Aj7hde9ucxTYR+Y4d6Uq9vsS/Nhb2W19Q2j1YswyGA19kP7TK0wiPpGXltKh3a6XqYgwUrOvIpqWDqCipe3hPZae9gB9wu9y4XVFz+rahIvodO9IYY9hQUNrxz42FA0u8vp1nHYkyEdSHoDYO4GKswqC/3WFUhPKWJLJZWwUiSDxwM1ZhsJfdYUJJC4IQKbFaBfpvKCjtFsrph+3kwxEtb357AvPTsnIm2R1ERZAdrQJLBuLVVoEItDfWKYSbY6W1wN5OhWE6FWpzyy8ud63eVtLLb0xMDYgRRQUBQDLwbFpWzuHARXnZGYV2B4pEMTPlua8ijm3Le1NelFr/xiqMxQNu4GjcrpNwezbYnCeoYuKbam0qZzvs37//wB9++KFl9d/vvvvuXZ4OdZ2npPPKrcV7VBYDG9ev48KJYznh0P04+aiDmXr+mWzdsrm+3dTo7xXLOHPM0Rx/yL5MyDicv5b8UeN2fr+f/91yPScefgAnH3Uw54w7npUrlgOwZtVKhvRsy7hRI3bcVuXVfPXlEw/8jxOPOJDTTziKtav/GWTtxisu4ucfv9tp+4robB09A6u1IKaaElX9fvzxxxZdu3ZNx1ucyOYlA4JdDPj9fi654S52P+gE9jj4BB559pVat/1z+UoOOmESfYePYb9jT//XlMZ1ravq/U++YvDhpzD48FOY8/k/8wY988rb3PHQ/zXfAwtPB2G1FgyxO0gwxXRB8OSTT7afNm3ausWLFy8aNmxYSdXfN27c6NyV+dF9fuNYsbmo96btZV2qLo+Li+P8y67i3Xk/8vrHX9OtR0/u/+9NTTrGbVlXMHbCJN77Yj5nXXQZN02tecrgzz/6gF/mf8+sOV/y+sdfs//Bh/Lw3bftWJ+ckrJjuONZc76ke9rOM7YWbi8g561ZvP7RV4w/8xxeftaaa/3bLz6jRcuWDNlv5ynJfTTjVG/hpR/WVQgX2R1EhRfBONj85wB85Q2fgrSJXnjjfRYtXc7SL9/ih9kz+d/052v9ML9g2n85f+JJLP3qbaZdNIlJV9zcoHVV3XTPdN6f+RDvz3yI6+96FIANm7Yw8/X3ueaizOZ/gOGnO/AVbtc4u4MES7S+Yddr0qRJ3efPn59y6623dh0yZEj/6r/XND96165d0y+99NIuQ4YM6d+pU6c977777vYPPvhg28r50p988sk2YE1GdMLYU/Y87vDhbU4+6mCmZI5j80arpalt+w7sM+zAHTnSh+z7r2/bDbVl8yYW/fYLGSdZf5tHHnsC69et2fHNvyoRwVteRnlZKcYYigoL6NCpy07b1cURF4ff56PC66WkuIj4+HhKSop58sH/cdm1Nb+BVBiJyiaCgBbAo2lZOY+mZeXE7Oso0lS2Avbr12/g5MmTu7Zp02avJUuWJACcf/753QYPHjygf//+A/fdd99+lfOcFBYWSkZGRu/dd999UL9+/QYefPDBO8bynTp1apeePXsOHjRo0IBXZz7T3enAifHHAcz5/BuGjzmboaMnMCzjDD77+kcAjjp1Mq/Pnrsj0+ffzGfI0ac1+rG8+u5HnDfxJOLi4titjYvxJxzNy29/uNN2GzdvZf5vf3D62GMBGJtxBKvWbuCvFSvrXFddvNNJcUkpRcUlJMRbp9SvcN/LXddf2tTpyiNREvAqbtd/cbui7v0tZv4Xq3vuuedWLVq0KOmSSy7ZcMYZZ+QDVP199uzZrWqaH72oqCju559/Xrxw4cLEfffdd9Cll1667pdfflk8b968pDFjxvQ59YyzKlZtK+59tTs7bre27QD4v0fvZ/r92dx45/3/yuDz+XjluacYefSxjc6/Ye0a2nXouOOFKCJ06tKNdWtX06PXv2cnPPSo0fz47Zccvk9/klNS6NCpM8+8NnvH+pLiYiZkHI7P7+OwURmcd8mVxMX9u7tDUlIyZ5x3EWf85yjatu/If+9/jMfuuZMzz5+yY6bE6ipM1LYQVHUR0DEtK2diXnZGmd1hVO3WrFnjnDJlStpnn322eMiQIaUPPvhg2/z8/B3vgW63e32XLl1WgzXx0ZQpU3p8+eWXf7755psuj8cTt2zZst8BKicre+WVV1zvvvtum59/WvBHa+PpfuYFl+yY1Gz536tx3/sEc156lNRWKfy1YiUjTjqXvO9mc9b4E3hu1rucfNyRADz76rucfep/Gv14Vq5dT88qMxGmdevCdz/tPNjeqrXr/zXzoYjQo2snVq5Zjys1pdZ1e/Tq8a/93H3DZWRebhX/9998JbM//oKO7XZj2JDBjc4eBa4HBuN2nY7bEzX9iWLhDbtZTZgwYSvA4MGDyxISEvynnXbaNoARI0YUFxQUOHOXr+3j8xvnB2+/zmnHHsZJRxzIWy/PZMnvC/+1H2MMt19/Ja1crZl4zoVBzfz7rz/z15I/+PjHRcyd/wf7H3wIt11rzU7WvkNHPvpxES/lfMqTL73Nzz98y/NPPlLjfsZnnsusOV8y/YXX2bBuLRvWreHgkUdwx/VXcdWFk3jwief+VWBWmMgcmagJxgIfpmXlNPssTKr5fP7558n9+vUrHjJkSCnAlClTtsTHx++4NPbdd99N3Xvvvfv36dNn0F133dXljz/+SALYd999i5ctW9bi9NNP7/HUU0+1SUhIMABz585tNeaE4z27+Tb1cZQXtL3g9LE7jvXhZ9/wV94qDjnpXPY+6lROPv8aHA5h5Zr1nDj6ML77aSHrNmyisKiY2XO/ZMKY0SF+NhpvxP778P3s5/l+9vOkD9iDux57jv9Ou5gHnnqRU86/hinXZ1NeHlOD/P0H+Ba3a+dzrBEqVt6wm031+dGTkpL8ABsKyjqLCBW+Cvnph2956ZkneOT5Wbz5ybdcddN/KS/799wu2TdNY8PaNfzvsWdw1PJF+swxRzNu1AgmHn/kTus6dunK5o0bqKioAKwCY/3a1XTu0m2nbd974xWGHTSCVJcLh8PB8Sefxo/ffAVAQmIibdtZXSVcbdowZtxEfvrh2zqfg4qKCu79741c476T2W/Nok3bdtzz+HO888EnzuV/r/5nOyOxdFXFSGBeWlZO5/o2VOHnzz//TJg2bVqPF198ccWff/75+0svvbS8rKxMAAYOHFi+ePHi34855hjP119/nTJo0KBBmzZtinNg4pKltB0VpclgfbuuZDAcdcgB/PLxKztuaxbMoU/vHrRs2YJTjjuSmW/k8Nrsjzn84P1ou1vrnTJlP/Isex91Knsfdeq/OvFV6tGlE3+v+Wfk9bzVa+lRpcWgUvcunVi3cfO/3itWrllPj66d6lxXl+uyH+H6S89h/cbNvDNnHq89eTdt27h48a33632uo8xg4DvcrnS7gzQHLQhq0Zj50ddsK+66qfCfzoMFnnySU1Jo3WY3vOXlvP7ic//aPvumaazKW879T71AfEJC9d3t8PzbHzFrzpe8+N7cnda1bdeeAYP3JOfNWQDMff9dOnbqstPpAoBuPdL44Zsv8ZaXA/DFJ3PYo98AwOqL4PVaVX15WRmffDib/oP2rPPxPv/kIxw75mTadehISXHxjjdCESgqLgHAgPFFdx+CmuwFfJOWlVP7fLHKNiNHjixasmRJUmXfgOnTp7f1er0CsG3btjin02l69Ojh9fv9PPDAAx0q77ds2bJ4EWHixImexx9/fLUxhhV/Lk75z8h9Wr+R83Hc9sIijDE8+cKbO4416tADmfvl9/y2aOmOZT/8/E8r4VnjT+DZV9/luVnv1Xq6IGvKWTuKiVEjD9pp/SnHHclTL76Jz+dj6zYPr777EeNPOHqn7Tq024190vvzwhvWh/UbOZ/QrXMH9ujVo851tfluwW94CgoZfdjBFBWXUPkqdzgcFBaV1Hq/KNYBa5KkiL8CweZxCMJrvICqGjo/+qZCb5ey5PK2VZcdPPJIct58jf8cuh+uNrtxwPBD2bh+HQA///gdLz/7JL326MvpJ1jf/Lt078kDT7/Q6Iw3Zt/PjVMv5ulH7iMlpRW33vtPU7/76ksZedRoRh59LKdmnsuKv5ZyyqgROJ1O2rbvyI133rcjz2P33EFcXBwVPh/DDhrBeZdcWesxV+WtYP63X/Ho868BcNyJ47jivNP5aPbbHLrfYH/6gD5WkSkOPxBLLQSV0oCv07JyMvKyM360O0y4sXO8gK5du1Y89NBDeSeeeOIeCQkJ5tBDDy1ISkryt23b1tevX7/yE044YWv//v0HtWnTpuLYY4/Nr7zfggULWt50003djDH4fD4ZN/Ykz7Derp6kHeT88eff2GfUBFJbJXPMYQfvONYevXrw0iN3cMG02ykuKaXc62XI4P689OgdAAwbMpi4uDj+ylvF0YfufIVOQ5xxcgY//vo7fYaPQUSYev7ppA+watF3P5rHux/N4+l7rCuYnsi+nklX3MwdDz9Daqtknr3PvWM/da2rzuv1Mu2Oh3j9yf8BsOfAvvTu2Y3Bh59Cu91a89bT9zbpsUSBtsCnuF2jcXu+tztMU4kxwR9dNlrnRV+5tbhHfnH5Lo9VEC0GJmwodlYUJwEYh9ObW9E9KKN7mYpyNq5djfuzjazZ7gvGIZpDIXB0XnZG3edfolg4vu63bdvmaNOmjR9g5syZrW+++eauy5cv/73BOygvasGWZf0wvpjtkL0rSisMK9ZsotfXV9KicJXdcYJhOzAKtyciX/d6yqCJVm0t7q7FQO0Mcf76t4pqKcD7OoBReLnrrrs69OvXb2CfPn0G3XfffZ2ef/75mkfhqom3OFGLAVWPVsAHQRuFN8i0IGiC1duKu20rLu9Q/5axy1inDGJda+CjtKycvnYHUZbs7Oz1S5YsWfTnn3/+/vPPPy8ePnx4cYPu6C1N0GJANZAL+CgSOxqGqiDwA8aYyB/Ldl1+SeetReUd7c4R7owEcaZDYwCDPzLmUuwAzE3LyuludxAbRMfrvqIsni1/9cNfERMT3ATTjjPUIThVbbPdgLm4Xf3sDtIYoap21/r9fs/GjRs7dujQYauIRORfQ0FJRerG7aWNG+IvhpSKX5w+67+23BhMRXnzH8QYKooL2F7qY1tJxDRCdAc+SMvKGZ6XnZFvd5gQivzXvd8v4snrJb7y2i8HUg1iDGwq8iFlBcSXNm3+lgjTAXgPt2t/3J5tdodpiJB0KgRYsGDBAQ6H43GHw+ECIu4bg9dvEvJL/Z2MibzsodI5zlMe57feOMsdLcs2+lKCMJ67YXupj+nz8/lza8QNgvI5MCovOyMIlVJ4ivTXvbMsv73DV5pkd45oIWUFdPvlXlLya56ILUp9DByD2xO2PaArhawgAFiwYEEK0IUI67vwxd8l7d9cXPSa3xg9VVCHWS3u+L2t2ToI4CcG/Xh12Vn7Nfcx/Aa2lfgp9UXel82Al4GJedkZEfsAGitSX/d7fHfN5MSSDZfanSNqGEN86WbifGFxwUmoPYjbc7ndIeoT0g4yQ4cOLQSW1rthGEnLymkJzAS0GKhHQnleWQvxAJDv61y8xhv2BbEdTgN+B263O0ioROLrHrdrDHCJ3TFU1LgMt+s33J5n7A5Sl4iq2G3yLLCv3SEizTaTYneEcHZLWlbOIXaHULWweofPJAJPcaiwNh23a+chJ8OIFgR1SMvKuRkYb3eOSLSNVvq3Vbs44KW0rJx2dgdR1bhd7YB3scaRUKo5JQBv4naF7RVH+qZdi7SsnBOAm+3OEam2mVZ6vXbdugIz07Jy9FtouHC7nMBrWMNPKxUMHYF3cLvCsqOqFgQ1CHxzewptMmyyraaVXrNdv9HANXaHUDvchDVrpVLBNAT4n90haqIFQc0ex7qGVDXRNlrpddsN89+0rJyD699MBZXbtQ9wrd0xVMyYjNt1uN0hqtOCoJq0rJyJwFi7c0S6fJPSwu4MEcIJvJKWldO23i1VcLhdCcBz2D37q4olAvwfbldY9VXRgqCKtKycLsDDdueIBvkkh+U5sjDVDetqFmWPG4GIG3deRbw0wuzUgRYE//Y00MbuENHAY7QgaKTj07JyTrI7RMyxZqXLsjuGilkX4HYdYXeISloQBKRl5ZwHHGN3jmhRSFJYNYVFiAfSsnK0kAoVPVWg7Fd56qCV3UFACwIA0rJy0oB77c4RLYyhzItTOxU2Xnes5msVGjcDg+0OoWJeT8Lk1IEWBJaHgbCo0KKBQbbbnSGCXZmWldPf7hBRzzpVMM3uGEoFXIDbdaTdIWK+IEjLyhkJHGd3jmjiw1Fsd4YIFg88aneIGPAA1oiRSoWLB3C7bP1MjumCIDBK3N1254g2XpwldmeIcIenZeWcaneIqOV2HQcMtzuGUtUMAs60M0BMFwTAOKDZp+iNdWXEx+T8ps3s3rSsHD2N1dysb2B32h1DqVrcgtuVaNfBY7YgSMvKSQDusDtHNColodzuDFGgC9rBMBhORzsSqvDVA7jYroPHbEEATAZ62x0iGhWZFl67M0SJi3VGxGZkXWZ4q90xlKrHdbhdqXYcOCYLgrSsHBdwg905otV2WlbYnSFKJAGX2x0iikzGusRLqXDWFrjajgPHZEGANTKZfvMKkgKTbOzOEEUuTsvKseXbQlSxBn653u4YSjXQFbhdnUJ90JgrCNKyctoDl9mdI5rlk2x3hGjSGhvPKUaRq4D2dodQqoGSsaEPUcwVBMBFQEu7Q0SzfKOd45vZFWlZOfo321TW+dgr7I6hVCOdh9vVJZQHjKmCIC0rJxGrIFBBtI0UHfClebUHzrM7RAQ7Cx2JVEWeeKx+LyETUwUB1iVHHewOEe22mlSdLKb5XZ2WlRNvd4iIY407cIndMZRqogtCOS5BrBUEl9sdIBZsNa30g6v5dcPmUcwi1HHA7naHUKqJ2gMTQnWwmCkI0rJyDkEHJAmJfFJsG2kryuk33cbT50xFuktDdaCYKQiAC+0OECu2mZQWdmeIUnulZeXsY3eIiOF27Q4cYXcMpXbR3rhdIRliPyYKgsClhmPtzhErCkhOsjtDFDvH7gAR5BxA7A6hVDMISafimCgIgElAgt0hYoXHJKXYnSGKnZaWlaMtMPVxu5xYVxcoFQ1Ow+0K+vtqrBQEE+0OEEsKSdKRiYKnDXCC3SEiwHFAyEd6UypIUoCgT4ke9QVBWlZOGrCX3TlihTEU+3HoOATBdZrdASLAeLsDKNXMgv43HfUFAXCi3QFiiR8ptDtDDDgmMEGXqol1umC03TGUamaHBnsWRC0IVLPyEVdkd4YYkIj+XdflEKw5IJSKJvEEudCN6oIgcHXBwXbniCXlOEvtzhAjgn4+MYJpHwsVrY4P5s6juiDAemOI9scYVsqIL7M7Q4w4NDA3h9pZUN80lbLRsbhdQeujFe0fltqsGmIlJGpBEBotgIPsDhF23K5BQG+7YygVJLsBw4O186gtCNKyclKAI+3OEWuKTIsKuzPEkMPtDhCG9HSBinZBawGL2oIAq/OFNqmG2HaSfHZniCFaEOxMCwIV7YL2Nx7NBcEhdgeIRR6T7Lc7QwzZL9ASpgDcrg7AMLtjKBVkfXC7+gVjx9FcEOgbgw08JOvY8aETD4ywO0QYOZjofk9TqlJQXvdR+eJJy8qJB/a2O0cs2mpaaUEQWnra4B9D7Q6gVIgE5W89KgsCrKGKtf+ADbaZVtH6NxWutCD4hxYEKlZoQdAIerrAJttIibc7Q4zZOy0rp7XdIcKEFgQqVuyJ29Xs77VaEKhmtdWk6jTToeUA0u0OYTu3qzvQ3u4YSoVIIjCouXeqBYFqVttMip6qCb3+dgcIA9o6oGJNs//NR11BkJaVkwoE5ZIMVT8PKS3tzhCDtCDQgkDFHi0IGmAo0fm4IoLHJCfZnSEGaUGgBYGKPVoQNIC2DtiogKRkuzPEIC0IYB+7AygVYnvidjmbc4fRWBB0tztArPIj/iJaaEEQemkxPfOh29UG6Gh3DKVCrAXNPJFXNBYE3ewOEKtKTGIFiA5MFHoOoI/dIWzUxe4AStmkc3PuLBoLAm0hsEkhLb12Z4hhsXzaoFnfFJWKIFoQ1ENbCGyy3SQZuzPEMC0IlIo9WhDUQwsCm3jQmQ5tFMsfinrKQMWqZv3bj6qCIC0rpy2g18HbJN+kaP8B+7jsDmCjWC6GVGzTFoI6aP8BG21FJzaykRYESsUeLQjqoKcLbLTNtIqzO0MMi+WCQE8ZqFilpwzq0M7uALFMZzq0VardAWykLQQqVmkLQR1a2B0glm01rWJ3cBz7xXILQQe7AyhlExduV7O972pBoJrNNi0I7BTLBYG+7lUsa7Yp56OtINAPJBt5SNYrPOwTy6cMmnU8d6UiTLOdqtWCQDUbj0nWeQzsE5eWlRN7z7/b5QD0clcVy5qtII62gkB7udtoO0kpdmeIcbHYQqOtAyrWaUFQCx0610blxGsLjb1icS4JbR1Qsa7ZXgNaECgVPcrtDmADn90BlLJZRXPtKNoKAqViWewVBG5Ps70ZKhWhtCCohb45qFjlz8vOiNVvy7H6uJUCLQhqtcXuAErZpMjuADaKxb4TSlXSgqAWm+wOoJRNCuwOYCOP3QGUsokXKG6unUVbQbDR7gBK2SSWPxTX2h1AKZusx+1pts70WhAoFR1iuYVgnd0BlLJJs/7tR1tBoKcMVKzKtzuAjbQgULFKC4I6bEM7GKnYlGd3ABvpKQMVq5r1bz+qCoK87AwDbLY7h1I2+MvuADbSFgIVq7SFoB562kDFomV2B7CRFgQqVmlBUI8NdgdQygbaQqBU7NGCoB5L7A6glA2W2x3ARtqHQMUq7UNQj1/tDqBUiK3Ly85otsFJItA6YnEeB6VgZXPuTAsCpSJfLJ8uqJzgaKHdMZQKsZW4Pc06XH80FgQL0clOVGyJ5Q6FlRbYHUCpEGv2v/moKwjysjNKgD/tzqFUCMV2C4FFCwIVa7QgaCA9baBiyY92BwgDP9kdQKkQ04KggbQgULHCB3xrd4gw8Bs6SqmKLVoQNJAWBCpW/JKXnbHd7hC2c3vKgN/tjqFUiKzC7Wn2Qfi0IFAqsn1hd4Awov0IVKwIyt96VBYEedkZa4jtgVpU7PjS7gBhRAsCFSu0IGikD+wOoFQIfGV3gDDyg90BlAqRoHQkjuaC4H27AygVZIvzsjN0Mq9//IzOZaKiXzEwLxg7juaC4DOg1O4QSgWRni6oyu3xAzl2x1AqyD7G7QnKZ1vUFgSBAYqCUkUpFSa0Q+HO3rU7gFJB9l6wdhy1BUGA9iNQ0cqL/n3X5GO0ZVBFLz9aEDSZvmGqaDU3LzujWSc2iQpuTzHwid0xlAqSH3B7NgZr51FdEORlZyxFJ35R0ekVuwOEMT1toKJV0FoHIMoLggBtJVDRphR4y+4QYWw2YOwOoVQQBLXYjYWC4FW7AyjVzN7X4Yrr4PasRQcpUtFnBW7PwmAeIOoLgrzsjK/Q6WFVdNHTBfV72+4ASjWzd4J9gKgvCAJm2B1AqWayHatJXNXteawe2UpFi2eDfYBYKgj0zUFFg3cDY2yourg9q4AP7Y6hVDP5Abfnt2AfJCYKgrzsjFVY1ycrFelesjtABHnK7gBKNZOQ/C3HREEQMN3uAErtouXot97GmA2stzuEUruokBD1G4qlgmA2sNLuEErtgofzsjP01FdDuT0VwJN2x1BqFz2P21MYigPFTEGQl53hQ98cVOTaDjxjd4gINB0otzuEUk1kgIdCdbCYKQgCnkLHOVeR6Zm87IwCu0NEHLdnPTDL7hhKNdEc3J4loTpYTBUEedkZG4HH7c6hVCN5gfvsDhHBHrQ7gFJNFNK/3ZgqCAKygWK7QyjVCC/mZWdo/5emcnvmA5/bHUOpRsoF5oTygDFXEORlZ2wAHrE7h1IN5McqYtWuudbuAEo10nW4PSGdkyPmCoKAu7E6aSkV7t7My84I2TnEqOX2fIcOZ6wix1e4PSEfkTQmC4LAPPIP2J1DqXpUAG67Q0SR6wCf3SGUaoBpdhw0JguCgPuAfLtDKFWH6XnZGb/bHSJquD1/oPOaqPD3Lm7PN3YcOGYLgrzsjHzgXrtzKFWLzcDNdoeIQjejlx6r8OXHasmyRcwWBAEPYr3xKhVubszLzthmd4io4/asBh61O4ZStZiJ22Nbq2BMFwR52RnbgWvszqFUNb+io2oG0x2Ax+4QSlVTBtxkZ4CYLggA8rIzngU+sTuHUlVcpnMWBJHbsxW9lFOFn0dwe2wdbyTmC4KA8wGdY16Fg9fysjPm2R0iBtwL/GJ3CKUClhMGfYa0IADysjOWY3NTjVJYRelVdoeICW6PF5iENSy0UnYywNm4PUV2B9GC4B/3AwvsDqFimluHKA4ht+dX4L92x1Ax7xHcnrBoFdSCICAwPfK5WIPBKBVqnwD/sztEDLoD+NnuECpm/QVk2R2ikhYEVeRlZ/yCjk2gQm8zcGZedkZIxy1XgNtTgZ46UPaoPFUQNpPtaUGwMzegY8erUDonLztjrd0hYpbb8xtwm90xVMx5CLfnS7tDVKUFQTV52RmlwMmA7R08VEyYnped8a7dIRR3Aj/ZHULFjL+wcUTC2mhBUIO87IyFwDl251BR73fgSrtDKCpPHWQCYdN8q6KWF8gMp1MFlbQgqEVedsarWBMgKRUMpcBpedkZOv5FuHB7FmIVBdqXQwXTFLsmL6qPFgR1uwb4zO4QKipdnZedkWt3CFWN2/M6eimiCp7HcHvCdlhyLQjqELgUcTyw2u4sKqo8nped8YjdIVStbgbesjuEijqfAZfZHaIuWhDUIy87YxMwFmviCaV21XvAFLtDqDq4PQY4A/jN7igqaiwHTgn0VQlbWhA0QF52xg/AJXbnUBHvR+DUQMuTCmfWMLL/QadHV7tuO3ACbs8Wu4PURwuCBsrLzngKuNvuHCpiLQeOy8vOCLuexaoWbk8e1iXIOmiRaioDnI7b87vdQRpCC4JGyMvOmAY8bXcOFXG2AMfkZWdstDuIaiRrjHk9xaOa6gbcnogZZ0QLgsa7AHjN7hAqYpQCJ+RlZyy1O4hqIqtX+PV2x1AR5z7cnjvsDtEYWhA0Ul52hh84HfjA7iwq7PmAiXnZGWF5zbFqBOuNXS9HVA31GG5PxA06pgVBE+RlZ5QDJwFz7M6iwlYFVjHwpt1BVDNxe25EZ6RU9XuGCD3NJMbooFxNlZaV0wJ4FzjK7iwqrJQD4/OyM962O4gKArfrHnTIaVWzZ4FzcXv8dgdpCm0h2AWBiZD+A3xsdxYVNkqBMVoMRDG35yrgdrtjqLAzHTgnUosB0BaCZpGWlRMPPIk1r7qKXR7gP3nZGfPsDqJCwO26Hu1XoCwP4PZcYXeIXaUFQTNKy8q5DusNQuzOokJuHTA6LztDR7eLJW7XpViToMXZHUXZ5hbcHrfdIZqDFgTNLC0rZzzwHNDC5igqdJYCo/KyM/LsDqJs4HaNBl4BXHZHUSFVDJyF2zPL7iDNRQuCIEjLyjkQeAdob3cWFXQfYV1NoEPcxjK3qx9WB+O+dkdRIbEKGIPb85PdQZqTdioMgrzsjG+BA4DFdmdRQeMHbsEagVCLgVjn9iwB9kcvRY4F3wD7RVsxANpCEFRpWTmtgdeBI2yOoprXFqxWAX3zV//mdsVhzXky1e4oKiieBS7E7Sm3O0gwaEEQZGlZOQ7gGuBWIN7mOGrXfQ+ckpedscruICqMuV2TgMeBRJuTqObhA67C7XnA7iDBpAVBiKRl5QwBXgQG2J1FNdkjwJWBkSqVqpvbdQDwArC73VHULlkLZOL2zLU7SLBpQRBCaVk5LYG7sIa11EsTI8d24Py87IxX7A6iIozblQxkAxejr/lINAO4HLcn3+4goaAFgQ3SsnKOxjoX1cXuLKpebwOX5GVnrLY7iIpgbtdIrDHue9mcRDXMWuB83J4cu4OEkhYENknLytkNeAI42e4sqkargCl52RkRM5e5CnNWa8FdwEVoa0E4ex64LFZaBarSgsBmaVk5Y7F6Jfe2O4sCrM5DDwI352VnFNodRkUht+sw4P/Q1oJwsw6rVWC23UHsogVBGEjLykkELgWuR0c7s9OPwAV52Rk/2x1ERTm3KwW4E7gQcNqcJtYZrL4CU3F7ttkdxk5aEISRtKycdliD3VyAjo0eStuAm4DH8rIzInamMhWBrBEObwfG2h0lRn0AXIvb86vdQcKBFgRhKC0rZyBwD3CM3Vmi3FbgfuChvOyMArvDqBjmdu2HdTXC4XZHiRHfAVm4PTozaRVaEISxwNUIdwN72Z0lymwB7gUeycvO2G53GKV2cLuOxioMhtgdJUr9AVyH2/O23UHCkRYEESAtK2c0MA0YaXOUSLcZq+XlUe0wqMKW2yXAeKyp1HVQo+axGrgZmIHb47M7TLjSgiCCpGXl7AdcDZyIdkRqjI1YhcBjedkZRXaHUapB3K54YBxwGbCfzWkiVS7WVUMv4vaU2h0m3GlBEIHSsnK6YfVOPg/oYHOccGWAz4Angbd0uGEV0dyuA7GuRDoZ/TJQHz/wHvAgbs9ndoeJJFoQRLC0rJwE4BTgTKzOSPpGYY0w9gLwdF52xp92h1GqWbldnYFJwLno2CXVrcYaDfL/cHtW2h0mEmlBECUCIx+OwfoGcSSxNbNiIfAmViHwiV46qKKe1c/gCKzCIANIsTeQbUqAOVgDPX2g/QN2jRYEUSgtK6c18B+s4uBoIMHWQMGxDPgY+AiYk5edUWxzHqXs4XYlAocBJwDHA93sDRR0G4DZwLvAXNwefe03Ey0IolxaVk4q1pvESOAgrOmXI3Ec9XzgU6wC4OO87Izl9sZRKky5XUP4pzjYh8h8vVeXi9Uv4F3gB9we/eAKAi0IYkyg9eDAwO0gYBjQys5MtVgLLAS+wmoJ+DEvO0ObA5VqDLerK9YphQOBocBAwn8UVD+wBFiANYBQDm5Pnq2JYoQWBDEuLSsnDhiM9YYxAEgL3HoSmnkVNgK/Y3347/iZl52RH4JjKxVb3K6WWAOdDa1yG4h9HZL9wGKsD//K2y+4PTpOiA20IFC1CrQmpFW7dQCSq92cWN86Km9+rCb+rdVuW6r8ezPwZ152xqZQPBalVC2sImFPoA/QucqtS5V/N7XTYjHWLILrsFr91lW5LcP68NexQcKEFgRKKaXqZs3O2AVoh3UFUzzWF4HKloWKKjcvVvG/FrdH5wiJIFoQKKWUUgqH3QGUUkopZT8tCJRSSimlBYFSSimltCBQSimlFFoQKKWUUgotCJRSSimFFgRKKaWUQgsCpZRSSqEFgVJKKaXQgkAppZRSaEGglFJKKbQgUEoppRRaECillFIKLQiUUkophRYESimllEILAqWUUkqhBYFSSiml0IJAKaWUUmhBoJRSSim0IFBKKaUUWhAopZRSCi0IlFJKKYUWBEoppZRCCwKllFJKoQWBUkoppdCCQCmlopaI7Cci34hIkYgYEdlbREaLyC8iUhpY1trunCo8OO0OoJRSqvmJSDzwGlAKXAEUA6uAL4DfgYuBMqBIRK4DFhlj3rYpa1vgbOB4YAAQDywG7jfGvGpHplgkxhi7MyillGpmItIf+AM4zxjzdGDZaOAD4ChjzNwq2xYCrxtjJtmU9TjgTeB94DOgAhgLHAbcaoy52Y5csUZbCJRSKjp1CPzMr2dZOPgd6GOM+btygYg8BswFponI3caYItvSxQjtQ6CUUlFGRJ4D5gV+fS3QV+BzYEZg2Y+BZc+JiAGSgczAMhO4PyLiDvzeV0ReEBGPiGwSkdvE0l1E3hGRAhFZLyJXVsuRICK3isiCwH2LRORLETms6nbGmBVVi4HAMgO8DSQCvZv1CVI10hYCpZSKPk8Aa4DrgIeAH4ENwBLgfOAmYAWwDOtb+NPAD8CTgfsvq7a/V7FOP2QBGcANwFbgAuBTYBowEbhHRH40xnwRuF8qcC7wMvAU0Ao4B5gjIsOMMb/U8zg6BX5ubvhDV02lfQiUUioKichIrPPxpxhjXg8smwQ8C+xnjJlfZdsa+xCIiBu4GXjSGHNBYFkckAd0Ba41xtwVWN4aWAvMqtxPYNs4Y0x5lX22xuowmGOMOaeO/LthFSFLjDGHNOU5UI2jpwyUUkrV5+nKfxhjfMB8QID/q7I8H6sFonfVbSuLARFxBD7knYH771PbwUTEAbwItAYuacbHoeqgBYFSSqn6rKz2uwcoNcZUb8r3AG2qLhCRTBH5Devyxy3AJqzTDq46jvcwMBo41xjz664EVw2nBYFSSqn6+Bq4DKyWA+sfIqcDz2H1STgH60P+KKx+BzV+/ojIzcBFQJYxZmbTI6vG0k6FSimlgtWZ7GRgOXCSqdJhTURuqWljEbkYcAMPVPZNUKGjLQRKKaWKsM7XN7fKVoSqrQb7AwdW31BExmNdEfEiMDUIWVQ9tIVAKaXUAuBIEZmKdaXACmPM982w39nAScBbIpID9AIuBBYBKZUbicgw4HmsPgafABNFpOp+vjHGLG+GPKoOWhAopZSaijUGwX+BllgDGDVHQfAc1lgCFwCjsAqB04FTgJFVthsIJADtgWdq2M9ZWKceVBDpOARKKaWU0j4ESimllNKCQCmllFJoQaCUUkopmlAQiMghIvKeiKwNzII1pgH3GSkiP4lImYj8FRhPWymllFJhoiktBMnAr8DFDdlYRHoBOViTbOwNPAA8LSKjmnBspZRSSgXBLl1lEJhH+0RjzNt1bHMXkGGMGVxl2StAa2PM6Fruk4g1B3ZVu2FNt6mU2jWtgLVGLzFSSlURinEIDsSab7uqOVgtBbW5FmvKTaVUcHQD1tgdQikVPkJREHQCNlRbtgFIFZGWxpiSGu5zJ3Bfld9bAatXrVpFampqkGIqFf0KCgro3r07wHa7syilwktYjlRojCkDyip/rxzCMjU1VQsCpZRSKghCcdnheqBjtWUdgYJaWgeUUkopFWKhKAi+BY6otuyowHKllFJKhYFGnzIQkRRgjyqLeonI3sBWY8xKEbkT6GqMOTOw/nFgiojcjTVpxeHAOCBjl5IrpSLCggULUoAu6EBoKjz5gbVDhw4ttDuI3ZrSh2BfrDEFKlV2/psBTAI6Az0qVxpjVohIBnA/cBmwGjjXGDOnKYGVUpFjwYIFBzgcjscdDocLkHrvoFToGb/f71mwYMGFQ4cO/c7uMHaKiNkORSQV8Hg8Hu1UqNQuKCgowOVyAbiMMQXBPNaCBQtSHA7HV61bt+7YoUOHrYFxS5QKK8YY2bhx4275+fkb/H7/8FhuKQjLqwyUUlGhi8PhcHXo0GFrcnKydiCOIMYYKvzG6fX5nRU+E+/1+eMr/MZZ4TPxPr9xGowYgxiQ+Phyr08K4gUxghgEI4hxOpzeeEe81+lwlsc74r0JcQnlTofTZ/djq0mHDh22FhQUuPx+fxdgqd157KIFgVIqWByAaMtA+PL5jaO4vKJlideXVOr1J5V6fS0rfCah8kO/IftIkrLCMlOY0pBtRcTvFKfX6XBWFgrlLZwtipPjkwsT4hK8u/Zomi7wNyrEeD8XLQiUUioGVPj8cYVlFSkl5b6k0gpfUqnX39Lr81cfIj6ojDEOr/Emev3enY4b54jztohrUdTS2bIoKT6pKMmZVBTniPOHMl+s04JAKRUy6TPShwZjv7mZuQuCsd9IZoyhqNyXtL3E6yosq0gt9fqTG/qt3w4+vy++yF/Uushb1JrACaaEuITSFs4WhUnOpEJXois/XE85RIuYbh5RSqmmGDZsWL+ZM2e2buz9Lr/88i7Tp0/fDWDq1Kldzj777O41bffyyy+7hg0b1q+x+y+v8Ds3F5a1zdtc1GvRuoK9lm8qHLCpsKxLideXEqxiYNXff8ueHfdk7MixO24rV6wEYPXfqxl3xDjGjhzLmBFjmHr2VDz5nhr3s3XzVi6eeDEnHnoixx90PNddfB0FhQUtCsoK2j3+9ONpbVq32bv/oP5D+g/sv+f+++9f43NTVlYmRx555O79+vUbePTRR+/u9VpnIYqLi2Xfffftt2nTprhgPAfRQlsIlFKqGq/XS3x8fLPv94EHHljb3Pv0+Y1jW3F5m/zi8nbF5b4Gnctvbskpybzx+Rs7Le/QqQPPz36eFi1bAHDndXfy2N2Pce0d1+607ZP3P0nP3j159MVH8fl8XHTaRbz98tucevapAAwbPoyHnn/IgfVFNn55/vK+rRJabWud2HpbfFx8BcCbb76Z2qZNG9/cuXMXnXLKKWmvv/6667TTTvNMmzaty4UXXrixffv22sJQB20hUErFDBEZeumll3YZMGDAwLS0tMGV39Yr111xxRVdBg8ePGDKlCndtm3b5jj11FN7pqenD+jbt+/A0047rWdpaemOb9lz585tNXjw4AE9evQYfN5553Xz+63T3dVbD0aPHt37oYceagswduzYtFtvvbVD9VxlZWVy+umn9+jZs+fg9PT0AZ9++mmr+h7LH38udx004tA9+/bvP+T4Y49Jm3JuZsr0+7IBOHLfgWxcvw6AqyefxZljjgagvKyMQ9J7U15WxjuzXuL808Yw7eJzGHvkQZx27GGs/juvKU9rrRISE3YUAz6fj5Likh1z01QnIhQVFuH3+/GWeyktKaVjl+qj3v+jpKKk1cbijT2Wblu617L8Zf02FW/q4Ix3SklJiQOgpKTEkZiYaL7//vuWS5cubXHuuedua9YHF4W0IFBKxRQR4Y8//lj0/vvvL83KyuqxZMmShMp1cXFxZuHChX888cQTqy+66KLuw4cPL8zNzf1j8eLFi/x+P7fffvuOD/OlS5e2XLBgweLff/990bffftvqySef3K3mI9bvvvvua7ds2bIWS5Ys+f3HH39c/NtvvyXVtF1ZhS9+naek0+J1BYMvu2LqHnvue0D8W59+z+0PTGf+d1/v2G7/4Yfw/Vfz8Pv9LFm0kO3bt1O4vYCff/yOAel7k5Bo9en7/defuGTaTbwx9xv2H3Eoz0x/oEn5S4pLGH/UeE45/BSm3zMdn++fL+Leci9jR45lRL8RrFy+kounXVzjPi688kJWrljJyEEjOWTAIfTu25vDRh+2Y/1P3//E2JFjmXjsROa88+9x7UorSlM2Fm/sPuDQAb1aulq27Ne/3+DU1FTf8ccfX3DFFVd0f+yxx1Y26YHFGC0IlFIx5eKLL94MMHDgwPL99ttv+8cff7zj2/jkyZM3V/57zpw5rR966KGO/fv3Hzhw4MCB33//fatly5a1qFw/YcKELYmJiaZVq1b+cePGbfnkk0+aPGraZ599ljphwoQtLVq0MC1atDBnnnnm5qrri8srWuRtLuq1dP32PTdtL+ta7vMnfv/VPMaMnwhAuw4dOeSIUTu2P2D4SL776nMWL/yNfgMHM+ygEcz/9iu+++pz9h9+yI7t9txnGN169ARgr32GNamFoEOnTuaT3z7h1Y9f5ek3nmbBdwuY8diMHevjE+J54/M3mLdoHr369OK1Ga/VuJ8P3vqA3fvuzmcLP+OzhZ+RtyyP12e+DsChRx/Kxz9/zBufv8GtD9zK3Tfdza/zf91pHyLicD/obvHmV28m/vex/ybeln1bz4yMjG0VFRVy/PHH9xo1atTu7777br2tL7FKCwKlVEyrOk6Cy+XacZmbMYbXX3992eLFixctXrx4UV5e3sKXXnrp7/r243Q6TdVvyGVlZY1+n61sVi8qq0havqlw9782Fg4qKPXuVteADlWb4vcffijff/UF3375GfsPPzRQIMzj+y/nsf/Bh+7YLjHxn6v/HHEOfBUVO+132dLFjBs1gnGjRnDH9VfttD4xMZG27dsC4Grj4qQJJ7Hgu50v+ohPiGfMaWN477X3asz/yrOvkHFyBnFxcSSnJHP08Ufz49c/AtCmbRtaJrUEYPe+u3PIkYfw8w8/1/FswLIVy1rN/XRuu5MvPLnDNdde0/uCCy7Y/Morr6yYOnVqjzrvGMO0U6FSKmTC4fLAxx9/vN199923dsmSJQnz589v9eijj66qabtRo0bl//e//+304osv/h0fH8+mTZviNmzY4Bw8eHAZwMsvv7zb+eefv9Xr9fLaa6+1nTJlygaAtLS00u+++y5l0qRJ+YsXL06YP39+yoknnljn+evDDz+8oHJ/xhien/lCR+NwJi7bVDigtvsMO/gQ3n3tZS68YhpbNm3ki0/mcPLESQB06NSZVqmpvP7Cszz1yru03m03/nfrdRQXFjIgfa9GPV+79+3PrDlf1rp+88ZN0qK1j/j4eMrLypk7ey4D0q3Ya1et3fFh7vf7+ejdj+g7sG+N++nWsxtff/o1Q4YNwev18vVnX7PXvlbWDes20LFzx8DxNvP9l98zeszoOnNnX5/NtNumUWEqWhSVF7HVv7VXvjd/Q3FJsX4RroUWBEqpmOLz+RgwYMDAkpISx5133rmyX79+5TVt98QTT6y65JJLug0cOHCQiBin02nuuOOO1ZUFQd++fUv33Xff/h6PJ27UqFH555133laAG264Yf24ceN279u378C+ffuW7rXXXkX1Zbriiis2L1y4sGXfvv3SU1u3cQzZ/+C4P3J/qfM+17jv5MapF3Hi4QfQvmMn0vceSqtU1471+w8/lC8+mUO3nmkAtGvfgXaD9sThaN7Pwx+//S7uof/dHWhh8LH/8P05/4rzAVi6aCkP3vEgAMZvGLDngH9dYTB25FimvzKdDp06kHV7FrdedSsnHnIiPp+PvfbdizMvtCbNffn/XuazDz/D6XTiN37OvPBM9h+xf62Zct7Ioe+gvuzR35qY99xLz+XmqTfHe8u93SZfPbkivzS/desWrfOb9YmIAjq5kVIxJMSTG/V3Op0f9unTpzApKak0mMdqKBEZumnTpl/atWsXVpeflVf449fml3QrKPU2uGNiaUkJzvh4nE4n+du2csYJR3H7Q0+w55B9gxl1J0ktSwvLzBZbLnfcFUnxSQWdkjutaulsWVpcXNzizz//TKmoqBg9dOjQxXZns4u2ECillE2MMWzcXtZh0/ayLn5jGjVozsq8Zdxw+WSMMXi9XsadeU7Ii4FIVuwtTl3uWT6wdWLrTamkbrE7TzjQgkApFTOMMbb3Yai0vdSbsja/tEdZha9lbdt8+elHPHzXbTstP/viKxh9wkl1nttXDWCQ/NL8Dp4Kz26l/lKPz+8L26GdQ0ELAqWUCiGvz+9cm1/SzVPibVvftiMOP5oRhx8dilgxzWd8zsKKwrb3Lb/vtZWLVp6Xm5n7rd2Z7KC9LZVSKkS2FpW3WbJ+++CGFAMq9Lx+7yDgq/QZ6e70GekxN++BFgRKKRVkPr9x/L2lqOfqbcW9G9tXQIWcA7gZ+CR9RnpXu8OEkhYESikVRMXlFS3+3Lh9gKfE287uLKpRDgV+SZ+RnmF3kFDRPgRKqZBJy8oZGoz95mVnhE1nwao2bS9rt76gtLsxRr98RaZ2wHvpM9IfALJyM3NrHLMiWugfqVJKNbMKnz9uxeai3us8JT0ri4Fxo0ZQVLjd7mgN8v3XXzCkZ1teeHr6v5a/OuNpxhy2P2OPPIhTjh5OWWnNw0tccdYVHDb4MAa3H0yB59/DXQxuP5gTDzmRsSPHMnbkWBZ8W3Mt9+aLb3LCwSdw8mEns+jXRTuWP5L9CDlv5OziI2wUAa4Avk6fkb57KA8catpCoJRSzai4vKLF31uK+3h9/gSAiooKnE5nxFwiuL3Aw4N33sLww4/61/LP5rzP+2+/xsx3PqJVqoutWzbjjI8HvDvtY9ykcdxw9w0cOvDQndYBzHhvBqmuugeZe+K+J3jri7dY9OsinnrgKe5/9n7+WvwXSxctZUrWlCY/vl2wL/BT+oz083Izc2fZESDYtIVAKRUz5s6dmzx06NB+/fr1G9i3b9+BL7zwQmuAL774ImnIkCH9+/btOzA9PX3ARx99lAxw6qmn9rzppps6Vt5/8eLFCe3atdurrKxM3nnnnVZ77713/wEDBgzcY489Bt1///3tPCXe1OWbivpnXXphwk1XTuGssccy9siDANirexsKPB4A7r3tRiZkHM64USM4a+yx5C37c0fGvbq34emH72XCcUdwzEF78farL+5Yt/zPJVw4cSwnH3UwJx91MLNmPgPA5o0buHryWUw47gjGHnkQj9z93yY/R3feeA3nX3olrVv/e9DE5554iAsun7ZjeOTd2rYjLq7m/pEHHnrgjgmPmsrhcFBeVk5JcQnxCfH4/X7uuvEusm7P2qX97qJU4NX0GelX2xkiWLSFQCkVEzZs2BA3fvz4PV588cVlo0ePLvT5fGzevDmutLRUxo8fv/sjjzzy99ixYwvmzJmTMmHChD2WLVuWe84552y+6KKL0m699dYNAE888US7E088cUtiYqI56KCDiufPn7/Y6XSyYcOGuCH77JM++OBRjo5dugjAH7m/8NybH5CcsvNsu2dddBlX3mgNOPTBO29w183XMv2F13esj09I5KXZn7Dir6VMOO4Ijhs7HoDLzpnIRVOzOGbMyQBs22oNsHfDFRdx7pSp7HvgwVRUVHDJpFP5aPbbHH3cmEY9Rx/nvIPD4WDk0cfyyQez/7Vu+dIlLPrtZ5544C7Ky8o57uRTmXj2BY3af6VzTzqXCl8FB4w4gClZU0hKTtppm6k3T+W8k88jOSWZm+69iVeeeYVDjjyELt27NOmYzezu9BnpHYBrcjNzw3/8/wbSgkApFRM+++yzlF69epWOHj26ECAuLo6OHTv6fvjhh5YOh4OxY8cWAIwaNaqwbdu23u+++y5p1KhRhRUVFcybNy9pxIgRxbNmzWr79ttv/wmwYcMG58SJE9NWrFjRIi4+wZmf74n7a8kiOnaxPrCOyhhTYzEA8N0Xn/Hyc09RVLgdYwye/H9Phphx4ikA9NqjL3HOOLZs2sD2ggLKy0p3FAMAbXZrS3FxET98PY+tmzfuWF5cVETesr8a9fxs3riBpx66h6dnza5xvc/nY82qlTzz+vsUePI5+5Tj6NajJ8ccP7JRx/n454/p3K0zxUXF3Hr1rdx7y73cePeNO2131HFHcdRx1mmLdWvW8emHn/LEq0/wwH8fYFXeKnr06sFl11/WqGM3s6uADukz0s/Jzczded7oCKQFgVJKVSPyzwi2EyZM2PLUU0+1Kygo2NamTZuK/fbbrxTg/PPP73nUUUd5nnrpTa+ntKL9+GMOpaysbMf9kpKTa9z3ujWruPPGa3hp9qd0T+vF0j8WcvbJ/76yLSGxxY5/xzniqKioYy6mwAR1M9/5mMQWLWrfDrjygkxW5S0H4MlX3qF1m39OCyzK/YVNGzcwfvQIALZt3crnH3/Ati2buWTajXTq0pXR/xlLXFwcbXZry4jDjiT3p/mNLgg6d+sMQFJyEqeedSq3XHlLvffJvj6ba269hh+//pFN6zdx79P3ct3F1/HDVz8wbPiwRh2/mZ0JtE2fkX5KbmZuiZ1BmoP2IVBKxYQjjjii8O+//0788MMPU8D6xrthw4a4Pffcs9Tv9/PWW2+lAnz88cfJmzdvjj/ggAOKAc4777wtOTk5bR5//PH2Z5xxxubK/Xk8nrh23Xu39pRWtF/w3dcsXbSwQTkKCwpwxsfTrmNHjDG88tzTDbpf2u59aNEyiQ/e/ufUwratW0hKTmG/g0bwzGMP7Fi+cf06Nqxbs9M+7n1iBrPmfMmsOV/+qxgAOOSIUXz281I++PY3Pvj2N4469gQuuPwaLplmfXs/dszJfPP5XMCaaXH+t1/Td+DgBmWv5Mn3UFJsfW76/X4+fPtD+qf3r/M+H7z1Ab379KbvwL6UFJfsKNYcDgfFRcWNOn6QZABz02ekt7E7yK7SFgKlVMjYOV5A+/btfa+88sqyq6++uvull17qcDgc3HTTTWsmTJjgefXVV5dddtllPaZNm9YtMTHRvPjii8tcLpcfIC0tzbvXXnsVffLJJ61nzJjxN4DfGLnyxv+aW669KuXR+++h38B00oc0bIiFPgMGMfqEkzjpiANp3Xo3DhvVsHFvnE4nD/7fi9x54zSefuQ+HA4H4848h1NOP4s7HnqSe269npOOOBARoWVSMjdm30fHzs030N4Z513MbddewYmHHwAiHHnM8YE+CqW8+tyrbFq/aUfv/8mnTWbp70sBGDN8DD169+C5d55jxZ8ruOWqWxARfBU+Buw5gGtvv7bWY3ryPbzyzCs8+dqTAAw/fDhvvPAGJx56It16dOPgww9utse3iw4CvkyfkT4qNzN350osQogx4d8fQkRSAY/H4yE1te5LVZRStSsoKMDlcgG4jDEF9W2/KxYsWNDf6XR+2KdPn8KkpKSaL1iPQMYY/t5S3Kug1Ltb/VtHv6SWpYVlZkuK3Tl2hd/rZ+Pqjdz1112sK1+3K7v6GzgsNzN3RTNFCyk9ZaCUUo2wamtJTy0GVC16Ah+lz0jvWO+WYahJBYGIXCwieSJSKiLfi0idvTpE5HIRWSIiJSKySkTuF5G6e78opVSYWb2tuFt+SbnOSaDqsgfwQfqM9Ihrzm50QSAi44H7gFuAfYBfgTki0qGW7ScA2YHtBwDnAOOBO5qYWSmlQm6dp6Tz1qLyiPzmp0JuCPBO+oz0RLuDNEZTWgimAk8ZY541xiwCLgSKgbNr2f4g4GtjzEvGmDxjzEfAy4Ct14oopVRDbSwo7bBpe1lYjIijIsZI4MX0GelS34bholEFgYgkAEOBuZXLjDH+wO8H1nK3b4ChlacVRKQ3cCzwfh3HSRSR1MobUPPoHkopFWRbi8rbrC8o7W53DhWRxgJ32h2ioRrbQtAOiAM2VFu+AehU0x2MMS8BNwFfiYgXWAZ8boyp65TBtYCnym11I3MqpdQuKyn3tVibX5Jmdw4V0aalz0g/1+4QDRH0cQhEZCRwHXAR8D1Wh4sHReRGY8xttdztTqx+CpVaoUWBUpHP7WrYxfqN3q+nQeMbvPDCC61vuummrgkJCeb5559fMWzYsFpHl/P5jePvrUW7+wPTF9flx2+/ory0lIMPO7IxqXf47ef53DbtckpLS+nYuQu3P/A4HTvXfIbiyQfv4Z1Z1oRHo084acfAQfWtq+T1ern6wkmsWfU33Xr24n/Tn8XpdFJWWsqFE0/iwf97idTWrZv0OFStpqfPSF+Rm5n7id1B6tLYFoLNgA+o3rGmI7C+lvvcBsw0xjxtjMk1xryFVSBcKyI1Ht8YU2aMKai8AZExibhSKqw9+eST7adNm7Zu8eLFi+oqBgBWbi1OK6/w13s1VEVFBfO//Yqv5zXtvd7v93PdJedztftO3vtiPiMOO4r/3XJdjdsu+O5rPnj3DV77+Cve+vQ7vpn3KV98MqfedVV9M+8TUlu34bWPvqJVqouvA6MPPvng/zh10nlaDASHE2uWxLDuh9KogsAYUw4sAI6oXBb4UD8C+LaWuyUB/mrLKgfmjpjOFkqpyDZp0qTu8+fPT7n11lu7DhkypD/AG2+8kTpw4MABffv2Hbjffvv1W7BgQQuAV96a3eOYQw/YMRTtn4sXccyBewKwZtVKhg/qyf133Mz4Yw7lleee4rUXnuX9t15j3KgRPP7A3Y3Ktei3X4hzOhl2kDWHwMmnT2Le3A8pK915LKc5773FcSeNIykpmYTERMaMn8gH77xR77qqnM54SkusIX9LS4qJj09g6R8LWbHsT0Ydf2KjsqtGaQvMCOdOhk25yuA+4DwRyRSRAcB0IBl4FkBEnheRqp0o3gMmi8ipItJLRI7CajV4zxhTx4wdSinVfJ577rlVgwcPLs7Ozl71888/L16zZo3znHPO6f3cc8/lLV26dNHZZ5+9ady4cbvnF5W1Kq6gfV372l5QwB59B/DqB/M4/dzJnHL6WRx74inMmvMlF15+TaNyrV+7ms5d/+mzmJzSiuSUVmzasHOj67q1q+lSZdsu3Xuwfs3qetdVdeAhh5Gc0opTjh5OSmoqww4+hHtuvYFpt0RM37dIdiTWlXphqdF9CIwxr4pIe+BWrI6EvwCjjTGVHQ178O8Wgf8CJvCzK7AJq0i4vumxlVJq18ybNy+5b9++JZWnDiZPnrz1mmum9Vzwx7Le9Q3o7oyPJ+OkcSFI2fwcDgc33/3gjt9feHo6h406looKH1lTzqW8vJzxmeey/8GH2Jgyqt2RPiP9k9zM3F/sDlJdkzoVGmMeAR6pZd3Iar9XYA1KVP8cl0opZScRh98YR1xcHD7fPw2Y5VWmNQZo2bIlDkfDGlgLPB7OHXccAF269+SBp1/41/pOXbqxbs2qHb8XFW6ncHsB7TvufOFW5y7dWFtl27WrVtKpa7d619Vm7eqVfPnpx0x/4XVuuGIyYydOYmD6Xpz+n6N565PazgKrXZQAvJQ+I31ouE2ZrHMZKKVi0siRI4uWLl3a8scff2wB8PDjT/fs0LkLHTp1oVuPNNatWc3WLdZsx7PffLXOfSWntGJ7Qc1zRaW6XDumHK5eDAAM3HNvKrxefvjmSwBef+E5Dj1yNIktdu7PeNRxY5j95iyKi4soLyvj7VdfZPQJJ9W7rjZ333wtV998Ow6Hg5LiYgRBHA5Ki4vqvJ/aZQOAe+0OUZ1Of6yUCp0GXh4YCl26dKl4+umnl2dmZvaq8PkcqW3atbhn+rOICB06dWbShZcy8fgjaNuuA8PruZzw8NHHMfvNVxk3agSHH3N8o/oROBwO7njoCW7LuoKysjI6dOzE7Q8+vmP9xWeewkVXXsegvYaw34HDGXX8iZx8lDXt76jjT+TQI0cD1LmuJu+/9Rp9Bw5mj34DADj7osu5ddpleL1ezrvs6gbnV002OX1G+ge5mbnv2R2kkk5/rFQM0emPa7Zic+Hu20srWtudIxLp9Me7ZBOwZ25mbm2X7YeUnjJQSsW0bUXlrbUYUDZpDzxsd4hKWhAopWJWhc8ft85T0sPuHCqmnZw+I3243SFACwKlVAxbk1/SrcJv4u3OoWLe/eEwYJEWBEqpYPEDxhhj+xtdTbaXepM9Jd52dudQYcCAweDfaVDdkNkXON2ug1fSqwyUUsGy1u/3ezZu3NixQ4cOW0UkrHowr91W3MNU2PYBEDV85V6HjR+ku86Ad7uXIm8R+RX5dia5I31G+ut2jk2gBYFSKiiGDh1auGDBggvz8/MfLygocBFGc5eU+0zL/FJ/kt05okGCszyuQiJ33AKDochbxLOrn6XMX1b/HYKnG3AV1tD+ttDLDpWKIaG87LDSggULUoAuhNEpyis/3vy612cG2Z0jGiS3/fEnXF/uY3eOpvLjJ78i3+5ioFIR0Cc3Mzek1z5W0hYCpVRQDR06tBBYaneOSmlZOWMBLQaaSULitpLElrZ8fkWjZOB24Gw7Dh42FbtSSgVbWlZOHDY2ySrVAJnpM9L3tuPAWhAopWLJGVjjyCsVrhxAll0HVkqpqJeWlRMPuO3OoVQDjE2fkd411AfVgkApFSvGAj3tDqFUAziBi0J9UC0IlFKxIuRvsErtgvPTZ6TvPAd2EGlBoJSKemlZOYOBEXbnUKoR2gETQnlALQiUUrHgYrsDKNUEl4XyYFoQKKWiWlpWTivCYJx4pZpgz/QZ6SNDdTAtCJRS0e5MIMXuEEo10aWhOpAWBEqpaDfZ7gBK7YL/pM9ITwvFgbQgUEpFrbSsnBHoMMUqsjmAzFAdSCmlotU4uwMo1QxODsVBtCBQSkWz/9gdQKlmMDh9Rnr/YB9ECwKlVFRKy8oZCnS3O4dSzeSUYB9ACwKlVLQaY3cApZqRFgRKKdVEY+wOoFQzSg/21QZaECilok5aVs7uwGC7cyjVzI4N5s61IFBKRSPtTKiiUUYwd64FgVIqGmlBoKLRYekz0lsGa+dNKghE5GIRyRORUhH5XkSG1bN9axF5VETWiUiZiCwVkaA2fSilYlNaVk4icIDdOZQKgpbAyGDtvNEFgYiMB+4DbgH2AX4F5ohIh1q2TwA+BtKwBlfoB5wHrGlaZKWUqtMQIMHuEEoFSZ1fwHeFswn3mQo8ZYx5FkBELsQ6r3E2kF3D9mcDuwEHGWO8gWV5TTiuUko1xP52B1AqiIYGa8eNaiEIfNsfCsytXGaM8Qd+P7CWu50AfAs8KiIbRGShiFwnInF1HCdRRFIrb0CrxuRUSsU0LQhUNAuPggBoB8QBG6ot3wB0quU+vbFOFcRhXTJxG3AlcEMdx7kW8FS5rW5kTqVU7NKCQEWzLukz0mv7vN0lobjKwAFsBM43xiwwxrwK3A5cWMd97gRcVW7dgp5SKRXx0rJy2mN9CVEqmgWllaCxfQg2Az6gY7XlHYH1tdxnHeA1xviqLPsD6CQiCcaY8up3MMaUAWWVv4tII2MqpWKUtg6oWDAUyGnunTaqhSDw4b0AOKJymYg4Ar9/W8vdvgb2CGxXqS+wrqZiQCmldoEWBCoWBKWFoCmnDO4DzhORTBEZAEwHkoHKqw6eF5E7q2w/HesqgwdFpK+IZADXAY/uWnSllNrJ3nYHUCoEwqMgCPQBuAq4FfgF6wU42hhT2dGwB9C5yvargFHAfsBvwEPAg9R8iaJSSu2KPewOoFQIdE2fkV791P0ua8o4BBhjHgEeqWXdyBqWfYuOHKaUCqK0rBwH0MvuHEqFSDo7X/G3S3QuA6VUtOgKJNodQqkQ6Vz/Jo2jBYFSKlro5YYqljT7WARaECilokV3uwMoFULN3odACwKlVLToancApUJICwKllKqFFgQqlmhBoJRStehidwClQkj7ECilVC1cdgdQKoS0hUAppWqhlxyqWNIufUZ6XHPuUAsCpVS0aGF3AKVCyAG0a+4dKqVUNNAWAhVr2jTnzrQgUEpFC20hULHG35w704JAKRUttIVAxZqK5tyZFgRKqWihLQT2MHYHiGFaECilVA20ILBBXItVzfqhpBpFCwKllKqBvp/ZIC4pr1l7uqtG8TXnzvQFpJSKFtvtDhBzpLwYR2k/u2PEMG0hUEqpGuTbHSDWOFMWLxYh3u4cMUwLAqWUqoHH7gCxxun6pcDuDDFOCwKllKpBvt0BYo0zaUWzDoyjGk0LAqWUqkG+3QFiinhLcZT0tztGDPMB3ubcoRYESqlooacMQsiZ/OdiER0MykYbcjNzdaRCpZSqQb7dAWKJ0/Vzvt0ZYtya5t6hFgRKqWixze4AsSQuabnL7gwxbm1z71ALAqVUtFhtd4DYUVEucUXaf8Be2kKglFK1WGJ3gFgRl7xssQgt7c4R41Y19w61IFBKRYuldgeIFfGun/X0jP2WNfcOtSBQSkWFvOyM7QThvKraWVzyX63szqD4q7l3qAWBUiqaLLY7QPTzeSWuUPsP2E8LAqWUqoP2IwiyuOTli0VIsjtHjNuUm5nb7JN5aUGglIomWhAEWXzqz1vszqD4PRg7bVJBICIXi0ieiJSKyPciMqyB9ztVRIyIvN2U4yqlVD20IAiyuOQ/U+zOoPgmGDttdEEgIuOB+4BbgH2AX4E5ItKhnvulAfcAXzY+plJKNchCuwNEN79PnNv72Z1C8XUwdtqUFoKpwFPGmGeNMYuAC4Fi4Oza7iAiccCLwM3A8qYEVUqp+uRlZ6wG8uzOEa3ikvKWiKBXGNjLEA4tBCKSAAwF5lYuM8b4A78fWMddbwI2GmP+r4HHSRSR1Mob6B+gUqrBPrc7QLRypv68ye4Mit9zM3Pzg7HjxrYQtAPigA3Vlm8AOtV0BxEZDpwDnNeI41yLNXNZ5U2HJFVKNdQ8uwNEK2fKUh2d0H5BOV0AQb7KQERaATOB84wxmxtx1zsBV5VbtyDEU0pFJy0IgsLvF6dH+w/YL2wKgs2AD+hYbXlHYH0N2+8OpAHviUiFiFQAZwInBH7fvaaDGGPKjDEFlTeg2a+3VEpFp7zsjBUEYZz3WBfXcuVSEXSGQ/uFR0FgjCkHFgBHVC4TEUfg929ruMtiIB3Yu8rtXeCzwL/1RauUCgZtJWhmTtcv1U8Vq9Bbn5uZG7SO+c4m3Oc+YIaIzAd+AC4HkoFnAUTkeWCNMeZaY0wp1S4DEpF8AGOMXh6klAqWz4HT7Q4RTZzJi1vYnUEFr3UAmlAQGGNeFZH2wK1YHQl/AUYbYyqrxx6Av9kSKqVU431md4DoYozE5/e1O4Xig2DuXIwxwdx/swhceujxeDykpqbaHUepiFVQUIDL5QJwBfrnRK20rJxfgL3szhENHC1WLU3u9agWBPYqBzoG65JD0LkMlFLR6xW7A0SLeNcv6+zOoJgTzGIAtCBQSkUvLQiaiTPlj0S7M6jg/z1rQaCUikp52Rl5wPd254gGEr9tD7szxLhi4J1gH0QLAqVUNNNWgl3kSFy7TMS0sztHjJudm5lbFOyDaEGglIpms9CrnnZJvOuXNXZnUKEpbLUgUEpFrbzsjLXAF3bniGTOlEVNGa9GNR8P8H4oDqQFgVIq2r1kd4BIJglbtP+Avd7OzcwtC8WBtCBQSkW7l4BtdoeIRI7E9StETAe7c8S4maE6kBYESqmolpedUQQ8YXeOSORM/UWnnrfXT7mZuZ+E6mBaECilYsHDgNfuEJHG2WqRfkbY665QHkz/s5VSUS/QufBlu3NEGkfCpt52Z4hhfwGvh/KAWhAopWLFvXYHiCSOhI1/i5jOdueIYf/LzcwN6SWzWhAopWJCXnbGb8DHdueIFM7UX1fanSGGrQNmhPqgWhAopWKJthI0kLPV72J3hhj2QKguNaxKCwKlVMzIy86YA/xqd45I4EjcmGZ3hhjlAR6348BaECilYs1VdgcIdxK/ZbWIv5vdOWLU9NzM3AI7DqwFgVIqpuRlZ8wlREPBRqr41F/z7M4QowqBB+w6uBYESqlYdBVQYXeIcOVMXWh3hFh1R25m7ga7Dq4FgVIq5uRlZ/wBPGl3jnDlSFzfw+4MMWg5cJ+dAbQgUErFqpuxOnCpKsS5bZ2IXwuC0LvSjisLqtKCQCkVk/KyMzYDt9udI9zEp/623O4MMWhubmbu23aH0IJAKRXLHsJqqlUBztTQjo6nKAMutjsEaEGglIphedkZZcBFducIJ47EdXq5YWjdnpuZu9TuEKAFgVIqxgUGK/o/u3OEA3EWbBSHr5fdOWLIH4R4RsO6aEGglFIwFVhldwi7OVN/+8vuDDHEAOfnZuaW2x2kkhYESqmYl5edUQCci/UmHbPiW/2mYzOEzr25mblf2R2iKi0IlFIKyMvO+Ah42O4cdnK0WNvV7gwx4mvgWrtDVKcFgVJK/eMaINfuEHaQuO2bxVGxu905YsBmYHxuZm7YtcZoQaCUUgGBqw4mAKV2Zwk1Z2qu9h8IPj8wMTczd43dQWqiBYFSSlWRl52xkBi8FNGZ+puto+TFiNtzM3M/sjtEbZpUEIjIxSKSJyKlIvK9iAyrY9vzRORLEdkWuM2ta3ullLJbXnbGs8C9ducIpbgWa7rYnSHKfQK47Q5Rl0YXBCIyHmsChluAfYBfgTki0qGWu4wEXgYOAw7EurTnIxHRzitKqXB2DZBjd4hQkLiirYh3D7tzRLF1wITczPAeBbIpLQRTgaeMMc8aYxYBFwLFwNk1bWyMmWiMecwY84sxZjHWpT0O4IimhlZKqWDLy87wA6cBUT8XsLPVwj9FELtzRCkfcGpuZu5Gu4PUp1EFgYgkAEOBuZXLjDH+wO8HNnA3SUA8sLWO4ySKSGrlDWjVmJxKKdUc8rIztgMnAJvszhJMztRfY64TZYhUDj70hd1BGqKxLQTtgDhgQ7XlG4BODdzHXcBaqhQVNbgWa1rSytvqxsVUSqnmkZedsQI4CQibEeWaW1zL1R3tzhClpuZm5j5jd4iGCulVBiKSBZwKnGiMqasivRNwVbnpZBtKKdvkZWd8BZxvd46gcBR7kPK+dseIQu7czNwH7A7RGI0tCDZjnQ+pXk12BNbXdUcRuQrIAo42xvxW17bGmDJjTEHlDdjeyJxKKdWs8rIzZhAm09Q2J2erRUtE9BL0ZnZ/bmbuLXaHaKxG/REYY8qBBVTpECgilR0Ev63tfiJyDXAjMNoYM79pUZVSyl552RmPYRUFUTPnQXzqryV2Z4gy/5ebmTvV7hBN0ZSq8D7gPBHJFJEBwHQgGXgWQESeF5E7KzcWkWnAbVhXIeSJSKfALWXX4yulVGgFioIpRElRENdyZXu7M0SRWUTwqaVGFwTGmFeBq4BbgV+AvbG++Vd2NOwBdK5yl8lAAvA61rWYlbermhpaKaXsFDUtBY7S7TjK+tkdI0q8D5we7mMN1EWMCf+/58Clhx6Px0NqaqrdcZSKWAUFBbhcLgBXoH+O2gVpWTmTgUchMq/hd6b+PL9l11f3tTtHFHgPa8KiiD79oh1JlFKqifKyM6ZjzXsQkd8K412/FNqdIQo8BIyJ9GIAtCBQSqldkped8ThwIhBxH65xLf9uZ3eGCOYDLs3NzL0skk8TVKUFgVJK7aK87Ix3gYOBv+3O0mBSVoSjtL/dMSJUEVarwMN2B2lOWhAopVQzyMvO+A0YBnxtd5aGcKYsWSyC0+4cEWgtMCI3M3e23UGamxYESinVTPKyMzYChwMz7M5SH6frFx3wrfF+A/bPzcz92e4gwaAFgVJKNaO87IzyvOyMScA0wrizoTNpxW52Z4gw7wPDczNzo3ZuHS0IlFIqCPKyM+4GjsUadyW8iLcER4n2H2iYcuBq4LjczNyoblXRgkAppYIkLztjDpAOvGZ3lqqcyUsXi5Bgd44IsAQ4MDcz957czNzwH7RnF2lBoJRSQZSXnbElLztjHHA6kG9zHACcrl88dmeIAE8B++Rm5v5kd5BQ0YJAKaVCIC8740Ws1oK5dmdxJi1rY3eGMLYKGJ2bmXt+bmZusd1hQkkLAqWUCpG87IzVwNHApYA9I9tJRRlxxTp/Qc2eBgbnZubOsTuIHfQaVKWUCqG87AwDPJyWlfM+cDdwUiiPH5f852IR9grlMSPAYqxRBz+2O4idtIVAKaVskJedsSwvO2MscCiwIFTHjU/9ZVuojhUB1mFNVzw41osB0IJAKaVslZed8QWwHzAJWBPs48Ul/6VTxsJ24EZgj9zM3KdyM3N9dgcKBzr9sVIxRKc/Dm9pWTlJWNe8XwMkNf8RfN6U/td7RYKx74jgBZ4Abs3NzN1kd5hwowWBUjFEC4LIkJaV0xW4CjgXSGmu/cYlL81N6vFMenPtL8LMAq7Pzcz9y+4g4UoLAqViiBYEkSUtK8cFXIB1VULXXd1fi86zPo9v/dPIXd1PBCnDGhTqgdzM3JD104hUepWBUkqFqbzsDA9wd1pWzv3AqcCV0PQrBOKS/2y21oYwtwLr1MD/5WbmbrY7TKTQFgKlYoi2EES+tKycI4GpwCga1THcV5HS//pSkeY7BRFm/MCHwKPAh7mZuWE7sVS40hYCpZSKIHnZGXOBuWlZOZ2AU4DTgAMAqet+cUl5S0QYFIKIobYZeAZ4PDczd4XdYSKZthAoFUO0hSA6pWXl9ATGYxUHe9e0TWLn1+cltJ5/aChzBVEekAPMBj7LzcwtszdOdNCCQKkYogVB9EvLyumPVRxkAEMJnFZI3uOOHx3xBfvZmW0X+IBvsAqAnNzM3N9tzhOVtCBQKoZoQRBb0rJyWgMjgSNT+l83VMQ/jMgZkG4LMAerCPgwNzNXR1gMMi0IlIohWhDEtvQZ6S7gQOCgwG0w0NHWUJZtwM/AfKxhnOfnZuYutzdS7NGCQKkYogWBqi59RnoK0BvYvcrPyltPmqfzeSlW578tgZ9/Ab8Di4BFuZm565rhGGoXaUGgVAzRgkA1RvqMdCfQA2gNtAASAz+r/7vy90L++dDf8TM3M7c41NlV4+llh0oppWqUm5lbAWjTfYyIlM4lSimllAoiLQiUUkoppQWBUkoppZpYEIjIxSKSJyKlIvK9iAyrZ/tTRGRxYPtcETm2aXGVUkopFQyNLghEZDxwH3ALsA/wKzBHRDrUsv1BwMvA/wFDgLeBt0VkcBMzK6WUUqqZNfqyQxH5HvjRGDMl8LsDWAU8bIzJrmH7V4FkY8xxVZZ9B/xijLmwgcfUyw6VagZ62aFSqjaNuuxQRBKwxsa+s3KZMcYvInOxRr+qyYFYLQpVzQHG1HGcRKxrWiu1AuvNTCnVdPoaUkrVprHjELQD4oAN1ZZvAPrXcp9OtWzfqY7jXAvcXH1h9+7dG5ZSKVWf3QCtDpRSO4TrwER38u9WhVbAaqAbsN2WRA2jOZtfpGSNtJxb7Q6ilAovjS0INmNNQ1l9MoyOwPpa7rO+kdtjjCkDdsxvLSKV/9wezuc9NWfzi5SsEZhTKaX+pVFXGRhjyrFmojqiclmgU+ERwLe13O3bqtsHHFXH9koppZQKsaacMrgPmCEi84EfgMuBZOBZABF5HlhjjLk2sP2DwDwRuRLIAU4F9gXO37XoSimllGoujS4IjDGvikh74FasjoG/AKONMZUdB3sA/irbfyMiE4D/AncAfwJjjDELG3HYMqxxD8rq29BmmrP5RUpWzamUimgRMf2xUkoppYJL5zJQSimllBYESimllNKCQCmllFJoQaCUUkoptCBQSimlFGFUEIjIxSKSJyKlIvK9iAyrZ/tTRGRxYPtcETk23HKKyHki8qWIbAvc5tb3uOzIWe1+p4qIEZG3gxyx8niN/X9vLSKPisg6ESkTkaXh+H8f2P5yEVkiIiUiskpE7heRFkHOeIiIvCciawP/j2MacJ+RIvJT4Pn8S0QmBTOjUio8hUVBICLjsQY8ugXYB/gVmCMiHWrZ/iDgZeD/gCHA28DbIjI4nHICIwM5D8Oa9XEV8JGIdA2znJX3SwPuAb4MZr4qx2vs/3sC8DGQBpwM9IP/b+/+QqwowziOf5/dDFKLLoTdG4M16Q8UCF7IRhdihaAQVETRRQVhhHUTRS4r1kaIGQRBGhUGi1K0d1ERBUVeWCYkQS1U0EIlqStCEISLf3q6eN6j07SzdWZ3zrywvw+84Mx5B347xznznHlnzssW4LcMsz4AvJj63wg8AtxH/BZHk5albI//n85mNkT8YNjnwBrgFWCfmW1sKJ+I5MrdW2/AEWBPYbmP+JAfqeg/AXxYWvcV8HpOOWfZvp+YYe7B3HKmbF8QJ65x4L0M3/fHgClgSdPZFiDrHuCz0rqXgUM9zOzEj4DN1Wc3MFla9y7wca/3sZqaWrut9SsE6VvfWuDTzjp3/ystD1dsNlzsn3wyR/95q5mzbCmwhAZnmptHzmeBU+7+VlPZimrmvJOYA2OvmU2b2aSZjZpZf4ZZvwTWdoYVzGwVsAn4qMmsNfT8WBKRPOUw/fEK4tvpdGn9NHBDxTaDFf0HFzbaP9TJWbYbOM6/P4AXUtc5zexW4srAmgZzldXZn6uADcDbxMl1NfAaUWQ930xMoEZWd3/HzFYAhyymGLyMuILV9JBBt6qOpavM7Ap3P9NCJhFpQetXCBYLMxshJna6y91n2s7TYWZXAgeALe5+uu08/6EPOAU86u5H3X0C2EkMJWTFzNYDo8BW4p6Du4HNZrajxVgiIpVyuEJwGrgADJTWDwAnK7Y52WX/hVAnJwBm9jQwAtzu7t82E++ibnNeS9yk90F8kQVSoWhm54Hr3X0qg5wAJ4Bz7n6hsO57YNDMLveYnrsJdbK+ABxw931p+TszWwa8aWY705BDDqqOpT90dUBkcWn9CkH6ED8K3NZZZ2Z9aflwxWaHi/2TO+boP281c2JmzwA7iBkhv24q3zxy/gDcTAwXdNr7XLrr/FgmOSFuelyd+nVcB5xosBiom3UphVk/k04hY+Sj58eSiGSq7bsa3R3icawZ4CHiEa03gN+BgfT6fmBXof8twDngKWIMdww4C9yUWc5txDSz9xBjtZ22PKecs2w/Tm+eMuh2f64kntJ4lSgENhPj3dszzDqWst4PDBEn2Z+AiYZzLudSYefAk+nf16TXdwH7C/2HgD+Bl9KxtBU4D2xsep+qqanl1VoPcDEIPAH8kk6gR4B1hdcOAuOl/vcCP6b+k8Cm3HICP6cP5XIbyynnLNv2pCCo+b4PE4+YzhCPII4C/bllJYbjnktFwBngV2AvcHXDGddX/J8bL7y3B2fZ5pv0d00BD/dif6qpqeXVzN0RERGRxa31ewhERESkfSoIRERERAWBiIiIqCAQERERVBCIiIgIKghEREQEFQQiIiKCCgIRERFBBYGIiIiggkBERERQQSAiIiLA3zOB1321M+sRAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": 129,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"fftma2",
"covariance",
"gasdev",
"fourt",
"cov_value",
"ran2",
"build_real",
"prebuild_gwn",
"clean_real",
"cgrid",
"length",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#FFA15A",
"#19d3f3",
"#636efa",
"#00cc96",
"#636efa",
"#636efa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"Py_kgeneration",
"fftma2",
"generate",
"fftma2",
"covariance",
"gasdev",
"",
"fftma2",
"",
"",
"",
""
],
"type": "treemap",
"values": [
173.93129,
137.192987,
36.737828,
36.638978,
101.71883800005251,
0.09082599999999999,
15.471843000005594,
31.86060899999753,
0.00317,
0.001027,
0.000707,
0.001641,
0.001153,
0.000372
]
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Qd0VWW6h/H/aSkEQu8iKiBWUMeGvQ4Odh07FtSLMuLYZxzFXkFFHR0cC/beO/auiAUFRZTBhoAU6YS0U+76dkgEpOSEvCd77zxZ6651heTb3/d7z+jDdp9jJJPJZMQXAggggAACCCCAAAIImAtEiG9zYy6AAAIIIIAAAggggIAnQHzzQkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAgggQHzzGkAAAQQQQAABBBBAIEcCxHeOoLkMAggggAACCCCAAALEN68BBBBAAAEEEEAAAQRyJEB85wiayyCAAAIIIIAAAggg4Mv43vuIczR95pzVTmeb3hvp0P120flX3aHXHr1enTu0YZoIIIAAAggggAACCPhawJfx/em4b1VeXlkDd/F196hl86Y6a+BhNb/WvFmRipsV6eOx32i/vfqoqElBg0AffNJFOvPkQ7Vrny0a5PpcFAEEEEAAAQQQQCA4Ar6M7xX59jv2fLVv20ojh//DV7KlZeXart8g3XLV31cZ35WVSSUScV/tm80ggAACCCCAAAIINIxAoOP7hdc/Wu6xk0tvuFfjvvle5556uIb951FNmTZTHdu31vmDj1Hrls105U0PatIPv6hNq+Y64+RD1W/P7WvUp06frRtuf1xjvvhGpaXlWq9LBw04sp8O+PMOK53Mp19+qxPOvLbm9woL8vXZK7dryNCR+mbSTzr56H119b8f0q59euuq80/2vu+RZ9/0/m/KtFkqKizQTtttrnNPPUJtW7fIah/7Hnu+dtp2c3Vo10oPPPGa5i9crI17dNXQC0/R2K//p//e/5xmzp6nbut11uXnDdBG3df11nd/WLjpzif19odfaPac+Wpe3FTbbrmRzjn1CLVv09L7nqdffl8XDRuph24dopvuelJfffuDErGYdt9xSw0587gG+zcMDfM/D66KAAIIIIAAAgjUr0Co4vvKmx/Qi6+P1o7bbKYhZx6raCSqQecP19RfZ6vH+uvo0nNPULs2LXXZDffq1Xc/1dtP3Og9ujJvwSIdNGCIWjZvpovOOk7t2rTQS29+rFtGPq1rLhi40gBPJlP6bPx3OunsYRo25FTtuO1malHcVJcNv0/vjh6ndTu108D++6lzx7bquk573f7AC7rl7qc1+MSDte+e23txfMWN9yudyeipuy5XXiJe630ceMKFWrR4if6636468ah+mj7jNx39tyu8fzvgIvzCM/rL3XE/6Zxhcn8oeHjERd6r5oJr79JbH4zV0AsHqlvXzpo1Z54uH36/mhYV6sFbL/S+5/nXPtK/rr5DG3brosvOPUEbd+/qnfPMi2/V7jtsqWsvHFi/r0BWQwABBBBAAAEEGpFA6OL7kWfeXO4NmPc/8aqG/ucR79GQPXbcyhvtJ19M1ICzhnp3d7fYrLsXxv8e+ZSeu/cqdV+vc834T/3ncE2dPksvPvD7He5lXxsTvvtRh59ymUZcc2bNYyfuDwBuD4/cdpF6bdzN+/byikrtfNDp3t3q4ZeeVrPEVxN/0JGDLtd1Fw9Svz22q/U+XHyXlVfolYeHKRKJeOsNvvBmvTd6nN5/9hY1Ly7yfu3We57RXQ+/pC9eu9P7vpm/zfOifJ2ObWv28OBTr+uaWx7SmJdu8yK8+t8muIA/+uC9ar7PGbq79h+/OEIF+XmN6H8iHBUBBBBAAAEEEKg/gdDF97OjPvAe/6j+evaVD3ThtXdp1ENDtW7n9t4vfzt5ig49+WKNuPYs7bp9b+/uuPu1t5+8aTnZ6nB3QduqRbM/qK8qvh9/7m19+cZIRaNVYfz1tz/qiFMv02XnDvDuVi/7tf2+g7Tf3jt4d+pruw8X3+7TXdz+q7/cXe2PP5ugt568sebX7n/yNQ299WHPw90Bnzt/kfdIyqfjvtP8BYuUSqW9PxgsLimt+QNLdXw/9t9LtNlG69es9cyo971Hap65+0ptuME69fcKZCUEEEAAAQQQQKARCYQuvke9OUYfPn/rH+L7rSeGe49lLBffS+9Y9x98lb6cMFmJeGy50btHQtzjJasKzlXF94p7GP35BJ18znWKx2OKLr1TXX2hymRKe+28lW66/HTVdh8uvtdft6NuunzwcvE9dvwk72549Vd1fH866r8qyM9X/8FX6pfps3Tx2cdr057re4+6vPTGaA0b8egf4vvF+6/xrlH9NeqtMTr38tu8R1h6b1J1R58vBBBAAAEEEEAAgewEiO8+W+hv/7pJk3+cqtuHnbNSvU4d2ig/L/GH36ttfE+Y9JMOH3ipzht0pPcGzBW/mhTme38wqO0+6hLfv86cqwNOuEBX/vMkHfyXnWu2cMeDL+jmu576Q3y7Z8C33KxHzfc9+dK7uuS6e/T8vVer23qdsnuV8d0IIIAAAggggAACngDx3WcL3fnQi/rPvc/qjcdu8D4Jpfpr1m/zVZCf8N6UubKv6vj+z9Vnarcdqj7n2z3zveKd74rKpHY6cLAO2mcnXfD3/sst9cPP0707zO6Z7Nruoy7xPen7qTpm8JW69aozvE8ucV/urr77nHK3h1cfuc57Frz6sZOzBx6mk47et2avlw+/T8+9+qFGvzjCu2POFwIIIIAAAggggED2AsR3ny1qPmWkS6d2OvuUw9ShXWt9N3mK90ZE99zzsm+SXJbYfTxh36PPU/9D9/buJnfr2klDRzzyh/h2P+Pe1Hnb/c/p7FMO954zr6is1BMvvKNHn3tbT9xxqXp261LrfdQlvlPpjPY6/Gz13qS796kvCxeV6N8jn1anDq29N4hed9GpXpS/8f7n3sc3urvbfzv+IG2+8Qb6fPwkXXr9Pdp/7x102XkDsn+V8RMIIIAAAggggAACngDxvfS/TOlCevgdj3v/xcwlpeXe51733X1bnXbCQSt95KT69ePezPnK25/I/Rc3n777Cu8TRla88139vct+zndBXsJ77nrQ8Qdq6949a16OtdlHXeK7SWGB3vt4vK677VHvE1zcRyAO7L+/9tl9Ww0461q5O+MX/P0Y77l0F993Xn+e7n3sFX3+1Xfe53zvtcvWGnLGsSoo4JNO+HsHAggggAACCCBQV4FAxHddD8fPZS9Q/djJsp8Ok/0q/AQCCCCAAAIIIIDAygSIb14XywkQ37wgEEAAAQQQQAABOwHi2842kCsT34EcG5tGAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8W00w+dfSRutzLIIIIAAAggggICtQDQi7dc3anuRRro68W00eBffz49KGa3OsggggAACCCCAgJ3AQf1ixLcRL/FtBEt8G8GyLAIIIIAAAgiYCxDfdsTEt5Et8W0Ey7IIIIAAAgggYC5AfNsRE99GtsS3ESzLIoAAAggggIC5APFtR0x8G9muKr6jUemOGxNKJqsunM5IM2dl9OTzKU34NlOn3ey9W1SdOkZ03yPBeMZ8x+2i+nBM1RtS/z4wrk/GpvXxZ7xBtU7D54cQQAABBBAwECC+DVCXLkl8G9muKb7PuySpefMzcjG+Va+oTjg6pguuqNTCRdlvyE/xHYlImdX8GcL9/g1XJHT2kErvoE0KpcqkVFn1l3whgAACCCCAgA8EiG+7IRDfRra1je/qy1/yj7ieezmt/feJ6uU30vr8y6o7wb03i+qgflFdNmzprfKV7HfZ+G7ZIqJ/nRnTnQ+k9NOUjE44Kqbu60c0+zdp0g8ZtWkl3f1QSu3bRXTcETE1L5bKy6WHn0rp+x8z6tI5ohOPiWn8hIx6dIt4v//wk7/fld/3z1H12SYqZaSJkzJ67JmUkinp1mEJvfx6SvvsGdN5F1eqY4eIjj08piZNqsLarfHt/zI67eSYttgsql9nZnTTbSn1PzxWc+d76y2iOuAvUcWi0oJF0v2PpTRjZkZ77RrVOp0iSiSktm0i3u+PuDulOXPr9m8KjEbOsggggAACCIRGgPi2GyXxbWSbbXxfdn7ce/SkY/uIum8Q0YiRVY+QDDg6phmzMhr1xqofy6iO70eeTOmfZ8T1+jtVj3HstmNU2/0pqutuTaq4WUQXnBXThO8y3uMpF58X1zsfpPXe6LTWWzeiwSfHdP5lSS/K3R8E/n1HUl9PzGjbraLac5eorrkpqS02j+qQ/ar+fxfsg06MeUH95rtp3XxNQh98nPbO4O58X3ReXG++k9ZHn6a17Z+iOmCfqIZclVTTIun6yxM69ZyqW93Vj51M+j6jS/8Z15XXJzXrt4x22SGqnbeP6qrhSe2xs4vymC65tlILFsqL+sVLpGdeDMZjNkYvMZZFAAEEEEDATID4NqMV8W1kW9v4jsUkd8f36L/G9K8rKpWXiOjqIXGdc3GlF7jDr0zoqhuSmj1n1Xd5q+M7P0+aMUs1ny8+8PiYvv+pKo7dl4vWaEx64ZW0rrggrsH/qKx5RGTIOXE98VxKi0uk88+M6/R/VsWxu+P894Ex/ePS5B/+INBr04j67hHTdbckddPVCS/Yf/ipap95CXl3xNNpeXfPh12a0ClnV64yvhNxacteUW8N9+Xuct92fUKnn1+pPltHtclGEd16Z1Vs77lrVF27RHT3g8S30cuXZRFAAAEEGrkA8W33AiC+jWzXFN81b7hMS9NnZPTYsyn97/uqcD13cFyjP017j1X89YCYrrxh1Y+cuO938b3/PjHF45K7+/3+x1Wxffbf4vrok9/fzLjv3lG1aRPRux+mdcFZce+Z8+qv/PyIHni86jGPMwe5R0eqrtm5Y6Tmr91d6g3Wi6i8vOrn3PPq7hn1K66viu9rbkxq5uyq33N3zHffOSr3hwv3mIh7nGXgWauO71YtpQ7tlw/qEdcldOnQpDbbOOJd964HqmLb3Qlf9q+NRsiyCCCAAAIINFoB4ttu9MS3ke2a4rv6DZcru/zOfaLe3XD3uIkL8NfeXv0ngbj47r1pVI8+k9I5p8W9WHc/N2hATN9Ozujt96t+3j1f7WL4+VFpXX5+3LurvOLXsrG9Ynwff1RM03/NeI+1rPjl4vvq4VWPjLRsHtHVF8V1+XVJ79lu9xz60Eviq41vd+d7q95R3Xx7VfTn5Ukuvt3d+R22XT62iW+jFy3LIoAAAgggsFSA+LZ7KRDfRrZrE9/uTYruMQ332Il75nnuvNW/sXDZN1z22zuqTTaM6oYRSfXdI6pNekZ1421JtSiO6MJzYvpqYtUz3+6Z7FffSuuTz9Nq1lQ66pCY7nsspTatfr/TvWJ8uzdKujeEusdMysrlPZedSsn72MBl49sF/Hmnx3XuxZXeYyeH7Bfz9nLaeZWKxaWbr054j7WUV/z+zPd3kzPeHwjcXXQX8O45c/cHkKH/rnrmmzvfRi9UlkUAAQQQQGAlAsS33cuC+DayXZv4dlsa/H8xNSuKeG9uXNPXsvHtHgVxj5S4x1bcmx0HHhdX507StOnS1OkZ75nr+x79/dNOWrWo+qzx199O650P08s9ZrJifLu/do+uuDvR7g76zNnSPQ+nNH9BZrn4dt93Yv+YenaLqGSJ9PhzKR24T8x7TMWdxz0Os+46Ee8u9/59f/+0kz9tEdWB7tNOYtLcedL9j6a8Z92J7zW9Avh9BBBAAAEE6leA+K5fz2VXI76NbNf2v3DpPgbwl2kZvf3B2v3HZ5b93G33iSHujZDuE0n4QgABBBBAAAEEViVAfNu9NohvI9u1ie9OHSI6a1BMF1+TVGlZ3TfoHhM57KCqzwh3Ef6vM+Pe895jx69d0Nd9R/wkAggggAACCARBgPi2mxLxbWRb1/g+dP+Y3H9+3f0HZr78qiqSO7SL6G8nxVa6U/eGxtvuXvmdbPeYx9GHxtR7s4j37PVnX1b9Z+xX91+gNOJgWQQQQAABBBAIkADxbTcs4tvItq7xbbQdlkUAAQQQQAABBGotQHzXmirrbyS+syar3Q8Q37Vz4rsQQAABBBBAwH8CxLfdTIhvI1vi2wiWZRFAAAEEEEDAXID4tiMmvo1siW8jWJZFAAEEEEAAAXMB4tuOmPg2siW+jWBZFgEEEEAAAQTMBYhvO2Li28iW+DaCZVkEEEAAAQQQMBcgvu2IiW8j25XFt/uP3PCFAAIIWAg8PyqlXXeIqnnziMXyrLmCgPPmC4EwCxDfdtMlvo1sVxXff150r9EVWRYBBBqrwBedjtTIxxNefB/c+g3F501rrBQ5OXekX3+ddgF/yMkJNhdpMAHi246e+DayXV18lz1xt9FVWRYBBBqbQN5eB2rcpqctF9/JO65obAw5O2+kabEKbnmW+M6ZOBdqKAHi206e+DayJb6NYFkWAQSWEyC+c/uCIL5z683VGk6A+LazJ76NbIlvI1iWRQAB4rsBXwPEdwPic+mcChDfdtzEt5Et8W0Ey7IIIEB8N+BrgPhuQHwunVMB4tuOm/g2sg1LfI+vjKpzLKPW0YyRFMsigMDaCGTz2MmdSxJ6vyKu04sqtCQjjVySp775Se2Zn9T8dEQbxdNrs5Wany3NSHcsydOXlVHFI/Ku8deCZL2s3dCLEN8NPQGunysB4ttOmvg2sg1KfLt/1EZXYzB0cZ4OLkhqw3r6h7IRN8si0GgFsonvAfMLdFmzCq0bS+v6xXnaNJHWX/KTerEsLpfGB9VTII9cktDCTESnNanQgkxEFyzK11lFFdokBH8fIb4b7f/UGt3BiW+7kRPfRrZ1ie9ny+J6pTyu5pGM9s5P6emyuEY0L/N26P7/dyvich9utXk8peObVCou6YT5BTqmMKmPK2OamYpoj/ykDln6D9CxlTE9VOr+oRpR+2hag5pUqmU04/2D9udUVD+lItoqkdaRhZW6b0lCn1bG5O5vbxpP69SiCr1QFtfjpQm1imZ0bJNKbZeo2tPK9mHEyLIIILAGgdrG93WL87z/jXeMZdQjltYnlTE1iWS8/72PrYwqFpF2z0tpx7yU/lOS0BaJtCYmo1qciWhgkwrv7xu/pqPaNJ7SyU0qvV29WxHTU2UJpTJSm2hGfy+q8P4t2WeVMXWNpdV26b8xc3+I3yaR0h75wf9sbOKb/0k2FgHi227SxLeRbbbxPS0V0ZBF+bqxuFxNoxm5f1BOS0V1a/My7x+YD5cmdFWzchVEMrph6R2rfvlJnTi/wAv1oworNTcd0WkLCnRvi1KVZiI6c2G+Ll96l8uF9LfJqM5rWqFR5XE9WRrX1cXlar/0H5QPlSY0rFmZXN3/a2G+d7fb/UP47IX5OrVJpXfne3X7MGJkWQQQqKf4dsscP79Aw4vLvUAetjhP2+eltEteSu5Otfs1d+d7Siqq87y/d5SrZzytm0vyNCUV0bXNyr0/nJ+0oFD/Li5TIiINXFCgG4vLvL+P3L4k4d0cGLg0zKu37R5BOWNhgS5pWu49whb0L+I76BNk/7UVIL5rK5X99xHf2ZvV6ieyje/Xy+Pe85Eujt3XhxUxPVKa8OJ7REmeOsXSNf9K2N3Rfr4srkublXvxfVGzCq0fq3pW090JH1Zc7t2x+qAipguXrleWcb9XqIdbluq18rg+r4zW/J77x2F5RipY+t+McP8QdXes3B30ZeN7dfuoFQrfhAAC9S5Q2zvf2cT3pYvydHeLqn/r9mhpQosy0v8tjerTFxTo7KZVf89xYV249O8b7u83b1fEdVHT8pozVmSk60vy1COe1mH19EhLvQNmuSDxnSUY3x5YAeLbbnTEt5FttvHtHueYmY5qUJOq+P4uGdUtJXlefF+zOE//S0Zr4thltns0ZWhxVXy7O9gdlv7r3eq//qQipsfLEiqO/H6nyb3B6qbicu8RFbf+GUVV13LPZj6wJKGp6Yh352pWOuI9B3roCvG9un0YMbIsAgisQcAivq9dnFfzyJt79Mxl+HGFVY+auLvY7vGSDWJp77G0L5NV7xopSUe8R08ublYV3yWZiNw6m8XTOmLpz4ZhmMR3GKbIGWojQHzXRqlu30N8181tjT+VbXy7Z70nJKM6Z2kQf1RR9aiJi+/bluR5b5DaN/+PnxawqvielIzq44qY/rH0zveyG3bXcr/v/gHqvtyd7mQmokFFFd6bL9312kXTf4jv1e1jjSB8AwIImAg0VHz/morombK492hbUSSj9ypieqc87sV3ZUa6fHG++uSl5B6PC9MX8R2maXKW1QkQ33avD+LbyDbb+J6cjHp3uG9qXu69CerqxfneGyhdfLs3Lz1RWvWYiftXvG+UxxWPZLRbXmqVd74LJe+RkSuLy9UxmpFb3/3D8cQmld6bOpeN7xtK8rRhLK39C5L6KRX1njffIS+lYworvWc/3Rs6t0ikVrsPI0aWRQCBNQjUR3zfuyThPcPt/jfvnvmuzZ1v92/j3KNy5zet8O5yu/eiuDvkVzcr1xNlce+jC6sfVQnTEInvME2TsxDfDfMaIL6N3LONb7eN+0sT3nPa7nlr9yYo9+kCtyzzaSfvVMS9TxVwz3//beknl6zqzrd7DKX6007KMxEVRjI6qUml9zm+K8Z39SMu7vN43acgbJOX0oiShAYXVXqfiPJ8WcJ7Q6cTpW1/AAAgAElEQVR7FMU9HrOyfRgxsiwCCOQgvt3n+V9fkq8/JVLem61rE9/u71Pu+xanI96bNY8urNSwkjztkZfy/qA/Lx1Z7mNM/5yf1AkrvBkziMMlvoM4NfZcFwHufNdFrXY/Q3zXzinr76pLfLuns5e+d8l7BOXB0oSuWfr8ZNYb4AcQQKBRCGRz57tRgBgfkvg2BmZ53wgQ33ajIL6NbLONb/emx8ELCryPE+wSS3ufcOLuVg8IwZ0iI2KWRQABScR3bl8GxHduvblawwkQ33b2xLeRbbbx7bbhnuV2j3W4TzNxnyQwqKhSzZb5tBKjrbIsAggEWID4zu3wiO/cenO1hhMgvu3siW8j27rEt9FWWBYBBEIsQHzndrjEd269uVrDCRDfdvbEt5Et8W0Ey7IIILCcAPGd2xcE8Z1bb67WcALEt5098W1kS3wbwbIsAggQ3w34GiC+GxCfS+dUgPi24ya+jWyJbyNYlkUAAeK7AV8DxHcD4nPpnAoQ33bcxLeRLfFtBMuyCCBAfDfga4D4bkB8Lp1TAeLbjpv4NrIlvo1gWRYBBIjvBnwNEN8NiM+lcypAfNtxE99GttnEd8FhJxrtgmWDJpD85kslJ4wN2rbZbwMK1OYNl+57oi1bN+Aug3vpsifuXm7zxHdwZ8nOsxMgvrPzyua7ie9stLL43mzj+4f8E7JYnW8No0DHDUuUeOxC4juMwzU8U23j+6n9++oHVRjuJHxL/7Plxio7ri/xHb7RcqJaCBDftUCq47cQ33WEW9OP1SW+v3k+taZl+f0QC+x5bhnxHeL5Wh0tm/g+bvqHVtsI3bqt4vma1vMI4jt0k+VAtRUgvmsrlf33Ed/Zm9XqJ4jvWjHxTcsIEN+8HOoiQHzXRW3NP0N8r9mI7wi3APFtN1/i28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyDYo8X3PL4fp8E63qSjWxkiCZWsrQHzXVorvW1YgqPG9xb0faWbvdfTrluv6cqDEty/HwqZyKEB822ET30a2xLcRbIiXJb5DPFzDowUxviOZjGJlSaUTUaXjMUOdui9NfNfdjp8MhwDxbTdH4tvItj7j+8sFj2vC4pdUGG2ujZv9RV8seExHd75XUkYfzbtTPy35WFJaHQt6adfWZyiqmMYtfEoTF41SRmkVxlpqjzbnqTjeQb+Ufq4P596mSCSqHkW7a9zCp2vufE8p/URj5t2rtJJqFu+g3VqfqXgkX/dPPUb9O9+nglhzT+vDubcrHsnTdi0HGOk1zmWJ78Y597U9dX3Ed7uvp6n7q98oVp7U3G5tNfHQrZSOR9X+q2na4I2JiqTSKm9WoG8P2VLlTQu0y1Uv64N/7aOKonxv+z1fGKdUPKbJ+2ymDV8ar7bf/CoX2PM2aKtvDt1KmWhEve8brZIOxer4+c/65tA/qcvo72vufHccO0Xrv/WtIumMyloUasIR26iseaHW/XCymv66UNFkSoVzShRJpzW+//Yqa9lE8dJKbfz0WDWfMlep/Li+27+35vZo551ho+e+9H49E43qlx27aep262fNTHxnTcYPhEyA+LYbKPFtZFtf8T2v8hc9N+NcHd7pvyqINtOrs6/Q/MqpOqrzSP1cOkZj5t2jQzv+W1JEz8w4U1sUH651CrfUo9NO1jGd71MiWqjvFr+uZKZcmzTrp4emHq9dW5+pLoV/0jeLXtIHc0fomHXuU0QxPTZ9oA7scL1aJbpq/MKnNaP8G/257RC9POsidWuyi3o23dvTenjaCd6vt8nrbqTXOJclvhvn3Nf21Gsb3/kLy7TdzW/q08G7e8Hb+4HRmt+1tWZs0UXb3/ymPhm8u5a0bqrOn/yozp/+pE9O211b3v2hZvZaR9O37uptf6ehr2hc/+1VsLBU3UdN0Ji/7+79PWnb/7ytH3fr6UV2rwc/Vt7ico09aSelEzFVP3byW88O2vnqURp99l4qbVWkjZ/+wv2oJh68pbp89L0X/6PP2ksVzQq08TNfqKJJnr7vu6l6Pj9OmUhEk/bvpeJf5mmruz/Qexf2U/dXJihRUqEJh2+tRGmFtr3lLY0/ro8Wday6eVDbL+K7tlJ8X1gFiG+7yRLfRrb1Fd/fLHpZU8vGerHrviaXvKtP59/vxbe7812ZKVMiUuj93ntzblGzeDttXnywHph6jLZrMUAbFO2kgmix9/vzK3/RMzPO1oAuT3h/ncpU6K4pB6n/OvdrWtk4TS55R/3aXeH9XmWmVPdOOVwnd33Oi/efSz9R37YX6beKyXp99jVLr2+E10iXJb4b6eDX8thrG9/uTnS7CdM17rg+3k5ilSkvajt8McX79S9P2MH7dXf3eY8hz+mdS/dXu6+mqe23MzTu2O3VbNp89Xp4jD48r6/7W5JilUml8uLez7iQdnepf9y9p3o9OEYL12mhn3br6f3ess98u7vV7u61++ow7hd1+uxnL9JdfLeaPKtmb10+/F7F0+Z5Yb3j0Fc0/tjttahTC+/nEqWVqixMaMdhr+rro7bRgi6tvF/v8fJX3n5+2GvjrKSJ76y4+OYQChDfdkMlvo1s6yu+3SMmC5MzvMdJ3NfM8ol667frvfgtSy3Q6Pkjvah2X4uSM7VZs/21VfOj9FvF9/piweNeuLfN21C7tj5dS1Lz9OZvQ5c+slJ18JFTDtaRne/0ov6z+Q+pMFYV6u6rPF2iIzrdoWgkpkemnaTj1nlIYxc85j3Ksm2L443kGu+yxHfjnf3anHxt47vre5PUdMZCL2iX/Vrv7e9UNHvRcr+++0XPacyZe6qyMM+L3PeG9NP6b38npTPe3ei8knL1ePlrFc1aqIwiKpxXol926KYf99jIi+85G7bXtG3X8y5THd/uDru7u9160kzv193jJGUtmmjsyVXx3fyXufr6iG2831v2r91ePj6r6m75sl+7X/y8kgUJZWIR75ejybRm9FrHu0OezRfxnY0W3xtGAeLbbqrEt5FtfcX3hEUvanrZeO3d9gJvp9+XvKdP5t/nxbe7051SpfdsdkRRvTvnZu/Ot4vv6q90JqnPFzysORU/aruWJ+rZZe58u7vbd0851Lvz7a7xw5IP1LftxSsVeXHmhepVfKD3mIt7frx13gZGco13WeK78c5+bU6+tvHt7nx3GD9VXwzY0duGu4Mcq0iq1aSZav/1tJpfd3fEXfC+fdkB3l3qre76QFN26q7uo77WhCO38R7rcHe6o6l0zXPemzw1VqXuznd1fPdsr2nbLB/f7nnw9d76Tp+duquShQl1/GKKOn4+ZY3x7e58f3X0dlrYpaW37yazF6msZZH63Pi6xh/j7ohn95jJijMgvtfmVcnPhkGA+LabIvFtZFtf8T27YpJennWJjuh0u/IiTbz/f1Fyhhffr8++Su3zN1av4kM0p+IHvTr7SnVrsrPWa9JH4xY+qT3b/EOxSJ4mlbyp70veV9+2Q/TAtGO1R+tzvWe+3ZsyXUwfs869iiqux38dpIPa36DmiU5y1520+C3t2OpUT8g9/vJL2eeaVzlFR3a600itcS9LfDfu+df19Gsb3/kLS9Vn+Bv69G+7akmbZtr8kU+0sHML7yMA+9z4hj45veqZb3fX2b0B87NTdvG22nnMj2ozaaaKZi7UR+f+2fs1d3d7QddW+nnnHmr26wL1euBjzdy8syb/ZbOqO98riW93p7v1/2bqy+N38MJ/84fGeG+a/PS03VZ759u9qTJamdbEQ7dU0+kLtNVd7+v9pc98uz8oTDxoS+8Nmj1Gfa0ZW67rnSmbL+I7Gy2+N4wCxLfdVIlvI9v6im+3vdHz7tL3Je+qabytehTtoa8WPqsjO99V8whKLBJX2/yeWr+wj96eM1y7tzlHv5Z95d3Jdm+kbBJr6T220jKxrvfJKB/Nu917Xnyjpn29qHZvsmwWb6/qTztxb850b9TcqdUgdcjf1BNyj7g8MLW/tmh+uLZpcayRWuNelvhu3POv6+nXNr7ddduPn6pur32jeHlSc7q3q/m0E/dsd7eln3biHgWZeMiWNY95uEdMdr7qZe8Z7u//vIm3/eY/z9Fmj3+mdCyqhV1aadYmHbXpk597j664u9kri2/3KErve0d7b44sb16oyftsqt73f6xpW3f13mS5qsdOXKhv/NRYtfh5jveYyXcH9NKcHu1rPu3E/br79JTZG3XQpP16KROLZkVMfGfFxTeHUID4thsq8W1kW5/xnfGenqx6ftE9HvLxvLt1SMebjHbOsg0lQHw3lHywr1sf8R1sAZvdE982rqwaHAHi225WxLeRbX3Ft7vj/PD0E3Vwh+Fqmeiqd+bcqESkiXZsdYrRzlm2oQSI74aSD/Z1iW+b+RHfNq6sGhwB4ttuVsS3kW19xbfb3sTFo7xPLnGfMtImr5v3Od3VHx9otH2WbQAB4rsB0ENwSeLbZojEt40rqwZHgPi2mxXxbWRbn/FttEWW9ZkA8e2zgQRkO8S3zaCIbxtXVg2OAPFtNyvi28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3g04tsGl/i2cWXV4AgQ33azIr6NbIlvI9gQL0t8h3i4hkcjvm1wiW8bV1YNjgDxbTcr4tvIlvg2gg3xssR3iIdreDTi2waX+LZxZdXgCBDfdrMivo1s6yO+NzkgZrS7Py477+eMfh2Xztn1uNAfBYhvXhV1EVib+D6l7SbqmCiqy2X/8DOXTv+0XtbxyyLEt18mwT4aSoD4tpMnvo1s6yu+R22fNNrh78tuF40p8oiIb3Pp1V+A+G7gAQT08msb38MrMmpSMmetTj+3595qPeGhtVrDbz9MfPttIuwn1wLEt5048W1kW5/xfcOsCqNdVi37eIdC4ttUuHaLE9+1c+K7lheol/j+6M66sxa11tx9ryS+6y7ITyLgSwHi224sxLeRLfFtBBviZYnvEA/X8GjEtw0ud75tXFk1OALEt92siG8jW+LbCDbEyxLfIR6u4dGIbxtc4tvGlVWDI0B8282K+DayJb6NYEO8LPEd4uEaHq0+4/uDKeUqjEcUiUrzStPac/0C/Tg/qbmlaf1vTlLN8iNqXxTTrJKU/tQpz/v/xWMnhtNlaQQaToD4trMnvo1siW8j2BAvS3yHeLiGR6vP+F52mxlJsxan1Cw/qiaJyKpPQHwbTpelEWg4AeLbzp74NrI1j+9MRoqs5h+IK5yr3aiHVThlsver5R26aMaBA2q+gzdcGr0IslyW+M4SjG/3BKziu9a8xHetqfhGBIIkQHzbTYv4NrK1iO/iLz9Si8/eUbqgUDMOOlGt331Bid9mKFZeqsUb9tKc3Q5Ux6fv8k6UbFqsov99rVn9jlZ5+3W87531l6O83+s+9Az9OPgKpYqKvb8mvo1eBFkuS3xnCca3E9+GrwGe+TbEZelACBDfdmMivo1sLeK72Vdj1HLMm5py8gWKpNNq+dGrmrvTXxRJpdTjylM06ZK71OGZkapo28n7dff9Rd9P8EK9+qtg6g/q8MJ9+mnQZTW/RnwbvQiyXJb4zhKMbye+DV8DxLchLksHQoD4thsT8W1kaxXfRT984z0y4uK77auPKVayUJlY3Lsj/u1VD3jxXbJhby3adGsVTRqn5uNGa/php3qndOHeZPJXmnHoQKUKmhDfRrOv67LEd13lGvfP8diJzfyJbxtXVg2OAPFtNyvi28jWLr4nasaBJ6jpd+PU8sNX9MuJ/1R80Xz1uGqQJl77yCrju/2LD3iPorhHU1b84s630Ysgy2WJ7yzB+HbufBu+BohvQ1yWDoQA8W03JuLbyNY6vl1wd7lnqMo6dlWyuKUKpv2k0vV7Kj5/zh/ufM/doa/Wv3WISrpvVnPamf2OUXnHdb2/Jr6NXgRZLkt8ZwnGtxPfhq8B4tsQl6UDIUB8242J+DaytYhvo60S31awWa5LfGcJxrcT34avAeLbEJelAyFAfNuNifg2siW+jWBDvCzxHeLhGh6NZ75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3g04tsGl/i2cWXV4AgQ33azIr6NbIlvI9gQL0t8h3i4hkcjvm1wiW8bV1YNjgDxbTcr4tvIlvg2gg3xssR3iIdreDTi2waX+LZxZdXgCBDfdrMivo1siW8j2BAvS3yHeLiGRyO+bXCJbxtXVg2OAPFtNyvi28iW+DaCDfGyxHeIh2t4NOLbBpf4tnFl1eAIEN92syK+jWyJbyPYEC9LfId4uIZHI75tcIlvG1dWDY4A8W03K+LbyJb4NoIN8bLEd4iHa3i0eonv0SPrvsMmLTV33yvVesJDdV/Dhz9JfPtwKGwppwLEtx038W1kS3wbwYZ4WeI7xMM1PNraxveILjuv9e7mly8mvtdakQUQ8JcA8W03D+LbyJb4NoIN8bLEd4iHa3i0tYlvw20FfmnufAd+hBxgLQWI77UEXM2PE99GtsS3EWyIlyW+Qzxcw6MR3za4xLeNK6sGR4D4tpsV8W1kS3wbwYZ4WeI7xMM1PBrxbYNLfNu4smpwBIhvu1kR30a2xLcRbIiXJb5DPFzDoxHfNrjEt40rqwZHgPi2mxXxbWRLfBvBhnhZ4jvEwzU8WjbxPeDXjwx3Eq6lm8fyNK3nESo7ru9yB4s0LVbBLc/qtAsi4Towp0FgBQHi2+4lQXwb2RLfRrAhXpb4DvFwDY9W2/gu+L9zDHcRzqUrykuJ73COllPVQoD4rgVSHb+F+K4j3Jp+jPhekxC/v6IA8c1roi4CtYnvuqzLz6xcgDvfvDIaiwDxbTdp4tvIlvg2gg3xssR3iIdreDTi2xB3JUsT37n15moNJ0B829kT30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a2xLcRbIiXJb5DPFzDoxHfhrjEd25xuZqvBIhvu3EQ30a29RnfRlusWXa7aEyRR6Rfx6WtL8X6qxEgvnl51EWA+K6LWt1/JtK0WAW3PKvTLojUfRF+EoEACBDfdkMivo1s6yu+jbb3h2Xn/ZwhvnOFvYrrEN8NPICAXp74zu3giO/cenO1hhMgvu3siW8j2/qIb6OtsaxPBYhvnw7G59sivnM7IOI7t95creEEiG87e+LbyJb4NoIN8bLEd4iHa3g04tsQdyVLE9+59eZqDSdAfNvZE99GtsS3EWyIlyW+Qzxcw6MR34a4xHducbmarwSIb7txEN9GtsS3EWyIlyW+Qzxcw6MR34a4xHducbmarwSIb7txEN9GtnWJb6OtsGxABDpuWKLEYxcqOWFsQHbMNv0gQHzndgo8dpJbb67WcALEt5098W1km218G22DZQMmkPzmS+I7YDNr6O0S37mdAPGdW2+u1nACxLedPfFtZJtNfBttgWURQKARCBDfuR0y8Z1bb67WcALEt5098W1kS3wbwbIsAggsJ0B85/YFQXzn1purNZwA8W1nT3wb2RLfRrAsiwACxHcDvgaI7wbE59I5FSC+7biJbyNb4tsIlmURQID4bsDXAPHdgPhcOqcCxLcdN/FtZLu6+Da6JMsigEAjFfii05Ea+XhCu+4Q1cGt31B83rRGKpGbY0f69ddpF0RyczGugkADCRDfdvDEt5HtSuN7n6jR1eqwbIR/cNRBrX5/JJNZ/XrMqH69Q77a86NSXnw3b87/tnMxaufNFwJhFiC+7aZLfBvZriy+jS7FsggggAACCCCAQL0KEN/1yrncYsS3kS3xbQTLsggggAACCCBgLkB82xET30a2xLcRLMsigAACCCCAgLkA8W1HTHwb2RLfRrAsiwACCCCAAALmAsS3HTHxbWTr4psvBBBAAAEEEEAgiALRiLRfXx99UEQQEVexZ+I7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RK3tljYAAAEGSURBVMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIgHiO0TD5CgIIIAAAggggAAC/hYgvv09H3aHAAIIIIAAAgggECIB4jtEw+QoCCCAAAIIIIAAAv4WIL79PR92hwACCCCAAAIIIBAiAeI7RMPkKAgggAACCCCAAAL+FiC+/T0fdocAAggggAACCCAQIoH/B/v8IgO/C/w6AAAAAElFTkSuQmCC",
"text/html": [
"<div> <div id=\"759e27e4-2463-4adb-bac3-407f3dc33a7c\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"759e27e4-2463-4adb-bac3-407f3dc33a7c\")) { Plotly.newPlot( \"759e27e4-2463-4adb-bac3-407f3dc33a7c\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\",\"labels\":[\"Py_kgeneration\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"fourt\",\"cov_value\",\"ran2\",\"build_real\",\"prebuild_gwn\",\"clean_real\",\"cgrid\",\"length\",\"maxfactor\"],\"marker\":{\"colors\":[\"#636efa\",\"#EF553B\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#00cc96\",\"#FFA15A\",\"#19d3f3\",\"#636efa\",\"#00cc96\",\"#636efa\",\"#636efa\",\"#636efa\",\"#636efa\"]},\"name\":\"\",\"parents\":[\"\",\"Py_kgeneration\",\"Py_kgeneration\",\"fftma2\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"\",\"fftma2\",\"\",\"\",\"\",\"\"],\"values\":[173.93129,137.192987,36.737828,36.638978,101.71883800005251,0.09082599999999999,15.471843000005594,31.86060899999753,0.00317,0.001027,0.000707,0.001641,0.001153,0.000372],\"type\":\"treemap\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('759e27e4-2463-4adb-bac3-407f3dc33a7c');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 128"
]
},
{
"cell_type": "code",
"execution_count": 133,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file log_128-aa\n",
"Executing file log_128-ab\n",
"Executing file log_128-ac\n",
"Executing file log_128-ad\n",
"Executing file log_128-ae\n",
"Executing file log_128-af\n",
"Executing file log_128-ag\n",
"Executing file log_128-ah\n",
"Executing file log_128-ai\n",
"Executing file log_128-aj\n",
"Executing file log_128-ak\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>-14.1</td>\n",
" <td>-14.1</td>\n",
" <td>-14.1</td>\n",
" <td>1530.896938</td>\n",
" <td>1530.896938</td>\n",
" <td>1530.896938</td>\n",
" <td>1530.896938</td>\n",
" <td>1.0</td>\n",
" <td>14.870018</td>\n",
" <td>14.870018</td>\n",
" <td>1530.896938</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>3.2</td>\n",
" <td>3.2</td>\n",
" <td>3.2</td>\n",
" <td>1198.768697</td>\n",
" <td>1198.768697</td>\n",
" <td>1198.768697</td>\n",
" <td>1198.768697</td>\n",
" <td>1.0</td>\n",
" <td>12.167592</td>\n",
" <td>12.167592</td>\n",
" <td>1198.768697</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>-2.8</td>\n",
" <td>-2.8</td>\n",
" <td>-2.8</td>\n",
" <td>332.127615</td>\n",
" <td>332.127615</td>\n",
" <td>332.127615</td>\n",
" <td>332.127615</td>\n",
" <td>1.0</td>\n",
" <td>24.482971</td>\n",
" <td>24.482971</td>\n",
" <td>332.127615</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>-20.8</td>\n",
" <td>-20.8</td>\n",
" <td>-20.8</td>\n",
" <td>330.818047</td>\n",
" <td>330.818047</td>\n",
" <td>330.818047</td>\n",
" <td>330.818047</td>\n",
" <td>1.0</td>\n",
" <td>24.492196</td>\n",
" <td>24.492196</td>\n",
" <td>330.818047</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>-81.6</td>\n",
" <td>7.4</td>\n",
" <td>0.0</td>\n",
" <td>0.000081</td>\n",
" <td>0.016966</td>\n",
" <td>0.000428</td>\n",
" <td>891.863931</td>\n",
" <td>2097152.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.000428</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.5</td>\n",
" <td>1.2</td>\n",
" <td>0.6</td>\n",
" <td>0.336843</td>\n",
" <td>0.525952</td>\n",
" <td>0.422136</td>\n",
" <td>1.266409</td>\n",
" <td>3.0</td>\n",
" <td>19.065517</td>\n",
" <td>26.290476</td>\n",
" <td>0.422136</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>-9.6</td>\n",
" <td>2.7</td>\n",
" <td>0.0</td>\n",
" <td>0.000102</td>\n",
" <td>0.000870</td>\n",
" <td>0.000124</td>\n",
" <td>140.268295</td>\n",
" <td>1132300.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.000124</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>-12.9</td>\n",
" <td>4.8</td>\n",
" <td>0.0</td>\n",
" <td>0.000078</td>\n",
" <td>0.002555</td>\n",
" <td>0.000107</td>\n",
" <td>282.561512</td>\n",
" <td>2668394.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>0.000107</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>-0.0</td>\n",
" <td>-0.0</td>\n",
" <td>-0.0</td>\n",
" <td>0.021324</td>\n",
" <td>0.021324</td>\n",
" <td>0.021324</td>\n",
" <td>0.021324</td>\n",
" <td>1.0</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.021324</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>17.0</td>\n",
" <td>17.0</td>\n",
" <td>17.0</td>\n",
" <td>0.008650</td>\n",
" <td>0.008650</td>\n",
" <td>0.008650</td>\n",
" <td>0.008650</td>\n",
" <td>1.0</td>\n",
" <td>0.100000</td>\n",
" <td>0.100000</td>\n",
" <td>0.008650</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>14.6</td>\n",
" <td>14.6</td>\n",
" <td>14.6</td>\n",
" <td>0.007677</td>\n",
" <td>0.007677</td>\n",
" <td>0.007677</td>\n",
" <td>0.007677</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.007677</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.001930</td>\n",
" <td>0.001930</td>\n",
" <td>0.001930</td>\n",
" <td>0.001930</td>\n",
" <td>1.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.001930</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000410</td>\n",
" <td>0.000424</td>\n",
" <td>0.000418</td>\n",
" <td>0.001254</td>\n",
" <td>3.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000418</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000117</td>\n",
" <td>0.000119</td>\n",
" <td>0.000118</td>\n",
" <td>0.000354</td>\n",
" <td>3.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000118</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory time \\\n",
" min max median min max mean \n",
"function \n",
"Py_kgeneration -14.1 -14.1 -14.1 1530.896938 1530.896938 1530.896938 \n",
"generate 3.2 3.2 3.2 1198.768697 1198.768697 1198.768697 \n",
"fftma2 -2.8 -2.8 -2.8 332.127615 332.127615 332.127615 \n",
"covariance -20.8 -20.8 -20.8 330.818047 330.818047 330.818047 \n",
"gasdev -81.6 7.4 0.0 0.000081 0.016966 0.000428 \n",
"fourt 0.5 1.2 0.6 0.336843 0.525952 0.422136 \n",
"cov_value -9.6 2.7 0.0 0.000102 0.000870 0.000124 \n",
"ran2 -12.9 4.8 0.0 0.000078 0.002555 0.000107 \n",
"build_real -0.0 -0.0 -0.0 0.021324 0.021324 0.021324 \n",
"prebuild_gwn 17.0 17.0 17.0 0.008650 0.008650 0.008650 \n",
"clean_real 14.6 14.6 14.6 0.007677 0.007677 0.007677 \n",
"cgrid 0.0 0.0 0.0 0.001930 0.001930 0.001930 \n",
"length 0.0 0.0 0.0 0.000410 0.000424 0.000418 \n",
"maxfactor 0.0 0.0 0.0 0.000117 0.000119 0.000118 \n",
"\n",
" cpu \n",
" sum count min max mean \n",
"function \n",
"Py_kgeneration 1530.896938 1.0 14.870018 14.870018 1530.896938 \n",
"generate 1198.768697 1.0 12.167592 12.167592 1198.768697 \n",
"fftma2 332.127615 1.0 24.482971 24.482971 332.127615 \n",
"covariance 330.818047 1.0 24.492196 24.492196 330.818047 \n",
"gasdev 891.863931 2097152.0 0.000000 100.100000 0.000428 \n",
"fourt 1.266409 3.0 19.065517 26.290476 0.422136 \n",
"cov_value 140.268295 1132300.0 0.000000 100.100000 0.000124 \n",
"ran2 282.561512 2668394.0 0.000000 100.100000 0.000107 \n",
"build_real 0.021324 1.0 0.100000 0.100000 0.021324 \n",
"prebuild_gwn 0.008650 1.0 0.100000 0.100000 0.008650 \n",
"clean_real 0.007677 1.0 0.000000 0.000000 0.007677 \n",
"cgrid 0.001930 1.0 0.000000 0.000000 0.001930 \n",
"length 0.001254 3.0 0.000000 0.000000 0.000418 \n",
"maxfactor 0.000354 3.0 0.000000 0.000000 0.000118 "
]
},
"execution_count": 133,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_128-aa', 'log_128-ab', 'log_128-ac', 'log_128-ad', 'log_128-ae', 'log_128-af', 'log_128-ag', 'log_128-ah', 'log_128-ai', 'log_128-aj', 'log_128-ak'])\n",
"overall_time[\"128\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"128\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 134,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfQAAAIUCAYAAADset6VAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAACjLUlEQVR4nOzdd3wT5R/A8c+TdNABYa8ywi5lKFZAliwRoS5AQZy4UHCjQl0Yd91bEf0piIKigIwqKKBMkaEge4e9oXtl3O+PS2spLR20vST9vl+vWHu58b3Qy/eecc+jNE1DCCGEEL7NZHQAQgghhLhwktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktCFEEIIPyAJXQghhPADktBFhaCUmqSUshsdhwClVC+llKaU6mV0LEL4kwCjAxCipJRSRR23uHeZBiKEEF5AyVjuwlcppW7Ns+h2oB9wW57lvwGnAZOmaZnlEZsomFLKBAQBWZqmuY2ORwh/IQld+A2l1EfAA5qmKaNjEedSSlVCkrgQZUba0EWFkLcNXSll9bTjPqGUekAptUcplaaU+lUp1VDpnlNKHVRKpSulZiulquez3wFKqWVKqVSlVLJSKl4p1aaIMVVVSr2rlLIrpTI9x/paKVUz1zq1lVL/U0odU0plKKU2KKXuyLOfCz4XTwzzlFJXKqXWe461RSk1OM961ZVSbymlNiqlUpRSSUqpX5RSF+VZL7ud/Cal1MtKqUNAGlAlvzZ0pVQLpdQMpdRRz7EPKqW+U0pZcq0T4DmP3Z7Py66UelUpFVzAuXRXSq327G+PUur2POsFKqWeV0rt9KxzSim1XCnVryj/fkJ4G2lDFxXdLejVvx8C1YGxwHRgMdALeB1oDjwEvAXclb2hUuo2YDKwABgHhAKjgOVKqQ6aptkLOqhSKhxYBrQGvgT+BmoC1wINgJNKqRDgD8/xPwL2AjcCk5RSVTVNe7+0zsWjBfA9MMFzXncCPyilrtI07TfPOk2B64EfPPHUAe4DliilojRNO5xnn88BWZ7jBXv+P+9nEYT+GQZ7Yj8KRABXA1WBRM+qXwB3AD8CbwOdgac8n+GgPLtt7lnvf55zucvzua3TNG2zZx2bZ/svgNVAFeBS4BL0ZhohfIumafKSl1+80JOeVsB7kwB7rt+tgAYcByy5lr/qWb4eCMi1fCqQCQR7fg8HzgAT8xynDpCQd3k+8bzgOc6gfN7Lbgp7xLPOLbneCwRWAslA5dI4F88yu2fdwbmWVQEOA3/nWhaM3hchd7xWIAN4LteyXp797QZC8qyf/V4vz+8Xe36/4Tyf10WedT7Ps/xNz/Le+ZxLj1zLanlifCvXsvXAPKP/buUlr9J6SZW7qOh+0DQtMdfvf3l+fqNpmjPP8iD0kiPone+qAtOUUjWzX4DLs25hPeuHABs0TZuV9w1N07I7tgxEL61Oy/WeA/gA/YaiZymdS7bDQE48mqYlAV8DHZRSdT3LMjVPG7hSyqyUqgGkANvRS7Z5TdY0LT2f5bllx9xfKRVawDoDPT/fybP8bc/PmDzLt2iatizXuZzwxNg01zoJQBulVItC4hPCJ0hCFxXd/jy/ZyeXAwUsr+b5mZ0EFgMn8ryuBGoXctxmwKZC1mkM7NTO7US2Ndf7uZX0XLLtynUzkW2H56cV9B7qSqnHlFI70Uv5J9HPuT1g4Vx781l2Fk3T9qIn6nvQmxoWePoC5N5fY8AN7Mqz7VH0xFzYZwF6jUrucx6PflO2w9Mn4E2lVPvC4hXCW0lCFxWdq5jLs3vQZ187t6GX1vO+riutAIuhpOdSHE+jJ9+lwK1Af/Tz3Uz+3yeFlc4B0DTtcfSbgleBEPRaiM1KqQZ5Vy1inIWes6ZpS9FvrO5Cv7m6B/hbKXVPEY8hhFeRTnFClMxuz8/jmqYtLOH2bQtZZx/QXillylNKj8z1fmlqrpRSeUrpLT0/7Z6fNwC/a5p2d+4NlVJV0UvrJaZp2kZgI/CyUqorsAK4H3gW/VxN6DUj2TUUKKXqoJeyS/RZaJp2GvgK+MrTUXEpeme5L0p6HkIYRUroQpTMAiAJeFopFZj3TaVUrUK2nwFcpJTK2zsbpVR2KfJnoC4wLNd7Aei91FOAJSULvUD1ydVbXClVBX2wnvWeqm3QS75nleyVUjdybnt8kSmlqnjOK7eN6FXs2Y+k/ez5+Wie9cZ4fsaX4Lg1cv+uaVoKepV+cP5bCOHdpIQuRAlompaklBoFTEGvpv0OvS25EXoHrRXAg+fZxZvopd0flFJfAuvQHzW7Fr1UugGYiP5I2CSlVDR6KfkGoBvwqKZpyaV8WjuA/ymlOgLH0Kui66A/vpZtHjBeKfUVem/7duiPy+25gOP2AT5SSv3giSEAvSnDhX7jg6ZpG5RSk4GRntqAJUAn9MfYftI07fcSHHeLUuoP9M/+NPojazegPy0hhM+RhC5ECWmaNlUpdRiIBZ5EL9kdQn++/KtCtk1RSvVAf3xtEHpiOg4sAg561kn3DL4S53m/CnpP7Ts1TZtU+mfETvTS/5tAK/QObcM0TVuQa51XgTDgZvSag7/Rb2DiLuC4G9BrPK5BL+mneZYN0DRtVa717kG/cRiB/pkdBV5D/wxL4gP0G6gr0f/t9qFX779Zwv0JYSgZ+lUIgdJH0dukadrVRscihCgZaUMXQggh/IAkdCGEEMIPSEIXQggh/IC0oQshhBB+QEroQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhC6EEEL4AUnoQgghhB+QhG4wpZRVKaUppZ4wOhZvp5Tq5fmsehkdixBCeBtJ6PlQSo3wJI7sV4ZSaodS6iOlVB2j4/N3SqnRSqkRRschhCg5pdTTSqnrjY6jIgkwOgAvNx7YC1QCugOjgIFKqbaapqUZGpl/Gw2cBCblWb4UCAGyyjsgIUSxPQ38CPxkcBwVhiT08/tF07S1nv//Qil1ChgDXAdMMy4s36GUUkAlTdPSL3Rfmqa5gYwLj0oIURxKKRMQpGmaXH9eTKrci2ex52cTT1X8Y3lXUEp19bw3vKQHUbqJSqkspdTgXMvbK6WWKKXSlVIHlVLPKqXu9BzPmmcfA5RSy5RSqUqpZKVUvFKqTZ51JimlUpRSEUqpnzz/f0Ip9ZZSypxnXZNS6lGl1GZPE8QxpdRnSqlqedazK6XmKaX6K6XWAunAfZ737lRKLVZKHVdKZSqltiilRuXdHmgD9MzV5PGH571829CVUjcqpdZ5PpeTSqlvlFIRJT1XIcqa5295reda2q2Uuk8pZVNKaXnWuzXX3/ZppdR3SqmGedb5Qym1SSkVpZT6XSmVppQ6pJQam89xg5VSLyildnmuwQNKqTeUUsF51tM8TYy3KKU2A5nAVZ73nlBKrVRKnfLEtU4pdUPe7YEw4I5c1/GkXO9HKKW+9HyPZHq+V+66wI+1wpMSevE08/w8BawAbgHezbPOLUAyMLskB/Akly+BYcAgTdPiPcsjgN8BDXgNSAXuQb/Q8u7jNmAysAAYB4SiNxcsV0p10DTNnmt1s2e9v4AngCuAx4HdwKe51vsMGAF8BXwANAEeBDoopbppmubItW4r9BqMz4DPge2e5aOAzcAcwAlcA3yilDJpmvaxZ51HgQ+BFOAVz7Jj5/m8smNaAzwF1AEeAbp5zjWhBOcqRJlRSnUA5gNHgOfR/y7HAyfyrPcM8BIwHfgCqAU8BCzN52+7mmefMz3r3wC8rpTaqGnaL579mdCvve7ARGAr0A54DGgJXJ8n1D7AUOAj9CYwu2f5I579fAsEATcBPyilrs7+vgJu88S82nMs0K8zlN4PaRX6d9lHnvMeAPxPKVVF07T3CvsMRQE0TZNXnhd64tKAvkBNoAF6gj0JpAERwEjPOpG5tgtE/+OcVIxjWT37eQL9Bus7zzGuzLPeB4AbuDjXsuroNxcaYPUsCwfOABPzbF8HSMi9HL2NWgOey7Pu38DaXL9396x3c571+uddjn7Ra0D/fM41JJ9l84HdeZZtAv7IZ91enn33yvV5HwM2olfrZ68X41nvheKeq7zkVdYv9GSYCtTPtaw54NC/kjWAxug3vU/n2batZ72ncy37w/O3fVuuZUHoNww/5lp2K+ACuufZ532e7bvmWqZ51o3KJ/6QPL8Heq7BRXmWp+T3XYie6A8DNfIsn+b5jjrne0JeRXtJlfv5LURP0AfQE20Keqn5EPpdcAZ6iTxbf/QbgG9KcKwg4AfgamCgpmm/5nn/KuBPTdPWZy/QNO00+l1ybv2AqsA0pVTN7Bf6xfkX0DufY0/I8/syoGmu328EEoHf8uxzHfpnknefezVNW5D3IFqudnSllMWzjyVAU6WUJZ+4CnMpUBv4RMvVtqfppYRt6Ik9r8LOVYgy46mBuwL4SdO0w9nLNU3bBfySa9XB6E2i0/Ncc0eBnZx7zaWQ63tH07Qs9NJx3ut4K7Atzz6zmxLz7nOJpmlb8p5Dnuu4GmBBv44uKcL5K2AIMNfza+44Fnj2Veh+RP6kyv38HgB2oN8pHwO2a3rHLDRNS1BKzQVuBp7zrH8LcIj/LpDieAq9dD1A07Q/8nm/MfBnPst35fm9hednQTEk5fk9Q9O0E3mWnUGvwsu9TwtwvIB91s7z+978VlJKdQNeALqgNwPkZkG/aSiOxp6f2/N5bxt6zUJuRTlXIcpSbfQnNfJet+RZ1gJQ6Mk7P448vx/UPMXcXM4A7fPsszV5qvbzxJZbQdfx1cCzwMVA7rb3vMfPTy30AsdIz6socYgikoR+fqu1/3q55+dr4EalVFf0Kqdr0UuL7hIcawF6KXysUuoPreS9SbNrXW5Dv5vPy5nnd1cR93mcs2sjcsv7BXFOj3alVDNgEXqiHYNe65EFDERvwyuP2qKinKsQ3sCEniAHkP/fbUqe3wv621Z59rkR/frLz4E8v+d3HfdAbzJYiv546RH0m4s70Qs3hcm+zr9B7+eTn3+LsB+RD0noF2Y+ejK7Bb06OxSYUsJ9rUKvDp6H3sFkkKZpuZPvPvR2trzyLtvt+Xlc07SFJYwlr93o1YQrtJI/fnYN+t38tZqm7c9eqJTKrwmgKHf6oH8moHfCy1sj0SrX+0J4i+PoTXWFXcu70ZPxXk3TdpTSsXcDF6G3dRf1GstrCHr8/TVNy+mQq5S6M5918zvGCfROw+ZS/H4SHtKGfgE8CXcaek/QEcBGTdNKfHfp+QO/Cb2kPsXTKzXbAqCLUuri7AVKqeqcW2pegF6t/rRSKjDvMZRStUoQ2nT0nrjP5X1DKRWglKpahH1klyBySgyedvP8vghS0avlCrMW/Qvy/tyP3SilBqBXLcYXtKEQRtA0zYXeN+d6pVT97OVKqebopfFsM9Gvmec97c7kWlcppWqU4PDT0Tv03pv3DaVUiFIqrAj7cKEn6pxHPZX+yOz1+ax7znXsOf8ZwBClVNt84ijJ95PwkBL6hfsaeBi9Q8m4C92Zpmk/ee52v0ZPzPd53noDvZfqb0qpD/nvsbX96L3dNc/2SUp/tnsK8LdS6jv0u+JG6J3EVqA/blacmJYopT4DnvLcUPyKXs3WAr2jzSPoI0Kdz6/oVexzPfsKR/9iOQ7Uy7PuOmCUUupZ9HbF45qmndMnQNM0h1JqHPpja0uUUtP477E1O+c+UiiEN7ABVwIrlFKfoifHB9Gf7rgYQNO03Z6//9cAq1LqJ/SSbRNgEPqjYG8V87hT0AsfEzw1Yys8x470LO+PfpN8PvHoVfbzlVJT0du7H0C/TtvnWXcdcIVSagx6r/a9mqb9BcSif1/+pZT6HNiC/h12CXpNYPVinpfIZnQ3e2988d9ja5cWcf1N6HeuESU4ltVzrCfyLB/lWf5mrmUXo7ddZaC3d8WiP5eqAXXybN8LvUkgAb0tbBd64ovOtc4kICWfmGx4Hp/Js/xe9As+Df1m41/gdaBernXswLwCzvUaYIMnnr3AWPQSes5jd5716qA3PSR53vsj1znlPLaWa/2h6I+fZaA/xvdN3n+L4p6rvORVli/0Z7z/Rh9HYhdwN3qCTs+z3mD0HuQpntdW9Ge3W+Za5w9gUz7HmATY8ywL9Fx3mzzXy2nPNT0eqJJrPQ34qIDY70LvLJzhiWdEftcRerPXEs/3hUauR9jQbwQ+Qi+QZKG3xS8E7jX638aXX8rz4YoLoJT6BzitaVpfA479HnopPlzTq7OEED7IUwpvo2lai8LWFSI/0oZ+gZRSl6KXnL8uh2OF5Pm9Bnpv9uWSzIXwHflcyy3Qn/j4w5CAhF+QEnoJeTp0RKMPHVoTaKrletTMM4BEYR08UjRNy/v4yfmOuR79gt+KXi19N1Af6Ktp2tLixC+EMI5S6gh6lfge9PEURqE/BdJB07SCnj0X4rykU1zJ3YDe7rQdGK6d+9x4QwoYmCGXF9DbnorqZ89xs4ed/Ru4W5K5ED5nPjAcqIvejv4n+nCuksxFiUkJvYwopbLnUD+fPZqm7SmPeIQQQvg3SehCCCGEH5BOcUIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+AFJ6EIIIYQfkIQuhBBC+IFiDSyzbt26cPSRyeRGQJSUGzgcHR1d5BHyhLHkuhcFkGvZyxT5OfR169ZdZjKZJphMJgu55rQWopg0t9ud6Ha774+Ojl5ldDDi/OS6F+ch17KXKVJCX7duXbjJZFpetWrVOrVr1z6tlJLRaLycw+U2Z7ncwQ6XFuR2a2anWzO73QS4NLfZ5dYC3Bpmt4ZJQ1OahgJUc/Mxh3I7A8Dz76uUhsnsRJmdmMwuTAEOlNmFyezUTAFOTIEOAoKyUEUvuGmapo4fP149ISHhmNvt7i53995Lrnvf5HC5A7Kc7mCHWwt0uzWzU9PMbjdmt1szuzQtwO3WzG4NE54LvVZAWkYVV0IlQL/mQUOZ3J7r3okp0Ik5wKGpAAfmACf6te/UQK5lL1PUKvf6JpPJUrt27dNhYWHpZRqRKJZMhysoLcsVmul0Vcp0uitlOt2VHE53JZemmc9eM7twZf7v1zzlrUoBKJNbM+vDxGdzBQJ65Zo73xA0zEGZBFRKJ6BSOoEh+iugUiYq/wJd7dq1TyclJVncbnd99HmVhXeS695LaZpGhsNdKS3LGZp93Wc53ZUcLnewW9Py3GGrs3/mufaDAsyZIdnXeV7Z170zn/dMAY46QeasVGdKSP1/3r6Tub/PwZa478LOTFyIoiZ0E6DkDt1YmqaRluUKSc10Vk7NcoWnZ7nCnW53/hdi+VG4sirhyqpEZlK1XIvdBASnExSeTHDlJIKrpGAyaQCevyOFtMl6O7nuvYTLrZlSMp1haVnO8LQsV1iGwxXucue9aS9nbmegyeUINDvTCE3a9QHwATbLCWAdsNbzWoMt8bChcVYgJZ5tzRobH12ageRmj4tZV1b79jVpWc5KSemOqqmZrsrpDleY+5ySt7fSTDgzwnBmhJF2si4ojcCQFILDk9CCM42OTpRMWV33cs2fTdM0UrNcoUnpjqopGU5LhtMVanRMRVQLuMrz0tkse4A5wE/AcmyJLkMiqwCkhFRG5s2bV/nHH3+sUtztNE0jOcMRfvBMWsOtR5La7jqe0uZ4cmZEapazilvTzCv+WMTQ/j1yXldEt2bYgJ4528/5YRpDruiqv3/V5Sxb/Gu+x9mwbnXOPgb17cKLsY+SkZmV8/7/pv1Ei27X0azrtdz75Es4HI5893Pf2Jdp13cofW4cSWJScs45DLj1QXbbD+Q+M4UjrTIpxyNMifubBqUfb9hq2QPvYbMMxmYJLu7nJERpW7NmTaWIiIh25XW82267rVFkZGRU9is4OPiS5196pfG+U6mNtx5Jar/nRErrgycS6g24vGPo0P49Ct3fnp3b6dyiPm/YnspZ5na7ee25scR068DV3S9h2qSJ+W57JiGJ3jeMpF3foYx+6rWc5SdOnaHXDfcWeP0XUVPgUeAP4Bg2yyRsluuxWXzlJsVnSEIvocL+wBcvXlz5559/thR1f8kZjrADp9Mabj2S3H7vydRWp1Ozajtc7nMSXbdefZm+YFnOK7JdewZefyMAiWfOEDd+HJ9NncX0BcuIffF1nhvzQL7HaxnVlm/nLWb6gmXM+G0Fp0+e5JOvppkB9u4/xHNvfsKyWf9j14rZHDtxionfzjxnH5u27WLn3v1sXDSdXl0vZcqMeAC+mDqL3l0vpZm1YcEnrLlNAc6U/sAM4Cg2yxfYLL2xWeRvUlQIU6ZM2b9169Ytq/7+99CkH+dlKmVSPWNuqJmY7qjpdGuBAO+9ZuPiSzsXui+Hw8GL4x6lz1UxZy2PnzmdPTu3M2fpWr6du4jJEz5k1/at52z/7ayf6d3tUjYums62XXvZtG0XAGNsbxP31EMEBpZay14N4A5gFnASm2U2Nsud2Cw1SusAFZlPf3l+8803VZs2bdqmVatWUaNGjYqoVq3aRdu3bw8C2LhxY3CvXr2at23btnXLli2jXn311VrZ2ymlomNjY+u2a9eudURERLv3338/54+psO0ee+yx+m3btm394IMPNli9enVIdHR0q6ioqNbNmjVrM3bs2HoAK1euDPn6669rzZo1q3pkZGTUE088UQ9gxowZVaKjo1u1adOmdbt27VrPnjPXcjwpo9b2o0lRe0+mRp5Jy6pdnDbx40ePsHr5Uq4eMgwAt+bWq+pS9c6myUmJ1KlXP99tQ0JCcy5SR1YWmRkZKE8nth/jF3Jtv57UrV0TpRT333YD035acM4+AgMCyMxy4Ha7SU1LJygwkCPHTjDtp/mMGXlrUU8DoCpwN7AY2I/N8hY2S4fi7EBUDOe75keOHNmgbdu2rSMjI6MuvfTSVhs2bAgGSElJUTExMU2bNWvWplWrVlHdunVrkb2/MWPG1G/cuHHbNm3atJ4yZUr13MfKe73OnTu3MkDXrl1bfPXVVzn9RebNm1e5devWUcU5jwyHK/jQmfSIrUeS2+8/ndb8u6nfVO3asw81a9fJWWfVsj84fvQIAwfdWOj+PnvvDfpdfT2NmjQ7a/mCuTMZPPx2zGYzlmrV6H/NIObPnnHO9oEBAaSlZ+B2u8nMchAUGMj831dQrWoVLotuX5xTK44Q4FrgS+AQNstUbJbLy+pgFUGJ29CNdujQoYAHH3zQ+vvvv2/r0KFDxvvvv18jISEhAMDpdDJ8+PCmU6ZM2duhQ4eM5ORkU3R0dGS3bt1Se/bsmQYQHBysbdy4ces///xTqXv37q1Hjx59SilV6HZms1nbtGnTVoAzZ86Yli9fviMkJERLSUlRHTt2bN2/f/+kvn37pt5+++0nEhISzF9++eUBgC1btgS99NJL9RcvXrwjKKxKpTXrN9UZeu1VzX9ZuYGg4JLVOM/5YSrd+/SjRk39nqNa9Ro8+9rb3DSgF5aqVcnIyGDitFkFf4YH9vPo3TdzYJ+dHn2uZPSdN7kA8/5DR2ncoF7OetaG9dl/6Og527dqbqV310u5pP/NtGjSiOfHjOSuMS/w5nOPEhBQ4j+tCOBx4HFslr+At4GZ0u4mznfNA9hstqP169c/CDBx4sRqDz74YKNly5btnDlzpiUxMdG8e/fuzQDHjh0zA3z33XeWOXPmVPvnn3+2VK1a1T1o0KAm2fvKfb1Wr17dvWnTpuDevXu32r9//8bbb7/91Ndff13jzjvvPAPw5Zdf1rj11ltPFha/W9PU6dSs6mdSs2qmO1zhud/76ftvGfPsizm/JyUm8u6rz/PJlB/Zs3P7eff77z9r+ffvNXw2dRYT3n39rPeOHDpI/Qb/1ZTVb9CIf/9Ze84+bh0Swx2PjKfDlcO5/qpeRNSrzd1PvMDPUz4s7LRKSzAwHBiOzbIF+Az4ClticnkF4A98toT+xx9/hLVq1SqtQ4cOGQAPPvjgqcDAQA1gw4YNlXbt2hUyfPjwppGRkVEdO3aMTE1NNf/7778h2dvffffdpwA6dOiQYTabtf379wcWZbtRo0blXLhpaWmm4cOHW1u2bBkVHR3d+vDhw0Hr1q3Lt11o9uzZln3794d07X75RZde0qH1qLtuq66UiSOHD5bo/DVN46fvv2XQTf+VhJOTEvn2f5/x7dyFzF+1EdubH/DYPbfhyMrKdx8RDRvxw6/LWfz3NhxZmcyMX1jsv4eXxz3A+t++44eJb/Db0r9oWL8O1gb1ufOx5xly7xN8P/vckn0xdAamAzuwWR7CZgm7kJ0J33a+ax5gzpw5VS6++OLIFi1atHn99dfrb926NRTg0ksvTdu9e3elW2+9tdHnn39eLSgoSANYuHBh5euuu+509erV3SaTiVGjRp3ItS/Lvn37grt27RoZGRkZdcMNNzRTSrFr166gW2+99cz69evD9u3bF5iYmGhavHhx1ezvk/y43JrpWFJGnW1HktsdTki35k3mf/+1krSUFHr0uTJn2WvPPck9D47JuVkvSHp6Gq8+8wTjX38/p4atJMJCQ/jx8zfZsPB7XnhiFM++/jHjRo9gl/0AN44cy40jx7Jhc7k9YRoFvA8cxGZ5G5ulUXkd2Nf5bAn9fDRNo0qVKs5t27ZtKWid0NDQnC8Cs9msOZ1OVZTtLBZLztPYY8aMiahRo4Zz8+bNWwIDA7nyyiubZWRknHVVaZrGqdSsGqnugPpdLu9jivvoi/PGvnvHNp566F4ALr60M0+/8la+661dtYLMzEy69uybs2zVsj+oXMVC0xatAOjVbwC2Jx7i8KEDNM5TFXfWZxEWTv9rBzN15temW67rR6OIuuy2/3ejYT9wmEYRdc8bd1JyCm9N+JoFUz/mtQ+/oudl0dw6ZCAX9buJa6/sSUhIpfNuX4imwAeADZtlAvAhtsRzqwxEhbVz586gcePGNVq5cuXWNm3aZP71118hV1xxRSuAqKiorG3btm2eN29e5d9++63K888/32DDhg3nXOO5E6KmaXTv3j1p7ty5e/M73sCBA898/vnn1WvVquXs0qVLUt26dc+pQYp96un6P82eXQtlCnjkKRvdevXNb1fM+u4brrnxJszm/x5gWb9mFevXrOKdl58jMzOTxIQzXNuzI3OWrDlr24P2vRw9dJB7h10D6Df1brdGUmICL7/7KfUiGnD44AEuiu4EwOGD+6lXv8F5P8vV/2zi+KkzXN3vcnoMuospH7yMpmmMeOx5lsw4//dXKasCjAEexmaZCbyCLfHf8gzA1/hsCb1Xr16p27dvD81uJ/v0009rOBwOBXDRRRdlhIeHu3K3jW/atCk4u6qtIMXdLiEhIaBBgwZZgYGBbNiwIXjFihU5vdorV67sSkhODd12NLnt4YR062WX9w1YtXwJO7Zuytl+4z/nPqnTrGVkToe3gpI5wKzvpnDdjcPP+hJo0MjK9i0bOXn8GKD3ZHe6nNStF3HO9vv37snp2OfIymLx/HjatW6hAQwZ2Jc5vy3h6PGTaJrGhCk/ctN1V56zj9xiX/2Q8Y+NJDQkhNS0dJRSKKVwOJxkXVgP2dyqA08DdmyWT7BZapfWjoX3O981f+bMGXNAQIDWqFEjh9vt5r333sv529i9e3egUopbbrklccKECQc1TWPPnj1B/fr1S54zZ071M2fOmNxuNxMmTKiZvc0111yTtGLFiip//fVXTu3c77//nlP7ds8995ycOnVqzW+++abmnXfeeVZ1e5bTHXDgdFrDWx8cV2f6rysCpi9YVmAyT0lO4ref53D9sLP7nPzy5785r9c//h/NWrQ6J5kDtGjdhj827MpZ95a7R3H9sFt4+d1PAegXcz0zp32Ny+Ui8cwZFsydRf9rBhX4GTscDsa98gHvPD8GgNS0DJQCk0mRkppW4HZlLAAYCvzj6SF//juSCqzEJXSjnxuNiIhwfvDBB/ZBgwY1DwoK0nr27JkUGhrqrlGjhiswMJC5c+fueuihhxp+/PHHddxut6pWrZpz+vTpe4AC22KLu9348eMPjxgxoum0adNqNG7cOPOyyy5L0jSNkymZNboNGFL7+xm3Bg26oht9BlzD/Y+OJe7Dz3kpdgwZ6Wk4HA4i27SjsBJ7fpKTEln0yzxm/LbirOWt213EvQ89zr03XUdAQADmgADe/OQrgivppWPbkw/Tq99V9LpyIKtXLmXql59hNptxulx07nY5z40Z6QLMTRs34IXH76fb9XcB0KtLNPfdOqTAeFasWU96Rgb9Lr8MgAdGDGX4A0/z+ieTuG1IDJYqlYt9joUIBkYBt2KzvAa8iy0xo7QPIs5l5HV/vmu+VatWWddee+3pyMjINtWqVXMOHDgwIXu7devWhYwfP76Bpmm4XC51ww03nO7cuXN6586d0//666+wiy++OCo8PNzVt2/fxNWrVwPQtm3bzC+//HLPfffd1zg9Pd3kcDhUmzZt0nr37r0XoHfv3mlms5l9+/YFDx48OAnA7dbUseSMOqdSsuqdO1pb/ubPmUlUu4vOW4OW1/GjR3jwjqFMX7Cs0HWvHjKMzRv+5prLo1Eobrv3AVq0blPg+m9++jW33xhDnVp6mebFJ+5n4G0P6+89+2iRYywjJvQe8kOxWd4D4rAlJhkbkncp6ljukQEBAfNbtGiREhoa6jVfnGfOnDFVq1bNDTBlypSqzz//fMSePXs2GxVPSqYz9HBCeuMMh88MAnGWtgEHs0xuR1BZHyfDqbH30AmarHicSikHCt+gcPvQS+7TsCXKqGalxBuve2+75kGvnj+dmlX9eHJmhMPlLvPrp7Q1DEpNqeY8Hl74mucqg2u5OE4ALwKfYUsstWpAX+bTbeivv/567VmzZlV3u90qPDzc9fXXX+fb3lXWHC53wOGE9IjEdEfNwtcWZaAx8C3wCDbLGGyJKwrbQPgmb7nmsyVnOMKPJGY09NWbeB9XC/gQvY39KWyJ5z6PV8H4dAndaJqmcSI5s9aJ5MyIcydD8T0+XELPaxrwELbEAnsei8LJdV8wp8ttPpSQ3jAx3eHzA6L4cAk9r6XAndgS9xgdiFF8tlOc0VIznaE7jqVEHU3KaOQPydzPDAc2Y7Nca3Qgwv+cTs2qtv1Yclt/SOZ+5nJgAzbLSKMDMYok9GLSNI0jCen19pxIjcx0ukIK30IYpA4wG5tlMjZLkYfgFaIgDpc7YO/J1KYHz6Q1dbk1n26u9GPhwGfYLPOwWc7/rK0fkoReDBkOV/DO4ymRJ1Iy62toJR/FQZSn24FN2Cznf+5OiPNISMuy7DiW3CY5w1Gt8LWFF4hBv+5vMDqQ8iQJvYhOpmTW2HU8JSrD4ZLRynxPA2ABNssEGW1OFIemaRw8k9Zg/+m05lIq9zk1gB+wWb7BZqlqdDDloeR/oDZLmc2Hji3Ra+ZGdrk104HTaY2TMhzVC19beLn7gB7YLIOwJZbbOJZ+payuey+65rNlOd2B+06lNs07VKvwObcAPbFZbsWWuMToYMqST5fQs2deioyMjFq9enVI3t/feOON8w+EXIgMhyto1/HkyNzJ/PjRI9x/yxCu7dmRG/p1Y8zI2zl9qtB5Gc6RmZHBo3ffwjWXX8qNV3bnvpsHsX/vf50zv/jwba7t2ZGLG1Vn8fz48+7ryKEDPHTnTVzbsyOD+lzG1K/+m/N40oQPGNy3C4P6XMaj99xKUmJivvuY9d03tLn82sAOVw7n743/Ta84/s1PmTrrl2KfnxeLAtZgs1xndCCi9Gzfvj0o7/UeERHRbuXKlSXq55KU7gjfeTw5qrjJfOfWzdw5ZCDX9erE4L5dGP/4g2Skp+e8f1HDagy5oitD+/dgaP8e/P3XygL3tfbPFdwc04dBnut3w7rVOe9NfP8tYrp1IKZbBz58/aV8t3c4HDx69y3ceGV3Hrv3NpxOJ6B/99w5ZCBJCQnFOTVf1wD4DZvlbqMDKUs+ndAnTpxYa9y4cUe2bdu2pVOnTum5fz9+/HjAl19+WeKEnpThCN99IqV1ptN91heC2Wxm5CNPMGfJGn78bQUNGjXm3ZfHl+gYQ265gzlL1vDDr8vpdeUAXhj7cM57nbv34pOvfyC6c9fz7kPTNB679zauGXITc5asYdbiVfS/+noA/lz6O7OnT2XK7F+ZtXgVUe0u5qM38r/4J37wJn/98p3j/Ref4NUPvgRg8/bd/Lt1JzcPGlCi8/NiVYBZ2CwvYrNIXwg/sHPnzuALud5zO5qYUXffqdRWLrcWkJ0EiyqoUiWeevkNZv+xmh9+XU56Whpfffr+Wet8NeOXnOGdLyng+j5+9AjPjRnFy+99yqxFf/L9L0to0lyfo2HdqhX8MmcGP/y2nFmLV7FyyWKWLjp3EqSVSxZRpWo1fvh1OZWrWFjxx0IAJr7/JjeNuJcqVasW69z8QCDwBTbLG9gsPp37CuKzJzVixIiGa9euDX/xxRcjOnToEJn394ceeqiR3W6vFBkZGdWnT5/moN+xP/zww/U7dOgQWbdu3fZvvPFGrffff7/GxRdfHBkREdFu4sSJ1QBOJGfWHD785lZDr+oVcEO/bjx4x9Cc8dFr1KrNJZ265MTRrsOlHD64v9jxB1eqRI8+V+ZMCNG+Q8ez9tOuQzQNGlsL3c9fy5cQFBTElZ4knh0jwI4tm+jQ8TLCwvWhV3v06ce8mdPz3Y/ZZCYjM5PUtAyCggJxu908Znub9198otjn5iMU8Bx6G5sMCuIjZsyYUSUqKqp1y5Ytozp27Nhq3bp1lQDyu94Bpk+fXi37+h47dmzOnMD79+8PGDhwYNN27dq1btmyZdTDDz9c361pyn4ytUl025YR77z6PDdf3ZfnHhtVrPgaN2lGy9ZtAf3mv+1FHTh8oPjfD9O//h8DrrshZ6KloOBgqnge1lgwdxZXDx5KaGgYQcHBXD/sFn7JZ47zgIBAMtL18dcz0tMIDAxix9ZN7N2987zjuVcATwIz/PG699mEPmnSpANt27ZNi4uLO/DPP/9sy/v7hx9+uN9qtWZs27Zty+LFi3dlb5eammr+559/ti1cuHD7+PHjGx46dCho/fr126ZOnbp73LhxjQ6cTmt4JDG98ZO215j28+/8+NsKOnTqwqfvxp0Tg8vl4rtJn9PryoEXfD7ffjmhRPvZvXM71arXZOzouxh61eU8es+tHNxnB6B1+4tZtfwPTh4/hqZpxM/6gdSUZBLPnDlnP48+8wL9h40MjPv4K8Y/di+fTJ5OTN/uNG5Q/0JPzdsNAZZhs5w7g43wKocOHQq4++67m06aNMm+Y8eOLXfdddeJoUOHNnO73RR0vSckJJjXr1+/be3atVs//fTTOnv37g0EuPnmm5s88MADxzdu3Lh18+bNW/7555+wDyZOzmleSzxzhm/nLuS1Dz8vcbxpaanM/G7KOdf1yOHXceOV3XnzhWdIS0vNd9vdO7eTmZHByOHXM7R/D157bmzOukcOH6R+RK45zhs24uihc6dh7nJ5b8LCK3Pjld0Jr1KFTt0u560Xn2XcC6+V+Jz8yPXo171ffcH5bEIvqZtvvvk06JMvBAUFuYcPH34GoGu37hlJSUkB+46cqA3wy08/Mnxgbwb37cKsaVPYvnnTWfvRNI1Xnnmcypaq3HL3/RcU0xcfvs0B+14eji1+1b3L6WT1ymWMfORJps9fSteefXhy1J0AdOragztGPshDI27i1mv7Ua2GPg6GOeDccXCuGHAN6377wbFkxheEhYQwe8ESHrxzGE+/9iHD7h/HM3EfXdA5erlLgFXYLC2NDkQUbMmSJWEtW7ZM79SpUzrAqFGjTh8/fjwwO0nn57bbbjsNUK9ePWeDBg2yduzYEZyUlGRatWpVlccff7xRZGRkVLt27drsO3Cw8q5du3JKbNfeOPyC5hd3ZGUxdvRddLm8N30HXJ2zfP6qf/nu5z+Y/NMCzpw+WWBzncvpZN3qlbz16SS+nbeYpMQEPn373ELF+ZhMJp5/431++HU54+Pe47tJn9O7/0CcThexD97DmJG389eKpSU+Rz9wCbAam6WD0YGUlgqX0ENCQnLmMzebzVpoaKjb5dZM9tNpLZRSuFxO/l79J1O//IyPvp7OzEV/8sT4l8nKPHvky7jx4zh2+BBvfvIlJlP+H+Pt11/J0P49uOWaKwqMZ/KED1n0yzw+/voHQkKKXwNUL6IBkW3a0bxVa0CfXWnrpg05U6MOu+Mepv38O9/OXUjHLt2pU68+4ZWrnG+XPPL8m7zz/Bj+WLmWw8dO8v2E1zl45Di/rzh3+kY/0gBYgs1S8FRUwufkvd4dDkfOcNd///331vUbN++e9ftq07zl/6iRj/zXvBQaln9fuN07tuV0aHv1mfyboxwOB0+Ovotatesy7oWzk3A9T8k6NDSMYbffzd+r/8x3H3UjGtCjz5VUqVqVwMBABlw3hH//0a+/evUbcPjQf8OsHj6wn7oR559R9PDB/Sxb/BvDbr+Hj996hSG3jOCldz4mbvy4825XAUSgl9T9YlRJv03oVatWdSUnJxc6JKvLrZn3nEhpmZ71X2/WpMQEwsLDqVqtOo6sLH78dtJZ28SNH8cB+x7e/fwbAoMKHvr8659+ZfqCZXw7d2H+70/8mF/mzOCzqbNy2seKq1vvKzh29DDHjhwGYPni32jSohWBgXqh5cSxowCkp6fx8VuvMWLUI+fd3/ezF9C6eRPatW5Baro+FzIYPh9yeakL/OFPd+z+pFevXqk7duwIWbNmTSWAiRMnVqtTp46jSZMmjqJe7wAWi8XdqVOnpKeeea7R7hMpkQ6XO+j40SMcO3Ko0G2btYzM6dD29CtvnfO+0+lk3AN3Y6lajfGvv3dWKT8pIYF0T5u22+1mwdxZRLZtn+9xBl5/A2tWLiMrMxOA5b8vpJWnbb7f1dczb+Z00tJSycrM5Kfvv+WqawefN+43nn+KJ59/BZPJRHpaGgqFMpnIKKDKv4IJQ29T9/lBaC7gOXTve240t86dO6e1bNkyvUWLFm0aNmyYmbtdLRd1JNnRpFbls4dw7dbrCuJn/sB1PTtiqVady7r35PjRIwD8s2YV076aSJPmLbn1Wr3kXb9hY9774ptixXfsyCHefulZGjSycs+wawAIDArOSf4T33+LH775ijOnT7Jr+1Zee24s389fQvUaNfn4rVepVacuQ2+7i9DQMJ599R0eGjEMTdMIr1yFN3LNsX7/LYNxaxrOrCxihgxj+Ih7C4zpdEIiH0+ezq9TPwHgql5d+WLqLNpfMZQmDSO4qvf5e9z7iZrAYmyWq7Al/mV0MF7HwOu+fv36zi+++GLPHXfc0cTpdCqLxeL6/vvvd5tMpqJe7zm+/va7I48+/kTL63pfppRShISG8VzcO9Spd2FdKRbMncmiX+bSsnUbhl11OQAXX9qZp195i727d/BS7GMopXC6XLRu255xtv9K8A/cfiOjH3+aNhd14OJLO9PrygEMG9ATk8lEs5aRPPvauwB07NKd/tcM4oZ+3QDof80gel5xVYEx/TzrB1pGtc2pxbtr9KO8OO4RHA4H9z7y5AWdrx8JAKZhs4At8UejgympCjvbmsPlDthzIrWljMf+Hz+aba00JAMx2BKXGR2IUfzxugdIy3JW2ntSfyzN6Fi8gR/NtlYanMBNvjoVq99WuZ+Pw+UO2H0ipZUkc3EelYH52Cx9jA5ElJ4MhyvYfjK1pSRzUYAA4DtslqsLXdMLVbiE7nJrpr0nU5tnOd2VjI5FeL1Q4CdslouNDkRcuAyHK2jPidRWTrdWYK94IdCT+g/YLD2NDqS4KlRC1zQN+6nUpjLBiiiGykA8NkvDQtf0P25A0zTfn1kwy+kO3HsytZXT7ZZkXopyWmyL0HTrYyoBc8p0zpIyUKGqnQ6cTm+cmumUubFFcdUHfsZm6Y6tgMHw/dNht9udePz48Tq1a9c+rZTyyW9tt1vjQEJ60yynu8z7h/iiLOU0ZbiK/0+raXAi1YXKTCIwo/jzWfiAKujNbt18ZTKnCpPQjySk10tIz6ppdBzCZ7VFf7RlALZEh9HBlIfo6OiUdevW3Z+QkDAhKSnJgj5crs9JzHDXynRp0l+mAFnmDHO4O7lE26rMJBqsfxuzy2/6TOZVE73ZrRO2xBSjgylMiRN6u8ntyqwqYuMdG0v10ZiTKZk1TqRk+tUQf8IQfYEvgDuMDqS8REdHr1q3bl13t9tdHx9sonthyekHT6W7HjA6Dm82MujXjcPUr5cWe0NNIzDjpD8n82ytga+AG40OpDB+WULfvn170OzZsy1jx449kZzhCD+SkNF4QJf2vPvFt0S2aVeusSxZOJ93Xh6P2+WieWQUL73zcb4jtbndbl5/Ppbli39DKcUt99zP8BEjC30vt6SEBB4beRsJp09xSacuPPPq2wCcPnWSJ+8fwYSps3IGnBEldjs2ix1b4vNGB1JeoqOjUwCfqHLMzRobPxQYbXQc3i4t4Hh6pQC/eOSsLN2AzfIktsQ3jQ7kfHzujrsosqdSzHK6Aw6cTm+qUTqdeoo7lWJaagq2Jx/mvS++Ye6yddSqU5eJ7+f/9xA/czp7dm5nztK1fDt3EZMnfMiu7VsLfe+sffw0nY5dezBj4Ur27t7Jzm1bAHjrxWd45KnnJZmXnuewWWKMDkIUzBobHw1MwkebCYRXes3bH2P16YRe2FSK7du3bzf6jmE5WWzRL3O57borGdD1Iia+/9+wjSePH+PJUXdy89V9GXJFVz564+Wc9wZ0ac+7JZxKcfnvC4ls054mzfU5P4bdfje/zJ6Z77oL5s5k8PDbMZvNWKpVo/81g5jvmRLxfO/llj1dotvtxpGVSWBQECt+X0gVS1XaX9KxWLGL81LAJJmhzTtZY+MtwAxA2s1FaTKjP6PutU+8+GxCL3QqxabNXNN/XW764KtpOdskJyUyZfavTJ23mMmffZAz/vmzj41m2O33MHXeIr6fv5TN/67n13k/5WxX0qkUjxw6SL0G/02aUL9hI04eP5pvSf/IoYPUb5BrSsQGjThy+GCh7+UWM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4sVtyiSmsC32Cw+ew35sQlAY6ODEH6pFvAjNkuw0YHkx2fb0PObSnHs2LGN9u7dG5jpIhRlOufcBl6vj71frXoNIhpZOXRgH5UtFlavWMLpk8dz1ktLTcW++7+hoC90KsXyEhoaxtufTc75/U3b09w5+hH22/fyv4/eAeDehx+nVVT59iPwYz2B54AXjA5E6Kyx8bcDNxkdh/BrnYAPgPuMDiQvn03oBXG6tYCkLOrl915Q8H+Dw5lNZlwuV86ACFNm/0ZwpfwHjzvfVIpPPaRPdpI9AUNu9SIasGrZHzm/Hz6wn5q16xIQcO7HXi+iAYcPHuCi6E76ugf3U69+g0LfK8jGf9Zx+tQJel5xFSMGD+CV9z9D0zTGjxnNlz/Gn3dbUSzPYbP8ji2xQk8s7Q2ssfHNgI+MjkNUCCOxWRZhS5xudCC5+Wx1YUFTKQZYatcPDa9sTk5OKtJ+QsPC6di1B19+8l7OstKaSrFbr75s3bSBvbv0DsLff/2/Aqc57BdzPTOnfY3L5SLxzBkWzJ1F/2sGFfpefhwOB++9ZuOJ8a8A+tSpSulToKbJdImlzYxe9V7D6EAqMmtsfAAwFX1kPyHKwwfYLNWMDiK3EpfQS/tZ8eLKbyrFL6dMO5Ga5W7YonUbmrWMZHDfLjRoZCV3O3p+Xv1gIm+9+AyD+3ahNKdSDAuvjO2N93n0nltxOZ00b9Wal979JOf9of178NHk6dSuW4+rhwxj84a/uebyaBSK2+59gBat2wCc9738TJ7wAdcMuYkatWoDMPrxp3jgjmEAjHlGaofLQANgIjDE6EAqsPHoVaFClJc6wJvAPUYHks1vpk91utzm7ceS28osSiUn06desGuwJc4zOoiKxhob3xrYAMhzmSUwLmDaslEBc3sYHYeP0oDe2BKXGB0I+HCVe16HEtIbSDIXBvsAm0UelSp/nyDJXBhDAROxWbxi9k6/SOiJ6Y7KiekOGaddGK0JIM8IliNrbPytQC+j4xAVWku85LovakJ3gz79qLdxuzV1OCFdnjn1IX485SLAE9gskUYHURFYY+OrAuf2RhWi/I3FZmlrdBBFTegJmqY5s7KyvG76waNJGfUcLrdXPuQv8pflBtxOzI6SzfDk5YKAj40OooJ4Bb1jkhBGCwQ+N3qgqaK2OZ90u91Ljh07FhMYGOgwmUxeUbRyuNzmk4npdbyx5sAXZWhuZSrjz9KtwYnEDEKP/01AVtEeLfRBfbBZbsaWONXoQPyVNTa+A3C/0XEIkctlwAjgS6MCKFIvd4B169ZFmEymWSaTqRZeMuFBcqa7erpTk+dOS0l90xmnSXOWccdCDVP6aZqsfo6gjJNleyhjHQGaYUtMNzoQf2SNjf8ZGGB0HP5AermXqr1AK2yJDiMOXuQv7+jo6EOeeZEbFWe7shK/M7XRgt1p8ohQKfol+JljQWSW7YQjbhdB6ccxacWbuc4H1QNGAe8YHYi/scbGd0WSufBOTYA7gC+MOHixEnN0dHQWsKvQFcvBkB/iX0AeVSlVlbLsjiDl94m2PI3FZvlUSuml7uXCVxHCME9js0w2opTuk4+tWWPjLwVuNDoOIQpRB72ULkqJNTa+D9Db6DiEOI/sUnq588mEDryKl7TjC1GIsTLYTKl6yegAhCiCZ7BZyr0G2ecSujU2/mKgn9FxCFFEUkovJdbY+KuArkbHIUQRWNF7vJcrn0vowBijAxCimKSUXjrGGh2AEMVQ7qV0n0ro1tj4esBNRschRDHVAUYaHYQvs8bGX4S0nQvf0phyLqX7VEIHHkR6tgvfNNroAHzco0YHIEQJPFyeB/OZhG6NjQ8B7jM6DiFKqCU2Sy+jg/BF1tj4GsBwo+MQogTaYrOUW78Pn0no6I8B1DA6CCEugFS7l8ydgMzXIHxVuRVEfSmhP2h0AEJcoMHYLHJTWgzW2HiF1MwJ3zYUm6VaeRzIJxK6ZyCZNkbHIcQFCsagASd82OVAc6ODEOICVAJuLo8D+URCR74Ehf+41+gAfIw81SL8wW3lcRCvT+jW2PhA5KIW/iMSm0VmtioCa2x8ADDE6DiEKAWdsVlalvVBvD6ho48KV9PoIIQoRbcbHYCP6APUMjoIIUrJrWV9AF9I6MOMDkCIUnY1NovMRVA4ufaFP7mlrA/g1QndGhsfDFxvdBxClLK6QEejg/Bm1tj4IGCQ0XEIUYqaYrO0LssDeHVCB/oCVYwOQogycI3RAXi5fkC5POojRDkq04nFvD2hX2l0AEKUkWuNDsDLXWV0AEKUgQqd0GWaVOGv2mOzNDI6CC/W1+gAhCgDvcpyBjavTejW2PgIIMroOIQoQ1Ltng9rbHx9oEzbGoUwSDhwWVnt3GsTOlI6F/5Pqt3z18foAIQoQ2WW2yShC2Gcy8uy+s2HSXW78GcVK6F7JmS4wug4hChjlYAORgfhhSShC3/WEZulalns2CsTOnr7WW2jgxCiHHQxOgBvYo2NbwI0NDoOIcqQGehdFjv21oQebXQAQpSTrkYH4GUuMToAIcpB57LYaUBZ7LQUXGx0AEKUBZemThyl+t417lbpC13RlVe620T+bXRQ3uUiowMQohyUyRNcktCFKCOaRsoZwnf/626asNh9SfDv7osbHdBq1yfPhCPW2Pjq9riY0waF6W0koYuKQBK6EN5K03CmEbxrh9bwxBJ3e7XQdUndzZq1qYapKAnqEmBhWcfoIyShi4qgCTZLCLbE9NLcqdcldGtsfCOgutFxCHE+WZp53z6t7qEV7jbOhe7o6mvcrZpnEhQJRJZgd5LQAWtsfFWgsdFxCFEOTOjfFf+U5k69LqEjj/EIL+PW273ta9wt0xa6osOXuds1TaByY0ov+bQopf34Oimdi4okigqQ0NsbHYCouDSN1ATCd+nt3h2Cf3df3HC/VieCPO3epaxJGe7bl8hwr6IiKfV2dG9M6FajAxAVQ552bxa7OtTdpDVp6i5au3dpalrOx/NW8vy5qEjalPYOvTGhNzA6AOGfsjTz/v1anYO52r2bZRBc0nbv0tTQGhsfYI+LcRoch9Hk2hcVSYUooctdurhgbk2dOEY1+xp3q7SFrkvCl7rbN02gciPAG6csDUD/u99rdCAGk2tfVCRNsVlM2BLdpbVDb0zocpcuiiWfdu8G+7U6DSjbdu/S1hRJ6HLti4rEDFQBEkprh16V0K2x8VWAykbHIbyXpuFMJ3j3Dq3B8SXu9mqR65I6BrV7lzbpGCcJXVQ8VfHXhI5UuYk8HJp5/z6t9sE/3W0cv7mjq692RzbPILgV0Mro2EpZHaMDMJI1Nr4GEGJ0HEKUs6qluTNvS+gRRgcgjOPW1MljVNu7zt0ybaHrkrAl7vZNz1DFW9u9S1sVowMwWE2jAxDCAFVLc2feltBrGB2AKB96u3fY7o3upmcWuzsE/e6+uNE+rW4EFfeLvaI3NYUaHYAQBqhamjvztoQeZnQAovTp7d5Be3ZqDY7p7d7RdTbq7d4yiNB/KnoJXarbRUVUtTR35m0JPdzoAMSFc2jmA/u12gf/dEdl6e3erZulE9wSaGl0bF6soid0KaGLiqhqae7M2xK6lNB9jFtTp45Rdc86/XnvsKXudk1OY2mIdHAsroqe0KWELiqiqqW5M29L6EFGByAKpmmkJRK2a6O7yZnf3R2CFrsvbmjX6jVA+j6Uhoqe0KWELiqiqqW5M29L6IFGByB0moYrg6DdO7WIY0vd7Vnoiq7zr9a0mbR7l5lKRgdgMCmhi4rIXJo7k4Qucvzlbr1vv1Zr30J3dLVV7qjm0u5drhxGByAqpnedN3Sa5Ox/PExlZISRkRmm0h3hpDsqk+4IV+nOcNJdlVW6O5x0d7hKJ4x0wsgkVGWYQsg0VSLLVEk5AoJwBAbiDAjEFWTGFWxGC1K4QxSEKEWw0efppUr1uve2hC4MdJvjqZ5Gx1CBZRkdgMHSjQ6gosoiMPgY1WujeRZo5129RBRudwhZ6SFkZoSpjIxQMjPDSM8KV+mOcDKywlWaqzLpznCV7gonXatMuham0rUwMlSYylAhZKoQssyVVFZAMI4A/cbBGRSAK8iMO8iEVkmhhaDfPJhK/wzKTKle996W0NOMDkAIg0hCF35Lw2RKo1JYGpXCTmmW3G+UuiAcWSFkpoeSmR6qMrLC9VqHrHAyHOGkOcJVurOyXtvgrkyaO0xlaOFkqDDSCVH6jUMImeZg5TAH4QwMxBkYkFPr4A42oVVCv3EojT5ffl1CTzU6ACEMIgldiFKQRWBQFoFBiYRbyrLWwYTbFUJmegiZ6WEqIyuMjIwwMjy1DunZNw6ucJXmDifDFU46epNFhhaqMk2hZJgStPCT3UoxJknoQngHSehC+BA3JnMqIeGphISfzH3DULybh1n2UozJ29oaUowOQAiDVPSELs1toiJKLs2deVtClxK6qKgyjQ7AYFJCFxWRJHQh/NApowMw2EmjAxDCAKdLc2feltBL9W5FCB9y3OgAjGSPizmB1FKIiudAae7M2xL6QaMDEMIgFTqhexwyOgAhypnfJ3SX0UEIYYAjRgfgBSShi4ok0R4XU6odwb0qodvjYpzIF5uomEr1Tt1HSQ2dqEhK/Zr3qoTusc/oAIQwgCR0SeiiYin1v3dJ6EIYzwEcNToILyA3NaIikRK6EH5olz0uxm10EF5gh9EBCFGOdpb2Dr0xoduNDkCIcrbR6AC8xCajAxCiHK0v7R16Y0LfbHQAQpSzf40OwBvY42IOAWeMjkOIcrKhtHfojQl9PSDVj6IikYT+H6mtEBXBEXtcTKmPPeF1Cd0eF5MKbDM6DiHKkSSx//xtdABClIP1ZbFTr0voHuuMDkCIcpJkj4uxGx2EF5GELiqC9WWxU29N6GuNDkCIciKl87PJtS8qglJvPwfvTehSQhcVxRqjA/Ay25Bx7YX/W1YWO/XWhL4e6RgnKobFRgfgTexxMRrymQj/ts0eF3O4LHbslQnd0zFuvdFxCFHGXMASo4PwQouMDkCIMlRmf99emdA9FhodgBBlbK09LibJ6CC8kJTQhT8rs9wmCV0I40jiyoc9LmYPMmKk8E8u4I+y2rk3J/RlQIbRQQhRhiShF0yq3YU/+tseF5NQVjv32oRuj4vJAH43Og4hykgmsMLoILzYAqMDEKIM/FaWO/fahO4xz+gAhCgjS+1xMelGB+HFfgbSjA5CiFL2Q1nu3NsTerzRAQhRRr43OgBv5nnSRW7ohT/Zbo+LWV+WB/DqhG6Pi9mHDAUp/E8WMNPoIHyA3PQIf1Lmf89endA9phgdgBCl7Fd7XIxME1q4n4Fko4MQopR8V9YH8IWEPhVwGh2EEKVISp5F4OkYO9voOIQoBRvtcTFby/ogXp/QPXPGSo9X4S/SkSRVHHLzI/xBmZfOwQcSusfXRgcgRCn52R4XI9XIRTcfKJNxr4UoJy7gm/I4kK8k9DlAotFBCFEKpE9IMdjjYpzABKPjEOICzLbHxewvjwP5REL3tKWV6fN7QpSDA8ijWCUxEf3JACF80YfldSCfSOgecpcufN0Ee1yMy+ggfI09LuYYckMvfNNGe1zMH+V1MJ9J6Pa4mHWU4aD2QpSxTOALo4PwYeVWyhGiFJXr363PJHSPN40OQIgSmup5YkOUgD0u5i9gjdFxCFEMZ4Bvy/OAvpbQfwE2Gx2EECXwjtEB+AH5DIUvmWiPiynX+Qh8KqHb42I04C2j4xCimH61x8VsMjoIPzAduaEXviEZA3KVTyV0j6nIc6nCt7xkdAD+wB4X4waeNzoOIYrgfXtczMnyPqjPJXR7XEwW8J7RcQhRRL/Y42KWGx2EH5kJ/GN0EEKcxxkMqkn2uYTu8TFSShfeTwOeNjoIf+JpdhtvdBxCnMfb9rgYQwZC88mE7uloIBe18HY/lPX8xxWRPS5mHrDK6DiEyMcJ4H2jDu6TCd3jK2Cj0UEIUQAn8JzRQfgxqfkQ3ug1e1xMilEH99mE7ukgM9boOIQowGR7XMwOo4PwV/a4mN/Re70L4S02Ax8ZGYDPJnQAe1zMfOA3o+MQIo804AWjg6gAHkN/PEgIbzDKHhfjMDIAn07oHk8CbqODECIXmz0u5oDRQfg7e1zMYeQxNuEdJtvjYpYZHYTPJ3R7XMwG4HOj4xDCYwPwrtFBVCAfoH/mQhjlDHrB0nA+n9A9xgFHjA5CVHhu4F7PHN6iHHhmrxuN/oigEEZ4yh4Xc8LoIMBPErrnmb8HjY5DVHgf2+NiZAKRcmaPi1mJPme6EOXtT7yohtgvEjqAPS5mJvCj0XGICusg8IzRQVRgY4DtRgchKpRU4HbPE1dewW8SusdoQKaoFEZ40B4XIz2uDeIZbOpmwNBexqJCGWOPi9lldBC5+VVC97Rj3G90HKLCmWiPi5ltdBAVnT0u5m/gWaPjEBXCHHtcjNc18/hVQgewx8XMQh9FTojysBF4xOggRI43gcVGByH82kHgTqODyI/fJXSPB4B/jQ5C+L1UYJg9LibD6ECEzjN5y+3AaaNjEX7JBdxsj4vxyr8vv0zo9riYdGAIYMiMN6LCeNAeF7PV6CDE2exxMYfQ29NdRsci/M7T3jCATEH8MqEDeDor3I48nyrKxhR7XMwko4MQ+bPHxSwAHjc6DuFXJtvjYt4wOojz8duEDmCPi5kDePU/gPBJ29CfqBBezB4X8z5e9Iyw8GkrgJFGB1EYv07oHs8AvxsdhPAbp4CrjZwiURTLA8ASo4MQPs0ODLLHxWQZHUhhlKb5f420NTa+FrASaG50LMKnZQFXeHMbmjiXNTa+BrAGaGJ0LMLnJAPd7HExG40OpCgqQgk9+/n0/sBRo2MRPu1eSea+xx4Xcwq4Gun5LorHCQz3lWQOFSShA9jjYvYAA4Ako2MRPulZe1zM10YHIUrGHhezBf36l6YSURQu4FZ7XEy80YEUR4VJ6AD2uJj1wPVAprGRCB/zqT0u5hWjgxAXxh4Xsxq4FpBxA8T5aMBd9riY740OpLgqVEIHsMfF/A7chj7VpRCFmYbM5Oc3PNf/YOSmXhTsfl+tjatwCR3AHhfzA/IlLQr3DXCbN82mJC6cPS7mF/SBp7y+17Iod4944xjtRVUhEzqAPS7mU+BepKQu8jcZuMMeFyOjjfkhT9voECDd6FiEV9CAJ+xxMR8YHciFqBCPrZ2PNTb+JmAKEGB0LMJrfIneo11u9vycNTa+KzAXqG50LMIwDuBue1zMFKMDuVAVPqEDWGPjrwGmA5WMjkUY7nPgPs8kH6ICsMbGtwbmA42MjkWUuxTgBs9QwT5PErqHNTa+DzAHCDM6FmGY94AxkswrHmtsfAR6Um9rdCyi3BwDYuxxMeuMDqS0SELPxRob3wWYh1S/VTRO4CF7XMwEowMRxrHGxluA2UBPo2MRZW4ncJVnfBK/UWE7xeXHHhfzJ9AZ2G50LKLcJKLfpUsyr+DscTGJ6CNKfmZ0LKJM/QZ09bdkDlJCz5c1Nr4qept6P4NDEWVrD/pEKzKnuTiLNTb+NmACEGp0LKLUaMDLgM1fO7xKQi+ANTbeDMQBTxgdiygTK4Dr7XExJ40ORHgna2x8O2AG0MLoWMQFO40+lOsvRgdSliShF8IaGz8U/TEm6SznP94HxtnjYmS0MHFe1tj4KsAkYJDBoYiSWwPcaI+L2Wd0IGVNEnoRWGPjo4CpwEVGxyIuyHHgTntczM9GByJ8izU2/iH0GjupgvcdbvSb91hfmMu8NEhCLyJrbHwQ8AIwFulM6It+RR/5TabQFSVijY1vBvwP6QXvC7ajT7Cy0uhAypMk9GKyxsZ3A74GmhodiyiSLOBp4B15vlxcKGtsvAJGA68jzXDeyAW8A4y3x8VUuFn1JKGXgDU2Phx4F7jH6FjEef2LXsX+t9GBCP9ijY1vAnwB9DE6FpFjM3qpfLXRgRhFEvoFsMbGXw18BDQ2OhZxljT05pF37HExTqODEf7JU1q/BXgVaGhwOBVZEvAa8G5F7+gqCf0CWWPjQ4AngVggxOBwBMSjj/q21+hARMXg+Q54HBgHhBscTkXiAiYCz9vjYk4YHYw3kIReSqyx8Y2AN4GhRsdSQe0CHvVMiylEubPGxtdFH7jkTqTjbFn7GXjSHhezxehAvIkk9FJmjY3vif6ohDziVj5OoHdQ+qiiV7cJ72CNjW+PntivBpTB4fib1cCz9riY34wOxBtJQi8DnlHmbkXvXd3S4HD81Wn0GpEP7XExqUYHI0Re1tj4tujV8DcBAQaH4+t+BeLscTG/Gx2IN5OEXoassfEm9Cr4p4F2BofjLxLQH0t5zx4Xk2xwLEIUyhob3xh9COm7kX42xeFCH3o3zh4X84/RwfgCSejlwNMb9jrgGeBSg8PxVSeAT9F7siYYHIsQxWaNja+F/gz7XUAjg8PxZonAN+g37buMDsaXSEIvZ9bY+P7Aw8BVSMeZovgT+AT4QdrIhT/w1Nz1RU/sg4BgYyPyGiuAz9Gv9TSjg/FFktANYo2NtwIj0S/qOsZG43XS0cfO/1iq2oQ/s8bGV0N/lv0uoIPB4RhhLzAFmCKl8QsnCd1g1tj4AGAAMAK4Bgg0NCDjaOil8e/RL+4zBscjRLmyxsY3Rf8OuBbogX9+F2jAOmAuMFdu2EuXJHQvYo2Nr4H+qMu1wJX4/yAVbvRqth+BGfa4mEMGxyOEV7DGxlvQm+WuRb/hr2ZsRBckDViInsTj7XExRwyOx29JQvdS1tj4YPR2tmvR79rrGxtRqclAT+IzgZky+5kQ5+dpc2+LXmrvDnTBu4eb3gesQq9x+xNYX1GmLzWaJHQf4OklH41+QXdFv6AjDA2q6DKBtcASYBGwsiLOgiREabLGxtcGOgGXoI910RJoAVQtxzDS0Edo3OF5rQP+lBK4cSSh+yhrbHxD/kvuXYA2GD+dYxqwFdiCPtPZSmCd9E4Xonx4Ho3LTu6NgRoFvMIoeBS7dOAU+uBNuX+eAvYDO9ET+GGZkti7SEL3I9bY+ProF3L2qzn/XdhVSuEQbvSL+rjntR89eW/2/LTLBS6EEMaQhF5BWGPjg4CanldV9ARfBf1OXUNP1q5cr+zfE9CT9zHgpD0uxlXOoQshhCgCSehCCCGEH5CRyoQQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0IUQQgg/IAldCCGE8AOS0EWhlFJWpZSmlBphdCxCVCRKqY5KqZVKqVTPNXixUuoqpdR6pVSGZ1lVo+MU3iHA6ACEEEKcSykVCPwAZACPAWnAAWApsBl4AMgEUpVSTwNbNE37yaBYawB3AdcArYFAYBvwrqZp3xsRU0UkCV0IIbxTM6AxcK+maV8AKKWuAioDz2matjB7RU9C/xH4yYA4AboArwA/Ay8DTmAI8J1SKkrTtOcNiqtCkYQuhBDeqbbnZ0Ihy7zBZqCFpmn7shcopT4BFgLjlFJvaJqWalh0FYS0oXs5pVQvpdRaT3vZbqXUfUopm1JKy7XOnUqpxUqp40qpTKXUFqXUqHz2dalSaoFS6qRSKl0ptVcp9WWedaoqpSYppRKVUglKqclA1QJii1RK/aiUOu2Jb61S6to8x9OUUnfks21/z3tXX8jnI4Q/UkpNApZ4fv3Bc638AUz2LFvjWTbJ810QBtzhWaZ5tif7u0Ip1VIp9Y3nuj6hlHpJ6RoqpWYrpZKUUkeVUo/niSNIKfWiUmqdZ9tUpdQypVTv3OtpmrY3dzL3LNPQawyCgaal+gGJfEkJ3YsppToA84EjwPOAGRgPnMiz6ij0O+Q56FVd1wCfKKVMmqZ97NlXbeBXz7Zx6Hf4VmBwruMpYDbQHZgAbAUG8d+XSO7Y2gArgEOe/aUCQ4GflFJDNE2bpWnaWqXUHs/yvPsYBpwBFhTzYxGiIvgM/dp6GvgAWAMcA7YDI9G/B/YCu9FLwV8Aq4GJnu1359nf9+jXcywQAzwLnAbuAxYD44BbgLeUUms0TVvq2a4KcA8wDfgcvbr/bmCBUqqTpmnrCzmPup6fJ4t+6qLENE2Tl5e+0BN0KlA/17LmgAPPDbBnWUg+284Hduf6/XpAAy49z/Gu86zzZK5lZvROOBowItfyhcC/QHCuZQo9ye/ItexVIAuolmtZEHoy/5/Rn7G85OWtL6CX57q7IdeyEfldx0AKMCmffdg863+Wa5kZvXOdGxiXa3lV9I53k/KsG5Rnn1WBo4Vdv0B19JuQpUZ/lhXlJVXuXkopZQauAH7SNO1w9nJN03YBv+ReV9O09FzbWZRSNdGr65oqpSyetxI8P6/29J7Nz0D0Ev6nufbtAj7ME1t1oA8wHaislKrpOWYN9BJ3C6VUhGf179F7vA7OtYsr0b8UpPerEOXji+z/8VzTa9FvwP+Xa3kCeg1A09zrapqWBaCUMnmu/QDP9pcUdDCllAn4Fv06f6gUz0OchyR071UbCAF25fPeWcuUUt2UUguVUqnoifsEeskYIDuhLwFmoFfdn/S0m92plArOtavGwBFN01LyHG97nt+bo38ZvOQ5Vu7XC7niR9O0DeiPrwzLtf0w9Cq4xfmeuRCitO3P83sikKFpWt6q8ESgWu4FSqk7lFL/oj8+dwr9Oo/hv++W/HwIXAXc4/kOEOVA2tB9nFKqGbAIPWmOQa9Ky0IvbT+G56ZN0+vAblBKXYbext4f+BJ4XCl1WT5J/HyybwTfouA28Nw3Hd8Dz3hK8cnAtcA0TdOcxTimEKLkXEVcBvrNuv4/St0KTELv3PYmcNyz3VPoj9Wdu7FSzwOjgVhN06aUOGJRbJLQvddx9Dvi5vm8l3vZNei9SK/VNC3nLjxvL9RsmqatAlahJ9ib0avFbkKvktsH9FVKhedJ8K3y7GaP56dDy/Us7Hl8j14zMAS9Ta0K8F0RthNCFI1W+ColcgP69T7YUygAQCn1Qn4rK6UeQG+3f0/TtNfLKCZRAKly91Kedq6FwPVKqfrZy5VSzYEBuVbNvsvOfVdtAe7MvT+lVDVPL/bc1nt+Zle7/4x+kzcq13Zm8rSBaZp2HPgDuE8pVS9v7EqpWnnW3wpsRK9qH4bea39p3u2EECWWSgGPl16g/L5fOqMPJHMWpdQw9B7536LXFopyJiV072ZD70C2Qin1KXqP0weBTcDFnnV+Ra9in6uU+gwIB+5FL+HnTrZ3AKOVUrPQH2mp7FkvCT2RA8xF76Uep5SyAlvQO7Pl11b2ALAc2KiU+hz9Lr4O+oXeALgoz/rfAy+i1zr8T9M0d7E+CSHE+awDrlBKjQEOA3s1TfurFPY7D/07YJZSKh5oAtyP/t0Qnr2SUqoT8DV6G/si4JY85YeVmqbtQZQpSeheTNO0dUqpAeht1S+ht4+PRx8rOdKzznal1A3owy2+hf44yafoHVdyDxqzBOiEXr1eB73zy2rgFk3T9nr25fYMDPMecCt6Nd4c4HHgnzyxbVFKXYpelT4CvYf7cc96L+ZzOt97YgxFercLUdrGoD+D/jJ6Z9rJQGkk9Enoz5Lfh97vZgv6d8ON6I/VZYtCfxy1Fmd/72S7k/+a6kQZUbmaRYSPUEr9BLTRNK2F0bEIIYTwDtKG7uWUUiF5fm+B3oP9D0MCEkII4ZWkhO7llFJH0Ku99qA/Jz4KvRNbB03TdhoYmhBCCC8ibejebz4wHL0dKxP4E3hakrkQQojcpIQuhBBC+AFpQxdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8gCR0IYQQwg9IQhdCCCH8QLEGllm3bl04UB+5Eago3MDh6OjolELXFH5LrnvhBeS7qAiKPLDMunXrLjOZTBNMJpOFXHPjCr+mud3uRLfbfX90dPQqo4MR5U+ue+El5LuoCIqU0NetWxduMpmWV61atU7t2rVPK6VkeDkf4XZrOFxaUJbLFehwa0FOlxbodGmBGpoJUJqG0vS/A1XHnJJVSUsL0rdUmobJdSI5MzD51JGUVkvumxCYeeYYcAZ9vuU9wEFsiTKvuZ+S6963uN0aTrcW6HS7A5wu9J9uLcDl1gJd+s8Al4YZNDTPtR+qXI4IjgSB0o6a6mSmuQMDlcKtFG6TQjMrkyPArBwBZpUVaFKOQLMpK8hscphM5fu3oGmaOn78ePWEhIRjbre7u5TU81fUKvf6JpPJUrt27dNhYWHpZRqRKLZMpysoI8tVKdPlDnY4taAslzvY4XIHOVzuYJdby/NvrCiooBVs1twhzszQ3MtqV9JIU4S4AsKeC8w8c86hsVns6Ml9N7ADWAf8gy1R/k58n1z3XirT6QpMy3SFpTtcoekOV2imwxXqdGuB566Z63rP59I3mZQzBEyggQo0uwj4bx+a5+UGHNkLXIALs0k5A82mrECzygoKMKeHBZlTw4IDUgLNJlfpn62udu3ap5OSkixut7s++neNyKOoCd0EKLlD9w6ZTldgSoazckqms0palquyw+UOKqtjKZX3f84SDLTyvHJzYbNsAdYAa4HV6EleSvO+Ra57L5DldAemZjrD0hyusIwsV2iG0xV67o36hXMXcJHnRy/xuwIyHISCs+opz/IgsykzJMicEhoUkBIWbE4NCTSnq6Lv9rw8f4cK6ctRoJL/Udgs0aUYR559J64rs337oCynOyA5w1ElNdNVOTXLWdnhcgcbHVMhzEA7z+suz7LT2CyLgF+BBdgSDxgVnCg5a2x8mVz39rgYueY9NE0jNcsVmpTuqJqc4aya6XSFlMdx3dqF95HIcrmDs9LdwYnpjhoAJqVclQLNqWHB5uSqIUEJIUHmjAuPVBTEL+90tm/fHvTGG2/Uyr0sIiKi3cqVK8vlwsht586dQX369GlutVrbNmvWrM0rr7xSO/u9Z555pm6zZs3aREZGRl100UWRv//+eyiA262p06lZVQ+cTmu07WhSm4+/mnpRl46XNLny8s41r+7ZKfjD118iu+/DL7NnMLR/Dwb37cLgvl2Y/NlHBcbyYuyjDLmiK/cMu5bkpERA//IYfdsNHLDvLdPPAagO3Ah8DuzHZtmKzfIeNksPbBbpbCW8XmRkZNSZM2fK5DvT7dZUQlqWZf+ptMZbjyS333MipfXJlMx6xU3mm9b/zR2D+nPjld0Z2r8Hf61YmvPevr27ue/mQdx4ZXcG9e3C/DkzyV0Hn7uEnpWZyavPPsk1PaIZckVXnnp4ZM56cePHMaBLey5qWI1tmzcWGMuyxb9yfZ/LzFf16Fjlp7k/R+w8ntxm29GkNnHvfNDsyXGxDYpzXqJo/HI+9J07dwZ/+eWXtcaOHXuiNPfrcDgIDMynmaoAbreb66+/vtnjjz9+9K677joDcODAgQCAlStXhnz11Ve1tm7dutlisbg/+eST6g8/8oj15z9WpSSmO6q7Nc2cvZ/LevSkd/+BmEwmHFlZ3DF4AFHtO9B3wNXUrR/BJ1N+pGbtOiQnJTJ8YG+i2l9Mxy7dz4pl57Yt7N+7hxkLVzLhvTeYN/N7ho8YycxpX9Oxaw8aWpug93crN5Ge1yPoCf57YBq2xH/KMwghCpN93W/btm1Lae7X5dZMZ9KyqiWlO6qlZrkqa5p2QTcLmqbx2L238dI7H3NZj17Y9+zivuHXM/uPNVQKCWH8mNFcN/QWBg+/ndOnTnJzTG+6d+5I03r69m7tv4T+/msvoJRiztK1KKU4efxYznH6DbyWO0c9zIjBA84bzydvvcbHX08HYMy9t9OtV1+OHDlaacaPP1T6bOosth1NslSpFHjGEhJ4Jiw4QPpolAKfLqHPmDGjSlRUVOuWLVtGdezYsdW6desqATz00EON7HZ7pcjIyKg+ffo0z15/+vTp1S6++OLIiIiIdmPHjq2XvXz//v0BAwcObNquXbvWLVu2jHr44YfrZ78XERHRbtSoURHt2rVrPWTIkCbFiW/OnDmVg4KCtOxkDtCwYUMngFIKp9OpziQmBhxPzqh1+HRKRO2IxiFn0rJq5U7mAGHhlTGZ9H+qzMwMHFmZZLdLdeh4GTVr1wGgchUL1uYtOHxg/zmxBAYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HinNaZaER8CTwt6fkPh6bJcLooIT3WbhwYVh0dHSrVq1aRbVs2TLqm2++qQqwdOnS0A4dOkS2bNkyql27dq1//fXXMICbbrqp8fjx4+tkb79t27agmjVrXpSZmalmz55d+eKLL45s3bp1VPPmzdu8++67NbPXGzJkiPXGG2+0Xnrppa1atmzZBkApFX3y5EkzwMiRIxu0bdu2dWRkZNSll17aasOGDTnNYEqp6NjY2Lrt2rVrHRER0e7999+vkf3e33//Xal7jx6RLSOjLm7dpm2H9z782JqS6bScOHbU9OSoO7n56r4MuaIrH73xcrE/m4Qzpzlz+iSX9egFgLVpcypXsbD8j4UAbN+yme69+wFQvUZNWrZuy9zZs3K+azRPcT0tLZVZ33/DQ2Ofzfmeyf6OAYi+rBt16hV+eQYEBpKRnk56WhqBQXpB6M0XnubRp2wEBASQ5XRXOpmSWW/3iZSobUeS2h5OSK+X5XQXvcQkzuGzCf3QoUMBd999d9NJkybZd+zYseWuu+46MXTo0GZut5sPP/xwv9Vqzdi2bduWxYsX78reJiEhwbx+/fpta9eu3frpp5/W2bt3byDAzTff3OSBBx44vnHjxq2bN2/e8s8//4R9+eWX1bK3O336dMCGDRu2zpkzp1j10ps2bQqpXr264+qrr27aunXrqH79+jXbsmVLEEDbDpeaR4wc7WjdKrJdu5bNGk3+/NOg2BdfL3Bf69f+xZArutK7Q0s6db2c3v0HnrPO7h3b+HfdGi7r0fOc96zNWtCxSw9uGtCTQ/v3ETN4KG++8DRjnnmRgACvqqiJBF4A7Ngs07FZehgdkPAOx44dMw8bNqz5K6+8cmj79u1btm7duqVfv37JGRkZatiwYc2effbZwzt27Njy1ltvHbj55pubJyYmmu6+++6T06ZNy0nUn332Wc1BgwadCg4O1rp27Zq2du3abVu3bt2yYsWKbW+++Wa93bt35ySUf//9N/S3337buXfv3s15Y7HZbEc3bdq0ddu2bVtGjhx5/MEHH2yU+/3g4GBt48aNW+fNm7fz6aefbpSZmaUOn06pOeiGG6OuGXZH2I8LV5p//G0F/WKuA+DZx0Yz7PZ7mDpvEd/PX8rmf9fz67yfivX5VKteg1q167Bg7ixAr36379mVc4Mf1e4i4mfpJeaD++xsWLeaQwf255TKXZ4S+sF9e7FUrcoXH73D8IG9GTF4AH8tX1KsWAAee9rGs4+N5rkxDzDm2ZdYsnA+NWrWpl2Hc7thZLncwSdTMutvP5rcbu/J1KbJGY7wYh9Q+G6V+5IlS8JatmyZ3qlTp3SAUaNGnR47dmyj7CSdn9tuu+00QL169ZwNGjTI2rFjR3CNGjVcq1atqvL4448HPv744wCkpaWZtm3bVil7u7vuuutUdgm5OJxOp1q1alWVJUuWbL300ksz4l5/o86Nw26KnPHbcteePXsrLfjlZ+YuW0ftuvWYNmkiYx+4i8kz5+e7r4sv7cyMhSs5feokj4+8nb//Wkn0Zd1y3j925BCP3n0Lz772ToF3zw+OfZYHxz4LwO8LfqZu/QjqN2zEc2MeIDUlmVuu7RNw57Xn3gwYJAC9zf1GbJYNwEfAt/I4XMX1+++/hzdp0iTjqquuSgEwm83UqVPHtXr16hCTycSQIUOSAPr3759So0YNx6pVq0L79++f4nQ6WbJkSWiPHj3Spk+fXuOnn37aCXDs2LGAW265xbp3795KZrNZS0hICPjnn39CmjVr5gC47rrrzlSrVi3fJzPmzJlTZcKECbVTU1PNbrebxMTEs75L77777lMAUe3au8wBAWr5xl3tExMTA7IyMxlw/Q0561WrXoO0tFRWr1jC6ZPHc5anpaZi372L4nrvf9/y3qsv8L+P36VZy0g6dLwMs+eG/aV3P+Xtl55laP8e1ItoSKduPXPe8zyhpgBcTheHDx6gWYtIHn3KxtZN/3L/zYOYuehPatSqXeCx87qkc1e+navXDqSmJPPA7UP55Jsf+eaLT1m/9i+q16zFk+NfITDov4d0NDSVnOGolpzhqBYcYE6vGR50tHpY0OnS6inv73w2oZdESEhIzsVpNps1h8ORM7DO33//vTU0NDTfx3MqV66c77OV69atq3TLLbc0BejYsWPKlClTzqrrbty4cVbr1q3T2l98ievA6bRGvQfdWvPpp2JVanpm4KKf59AiMoradfWa/+uG3kLcc+NwZGWd9QeeV/UaNenepx+/xs/OSejHjx5h5PBB3PvwE1x59fWFfg4pyUlM/uxDPv12Bv/76F0uvawbMYOHcvOVlwXd1K8zISGVCt1HObsIvTNdHDbL28CH2BJlYAlRoNwJ4Oabbz71+eef10xKSjpTrVo1Z8eOHTMARo4c2fjKK69MnD9//m6TyURUVFTr9PT0nDv38PDwfK/7nTt3Bo0bN67RypUrt7Zp0ybzr7/+CrniiivOenQzIDjYvO9UakRSurOG2RygshzOgr9rPd9BU2b/RnCl8197j993BwfsewCY+N1sqlarftb7raLa8ek3P+b8fn3vzjRvGQlARMNGvDPx65z3Rt16Ay0u7+H5zst5JIy6EQ0wmUwMHHQjAK3btieiYWN2bttSrISe2wevv8S9Dz3OqePH+f3Xn/nf9Ll88vZrxM/6geuH3ZLvNplOV8ihhPQmx5MzI6qHBR0LM2nJJTp4BeKzVe69evVK3bFjR8iaNWsqAUycOLFanTp1HE2aNHFUrVrVlZycbC5sHwAWi8XdqVOnpGeffTanTd1utwfmrnorSHR0dMa2bdu2bNu2bUveZA5w7fWDUo4ePx6ydP32tmfSsmotW/yratKiFYGBgUQ0tvLP2r9IS9Xz0tKFC2jctHm+yXzvrh243fq9SGpKMssW/UrL1m0AOHHsKCOHX8+dox7h2huHF+WUef+1F7jv0bGEhISSnpaGUgqlFA6nU2U5HEXah0FqAK8Ce7BZnsRmCS1sA+E/+vbtm7Jv377g+fPnhwO4XC6OHTtmbt++fYbb7WbWrFlVAH777bewkydPBl522WVpAPfee++p+Pj4ahMmTKh12223nczeX2JiotlqtWaaTCZ++eWX8O3btxfp7+nMmTPmgIAArVGjRg632817772Xk+UcLrcZYO+pjDaJ6Y6aGlrOnYW1WQsqhYTyy0//Jdwzp08RGhZOx649+PKT93KWHz96hGNHDp1z7Lc/m8z0BcuYvmDZOckc9O+DbDOmTiYkJJRO3S4H4NSJ4znfIyv+WMSendu4bvCN+k2LUjmFnWrVa9CpW09WLlkEwMH9+zh0YB9Nmrcsysdzjn//XkNKchLdel9Benpqzs2WyWQiLS210O0dLnfQsaSMhntPp7VKc7irnEl3VaiCaHFcwHPoxj4rXr9+fecXX3yx54477mjidDqVxWJxff/997tNJhOdO3dOa9myZXqLFi3aNGzYMDN3O3p+fvjhh72jR49u2KJFizZKKS0kJMQ9YcKEfdlVb8XldLtNx5My655OU3Wefe0904N3DEXTNMIrV+GNj74AoO9VV7N5w98Mj+lDUFAQIaGhxH34ec4+Hrj9RkY//jRtLurAgrmzWDB3FgEBAbhcLvrFXMfg4bcD8Mnbr3Hk0EGmfjmBqV9OAODmu+4v8K73nzWryMjIoMvlvQG46Y57GPfgPXz16fvcNOQ6h6VK5TIbpKYU1QLeAB7HZnkD+FSq4suHkc+L16pVy/Xdd9/tfvLJJxs+/PDDJpPJxPjx4w/dfPPNid9///3uRx55pNG4ceMaBAcHa99+++1ui8XiBrBarY6LLrooddGiRVUnT568L3t/L7/88qFHH320UVxcXP02bdqktW/fvvDsAnTq1Cn92muvPR0ZGdmmWrVqzoEDByYAHElIr3cqNasOgJbPM90BAQG8/79vee25cXzx0TuYTCaG3n43N956J69+MJG3XnyGwX27oJQiJDSM5+IKbj4ryIypk4mf9QNoGk2at+TdL6bkJNAlC+fz5cfvYTKbqVWnLh9Nnk5IiP5U3Oz5f/D1r+uwvfkBAM+99g7PP/kQ771qw2Qy8Vzcu9Spp/cVfjH2UZYt+o1TJ44x6tYhhIWFM2/53/nG43A4eO9VG299NhmAlq3b0qCRlcF9u1Cteg3e/fybIp+b262ZU7K0ai8tOzPvnnnxj9njYmYV68OpAIo6lntkQEDA/BYtWqSEhobKwAAF0DSNkylZNY8nZ0SUxUhOZa150JmUUGfCWZ1RMpwaew+doMmKx6mU4rVjwRwExmJLnGZ0IP5ErvvCuTVNnUzOrHkiJbO+L17z4SZXZlP2B2sqwLHR1dCre5hrziyOHz6I7ffjHEp2ASwBxtjjYvK/m6iAfLbK3dskpTsq7ziWEnUkMb2xL17YPq4BMBWbZRk2y8VGByMqhtOpWdW2H01uezQpo5HPX/O+ObxvT2CNNTZ+kjU2vn6ha1cAktAvUKbDFbTnREoz+6nUluU1RKMoUHdgLTbLB9gsVYwORvgnh8sdsPdkatODZ9KaluU8CuWpFEZ9NYoJuAPYYY2Nf94aG+91PXrLkyT0C3AqJbP6zuMpUSmZzqpGxyJymIGHgG3YLNcYHYzwL6dSM6vtOJbcJjnDUa3wtX1ATh73yRJ6bmGADVhrjY2/2NhQjCMJvQScbrfJfjK1yaGE9CZ5R3UTXqMeMAeb5QtslspGByN8W5bTHbD3ZEqzQ2fSm/p89Xo+NN+scs9PG+Ava2z8WGtsfIXLbxXuhC9USoYzbOexlDZJGY5znxkR3uhuYIOMOCdKSq+JS26TnOHPNXF+k9ABgoDXgd+tsfGNjQ6mPElCLyJN0ziSkF5v78nUVv7SblaBNAH+wGZ5E5vF26eeFV7C4XIH7DmR0uxQQnoTfyyV5+bDbejnczmwwRobf6vRgZSXEv+RltW8yOB9cyNnOl1B+0+lNUl3uGR8Yd9lAp4ALsdmGYIt8aDRAfkkm6VsrnuDx7XIKzXTGbL/dFrzCnPz7j9V7nlZgCnW2PirgVH2uJhynVKyvEkJHX1WtHbt2rVu1qxZm+bNm7e5//77G7hc+gBKp1Ozqu08lhJVlGR+cP8+bhrYK2d+8ifuH0FSQgIAaakp3H/LEHq2b0b3NoXXAi38eQ5DruiaM8/5Ic8EC6dPneShO2/ihn7duL53Z559bBQZ6eeOqeJwOHj07lu48cruPHbvbTidTgAyMzK4c8jAnLgqoE7AOmyWy40ORBTfN998U7Vp06ZtIiMjo1avXl1qT5XMmzev8o8//lgF9Gt+78nUyOIk83//WcuNV3bnmssv5Z5h13LsyOF811v0yzxu6NeNof17MKjPZXz4+ktkjwWSkZ7OM4/en3PNP3zncE6fOpnvfl6MfZQhV3TlnmHXkpyUCOi1iKNvu4ED9uLMIaVl/9dfE3q2YcB6a2x8e6MDKUt+k9AdFzBkaY0aNZzff//97t27d2/+999/t6xZsybso48/rrnvVKr14Jm0pkXt+Fa7Tl0mzfiF6QuWMXPRn9SqU5dP340DICAgkDtHP8Jn034qdD9bN/3Lh2+8zKffzGDmoj+ZMvtXqtfUJ4z64sO3aWRtxo+/rWDGwpWcOnGC2dO/PWcfK5csokrVavzw63IqV7GwwjOF4sT33+SmEfdSpWrVIn46fqk2sAib5RGjAxHFM3HixFrjxo07sm3bti3ZEzNdKIfDweLFiyv//PPPlkMJ6fU913yRvxvdbjdPPzSSJ22vMXfpWnr07sebLzyd77qX9eiZM3Tr9PlL+XPZHyyeHw/Aj99OIiM9nRkLV+ZMhDJ5wgfn7GPnti3s37uHGQtXcmmX7syb+T0AM6d9TceuPWhoLdYszwBo/pMKzqcRsNwaG3/+idx9mE//Kyqloh977LH6bdu2bf3ggw82WL16dUh0dHSrqKio1s2aNWuTe87zMWPG1I+JiWnap0+f5s2aNWtz2WWXtTx27JgZoFu3bulRUVFZAKGhoVqbNm3Sd9gP1UtMd9Qo6Nj5CQoOppJnKEWXy5UzTnr2e527XU7lKpZC9/P1xI+47d7RORO3hIVXJiREH2ZaoUhLTcHtduPIyiIjPS1nSMbcAgICyUhPAyAjPY3AwCB2bN3E3t076X/NoOKclr8KAN7DZpmCzSLjB/iAESNGNFy7dm34iy++GNGhQ4dIgBkzZlSJiopq3bJly6iOHTu2WrduXSXQS9yRkZFR2duuWbOmUkRERDuA7du3B1WuXPniUaNGRURFRbV+7bXXan/99de1fpo9u1bfbp3qTXjvjWLFteXf9ZgDAujUVe93ecOtI1iycD6ZGecOrhcWXpnsmRszMzNwZGXmfEcopchIT8PpcOB0OklLTaF2PkO/BgYG4sjKxO12k56WSmBgECeOHeWX2TO47d4HihV7Nn8vnudSGZhrjY0fZXQgZcGnEzros6Zt2rRp62effXawRYsWmcuXL9+xZcuWrRs2bNgyd+7caosWLQrLXnf9+vVhU6dO3bt79+7NNWvWdL733nu18u5vj31fpZ9/mV+ze9+rStR25sjKYmj/HvS8qBn79+5m1JjYYu9jz87tHD10kLtuiGHoVZfz0ZuvkN0EMPKRJ9lv30OfS1rRu0NLmrRoSa8rz50bvcvlvQkLr8yNV3YnvEoVOnW7nLdefJZxL7xWktPyZ7cCv2Gz+MdzxX5s0qRJB9q2bZsWFxd34J9//tl26NChgLvvvrvppEmT7Dt27Nhy1113nRg6dGiz7AlIziclJcXcpk2bjC1btmwd+9QziUNvv5uBg4aq6QuWcf+jY4sV19HDB6kX0TDn97DwyoSFVz5ropTc1q/9iyFXdKV3h5Z06no5vfvr1+8Nt4wgNKwyvTu0oE+HlqQkJzF8xL3nbG9t1oKOXXpw04CeHNq/j5jBQ3nzhacZ88yLBASUtFuU37ah58cMfGKNjX/H3x5t8/mTGTVqVE4jU1pammn48OHWli1bRkVHR7c+fPhw0Lp163JmUOrZs2di3bp1XQCdO3dO2bNnz1k9no+eOBl87XXXR40Y9Yhqc1GHEsUTGBTE9AXL+P3vHVibt+DHbycVex8up5Ntm//lkyk/MmnmL2xYt5rpU/4HwPw5M2jWohWL1m1j4dot7Nuzm5nTvj5nHyaTieffeJ8ffl3O+Lj3+G7S5/TuPxCn00Xsg/cwZuTt/LViaYnO0Q91A5ZhsxRvJgxhqCVLloS1bNkyPbvqfdSoUaePHz8euHfv3kLHJA8ICNBGjRp1KindUXn3iZTWGqrcerFffGlnZixcyYK/NrFl43r+/mslAH8uXYymuVm0bjuL1m2jchULn7z1ar77eHDss0xfsIy3Jkxi1dI/qFs/gvoNG/HcmAcYM/J25s+ZWcRo9NoBrWLON/4YMMMaG+83szb6fELPnlEJYMyYMRE1atRwbt68ecv27du3dO7cOTkjIyPnL7VSpUo5d6Fms1lzOp057x09firkqgED2/S6MkbdPjL/aqvdO7YxtH8PhvbvwavPPHHeuAKDgrh+6C3Mm/F9sc+pbkQD+g64lkohIYSGhtH3qqv59++1AHz/9f8YOOhGzGYzYeGV6TfwWtasXHbe/R0+uJ9li39j2O338PFbrzDklhG89M7HxI0fV+zY/FgbYCU2S6TRgYgLFxgYqOUuqeee5xygUqVK7uRMl2Xf6bQWLvf5+8gkJSbmXPeP3nPuE1B16zfgyKH/Ji5KTUkmJTmJWnXqnjfG6jVq0r1PP36Nnw3Aj1Mn06d/DMGVKhEYFMTAQTey5s/zX9spyUlM/uxDRj3+FN988SmXXtaNNz75ks/efzPfzrIF8dPH1oriemCJNTb+/P9YPsLnE3puCQkJAQ0aNMgKDAxkw4YNwStWrCjSeN5HTpwOGzBwYOuuva5QIx8pOFE3axmZ06Hl6VfeOuf9wwf3k+5pt3a73fw6b3bOvOXFMfC6G/hz6WLcbjdOp5M/l/5Oq6i2ADRoZGXFH/o8xQ6Hg5VLFtO8Vevz7u+N55/iyedfwWQy6e36KJTJREYR5iKuYBoBy7FZOhsdiChcr169Unfs2BGyZs2aSgATJ06sVqdOHUeTJk0crVq1yjx8+HDw4cOHAwC++uqrs/vDKKUOnE5vpmn6fOVh4ZVJTkrK9zhVLJac6/69L86d7jOq/cU4HQ5We26sf/xmEj2vuIrgSucOK753146cOclTU5JZtujXnO+IBo2s/Ln0dzRNQ9M0li36lWaFXNvvv/YC9z06lpCQ0Jw+O0opnA4HDkfWebfNTdMqbEIHuBR9dLmmRgdyoUpczeRtz4oDjB8//vCIESOaTps2rUbjxo0zL7vssvyv0FyS0h3hr775TotNG/5W6elpLP5lLgD9Yq7j3ofPXwrPa8fWzXz0xsuAntBbt7uIcS++nvP+Df26ceb0KVKSk+nXsQ0du3bn1fc/A2Bo/x58NHk6tevW46rrhrB1078M7tsFk8nEJZ26cMtd9wMw9oU4Xn5qDEOu6Irb7ab9JR259Z7RBcb086wfaBnVNifp3zX6UV4c9wgOh4N7H3myWOdXQdRA7wF/FbbE5UYH43W86Hnx+vXrO7/44os9d9xxRxOn06ksFovr+++/320ymbBarY7Ro0cf7dixY+uaNWs6rrjiisTs7ZIynFWVUiYtV1ewPlddzbyZ3zO0fw/6DLimWO3oJpOJVz/4jJdiHyMzM5PaderyyvsTct5/4PYbGf3407S5qAML5s5iwdxZBAQE4HK56BdzHYOH3w7AqMdieTH2UQZf0RWAJs1a8FzcuwUe9581q8jIyKDL5b0BuOmOexj34D189en7XD14WJE64GZz++9z6EXVCH1kuV72uJjiPPfnVSr0fOhn0rKqHjyT3lSr4Len2Xx4PvSykAxcgS1xtdGBGMUfr/tTKZnVDyWkF/+5Lj8VbnZlNtX2BycH1EjZm1XFqwfOymc+9LKwD+hpj4vZV1YHKEt+VeVeHKdSMqsfPJ3WTJK5KEBlYD42y0VGByJKx+nUrGqHJZnnkT2wjHwNejRGL6k3LHRNL1QhE3pSuqPy4YQMa0WvYxKFqob+SNv5GzKF1zuTmlX10Jn0JnLN508S+lmaAL9aY+NrGh1IcRU1obsBzR9Ks+kOV/CB02nNNHz/XMpDTotMEZpm/FQt9Db1ZkYHIkomKd1R+eCZ9KZyzRes8Cf3K5xIYL41Nt6npl4uaqe4w263O/H48eN1ateufVr5aAcKl9ttOnA6o5nT7ZY5zPORqVwmk+u/f1pNgxOpLlRmEoEZ+Y8pXUHUA+KxWbpgS/TryR38TYbDFXzgjNzAF0ZK6PmKBmZbY+MH2ONiMo0OpiiKlNCjo6NT1q1bd39CQsKEpKQkC/jkv746k+Gq7XBRMWZPKgHNnGoOdqedtUxlJtFg/duYXX7RJ+pCtAJ+8PR+dxodjCic0+022U+lNi/sOXMhCf08egP/Qx9R0usV+bG16OjoVevWrevudrvr44Nt788sPvVScpb7BqPj8GZvB3/5byRbOuYs0DQCM05KMv9PX+Aj4H6jAzHK1sjWZTJ9auttW0v1cThN09h3Kq1pltN97sPg4hxuKuZQcUV0izU2/i97XMyHRgdSmGI9hx4dHZ0C7CijWMqMNTb+cUCSeSG0jAPplcwV6tG0krgPm2UrtsT3jQ5E/Gf79u1Bs2fPtowdO/YEwKGE9AaXXxJlefeLb4ls065cY1mycD7vvDwet8tF88goXnrnY8IrnzvGldvt5vXnY1m++DeUUtxyz/0MHzESgKWLFvDJ26+xa/tWht52F2Nt+c/BkJSQwGMjbyPh9Cku6dSFZ159G9CnWX7y/hFMmDqLwMBCR8KVEnrh3rbGxv9tj4tZYXQg5+NzJe3issbGXwMUb/okIc7vbWyWq4wOQvxn586dwV9++WUtgJMpmTVOp2bVKY39Op3Fa11JS03B9uTDvPfFN8xdto5adeoy8f038103fuZ09uzczpyla/l27iImT/iQXdu3AtCoSTNeeOtDRtz30HmPF//TdDp27cGMhSvZu3snO7dtAeCtF5/hkaeeL1IyB3D7ZK+ochUI/GCNja9X6JoG8uuEbo2NvwiYip+fpyh3ZmCKTOZS/gqaLvWhhx5qZLfbK0W2bt32hsHXW7PXX/TLXG677koGdL2Iie//N1zzyePHeHLUndx8dV+GXNE1Z4RHgAFd2vPuq89z89V9ee6x4s2yufz3hUS2aU+T5i0BGHb73fwyO/+JUhbMncng4bdjNpuxVKtG/2sGMX/2DACsTZvTKqod5kJmT8ueJlmfTjmTwKAgVvy+kCqWqrS/pON5t81NqtyLpB4w3RobX7S7JAP4baKzxsbXBuYCXj36kfBZNYFvsFn89hryNuebLvXDDz/cb7U2yZyxaJX5gy+n5WyTnJTIlNm/MnXeYiZ/9gHHjhwG4NnHRjPs9nuYOm8R389fyuZ/1/PrvJ9ytks8c4Zv5y7ktQ8/L1aMRw4dpF6DBjm/12/YiJPHj+Zb0j9y6CD1G/w3fkn9Bo04cvhgsY4XM3goB+x7GXbV5XTu3ovadevx+Ydv89DYZ4u1H00SelF1B86dyMNLlNuUgQb4AvDJ0X6Ez+gFPAu8aHAcFUJ+06WOHTu2Uc50qSZzkMutnXWDNfB6vetMteo1iGhk5dCBfVS2WFi9YgmnTx7PWS8tNRX77l05v19743CUD+S40NAw3v5scs7vb9qe5s7Rj7Dfvpf/ffQOAPc+/Ditos7fj8AtT/UVx8PW2PjV9riYb40OJC+/TOjW2PgRwDVGxyEqhPHYLL9jSzz/PJeiTKU5qYJS59SWBAX/18ndbDLjcrlyBkmaMvu3fGdEAwgNy79ib/eObTz10L2APq953lkX60U0YNWyP3J+P3xgPzVr1yUgn6rzehENOHzwABdFd9LXPbifevUbnLNeUW38Zx2nT52g5xVXMWLwAF55/zM0TWP8mNF8+WP8ebd1++ajyEaaaI2NX2ePi9lmdCC5+V11oWcM3veMjkNUGGbgW2yW6kYH4u8Kmi61fsNGEFy5VnJyoZMrAnqy7ti1B19+8l7OsuNHj3DsyKFCty1sCuVuvfqyddMG9u7SHwb6/uv/cdW1g/PdV7+Y65k57WtcLheJZ86wYO4s+l8zqEjnkJfD4eC912w8Mf4VANLT01AKTCZFWhGmSdY0H6iO8C6hwBfW2Hiv+tz8sYT+P6Do8wYKceEaAm8DdxodSFkr7efFi6Og6VIPJ2Ram7duY27WMpLBfbvQoJGVD76adt59vfrBRN568RkG9+2CUoqQ0DCei3uHOvUurJ9jWHhlbG+8z6P33IrL6aR5q9a89O4nOe/nnib56iHD2Lzhb665PBqF4rZ7H6CFZ270v5Yv4dnHRpOakoymafwWP4dnXnmTXlcOzPe4kyd8wDVDbqJGrdoAjH78KR64YxgAY555odC4pVNciXQD7gMmFLZieSnS9Km+whobfz/wqdFx+KppgS8v7WLecrnRcfiwvtgSFxsdRGnxhelTTyRn1jySmN7Y6Dh8VbjZmdlUOxC8SzVypLnMXtt7G8pt+tTiSgJa2+NiDhsdCPhRlbvn+cDXjY5DVGifYbPIyGTlJNPhCjqWlCEdX0uBW6rcS6oK8LHRQWTzm4SO3m5+7nBMQpSf5sB4o4OoCDRN48CZdKtb0/zpO8wwUuV+Qa63xsYPMToI8JOEbo2N7w8MNToOIYAnsFnKd6zRCuhkSlbNtCynT01t6c3cMvbrhfrQGhtf1eggfD6hW2PjKwGfFLqiEOUjEOnHUabcbk2dSM6sb3Qc/kSq3C+YVzT5+nxCB54GmhodhBC5dMNmkcmAysix5Iw6Trfbqztw+Rp5Dr1U3GuNje9sZAA+ndCtsfE1gDFGxyFEPl7HZgkyOgh/43C5zadSsuoaHYc/0cB/HnUylgJeMjIAX38O/TEgzOgghMhHU/R50z8wOpDS1G5yuzKZD33jHRuL9Hz7saSMem5NM5dFDBWX0pASemnpZ42N726Pi1luxMF9toRujY23AA8aHYcQ5/EMNotMDlRKMh2uoDNpjtpGx+F3lJISeukyrJTuswkdeAgZEU54t9rAo0YH4S+OJGXU17TSmUXk7huvZvH8849vnp+P33qV+FnTAfj0nTjesD2V73pLFs7n7huvvqAYy4/Sliycz3W9OnFNj2geu/c2UgoYRtftdvPac2OJ6daBq7tfwrRJE4v0Xm5JCQncPfQahlzRlVeefjxn+elTJ7n7xqtxOByle3rlr5c1Nr63EQf2yYRujY0PQ74ohW94DJtFmoUuUFqWMyQp3VGjqOvnN11paXjgiaeJGeRfT8gmp6Zpticf5r0vvmHusnXUqlOXie+/me+68TOns2fnduYsXcu3cxcxecKH7Nq+tdD3ztrHT9Pp2LUHMxauZO/unezctgWAt158hkeeep7AQL/o71j4eLtlwCcTOnrbZJEvbiEMVB242+ggfN3RxIwIgIsaVuOjN15m6FWXc83ll+aUlrPf++Tt17g5pg8fxL1AakoyL4x9hJuv7ssN/brx4rhHcWRl5az/14ol3BzTh6u7X8JbLz5L9jDYeUvvj993B7OnTwXgucdG880X5z6V6HA4eOXpx7mmRzQ3X92XNSsLb0I9cewo9908mEF9LuO+mwczdvRdfPpOHABXXBrF8aNHAHhy1J3cfv2VAGRlZnJ5u6ZkZWYye/pURg6/nnEP3M2QK7oyfGBvDu6zF+tzVcDPi5aryDbtadK8JQDDbr+bX2bPzHf9BXNnMnj47ZjNZizVqtH/mkHMnz2j0PdyCwgIJCM9DbfbjSMrk8CgIFb8vpAqlqq0v6RjseL3Yj2ssfH9yvugPpfQPc+dP17oikJ4jzHYLL7eAdUw6VmuSimZzv+a15Ri+vylfDrlR+KeG8ehA/tz3jKZzUyNX8yYZ1/i7Zee45JOXZg6bxE//Loct9vNt1/+N4/Gnp3bmfzTAn74bTnrVq3gl59+LHGMM76dhH3PLmYu+pPJM39h66YNhW7z+vOxXBTdkVmLV/HKe5+ydtWKnPc6d7+cv5Yvwe12s33LJpKTk0lJTuKfNato3e5igoKDAdi84W8eGjeeGQtX0rlHT7789L1ix77/0FHqNfhv2tb6DRtx8vjRfGs5jhw6SP0G/422W79BI44cPljoe7nFDB7KAftehl11OZ2796J23Xp8/uHbPDT22WLH7uVeLO8D+lxCRy/t1DM6CCGKoTFwo9FB+KoTKZlndYQbPPw2ABo0thLduSt//7Uy571Bw27J+f/FC+KZNOEDhvbvwbCrLufv1X+y374n5/1rhtxEYGAgISGhxAweyqrlS0oc418rlur7CwoiMCiI63PFUeA2y5fkrFezdh0u79s/573Luvdi1fI/2LbpX1pFtaVT1x6s/XM5q5b/Qefu/82f1P6STjRopM9Nc9ElnYpdQjdCaGgYb382mR9+Xc7ox5/i4zde4c7Rj7Dfvpcn7h/BE/ePYPuWjUaHWRous8bGDyjPA/pUqcEaGx8IjDU6DiFK4Eng/HN6inM4XW5zYmFt57m6yYWE5nqoQNN4e+LXWJs2L9KxlGewNHNAAG73f7N5ZWYWf6I5VYKB13Jv07l7T96Pe5GmLVrRuXtPatSszarlS/h33RqeefXtnPWCPSV1AJPZhCufUvXuHdt46qF7Abj40s7nzOPeMKK+e/bS9Tm/Hz6wn5q16xIQcG56qBfRgMMHD3BRdCd93YP7qVe/QaHvFWTjP+s4feoEPa+4ihGDB/D/9u49zq7x3uP4Z83smUmjslEicd1KXI6DkEgpoieUsIi79mhVo7QhPagWmxarVbXUOQelF1WltJVSdTub0qLiWhIiTYO4rURCJHJZucwlc9nnjzUhZZLJJHvv37p836/XvCavZGatb5id736etdbzXH7tDZTLZS4590x+/ce+37QYQ2cDD9bqZIkqdOArwDbWIUTWwZ54+YPwwkesg6yPtX1evFLeX9a2WfkjG7Dce8fvOePcInPensULzz3Ded4VPX7vfxzqcvPPruVi/2pyuRxLFi9m8aKFbLNdtLBk6e47OOzo4+ns6OCBe/7IyaedAcDWhe34x4uTOPjwMcyeNZMpzz/L5w8/ao0599n/wA+OR7n8wTX3NRmx30juu/N2xn3rAhbMn8fERx7i+C99FYCBgwaz4YAB/PG3N3PjhPvYaJNNuOoHF9G8bBm77LZHr8de1fY77swdDz2x2j8ffdDIzvHfvYK3Xp/BdjvsyB9uvYnRY47t8Ws/7x7Nn26/lUOOOJplS5bw0P13c93NE3r9s560t7dzzRUeP/7pTQC0tDTjONEbm+bm5X36O8bYIYVi6dOB777Z+5euv6QV+nesA4ish68DiS70WiqXyyxqbt/so7/f2dnJiaNH0tLczAU/8Nly657f45936eVcc8X3OfHQA6irq6M+l+NbF33/g0LfbocdOeWY0SxZvIjPHXI4o4+KNswaO+5szj/zVI47+LNsv+PO/PvQ4b1mPfakU3j91Zc5dtQ+bJjfiL1G7MvL/5iyxu8537uCi889k2NG7cNmmw9it6HD2HDAh7cKfGb/A5n4yENstW0BgE03G8imu+5OXV1lr5RuOGDDsvfjaznntC/T2dHBDjvtwmVXf7g9xomHHsD1v7mDgYMGc8RxX+CfL73AkSOH4eBw8unjGbLLrgBr/LOe/OYXP+HI477IpzaLrqic+e0LGX/KFwA497smN4lXgwN8A7igJidbeWdn3BWKpT2BF6xzpNntDT+cuG/99JG9f6WsozZgMF64yDrI2pg8efLOuVzuz0OGDFnWv3//vs87r6fFzSsGzFrYPGTV39tj6415YlrAgHzyl6BobWkh19BALpdj8aKFnDzm81z+kxvYfc/e30BUyob1HW1b1S/sfHnFwP41O+k6KnesYN47s/Eem8ecpZ29f0N8vA9sFfhuW7VPlKQR+hesA4ispybgS8D11kGSYOHyFR8bnafJrOANvnfOGZTLZdrb2znxK1+raZl/SCvFVdmmwNHAH6p9oiQVerpWc5CsGosKvVcrOroalrd1bPTR33/p7URMbnzgiUcf5rorP74S6Knjv8XoMceu8dp2rWgr9Jo4BRV6pFAs7Q1sZ51DpAL2wsvvjhdOtQ6yFrqAcqWWW+2LhctXbJKGYeMBow7hgFGHWMdYo3JSRujlMlCmKxlpP+qQQrE0OPDdd6t5kkQUOppul3T5KsnY9vedrq6ucN68eZsPHDhwoVPDTTwWL23epNzRVavTZVZnV6fT0tVVV+5Y0fsXWyqX6WhewtLWTha1JPLnoh74MtDzmroVEvtCLxRLDlqUQ9LlWBJQ6MOGDVs2efLkcYsXL/7FkiVL8tRoi82uMvULmjv7J3MglixNTmfd8rqW+nmdS62j9KLM0tZOfj5pMa2dif3JqHqhx/4u90KxtC/wdK9fKOtNd7nX1FC8sPf1QWNg8uTJnwS2oEYrS/746UXHz17SYbYFZZZs77wTjGt8aP55bWNjvYh6VxkWtXQlucxX2jrw3Y+vh1shsR+ho+l2SaejgEQU+rBhw5YBM2p1vr/fWfpMrc6VdZ8sN7e3Ns5tntOeqMfAkmw08KtqHTzWa7l3T7cfb51DpArGWAeIo+6tkQ+2zpEVDtBGKrYrTYrR1Tx4rAsd2B/Y0jqESBXshZfXz/bHHQL0sw6RJa00Jn4eO0EOLhRLVZsZj3uhH2cdQKRKHOAI6xAxtOZF06Xi2sqNehC9dvLAPtU6eNwLfT/rACJVNMo6QJwUiqV69CanpspAC43WMbKmatPusS30QrHUCOxunUOkivSG9V/tCax5q1SpKIcyrTTGtgdSKnuFTlTmeusoabYlXr5gHSJGRlgHyKI2GjTlXlt7FYqlgdU4cJwLPdbPRYpUyP7WAWLEYmeSzGspN6nQa8sBDqrGgVXoIrZU6B9SoRtopbHeOkMG7VmNg8a50PXilixQoQOFYqk/8G/WObLGwaGVhjj3QFpV5f6wWP6P1ItbMmQXvLyeu45GLBop1pjj4LSWm2LZAym3WzUOGtf/kXpxS1bUATtbh4gBzcgZKEd3uSdhCfC02aJQLFX8iY64Frqun0uWaDZKhW6mlQYNnmxUfNo9roWuF7dkiQpdb+LNtJZ1U5yRzBS6XtySJZku9EKx1A/Y0TpHFjk4tGnK3Ur6C717hbgh1jlEaijThU60AZOehTbQvduaCt1GxW+Mi12hA4PRi1uyZXu8fBxfi7WiXeeMlIFWFbqVXbu3CK+YOP4jMtg6gEiN5YBNrUMYUqEbKVNmRblBS2zb6A9sXMkDxrHQt7AOIGJgkHUAQ3rNG9KUu6mKvpGPY6FrhC5ZlOWfe43QjUQ3xTU0WOfIsNQXut6tSxZleYSuQjfiUKadXJN1jgzbrJIHi2OhZ/laomSXRuhiYgW6hm4o9SP0vHUAEQObWwcwpEI30uHk6rqoi2MPZIUKXSSF+lsHMJTl2QlTreR0/dxW6gt9gHUAEQOZ3HGtUCzVA7qGa6S9rFXijKX+GrpG6JJFWS01Xb81pDvczWmELpJCKnSpuRXk9N/f1gaVPFgcCz2OmUSqLauFrhGioXYVeqrEsTyXWwfIooEsmr9D3ZyKvluUPslqoesarqE2PbJmrVzJg8XxxbTMOkCW7Oq89fqVDTe+u6sTjHAchlnnybCsbkjUZR0gy8p6ZC1VVOgZdUTdM5MvabiVgU44DNjBOo/QZh3AiApdskwjdFk3jbS3nZm79/lx9fdv3s9p12g8XrJa6J3WAUQMVfR1r0LPgE0IF1zacOu0I+qe/bd6p7y/dR7pUYt1ACMaoUuWVfR1r0JPsZ2cWW9d2XDj7D2cN4Y7Dgda55E1WmodwMhyomnHrN5DINmmQpc1O7Tu+Slew2/aB7FwuOOwnXUeWSuZLPTAdzsKxdJC4FPWWUQMqNDl43J0tH+9vvTcN3P3bNrfaRtqnUf6LLQOYGguKnTJpor2nQo94fIsW3xJw20vHV335E71Tnk/6zyyzt6xDmDoPWBX6xAiBmZX8mAq9ITa3pkz02+4ceZwZ8YwXR9PhTnWAQzNtQ4gYmRWJQ8Wx0LP5LXEtTWq7oWpP2i4pXVL3h/uOGxrnUcqJsuF/p51ABEjqS/0iv4F06Cezo6x9X9+7pzcXRt90mnd3TqPVEVFp94SRiN0yarUF/o/rAPExYYsDy/M3T7lxPq/7ZBzuj5rnUeqphUvXGgdwpAKXbJoBRX+2Y/dOr6B784H5lnnsLStM3f27Q0/nDi16fS6k3KPHphzura0ziRVleXpdtCUu2TT7MB3U7/0K8A0YJR1iFrbr27atMtzNy3b1nlvb8dhK+s8UjOvWAcw9rZ1ABEDFb+8rEI3VkdX55fr//r8d3J3bDDAad7NOo+YyPplphlAK9DPOohIDWWq0FNtA1qWnZ+b8MJJ9Y9u1+B07mOdR0xlutC7V4ubBgy3ziJSQzMrfUAVeo1t5cx/5/LcTa+NrJs61HEYaZ1HYiG1P+998CIqdMmWKZU+YJwLPVUbNoxwXp7+o4ZfLd7eeXeE47CFdR6JjQ50DR2iQhfJkmcrfcBYFnrgu0sLxdIsSPbCKQ5dXV+sf2zS+bkJ/TZ2luv5cenJq3jhCusQMaBClyyZHfhuxZd7jmWhd5tGQgv9E7Q1n5u7c9Ip9Q9v0+h0jLDOI7E2yTpATEwl2hs9do/SilTB36tx0Di/eBJ3XXEwC+be1HDV4/9sGtt2eu6BkY1OR8E6k8Te49YB4iDw3WbgVescIjVS8el2iPcIfYp1gLU11Hn9Vb/hxvd3ct4eoY1SpI8mWgeIkReBXaxDiNRA5gr9L0AnUG8dpGfl8nF1T0y6qOF3DZ9ylg4FdrJOJIkzBy98wzpEjEwCTrIOIVJlHcDkahw4toUe+O6CQrH0NHCAdZZV9aOt5azc3ZO+Vv/Alk1Ox97WeSTRNN3+rx62DiBSA1MD322pxoHjfA0d4D7rACsNZNH8nzdc/fj0plObz8zdd0CT0/Fp60ySeJpuX0Xgu/8EAuscIlVWlRviIP6Ffq91gN2cN18rNV745N+bxg84rP75A+uc8qesM0lqPGIdIIZK1gFEquzP1TpwrAs98N3XMLrz9ci6pyc/13TG5Pubvjdk17qZ+zsOTRY5JLWm4YWvW4eIIRW6pNkyqnhpKbbX0FdxH3BeLU7USHvbmbl7nxtXf/+gfk77sFqcUzLrbusAMfUosBzYwDqISBU8EPhua7UOHusRereqX0ffhHDBTxqu+9vLTV9dck7uTwf0c9qHVPucknl/sg4QR4HvtqFLEZJed1Xz4EkYoT8NvA9sWukD7+zMetNvuHHOHs4bwx2Hz1X6+CKrEeCFU6xDxFgJGGMdQqTCWoEHqnmC2I/QA9/tosLX1Q6te37KM03ffP7BxuJ2Q+veOMBx+EQljy/SC023r5muo0saPRz47rJqniD2hd5tvafdc3S0j6+/56npTWNfvaHx6qGDnYV7O056dnOTRLnTOkCcBb47hyotvCFiqOqX2ZIw5Q7RXYFt0Pc7zfMsW3xJw20vHV335E71Tnm/ykcT6ZPpeOEz1iES4FZAN6ZKWrRTg/vBEjFC756m+GNfvmd7Z87MOxu9iVOavt5wXP0TB9Y75UFViifSF7+yDpAQvyV6Ey+SBo8Fvruo2idJRKF3u35tvmhU3QtTn2w667m/Np639d51M0Y6jh5/kdhYQTTylF4EvrsQuMc6h0iF3FyLkySm0APffZbV7B1dT2fHafWlp6c1nTr9143/vftWzvsjHCc5fzfJjLvxwgXWIRLkJusAIhXwHlV+XG2lpFxDX+mnrPJOZ0OWhxflfj/lhPrHh+Scrs8a5hJZG5pu75u/Aq8DO1gHEVkPvwp8t70WJ0raKHYCsGBbZ+7s2xt+OHFq0+l1/5l77MCc07WFdTCRXsxAC6b0SeC7ZeBn1jlE1kMncEOtTuaUy+Vanasinr9k7/OHOzN+5Dhx3SddpEen4YWaQu6jQrGUB+agpWAlme4KfPf4Wp0saSN09q6bcZvj0GGdQ6QP5gC3WYdIosB3Q6I73kWS6KpanixxhY4Xvote4JIs/4MXrrAOkWDXAF3WIUT66KnAd6u293lPklfokStBo3RJhAXAL61DJFngu6+gN/GSPP9d6xMms9C98DXgFusYImvhOrxwuXWIFLiU6Dl+kSR4mRqsDPdRySz0iEe0e41IXC0ArrUOkQaB7wbAjdY5RNbS+d0bi9VUcgvdC+cQPZcuEleX4YWLrUOkyA+BZusQIr14NPDd/7M4cXILPfIjILQOIdKD19Az1BUV+O5c4CfWOUTWoAv4jtXJk13oXrgQgxsPRNbCBXhhTVaHypgfA4utQ4isxm8D333R6uTJLvTI/wBvWYcQWcUTeOHd1iHSqHvHKr2JlzhqAb5rGSD5he6FLcB46xgi3crAt61DpNw1wLvWIUQ+4n8D351tGSD5hQ7ghQ/Sx/3SRarkF3jh89Yh0izw3eXAmdY5RFbxHuBbh0hHoUfOBpZah5BMewcoWofIgsB37wHusM4h0u3iwHeXWYdIT6F74TvAxdYxJNPG44VLrENkyDeB961DSOb9hZhsjZyeQo9cD9R07VyRbhPwwnusQ2RJ4LvzgbOsc0imLQLGdm/1ay5dhe6FncCX0NS71NY8otGi1Fjgu7cD91rnkMwaH/juHOsQK6Wr0AG88A30j6vUThkYixcusA6SYWegZ9Ol9iZ0v6GMjfQVOoAX3gpMsI4hmXAVXviAdYgsC3z3XeBc6xySKXOI4ZMW6Sz0yDhgpnUISbWnMV5IQiKB794M3G+dQzKhDJzavchRrKS30L0wBE4CtPymVMMC4It4YYd1EPnAycAM6xCSej8LfPdh6xA9SW+hA3jh08B/WceQ1CkDp+CFb1sHkQ8FvhsCRwF6dFCqZSpwvnWI1Ul3oQN44Q1o1yuprMvwwpJ1CPm4wHdfIRqpx+IxIkmVucARge/Gdgvf9Bd65GzgMesQkgq/wwsvtQ4hqxf47n3A961zSKq0AGMC3431rFw2Cj26znkC8KZ1FEm0J4BTrUPIWvkBcI91CEmFMnBy4Lux36MhG4UOdD8nfCTRyj4ifTUDOBovXGEdRHrXvXLXV4Dp1lkk8b4b+O5d1iHWhlMuZ+xSk5ffh2jt3U9aR5HEWADsgxe+bh1E+qZQLA0hWg56Y+sskki3BL471jrE2srOCH0lL3wWOBpoM04iyRACh6nMkynw3deAwwDznbAkcSYC37AO0RfZK3QAL3wEOBHQM8SyJkuB0drfPNkC3/070eW2FusskhivAMcGvpuoS2zZLHQAL7wP+Cp6vEV6toxoZP6sdRBZf4Hv/g04DkjUP9Bi4hXgPwLfTdz+DNktdAAv/B0wFui0jiKx0gy4eOFT1kGkcgLffRD4Alo9UlZvZZnPtQ6yLrJ3U1xPvPzRRJu5NBknEXvLgDF4odYtSKlCsTQGuBNotM4isfIq8Lmkljmo0D/k5UcR7ausu9+z6z3gcLzwBesgUl2FYskF7kJv4iUyBTg08N151kHWR7an3FflhY8Co4geUZLsmQHsqzLPhsB3S0Trvi+1ziLmniaaZk90mYMK/V9FdzOPBALjJFJbzwL74YVvWQeR2gl89yFgP7TNcpY9DHw+8N3F1kEqQYX+UV44HRiO1n7PivuAUXjh+9ZBpPYC3/0HMIJolCbZcgNwZJw3W+krXUNfHS+fA/4Xbb+aVl1E631fhhd2WYcRW4ViqQm4kWinNkm3NmB84Ls3WQepNBV6b7z8WODn6OaZNFkIfAkv/LN1EImXQrF0IXA54FhnkaqYDRwX+O5z1kGqQYW+NqL13/8AbGMdRdbbJOB4vFDXTaVHhWLpGOA2YAPrLFJRE4ET0nDz2+roGvraiFYLG0r0mIsk1y+B/VXmsiaB794N7E/05IOkw3XAQWkuc9AIve+8/GnA1eh59SR5FzgdLyxZB5HkKBRL/YErgfFoCj6pWoBxge/eah2kFlTo68LLfxr4DdG7eIm33wH/hRcusg4iyVQolg4Cfo0uuSXNROC07h33MkGFvq68fB3RHfCXARsap5GPmweMwwvvtg4iyVcolgYA1xJt6CTxtgS4ALgh8N1MFZwKfX15+cFEj7d90TqKANHueTcDF+jZcqm07nXgfwlsbp1FevR/wBmB7862DmJBhV4pXv4g4KfATtZRMuwZ4Cy8cJJ1EEmvQrG0KdFr/UTrLPKB+cDZge/ebh3Ekgq9krx8I3AuUATyxmmyZA7RFNvv8UL9QEtNFIqlA4CrgM9YZ8m43xOVeeZn5FTo1eDlNwHOA84C+hunSbNlwDWAjxcuN84iGVUolk4ArgC2t86SMX8Dvhf47lPWQeJChV5NXn4QcBHwDbT3ciUtJ5ryvErXySUOCsVSA3AGcDGwqXGctHuWqMgfsQ4SNyr0WvDy2wAXAl9BI/b1EQLXA9eoyCWOCsVSnuiS29nAJ4zjpM2LwMXdW99KD1TotRRNxX+DaKGKLY3TJMmbRDsj3YAXhtZhRHpTKJa2Ar4NfA091rq+pgOXAndl7TG0vlKhW4h2cjsBOIdo60b5uC7gAeBnwEPaEU2SqPv59dOJRuxbG8dJmieJZuTuDHxXr/+1oEK35uX3Ar4M/CcwyDhNHLwL3EI0Gtea65IKhWIpBxwDjANGGceJs+VEqzv+NPDdqdZhkkaFHhdevh44mKjcjyFbOz29R7TxzR3AExqNS5oViqWdiC69nQJsYhwnLp4leiM/IfBdXVZbRyr0OPLyGwCHAYcDo4HBtoGqYi5wL9G2tI+rxCVruu+MH0X0Bv4osjdDNwuYANwS+O7L1mHSQIUed17eAfYgKvfDgH2BetNM62Yp8DjwV+ARvHCacR6R2CgUSw6wD1G5HwPsYJuoKtqBp4jujXkg8N1/GudJHRV60kSj9+FEL/7PdH9sYZqpZ28RPWYymWgBiOfwwg7TRCIJUSiW/p2o2I8EhgINpoHW3bvAg0Ql/pfAd5cY50k1FXoaePmtgL2BnYEhwI7dnwdW+cxloqnzAHiDqMCjDy9cXOVzi2RCoVjqB+xJ9ETMyo84juBXED1iNgV4CXg88N0XTRNljAo9zbx8nuiFvxXR7lCbE61itXH3xwCi6fu6Hj4vJ1rIZUn355W/fo+owGcCM/HCtpr9fUQEgEKxtAnRm/gRRDN22xE9FrdRjSK8T1TaU7o/vwS8HPhue43OLz1QoYuIpEShWNqA6A381t2fV/31RkAT0K/7c1P3t5VX+dxOtHPZvDV8vBf47vzq/22kr1ToIiIiKVBnHUBERETWnwpdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEUUKGLiIikgApdREQkBVToIiIiKaBCFxERSQEVuoiISAqo0EVERFJAhS4iIpICKnQREZEU+H/hwjDTOC9PBwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": 135,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"fftma2",
"covariance",
"gasdev",
"fourt",
"cov_value",
"ran2",
"build_real",
"prebuild_gwn",
"clean_real",
"cgrid",
"length",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#FFA15A",
"#19d3f3",
"#636efa",
"#00cc96",
"#636efa",
"#636efa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"Py_kgeneration",
"fftma2",
"generate",
"fftma2",
"covariance",
"gasdev",
"",
"fftma2",
"",
"",
"",
""
],
"type": "treemap",
"values": [
1530.896938,
1198.768697,
332.127615,
330.818047,
891.8639310001546,
1.266409,
140.26829500008319,
282.56151199981946,
0.021324,
0.00865,
0.007677,
0.00193,
0.001254,
0.000354
]
}
],
"layout": {
"autosize": true,
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
},
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"pattern": {
"fillmode": "overlay",
"size": 10,
"solidity": 0.2
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAt8AAAFoCAYAAACPLZeUAAAAAXNSR0IArs4c6QAAIABJREFUeF7t3Qd4VGXah/H/tDQIvSOiYsEKdrHXxcW+rrr2+rFiWfuuvVfsZXFtiL1gg1WxIVbArrhIESxIR6SGlMnMfNd7QmJA0CTkmTnn5M51fdenkLznfX/PrN4ez4yRTCaTEV8IIIAAAggggAACCCBgLhAhvs2NuQACCCCAAAIIIIAAAp4A8c0LAQEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIIAA8c1rAAEEEEAAAQQQQACBLAkQ31mC5jIIIIAAAggggAACCBDfvAYQQAABBBBAAAEEEMiSAPGdJWgugwACCCCAAAIIIICAL+N7nyPO08w58393Otv26qlD999VF153v954+hZ17dSOaSKAAAIIIIAAAggg4GsBX8b3J19NVHl5sgbu8psfVuuWzXVO/8Nqfq1lcTO1KG6msZ9/o/337qNmRQU5gT7k5Mt09imHarc+vXNyfS6KAAIIIIAAAgggEBwBX8b3ynz7H3uhOrZvo4du+6evZEvLyrV9vwG6+7p/rDa+k8lKJRJxX+2bzSCAAAIIIIAAAgjkRiDQ8f3fN0ev8NjJlbcO0VffTNX5px6ugf9+WtNmzFHnjm114RlHq23rYl17x+Oa/N1Patempc465VD122uHGvXpM+fp1vue1UdffKPS0nKt062TTvxbPx34px1XOZlPvpyoE86+seb3Cgvy9elr9+nSmx7SN5N/0ClH7afr73pCu/XppesuPMX7vqdeGun937QZc9WssEA7b7+5zj/1CLVv26pe+9jv2Au183abq1OHNnps6BtauHipNt6gu2665O/6/H/f6j+PDtOceQvUY52uuvqCE9Vz/bW99d0/LNzxwHMa9eEXmjd/oVq2aK7ttuyp8049Qh3btfa+54VX39dlAx/SE/dcqjsefE5fT/xOiVhMe+y0pS49+7ic/RuG3PzPg6sigAACCCCAAAKNKxCq+L72zsf08ptjtNO2m+nSs49VNBLVgAtv0/RZ87TBumvpyvNPUId2rXXVrUP0+rufaNTQ271HVxYsWqKDT7xUrVsW67JzjlOHdq30ysixuvuhF3TDxf1XGeCVlSl9Om6STj53oAZeeqp22m4ztWrRXFfd9ojeHfOV1u7SQf2P2V9dO7dX97U66r7H/qu7B7+gM046RPvttYMXx9fc/qjSmYyef/Bq5SXidd7HQSdcoiVLl+mv+++mk47sp5mzf9ZRp13j/dsBF+GXnHWM3B33k88bKPcPBU8Ousx71Vx844N6+4PPddMl/dWje1fNnb9AV9/2qJo3K9Tj91zifc/wN0brouvv14Y9uumq80/Qxut398559uX3aI8dt9SNl/Rv3FcgqyGAAAIIIIAAAk1IIHTx/dSLI1d4A+ajQ1/XTf9+yns0ZM+dtvJG+/EXE3TiOTd5d3d7b7a+F8Z3PfS8hg25Tuuv07Vm/Kf+6zZNnzlXLz/26x3u2q+N8ZO+1+F/v0qDbji75rET9w8Abg9P3XuZtti4h/ft5RVJ7XLwmd7d6tuuPL1mia8nfKe/DbhaN18+QP323L7O+3DxXVZeodeeHKhIJOKtd8Yld+q9MV/p/ZfuVssWzbxfu+fhF/Xgk6/oizce8L5vzs8LvChfq3P7mj08/vybuuHuJ/TRK/d6EV79bxNcwB91yN413+cM3V37sS8PUkF+XhP6nwhHRQABBBBAAAEEGk8gdPH90ogPvMc/qr9eeu0DXXLjgxrxxE1au2tH75cnTpmmQ0+5XINuPEe77dDLuzvufm3Uc3esIFsd7i5o27Qq/o366uL72WGj9OVbDykarQrj/038XkecepWuOv9E72517a8d9hug/ffZ0btTX9d9uPh2n+7i9l/95e5qj/10vN5+7vaaX3v0uTd00z1Peh7uDvgvC5d4j6R88tUkLVy0RKlU2vsHg6UlpTX/wFId38/85wpt1nPdmrVeHPG+90jNi4Ov1YbrrdV4r0BWQgABBBBAAAEEmpBA6OJ7xMiP9OHwe34T328Pvc17LGOF+F5+x/qYM67Tl+OnKBGPrTB690iIe7xkdcG5uvheeQ9jPhuvU867WfF4TNHld6qrL5SsTGnvXbbSHVefqbruw8X3umt31h1Xn7FCfH8+brJ3N7z6qzq+PxnxHxXk5+uYM67VTzPn6vJzj9emG63rPeryyltjNHDQ07+J75cfvcG7RvXXiLc/0vlX3+s9wtJrk6o7+nwhgAACCCCAAAII1E+A+O7TW6dddIemfD9d9w08b5V6XTq1U35e4je/V9f4Hj/5Bx3e/0pdMOBv3hswV/4qKsz3/sGgrvtoSHzPmvOLDjzhYl37r5N1yJ93qdnC/Y//V3c++Pxv4ts9A77lZhvUfN9zr7yrK25+WMOHXK8e63Sp36uM70YAAQQQQAABBBDwBIjvPr31wBMv699DXtJbz9zqfRJK9dfcnxeqID/hvSlzVV/V8f3v68/W7jtWfc63e+Z75TvfFclK7XzQGTp435118T+OWWGp736c6d1hds9k13UfDYnvyVOn6+gzrtU9153lfXKJ+3J39d3nlLs9vP7Uzd6z4NWPnZzb/zCdfNR+NXu9+rZHNOz1DzXm5UHeHXO+EEAAAQQQQAABBOovQHz36V3zKSPdunTQuX8/TJ06tNWkKdO8NyK6555rv0myNrH7eMK+R12gYw7dx7ub3KN7F9006KnfxLf7GfemznsfHaZz/36495x5RTKpof99R08PG6Wh91+pjXp0q/M+GhLfqXRGex9+rnptsr73qS+Ll5TorodeUJdObb03iN582alelL/1/mfexze6u9unHX+wNt94PX02brKuvOVhHbDPjrrqghPr/yrjJxBAAAEEEEAAAQQ8AeJ7+X+Z0oX0bfc/6/0XM5eVlnufe913j+10+gkHr/KRk+rXj3sz52ujPpb7L26+MPga7xNGVr7zXf29tT/nuyAv4T13PeD4g7RNr41qXo512UdD4ruosEDvjR2nm+992vsEF/cRiP2POUD77rGdTjznRrk74xf/42jvuXQX3w/ccoGGPPOaPvt6kvc533vvuo0uPetYFRTwSSf8tQMBBBBAAAEEEGioQCDiu6GH4+fqL1D92EntT4ep/yr8BAIIIIAAAggggMCqBIhvXhcrCBDfvCAQQAABBBBAAAE7AeLbzjaQKxPfgRwbm0YAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxHfwZcgIEEEAAAQQQQACBgAgQ3wEZFNtEAAEEEEAAAQQQCL4A8R38GXICBBBAAAEEEEAAgYAIEN8BGRTbRAABBBBAAAEEEAi+APEd/BlyAgQQQAABBBBAAIGACBDfARkU20QAAQQQQAABBBAIvgDxbTTD4a+lG2/lTEaKRH5db+U/b7wrsRICCNRHIBv/28zGNepzZr4XAQSahIDLjgP6RpvEWbN9SOLbSNzF9/ARKaPVWRYBBBBAAAEEELATOKhfjPg24iW+jWCJbyNYlkUAAQQQQAABcwHi246Y+DayJb6NYFkWAQQQQAABBMwFiG87YuLbyJb4NoJlWQQQQAABBBAwFyC+7YiJbyPb1cV3NCrdf3tClZVVF05npDlzM3pueErjJ2YatJt9do+qS+eIHnkqGM+Y77R9VB9+VPWG1H/0j+vjz9Ma+2kjvkG1QYr8EAIIIIAAAghUCxDfdq8F4tvI9o/i+4IrKrVgYUYuxrfaIqoTjorp4muSWryk/hvyU3y7d0e7D2dY3Zf7/VuvSejcS5PetxQVSslKKVn1p3whgAACCCCAgA8EiG+7IRDfRrZ1je/qy1/xz7iGvZrWAftG9epbaX32ZdWd4F6bRXVwv6iuGrj8Vvkq9ls7vlu3iuiis2N64LGUfpiW0QlHxrT+uhHN+1ma/F1G7dpIg59IqWOHiI47IqaWLaTycunJ51Oa+n1G3bpGdNLRMY0bn9EGPSLe7z/53K935ff7U1R9to1KGWnC5IyeeTGlypR0z8CEXn0zpX33iumCy5Pq3CmiYw+PqaioKqzdGhO/zej0U2LqvVlUs+ZkdMe9KR1zeKzmzvc2vaM68M9RxaLSoiXSo8+kNHtORnvvFtVaXSJKJKT27SLe7w8anNL8Xxr2bwqMRs6yCCCAAAIIhEaA+LYbJfFtZFvf+L7qwrj36EnnjhGtv15Egx6qeoTkxKNimj03oxFvrf6xjOr4fuq5lP51VlxvvlP1GMfuO0W1/dZR3XxPpVoUR3TxOTGNn5TxHk+5/IK43vkgrffGpLXO2hGdcUpMF15V6UW5+weBu+6v1P8mZLTdVlHttWtUN9xRqd6bR/WX/av+2AX7gJNiXlCPfDetO29I6IOxae8M7s73ZRfENfKdtEZ/ktZ2W0d14L5RXXpdpZo3k265OqFTz6u61V392MnkqRld+a+4rr2lUnN/zmjXHaPaZYeorrutUnvu4qI8pituTGrRYnlRv3SZ9OLLwXjMxuglxrIIIIAAAgiYCRDfZrQivo1s6xrfsZjk7vge9deYLromqbxERNdfGtd5lye9wL3t2oSuu7VS8+av/i5vdXzn50mz56rm88X7Hx/T1B+q4th9uWiNxqT/vpbWNRfHdcY/kzWPiFx6XlxDh6W0tES68Oy4zvxXVRy7O87/6B/TP6+s/M0/CGyxaUR994zp5rsrdcf1CS/Yv/uhap95CXl3xNNpeXfPB16Z0N/PTa42vhNxacstot4a7svd5b73loTOvDCpPttEtUnPiO55oCq299otqu7dIhr8OPFt9PJlWQQQQACBJi5AfNu9AIhvI9s/iu+aN1ympZmzM3rmpZS+nVoVruefEdeYT9LeYxV/PTCma29d/SMn7vtdfB+wb0zxuOTufr8/tiq2zz0trtEf//pmxv32iapdu4je/TCti8+Je8+cV3/l50f02LNVj3mcPcA9OlJ1za6dIzV/7u5Sr7dOROXlVT/nnld3z6hfc0tVfN9we6XmzKv6PXfHfI9donL/cOEeE3GPs/Q/Z/Xx3aa11KnjikE96OaErrypUpttHPGu++BjVbHt7oTX/nOjEbIsAggggAACTVaA+LYbPfFtZPtH8V39hstVXX6XPlHvbrh73MQF+Bujfv+TQFx899o0qqdfTOm80+NerLufG3BiTBOnZDTq/aqfd89XuxgePiKtqy+Me3eVV/6qHdsrx/fxR8Y0c1bGe6xl5S8X39ffVvXISOuWEV1/WVxX31zpPdvtnkO/6Yr478a3u/O9Va+o7ryvKvrz8iQX3+7u/I7brRjbxLfRi5ZlEUAAAQQQWC5AfNu9FIhvI9s1iW/3JkX3mIZ77MQ98/zLgt9/Y2HtN1z22yeqTTaM6tZBleq7Z1SbbBTV7fdWqlWLiC45L6avJ1Q98+2eyX797bQ+/iyt4ubSkX+J6ZFnUmrX5tc73SvHt3ujpHtDqHvMpKxc3nPZqZS8jw2sHd8u4C84M67zL096j538Zf+Yt5fTL0gqFpfuvD7hPdZSXvHrM9+TpmS8fyBwd9FdwLvnzN0/gNx0V9Uz39z5NnqhsiwCCCCAAAKrECC+7V4WxLeR7ZrEt9vSGf8XU3GziPfmxj/6qh3f7lEQ90iJe2zFvdmx/3Fxde0izZgpTZ+Z8Z65fuTpXz/tpE2rqs8af3NUWu98mF7hMZOV49v9uXt0xd2JdnfQ58yTHn4ypYWLMivEt/u+k46JaaMeEZUsk54dltJB+8a8x1TcedzjMGuvFfHuch/Q99dPO9m6d1QHuU87iUm/LJAefTrlPetOfP/RK4DfRwABBBBAoHEFiO/G9ay9GvFtZLum/4VL9zGAP83IaNQHa/Yfn6n9udvuE0PcGyHdJ5LwhQACCCCAAAIIrE6A+LZ7bRDfRrZrEt9dOkV0zoCYLr+hUqVlDd+ge0zksIOrPiPcRfhFZ8e9570/H7dmQd/wHfGTCCCAAAIIIBAEAeLbbkrEt5FtQ+P70ANicv/5dfcfmPny66pI7tQhotNOjq1yp+4NjfcOXvWdbPeYx1GHxtRrs4j37PWnX1b9Z+x/779AacTBsggggAACCCAQIAHi225YxLeRbUPj22g7LIsAAggggAACCNRZgPiuM1W9v5H4rjdZ3X6A+K6bE9+FAAIIIIAAAv4TIL7tZkJ8G9kS30awLIsAAggggAAC5gLEtx0x8W1kS3wbwbIsAggggAACCJgLEN92xMS3kS3xbQTLsggggAACCCBgLkB82xET30a2xLcRLMsigAACCCCAgLkA8W1HTHwb2a4qvt1/5Kbmc/7cB29Xf1V/9l9j/Zpb161Zez2//drvuWdj73Wde2PPpj7rrTy/uu6Z72tSAsNHpLRpz4h6rBttUufO9WF/np/R6I/5bybkeg5c306A+LazJb6NbFcX339aMsToiiyLAAJNTWDGpofphvsKvPg+ZefJSkwc29QIcnLeZId1NXT6rsR3TvS5aLYEiG87aeLbyPb34rts6GCjq7IsAgg0FYF4r+0055CrVojv1DX9m8rxc3rO2OnXEN85nQAXz4YA8W2nTHwb2RLfRrAsiwACngDxnbsXAvGdO3uunD0B4tvOmvg2siW+jWBZFgEEiO8cvwaI7xwPgMtnRYD4tmMmvo1siW8jWJZFAAHiO8evAeI7xwPg8lkRIL7tmIlvI9uwxPe4ZFRdYxm1jWaMpFgWAQQaIlCfx07erYjpoWV56ptfqbVi6Zo//lthUqMrYtolL9WQLazyZ54ri+uN8riSGalXIq1TiypUUOvDnRrtQjlciPjOIT6XzpoA8W1HTXwb2QYlvt0HZf3eB5TdtDRPhxRUasM4H6ll9FJhWQQaJFCf+L5laZ42TaT15/xK1f7j71NRPVka1yXNKxq0h5V/aGxFTE+XJXRF83IVRjK6uSRfG8dT+mtBZaOs75dFiG+/TIJ9WAoQ33a6xLeRbUPi+6WyuF4rj6tlJKN98lN6oSyuQS3LvB26P363Ii53A2nzeErHFyUVl3TCwgIdXVipscmY5qQi2jO/Un9Z/je6z5MxPVEaV6Ui6hhNa0BRUq2jGb1cFtePqah+SEW0VSItd/frkWUJfZKMyd3f3jSe1qnNKvTfsrieLU2oTTSjY4uS2j5RtadV7cOIkWURQGA1AnWNb/e/2ZfKEiqKZNQ5mtHUVNT7Y3e3+/2KmEoyEW0QS+u4oqT+XZJQ70RaEyqjWpqJqH9RhffXi1npqDaNp3RKUdLbjbuT/nxZQqmM1C6a0T+aVXj/dsytXZmRNlr+D+vuZ13gn9msceLeLy8G4tsvk2AflgLEt50u8W1kW9/4npGK6NIl+bq9RbmaRzO6eWmeZqSiuqdlmRfFT5YmdF1xuQoiGd26/C5Wv/xKnbSwwAv1IwuT+iUd0emLCjSkValKMxGdvThfVxdXaO1Y2gvpiZVRXdC8QiPK43quNK7rW5SrYzSjT71IT2hgcZlc3V+0ON+7271TXkrnLs7XqUVJ78737+3DiJFlEUBgDePb/fjApXnaIS+lXfNSK/yxu1M9siLm3fmelorqAu+vGeVePN9ZkqdpqYhuLC73/qH85EWFuqtFmRIRqf+iAt3eosz768d9yxLeTYH+y8O89nZvWJqnbRNp7Z3PnW9eyAgETYD4tpsY8W1kW9/4frM8ri+TVXHsvj6siOmp0oQX34NK8tQlltbBte5oDy+L68rici++Lyuu0LqxqsdC3J3wgS3KvTtXHyz/m6r79bKM+71CPdm61Hse87NktOZfNbu/sZZnVPNcpvubaftoxruDXju+f28fRowsiwACWYzvK5fkaXCrqn/b9nRpQksy0v8tj+ozFxXo3OZVf60pzUiFy5/jdn+dGVUR12XNy1fY6dCyuCYkY7qsuNyL8zB9cec7TNPkLKsTIL7tXhvEt5FtfePb/avhOemoBhRVxfekyqjuLsnz4tvdPfq2MloTxy6z3aMpN7Woim93B7vT8jdEVv/5xxUxPVuWUIvIr2+UXJaR7mhR7j2i4tY/a/m/Cl6cieixZQlNT0e8v0nOTUe8Z0MPXSm+f28fRowsiwACWYzvG5fm1Tzq5h45cxl+XGHVoyZnLS7wHi9ZL5b2Hkf7srLq3SIl6Yj36MnlxVXx7f6K8/CyhGalIzq/WYXyw1bekohv/mfZFASIb7spE99GtvWNb/es9/jKqM5bHsTuEwjcoyYuvu9dluc9OrLfKv7V7erie3JlVO5fKf9zFW+kctdyv+/+Ruq+3J3uykxEA5pVeG++dNfrEE3/Jr5/bx9GjCyLAAI+i+9ZqYheLIt7j7Q1i2T0XkVM75THa+L7kdKE9wic++tLLKTTI75DOliOtYIA8W33giC+jWzrG99TKqPeHe47WpZ7b4a6fmm+9wZKF9/umeyhpVWPmbh/1ftWeVzxSEa756VWe+e7UPIeGbm2Rbn3Jiu3vvub5ElFSe9NnbXj+9aSPG0YS+uAgkr9kIp6z5vvmJfS0YVJ7xlQ94bO3onU7+7DiJFlEUDAML7d+zjcG72vLS7XT6mo6nLn2/1bOPeI3IXNK7w3a7r3oLg75NcXl+ubyqgeWpbwHn0La3i7cRDf/M+yKQgQ33ZTJr6NbOsb324bj5YmvOe03fPW7o1R7pMC7q71aSfvVMS9Txdwz3+ftvyTS1Z359s9hlL9aSflmYj3sV8nFyXVM57+TXxXP+KSB1X3AAAgAElEQVQSj8j71INt81IaVJLQGc2S3ieiDC9LeG/odI+iuMdjVrUPI0aWRQABw/hemI7ooiX5co+yuTdd1iW+3V+f3PctTUe8Tzg5qjCpgSV52jMvpfnpiPcJKrXDu1ss7T0iF6Yv4jtM0+QsqxMgvu1eG8S3kW1D4ts9K1n9eKR7BOXx0oRuWP4cpdE2WRYBBAIqUNePGgzo8Xy9beLb1+Nhc40kQHw3EuQqliG+jWzrG9/uTY9nLCrwPk7Q3Slynyzi7lafuIqP7zLaMssigECABIjv3A2L+M6dPVfOngDxbWdNfBvZ1je+3Tbcs9zusQ73r4DdJwoMaJZUca1PKzHaKssigEAABYjv3A2N+M6dPVfOngDxbWdNfBvZNiS+jbbCsgggEEIB4jt3QyW+c2fPlbMnQHzbWRPfRrbEtxEsyyKAgCdAfOfuhUB8586eK2dPgPi2sya+jWyJbyNYlkUAAeI7x68B4jvHA+DyWREgvu2YiW8jW+LbCJZlEUCA+M7xa4D4zvEAuHxWBIhvO2bi28iW+DaCZVkEECC+c/waIL5zPAAunxUB4tuOmfg2siW+jWBZFgEEiO8cvwaI7xwPgMtnRYD4tmMmvo1s6xPfBYedZLQLlg2aQNnQwUHbMvvNkUBd3nDpvie+4WY52mE4LpueN0sV74xY4TDEdzhmyyl+X4D4tnuFEN9GtvWN7+/yTzDaCcsGRWC9Ht+q7KqTg7Jd9pljgbrG9//+73S9nlqw2t1m5P7bulVfkZr/xm7DD1ff9dz3N8Z1G77j1f/kpipQvxeHEd8WuKzpewHi225ExLeRbUPi+5vhKaPdsKzfBTr0jGi7P08lvv0+KB/trz7x3eenN3y08+BsZWiXXYjv4IyLnTayAPHdyKC1liO+jWyJbyPYkC5LfId0sIbHIr4NcZcvTXzbG3MF/woQ33azIb6NbIlvI9iQLkt8h3Swhscivg1xiW97XK7gewHi225ExLeRLfFtBBvSZYnvkA7W8FjEtyEu8W2PyxV8L0B8242I+DayDUp8P/zTYTq8y71qFmtnJMGydREgvuuixPfUFghqfPceMlpzeq2lWVuu7fuB8tiJ70fEBg0FiG87XOLbyJb4NoIN6bLEd0gHa3isIMZ3JJNRrKxS6URU6XjMUKdxlia+G8eRVYIpQHzbzY34NrJtzPj+ctGzGr/0FRVGW2rj4j/ri0XP6KiuQyRlNHrBA/ph2VhJaXUu2EK7tT1LUcX01eLnNWHJCGWUVmGstfZsd4FaxDvpp9LP9OEv9yoSiWqDZnvoq8Uv1Nz5nlb6sT5aMERpVao43km7tz1b8Ui+Hp1+tI7p+ogKYi09rQ9/uU/xSJ62b32ikV7TW5b4bnozX9MTN0Z8N5uzWJs8/7kKFpaqtG0zjT9sa5W2aabmsxdr4xe/UKKkXOl4VFP7bqp5G3fWdveM0g+7b6S5m3Xxtt9h/Ex1f2eyPjl9d3X+fJrWfXuiIumMyloVavwR26qsZaF6PTJGJZ1aqPNnP+qbQ7dWtzFTa+58t5i+QD3ddUqTXoxPPKiXFvRor+JZi7TJs5/q5407q9X3Pyt/SZkmHdhL8zfsqHhpUhu/8LlaTvtFqfy4Jh3QS79s0EGx8kr1HPal9+uZaFQ/7dRD07dfd42Yie814uOHAy5AfNsNkPg2sm2s+F6Q/EnDZp+vw7v8RwXRYr0+7xotTE7XkV0f0o+lH+mjBQ/r0M53eZ/Q++Lss9W7xeFaq3BLPT3jFB3d9RElooWatPRNVWbKtUlxPz0x/Xjt1vZsdSvcWt8seUUf/DJIR6/1iCKK6ZmZ/XVQp1vUJtFd4xa/oNnl3+hP7S/Vq3MvU4+iXbVR8308rSdnnOD9eru89Y30mt6yxHfTm/manniN4zsj7XDnW/pun000d9Mu6v7uZLWZOk9fnrijdrj9LX2/V0/N7tVNLtC3HfSuPvxnX3X99Afvz8cfvo23/U2f/VRLOrfUrK27a5frR2jMuXt78b7xC1+4vyRpwiFbaovHxypvabk+P3lnpRMx1X7sZPu739a0ndbXrK3WVqevftJ6b03U6PP2UfM5i7X9nSP15Qk7esHd8avpWnv0VH0yYDdtNPwrZSIRTT5gC7X4aYG2GvyB3rukn9Z/bbwSJRXe3hKlFdru7rc17rg+3v4a+kV8N1SOnwuDAPFtN0Xi28i2seL7myWvanrZ517suq8pJe/qk4WPevHt7nwnM2VKRAq933tv/t0qjnfQ5i0O0WPTj9b2rU7Ues12VkG0hff7C5M/6cXZ5+rEbkO9P09lKvTgtIN1zFqPakbZV5pS8o76dbjG+71kplRDph2uU7oP8+L9x9KP1bf9Zfq5YorenHfD8usb4TXBZYnvJjj0NTzymsZ3wYJl2uHOkXrnygO8nURSaUVTaeUtKfd+fdRVB3oB7b62HfSOd8d7aacW2u7fo/TeJft5v77rta/oo7P28u5wuzvP7k60+3Ih3eXTH73g3uLxj7R4rVbez7uv2vEdTaaUiUWViUa8u9s73/iaRl53sBff2wx6V+9cVbW35rMWqfcjY/TBhftqp5te07hjd9CSLq2833N3zZOFCe008HX978httahbG+/XN3j1a6Xy4vpu740bLE18N5iOHwyBAPFtN0Ti28i2seLbPWKyuHK29ziJ+5pTPkFv/3yLF79lqUUas/AhL6rd15LKOdqs+ABt1fJI/VwxVV8setYL9/Z5G2q3tmdqWWqBRv580/JHVqoO/tC0Q/S3rg94Uf/pwidUGKsKdfdVni7REV3uVzQS01MzTtZxaz2hzxc94z3Ksl2r443kmuayxHfTnPuanHpN49s98uHC2AVt7S/32MbmT368wq/3fni05m3WRTO2XUfb3zXSe9Qjms6oxxvfeHej3bPc6701QW0nz/GWco+GlLUq0uenVMW3u3s9Y7t1vN+rHd/ujrZ7DCWSyiiSTnuPm4y8/hAvvrd86EO9f/GfvZ+p/ed7XDZMY8+pusNe+2uPy4ersiChTKzqnxiilWnN3mIt7w55Q7+I74bK8XNhECC+7aZIfBvZNlZ8j1/ysmaWjdM+7S/2djq15D19vPARL77dne6Ukt6z2RFF9e78O7073y6+q7/SmUp9tuhJza/4Xtu3Pkkv1brz7e5uD552qHfn213ju2UfqG/7y1cp8vKcS7RFi4O8x1zc8+Nt89YzkmuayxLfTXPua3LqNY1vd+e7z+1veXeX3WMc7q534S8lSkejVXfEl/+626O72/39nj29577dc93xsqQXt+45cffYiLvTvc7bk/TpqbupsjChzl9MU+fPpv0a3xt19MK9dnz/0qO9dhr4hj76x54q6VCs/EWl2vmm1/4wvt2d76+P2l6Lu7X21iuat0RlrZupz+1vatzR7o54wx8zWXkexPeavEL52aALEN92EyS+jWwbK77nVUzWq3Ov0BFd7lNepMj74yWVs734fnPedeqYv7G2aPEXza/4Tq/Pu1Y9inbROkV99NXi57RXu38qFsnT5JKRmlryvvq2v1SPzThWe7Y933vm270p08X00WsNUVRxPTtrgA7ueKtaJrrIXXfy0re1U5tTPSH3+MtPZZ9pQXKa/tblASO1prss8d10Z9/Qk69pfCsj9bnjLf246waauXV3rf3hFLWdNEdfnLiTF+Xf77mRZvfupuKZi7TVg+9r9AV9vcc7in5eqs2f/Ejxskp9euquKm9RqG6jp6rtt3P05fE7eo+BbP7ER95jKO6NmN6d71XEt3tsZOv739P7F/XzHjtxz2x3f3+y3r76IBX9UrLaO9/uTZXRZFoTDt1SzZfv7f3lz3zHkilNOHhL7y76BiP+p9lbrq3FXaseT2nIF/HdEDV+JiwCxLfdJIlvI9vGim+3vTELHtTUknfVPN5eGzTbU18vfkl/6/pgzSMosUhc7fM30rqFfTRq/m3ao915mlX2tXcn272RsijW2ntspXVibe+TUUYvuM97Xrxn875eVLs3WRbHO6r6007cmzPdGzV3bjNAnfI39YTcIy6PTT9GvVserm1bHWuk1nSXJb6b7uwbevI1jm/3OMds92knn8ndBV/WvniVn3aSSsT0bb/NvU8Uqf5yd8Yr8+PenW73lVdSrl5DxnhvdCxvWagp+26qXo+O1YxtuqvZvKWrjG/3Od/uDZutv/9ZycI8fbvf5t6jK+7TUib8ZcvVxreL+42f/1ytfpzvPWYy6cAtNH+DjjWfduJ+3a0xr2cnTd5/C++Z8oZ+Ed8NlePnwiBAfNtNkfg2sm3M+M4oo8jydz65x0PGLhisv3S+w2jnLJsLAeI7F+rBvmZjxHewBex3T3zbG3MF/woQ33azIb6NbBsrvt0d5ydnnqRDOt2m1onuemf+7UpEirRTm78b7ZxlcyFAfOdCPdjXJL7t50d82xtzBf8KEN92syG+jWwbK77d9iYsHeF9con7lJF2eT28z+mu/vhAo+2zbJYFiO8sg4fgcsS3/RCJb3tjruBfAeLbbjbEt5FtY8a30RZZ1kcCxLePhhGQrRDf9oMivu2NuYJ/BYhvu9kQ30a2xLcRbEiXJb5DOljDYxHfhrjLlya+7Y25gn8FiG+72RDfRrbEtxFsSJclvkM6WMNjEd+GuMS3PS5X8L0A8W03IuLbyJb4NoIN6bLEd0gHa3gs4tsQl/i2x+UKvhcgvu1GRHwb2RLfRrAhXZb4DulgDY9FfBviEt/2uFzB9wLEt92IiG8jW+LbCDakyxLfIR2s4bGIb0Nc4tselyv4XoD4thsR8W1k2xjxvcmBMaPd/XbZipKMpoxMZ+16XGhFAeKbV0R9BdYkvvu26KY+zTvV95Kr/f4rZ37SaGv5aSHecOmnabCXbAsQ33bixLeRbWPF94gdKo12+Ouy7RRRr5FR4ttcevUXIL5ziB/QS69pfD/dYj21mj1hjU8/bp3t1GvKy2u8jh8XIL79OBX2lC0B4ttOmvg2sm3M+L51boXRLquWvaFDPvFtKvzHixPff2zEd6wo0Cjx/fp1a8basafG7XAC8b1mivw0Ar4UIL7txkJ8G9kS30awIV2W+A7pYA2Plc34XlSe1uKyjLq1XOlROOLbcMIsjUBuBYhvO3/i28iW+DaCDemyxHdIB2t4rMaM789mVaisMqNUWsqLSZ2ax9QsL6qv51SoeX5UyyoySmekVgURjZuT1DFbNFM8Kon4NpwwSyOQWwHi286f+DayJb6NYEO6LPEd0sEaHqsx4/vL2RValqwK7AVlae2/YaEikoZPKlWX4pjmlqQUj0aUiMmL9H17FCrivoH4NpwwSyOQWwHi286f+DayJb6NYEO6LPEd0sEaHqsx43vlbX47v1LRiNSjTfz3T0B8G06YpRHIrQDxbedPfBvZmsd3JqOqW091+yr++iO1/eBVpfKLFE0lNf3os5Uqau79MG+4rJuh5XcR35a64VzbMr7rLEZ815mKb0QgaALEt93EiG8jW4v4bvHlaLX6dJTSBUWac8BxavPBCOXNm6VIZYVK19lI8/b+qzq/8KB3IhfWRVPHa17fw1Wy/ubq+PJjmrfPX5XOL1SnYUNU1nVdLdxmN+LbaP71XZb4rq8Y3098278G+KhBe2Ou4F8B4ttuNsS3ka1FfLu7123GvKEf+1+mSDqt1h++pl926ef98YZXnqxJVw1Wp5cGK9m2o+bvur+aT/xCLcaN0czDT6s5ZaxsmdZ+4DpNP/YcJVu1I76N5l/fZYnv+orx/cS3/WuA+LY35gr+FSC+7WZDfBvZWsV3sylfa/Yhp3jB3f6NZxRbuliZWFytPxqpidc/po7Dhqhk/c20ZPPtVfTdBLUZ/ZqmH3OOd8rCad+q/RvPau5+x6isc/eak/PYidGLoB7LEt/1wOJbPQHi2/6FQHzbG3MF/woQ33azIb6NbO3i+3+afcjJaj7pK7X54FVNO/kixZYt9e58T7zhCXUc/sgq47t4/Kdq+fn7mnnEaUrn5a9wauLb6EVQj2WJ73pg8a3Ed5ZeA8R3lqC5jC8FiG+7sRDfRrbW8R1fslDdBt+osi7rKFXcUnlzZ6qiQ1dFS0tWGd89Lz5Gpd03VCae8E68uFcfLdxmd++PiW+jF0E9liW+64HFtxLfWXoNEN9ZguYyvhQgvu3GQnwb2VrEt9FWiW8r2HqsS3zXA4tvJb6z9BogvrMEzWV8KUB8242F+DayJb6NYEO6LPEd0sEaHotnvg1xly9NfNsbcwX/ChDfdrMhvo1siW8j2JAuS3yHdLCGxyK+DXGJb3tcruB7AeLbbkTEt5Et8W0EG9Jlie+QDtbwWMS3IS7xbY/LFXwvQHzbjYj4NrIlvo1gQ7os8R3SwRoei/g2xCW+7XG5gu8FiG+7ERHfRrbEtxFsSJclvkM6WMNjEd+GuMS3PS5X8L0A8W03IuLbyJb4NoIN6bLEd0gHa3gs4tsQl/i2x+UKvhcgvu1GRHwb2RLfRrAhXZb4DulgDY9FfBviEt/2uFzB9wLEt92IiG8jW+LbCDakyxLfIR2s4bEaJb5H3rJmO2y7rsbtcIJ6TXl5zdbx6U/zUYM+HQzbyooA8W3HTHwb2RLfRrAhXZb4DulgDY+1pvE9fL0/NcruJi6dQ3w3iiSLIOAvAeLbbh7Et5Et8W0EG9Jlie+QDtbwWGsS34bbCtXS3PkO1Tg5TD0FiO96gtXj24nvemDV51uJ7/po8b3EN6+B+goQ3/UVq//3E9/1N+MnwiNAfNvNkvg2siW+jWBDuizxHdLBGh6L+DbEXb408W1vzBX8K0B8282G+DayJb6NYEO6LPEd0sEaHov4NsQlvu1xuYLvBYhvuxER30a2xLcRbEiXJb5DOljDY9UnvveeMcpwJ+FdekinHdTvxWGqeGfECoeMnX6Nhk7fVaM/Tof38JysyQsQ33YvAeLbyJb4NoIN6bLEd0gHa3isusZ3/j9vMNxF+JdOPnAL8R3+MXPCVQgQ33YvC+LbyJb4NoIN6bLEd0gHa3isusS34eWb9NLc+W7S428yhye+7UZNfBvZEt9GsCFdlvgO6WANj0V8G+L+wdLEd+7suXL2BIhvO2vi28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28iW+DaCDemyxHdIB2t4LOLbEJf4zh0uV/aNAPFtNwri28i2MePbaIs1y7ZTRL1GRjVlZNr6Uqy/GgHim5dGfQWI7/qKNd73x06/RkOn76rRH/PXzMZTZSW/CRDfdhMhvo1sGyu+jbb3m2UrSjLEd7awV3Ed4juH+AG9NPGdu8ER37mz58rZEyC+7ayJbyPbxohvo62xrA8FiG8fDsXnWyK+czcg4jt39lw5ewLEt5018W1kS3wbwYZ0WeI7pIM1PBbxbYj7B0sT37mz58rZEyC+7ayJbyNb4tsINqTLEt8hHazhsYhvQ1ziO3e4XNk3AsS33SiIbyNb4tsINqTLEt8hHazhsYhvQ1ziO3e4XNk3AsS33SiIbyPbhsS30VZYNiAC6/X4VmVXnRyQ3bLNXAsQ37mbAI+d5M6eK2dPgPi2sya+jWzrG99G22DZgAmUDR0csB2z3VwJEN+5kpeI79zZc+XsCRDfdtbEt5FtfeLbaAssiwACIRYgvnM3XOI7d/ZcOXsCxLedNfFtZEt8G8GyLAIIeALEd+5eCMR37uy5cvYEiG87a+LbyJb4NoJlWQQQIL5z/BogvnM8AC6fFQHi246Z+DayJb6NYFkWAQSI7xy/BojvHA+Ay2dFgPi2Yya+jWx/L76NLsmyCCDQxARmbHqYbrivQJv2jOiUnScrMXFsExPIzXGTHdbV0Om7avTH6dxsgKsikAUB4tsOmfg2sl1dfBtdjmURQKCJCgwfkfLiu8c6kV8FIhEpk5Gq/39tm1X93sq/9kd/7tZb3ff80e9V76X2zwdwdj/PzxDfAZwbW667APFdd6v6fifxXV+xOn7/quK7jj/KtyGAAAIIIIAAAjkVIL7t+IlvI1vi2wiWZRFAAAEEEEDAXID4tiMmvo1siW8jWJZFAAEEEEAAAXMB4tuOmPg2siW+jWBZFgEEEEAAAQTMBYhvO2Li28jWxTdfCCCAAAIIIIBAEAXce6IP6BsN4tZ9v2fi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggHVUwz8AAAF/SURBVAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HsB4tv3I2KDCCCAAAIIIIAAAmERIL7DMknOgQACCCCAAAIIIOB7AeLb9yNigwgggAACCCCAAAJhESC+wzJJzoEAAggggAACCCDgewHi2/cjYoMIIIAAAggggAACYREgvsMySc6BAAIIIIAAAggg4HuB/weMQ6kSWZOVxAAAAABJRU5ErkJggg==",
"text/html": [
"<div> <div id=\"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\")) { Plotly.newPlot( \"03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0\", [{\"domain\":{\"x\":[0.0,1.0],\"y\":[0.0,1.0]},\"hovertemplate\":\"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\",\"labels\":[\"Py_kgeneration\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"fourt\",\"cov_value\",\"ran2\",\"build_real\",\"prebuild_gwn\",\"clean_real\",\"cgrid\",\"length\",\"maxfactor\"],\"marker\":{\"colors\":[\"#636efa\",\"#EF553B\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#00cc96\",\"#FFA15A\",\"#19d3f3\",\"#636efa\",\"#00cc96\",\"#636efa\",\"#636efa\",\"#636efa\",\"#636efa\"]},\"name\":\"\",\"parents\":[\"\",\"Py_kgeneration\",\"Py_kgeneration\",\"fftma2\",\"generate\",\"fftma2\",\"covariance\",\"gasdev\",\"\",\"fftma2\",\"\",\"\",\"\",\"\"],\"values\":[1530.896938,1198.768697,332.127615,330.818047,891.8639310001546,1.266409,140.26829500008319,282.56151199981946,0.021324,0.00865,0.007677,0.00193,0.001254,0.000354],\"type\":\"treemap\"}], {\"template\":{\"data\":{\"bar\":[{\"error_x\":{\"color\":\"#2a3f5f\"},\"error_y\":{\"color\":\"#2a3f5f\"},\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"bar\"}],\"barpolar\":[{\"marker\":{\"line\":{\"color\":\"#E5ECF6\",\"width\":0.5},\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"barpolar\"}],\"carpet\":[{\"aaxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"baxis\":{\"endlinecolor\":\"#2a3f5f\",\"gridcolor\":\"white\",\"linecolor\":\"white\",\"minorgridcolor\":\"white\",\"startlinecolor\":\"#2a3f5f\"},\"type\":\"carpet\"}],\"choropleth\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"choropleth\"}],\"contour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"contour\"}],\"contourcarpet\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"contourcarpet\"}],\"heatmap\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmap\"}],\"heatmapgl\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"heatmapgl\"}],\"histogram\":[{\"marker\":{\"pattern\":{\"fillmode\":\"overlay\",\"size\":10,\"solidity\":0.2}},\"type\":\"histogram\"}],\"histogram2d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2d\"}],\"histogram2dcontour\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"histogram2dcontour\"}],\"mesh3d\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"type\":\"mesh3d\"}],\"parcoords\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"parcoords\"}],\"pie\":[{\"automargin\":true,\"type\":\"pie\"}],\"scatter\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter\"}],\"scatter3d\":[{\"line\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatter3d\"}],\"scattercarpet\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattercarpet\"}],\"scattergeo\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergeo\"}],\"scattergl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattergl\"}],\"scattermapbox\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scattermapbox\"}],\"scatterpolar\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolar\"}],\"scatterpolargl\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterpolargl\"}],\"scatterternary\":[{\"marker\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"type\":\"scatterternary\"}],\"surface\":[{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"},\"colorscale\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"type\":\"surface\"}],\"table\":[{\"cells\":{\"fill\":{\"color\":\"#EBF0F8\"},\"line\":{\"color\":\"white\"}},\"header\":{\"fill\":{\"color\":\"#C8D4E3\"},\"line\":{\"color\":\"white\"}},\"type\":\"table\"}]},\"layout\":{\"annotationdefaults\":{\"arrowcolor\":\"#2a3f5f\",\"arrowhead\":0,\"arrowwidth\":1},\"autotypenumbers\":\"strict\",\"coloraxis\":{\"colorbar\":{\"outlinewidth\":0,\"ticks\":\"\"}},\"colorscale\":{\"diverging\":[[0,\"#8e0152\"],[0.1,\"#c51b7d\"],[0.2,\"#de77ae\"],[0.3,\"#f1b6da\"],[0.4,\"#fde0ef\"],[0.5,\"#f7f7f7\"],[0.6,\"#e6f5d0\"],[0.7,\"#b8e186\"],[0.8,\"#7fbc41\"],[0.9,\"#4d9221\"],[1,\"#276419\"]],\"sequential\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]],\"sequentialminus\":[[0.0,\"#0d0887\"],[0.1111111111111111,\"#46039f\"],[0.2222222222222222,\"#7201a8\"],[0.3333333333333333,\"#9c179e\"],[0.4444444444444444,\"#bd3786\"],[0.5555555555555556,\"#d8576b\"],[0.6666666666666666,\"#ed7953\"],[0.7777777777777778,\"#fb9f3a\"],[0.8888888888888888,\"#fdca26\"],[1.0,\"#f0f921\"]]},\"colorway\":[\"#636efa\",\"#EF553B\",\"#00cc96\",\"#ab63fa\",\"#FFA15A\",\"#19d3f3\",\"#FF6692\",\"#B6E880\",\"#FF97FF\",\"#FECB52\"],\"font\":{\"color\":\"#2a3f5f\"},\"geo\":{\"bgcolor\":\"white\",\"lakecolor\":\"white\",\"landcolor\":\"#E5ECF6\",\"showlakes\":true,\"showland\":true,\"subunitcolor\":\"white\"},\"hoverlabel\":{\"align\":\"left\"},\"hovermode\":\"closest\",\"mapbox\":{\"style\":\"light\"},\"paper_bgcolor\":\"white\",\"plot_bgcolor\":\"#E5ECF6\",\"polar\":{\"angularaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"radialaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"scene\":{\"xaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"yaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"},\"zaxis\":{\"backgroundcolor\":\"#E5ECF6\",\"gridcolor\":\"white\",\"gridwidth\":2,\"linecolor\":\"white\",\"showbackground\":true,\"ticks\":\"\",\"zerolinecolor\":\"white\"}},\"shapedefaults\":{\"line\":{\"color\":\"#2a3f5f\"}},\"ternary\":{\"aaxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"baxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"},\"bgcolor\":\"#E5ECF6\",\"caxis\":{\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\"}},\"title\":{\"x\":0.05},\"xaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2},\"yaxis\":{\"automargin\":true,\"gridcolor\":\"white\",\"linecolor\":\"white\",\"ticks\":\"\",\"title\":{\"standoff\":15},\"zerolinecolor\":\"white\",\"zerolinewidth\":2}}},\"legend\":{\"tracegroupgap\":0},\"title\":{\"text\":\"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('03c3cc32-ae8b-42d9-a560-2f31a5a2a9c0');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 256"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file number 1 out of 10\n",
"Executing file number 2 out of 10\n",
"Executing file number 3 out of 10\n",
"Executing file number 4 out of 10\n",
"Executing file number 5 out of 10\n",
"Executing file number 6 out of 10\n",
"Executing file number 7 out of 10\n",
"Executing file number 8 out of 10\n",
"Executing file number 9 out of 10\n",
"Executing file number 10 out of 10\n"
]
}
],
"source": [
"df = analyze(['log_256-aa', 'log_256-ab', 'log_256-ac'])\n",
"overall_time[\"256\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"256\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>count</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>sum</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>7421.6</td>\n",
" <td>7421.6</td>\n",
" <td>7421.6</td>\n",
" <td>1.0</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>6691.7</td>\n",
" <td>6691.7</td>\n",
" <td>6691.7</td>\n",
" <td>1.0</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>872.0</td>\n",
" <td>872.0</td>\n",
" <td>872.0</td>\n",
" <td>1.0</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>870.5</td>\n",
" <td>870.5</td>\n",
" <td>870.5</td>\n",
" <td>1.0</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>8.7</td>\n",
" <td>0.0</td>\n",
" <td>-13.5</td>\n",
" <td>16777216.0</td>\n",
" <td>0.001358</td>\n",
" <td>0.000033</td>\n",
" <td>0.000000</td>\n",
" <td>564.182445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>11.5</td>\n",
" <td>-1.4</td>\n",
" <td>-16.2</td>\n",
" <td>3.0</td>\n",
" <td>8.429829</td>\n",
" <td>6.378454</td>\n",
" <td>5.015006</td>\n",
" <td>19.135362</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>0.7</td>\n",
" <td>0.0</td>\n",
" <td>-13.9</td>\n",
" <td>8855600.0</td>\n",
" <td>0.000437</td>\n",
" <td>0.000002</td>\n",
" <td>0.000001</td>\n",
" <td>21.579349</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>0.9</td>\n",
" <td>0.0</td>\n",
" <td>-0.8</td>\n",
" <td>21359556.0</td>\n",
" <td>0.000381</td>\n",
" <td>0.000002</td>\n",
" <td>0.000000</td>\n",
" <td>45.002553</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>-0.2</td>\n",
" <td>-0.2</td>\n",
" <td>-0.2</td>\n",
" <td>1.0</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>6.5</td>\n",
" <td>6.5</td>\n",
" <td>6.5</td>\n",
" <td>1.0</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>127.2</td>\n",
" <td>127.2</td>\n",
" <td>127.2</td>\n",
" <td>1.0</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0.000043</td>\n",
" <td>0.000034</td>\n",
" <td>0.000021</td>\n",
" <td>0.000102</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>5.0</td>\n",
" <td>0.000002</td>\n",
" <td>0.000002</td>\n",
" <td>0.000001</td>\n",
" <td>0.000008</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory time \\\n",
" max median min count max mean \n",
"function \n",
"Py_kgeneration 7421.6 7421.6 7421.6 1.0 1226.822575 1226.822575 \n",
"generate 6691.7 6691.7 6691.7 1.0 959.799368 959.799368 \n",
"fftma2 872.0 872.0 872.0 1.0 267.021516 267.021516 \n",
"covariance 870.5 870.5 870.5 1.0 247.512194 247.512194 \n",
"gasdev 8.7 0.0 -13.5 16777216.0 0.001358 0.000033 \n",
"fourt 11.5 -1.4 -16.2 3.0 8.429829 6.378454 \n",
"cov_value 0.7 0.0 -13.9 8855600.0 0.000437 0.000002 \n",
"ran2 0.9 0.0 -0.8 21359556.0 0.000381 0.000002 \n",
"build_real -0.2 -0.2 -0.2 1.0 0.151968 0.151968 \n",
"prebuild_gwn 6.5 6.5 6.5 1.0 0.108160 0.108160 \n",
"clean_real 127.2 127.2 127.2 1.0 0.095267 0.095267 \n",
"cgrid 0.0 0.0 0.0 1.0 0.000160 0.000160 \n",
"length 0.0 0.0 0.0 3.0 0.000043 0.000034 \n",
"maxfactor 0.0 0.0 0.0 5.0 0.000002 0.000002 \n",
"\n",
" \n",
" min sum \n",
"function \n",
"Py_kgeneration 1226.822575 1226.822575 \n",
"generate 959.799368 959.799368 \n",
"fftma2 267.021516 267.021516 \n",
"covariance 247.512194 247.512194 \n",
"gasdev 0.000000 564.182445 \n",
"fourt 5.015006 19.135362 \n",
"cov_value 0.000001 21.579349 \n",
"ran2 0.000000 45.002553 \n",
"build_real 0.151968 0.151968 \n",
"prebuild_gwn 0.108160 0.108160 \n",
"clean_real 0.095267 0.095267 \n",
"cgrid 0.000160 0.000160 \n",
"length 0.000021 0.000102 \n",
"maxfactor 0.000001 0.000008 "
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merge_dfs(dfs)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_treemap(df)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Comparison between different sizes"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"def plot_overall_comparison(info, title, unit):\n",
" fig = plt.figure()\n",
" plt.title(title)\n",
" plt.bar(info.keys(),info.values())\n",
" plt.ylabel(unit)\n",
" plt.xlabel(\"sizes\")\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'8': 0.544398, '16': 2.908668, '32': 22.135483, '64': 178.629961}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAY/0lEQVR4nO3df9xmc73v8deboeS35k5IRqIO2kZ7Ep10FJUoShFb+n3QSR3pl+rsTT1256g4nXa71HQ4ahPJj7Y2+ZFd7HMqGpIQ+dHIjGFGisSRH5/9x7Xu5XK7by4zc93rHvfr+Xhcj1nru359rnVzva/1XetaK1WFJEkAK3VdgCRp6jAUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0ErrCRHJjmxGZ6VpJLMWIr1XJ1kp+Vd31NNknuSPK/rOjRchoKelCTvTPKrJPcmuS3JsUnW6bqux9N8mI2+Hk5yX9/4/lW1VVX9eJJq2SLJd5PckeSuJFcmOSzJypOx/WVRVWtU1U1d16HhMhQ0sCQfBj4HfBRYG9ge2AS4IMmqy3lbT/ob/0SaD7M1qmoN4HfAG/raTlpe23kiSTYDLgFuAV5UVWsDewNzgDUnq44na3n+LTT1GQoaSJK1gE8DH6iqc6vqgaqaD+wDzALelmTD5lv4en3Lbdt8K16lGX93kl8n+UOS85Js0jdvJXl/kuuB65u2LyW5JcndSS5LsuMQ3tv8JLs0w0c23+RPTPKn5qhoiySfSLK4qeU1fcuuneS4JIuSLEzy94/zrf/TwE+q6rCqWgRQVddV1d9U1R+b9e3RdGf9McmPk/yHMXV+tDm6+HOz3fWT/KCp9YdJ1m3mHe1OOzDJrU19H+lb13ZJftpsZ1GSf+wP9gn+FpXk+c3wbkmuaba7cMy6/3OSG5LcmeSsJBuOWe/BSa5vtv2VJFn6v56WN0NBg3oZ8HTgjP7GqroHOAd4dVXdCvwUeHPfLH8DnFZVDyTZE/gksBcwAvwbcPKY7bwReCmwZTP+c2A2sB7wbeC7SZ6+3N7V+N4A/BOwLvAL4Dx6/69sBHwG+HrfvCcADwLPB7YFXgO8d4L17gKcNtFGk2xBb38cSm//nAN8f8xR2JuBVwNbNHX+gN4+HWlq/OCY1b4S2Lyp6+Oj4Qc8BHwImAnsAOwM/Jcxy76RR/8t+h0HHFRVawJbA//avIdXAf+D3peFDYCbgVPGLPt64CXAXzXzvXbcHaJuVJUvX0/4At4G3DbBtKOAC5rh9wL/2gyHXlfJK5rxHwDv6VtuJeBeYJNmvIBXPUEdfwC2aYaPBE5shmc1y894guXnA7tM1Nas84K+aW8A7gFWbsbXbLazDrA+cD+wWt/8+wE/mmDbDwC7Pk5tfwucOmb/LAR26qtz/77ppwPH9o1/APjemP3xwr7pnweOm2DbhwJn9o0/5m/RtD2/Gf4dcBCw1ph5jgM+3ze+RvO+Z/Wt4+V9008FDu/6v29fj7w8UtCg7gBmTtC/vEEzHXofVDsk2QB4BfAwvSMC6J1/+FLTbfBH4E56wbFR37pu6V9xko803U13NcusTe/b7TDd3jd8H3BHVT3UNw69D7tNgFWARX3v6evAsyZY7+/p7auJbEjvmzUAVfUwvf3Rv3/G1jZ2fI0x6+zfnzc32xg94f0v6V0scDfw33nsfr2Fib0Z2A24OclFSXaY4D3cQ+9997+H2/qG7x2nZnXIUNCgfkrvW/Fe/Y1J1gBeB1wIUFV/AM4H3kqv6+iUar4S0vuQOaiq1ul7rVZVP+lbZfWte0fgY/S6GNatqnWAu+gFyVRwC719MrPv/axVVVtNMP8PeXTX2li30gsaAJq+9o3pHS0srY37hp/bbAPgWOBaYPOqWoteF9TY/TrhLZSr6udVtSe9APwevW/88Nj3sDrwTJbtPWgSGQoaSFXdRe9E6ZeT7JpklSSz6H0YLKDXBz/q28Dbgbc0w6O+BnwiyVbQnqTd+3E2uya9/volwIwkfwestZze0jKr3sni84FjkqyVZKUkmyX5TxMscgTwsiRfSPJsgCTPb05qr0NvX+6eZOf0Tsx/mF7o/GSC9Q3ib5M8o9nn7wK+07SvCdwN3JPkhcD7Bl1hklWT7J9k7ap6oFnPw83kk4F3JZmd5Gn0jkAuqd5FCVoBGAoaWFV9nt43yqPpfRCMXl65c1Xd3zfrWfRObt5WVb/sW/5Mepe0ntJ0WVxF7yhjIucB5wK/odcl8f95/C6NLrwdWBW4ht75jtOYoIuoqm6kd1J3FnB1krvodbfNA/5UVdfRO3fzZXrdcW+gd/nsX5ahvouAG+gdyR1dVec37R+hdyT3J+AbPBIWgzoAmN/8HQ8G9geoqh/SOzdyOrAI2AzYdxnq1yTLI0f2kp4qmqO43wKrVNWDHZejFYhHCpKklqEgSWrZfSRJanmkIElqrdA3upo5c2bNmjWr6zIkaYVy2WWX3VFVI+NNW6FDYdasWcybN6/rMiRphZLk5omm2X0kSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWqt0L9oljR9zTr87K5L6NT8o3YfynqHdqSQ5Pgki5Nc1df2nSRXNK/5Sa5o2mclua9v2teGVZckaWLDPFI4AfhH4FujDVX11tHhJMfQewj7qBuravYQ65EkPYGhhUJVXdw8EvAxkgTYB3jVsLYvSXryujrRvCNwe1Vd39e2aZJfJLkoyY4TLZjkwCTzksxbsmTJ8CuVpGmkq1DYDzi5b3wR8Nyq2hY4DPh2krXGW7Cq5lbVnKqaMzIy7u3AJUlLadJDIckMYC/gO6NtVXV/Vf2+Gb4MuBHYYrJrk6TprosjhV2Aa6tqwWhDkpEkKzfDzwM2B27qoDZJmtaGeUnqycBPgRckWZDkPc2kfXl01xHAK4Arm0tUTwMOrqo7h1WbJGl8w7z6aL8J2t85TtvpwOnDqkWSNBhvcyFJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqTW0EIhyfFJFie5qq/tyCQLk1zRvHbrm/aJJDckuS7Ja4dVlyRpYsM8UjgB2HWc9i9W1ezmdQ5Aki2BfYGtmmW+mmTlIdYmSRrH0EKhqi4G7hxw9j2BU6rq/qr6LXADsN2wapMkja+LcwqHJLmy6V5at2nbCLilb54FTdtjJDkwybwk85YsWTLsWiVpWpnsUDgW2AyYDSwCjnmyK6iquVU1p6rmjIyMLOfyJGl6m9RQqKrbq+qhqnoY+AaPdBEtBDbum/U5TZskaRJNaigk2aBv9E3A6JVJZwH7Jnlakk2BzYFLJ7M2SRLMGNaKk5wM7ATMTLIAOALYKclsoID5wEEAVXV1klOBa4AHgfdX1UPDqk2SNL6hhUJV7TdO83GPM/9ngc8Oqx5J0hPzF82SpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqDS0UkhyfZHGSq/ravpDk2iRXJjkzyTpN+6wk9yW5onl9bVh1SZImNswjhROAXce0XQBsXVV/BfwG+ETftBuranbzOniIdUmSJjC0UKiqi4E7x7SdX1UPNqM/A54zrO1Lkp68Ls8pvBv4Qd/4pkl+keSiJDtOtFCSA5PMSzJvyZIlw69SkqaRTkIhyaeAB4GTmqZFwHOralvgMODbSdYab9mqmltVc6pqzsjIyOQULEnTxKSHQpJ3Aq8H9q+qAqiq+6vq983wZcCNwBaTXZskTXeTGgpJdgU+BuxRVff2tY8kWbkZfh6wOXDTZNYmSYIZw1pxkpOBnYCZSRYAR9C72uhpwAVJAH7WXGn0CuAzSR4AHgYOrqo7x12xJGlohhYKVbXfOM3HTTDv6cDpw6pFkjQYf9EsSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKk1kChkGT1JCs1w1sk2SPJKsMtTZI02QY9UrgYeHqSjYDzgQOAE4ZVlCSpG4OGQpqH4uwFfLWq9ga2Gl5ZkqQuDBwKSXYA9gfObtpWHk5JkqSuDBoKh9J7atqZVXV188jMHw2tKklSJwZ68lpVXQRc1Dd+E/DBYRUlSerG44ZCku8DNdH0qtpjuVckSerMEx0pHN38uxfwbODEZnw/4PZhFSVJ6sbjhkLTbUSSY6pqTt+k7yeZ90QrT3I88HpgcVVt3bStB3wHmAXMB/apqj8kCfAlYDfgXuCdVXX5k35HkqSlNuiJ5tWbk8sAJNkUWH2A5U4Adh3TdjhwYVVtDlzYjAO8Dti8eR0IHDtgbZKk5WSgE83Ah4AfJ7kJCLAJcNATLVRVFyeZNaZ5T2CnZvibwI+Bjzft36qqAn6WZJ0kG1TVogFrlCQto0GvPjo3yebAC5uma6vq/qXc5vp9H/S3Aes3wxsBt/TNt6Bpe1QoJDmQ3pEEz33uc5eyBEnSeAY9UgD4a3rnAWYA2yShqr61LBuvqkoy4dVNEywzF5gLMGfOnCe1rCTp8Q0UCkn+CdgMuAJ4qGkuYGlC4fbRbqEkGwCLm/aFwMZ98z2naZMkTZJBjxTmAFs2/f3L6izgHcBRzb//3Nd+SJJTgJcCd3k+QZIm16ChcBW93yk8qQ/pJCfTO6k8M8kC4Ah6YXBqkvcANwP7NLOfQ+9y1BvoXZL6riezLUnSshs0FGYC1yS5FGhPMD/RL5qrar8JJu08zrwFvH/AeiRJQzBoKBw5zCIkSVPDwDfES7I+8JKm6dKqWvx4y0iSVjyDPo5zH+BSYG965wAuSfKWYRYmSZp8g3YffQp4yejRQZIR4IfAacMqTJI0+Qa999FKY7qLfv8klpUkrSAGPVI4N8l5wMnN+FuBHwynJElSVwY90fzRJHsBL2+a5lbVmcMrS5LUhUFvc7EpcE5VndGMr5ZkVlXNH2ZxkqTJNeh5ge8CD/eNP9S0SZKeQgYNhRlV9ZfRkWZ41eGUJEnqyqChsCRJe0uLJHsCdwynJElSVwa9+uhg4KQkX6F3y+wFwNuHVpUkqRODXn10I7B9kjWa8XuGWpUkqROD3uZi/STHAd+tqnuSbNnc+lqS9BQy6DmFE4DzgA2b8d8Ahw6hHklShwYNhZlVdSrNZalV9SCPPJZTkvQUMWgo/DnJM+mdZCbJ9sBdQ6tKktSJQa8+OozeM5Q3S/L/gBHAW2dL0lPMoEcKmwGvA15G79zC9QweKJKkFcSgofC3VXU3sC7wSuCrwLFDq0qS1IlBQ2H0pPLuwDeq6myW8jYXSV6Q5Iq+191JDk1yZJKFfe27Lc36JUlLb9AuoIVJvg68GvhckqexlA/ZqarrgNkASVYGFgJnAu8CvlhVRy/NeiVJy27QD/Z96J1LeG1V/RFYD/joctj+zsCNVXXzcliXJGkZDRQKVXVvVZ1RVdc344uq6vzlsP19eeRpbgCHJLkyyfFJ1h1vgSQHJpmXZN6SJUuWQwmSpFGdPWc5yarAHjzyXIZj6V3lNBtYBBwz3nJVNbeq5lTVnJGRkckoVZKmjc5Cgd4lrpdX1e0AVXV7VT1UVQ8D3wC267A2SZqWugyF/ejrOkqyQd+0NwFXTXpFkjTNdfIDtCSr07uS6aC+5s8nmU3vVhrzx0yTJE2CTkKhqv4MPHNM2wFd1CJJekSX3UeSpCnGUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktWZ0teEk84E/AQ8BD1bVnCTrAd8BZgHzgX2q6g9d1ShJ003XRwqvrKrZVTWnGT8cuLCqNgcubMYlSZOk61AYa0/gm83wN4E3dleKJE0/XYZCAecnuSzJgU3b+lW1qBm+DVh/7EJJDkwyL8m8JUuWTFatkjQtdHZOAXh5VS1M8izggiTX9k+sqkpSYxeqqrnAXIA5c+Y8Zrokael1dqRQVQubfxcDZwLbAbcn2QCg+XdxV/VJ0nTUSSgkWT3JmqPDwGuAq4CzgHc0s70D+Ocu6pOk6aqr7qP1gTOTjNbw7ao6N8nPgVOTvAe4Gdino/okaVrqJBSq6iZgm3Hafw/sPPkVSZJg6l2SKknqkKEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWpNeigk2TjJj5Jck+TqJP+1aT8yycIkVzSv3Sa7Nkma7mZ0sM0HgQ9X1eVJ1gQuS3JBM+2LVXV0BzVJkuggFKpqEbCoGf5Tkl8DG012HZKkx+r0nEKSWcC2wCVN0yFJrkxyfJJ1J1jmwCTzksxbsmTJZJUqSdNCZ6GQZA3gdODQqrobOBbYDJhN70jimPGWq6q5VTWnquaMjIxMVrmSNC10EgpJVqEXCCdV1RkAVXV7VT1UVQ8D3wC266I2SZrOJv2cQpIAxwG/rqr/2de+QXO+AeBNwFWTXZs0mWYdfnbXJXRq/lG7d12CxtHF1Uf/ETgA+FWSK5q2TwL7JZkNFDAfOKiD2iRpWuvi6qP/C2ScSedMdi2SpEfzF82SpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpNakP6NZTx2zDj+76xI6Nf+o3bsuQVruptyRQpJdk1yX5IYkh3ddjyRNJ1MqFJKsDHwFeB2wJbBfki27rUqSpo+p1n20HXBDVd0EkOQUYE/gmmFszO4Puz8kPVqqqusaWkneAuxaVe9txg8AXlpVh/TNcyBwYDP6AuC6SS90+ZkJ3NF1ESsw99+ycf8tmxV5/21SVSPjTZhqRwpPqKrmAnO7rmN5SDKvquZ0XceKyv23bNx/y+apuv+m1DkFYCGwcd/4c5o2SdIkmGqh8HNg8ySbJlkV2Bc4q+OaJGnamFLdR1X1YJJDgPOAlYHjq+rqjssapqdEN1iH3H/Lxv23bJ6S+29KnWiWJHVrqnUfSZI6ZChIklqGQgeSfCjJ1UmuSnJykqd3XdNUluT4JIuTXDWm/QNJrm325ee7qm+qS/L0JJcm+WWzrz7dtJ/U3FLmqmYfr9J1rVNVknWSnNb89/brJDv0Tftwkkoys8salxdDYZIl2Qj4IDCnqramd0J9326rmvJOAHbtb0jySnq/dt+mqrYCju6grhXF/cCrqmobYDawa5LtgZOAFwIvAlYD3ttZhVPfl4Bzq+qFwDbArwGSbAy8Bvhdh7UtV4ZCN2YAqyWZATwDuLXjeqa0qroYuHNM8/uAo6rq/maexZNe2Aqieu5pRldpXlVV5zTTCriU3u+CNEaStYFXAMcBVNVfquqPzeQvAh8DnjJX7BgKk6yqFtL7Vvs7YBFwV1Wd321VK6QtgB2TXJLkoiQv6bqgqSzJykmuABYDF1TVJX3TVgEOAM7tqLypblNgCfB/kvwiyf9OsnqSPYGFVfXLjutbrgyFSZZkXXrdHpsCGwKrJ3lbt1WtkGYA6wHbAx8FTk2SbkuauqrqoaqaTe9oYLskW/dN/ipwcVX9WyfFTX0zgBcDx1bVtsCfgSOBTwJ/12FdQ2EoTL5dgN9W1ZKqegA4A3hZxzWtiBYAZzS9H5cCD9O7QZkeR9Pt8SOaczRJjgBGgMM6LGuqWwAs6Du6Oo1eSGwK/DLJfHphe3mSZ3dT4vJjKEy+3wHbJ3lG8812Z5qTVnpSvge8EiDJFsCqrLh3rByqJCNJ1mmGVwNeDVyb5L3Aa4H9qurhDkuc0qrqNuCWJC9omnYGLq+qZ1XVrKqaRS84XtzMu0KbUre5mA6q6pIkpwGXAw8Cv+Ap+nP55SXJycBOwMwkC4AjgOOB45vLVP8CvKP8ef5ENgC+2TzEaiXg1Kr6lyQPAjcDP2163s6oqs90WOdU9gHgpOaebDcB7+q4nqHxNheSpJbdR5KklqEgSWoZCpKklqEgSWoZCpKklqEgLYPmlgdbdl2HtLx4SaokqeWRgjSg5iZoZzfPJbgqyVuT/DjJnCR7JLmieV2X5LfNMn/d3LDvsiTnJdmgaf9gkmuSXJnklG7fmfQIf9EsDW5X4Naq2h3aWyq/D6CqzgLOatpPBS5q7j76ZWDPqlqS5K3AZ4F3A4cDm1bV/aO3oJCmAo8UpMH9Cnh1ks8l2bGq7ho7Q5KPAfdV1VeAFwBbAxc0t63+bzzyzIIr6d024W30bnciTQkeKUgDqqrfJHkxsBvw90ku7J+eZBdgb3oPZAEIcHVV7cBj7d7M9wbgU0leVFWGgzrnkYI0oCQbAvdW1YnAF+jdPnl02ibAV4C9q+q+pvk6YGT0eb5JVkmyVZKVgI2r6kfAx4G1gTUm8a1IE/JIQRrci4AvJHkYeIDe+YTRZ0O/E3gm8L3mjqO3VtVuSd4C/ENz/mEG8L+A3wAnNm0B/qHv8Y5Sp7wkVZLUsvtIktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktT6dy/3pdmXf/kQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"print(overall_time)\n",
"plot_overall_comparison(overall_time, \"Overall Time Comparison\", \"seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'8': 0.2, '16': 11.1, '32': 53.6, '64': 304.2}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYxElEQVR4nO3debhcdZ3n8fdHwqYgi0SEgIRR0AYdkY4MdLfdKC4Io7F7XMANEcX2wW3EBW1tcKYdUelmxLbxwYY2iIJpBc0ooogLbatgQEEW0ShBEgK5iGwuIPCdP84vx/JybxaSunVD3q/nqeee8zvb95xK6lPnd05VpaqQJAngIaMuQJI0fRgKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoaBpI8lxSc5ow7OTVJIZo65LD0ySO5P8l1HXoTVjKGzgkrwyyY+S/CbJjUlOTrL1qOtalSSLk9ydZLtx7T9oYTJ7RKWtU0l2T/LvSW5OcluSy5O8JclGo65tVapqi6r6+ajr0JoxFDZgSY4GPgC8DdgK2BfYBTg/ySbreFvDeMd/LXDowDaeCDz0ga5s2Gcla7r+JI8BLgKuB55YVVsBLwTmAFuu+wrXDc/u1m+GwgYqycOB9wJvqKrzqur3VbUYeBEwG3hZkh2T/DbJtgPLPbm9a924jb8qydVJfpXkK0l2GZi3khyV5KfAT1vbh5Ncn+T2JJckeepa7MYngVcMjB8GnD5uPzdNckKSXyS5KcnHkmzepu2fZEmSdyS5Efi31oX170nOSHJHO4vaPck7kyxvtT9rYP07JlmQ5JYki5K8ZmDacUk+29Z1O3BMOyN7xMA8eycZW3E8x3kv8J2qektVLQOoqmuq6iVVdWtb/nlJrkxya5JvJvmTgXUvTvK2dnbx6ySnJtk+yZfbvn0tyTZt3hXddUcmuSHJsiRvHVjXPkm+27azLMk/D75xmOS5riSPbcMHJbmqbXfpuHW/ph27W9qx3HHcev82yU/btj+aJCv5N6G1VVU+NsAHcCBwDzBjgmnzgDPb8NeB1wxM+xDwsTY8F1gE/AkwA3g33YvYinkLOB/YFti8tb0MeESb/2jgRmCzNu044Iw2PLstf7/62vTFwDOAa9r2NwKW0J3pFDC7zXcisKDVsCXw/4D3t2n7t2PwAWBTYPNWw++AZ7caT6c7I/k7YGPgNcC1A3VcCPwLsBmwFzAGPH1gf34PPJ/uDdjmwLnA6waWPxH4yCT7eCNw+Eqew92BXwPPbLW9vT0fmwwco+8B2wOzgOXApcCTW71fB44dd7zPBB4GPLHtyzPa9D+lO5Oc0ea9GnjzKp7rAh7bhpcBT23D2wB7t+GnAzcDe7fn4CPAhePW+0Vga+DRraYDR/3/58H8GHkBPkb0xHcvzjdOMu144Pw2/Grg6204dF0Zf9nGvwwcMbDcQ4DfALu08VrxArmSOn4FPKkNH8eah8K7gffThdz57UWr2vJpL5qPGVhuP9qLOl0o3E0LpYEazh8Yfy5wJ7BRG9+yrX9rYGfgXmDLgfnfD3xiYF0Xjqv7xcB/tuGN6F7495lkH3+/shdA4D3A/HHHfymw/8AxeunA9M8BJw+MvwH4/Ljj/fiB6R8ETp1k228GzhkYv99zzR+Hwi+A1wIPHzfPqcAHB8a3aPs9e2AdfzEwfT5wzKj//zyYH3YfbbhuBrabpP93hzYduheS/ZLsAPwlcB/wH23aLsCH22n9rcAtdC/EswbWdf3gipO8tXU33daW2Qr4o4vFa+iTwEuAVzKu6wiYSXeN4ZKBGs9r7SuMVdXvxi1308Dwb4Gbq+regXHoXrx2BG6pqjsG5r+Olew/8AVgjyS70r3Dv62qLp5k335J91xMZse2PQCq6r62vcHtj9+X8eNbjFvnYL3XtW2suOD9xXQ3I9wO/B/u/7yN39dB/wM4CLguybeS7DfJPtxJt9+D+3DjwPBvJqhZ65ChsOH6LnAX8DeDjUm2AJ4DXABQVb8Cvkr3DvclwFnV3rLRvQi8tqq2HnhsXlXfGVhlDaz7qXRdHC8CtqmqrYHb6ILkAamq6+i6dw4Czh43+Wa6F749B+rbqqoGX1TW5muCbwC2TTJ40ffRdO/WJ1x/C6D5dGdqL6cLtcl8je7FdGXbH7yGE7qzl6WTLrFqOw8MP7ptA+Bk4MfAblX1cOBd3P95m/RYVtX3q2ou8Ejg83THAO6/Dw+j615cm33QWjAUNlBVdRvdhcyPJDkwycbpbuOcT9c3P/hi9Wm6C7ovaMMrfAx4Z5I9AZJsleSFK9nslnR9+GPAjCR/Dzx8HezOEXRdF78ebGzvnD8OnJjkka3GWUmevQ62SVVdD3wHeH+SzZL811bLGatY9HS6M5vnsfJQOBb4syQfSvIogCSPbReut6Z7rg5OckC7UH00XdB/Z9I1rtp7kjy0PaeHA59p7VsCtwN3Jnk88LrVXWGSTZK8NMlWVfX7tp772uQzgcOT7JVkU7ozkIuqu+lBI2AobMCq6oN07/hOoPuPuuL2xwOq6q6BWRcAu9Fdg7hsYPlz6C7SntW6FK6gO8uYzFfoum9+Qtdl8DtW3uWwuvvxs6paOMnkd9BdfP1eq/FrwOPWdpsDDqXrj78BOIfuwu3XVrZAVf0n3Yvipe1MZ7L5fkZ3DWQ2cGWS2+i68xYCd1TVNXRnHB+hOyt6LvDcqrp7LfbnW3TH6wLghKr6amt/K92Z4h10QfuZiRef1MuBxe05+FvgpQDtWL2n7dcy4DHAIWtRv9ZS/tATIGmqJPk68Omq+tdR1wLdLal03XAbV9U9Iy5HI+SHTKQpluQpdLdgzh11LdJ4dh9JUyjJPLourDePu2tJmhbsPpIk9TxTkCT11utrCtttt13Nnj171GVI0nrlkksuubmqZk40bb0OhdmzZ7Nw4WR3IkqSJpJk0luh7T6SJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSb2ih0H505OIklyW5Msl7W/uuSS5KsijJZ5Js0to3beOL2vTZw6pNkjSxYX6i+S66X8O6s/0q1LeTfBl4C3BiVZ2V5GN0v1R1cvv7q6p6bJJD6H685cVDrE/Semz2MV8adQkjtfj4g4ey3qGdKVTnzja6cXsU8HTgs619HvD8Njy3jdOmH9B+c1aSNEWGek0hyUZJfggsB84HfgbcOvDLTkuAWW14Fu2nGdv02+h+wFuSNEWGGgpVdW9V7QXsBOwDPH5t15nkyCQLkywcGxtb29VJkgZMyd1HVXUr8A26HyHfOsmKaxk7AUvb8FJgZ4A2fSvglxOs65SqmlNVc2bOnPCbXyVJD9Aw7z6amWTrNrw58EzgarpweEGb7TDgC214QRunTf96+bNwkjSlhnn30Q7AvCQb0YXP/Kr6YpKrgLOS/APwA+DUNv+pwCeTLAJuAQ4ZYm2SpAkMLRSq6nLgyRO0/5zu+sL49t8BLxxWPZKkVfMTzZKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKk3tBCIcnOSb6R5KokVyZ5U2s/LsnSJD9sj4MGlnlnkkVJrkny7GHVJkma2Iwhrvse4OiqujTJlsAlSc5v006sqhMGZ06yB3AIsCewI/C1JLtX1b1DrFGSNGBoZwpVtayqLm3DdwBXA7NWsshc4KyququqrgUWAfsMqz5J0v1NyTWFJLOBJwMXtabXJ7k8yWlJtmlts4DrBxZbwspDRJK0jg09FJJsAXwOeHNV3Q6cDDwG2AtYBvzjGq7vyCQLkywcGxtb1+VK0gZtqKGQZGO6QPhUVZ0NUFU3VdW9VXUf8HH+0EW0FNh5YPGdWtsfqapTqmpOVc2ZOXPmMMuXpA3OMO8+CnAqcHVV/dNA+w4Ds/01cEUbXgAckmTTJLsCuwEXD6s+SdL9DfPuoz8HXg78KMkPW9u7gEOT7AUUsBh4LUBVXZlkPnAV3Z1LR3nnkSRNraGFQlV9G8gEk85dyTLvA943rJokSSvnJ5olST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkSb2hhUKSnZN8I8lVSa5M8qbWvm2S85P8tP3dprUnyUlJFiW5PMnew6pNkjSxYZ4p3AMcXVV7APsCRyXZAzgGuKCqdgMuaOMAzwF2a48jgZOHWJskaQJDC4WqWlZVl7bhO4CrgVnAXGBem20e8Pw2PBc4vTrfA7ZOssOw6pMk3d+UXFNIMht4MnARsH1VLWuTbgS2b8OzgOsHFlvS2iRJU2TooZBkC+BzwJur6vbBaVVVQK3h+o5MsjDJwrGxsXVYqSRpqKGQZGO6QPhUVZ3dmm9a0S3U/i5v7UuBnQcW36m1/ZGqOqWq5lTVnJkzZw6veEnaAA3z7qMApwJXV9U/DUxaABzWhg8DvjDQ/op2F9K+wG0D3UySpCkwY4jr/nPg5cCPkvywtb0LOB6Yn+QI4DrgRW3aucBBwCLgN8DhQ6xNkjSBoYVCVX0byCSTD5hg/gKOGlY9kqRV8xPNkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6q00FJJsluSwJM9L5x1Jvpjkw0m2m6oiJUlTY1VnCqcDzwJeBXwTeDTwz8AdwCeGWZgkaerNWMX0ParqCUlmAEuq6q9a+3lJLhtybZKkKbaqM4W7AarqHuCGcdPuHUpFkqSRWdWZwk5JTgIyMEwbnzXUyiRJU25VofC2geGF46aNH5ckredWGgpVNW+qCpEkjd5KQyHJgpVNr6rnrdtyJEmjtKruo/2A64EzgYvoriWsliSnAf8dWF5VT2htxwGvAcbabO+qqnPbtHcCR9BdwH5jVX1l9XdDkrQurCoUHgU8EzgUeAnwJeDMqrpyNdb9CbrPNJw+rv3EqjphsCHJHsAhwJ7AjsDXkuxeVd7hJElTaKW3pFbVvVV1XlUdBuwLLAK+meT1q1pxVV0I3LKadcwFzqqqu6rq2radfVZzWUnSOrLK7z5KsmmSvwHOAI4CTgLOWYttvj7J5UlOS7JNa5tF1021whImueU1yZFJFiZZODY2NtEskqQHaFXffXQ68F1gb+C9VfWUqvrfVbX0AW7vZOAxwF7AMuAf13QFVXVKVc2pqjkzZ858gGVIkiayqmsKLwN+DbwJeGPSX2cOUFX18DXZWFXd1K8g+TjwxTa6FNh5YNadWpskaQqt6prCQ6pqy/Z4+MBjyzUNBIAkOwyM/jVwRRteABzSuqp2BXYDLl7T9UuS1s6qzhQesCRnAvsD2yVZAhwL7J9kL6CAxcBrAarqyiTzgauAe4CjvPNIkqbe0EKhqg6doPnUlcz/PuB9w6pHkrRq/vKaJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKk3tFBIclqS5UmuGGjbNsn5SX7a/m7T2pPkpCSLklyeZO9h1SVJmtwwzxQ+ARw4ru0Y4IKq2g24oI0DPAfYrT2OBE4eYl2SpEkMLRSq6kLglnHNc4F5bXge8PyB9tOr8z1g6yQ7DKs2SdLEpvqawvZVtawN3whs34ZnAdcPzLektd1PkiOTLEyycGxsbHiVStIGaGQXmquqgHoAy51SVXOqas7MmTOHUJkkbbimOhRuWtEt1P4ub+1LgZ0H5tuptUmSptBUh8IC4LA2fBjwhYH2V7S7kPYFbhvoZpIkTZEZw1pxkjOB/YHtkiwBjgWOB+YnOQK4DnhRm/1c4CBgEfAb4PBh1SVJmtzQQqGqDp1k0gETzFvAUcOqRZK0evxEsySpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpN2MUG02yGLgDuBe4p6rmJNkW+AwwG1gMvKiqfjWK+qSpMPuYL426hJFafPzBoy5BExjlmcLTqmqvqprTxo8BLqiq3YAL2rgkaQpNp+6jucC8NjwPeP7oSpGkDdOoQqGArya5JMmRrW37qlrWhm8Etp9owSRHJlmYZOHY2NhU1CpJG4yRXFMA/qKqliZ5JHB+kh8PTqyqSlITLVhVpwCnAMyZM2fCeSRJD8xIzhSqamn7uxw4B9gHuCnJDgDt7/JR1CZJG7IpD4UkD0uy5Yph4FnAFcAC4LA222HAF6a6Nkna0I2i+2h74JwkK7b/6ao6L8n3gflJjgCuA140gtokaYM25aFQVT8HnjRB+y+BA6a6HknSH0ynW1IlSSNmKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSejNGXYDWX7OP+dKoSxipxccfPOoSpHXOMwVJUs9QkCT1DAVJUs9QkCT1pl0oJDkwyTVJFiU5ZtT1SNKGZFqFQpKNgI8CzwH2AA5Nssdoq5KkDce0CgVgH2BRVf28qu4GzgLmjrgmSdpgTLfPKcwCrh8YXwL8t8EZkhwJHNlG70xyzRTVtq5tB9w86iLWcyM9hvnAqLa8znj81s76fPx2mWzCdAuFVaqqU4BTRl3H2kqysKrmjLqO9ZnHcO14/NbOg/X4Tbfuo6XAzgPjO7U2SdIUmG6h8H1gtyS7JtkEOARYMOKaJGmDMa26j6rqniSvB74CbAScVlVXjrisYVnvu8CmAY/h2vH4rZ0H5fFLVY26BknSNDHduo8kSSNkKEiSeobCCCT5n0muTHJFkjOTbDbqmqazJKclWZ7kinHtb0jy43YsPziq+qa7JJsluTjJZe1Yvbe1f6p9pcwV7RhvPOpap6skWyf5bPv3dnWS/QamHZ2kkmw3yhrXFUNhiiWZBbwRmFNVT6C7oH7IaKua9j4BHDjYkORpdJ92f1JV7QmcMIK61hd3AU+vqicBewEHJtkX+BTweOCJwObAq0dW4fT3YeC8qno88CTgaoAkOwPPAn4xwtrWKUNhNGYAmyeZATwUuGHE9UxrVXUhcMu45tcBx1fVXW2e5VNe2HqiOne20Y3bo6rq3DatgIvpPhekcZJsBfwlcCpAVd1dVbe2yScCbwceNHfsGApTrKqW0r2r/QWwDLitqr462qrWS7sDT01yUZJvJXnKqAuazpJslOSHwHLg/Kq6aGDaxsDLgfNGVN50tyswBvxbkh8k+dckD0syF1haVZeNuL51ylCYYkm2oev22BXYEXhYkpeNtqr10gxgW2Bf4G3A/CQZbUnTV1XdW1V70Z0N7JPkCQOT/wW4sKr+YyTFTX8zgL2Bk6vqycCvgeOAdwF/P8K6hsJQmHrPAK6tqrGq+j1wNvBnI65pfbQEOLv1flwM3Ef3BWVaidbt8Q3aNZokxwIzgbeMsKzpbgmwZODs6rN0IbErcFmSxXRhe2mSR42mxHXHUJh6vwD2TfLQ9s72ANpFK62RzwNPA0iyO7AJfuvshJLMTLJ1G94ceCbw4ySvBp4NHFpV942wxGmtqm4Erk/yuNZ0AHBpVT2yqmZX1Wy64Ni7zbtem1Zfc7EhqKqLknwWuBS4B/gBD9KPy68rSc4E9ge2S7IEOBY4DTit3aZ6N3BY+fH8yewAzGs/YvUQYH5VfTHJPcB1wHdbz9vZVfW/RljndPYG4FPtO9l+Dhw+4nqGxq+5kCT17D6SJPUMBUlSz1CQJPUMBUlSz1CQJPUMBWkttK882GPUdUjrirekSpJ6nilIq6l9CdqX2u8SXJHkxUm+mWROkucl+WF7XJPk2rbMn7Yv7LskyVeS7NDa35jkqiSXJzlrtHsm/YGfaJZW34HADVV1MPRfqfw6gKpaACxo7fOBb7VvH/0IMLeqxpK8GHgf8CrgGGDXqrprxVdQSNOBZwrS6vsR8MwkH0jy1Kq6bfwMSd4O/LaqPgo8DngCcH772up384ffLLic7msTXkb3dSfStOCZgrSaquonSfYGDgL+IckFg9OTPAN4Id0PsgAEuLKq9uP+Dm7zPRf4uyRPrCrDQSPnmYK0mpLsCPymqs4APkT39ckrpu0CfBR4YVX9tjVfA8xc8Xu+STZOsmeShwA7V9U3gHcAWwFbTOGuSJPyTEFafU8EPpTkPuD3dNcTVvw29CuBRwCfb984ekNVHZTkBcBJ7frDDOD/Aj8BzmhtAU4a+HlHaaS8JVWS1LP7SJLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLU+/8luUKsmF9wLwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"print(overall_memory)\n",
"plot_overall_comparison(overall_memory, \"Overall Mermory Comparison\", \"MB\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Function call repetitive times analysed"
]
},
{
"cell_type": "code",
"execution_count": 194,
"metadata": {},
"outputs": [],
"source": [
"functions_repeated = {\n",
" \"gasdev\":[\"idum\", \"idum2\", \"iy\"],\n",
" \"cov_value\": [\"di\", \"dj\", \"dk\"],\n",
" \"ran2\": [\"idum\", \"idum2\", \"iy\"],\n",
"}\n",
"\n",
"def get_data_from_file(file_name):\n",
" data = {\n",
" \"gasdev\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
" \"ran2\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
" \"cov_value\": {\"di\":[], \"dj\": [], \"dk\": []}\n",
" }\n",
"\n",
" with open(file_name) as log_file:\n",
" lines = log_file.readlines()\n",
" for line in lines:\n",
" if np.any([f in line for f in functions_repeated.keys()]) and \"RESULT = in progress\" in line:\n",
" split_line = line.split()\n",
" function_name = get_function_name(split_line[2])\n",
" params = functions_repeated[function_name]\n",
" for p in params:\n",
" idx_value = split_line.index(p) + 2\n",
" data[function_name][p].append(float(split_line[idx_value].rsplit(\",\")[0]))\n",
" #print(split_line)\n",
" return data\n",
"\n",
"def get_repeteated_data(filenames):\n",
" data_total = {}\n",
" for f in filenames:\n",
" data = get_data_from_file(f)\n",
" data_total = {**data_total, **data}\n",
" return data_total"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [],
"source": [
"def distribution(data,f, p, plt):\n",
" values = data[f][p]\n",
" if np.isnan(values).all(): return # TODO: Pasa algo raro con gasdev iy en 32\n",
" plt.set_title(f\"{p}\")\n",
" plt.hist(values, bins=60, alpha=1, edgecolor = 'black', linewidth=1)\n",
" plt.grid(True)\n",
" plt.set_ylabel(\"Number of repetitions\")\n",
" plt.set_xlabel(\"value\")\n",
"\n",
"def plot_distributions(data, f):\n",
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
" fig.suptitle(f\"Distribution in params for {f}\")\n",
" params = list(data[f].keys())\n",
" for i in range(2):\n",
" for j in range(2):\n",
" if 2*i + j < len(params):\n",
" distribution(data, f,params[2*i + j], axs[i, j])\n",
" \n",
" \n",
" fig.delaxes(axs[1, 1])\n",
" fig.tight_layout(pad=3.0)"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [],
"source": [
"def plot_reapeated_data_distribution(data):\n",
" for f in functions_repeated.keys():\n",
" plot_distributions(data,f)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 8"
]
},
{
"cell_type": "code",
"execution_count": 234,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGD0lEQVR4nO3deZgkVZn3/e+vm2KzaRAX0FFAQR0EBURxxwW7wWWcEXV0dB5FfHR0UF9EH1zGBbcBNxAVx9FBEAXFGR0cRWRTBBUZZREQUUTZF1ntxqabkjrvHxGlSXZWV2VU1JKV38915ZWZJyIj7ozKvOvOEyciUkpBkiRpuhbNdQCSJGlhsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKhQY0kOSjIrp2RNckaSMzqePz1JSfKiWVr/0UmumI11da13m/p97jPb6x4WSdZL8pEkVycZS3LCXMc0W2bzO6zhYFEhAJLsU//zGr+tTnJdkpOTvCnJJi2t54F1Itu5jeW1aT7Hphm1L/D/gP8CXgkcNrfhSINrvbkOQPPOe4DfASPAlsDTgU8AByR5finlwo55Pwgc0ufyHwi8F7gCuKCP1y3vcz1NrCu21zA3RfiVwEbA6Byse1g8E7i2lPLmuQ5EGnQWFep2UinlZx3PD07yTODbwP8k2b6UcidAKeVPwJ9mMpgkG5dSVpVS7prJ9UymlDIn/9RLdcW/1XOx7ulIsiFwVyllbK5jmYL7A7e3tbAki4D1SykD93eTpsvdH5pUKeV7wAeArYF/HG/vtT82ybIkP0xye5I7kvwqyb/W054O/LSe9aiOXS371NPPSHJxkl2TnJlkFfCvHdPO6BHe4iT/muSGJH9M8j9JHtwV0xVJju5+YecypxDbWmMqktwrycfrffFr6vf61iTpmq8k+XSSv6vf35okv0iyV4/30x3jWmMq6ljuSPJXSU6oH9+U5GNJFk9hmVck+XaS5UkuqHd1XZJk7675Nq+XeVG9jhVJTkqyU9d84+NbXprkg0muBVYBSxss4++TvDfJtUlWJvmvJJsm2SDJJ5L8vl7OUUk26FrGhJ+9dW1b4BnADh1/86fX0/v9+748yS+ANcCEf9ski+rvznVJViX5fpJHdn9Op7rt6nnfWH+mViW5LcnPkrysa56nJPlp/fe+PMk/rSPGf0xybpI7k9ya5Kvp+F7V7/eOJBv3eO1XUn0fJ/0sauGxp0JT9SWqf/DLgc/3miHJDlQ9GhdS7UZZA2wHPLme5Zd1+/uBzwFn1e0/7ljMfYCTgK8CXwZunCSufwEK8GGqX5z7A6cl2Xm8R2WKphLbn9X/WP6H6h/SkVS7S/YEPgr8FdDdlf4UYG/gM8BK4E3A15NsVUq5pY84xy0GTgbOAd4KPAt4C3A58G9TeP3DgOOBzwJfBF4F/GeSvUopp9bzPBT4O+A/qXaJbQH8E/CDJI8spVzXtcx3A3cBHwM2qB8/ss9lvAO4k2q32nbAG6l2/YwB9wYOAp4A7FMv7/0wpc9eLzcB/4fqM7SkXjfALxv8fZ8J/D3waeBmql1oEzkYOBD4FtXfcKf6fsOu+aa0/ZO8Bvgk1ZiQw+vlPBp4PHBcPc+jgFPq93wQVe5/Hz2+X0n+hepHxNeA/wDuR/V3ODPJLqWU26k+O/sBz63jG3/txsDfAEeXUu5exzbQQlVK8eYNqiRdgMeuY57bgfM6nh9E3UNfP9+/XsZ917GMx9bz7NNj2hn1tH+aYNoZHc+fXs97DbBJR/uL6/Y3dbRdQZXkJlvmumI7Grii4/nf1vP+S9d8/0n1D3DbjrZC9U+us+3RdfsbJvm7bNMdUx1LAd7dNe95wM+m8Le+on793h1tS4Hruv6+GwCLesSzunPdHX+Ly4GNuubvdxkXASMd7cfV2/M7Xcv4cdffY9LP3jq2xxnAxV1t/f597wYeOYV1bUFVJP13V/t76+Uc3dE21W13Qnf8Pdb731TF2lYdbdtT7b4sHW1b123v7Hr9jnXc76yfh+q7919d841//57a79/B28K4uftD/bgDWNdRILfX93+bar9yE2uAo/qY/5hSysqO5/8FXA88p+H6p+o5VP9IPtnV/nGqhPvsrvbTSimXjz8p1YDXFVS/Rpv6bNfzs/pY3nVU/2jG41kBHAPskmTLum1NqcdEJFmc5D5Un4FfAY/pscwvlq7eoQbLOKbcc/zKOVTb8wtd850DPDjJeG/r7fX9dD57nfr9+/6glHLJFJa7B1UvwWe62j/VPWMf2+524EFJHtdrhfVuiD2BE0opV3Us/5dUPSSd9qbaLf61JPcdvwE3AJdR9dxQSilUBdZzkizpeP1LgGuBH064BbSgWVSoH0uouu4ncjzwI6ou0xvr/bB/32eSv7b0Nyjzss4ndbL7DdUvupm0NXBdV0ED1W6U8emdrmJtt1F16TexupRy0zSW95t6W3X6dX2/Dfx53/+bk1xGVezdTNV9/mhg0x7L/F13Q4NldG+nP9T3V/doX9SxjDY+e536/fuu9d7XsVyoPqN/Vkq5lerv92d9bLsPUxUb/5vksiRHJOnc7XM/qiOI7vFdqf2q6/nDqIqmy+p1dd62p9rFOO74ernPr+NdQlWM/WePz5aGhEWFpiTJg6gS2W8mmqf+lbo71f79L1Elv+OBU/sYtNXPOIipmijBzeZAson2L2eC9qbLa9M7gUOBM6kG6O4JLAN+Qe/c0etv1+8yJnpf69x+LX32pmMmPrdT2nZ1j8MjgJdS9RC8EPhhkvc1WOciqu/LXvW6um9/HtxZSvkJ1a60v6+b/oaqyDi+wXq1QDhQU1P1f+r77u7Se6i7a0+vbwckeSfwIapu09OY+B98Uw/rfFIPsNuOasDeuNuAzXq8dmvgtx3P+4ntSuBZSTbp+jX71x3T57PtkqTrF+XD6/sr6vsXAd8vpby684VJNqP61TwVbSxjSqbw2evHTP19x1+3HR29G/Wuje5epilvu1LKH6n+mR+fZH3gG8C/JDmYqpfhTrq+K7VHdD2/nKpQ+10p5dc95u/2NeD/S7KUatfHFXWxoSFlT4Umleo8Fe+mSoLHrmO+zXs0X1Dfjx/+98f6frOWwntF7nm2zxcBD6A6gmTc5cAT6mQLQJLnAfc49LTP2L5D1dPxhq72N1MVJyet9Yr55YHAC8af1P8UXgFcUEq5oW6+m66elCQvpjr6YaraWMakpvjZ68dM/X1PpxoI+fqu9u71wBS3XV2Q/Fm9+/CS+rUjpToK42Tg75Js1fG67al6Pzp9o17ve+sCvXM96V4XVSGzAdWZSPeiKjI0xOypULdnJ/lrqs/GFlSHyi2j+oX1/LLuE/q8J8nuwIn1/PcH/plqlPj4wK3LqQaWvS7JSqp/5OeUUqa6T7rbrVRdvUfV8e5PtYum87DX/6AqNr6b5GvAtlTdyZffc1F9xfYt4PvAh5JsA/yc6nDbvwU+0Tkoc576NXBkPbjvRqpTVW9BdWjpuG9T/U2Pojra4lHAy7ln785k2ljGVEzls9ePGfn7llJuTHI48JYk/wN8l+qQ0mdT9T509hxNddudkuQGqjElN1KNfXgDcGJHL8t7qf7pn5XkM1Tf7zdS7Up5dEd8lyd5F9Vhr9ukug7KSuAhVEXo56gOGR6f/7wkv6HqEdoAd31org8/8TY/bvzlkNLx2xqqoyhOoTqnwiY9XnMQ9zwc7ZlUh7ddW7/+WqpDAh/W9brnUyWzUToOl6THoX0drzmD3oeUvpTq/Bk3Up1w6dt0HDbXMf8BVP9gVlP9k9m1e5mTxHY0HYcw1m1LqPZ5X0t1ToZfU50zIl3zFeDTPWK6gh6HunbNs01nHB2x3DHZ32Mdy7yi3k7Lqf5ZrqYagPiirvk2oPoHcl29bX9IdY6Iif4WL+qxrmktgwkOdR5/r9SHkDLFz946Pltrfe6m+/ddx/oWU51f4/p6m5xOtVvlZuDfGmy71wI/qF+/mqqo/giwtGu9uwM/q7fP5VTjI3p+ZqiOAjmLagDoHfXn49PAw3vM+8F6G1zWT87xtjBvKcVButIwSXVm0ItLKc+b61hUqcdJ3Aa8q5TyoTkOR2rMMRWSNIuSbNSjef/6/ozZi0Rqn2MqJGl2vSTVtVy+Q7Vr4SnAPwCnlFJ+NJeBSdNlUSFJs+tCqiNADqQ6PfqNVNfseNdcBiW1wTEVkiSpFY6pkCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCoUE9J9klSkmwzyXxXJDl6dqKSNEjMI8PHokKSNLSS7JHkC0l+nWRVkt8m+Y8kD5jr2AZRSilzHYPmoSSLgRFgTVnHhyTJFcAZpZR9Zik0SQNiEPJIkp8BmwP/CVwGPBR4A7AK2LmUcsNsxzTI1pvrADQ/lVLuBu6e6zgkDa4BySMHAD8spYyNNyT5LvADquLiXXMV2CBy94d66t4Xmsq7klxTdxF+P8kOPV53UJK1fpH02rda70f9dpKnJ/lZkjuTXJTk6fX0vevnq5Ocm2SXmXq/kto3CHmklHJmZ0Ex3gbcCmw//a0wXCwqNFXvBz4A/Bz4f8BvgVOAe01zudsBxwHfAt4B3Bv4VpKXA4cBXwbeC2wLfC2Jn1lpcA1EHkmyBFgC3DzNuIaOuz80qST3Aw4ETgT+ZnzfaJIPAe+c5uIfATyplHJ2vcxLgJOBzwN/XUq5qm6/Dfh3YHfgjGmuU9IsG7A8sj+wPnD8NOMaOv7q01Q8i+oL9qmuwVafaGHZl4wngto59f33xhNBV/tDW1inpNk3EHkkye5UvRpfK6V8r4XYhopFhaZi6/r+ss7GUspNwG3TXHbnF55Syh/qh1d3zTfefu9prk/S3Jj3eSTJXwP/DVwM/N9pxjSULCrUtokOG1s8QftEI8Mnak9/4UgaQLOeR5I8mGp8xx+A55RSVq4zQvVkUaGpuLK+f1hnY72PtLviv62etllX+9ZIGmbzNo8kuQ9VQbEBsGcp5fqZWM8wsKjQVJwGjAJvTNJZ4e/fY97L6/vdxxuS3At45YxFJ2kQzMs8Ui/3O8BfUfVQXDbJS7QOHv2hSZVSbkryMapDtb6d5DvALsCzWfuQq1Oo9m8emeSjVN2P+wI3AVvNXtSS5pN5nEeOBXYDvgBsn6Tz3BR3lFJOaHl9C5pFhabqXcBq4HXAM6hGUS+nOjzsz0opo0leAHyG6nj0G6hGd98GHDWL8Uqaf+ZjHtm5vt+3vnW6Ejih5fUtaF77Q5IktcIxFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRV9FxVJ9krylI7n+yW5IMlxSTyFsqRGzC3S4GvSU/FRYClAkkcBH6c6cchDgEPbC03SkDG3SAOuyXkqHgJcUj9+IfDtUso7kzyGKgEMnPrsbg8EPNe7BtUmwHVlsI8RN7dI809fuaVJUXEXsHH9+FnAMfXjW6l/ZQygBwLXzHUQ0jQ9CLh2roOYBnOLND9NObc0KSp+CBya5EdUpzZ9Sd3+cAb3y7MS4Oqrr2bp0rVz1+joKKeccgrLly9nZGRk1oMbdG6/6Zls+61YsYIHP/jBMPi/hs0t6ovbb3pmIrc0KSreQHXq1BcBry+ljFcvzwa+22B588bSpUsn/OJvvPHGLF261A9uA26/6Rmi7WduUV/cftMzE9uv76KilHIV8Lwe7W9uJSJJQ8ncIg2+RhcUS7II2A64P11HkJRSzmwhLklDyNwiDba+i4okTwCOA7YG0jW5AItbiEvSkDG3SIOvyXkqPgv8DNgR2By4d8dt8/ZC00Lz85//nKuuumquw9D8ZW5RI+aW+aPJ7o+HAS8qpfym7WC0MF1zTTVwf/fdd6cQfnXpL9lqq63mOCrNQ+YW9cXcMv806ak4h2qfpzQlt9xyCwBLd9ub1Xeu4uabb57jiDRPmVvUF3PL/NOkp+JTwMeTbAlcBIx2TiylXNhGYFp4Fi+931yHoPnN3KJGzC3zR5Oi4uv1/Rc62grVwCoHU0lqytwiDbim1/6QpLaZW6QB1+TkV1fORCCShpu5RRp8TU9+tS2wP7B93XQJcHgp5fKW4pI0hMwt0mDr++iPJHtSfdF3Ay6sb48HfpFkWbvhSRoW5hZp8DXpqTgEOKyU8vbOxiSHAB8GTm0jMElDx9wiDbgm56nYHjiyR/sXgEdOLxxJQ8zcIg24JkXFTcDOPdp3Bn4/nWAkDTVzizTgmuz++DzwuSQPBX5ctz0ZeBtwaFuBSRo65hZpwDUpKj4ArATeAhxct10HHAR8sp2wJA0hc4s04Jqcp6IAhwGHJdmkblvZdmCShou5RRp8jc5TMc4vvKSZYG6RBtOUiook5wF7lFJuS3I+1Xn4eyqlPKat4CQtbOYWaWGZak/FN4E1HY8n/OJLUh/MLdICMqWiopTyvo7HB81YNJKGirlFWlianKb7t0nu06N9syS/bScsScPG3CINviYnv9oGWNyjfQPgQdOKRtIw2wZzizTQpnz0R5LndzzdM8kfOp4vBvYAftdWYJKGg7lFWjj6OaT0hPq+AF/smjYKXEF10hpJ6scJ9b25RRpwUy4qSimLAJL8DnhcKeXmGYtK0tAwt0gLR5Mzaj5kJgKRNNzMLdLgm+rJr94EfK6Usrp+PKFSiufolzQl5hZpYZlqT8WbgWOB1fXjiRS88I+kqTO3SAvIlA4pLaU8pJRyS8fjiW4PbRpIkrcnKUk+0dG2YZIjktyS5I4kX0+yRdfrtkpyYpJVSX6f5KNJpnVNE0mzw9wiLSxNTn71niQb92jfKMl7mgSR5HHAPwEXdk06DPgb4MXA04AHAt/oeN1i4ERgfeBJwCuBfYD3N4lD0twxt0iDr8nJr94LLOnRvnE9rS9JllB1f74GuK2jfVPg1cABpZTvlVLOBV4FPCnJE+rZlgOPBP6xlHJBKeUk4N3AfknW7zcWSXPK3CINuCZdeaH3RX92Am5tsLwjgBNLKacleVdH+67ACHDaeEMp5dIkVwFPBH5S319USrmx43UnA/8G7ACc3/MNJBtQnaVv3CYAo6OjjI6OrjX/eFuvaZrc2NgYABuOLGajjTZibGzMbdmHyT5/C2hbmlvUF3PL9MxEbunnjJq3UX3hC/DrJJ1f/sVUvzA+28/Kk7wUeAzwuB6TtwTuKqXc3tV+Yz1tfJ4be0ynY55e3kGPXz6nnHIKG2+8Vu/rn5166qnrWKQmc+grngqveCrXXnst11577VyHM3Am+vytWrVqliNpl7nF3DJd5pbpaTO39NNTsT/VL4kvUH1pOk+lexdwRSnl7KkuLMmDgcOBZaWU1X3E0YaDgUM7nm8CXLN8+XKWLl261syjo6OceuqpLFu2jJGRkdmKccE4//zzuf766zngmLO4/qTPcOaZZ7LTTjvNdVgDY7LP34oVK+Ygqlbtj7nF3NKAuWV6ZiK39HNGzS/Cn89696NSyp/6Xts97QrcHzgvyXjbYmD3JG8A9gTWT7JZ1y+KLYAb6sc3ALt1LXeLjmk9lVLWAGvGn4+vf2RkZJ1f7Mmmq7dFi6qhO6tH7+bOO+9k0aJFbscGJvr8Dfq2NLeYW5oyt7SjzdzS90DNUsoPgK2TfDDJV5LcHyDJs5Ps0MeiTgceBezccfsZ1cCq8cejVBcTol7HI4CtgPFfLWcDjxqPobYMWAFc0udbkzSHzC3S4Ot7oGaSpwEnAT8Cdgf+Bfg91WCqVwMvmspySikrgYu7lv1H4JZSysX18yOBQ5PcSvVl/hRwdinlJ/VLTqH6gn8pyYFU+zo/CBxR/2KQNCDMLdLga3JI6SHAu0opy6j2d477HvCE3i9p7M3At4GvA2dSdTvuPT6xlHI38DzgbqpfFl8GjgEaHdMuaU6ZW6QB1+SQ0kcBL+vR/nvgvtMJppTy9K7nq4H96ttEr7kSeM501itpXjC3SAOuSU/F7cADerTvAngsj6SmbsfcIg20JkXFV4EPJ9mS6rjyRUmeDHyMqntQkpowt0gDrklR8U7gUuBqqpPSXEK1T/LHVAOZJKkJc4s04PoeU1FKuQt4TZIPADtSffnPL6Vc1nZwkoaHuUUafI0v41tKuSrJ1fXjXufrl6S+mVukwdVk9wdJXp3kYmA1sDrJxUn+b7uhSRo25hZpsDU5+dX7gQOoTxZTNz8ROCzJVqUUj+OW1DdzizT4muz+eD3wmlLKVzra/ifJhVTJwC++pCbMLdKAa7L7Y4Tq3PndzmUaYzQkDT1zizTgmhQVX6L6RdHttVQX7JGkJswt0oBrWv2/OslyYPziO4+nusLfMUkOHZ+plHLANOOTNFzMLdIAa1JU7AicVz/etr6/ub7t2DGfh4JJ6oe5RRpwTU5+9YyZCETScDO3SIOv0XkqAJJsl2TPJBvVz9NeWJKGlblFGlx9FxVJ7pPkdODXwHf4y1UFj0zy8TaDkzQ8zC3S4GvSU3EYMEo1eGpVR/vxwF5tBCVpKJlbpAHXZKDmcmDPUso1Xb2SlwFbtxKVpGFkbpEGXJOeintxz18R4zYH1kwvHElDzNwiDbgmRcVZwCs6npcki4ADge+3EpWkYWRukQZck90fBwKnJ3kssD7wEWAHql8TT24xNknDxdwiDbi+eypKKRcDDwd+CHyTqsvyG8AupZTL2w1P0rAwt0iDr6+eiiQjwHeB15VSPjQzIUkaNuYWaWHoq6eilDIKPHqGYpE0pMwt0sLQZKDml4FXtx2IpKFnbpEGXJOBmusB+yZ5FnAu8MfOiV49UFJD5hZpwE33KqUP75rm1QMlNWVukQacVymVNC+YW6TB1/gqpZIkSZ0sKiRJUissKiRJUissKiRJUiumVFQkOS/JvevH70my8cyGJWkYmFukhWWqPRXbU52HH+C9wJKZCUfSkDG3SAvIVA8pvQA4KskPgQBvTXJHrxlLKe9vKTZJC98FmFukBWOqRcU+wPuA51GdhObZwJ96zFcAv/iSpmofzC3SgjGloqKU8ivgpQBJxoA9Sim/n8nAJC185hZpYWlyRk2PGJHUOnOLNPiaXPuDJNsC+1MNsgK4BDi8lHJ5S3FJGkLmFmmw9f3LIMmeVF/03YAL69vjgV8kWdZueJKGhblFGnxNeioOAQ4rpby9szHJIcCHgVPbCEzS0DG3SAOuyT7M7YEje7R/AXjk9MKRNMTMLdKAa1JU3ATs3KN9Z6CvUdtJ3pHkp0lWJvl9khOSPKJrng2THJHkliR3JPl6ki265tkqyYlJVtXL+WiSRuNFJM0Zc4s04Jp8OT4PfC7JQ4Ef121PBt4GHNrnsp4GHAH8tI7lX4FTkjyylPLHep7DgOcCLwb+AHwa+Ea9TpIsBk4EbgCeBDwAOAYYBd7Z4P1JmhvmFmnANSkqPgCsBN4CHFy3XQccBHyynwWVUvbqfJ5kH6pfJLsCZybZFHg18LJSyvfqeV4F/DLJE0opPwGWU3WNPquUciNwQZJ3Ax9OclAp5a4G71HS7DO3SAOu790fpXJYKeVBwKbApqWUB5VSDi+llGnGs2l9f2t9vyswApzWsf5LgauAJ9ZNTwQuqr/0404GlgI7TDMeSbPE3CINvmntGyylrGwrkCSLgE8APyqlXFw3bwncVUq5vWv2G+tp4/Pc2GM6HfN0r2sDYIOOpk0ARkdHGR0dXWv+8bZe0zS5sbExADYcWcxGG23E2NiY27IPk33+FuK2NLdoKswt0zMTuWU+DTg6AtgReMosrOsdVFdEvIdTTjmFjTee+MrLp57qEW3TcegrngqveCrXXnst11577VyHM3Am+vytWrVqliMZOOaWBc7cMj1t5pZ5UVQk+TTVBYV2L6Vc0zHpBmD9JJt1/aLYop42Ps9uXYvcomNaLwdzz4FfmwDXLF++nKVLl6418+joKKeeeirLli1jZGRkKm9JHc4//3yuv/56DjjmLK4/6TOceeaZ7LTTTnMd1sCY7PO3YsWKOYhqMJhbFjZzy/TMRG6Z06IiSYBPAS8Anl5K+V3XLOdSjbTeA/h6/ZpHAFsBZ9fznA38S5L7d1yIaBmwgursfGsppawB1nTEAcDIyMg6v9iTTVdvixZVQ3dWj97NnXfeyaJFi9yODUz0+XNbrs3cMhzMLe1oM7f0NVAzyUiS05M8rO819XYE8I/Ay4CVSbasbxsBlFL+QHUynEOTPCPJrsBRwNn16GyAU6i+4F9KslN9qt8PAkfUX3BJ85y5RVoY+uqpKKWMJnl0i+t/fX1/Rlf7q4Cj68dvBsaofk1sQDX6+p87Yro7yfOAf6P6ZfFH4IvAe1qMU9IMMrdIC0OT3R9fpjq+++2TzTiZUkqmMM9qYL/6NtE8VwLPmW48kuaUuUUacE2KivWAfZM8i2q/5B87J5ZSDmgjMElDx9wiDbgmRcWOwHn144d3TZvuCWokDS9zizTg+i4qSinPmIlAJA03c4s0+JpcpRSAJNsl2XN8NHXGj52SpGkwt0iDq++iIsl9kpwO/Br4DtWV+wCOTPLxNoOTNDzMLdLga9JTcRjVSWO2AjrP4Xk8sFfPV0jS5Mwt0oBrMlBzObBnKeWarl7Jy4CtW4lK0jAyt0gDrklPxb2456+IcZvTcXpaSeqTuUUacE2KirOAV3Q8L/WlhQ8Evt9KVJKGkblFGnBNdn8cCJye5LHA+sBHgB2ofk08ucXYJA0Xc4s04PruqSilXEx1YpofAt+k6rL8BrBLKeXydsOTNCzMLdLga3Tp8/oKfx9qORZJQ87cIg22RkVFkntTXfhn+7rpEuCoUsqtbQUmafiYW6TB1uTkV7sDVwBvAu5d394E/K6eJkl9M7dIg69JT8URVCejeX0p5W6AJIuBz9TTHtVeeJKGiLlFGnBNDindDvj4+JceoH58aD1Nkpowt0gDrklRcR5/2d/ZaXvg59MLR9IQM7dIA25Kuz+SPLrj6SeBw5NsB/ykbnsCsB/w9nbDk7SQmVukhWWqYyouAArQeUL+j/SY7ziqfaKSNBUXYG6RFoypFhUPmdEoJA0rc4u0gEypqCilXDnTgUgaPuYWaWFpevKrBwJPAe5P12DPUsonW4hL0hAyt0iDre+iIsk+wL8DdwG3UO0PHVeoBltJUl/MLdLga9JT8QHg/cDBpZSxluORNLzMLdKAa3Keio2Br/qll9Qyc4s04JoUFUcCL247EElDz9wiDbgmuz/eAXw7yV7ARcBo58RSygFtBCZp6JhbpAHXtKjYE/hV/bx7MJUkNWFukQZck6LiLcC+pZSjW45F0nAzt0gDrsmYijXAj9oORNLQM7dIA65JUXE48Ma2A5E09Mwt0oBrsvtjN+CZSZ4H/IK1B1Pt3UZgkoaOuUUacE2KituBb7QchyTdjrlFGmh9FxWllFfNRCCShpu5RRp8TcZUSJIkraXJBcV+xzqOGS+lPHRaEUkaSuYWafA1GVPxia7nI8AuwF7AR6cbkKSh9Ymu5+YWacA0GVNxeK/2JPsBj512RJKGkrlFGnxtjqk4CXhhi8uTJDC3SAOjzaLiRcCtLS5PksDcIg2MJgM1z+eeg6kCbAncD/jnluKSNGTMLdLgazJQ84Su52PATcAZpZRLpx2RpGF1Qtdzc4s0YJoM1HzfTAQyXfVgrv9H9cvm58AbSyn/O7dRSZoqc4s0+BbEya+SvAQ4FHgf8BiqL/7JSe4/p4FJGmjmFqk/Uy4qkowluXuS259mMth1OAD4fCnlqFLKJcDrgFXAvnMUj6QpMrdIC0c/uz9esI5pTwTexBz0fCRZH9gVOHi8rZQyluS0Oq5er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaBoy5xdxiblkouaWU0vgGPAL4b+BPwBeBraezvIYxPJBqxPgTu9o/ApwzwWsOql/jzdtCuv3VbH//ZvB7bW7x5m3+3KacW5oc/UGSB1LtY3wlcDKwcynl4ibLmiMHU+0n7bQ5Ex8LvwlwDfAgYOB/Fs4Bt9/0TGX7bQJcN2sRzRBzi/rk9pue1nNLX0VFkk2BdwJvBC4A9iilnNXPMmbAzcDdwBZd7VsAN/R6QSllDbCmq3nFRCtIMv5wZSllwvnUm9tveqa4/QZ6u5pb/G404fabnpnILf0M1DwQ+C3wPOAfSilPmgdfekopdwHnAnuMtyVZVD8/e67ikjQ15hZp4Ui9H3DyGZMx4E7gNKrqvadSyt7thDZ19WFfXwT+CfhfYH/g74G/LqXc2MLylwJ/ADa1Gu6f2296Fvr2M7cs3L/tTHP7Tc9MbL9+dn8cQzVgY94ppRyf5H7A+6lOUHMBsFcbX/raGqr9vN3dmpoat9/0LPTtZ25ZuH/bmeb2m57Wt9+UeyokSZLWZUGcUVOSJM09iwpJktQKiwpJktQKiwpJktQKi4oekmye5NgkK5LcnuTIJEsmec0ZSUrX7bOzFfNcS7JfkiuSrE5yTpLdJpn/xUkuree/KMlzZivW+aif7Zdknx6ftdWzGa+aMbf0z9wyPbOdWywqejsW2AFYRnVCnt2Bz03hdZ8HHtBxO3CmApxP+r08dJInAV8BjgR2AU4ATkiy46wEPM80vLz2Cu75Wdt6puNUK8wtfTC3TM+c5Ja5vnDQfLsB21MdM//Yjra9gDHgget43RnAJ+Y6/jnaZucAn+54vgi4Fnj7BPMfD3y7q+0nwGfn+r0MyPbbB7h9ruP21vff2dzS/zYzt8zu9pt2brGnYm1PpNqoP+toO43qi//4SV778iQ3J7k4ycFJNp6xKOeJjstDnzbeVkoZq5/3vDx03X5aV9vJ65h/wWq4/QCWJLkyydVJvplkhxkOVdNnbumDuWV65iq3NLpK6QK3JfD7zoZSyp+S3FpPm8hxwJVUV3N7NPBhqss3z/qphWfZfYHFQPcZBm8E/nqC12w5wfzr2r4LVZPt9ytgX+BCYFPgrcCPk+xQSrlmpgLVtJlb+mNumZ45yS1DU1QkOQR42ySzbd90+aWUzv2iFyW5Hjg9yballMubLlfqVko5m44LWiX5MfBLqutTvHuu4hpW5hYtFG3klqEpKoCPA0dPMs9vqS5pfI9BLEnWAzZngssdT+Cc+n47YCF/8fu+PHTd3s/8C1mT7XcPpZTRJOdTfdY0+8wtM8PcMj1zkluGZkxFKeWmUsqlk9zuoqrSNkuya8fLn0m1rc7pufDedq7vr2/nHcxPpdnloc/unL+2bB3zL1gNt989JFkMPIoF/lmbr8wtM8PcMj1zllvmenTqfLwBJwHnAbsBTwZ+DRzXMf2vgEuB3ern21J1De0KbAM8n+oXxA/m+r3M0vZ6CbAaeCVVN++/A7cBW9TTjwEO7pj/ScAo8BaqfXsHAXcBO871exmQ7fceYDnwUKrDxL5CdenwR871e/E26d/a3NLf9jK3zO72m3ZumfM3PR9vVN2RxwErqa41/wVgScf0bagODXt6/fzBwA+AW+o/4GXAR4Clc/1eZnGbvYFqMNkaql9dj++YdgZwdNf8L6YaFLQGuBh4zly/h0HZfsBhHfPeAJwI7DLX78HblP7O5pb+t5m5ZZa2Xxu5xUufS5KkVgzNmApJkjSzLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCo0o5JckWT/uY5D0sJibpmfLCokSVIrLCokSVIrLCo0oSSvTXJdfbnczvZvJvlCkm3rxzcmuSPJT5M8ax3L2yZJSbJzR9tmddvTO9p2THJSvcwbk3wpyX1n4C1KmgPmloXLokLr8p/AfYBnjDck2RzYCzgWWAJ8B9gD2AX4LvCtJFs1XWGSzYDvAecDj63XtQXwtabLlDTvmFsWqPXmOgDNX6WU25KcBLwMOL1ufhFwM/D9UsoY8POOl7w7yQuA5wOfbrjaNwDnl1LeOd6QZF/g6iQPL6X8uuFyJc0T5paFy54KTeZY4IVJNqifvxz4aillLMmSJB9L8ssktye5A9geaPxrAtgJeEbdPXlHvcxL62nbTmO5kuYXc8sCZE+FJvMtIMBzk/wUeCrw5nrax4BlwFuB3wB3Av8FrD/Bssbq+3S0jXTNs6Re59t6vP76foOXNG+ZWxYgiwqtUylldZJvUP2K2A74VSnlvHryk4GjSyn/DZBkCbDNOhZ3U33/AKr9mgA7d81zHvBC4IpSyp+m/QYkzUvmloXJ3R+aimOB5wL71o/HXQbsnWTnJDsBx7GOz1Qp5U7gJ8Dbk2yf5GnAB7tmOwLYHPhKksfVo8D3THJUksUtvidJc8/cssBYVGgqvgfcCjyC6ss97gDgNuDHVN2KJ1P9GliXfal6yM4FPgG8q3NiKeU6ql8pi4FTgIvq+W7nL12ckhYGc8sCk1LKXMcgSZIWAHsqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywq1Kok+yQpSbaZ61gkSbPLokKSJLUipZS5jkELSJLFwAiwpvjhkqShYlEhSZJa4e4PtapzTEWSLya5OclIj/lOSfKruYhRkjQzLCo0k74E3AfYs7MxyZbAM4Evz0VQkqSZYVGhmfQ94BrgH7va/4Hqs2dRIUkLiEWFZkwpZQw4Fnh+kk06Jr0c+HEp5XdzE5kkaSZYVGimHQNsBLwAIMkjgF2pdo1IkhYQiwrNqFLKJcC5/GUXyD8CdwFfm7OgJEkzwqJCs+EY4JlJHgC8DDixlHLbHMckSWqZRYVmw1eAAhwOPBQHaErSgmRRoRlXSrkJ+C7wYuB24MQ5DUiSNCMsKjRbjqnvv1ZKWTOnkUiSZoRFhVpVSjm6lJJSyhVdk+6q7931IUkLlNf+0KxI8m1ge2A7LzQmSQvTenMdgBa2JC8FHg08F/j/LCgkaeGyp0IzKkkB7gCOB15XSvnTHIckSZohfRcVSfYC7iil/LB+vh/wGuASYD/PPyBJ0nBqMlDzo8BSgCSPAj4OfAd4CHBoe6FJkqRB0mRMxUOoeiUAXgh8u5TyziSPoSouJEnSEGpSVNwFbFw/fhZ/Of/ArdQ9GIMmSYAHAivnOhapoU2A6xwIK2kuNSkqfggcmuRHwG7AS+r2hwPXtBXYLHsggxu7NO5BwLVzHYSk4dWkqHgD8BngRcDrSynjSezZVKdiHkQrAa6++mqWLl27s2V0dJRTTjmF5cuXMzIyMuvBDTq33/RMtv1WrFjBgx/8YLCnTdIc67uoKKVcBTyvR/ubW4loDi1dunTComLjjTdm6dKl/lNswO03PW4/SYOi0cmvkiwCtgPuT9cRJKWUM1uIS5IkDZi+i4okTwCOA7YG0jW5AItbiEuSJA2YJuep+CzwM2BHYHPg3h23zdsLTQvNz3/+c6666qq5DkOSNEOa7P54GPCiUspv2g5GC9M111QH1uy+++4Uwq8u/SVbbbXVHEclSWpbk56Kc6jGU0hTcssttwCwdLe9WX3nKm6++eY5jkiSNBOa9FR8Cvh4ki2Bi4DRzomllAvbCEwLz+Kl95vrECRJM6hJUfH1+v4LHW2FatCmAzUlSRpSTa/9IUmSdA9NTn515UwEIkmSBlvTk19tC+wPbF83XQIcXkq5vKW4JEnSgOn76I8ke1IVEbsBF9a3xwO/SLKs3fAkSdKgaNJTcQhwWCnl7Z2NSQ4BPgyc2kZgkiRpsDQ5T8X2wJE92r8APHJ64UiSpEHVpKi4Cdi5R/vOwO+nE4wkSRpcTXZ/fB74XJKHAj+u254MvA04tK3AJEnSYGlSVHwAWAm8BTi4brsOOAj4ZDthSZKkQdPkPBUFOAw4LMkmddvKtgOTJEmDpdF5KsZZTEiSpHFTKiqSnAfsUUq5Lcn5VNf46KmU8pi2gpMkSYNjqj0V3wTWdDyesKiQJEnDaUpFRSnlfR2PD5qxaCRJ0sBqcpru3ya5T4/2zZL8tp2wJEnSoGly8qttgMU92jcAHjStaCRJ0sCa8tEfSZ7f8XTPJH/oeL4Y2AP4XVuBSZKkwdLPIaUn1PcF+GLXtFHgCqoTYkmSpCE05aKilLIIIMnvgMeVUm6esagkSdLAaXJGzYfMRCCSJGmwTfXkV28CPldKWV0/nlApxet/SJI0hKbaU/Fm4Fhgdf14IgUvKiZJ0lCa0iGlpZSHlFJu6Xg80e2hTQNJ8vYkJcknOto2THJEkluS3JHk60m26HrdVklOTLIqye+TfDTJtK5pIkmS+tfk5FfvSbJxj/aNkrynSRBJHgf8E3Bh16TDgL8BXgw8DXgg8I2O1y0GTgTWB54EvBLYB3h/kzgkSVJzTU5+9V5gSY/2jetpfUmyhGrXymuA2zraNwVeDRxQSvleKeVc4FXAk5I8oZ5tOfBI4B9LKReUUk4C3g3sl2T9fmORJEnNNdlNEHpfUGwn4NYGyzsCOLGUclqSd3W07wqMAKeNN5RSLk1yFfBE4Cf1/UWllBs7Xncy8G/ADsD5Pd9AsgHVGUDHbQIwOjrK6OjoWvOPt/WapsmNjY0BsOHIYjbaaCPGxsbcln2Y7PPntpQ0X/RzRs3bqIqJAvw6SWdhsZiq9+Kz/aw8yUuBxwCP6zF5S+CuUsrtXe031tPG57mxx3Q65unlHfToVTnllFPYeOO19uz82amnnrqORWoyh77iqfCKp3Lttddy7bXXznU4A2eiz9+qVatmORJJ6q2fnor9qXopvkD1D7nzNN13AVeUUs6e6sKSPBg4HFhWSlndRxxtOBg4tOP5JsA1y5cvZ+nSpWvNPDo6yqmnnsqyZcsYGRmZrRgXjPPPP5/rr7+eA445i+tP+gxnnnkmO+2001yHNTAm+/ytWLFiDqKSpLX1c0bNL8Kfz6j5o1LKn6a57l2B+wPnJRlvWwzsnuQNwJ7A+kk26+qt2AK4oX58A7Bb13K36JjWUyllDbBm/Pn4+kdGRtZZNEw2Xb0tWlQN3Vk9ejd33nknixYtcjs2MNHnz20pab7oe6BmKeUHwNZJPpjkK0nuD5Dk2Ul26GNRpwOPAnbuuP2MatDm+ONRqguVUa/jEcBWwHiPyNnAo8ZjqC0DVgCX9PnWJEnSNPQ9UDPJ04CTgB8BuwP/AvyeaqDmq4EXTWU5pZSVwMVdy/4jcEsp5eL6+ZHAoUlupSoUPgWcXUr5Sf2SU6iKhy8lOZBqHMUHgSPq3ghJkjRLmhxSegjwrlLKMqqxFOO+Bzyh90saezPwbeDrwJlUuzT2Hp9YSrkbeB5wN1WvxZeBY4BG58uQJEnNNTmk9FHAy3q0/x6473SCKaU8vev5amC/+jbRa64EnjOd9UqSpOlr0lNxO/CAHu27AB4nKEnSkGpSVHwV+HCSLanOWbEoyZOBj1HtepAkSUOoSVHxTuBS4GqqE15dQjXe4cdUgyQlSdIQ6ntMRSnlLuA1ST4A7EhVWJxfSrms7eAkSdLgaHyJ8FLKVUmurh/3uhaIJEkaIk12f5Dk1UkuBlYDq5NcnOT/thuaJEkaJE1OfvV+4ADqE1HVzU8EDkuyVSnFc0RIkjSEmuz+eD3wmlLKVzra/ifJhVSFhkWFJElDqMnujxGq63J0O5dpjNGQJEmDrUlR8SWq3opur6W6GJgkSRpCTXsWXp1kOTB+Ya/HU1099Jgkh47PVEo5YJrxSZKkAdGkqNgROK9+vG19f3N927FjPg8zlSRpiDQ5+dUzZiIQSZI02BqdpwIgyXZJ9kyyUf087YUlSZIGTd9FRZL7JDkd+DXwHf5yxdIjk3y8zeAkSdLgaNJTcRgwSjUwc1VH+/HAXm0EJUmSBk+TgZrLgT1LKdd07fG4DNi6lagkSdLAadJTcS/u2UMxbnNgzfTCkSRJg6pJUXEW8IqO5yXJIuBA4PutRCVJkgZOk90fBwKnJ3kssD7wEWAHqp6KJ7cYmyRJGiB991SUUi4GHg78EPgm1e6QbwC7lFIubzc8SZI0KPrqqUgyAnwXeF0p5UMzE5IkSRpEffVUlFJGgUfPUCySJGmANRmo+WXg1W0HIkmSBluTgZrrAfsmeRZwLvDHzolemVSSpOE03auUPrxrmlcmlSRpSHmVUkmS1IrGVymVJEnqZFEhSZJaYVEhSZJaYVEhSZJaMaWiIsl5Se5dP35Pko1nNixJkjRoptpTsT3VNT4A3gssmZlwJEnSoJrqIaUXAEcl+SEQ4K1J7ug1Yynl/S3FJkmSBshUi4p9gPcBz6M6wdWzgT/1mK8AFhWSJA2hKRUVpZRfAS8FSDIG7FFK+f1MBiZJkgZLkzNqesSIJElaS5Nrf5BkW2B/qgGcAJcAh5dSLm8pLkmSNGD67nVIsidVEbEbcGF9ezzwiyTL2g1PkiQNiiY9FYcAh5VS3t7ZmOQQ4MPAqW0EJkmSBkuT8RHbA0f2aP8C8MjphSNJkgZVk6LiJmDnHu07Ax4RIknSkGpSVHwe+FyStyV5an17O/Dv9bQpS/KOJD9NsjLJ75OckOQRXfNsmOSIJLckuSPJ15Ns0TXPVklOTLKqXs5HkzQahCpJkppp8o/3A8BK4C3AwXXbdcBBwCf7XNbTgCOAn9ax/CtwSpJHllL+WM9zGPBc4MXAH4BPA98AngyQZDFwInAD8CTgAcAxwCjwzr7fnSRJaqTJeSoK1T/6w5JsUretbLLyUspenc+T7EO1C2VX4MwkmwKvBl5WSvlePc+rgF8meUIp5SfAcqqxHM8qpdwIXJDk3cCHkxxUSrmrSWySJKk/09pF0LSYWIdN6/tb6/tdgRHgtI51XprkKuCJwE/q+4vqgmLcycC/ATsA53evJMkGwAYdTZsAjI6OMjo6ulZQ4229pmlyY2NjAGw4spiNNtqIsbExt2UfJvv8uS0lzRepOh7mXpJFwP8Am5VSnlK3vQw4qpSyQde8/wt8v5TytiSfA7YupezZMX1j4I/Ac0opJ/VY10FUV1u9h+OOO46NN/aq7hosq1at4mUvexnApqWUFXMdj6ThNZ8GMx4B7Ag8ZRbWdTBwaMfzTYBrli9fztKlS9eaeXR0lFNPPZVly5YxMjIyC+EtLOeffz7XX389BxxzFtef9BnOPPNMdtppp7kOa2BM9vlbscI6QtL8MC+KiiSfproC6u6llGs6Jt0ArJ9ks1LK7R3tW9TTxufZrWuRW3RMW0spZQ2wpmP9AIyMjKyzaJhsunpbtKg6yGj16N3ceeedLFq0yO3YwESfP7elpPmir0NKk4wkOT3Jw9pYeSqfBl4APLOU8ruuWc6lOopjj47XPALYCji7bjobeFSS+3e8bhmwgup04pIkaRb01VNRShlN8ugW138E8DLgb4GVSbas2/9QSrmzlPKHJEcChya5lapQ+BRwdn3kB8ApVMXDl5IcCGwJfBA4ou6RkCRJs6DJya++THWYZxteT3XExxnA9R23l3TM82bg28DXgTOpdmnsPT6xlHI31a6Tu6l6Lb5MdZ6K97QUoyRJmoImYyrWA/ZN8iyq3RN/7JxYSjlgqgsqpWQK86wG9qtvE81zJfCcqa5XkiS1r0lRsSNwXv344V3T5sfxqZIkadY1OaPmM2YiEEmSNNiajKkAIMl2SfZMslH9fNJdGZIkaeHqu6hIcp8kpwO/Br5DdQEvgCOTfLzN4CRJ0uBo0lNxGNW5I7YCVnW0Hw/s1fMVkiRpwWsyUHM5sGcp5ZquPR6XAVu3EpUkSRo4TXoq7sU9eyjGbU7Hqa8lSdJwaVJUnAW8ouN5qa8weiDw/VaikiRJA6fJ7o8DgdOTPBZYH/gIsANVT8WTW4xNkiQNkL57KkopF1Od9OqHwDepdod8A9illHJ5u+FJkqRB0ejS56WUPwAfajkWSZI0wBoVFUnuTXVRse3rpkuAo0opt7YVmCRJGixNTn61O3AF8Cbg3vXtTcDv6mmSJGkINempOILqRFevry87TpLFwGfqaY9qLzxJkjQomhxSuh3w8fGCAqB+fGg9TZIkDaEmRcV5/GUsRaftgZ9PLxxJkjSoprT7I8mjO55+Ejg8yXbAT+q2JwD7AW9vNzxJkjQopjqm4gKgAJ0X+/hIj/mOoxpvIUmShsxUi4qHzGgUkiRp4E2pqCilXDnTgUiSpMHW9ORXDwSeAtyfrsGepZRPthCXJEkaMH0XFUn2Af4duAu4hWqsxbhCNZBTkiQNmSY9FR8A3g8cXEoZazkeSZI0oJqcp2Jj4KsWFJIkqVOTouJI4MVtByJJkgZbk90f7wC+nWQv4CJgtHNiKeWANgKTJEmDpWlRsSfwq/p590BNSZI0hJoUFW8B9i2lHN1yLJIkaYA1GVOxBvhR24FIkqTB1qSoOBx4Y9uBSJKkwdZk98duwDOTPA/4BWsP1Ny7jcAkSdJgaVJU3A58o+U4JEnSgOu7qCilvGomApEkSYOtyZgKSZKktTS5oNjvWMf5KEopD51WRJIkaSA1GVPxia7nI8AuwF7AR6cbkCRJGkxNxlQc3qs9yX7AY6cdkSRJGkhtjqk4CXhhi8uTJEkDpM2i4kXArS0uT5IkDZAmAzXP554DNQNsCdwP+OeW4pIkSQOmyUDNE7qejwE3AWeUUi6ddkSSJGkgNRmo+b6ZCESSJA22BXPyqyT7Jbkiyeok5yTZba5jkiRpmEy5qEgyluTuSW5/mslg1xHbS4BDgfcBjwF+Dpyc5P5zEY8kScOon90fL1jHtCcCb2Luej4OAD5fSjkKIMnrgOcC+wKHzFFMkiQNlSkXFaWUb3a3JXkE1T/tvwGOBd7TXmhTk2R9YFfg4PG2UspYktOoip1er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaJGkuNDn6gyQPpNrV8ErgZGDnUsrFbQbWh/sCi4Ebu9pvBP56gte8A3hvd+NDHvKQdiNTT6997WvnOoSFahNgxVwHIWl49VVUJNkUeCfwRuACYI9SylkzENdMO5hqDEanzZn45F2bANcADwL8Wdg/t9/0TGX7bQJcN2sRSVIPUy4qkhwIvA24AfiHXrtD5sjNwN3AFl3tW1DFupZSyhpgTVfzhL/wkow/XFlK8Zdgn9x+0zPF7ed2lTTn+umpOAS4E/gN8Mokr+w1Uyll7zYCm6pSyl1JzgX2oD4xV5JF9fNPz2YskiQNs36KimO45+m555NDgS8m+Rnwv8D+wL2Ao+YyKEmShkk/R3/sM4NxTEsp5fgk9wPeT3UdkguAvUop3YM3m1pDNTC1e5eJpsbtNz1uP0kDIaXM184HSZI0SBbMabolSdLcsqiQJEmtsKiQJEmtsKiQJEmtsKjoIcnmSY5NsiLJ7UmOTLJkkteckaR03T47WzHPtX4vPZ/kxUkuree/KMlzZivW+aif7Zdknx6ftdWzGa8k9WJR0duxwA7AMuB5wO7A56bwus8DD+i4HThTAc4n/V56PsmTgK8ARwK7UJ207IQkO85KwPNMv9uvtoJ7fta2nuk4JWkyHlLaJcn2wCXA40opP6vb9gK+AzyolNLz+gpJzgAuKKXsP0uhzhtJzgF+Wkp5Q/18EXA18KlSylqXnk9yPHCvUsrzOtp+QrX9XjdLYc8bDbbfPsAnSimbzWackjQZeyrW9kTg9vGConYaMAY8fpLXvjzJzUkuTnJwko1nLMp5ouPS86eNt5VSxurnPS89X7ef1tV28jrmX7Aabj+AJUmuTHJ1km8m2WGGQ5WkSTW69PkCtyXw+86GUsqfktxaT5vIccCVVFeKfDTwYeARwKxeC2UONLn0/JYTzL+u7btQNdl+vwL2BS4ENgXeCvw4yQ6llGtmKlBJmszQFBVJDqG6yuq6bN90+aWUzjEXFyW5Hjg9yballMubLlfqVko5Gzh7/HmSHwO/BP4JePdcxSVJQ1NUAB8Hjp5knt9SXS79HgPkkqwHbM4El1KfwDn1/XbAQi4q+r70fN3ez/wLWZPtdw+llNEk51N91iRpzgzNmIpSyk2llEsnud1F9QtwsyS7drz8mVTb6pyeC+9t5/r++nbewfxUb7PxS88D97j0/NkTvOzszvlry9Yx/4LVcPvdQ5LFwKNY4J81SfPfMPVUTEkp5ZdJvgt8PsnrgBHg08BXx4/8SPJXwOnAK0op/5tkW+BlVEeI3EI1puIw4MxSyoVz8T5m2TovPZ/kGODaUso76vkPB36Q5C3AicBLgccCr53luOeLvrZfkvcAPwF+A2wG/D+qQ0r/Y7YDl6ROFhW9vZyqkDid6qiPrwNv6pg+QjUIc/zojruAZ/GXfwZX16/54OyEO7emcOn5rai24/j8P07yMqrt86/AZcDflVIuntXA54l+tx9wb6pzomwJ3EbV0/GkUsolsxa0JPXgeSokSVIrhmZMhSRJmlkWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZpRSa5Isv9cxyFJmnkWFZIkqRUWFZIkqRUWFZpQktcmua6+amZn+zeTfCHJtvXjG5PckeSnSZ61juVtk6Qk2bmjbbO67ekdbTsmOale5o1JvpTkvjPwFiVJLbKo0Lr8J3Af4BnjDUk2B/YCjgWWUF2ZdQ9gF+C7wLeSbNV0hUk2A74HnE915dK9gC2ArzVdpiRpdniVUk2olHJbkpOoLut+et38IuBm4PullDHg5x0veXeSFwDPp7rKaxNvAM4vpbxzvCHJvsDVSR5eSvl1w+VKkmaYPRWazLHAC5NsUD9/OfDVUspYkiVJPpbkl0luT3IHsD3Vpbqb2gl4Rr3r4456mZfW07adxnIlSTPMngpN5ltAgOcm+SnwVODN9bSPAcuAtwK/Ae4E/gtYf4JljdX36Wgb6ZpnSb3Ot/V4/fX9Bi9Jmj0WFVqnUsrqJN+g6qHYDvhVKeW8evKTgaNLKf8NkGQJsM06FndTff8AqjETADt3zXMe8ELgilLKn6b9BiRJs8bdH5qKY4HnAvvWj8ddBuydZOckOwHHsY7PVCnlTuAnwNuTbJ/kacAHu2Y7Atgc+EqSx9VHmOyZ5Kgki1t8T5KklllUaCq+B9wKPIKqcBh3AHAb8GOqXRYnU/U0rMu+VD1k5wKfAN7VObGUch1VD8hi4BTgonq+2/nL7hNJ0jyUUspcxyBJkhYAeyokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIr/n8Z6N6Kx6fSjgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAI2CAYAAAD5FUpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO2UlEQVR4nO3deZxcVZ338c+3Q5N0CAHCvu8wKAoMiCCIIrKNqCOi+ERHWcZdGRZHkFE2HUFH2QT1kYdFlCg6aFQUQRBkNQYIu2BEtkAIhAAdkk7SSf+eP+6tpFKpXqr6nq7u29/361Wvqjp16pzfvVV9+lf3nnuvIgIzMzOzVNpaHYCZmZmVm5MNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDVuJpDMkDclpZSXdIumWqudvlxSSjhii/q+Q9ORQ9FXT71b5ch411H2PFpJWk/RNSc9I6pE0tdUxjXRVf59vb3UsNvI42SgxSUflg0PltkjSc5Kul3ScpDUL6meTPEnZtYj2ijScY7OkjgH+E/hf4GPAea0Nx2x0W63VAdiQOA14AmgHNgLeDpwPnCjpPRHxQFXdrwHnNNj+JsDpwJPAfQ2876AG+2lGX7F9nNYk3E8BHUB3C/oeLd4BPBsRJ7Q6EDNzsjFaXBcRd1c9P1vSO4BrgV9L2ikiugAiYimwNGUwksZHxMKIWJKyn/5EREv+2Ud29cNFreh7MCSNA5ZERE+rYxmADYBXimpMUhuwekSMuM/NbDjwbpRRKiL+CHwV2BL4SKW83pwNSQdKul3SK5Jek/SYpK/nr70dmJ5Xvbxql81R+eu3SHpI0u6SbpW0EPh61Wu31AlvjKSvS3pe0gJJv5a0eU1MT0q6ovaN1W0OILZV5mxIWkPSt/N9/YvzZf2CJNXUC0kXSfrXfPkWS3pY0iF1lqc2xlXmbOSxvCZpU0lT88cvSvqWpDEDaPNJSddKOkjSffkus0ckHV5Tb1Le5oN5H52SrpO0S029yv75D0n6mqRngYXAxCba+KCk0yU9K2m+pP+VtJaksZLOl/RC3s7lksbWtNHrd6+vdQvsD7y+6jN/e/56o5/vhyU9DCwG+vxsJR0q6U/5MnZKmi5pck2dD0i6R1KXpLmSfixp06rXv5D3vWWd9s+WtETSOn3FkdfdI2/nY3VeOzh/7bD8+ZaSvpuviy5JL0n6uaStBtBPv3+HVWVjJZ0p6e/5un9G2byasbXvt/Lxlo3R7Udk//gPAi6pV0HS68m2gDxAtjtmMbAdsE9e5a95+VnAD4Db8vI7q5pZF7gO+CnwY2BOP3H9FxDAN8h+oR4P3Chp18oWmAEaSGzL5f9wfk32j+pSst0uBwP/A2wK1G6S3xc4HPguMB84DrhG0hYR8VIDcVaMAa4HpgFfAN4JnAQ8DnxvAO/fHrga+D7wQ+Bo4OeSDomIP+R1tgH+Ffg52a61DYFPAn+S9LqIeK6mza8AS4BvAWPzx69rsI0vAV1ku+e2Az5PtgupB1gHOAPYCzgqb+8sGNB3r54XgX8j+w5NyPsG+GsTn+87gA8CFwFzyXbF1aUscbwMeBg4m2yrym5kCcqUqjqXkyXAXyJbb/8B7CNpt4h4BfgZ8M283/+p6eaDwA0R8XIfyw9ARNwt6R/5e35Y8/KRwMtk3zWANwFvIfv7nAVsBXwauCX/PBf2119/lG0Z+jXZ38wPyP4230C2zncg+z5ZmUWEbyW9kQ3eAezRR51XgHurnp9BvqU/f3583sZ6fbSxR17nqDqv3ZK/9sleXrul6vnb87qzgDWryj+Qlx9XVfYkcMUA2uwrtiuAJ6uevzev+1819X5O9o9x26qyIPvnV132xrz8c/18LlvVxpTHEsBXaureC9w9gM/6yfz9h1eVTQSeq/l8xwJtdeJZVN131WfxONBRU7/RNh4E2qvKp+Tr83c1bdxZ83n0+93rY33cAjxUU9bo57sMeN0A+loL6AT+DIyreU35fTtZkv1gdR3gXXlfZ9ash7tr2nlTXu/fGlgHXydLDtepKludLNG4tKqso85796rtr+rzfHsTf4cfydfnvjX1Ppm3+ZZGP2PfRtbNu1HsNaCvo1Jeye/fm/86acZisl90A3VlRMyvev6/wGzgX5rsf6D+hWxAvLCm/NuAgENrym+MiMcrTyKbaNtJtvWgWd+veX5bA+09B/yyKp5O4EpgN0kb5WWLI59zIWmMpHXJvgOPAf9cp80fRs3WpCbauDJWnh8zjWx9XlZTbxqwuaTKFtdX8vvBfPeqNfr5/ikiHhlAuweS/Q2dEzVzOiKisktyD7KtdN+trhMRvwUeJUs6Kq4Gdpe0bVXZkWR/R78aQDzV7bSTbX2rOAhYO3+tEsPyz1dSe/55/p1s/df7PJvxAbKtGY9KWq9yA/6Yv75/Qf3YMOVkwyaQ7QLozdXAHcD/A+ZI+mm+D76R786z0dhk0JnVT/IB++9kv55T2hJ4ribRgWyQrLxe7ek6bbxMtmugGYsi4sVBtPf3qn9uFX/L77eCbHO2pBMkzST75zWXbNfDG8l+odd6oragiTZq19Or+f0zdcrbqtoo4rtXrdHPd5Vl70UlKXion74hS8hqPVrTd2VLy5GwfPfeB8gmencOMCYi4v687SOrio8k+7wq/+SR1CHpLEnPsPLnuTb1P89mbA+8Pm+3+lb5fm5QUD82THnOxigmaTOyweTvvdWJiC5J+5H98ngX2T7oI4E/SjooIpYNoKtG5lkMVG8nHhtD9ut1KPTWj3opb7a9Ip1KNjH4MrL5GPPI/rGdT/0fH/U+u0bb6G25+lx/BX33BiPF97ZfEfGcpNvI5lt8nWyXxhbAyU00dzXwX/lWhPnAe4CfRHbUWcV3yOb3nA/cRZb0Bdkcjv4Su4H+HbaR7UI6sZf6tYmnlYyTjdHt3/L76/uqlG8yvym/nSjpVOC/yf4J3EjvA06ztq9+kv+y245somDFy2S/vGptCfyj6nkjsT0FvFPSmjW/fv+p6vXhbDtJqtm6sUN+/2R+fwRwc0QcW/1GSWuT/aIdiCLaGJABfPcakerzrexK25neE/dK2ztStVWhqqy276uB70rakSzBWgj8ponYriY7z8z7yeaMTCRLIqodQba77KRKgbLDnNceQPsD/Tt8HNgFuKnO1jcbBbwbZZRSdp6Nr5BtKr6qj3qT6hTfl99XDllbkN+vXVB4H9XKZzc9AtiY7IiWiseBvSStXinID+Vb6RDZBmP7Hdkvss/VlJ9AlrRct8o7hpdNgPdVnkiaCHwUuC8ins+Ll1Gz5UXSB8iOxhioItro1wC/e41I9fneQLbV4Ev5P+nl8kQZ4G7gBeBT1Yd6SjoU2An4bU2b15Ct5/9Dtgvl2ohYQIMi4q9kWxSOzG+zgVtrqq3yeZIdMdTvIdcM/O/wZ2Tfj4/XNpDvxlljAH3ZCOYtG6PDoZL+iezz3pDskL4DyX5Nvad2UluN0/JN2b/N628AfIbsiJHb8zqPk00m+5Sk+WT/4KdFxED3edeaB9wu6fI83uPJfjFWH577/8iSkN9L+hnZfvOPsOJXZkUjsf0GuBn47/wcA/eTTah7L3B+9WTQYepvwKWS3kT2K/YYsvV3dFWda8k+08vJjnp4A/BhVv4V2p8i2hiIgXz3GpHk842ITkknkH0np0uaQvaLfxdgPPCxiOiWdDLZROk/SfoJKw59fZKa06lHxAuSbibb7bAmVRM6m3A12eHEi8iOQqk9Kdu1wL9JehV4BNib7LDrgRy+PdC/wx+R7Rb6vqT9yebijCHbqvRBskOQ78bKq9WHw/iW7saKQ18rt8Vkv2xuIDsnxJp13nMGKx/6+g5gKvBs/v5nyQ5d3L7mfe8hO8dAN1WHdVLnEMSq99xC/UNfP0S2r3oO2ebja4Et6rz/RLJ/PIvI/vnsXttmP7FdQdWhlnnZBODcfDmXkP0D/wL5IYxV9QK4qE5MT1LnUMCaOltVx1EVy2v9fR59tPlkvp4OIvsnuohs4uMRNfXGkp0z47l83d5ONiegt8/iiDp9DaoNejkku7Ks5Ie6MsDvXh/frVW+d4P9fPvp891k/0QXks17mAZ8qKbOB8kOZ15E9s/8x8CmvbT373kcndQcUttgXNuxYgzYp87ra5PNv3mRbAvN78l27az0XabOoa8N/h22A18km0i7iOxHxd1k51CZ2Ozy+TYybpVjwM1sBFN2JtSHIuKwVsdiZlbLczbMzMwsKc/ZMDMbQSR10P/5L+ZFiy90aFbNyYaZ2chyJP2fkXd/snkTZsOC52yYmY0gkjYmOxtnX+6JAVywzWyoONkwMzOzpDxB1MzMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw1rGUlnSIqq509KuqKFIZnZCOSxZPhzsmFmZmZJrdbqAMyq7Aj0tDoIMxvxPJYMM042bNiIiMWtjsHMRj6PJcOPd6PYkJC0r6TpkhZJelzSJ+vU8X5WM+uTx5KRyVs2LDlJbwBuAF4EziD73p0JzGlhWGY2wngsGbmcbNhQOAsQ8NaIeBpA0jXAgy2NysxGGo8lI5R3o1hSksYABwNTK4MDQET8Fbi+ZYGZ2YjisWRkc7Jhqa0PdAAz67z22BDHYmYjl8eSEczJhpmZmSXlZMNSexHoArav89qOQxyLmY1cHktGMCcbllRELCPbn/qvkraolEvaiWz/q5lZvzyWjGxONmwonJ7f3ybpZEn/BdwMPNzCmMxs5PFYMkI52bDkIuIBsl8eL5IdunYM2aDxy1bGZWYji8eSkUsR0X8tMzOzEULSM8D1EfHvrY7FMt6yYWZmpSGpHVgXmNvqWGwFn0HUzMxKQdLBwIfIzsdxU4vDsSrejWJmZqUg6WZgO+B7EfH1VsdjKyTZjSLpEEn7Vj3/rKT7JE2RtE6KPs2sfDyWWCMiYv+I2NyJxvCTas7G/wATYflV+r4N/A7YGjg3UZ9mVj4eS8xKINWcja2BR/LH7weujYhTJf0z2UBhZjYQHkvMSiBVsrEEGJ8/fidwZf54HvmvlOFEkoBNgPmtjsUssTWB52LkTNYaMWOJxxEbZRoaS1IlG7cD50q6A9gTODIv3wGYlajPwdiE4RmXWQqbAc+2OogBGkljiccRG20GPJakSjY+B3wXOAL4dERUgjkU+H2iPgdjPsAzzzzDxImt/7HU3d3NDTfcwEEHHUR7e3urw2mIY2+NgcTe2dnJ5ptvDiPrl/dIGkuG1TgC5f9OD1dlj72ZsSRJshERTwOH1Sk/IUV/RZk4ceKwGCS6u7sZP348EydOHJFfVMc+9EZy7H0ZiWPJcBlHYGR/Lxx7a6SKPdlJvSS1kR3vvAE1R71ExK2p+jWzcvFYYjbyJUk2JO0FTAG2BFTzcgBjUvRrZuXiscSsHFJt2fg+cDfwLmA22aAwoj399NPMnZudan+99dZjiy22aEkbQ9HeYJbvhRdeAGDWrFlsvfXWhcQDw2d9Dbd1Xmmjst5LyGNJojbqtTec/s48lrQmnp6enqbj6FNEFH4DFgDbpWg7UbwTgXj11VejnqeeeirGdYwPsoEuxnWMj6eeeqpu3d400saSJUti6tSpsWTJkkLaazS+wSxfR0dHTJ06NdaZtG5h8RS9fL211996H27rvLqNynr/xz/+0WvdV199tRL7xBgGf3cDuY2ksaS/cSRi+I8lQ/F3NtA2PJYUF08jbaQaS1KdQXQa2T7WUpg7dy6Luhay7mEnse5hJ7Goa+HyLHIo2xiK9tba+8hBLd+kQz4PMGyXbzh+hs2u8+o2Ju55OAAvvfRS0/EMUx5LErRRr73BfA+LjM1jSWvjqaz3oseSVLtRvgN8W9JGwINAd/WLEfFAon6Tal9382HRRsr2xqy1waDe3z5p04IiydsbhutruK1zgDET1y8gkmHJY0nCNqoV8T2sKGT5PJYMeVvt625O+2q1U6OKkSrZuCa/v6yqLMgmeHlSl5kNlMcSsxJIeW0UM7PB8lhiVgKpTur1VIp2zWx08VhiVg4pT+q1LXA8sFNe9AhwQUQ8nqpPMysfjyVmI1+So1EkHUw2IOwJPJDf3gw8LOnAFH2aWfl4LDErh1RbNs4BzouIU6oLJZ0DfAP4Q6J+zaxcPJaYlUCq82zsBFxap/wy4HWJ+jSz8vFYYlYCqZKNF4Fd65TvCpT2vMpmVjiPJWYlkGo3yiXADyRtA9yZl+0DnAycm6hPMysfjyVmJZAq2fgqMB84CTg7L3sOOAO4MFGfZlY+HkvMSiDVeTYCOA84T9Kaedn8FH2ZWXl5LDErh2Tn2ajwwGBmRfBYYjZyFTZBVNK9ktbJH8/In9e9NdjuppJ+LOklSV2SHpS0R9XrknSWpNn56zdK2r6o5TKzoeWxxKx8ityy8StgcdXjGGyD+YBzB3AzcCjZzPTtgZerqn0ROA74GPAE2T7e6yW9LiIWDTYGMxtyHkvMSqawZCMizqx6fEZBzZ4MPBMRR1eVPVF5IElkpzH+WkT8Ki/7KDAH+FfgpwXFYWZDxGOJWfmkOl35PyStW6d8bUn/aKCp9wB3S/q5pBfyTaofr3p9a2Aj4MZKQUS8CkwD9m4yfDMbJjyWmJVDqgmiWwFj6pSPBTZroJ1tgE+THU//deBNwIWSlkTED8kGB8h+fVSbU/XaKiSNzWOpWBOgu7ub7u7uVer39PTQ0dHBuNUEQEdHBz09PXXr9qaRNiplfbVfREx122sfM6jlG1t0PEPYXn/rfbit89o2Ks97a6PZOFtsK4bpWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoO7KsGJLekz+cSrbf89Wql8cABwAHRsSOA2xvCXB3RLylquxC4E0Rsbekt5Dth90kImZX1fkZ2VFzR/bS7hnA6bXlU6ZMYfz48QMJzWzEWbhwIZMnTwZYKyI6Wx1PX0bCWOJxxEarpsaSiCjsBvTkt2VVjyu3xcBjwGENtPcU8P9qyj4NPJs/3oZs8tiuNXX+RHYJ6t7aHQtMrLptCsTcuXNjyZIlq9ymT58eHR0dsdWxF8RWx14QHR0dMX369Lp1e7s10saCBQti6tSpsWDBgkLaayS+Td59/KCWb8dPXhhTp06NSZMmFRJP0cvXV3v9rffhts6r29jm8JNi6tSpMW3atF7rzp07N/K/l4lF/t2nuI2EsaTRcWS4jyWD+R6mWD6PJUO/zrc69oLl673osaTQ3SgR0QYg6QmyXwxzB9nkHUDtL5cdyAYOyCZ4PU/2K+e+vO+JZJeg/l4fcS5mxWx3srlh0N7eTnt7+yr129ra6OrqYtHSbCtQV1cXbW1tdev2ppk2eounqJjqtdfRvWxQy7e44HiKXr6BtJfye1CvvWbX+UoxdS9b/ry3NpqNsxVGwljS6DgCw3ssGcz3cDCx9daGx5Li4xloG5WyIseSVGcQ3bqgps4D7pR0KvAzYE/gE/mNiAhJ5wNfljSTFYerPUe2+dXMRjCPJWblUFiyIek44AcRsSh/3KuIGNA1DSJiuqT3kV0T4TSyAeD4iLiqqto3gTWAHwBrA7cDh4SPizcbkTyWmJVPkVs2TgCuAhblj3sTNHABpYi4Fri2j9eDbPA4baBtmtmw5rHErGSKPKnX1vUem5k1wmOJWfmkOqnXaZJWOfZLUock/2owswHxWGJWDkmSDbJjzyfUKR9PnePSzcx64bHErARSJRui/sWTdgHmJerTzMrHY4lZCRR66Kukl8kGhgD+Jql6kBhD9gvl+0X2aWbl47HErFyKPs/G8WS/RC4j28RZfYrhJcCTEXFXwX2aWfkcj8cSs9Io+gyiP4TlZ/27IyKWFtm+mY0OHkvMyiXJnI2I+BOwpaSvSfqJpA0AJB0q6fUp+jSz8vFYYlYOqQ59fRvwINl1BQ5nxWzyXYAzU/RpZuXjscSsHFIdjXIO8OWIOJBs/2rFH4G9EvVpZuXjscSsBFIlG28Aflmn/AVgvUR9mln5eCwxK4FUycYrwMZ1yncDnk3Up5mVzyt4LDEb8VIlGz8FviFpI7Lj5Nsk7QN8C7gyUZ9mVj4eS8xKIFWycSrwKPAM2YSuR4BbgTuBryXq08zKx2OJWQkUfVIvACJiCfBxSV8FdiYbJGZExMwU/ZlZOXksMSuHJMlGRUQ8LemZ/HG96xuYmfXLY4nZyJZqNwqSjpX0ELAIWCTpIUn/nqo/MysnjyVmI1+SLRuSzgJOBL4DVK5fsDdwnqQtIuK0FP2aWbl4LDErh1S7UT4NfDwiflJV9mtJD5ANGh4gzGwgPJaYlUCq3SjtwN11yu8h8TwRMysVjyVmJZAq2fgR2S+SWp8ArkrUp5mVj8cSsxJI+cvgWEkHAX/On78Z2AK4UtK5lUoRcWLCGMxs5PNYYjbCpUo2dgbuzR9vm9/PzW87V9XzIWxm1hePJWYlkOqkXvunaNfMRhePJWblkOw8GwCStpN0sKSO/LlS9mdm5eSxxGxkS5JsSFpX0k3A34DfseKqjZdK+naKPs2sfDyWmJVDqi0b5wHdZJO4FlaVXw0ckqhPMysfjyVmJZBqguhBwMERMatma+dMYMtEfZpZ+XgsMSuBVFs21mDlXyEVk4DFzTYq6RRJIen8qrJxki6W9JKk1yRdI2nDZvsws2HFY4lZCaRKNm4DPlr1PCS1AV8Ebm6mQUlvAj4JPFDz0nnAu4EPAG8DNgF+0UwfZjbseCwxK4FUu1G+CNwkaQ9gdeCbwOvJfo3s02hjkiaQnS3w48CXq8rXAo4FJkfEH/Oyo4G/StorIv5crz0zGzE8lpiVQKrzbDwkaQfgc8B8YALZL4SLI2J2E01eDPw2Im6U9OWq8t3Jrp1wY1Xfj0p6muzKkHUHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdats+4o6ODnp6eunV700gblbK+2i8iprrttY8Z1PKNLTqeIWyvv/U+3NZ5bRuV57210WycrTScx5JGxxEY5mPJIL6HzcTWXxseS4qLp5E2Kuu96LFEEcWeeE9SO/B74FMRMbOA9j4E/BfwpohYJOkW4L6IOF7SZODyiBhb856/ADdHxMm9tHkGcHpt+ZQpUxg/fvxgQzYblhYuXMjkyZMB1oqIzlbH05/hPpZ4HLHRqqmxJCIKvwEvAtsX0M7mwBzgjVVltwDn548nA4vrvO8vwDf6aHcsMLHqtikQc+fOjSVLlqxymz59enR0dMRWx14QWx17QXR0dMT06dPr1u3t1kgbCxYsiKlTp8aCBQsKaa+R+DZ59/GDWr4dP3lhTJ06NSZNmlRIPEUvX1/t9bfeh9s6r25jm8NPiqlTp8a0adN6rTt37twgO633xBR/96NtLGl0HBnuY8lgvocpls9jydCv862OvWD5ei96LEk1Z+PHZPs/TxlkO7sDGwD3Vh32NgbYT9LngIOB1SWtHRGvVL1vQ+D53hqNiMVUzWSvtN3e3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbPFhu1Y0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklTJxmrAMZLeCdwDLKh+MQZ+dcabgDfUlF0OPAp8A3iG7IQ/BwDXAEjakewEQHc1G7yZDRseS8xKYCiu+rpDzWsDniQSEfOBh6rLJC0AXoqIh/LnlwLnSpoHdALfAe4Kzx43KwOPJWYlUIarvp4A9JD9GhkLXA98Zgj7N7NEPJaYlUOqLRvJRMTba54vAj6b38zMBsRjidnQSXqJeTMzMzMnG2ZmZpaUkw0zMzNLqrBkQ9K9ktbJH58myafQM7OGeSwxK58it2zsRHY5aMhO4TuhwLbNbPTwWGJWMkUejXIfcLmk2wEBX5D0Wr2KEXFWgf2aWbnch8cSs1IpMtk4CjgTOIzsZDuHAkvr1AvAA4SZ9eYoPJaYlUphyUZEPAZ8CEBSD3BARLxQVPtmNjp4LDErn1RnEPVRLmY2aB5LzMoh2RlEJW0LHE822QvgEeCCiHg8VZ9mVj4eS8xGviS/GiQdTDYg7Ak8kN/eDDws6cAUfZpZ+XgsMSuHVFs2zgHOi4hTqgslnUN2Oec/JOrXzMrFY4lZCaTaH7oTcGmd8suA1yXq08zKx2OJWQmkSjZeBHatU74r4FnlZjZQHkvMSiDVbpRLgB9I2ga4My/bBzgZODdRn2ZWPh5LzEogVbLxVWA+cBJwdl72HHAGcGGiPs2sfDyWmJVAqvNsBHAecJ6kNfOy+Sn6MrPy8lhiVg7JzrNR4YHBzIrgscRs5PLZ+czMzCwpJxtmZmaWlJMNMzMzS6rwZENSu6SbJG1fdNtmNnp4LDErj8KTjYjoBt5YdLtmNrp4LDErj1S7UX4MHJuobTMbPTyWmJVAqkNfVwOOkfRO4B5gQfWLEXFion7NrFw8lpiVQKpkY2fg3vzxDjWvRaI+zax8PJaYlUCqM4jun6JdMxtdPJaYlUPSQ18lbSfpYEkd+XOl7M/MysljidnIliTZkLSupJuAvwG/AzbOX7pU0rcbaOdLkqZLmi/pBUlTJe1YU2ecpIslvSTpNUnXSNqwuKUxs1bxWGJWDqm2bJwHdANbAAuryq8GDmmgnbcBFwN7AQcC7cANktao6evdwAfy+psAv2g6cjMbTjyWmJVAqgmiBwEHR8Ssmq2dM4EtB9pIRKw0mEg6CngB2B24VdJaZIfFTY6IP+Z1jgb+KmmviPjzoJbCzFrNY4lZCaRKNtZg5V8hFZOAxYNod638fl5+vzvZL5QbKxUi4lFJTwN7A3UHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdaNth1dHTQ09NTt25vGmmjUtZX+0XEVLe99jGDWr6xRcczhO31t96H2zqvbaPyvLc2mo2zxYbtWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoovijxyT9DrgnIr4iaT7ZWQCfAn4KtEXEEU202Qb8Glg7IvbNyyYDl0fE2Jq6fwFujoiTe2nrDOD02vIpU6Ywfvz4RkMzGxEWLlzI5MmTAdaKiM5WxzMQw3ks8Thio1VTY0lEFH4jOzZ+DnAd2a+PnwOPAM8D2zbZ5veAJ4HNqsomA4vr1P0L8I0+2hoLTKy6bQrE3LlzY8mSJavcpk+fHh0dHbHVsRfEVsdeEB0dHTF9+vS6dXu7NdLGggULYurUqbFgwYJC2mskvk3effyglm/HT14YU6dOjUmTJhUST9HL11d7/a334bbOq9vY5vCTYurUqTFt2rRe686dOzfIzk0xMcXf/WgbSxodR4b7WDKY72GK5fNYMvTrfKtjL1i+3oseS1KdZ+MhSTsAnwPmAxPIJlpdHBGzG21P0kXAYcB+ETGr6qXngdUlrR0Rr1SVb5i/1lt8i6naBFvZF9ze3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbOVhvNY0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklRzNoiIV4H/Hkwb+bH03wHeB7w9Ip6oqXIP2Uz1A4Br8vfsSDZz/a7B9G1mw4PHErORL1myIWkdstndO+VFj5DtE53X+7tWcTHZ5s33AvMlbZSXvxoRXRHxqqRLgXMlzQM6yQaUu8Kzx81KwWOJ2ciX6qRe+5HtEz0OWCe/HQc8kb82UJ8mmzV+CzC76nZkVZ0TgGvJfo3cSrbJ8/BBLYCZDQseS8zKIdWWjYvJTrrz6YhYBiBpDPDd/LU3DKSRiOj3lMQRsQj4bH4zs3LxWGJWAqnOILod8O3K4ACQPz43f83MbCA8lpiVQKpk415W7F+tthNwf6I+zax8PJaYlUBhu1EkvbHq6YXABZK2Y8WZ9/Yi2zx5SlF9mln5eCwxK58i52zcR3aSj+p9o9+sU28K2T5YM7N67sNjiVmpFJlsbF1gW2Y2enksMSuZwpKNiHiqqLbMbPTyWGJWPilP6rUJsC+wATUTUSPiwlT9mlm5eCwxG/mSJBuSjgL+L7AEeIls/2tFkE36MjPrk8cSs3JItWXjq8BZwNkR0ZOoDzMrP48lZiWQ6jwb44GfenAws0HyWGJWAqmSjUuBDyRq28xGD48lZiWQajfKl4BrJR0CPEh26eblIuLERP2aWbl4LDErgZTJxsHAY/nz2kldZmYD4bHErARSJRsnAcdExBWJ2jez0cFjiVkJpJqzsRi4I1HbZjZ6eCwxK4FUycYFwOcTtW1mo4fHErMSSLUbZU/gHZIOAx5m1Uldhyfq18zKxWOJWQmkSjZeAX6RqG0zGz1ewWOJ2YiXJNmIiKNTtGtmo4vHErNySDVnw8zMzAxIdyG2J+jjGPiI2CZFv2ZWLh5LzMoh1ZyN82uetwO7AYcA/5OoTzMrn/NrnnssMRuBUs3ZuKBeuaTPAnuk6NPMysdjiVk5DPWcjeuA9w9xn2ZWPh5LzEaQoU42jgDmDXGfZlY+HkvMRpBUE0RnsPKkLgEbAesDn0nRp5mVj8cSs3JINUF0as3zHuBF4JaIeDRRn2ZWPlNrnnssMRuBUk0QPTNFu33JJ4z9J9mvnvuBz0fEX4Y6DjMrjscSs3IoxUm9JB0JnAucCfwz2QBxvaQNWhqYmY0oHkvM0ig02ZDUI2lZP7elRfaZOxG4JCIuj4hHgE8BC4FjEvRlZol5LDErl6J3o7yvj9f2Bo6j+ARndWB34OxKWUT0SLox79PMRh6PJWYlUmiyERG/qi2TtCNwDvBu4CrgtCL7BNYDxgBzasrnAP9U7w2SxgJjq4rWBJg3bx7d3d2r1O/s7GTcuHHopScAGDduHPfccw+dnZ20tbXR09MDsPxxvbKZM2cOuI2lS5eycOFCbrvtNtra2hpq77XXXlul7kAeV9obM39Ov8tX7/Fjjz2WxTPvKRYuXL+pNqrXXSPrq8j1X1nvq622WlNtDOU6X6mN1+awcOFCOjs7eemll1b5DgPMnz+/bvlwNBLGkkbHERjYWDLQz3wgf/s9PT0DHksG8z2sPF4+Dgzi73b58jUxljT7t9/M31xf6x+aG0uaGb8Hs87rtaH2MSxcuH7xY0lEJLkBmwCXAEuA3wA7J+wngL1ryr8JTOvlPWfk7/HNt9F42zTV3/1oGkvwOOKbbwMeSwo/GkXSWsCpwOeB+4ADIuK2ovupMhdYBmxYU74h8Hwv7zmbbBJYtUkMn5MErQnMAjYDRs7P0Yxjb42Bxr4m8NyQRDRII2AsGe7jCIyO7/RwNBpib2gsKTTZkPRF4GSyP8z/E3U2hRYtIpZIugc4gPyYfElt+fOLennPYmBxTXFnwjAbIqnycH5EDJu4BsKxt0YDsY+I5RoJY8lwH0dg1Hynh51REntDy1X0lo1zgC7g78DHJH2sXqWIOLzgfs8FfijpbuAvwPHAGsDlBfdjZkPDY4lZiRSdbFxJth9nSEXE1ZLWB84iOxHPfcAhEVE70cvMRgaPJWYlUvTRKEcV2V6DfV9EL7tNRqDFZCcVqt1EOxI49tYYybGvwmNJYUby98Kxt0aS2JXPqjYzMzNLohSnKzczM7Phy8mGmZmZJeVkw8zMzJJysmFmZmZJOdkYBiRtJelSSU9I6pL0uKQz8wtD9fW+WyRFze37QxDvZyU9KWmRpGmS9uyn/gckPZrXf1DSv6SOsU4MX5I0XdJ8SS9Imppfa6Ov9xxVZ/0uGqqYa2I5o04sj/bznpavdxtaHkvSG8ljSSvHEScbw8M/kX0WnwReD5xAdmnrrw/gvZcAG1fdvpgoRgAkHUl24qMzgX8G7geul7RBL/XfAvwEuBTYjezMjFMl7ZwyzjreBlwM7AUcCLQDN0hao5/3dbLy+t0yZZD9eLgmln17qziM1rsNLY8l6Y30saQ140irL7LkW68XhfpP4B/91LkFOH+I45oGXFT1vA14Fjill/pXA9fWlP0Z+H6L1+/6ZCeN2q+POkcBr7T6u5DHcgZwXwP1h+V6923obx5Lki/HiBlLWjmOeMvG8LUWA7ug04clzZX0kKSzJY1PFVC+KXZ34MZKWUT05M/37uVte1fXz13fR/2hslZ+3986niDpKUnPSPqVpNenDqwP20t6TtI/JF0laYs+6g7X9W5Dz2NJWiNtLGnJOFL4VV9t8CRtR3alyy/0U3UK8BTZlffeCHwD2BEo+noRFesBY4DaUzfPIdt8W89GvdTfqNjQBk7ZxbXOB+6IiIf6qPoYcAzwANmA8gXgTkmvj4hZyQNd2TSyX0ePkW36PB24TdLOEVHvyozDbr3b0PNYktYIHEtaNo442UhI0jlkV67sy04RsXyCjqRNgd8DP4+IS/p6Y0T8oOrpg5JmAzdJ2jYiHm827lHgYmBn+thXCRARdwF3VZ5LuhP4K9n+8K+kDLBOLNdVPX1A0jSyfw4fJNufaiXmsWTYGlFjSSvHEScbaX0buKKfOv+oPJC0CXAzcCfwiSb6m5bfbwekGCDmAsuADWvKNyS7FHg9zzdYPylJFwGHke1fbegXRUR0S5pBtn5bKiJekfS3PmIZVuvdBs1jyTD7TpdhLBnKccRzNhKKiBcj4tF+bktg+a+QW4B7gKPz/ZeN2jW/n13IAtTIY70HOKBSlm9GPICqrL3GXdX1cwf2UT8JZS4C3ge8IyKeaKKNMcAbSLR+G4xlArBtH7EMi/VuxfBYAgyT73SZxpIhHUdaPTvWtwDYFJhJNhFnU7L9YRsBG9XUeRTYM3++Ldnmt92BrYD3kP0C+VPiWI8EFgEfA3YC/i/wMrBh/vqVwNlV9d8CdAMnke2LPQNYAuw8xOv4u8ArZIetbVR166iqUxv7acBBwDZkh+b9BOgCXteC78i38ti3ytfpH4AXgfWH83r3bci/Jx5L0q/jETuWtHIcafkfh2/LD4uKereqOlvlZW/Pn28O/Al4Kf+DnQl8E5g4BPF+jmw/32Kyza1vrnrtFuCKmvofIJuQtBh4CPiXFqzjuusXOKq32IHzqpbzeeC3wG4t+o78lGzy3mJgVv582+G+3n0b8u+Jx5L0MY/YsaSV44gvMW9mZmZJec6GmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNG3KSnpR0fKvjMLORzWPJyOFkw8zMzJJysmFmZmZJOdmwhkj6hKTn8is0Vpf/StJlkrbNH8+R9Jqk6ZLe2Ud7W0kKSbtWla2dl729qmxnSdflbc6R9CNJ6yVYRDMbAh5LRhcnG9aonwPrAvtXCiRNAg4BrgImAL8juyzxbsDvgd9I2qLZDiWtDfwRmAHskfe1IfCzZts0s5bzWDKKrNbqAGxkiYiXJV0HTAZuyouPAOYCN0dED3B/1Vu+Iul9ZJetvqjJbj8HzIiIUysFko4BnpG0Q0T8rcl2zaxFPJaMLt6yYc24Cni/pLH58w8DP42IHkkTJH1L0l8lvSLpNWAnoOlfI8AuwP75Zs/X8jYfzV/bdhDtmllreSwZJbxlw5rxG0DAuyRNB94KnJC/9i3gQOALwN+BLuB/gdV7aasnv1dVWXtNnQl5nyfXef/sRoM3s2HDY8ko4WTDGhYRiyT9guxXyHbAYxFxb/7yPsAVEfFLAEkTgK36aO7F/H5jsv2oALvW1LkXeD/wZEQsHfQCmNmw4LFk9PBuFGvWVcC7gGPyxxUzgcMl7SppF2AKfXzPIqIL+DNwiqSdJL0N+FpNtYuBScBPJL0pn6V+sKTLJY0pcJnMbOh5LBkFnGxYs/4IzAN2JBsEKk4EXgbuJNtceT3Zr4m+HEO2le0e4Hzgy9UvRsRzZL9yxgA3AA/m9V5hxaZTMxuZPJaMAoqIVsdgZmZmJeYtG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYUNO0hmSoup5SLqolTGZmVk6TjbMzMwsKScbZmZmlpSTDTMzM0vKyYYlJWlfSdMlLZL0uKRPDvB9X5bUI+nzqWM0M7O0Vmt1AFZekt4A3AC8CJxB9n07E5jTz/u+BpwKfDIiLkkcppmZJeZkw1I6CxDw1oh4GkDSNcCDvb1B0reAE4CjI+KHQxKlmZkl5d0oloSkMcDBwNRKogEQEX8Frq//Fl0E/AfwEScaZmbl4S0blsr6QAcws85rjwH/UlP2UWAC8OmI+Eni2MzMbAh5y4YNF3eQzeX4nKRJrQ7GzMyK42TDUnkR6AK2r/PajnXK/g4cBGwC/F7SmgljMzOzIeRkw5KIiGVkczP+VdIWlXJJO5HN5aj3ngfIdq/sBPxGUsdQxGpmZmk52bCUTs/vb5N0sqT/Am4GHu7tDRHxZ+C9wF7A/0pqTx+mmZml5GTDksm3VBxMtkvlLOAYsgTkl/2874/AB8l2q/xIkr+nZmYjmCKi/1pmZmZmTfIvRjMzM0vKyYaZmZkl5WTDzMzMkmo42ZB0iKR9q55/VtJ9kqZIWqfY8MzMzGyka2bLxv8AE2H5VT2/DfwO2Bo4t7jQzMzMrAyauTbK1sAj+eP3A9dGxKmS/pks6TAzMzNbrplkYwkwPn/8TuDK/PE88i0eI40kkZ0me36rYzFLbE3gufAx72Y2hJpJNm4HzpV0B7AncGRevgMwq6jAhtgmjNzYzRq1GfBsq4Mws9GjmWTjc8B3gSPILgdeGbQOBX5fVGBDbD7AM888w8SJq26c6e7u5oYbbuCggw6ivb2cZ88u+zJ6+aCzs5PNN98cvAXPzIZYw8lGRDwNHFan/IRG25K0H/CfwO7AxsD7ImJq1esCzgQ+DqxNdhnyT0fEzKo6k4DvAO8GeoBrgP+IiNcajWfixIm9Jhvjx49n4sSJpfxHBeVfRi+fmVnrNLNlg/xaFdsBG1BzREtE3NpAU2sA9wOXAb+o8/oXgeOAjwFPAF8Frpf0uohYlNe5iixRORBoBy4HfgBMbiAOMzMzS6ThZEPSXsAUYEtANS8HMGagbUXEdcB1ebu1/Qg4HvhaRPwqL/soMAf4V+Cn+eXKDwHeFBF353U+D/xO0hci4rkGF8/MzMwK1sx5Nr4P3A3sDEwC1qm6TSouNLYGNgJurBRExKvANGDvvGhv4JVKopG7kWx3ypsLjMXMzMya1MxulO2BIyLi70UHU2Oj/H5OTfmcqtc2Al6ofjEilkqaV1VnFZLGAmOritaEbL93d3f3KvUrZTNmzKCtrY11112XzTbbbOBL0oRZs2bx0ksvAQxJf9XLuP766yfvD4Z2Gcv8Gc6aNYsXX3wRoO73t6Kv18zMUmr4EvOS/gh8MyIKPfJEUlA1QVTSW8gmhG4SEbOr6v0MiIg4UtKpwMciYseatl4ATo+I7/XS1xnA6bXlU6ZMYfz48au+wawEFi5cyOTJkwHWiojOVsdjZqNHM1s2vgN8W9JGwIPASj+XIuKBIgIDns/vNwRmV5VvCNxXVWeD6jdJWo1sd87z9O5sVj61+prArIMOOqju0SgzZsxg9uzZnDRlGou6lzHv99/h1ltvZZdddmlkeQbs/vvvZ7/99mPSIZ8HSN4frFjG/7j4l7xw+8+S9zfUy1jWz7DSzwb7fpALPvs+Nt54Y3bbbbe6dTs7nV+YWWs0k2xck99fVlUWZJNFG5og2o8nyBKGA8iTC0kTyeZiVLZY3AWsLWn3iLgnL3sH2VyUab01HBGLgcWV55XJqe3t7XUPG2xry6a2LFtzI5YtDbq6umhra0t2iGFbWxtdXV0sm7gJQPL+Kn0CdI9bZ8j6G8plLOtnWOmne9w6y5/31ocPiTWzVmn22iiFkDSB7BDa5W1L2hWYFxFPSzof+LKkmaw49PU5YCpARPxV0u+BSyR9iuzQ14uAn/pIFDMzs+GhmZN6PVVg/3sAN1c9r+za+CFwFPBNsnNx/IDspF63A4dUnWMD4MNkCcZNrDip13EFxmhmZmaD0OxJvbYlOwfGTnnRI8AFEfF4I+1ExC2seq6O6tcDOC2/9VZnHj6Bl5mZ2bDV8Hk2JB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+AfyhiMDMzMysHJo5g+hOwKV1yi8DXje4cMzMzKxsmkk2XgR2rVO+KzVn8zQzMzNrZjfKJcAPJG0D3JmX7QOczMonyjIzMzNrKtn4KjAfOInsTJyQnfviDODCYsIyMzOzsmjmPBsBnAecJ2nNvGx+0YGZmZlZOTR1no0KJxlmZmbWnwElG5LuBQ6IiJclzSC7BkpdEfHPRQVnZmZmI99At2z8ihUXLvsVfSQbZmZmZtUGlGxExJlVj89IFo2ZmZmVTjOnK/+HpHXrlK8t6R/FhGVmZmZl0cxJvbYCxtQpHwtsNqhozMzMrHQGfDSKpPdUPT1Y0qtVz8cABwBPFBWYmZmZlUMjh75Oze8D+GHNa93Ak2Qn+jIzMzNbbsDJRkS0AUh6AnhTRMxNFpWZmZmVRjNnEN06RSBmZmZWTgM9qddxwA8iYlH+uFcR4eujmJmZ2XID3bJxAnAVsCh/3JvAF2MzMzOzKgM9qdfW9R6bmZmZ9aeZk3qdJml8nfIOSacVE5aZmZmVRTMn9TodmFCnfHz+mpmZmdlyzSQbov6F2HYB5g0uHDMzMyubAScbkl6WNI8s0fibpHlVt1eBPwA/KzpASU9Kijq3i/PXb6nz2veLjsPMzMya08h5No4n26pxGdnukurTlS8BnoyIu4oLbbk3sfK1WHYmS2x+XlV2CVA9X2RhgjjMzMysCY2cQfSHsPwMondExNJkUa3c74vVzyWdAjwO/KmqeGFEPD8U8ZiZmVljmjmD6J8kbSvpaGBb4D8i4gVJhwJPR8TDhUeZk7Q68BHg3IionjfyYUkfAZ4HfgN8NSJ63bohaSzZVWor1gTo7u6mu7t7lfo9PT0AjF1NAHR0dNDT01O3bhF6enro6Ohg3BD1V+kTYFz7mCHrbyiXsayf4fJ+2scsf95bHyk/TzOzvmjl/9kDeIP0NuA64A5gP2CniPhHvsVhj4g4ovgwl/f9QWAKsEVEPJeXfQJ4CngOeCPwDeAvEXF4H+2cQZ0jZ6ZMmcL48asc1WtWCgsXLmTy5MkAa0VEZ6vjMbPRo5lk4y7g5xFxrqT5wC55srEn8IuI2CxFoHnf1wNLIuLdfdR5B3ATsF1EPN5LnXpbNmbNnTuXiRMnrlJ/xowZzJ49m5Ove5rFS4M5U07h1ltvZZdddhnU8vTm/vvvZ7/99mPDyecAJO8PVizjiVfexuzrvpu8v6FexrJ+hpV+Nj70M5z70bey8cYbs9tuu9Wt29nZyXrrrQdONsxsiDW8GwV4AzC5TvkLwHqDC6d3krYE3gn0usUiNy2/345sbscqImIxsLiqbQDa29tpb29fpX5bW3bQzuKlwaKlQVdXF21tbXXrFqGtrY2uri4WLc0SwdT9VfoEWNS9bMj6G8plLOtnuLyf7mXLn/fWR8rP08ysL82cZ+MVYOM65bsBzw4qmr4dTZbQ/Lafervm97MTxmJmZmYD1Eyy8VPgG5I2IjvnRpukfYBvAVcWGVyFpDayZOOH1UfB5BNVvyJpd0lbSXpPHsOtEfFAiljMzMysMc0kG6cCjwLPkJ22/BHgVuBO4GvFhbaSdwJbkJ3jo9qS/LUb8pi+DVwD9Dqnw8zMzIZWM4e+LgE+LumrZCfYmgDMiIiZRQdX1ecNZCcUqy1/Bnhbqn7NzMxs8JqZIApARDwt6Zn8cWOHtJiZmdmo0cxuFCQdK+khYBGwSNJDkv692NDMzMysDBresiHpLOBE4DtA5VooewPnSdoiIk7r9c1mZmY26jSzG+XTwMcj4idVZb+W9ABZAuJkw8zMzJZrZjdKO3B3nfJ7GMQcEDMzMyunZpKNH5Ft3aj1CeCqwYVjZmZmZdPslohjJR0E/Dl//may82BcKencSqWIOHGQ8ZmZmdkI10yysTNwb/542/x+bn7buaqeD4c1MzOzpk7qtX+KQMzMzKycmjrPBoCk7SQdLKkjf77KGT7NzMzMGk42JK0r6Sbgb8DvWHEF2EslfbvI4MzMzGzka2bLxnlAN9mE0IVV5VcDhxQRlJmZmZVHMxNEDwIOjohZNXtOZgJbFhKVmZmZlUYzWzbWYOUtGhWTgMWDC8fMzMzKpplk4zbgo1XPQ1Ib8EXg5kKiMjMzs9JoZjfKF4GbJO0BrA58E3g92ZaNfQqMzczMzEqg4S0bEfEQsANwO/Arst0qvwB2i4jHiw3PzMzMRrqGtmxIagd+D3wqIv47TUhmZmZWJg1t2YiIbuCNiWIxMzOzEmpmguiPgWOLDsTMzMzKqZkJoqsBx0h6J3APsKD6RV/p1czMzKoN9qqvO9S85iu9mpmZ2Up81VczMzNLqumrvg4FSWdIiprbo1Wvj5N0saSXJL0m6RpJG7YyZjMzM1vZsE42cg+TXVm2ctu36rXzgHcDHwDeBmxCds4PMzMzGyaambMx1JZGxPO1hZLWIjsqZnJE/DEvOxr4q6S9IuLPQxynmZmZ1TESko3tJT0HLALuAr4UEU8DuwPtwI2VihHxqKSngb2BXpMNSWOBsVVFawJ0d3fT3d29Sv2enh4Axq6WXeW2o6ODnp6eunWL0NPTQ0dHB+OGqL9KnwDj2scMWX9DuYxl/QyX99M+Zvnz3vpI+XmamfVFEf0fQCLpXuCAiHhZ0mnAtyKi3pVfiw1OOhSYADxGtgvldGBTsiNi3g1cHhFja97zF+DmiDi5j3bPyNtayZQpUxg/fnxh8ZsNJwsXLmTy5MkAa0VEZ6vjMbPRY6DJRhewfUTMkrQM2DgiXkge3apxrA08BZwIdNF8slFvy8asuXPnMnHixFXqz5gxg9mzZ3PydU+zeGkwZ8op3Hrrreyyyy6DX6g67r//fvbbbz82nHwOQPL+YMUynnjlbcy+7rvJ+xvqZSzrZ1jpZ+NDP8O5H30rG2+8Mbvttlvdup2dnay33nrgZMPMhthAd6PcB1wu6XZAwBckvVavYkScVVBs9dp+RdLfgO2APwCrS1o7Il6pqrYhsMocj5p2FgOLK8+lbFN3e3s77e3tq9Rva8vm0S5eGixaGnR1ddHW1la3bhHa2tro6upi0dIsEUzdX6VPgEXdy4asv6FcxrJ+hsv76V62/HlvfaT8PM3M+jLQZOMo4EzgMLITdx0KLK1TL4BkyYakCcC2wI/Izl7aDRwAXJO/viOwBdncDjMzMxsGBpRsRMRjwIcAJPWQzd9IvhtF0reA35DtOtmELOFZBvwkIl6VdClwrqR5QCfwHeAuH4liZmY2fDRzBtGhPDfHZsBPgHWBF4Hbgb0i4sX89ROAHrItG2OB64HPDGF8ZmZm1o+mDn2VtC1wPLBTXvQIcEFEPF5QXABExIf6eX0R8Nn8ZmZmZsNQw1spJB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+QXaUiJmZmRnQ3LVRdgIurVN+GfC6wYVjZmZmZdNMsvEisGud8l2BIT/Rl5mZmQ1vzexGuQT4gaRtgDvzsn2Ak4FziwrMzMzMyqGZZOOrwHzgJODsvOw54AzgwmLCMjMzs7Jo5jwbAZwHnCdpzbxsftGBmZmZWTkM6hLzTjLMzMysP0N5NlAzMzMbhZxsmJmZWVJONszMzCyphpINSe2SbpK0faqAzMzMrFwaSjYioht4Y6JYzMzMrISa2Y3yY+DYogMxMzOzcmrm0NfVgGMkvRO4B1hQ/WJEnFhEYGZmZlYOzSQbOwP35o93qHktBheOmZmZlU0zZxDdP0UgZmZmVk5NH/oqaTtJB0vqyJ+ruLDMzMysLBpONiStK+km4G/A74CN85culfTtIoMzMzOzka+ZLRvnAd3AFsDCqvKrgUOKCMrMzMzKo5kJogcBB0fErJo9JzOBLQuJyszMzEqjmS0ba7DyFo2KScDiwYVjZmZmZdNMsnEb8NGq5yGpDfgicHMhUZmZmVlpNJNsfBH4hKTrgNWBbwIPAfsBJxcYG5K+JGm6pPmSXpA0VdKONXVukRQ1t+8XGYeZmZk1r+FkIyIeIjuZ1+3Ar8h2q/wC2C0iHi82PN4GXAzsBRwItAM3SFqjpt4lZEfFVG5fLDgOMzMza1IzE0SJiFeB/y44lnr9rHR0i6SjgBeA3YFbq15aGBHPp47HzMzMGtdUsiFpHbKLse2UFz0CXB4R84oKrBdr5fe1/XxY0keA54HfAF+NiHqTWAGQNBYYW1W0JkB3dzfd3d2r1O/p6QFg7GrZ0TcdHR309PTUrVuEnp4eOjo6GDdE/VX6BBjXPmbI+hvKZSzrZ7i8n/Yxy5/31kfKz9PMrC+KaOxyJpL2I/uH/ipwd168O7A28O6IuLWXtw5KPgn118DaEbFvVfkngKeA54A3At8A/hIRh/fR1hnA6bXlU6ZMYfz48QVHbjY8LFy4kMmTJwOsFRGdrY7HzEaPZpKNB4G7gE9HxLK8bAzwXeAtEfGGwqPM+vgecCiwb0TM6qPeO4CbgO16m0PSy5aNWXPnzmXixImr1J8xYwazZ8/m5OueZvHSYM6UU7j11lvZZZddBrNIvbr//vvZb7/92HDyOQDJ+4MVy3jilbcx+7rvJu9vqJexrJ9hpZ+ND/0M5370rWy88cbstttudet2dnay3nrrgZMNMxtizexG2Q44opJoAETEMknnsvIhsYWRdBFwGLBfX4lGblpVnHWTjYhYTNU5QSonJ2tvb6e9vX2V+m1t2TzaxUuDRUuDrq4u2tra6tYtQltbG11dXSxamiWCqfur9AmwqHvZkPU3lMtY1s9weT/dy5Y/762PlJ+nmVlfmjn09V5WzNWothNw/+DCWZkyFwHvA94REU8M4G275vezi4zFzMzMmjOgLRuS3lj19ELgAknbAX/Oy/YCPgucUmx4XAxMBt4LzJe0UV7+akR0Sdo2f/13wEtkczbOA26NiAcKjsXMzMyaMNDdKPcBAVRfDOWbdepNIbsgW1E+nd/fUlN+NHAFsAR4J3A82fk+ngGuAb5WYAxmZmY2CANNNrZOGkUvIkL9vP4M2Ym/zMzMbJgaULIREU+lDsTMzMzKqdmTem0C7AtsQM0k04i4sIC4zMzMrCQaTjbyU4b/X7L5Ei+RzeWoCLIJpGZmZmZAc1s2vgqcBZwdET0Fx2NmZmYl08x5NsYDP3WiYWZmZgPRTLJxKfCBogMxMzOzcmpmN8qXgGslHQI8CKx0KcmIOLGIwMzMzKwcmk02DgYey5/XThA1MzMzW66ZZOMk4JiIuKLgWMzMzKyEmpmzsRi4o+hAzMzMrJyaSTYuAD5fdCBmZmZWTs3sRtkTeIekw4CHWXWC6OFFBGZmZmbl0Eyy8Qrwi4LjMDMzs5JqONmIiKNTBGJmZmbl1MycDTMzM7MBa+ZCbE/Qx/k0ImKbQUVkZmZmpdLMnI3za563A7sBhwD/M9iAzMzMrFyambNxQb1ySZ8F9hh0RGZmZlYqRc7ZuA54f4HtmZmZWQkUmWwcAcwrsD0zMzMrgWYmiM5g5QmiAjYC1gc+U1BcZmZmVhLNTBCdWvO8B3gRuCUiHh10RGZmZlYqzUwQPTNFIGZmZlZOpTmpl6TPSnpS0iJJ0yTt2eqYzMzMrIFkQ1KPpGX93JamDLaP2I4EzgXOBP4ZuB+4XtIGrYjHzMzMVmhkN8r7+nhtb+A4Wrel5ETgkoi4HEDSp4B3AccA57QoJjMzM6OBZCMiflVbJmlHsn/m7wauAk4rLrSBkbQ6sDtwdqUsInok3UiWBNV7z1hgbFXRmgDz5s2ju7t7lfqdnZ0sXLgQzXsKdS9j3Lhx3HPPPXR2dtLW1kZPTw/A8sf1yhp5/NhjjzFu3Dj00hMA/fZXRN8zZ85kwoQJjHltTkP9Ndv3zJkz6y7ja6+9Nqh111scleXr6zMc7OdW3UZvy1f0d6bSz5jX5rBw4UI6Ozt56aWXVvkOA8yfP79uuZlZaoro9TInvb9J2oRsl8XHgOuBL0XEQwXH1kgszwJviYi7qsq/CbwtIt5c5z1nAKcPWZBmw8tmEfFsq4Mws9GjoaNRJK0FnAp8HrgPOCAibksQV2pnk83xqDaJ3k9KtiYwC9gMKOvPw7Ivo5dvRb3nhiQiM7PcgJMNSV8ETgaeB/5Pvd0qLTIXWAZsWFO+IVmsq4iIxcDimuLO3jqQVHk4PyJ6rTeSlX0ZvXzLlW7ZzWz4a2TLxjlAF/B34GOSPlavUkQcXkRgAxURSyTdAxxAfsIxSW3584uGMhYzMzNbVSPJxpWsfJry4eRc4IeS7gb+AhwPrAFc3sqgzMzMrLGjUY5KGMegRMTVktYHziK7Tst9wCERMaegLhaTTYit3fVSJmVfRi+fmVmLNHU0ipmZmdlAleZ05WZmZjY8OdkwMzOzpJxsmJmZWVJONszMzCwpJxsDUNbL10v6kqTpkuZLekHS1Px6N6Uk6RRJIen8VsdSJEmbSvqxpJckdUl6UNIerY7LzKzCyUY/Sn75+rcBFwN7AQcC7cANktZoaVQJSHoT8EnggVbHUiRJ6wB3AN3AocDrgJOAl1sZl5lZNR/62g9J04DpEfG5/Hkb8AzwnYgo1eXr83OVvEB2AbtbWx1PUSRNAO4FPgN8GbgvIo5vaVAFkXQOsE9EvLXVsZiZ9cZbNvpQdfn6GytlEdGTP697+foRbq38vrcL0o1UFwO/jYgb+6058rwHuFvSz/NdYTMkfbzVQZmZVXOy0bf1gDFA7ZlI55CdqbQ08i025wN3RMRDLQ6nMJI+RLb760utjiWRbYBPAzOBg4HvARf2du0iM7NWaOgS81ZqFwM7A/u2OpCiSNocuAA4MCIWtTqeRNqAuyPi1Pz5DEk7A58Cfti6sMzMVvCWjb41fPn6kUjSRcBhwP4RMavV8RRod2AD4F5JSyUtJZsUe1z+fExrwyvEbOCRmrK/Alu0IBYzs7qcbPQhIpYAlcvXAytdvv6uVsVVFGUuAt4HvCMinmh1TAW7CXgDsGvV7W7gKmDXiFjWqsAKdAdQe7jyDsBTLYjFzKwu70bpX5kvX38xMBl4LzBfUmUeyqsR0dW6sIoREfOBleafSFoAvFSieSnnAXdKOhX4GbAn8In8ZmY2LPjQ1wGQ9DngP1lx+frjImJaS4MqgKTePvyjI+KKoYxlqEi6hRId+gog6TDgbGB74Ang3Ii4pLVRmZmt4GTDzMzMkvKcDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknGzbkJD0p6fhWx2FmZkPDyYaZmZkl5WTDzMzMknKyYQ2R9AlJz+VXv60u/5WkyyRtmz+eI+k1SdMlvbOP9raSFJJ2rSpbOy97e1XZzpKuy9ucI+lHktZLsIhmZlYwJxvWqJ8D6wL7VwokTQIOIbt0+wTgd8ABwG7A74HfSNqi2Q4lrQ38EZgB7JH3tSHZVU7NzGyY8yXmrSER8bKk68guTX9TXnwEMBe4OSJ6gPur3vIVSe8D3gNc1GS3nwNmRMSplQJJxwDPSNohIv7WZLtmZjYEvGXDmnEV8H5JY/PnHwZ+GhE9kiZI+pakv0p6RdJrwE5A01s2gF2A/fNdKK/lbT6av7btINo1M7Mh4C0b1ozfAALeJWk68FbghPy1bwEHAl8A/g50Af8LrN5LWz35varK2mvqTMj7PLnO+2c3GryZmQ0tJxvWsIhYJOkXZFs0tgMei4h785f3Aa6IiF8CSJoAbNVHcy/m9xuTzckA2LWmzr3A+4EnI2LpoBfAzMyGlHejWLOuAt4FHJM/rpgJHC5pV0m7AFPo43sWEV3An4FTJO0k6W3A12qqXQxMAn4i6U35ES8HS7pc0pgCl8nMzBJwsmHN+iMwD9iRLKGoOBF4GbiTbNfH9WRbJvpyDNlWtnuA84EvV78YEc+RbTEZA9wAPJjXe4UVu2HMzGyYUkS0OgYzMzMrMW/ZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpbU/wdabBSQeYxMGgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKt0lEQVR4nO3deZwcdZ3/8dd7whASkgBRuVRuwQAaEMWDBVFIAgq6oq4u7o/L1YUFWUCXaxURUUAlARHWleVULl0UVw5JADEogRUIlxwicoYQjhCSmGvCfH5/VLVUOj0z3dXV01PT7+fj0Y/u+lZ19adruj/z6apvfUsRgZmZmVmzutodgJmZmQ0PLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKmxQSDpZ0qAM3yrpVkm3ZqZ3lxSSPjVIr3+xpCcH47WqXnez9H0eNNiv3SkkrSHpO5KekdQr6Zp2x2Q2lLiosIZJOij951W5LZP0nKQbJR0paWxBr7NxWozsUMT6ijSUY7OWOgT4d+B/gAOBae0NpziS3p4WTPdKWiRprqTrJL273bFZeazR7gCs1E4CngC6gQ2B3YGzgGMkfSwi7s8seypweoPr3xj4OvAkcG8Dz5vc4Ovk0V9sX6A9BftTwCigpw2v3Sk+DMyJiKPbHUgL/DPweeBq4DxgHeBfgDsk7RURN7UzOCsHFxXWjBsi4q7M9GmSPgxcC/yvpAkRsRQgIlYCK1sZjKTREbEkIla08nUGEhFt+aceydUBl7XjtZshaS1gRUT0tjuWOqwPLChqZZK6gDUjoq6/myQBa1W+VwW7Ajg5IhZnXu9C4GHgZMBFhQ3Ihz+sUBFxC/BNYFPgnyrttfpUSJok6XeSFkhaLOlRSd9O5+0O/CFd9KLMoZaD0vm3SnpQ0k6SZkpaAnw7M+/WGuGNkPRtSc9L+quk/5X01qqYnpR0cfUTs+usI7bV+lRIWlvSmemx+OXpe/1K+k8iu1xI+oGkv0/f33JJf5S0V433Ux3jan0q0lgWS3qzpGvSxy9K+p6kEXWs80lJ10qanO4WXybpIUn7VS03Pl3nA+lrLJR0g6SJVctV+rd8VtKpkuYAS4BxOdbxD5K+LmlOurv+fyStI2mkpLMkvZCu5yJJI6vW0ednr79tC3wI2C7zN989nd/o3/dzkv4ILAf6/Ntmtv8USXcBS0n2HiDpYEm3pO9zefp3OayfdfydpP9L/4Z/kXRAdrmIuDtbUKRtLwO3ARP6itEsy3sqrBV+TPIPfjJwfq0FJG1HskfjfpLDKMuBrYBd0kUeTttPAX5EktgAbs+s5g3ADcCVwE+AeQPE9R9AAGeQ/OI8CrhJ0g4N/vKrJ7a/Sf+x/C/JP6QLSA6XTAG+C7wZqN6V/nfAfiS7oBcBRwJXS9okTfKNGgHcCNwJfAXYE/gy8Djwn3U8/23AVcAPgUuAg4GfKdklPiNdZgvg74GfkRwS24Dkn99vJW0bEc9VrfNrwArge8DI9PG2Da7jBJJ/sqeTfHa+RHLopxdYj+TX9fuAg9L1nQJ1ffZqeRH4fySfoTHpawM8nOPv+2HgH4AfAC+RHELrzzYkexH+i+T79Gjafhjwx/S1VwL7AudJ6oqIc6vWsRVJP5ALSP6GhwAXS7o7Iv44wOtvmMZpNrCI8M23hm4kSTqAd/ezzALgnsz0yaR76NPpo9J1vLGfdbw7XeagGvNuTef9Sx/zbs1M754u+ywwNtP+6bT9yEzbk8DFdayzv9guBp7MTH88XfY/qpb7Gck/wC0zbUHyTy7b9s60/YgB/i6bVceUxhLA16qWvQe4q46/9ZPp8/fLtI0Dnqv6+44EumrEsyz72pm/xePAqKrlG13HA0B3pv3ydHteX7WO26v+HgN+9vrZHrcCD1a1Nfr3fQ3Yts7Xq2z/KTXmjarR9mvg8T7WsWum7U3pdv3eAK+/a/oeTml0W/nWmTcf/rBWWQz0dxbIgvT+40qOK+exHLiogeUvjYhFmen/AeYCH8n5+vX6CMk/ku9XtZ8JCNi7qv2miHi8MhFJh9eFJHsD8vph1fRtDazvOeAXmXgWApcCO0raMG1bHmmfCEkjJL2B5DPwKPCuGuu8JKr2DuVYx6Wxav+VO0m254VVy90JvFVSZc/sgvS+mc9eVqN/399GxEMNrP+JiLixujG7/dLDPm8EfgtsIWmdqsUfiojbMs99kWS79vkZkLQ+SaH2BPCdBuK1DuaiwlplDMmu+75cBfwe+G9gnqQr02PkjXwm50RjnTIfy05ERAB/Jvk13EqbAs9VFTSQHEapzM96usY6XiHZpZ/HsvSfSN71/TndVll/Su83g6TDoaSjJT1GUuy9RHLI4J0kZxFUe6K6Icc6qrfTq+n9MzXauzLrKOKzl9Xo33e19z6AmstL2kXSTZL+SlIovUjar4jVt1dDnylJa5McIhoLfDyq+lqY9cVFhRVO0ltIktqf+1om/ZW1G8nx/R+T/OO4CpihOjoQplrRA76vAbrqjakIr/XRrj7a866vSCcCU4GZJB10pwCTSI7518oztf52ja6jr/fV7/Yr6LPXjEY/t6stL2lL4GbgjcAxwEdJtlVl3Izq7VX3Z0rSmsDPSbbLxyPiwQbjtQ7mjprWCv8vvV9tl21Wuqv75vR2jKQTgW+RdHi7ib7/wef1tuxE2sFuK5IOexWvAOvWeO6mwF8y043E9hSwp6SxVb9m356ZP5RtJUlVeyu2Tu+fTO8/BfwmIj6ffaKkdam/k18R66hLHZ+9RrTj77svSR+Uj0XE3/ZCSPpQMytN99ZcCuwB/ENE/LapKK3jeE+FFUrJOBVfI9lle1k/y42v0Xxvel85/e+v6f26BYV3gFYd7fNTwEYkZ5BUPA68L/21BoCkfYBVTj1tMLbrSfZ0HFHVfjRJcXLDas8YWjYGPlGZkDQOOAC4NyKeT5tfo+pXr6RPk5z9UK8i1jGgOj97jWjH37ey5+Fv2yvtR3Fwk+s9B/gM8K8R8fMm12UdyHsqrBl7S3o7yedoA5JT5SaR/DL7WPQ/oM9JknYDrkuXXx/4V5IzNH6XLvM4ybHiQyUtIvlHfmdENHpMumI+8DtJF6XxHkVyiCZ72ut/kxQbv5b0U2BLkl3xj6+6qoZi+xXwG+BbkjYD7iM53fbjwFnZTplD1J+ACyS9h+S03UNItl/2H9i1JH/Ti0jOtngH8DlW3bszkCLWUY96PnuNaMffdzrJabi/kvRfJH2YvgC8QFIoN0zSUSTbYRawRNI/VS3yi4j462pPNMtwUWHNOCW9X0HyD/sBkn/UF9XotFbtf0k6+R1Cclz4JZKe61+PiFchGZlS0oHAaSRnL6xB8o8sb1HxbZLjxCeQdEC7meQX2ZLKAhFxo6QvkxynPgu4C9iHpCc/meXqji0ieiV9jGR7fSZd7kmSa0icWb38EPQYyRgQ3yUZM+EJ4DNVZyR8G1gb2J/kPd5Dcpy/kaHZi1hHPQb87DWiHX/fiHhUyQXyTiUZ6+N5kjFHXmT1s1/qtUN6//70Vm1zXt9DZ1aTVu/UbWaWUDIy6IMRsU+7YzGzoc99KszMzKwQLirMzMysEC4qzMzMrBDuU2FmZmaF8J4KMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCqtJ0kGSQtJmAyz3pKSLBycqMysT55HO46LCzMw6lqQ9JF0o6U+Slkj6i6T/lrRRu2MrI0VEu2OwIUjSCKAbWB79fEgkPQncGhEHDVJoZlYSZcgjku4CxgM/Ax4DtgCOAJYAO0TE84MdU5mt0e4AbGiKiNeA19odh5mVV0nyyDHA7yKit9Ig6dfAb0mKi6+2K7Ay8uEPq6n6WKgSX5X0bLqL8DeStqvxvJMlrfaLpNax1fQ46rWSdpd0l6Slkh6QtHs6f790epmkuyXt2Kr3a2bFK0MeiYiZ2YKi0gbMByY0vxU6i4sKq9cpwDeB+4B/B/4CTAfWbnK9WwGXA78CTgDWA34l6XPANOAnwNeBLYGfSvJn1qy8SpFHJI0BxgAvNRlXx/HhDxuQpDcBxwLXAftWjo1K+hZwYpOr3wb4QETMStf5EHAjcD7w9oh4Om1/BfgvYDfg1iZf08wGWcnyyFHAmsBVTcbVcfyrz+qxJ8kX7JyqzlZnFbDuhyqJIHVnen9LJRFUtW9RwGua2eArRR6RtBvJXo2fRsQtBcTWUVxUWD02Te8fyzZGxIvAK02uO/uFJyJeTR8+U7VcpX29Jl/PzNpjyOcRSW8HfgE8CPxzkzF1JBcVVrS+Thsb0Ud7Xz3D+2pXY+GYWQkNeh6R9FaS/h2vAh+JiEX9Rmg1uaiwejyV3r8t25geI62u+F9J561b1b4pZtbJhmwekfQGkoJiJDAlIua24nU6gYsKq8dNQA/wJUnZCv+oGss+nt7vVmmQtDZwYMuiM7MyGJJ5JF3v9cCbSfZQPDbAU6wfPvvDBhQRL0r6HsmpWtdKuh7YEdib1U+5mk5yfPMCSd8l2f14CPAisMngRW1mQ8kQziOXATsDFwITJGXHplgcEdcU/HrDmosKq9dXgWXAocCHSHpRTyY5PexvIqJH0ieA80jOR3+epHf3K8BFgxivmQ09QzGP7JDeH5Lesp4Crin49YY1X/vDzMzMCuE+FWZmZlYIFxVmZmZWCBcVZmZmVggXFWZmZlaIhosKSXtJ+rvM9OGS7pV0uSQPoWxmuTi3mJVfnj0V3wXGAUh6B3AmycAhmwNTiwvNzDqMc4tZyeUZp2Jz4KH08SeBayPiREnvIkkApZOO7rYx4LHerazGAs9Fuc8Rd24xG3oayi15iooVwOj08Z7Apenj+aS/MkpoY+DZdgdh1qS3AHPaHUQTnFvMhqa6c0ueouJ3wFRJvycZ2vQzafvWlPfLswjgmWeeYdy41XNXT08P06dPZ/LkyXR3dw96cGXn7decgbbfwoULeetb3wrl/zXs3GIN8fZrTityS56i4giSoVM/BRwWEZXqZW/g1znWN2SMGzeuzy/+6NGjGTdunD+4OXj7NaeDtp9zizXE2685rdh+DRcVEfE0sE+N9qMLicjMOpJzi1n55bqgmKQuYCtgfarOIImImQXEZWYdyLnFrNwaLiokvQ+4HNgUUNXsAEYUEJeZdRjnFrPyy7On4ofAXcBHgbkkX3azAd13332sv/76bLLJJu0OxYYm5xbL5b777qOrq4s3vvGNzi9tlqeoeBvwqYj4c9HB2PD07LNJx/3ddtuNQDz6yMP+4lstzi3WkGxuWbp0KWuNGu380mZ5RtS8k+SYp1ldXn75ZQDG7bwfy5Yu4aWXXmpzRDZEObdYQyq5ZfxeX+IN+3zZ+WUIyLOn4hzgTEkbAg8APdmZEXF/EYHZ8DNi3JvaHYINbc4tlkv3+Dfz2kofLRsK8hQVV6f3F2bagqRjlTtTmVlezi1mJZf32h9mZkVzbjEruTyDXz3VikDMrLM5t5iVX97Br7YEjgImpE0PAWdHxOMFxWVmHci5xazcGj77Q9IUki/6zsD96e29wB8lTSo2PDPrFM4tZuWXZ0/F6cC0iDg+2yjpdOAMYEYRgZlZx3FuMSu5PONUTAAuqNF+IbBtc+GYWQdzbjEruTxFxYvADjXadwBeaCYYM+tozi1mJZfn8Mf5wI8kbQHcnrbtAhwHTC0qMDPrOM4tZiWXp6j4JrAI+DJwWtr2HHAy8P1iwjKzDuTcYlZyecapCGAaME3S2LRtUdGBmVlncW4xK79c41RU+AtvZq3g3GJWTnUVFZLuAfaIiFckzSYZh7+miHhXUcGZ2fDm3GI2vNS7p+KXwPLM48IuByfpzSTnoO8NjAb+DBwcEXel8wV8A/gCsC7we+CwiHgss47xJFc43BfoJbkw0b9FxOKi4jSzlnBuMRtG6ioqIuIbmccnF/XiktYj+SL/huSL/yLwNuCVzGLHAkcCBwJPkHTmulHSthGxLF3mMmAjYBLQDVwE/AjYv6hYzax4zi1mw0vDfSok/QV4T0S8XNW+LnBPRGzRwOqOA56JiIMzbU9k1imS6wCcGhG/TNsOAOYBfw9cKWkCsFcaU+UXyJeA6yV9JSKea+wdmlk7OLeYlV+ejpqbASNqtI8E3tLguj5G8svgZ8AHgTnAeRFxfjp/c2BD4KbKEyLiVUl3Au8HrkzvF1S+9KmbSHZVvhf4RfWLShqZxlsxFqCnp4eenp7Vgqy01ZpnA+vt7QVgre4RjBo1it7eXm/LBgz0+RtG23IznFusAZXcMnINATi/NKgVuaXuokLSxzKTUyS9mpkeAexB5pdAnbYADiMZ2ObbwHuA70taERGXkHzpIfn1kDUvM29Dqkbbi4iVkuZnlql2AvD16sbp06czevToPoOdMcOXHmjG1AN2hQN2Zc6cOcyZM6fd4ZROX5+/JUuWDHIkxXJucW5p1hl7b5I82PcK55cciswtjeypuCa9D+CSqnk9wJMkg9Y0ogu4KyJOTKdnS9oeOLTGaxTpNFYdoW8s8OzkyZMZN27cagv39PQwY8YMJk2aRHd3dwvDGp5mz57N3LlzOebS25h7w3nMnDmTiRMntjus0hjo87dw4cI2RFWoa9J75xZrSCW3HHfD0yxfGcy7/Hjnlwa0IrfUXVRERBeApCdIjjG+1PCrrW4uyaWOsx4GPpk+fj693yBdlsz0vZll1s+uQNIawPjM81cREct5vcc5yeFV6O7u7veLPdB8q62rK7nEzLKe11i6dCldXV3ejjn09fkr+7Z0bnFuyauSW5avDJatDOeXnIrMLQ1fUCwiNi/oSw9J7+xtqtq2Bp5KHz9B8uXdozJT0jiS45mz0qZZwLqSdsqs48Mk7+3OguI0sxZzbjErv3oHvzoS+FFELEsf9ykiGhmjfxpwu6QTgZ8COwNfTG9EREg6C/iqpMd4/bSv50h3mUbEw5J+DZwv6VCS075+AFzp3tlmQ5tzi9nwUu/hj6NJztdelj7uS9DAhX8i4g+SPkFyHPIkki/2URFxWWax7wBrk5wbvi7wO2CvzHnkAJ8j+bLfzOsD1PSboMxsSHBuMRtG6h38avNaj4sQEdcC1/YzP0iSwkn9LDMfD0ZjVjrOLWbDS8N9KiSdJGm1c6MkjZLU55fTzKw/zi1m5ddwUUFyDvaYGu2jqXF+tplZnZxbzEouT1Ehal/0ZyIwv7lwzKyDObeYlVwjI2q+QvKFD+BPkrJf/hEkvzB+WGx4ZjbcObeYDR+NjKh5FMkviQtJdkVmh9JdATwZEbNqPM/MrD9H4dxiNiw0MqLmJfC3Ue9+HxErWxaVmXUM5xaz4SPPiJq/BTaVdKqkKyStDyBpb0nbFR6hmXUE5xaz8stzSukHgQdIhrPdj9d7a08EvlFcaGbWSZxbzMovz9kfpwNfjYhJJMc7K24B3ldIVGbWiZxbzEouT1HxDuAXNdpfAN7YXDhm1sGcW8xKLk9RsQDYqEb7jsCcpqIxs062AOcWs1LLU1RcCZwhaUOS88q7JO0CfA+4tMjgzKyjOLeYlVyeouJE4BHgGZKOVA8BM4HbgVOLC83MOoxzi1nJNTL4FQARsQL4gqRvAtuTfPlnR8RjRQdnZp3DucWs/BouKioi4mlJz6SPa43Xb2bWMOcWs/LKc/gDSZ+X9CCwDFgm6UFJ/1xsaGbWaZxbzMqt4T0Vkk4BjgHOASrj8b8fmCZpk4g4qcD4zKxDOLeYlV+ewx+HAV+IiCsybf8r6X6SZOAvvpnl4dxiVnJ5Dn90A3fVaL+bJvpomFnHc24xK7k8RcWPSX5RVPsicFlz4ZhZB3NuMSu5vNX/5yVNBu5Ip98LbAJcKmlqZaGIOKbJ+Mysszi3mJVYnqJie+Ce9PGW6f1L6W37zHI+FczMGuHcYlZyeQa/+lArAjGzzubcYlZ+ucapAJC0laQpkkal0youLDPrVM4tZuXVcFEh6Q2Sbgb+BFzP61cVvEDSmUUGZ2adw7nFrPzy7KmYBvSQdJ5akmm/CtiriKDMrCM5t5iVXJ6OmpOBKRHxbNVeyceATQuJysw6kXOLWcnl2VOxNqv+iqgYDyzPG4ik4yWFpLMybWtJOlfSy5IWS7pa0gZVz9tE0nWSlkh6QdJ3JXmgHLPyaUluAecXs8GSp6i4DTggMx2SuoBjgd/kCULSe4B/Ae6vmjUN2Bf4NPBBYGPg55nnjQCuA9YEPgAcCBwEnJInDjNrq8JzCzi/mA2mPBX3scDNkt5N8mX7DrAdya+JXRpdmaQxJKPlfQH4aqZ9HeDzwP4RcUvadjDwsKT3RcQdJLtLtwX2jIh5wL2SvgacIenkiFiR4/2ZWXsUmlvA+cVssOUZp+JBSVsDRwCLgDEk1f25ETE3RwznAtdFxE2Svppp34nkWgA3ZV77EUlPk1y58I70/oH0C19xI/CfJMlodq0XlDQSGJlpGgvQ09NDT0/PastX2mrNs4H19vYCsFb3CEaNGkVvb6+3ZQMG+vwNl23ZgtwCg5xfnFsGVyW3jFwj6YPj/NKYVuSWhooKSd3Ar4FDI+JbDb/a6uv7LPAu4D01Zm8IrIiIBVXt89J5lWXm1ZhPZplaTgC+Xt04ffp0Ro8e3eeTZsyY0c8qbSBTD9gVDtiVOXPmMGfOnHaHUzp9ff6WLKnVDaFcis4t6TrbkV+cW9rgjL03SR7se4XzSw5F5paGioqI6JH0zoZfpQZJbwXOBiZFxLIi1tmA04CpmemxwLOTJ09m3Lhxqy3c09PDjBkzmDRpEt3d3YMV47Axe/Zs5s6dyzGX3sbcG85j5syZTJw4sd1hlcZAn7+FCxe2IapiFZlboK35xbllEFVyy3E3PM3ylcG8y493fmlAK3JLnj4VPyE5Fnl8judm7QSsD9yTOX1sBLCbpCOAKcCaktat+jWxAfB8+vh5YOeq9W6QmVdTRCwn05u88vrd3d39frEHmm+1dXUl/YGX9bzG0qVL6erq8nbMoa/P3zDalkXlFmhTfnFuGVyV3LJ8ZbBsZTi/5FRkbslTVKwBHCJpT+Bu4K/ZmQ1cPfBm4B1VbRcBjwBnAM+QDISzB3A1gKRtSAbGmZUuPwv4D0nrR8QLadskYCHwUAPvyczar6jcAs4vZm3R7FVKt66aV/fVAyNiEfBgtk3SX4GXI+LBdPoCYKqk+SRf5HOAWWnPbIDpJF/uH0s6luQ456kkHbuaOq/dzAZdIbkFnF/M2mWoX6X0aKCX5JfESJKe1/+aieU1SfuQ9MaeRfLL5hLgpEGM0cwK0IarlDq/mBVsSI0MFxG7V00vAw5Pb3095yngI62NzMzKzvnFrPVyX/rczMzMLMtFhZmZmRXCRYWZmZkVoq6iQtI9ktZLH58kqe+h4czM6uTcYja81LunYgLJZYkhGYJ2TGvCMbMO49xiNozUe/bHvcBFkn4HCPiKpMW1FowIXxbYzOp1L84tZsNGvUXFQcA3gH1IBqHZG1hZY7kA/MU3s3odhHOL2bBRV1EREY8CnwWQ1AvskRm21swsF+cWs+Elz4iaPmPEzArn3GJWfrlG1JS0JXAUSScrSMbHPzsiHi8oLjPrQM4tZuXW8C8DSVNIvug7A/ent/cCf5Q0qdjwzKxTOLeYlV+ePRWnA9Mi4vhso6TTSS4pPKOIwMys4zi3mJVcnmOYE4ALarRfCGzbXDhm1sGcW8xKLk9R8SKwQ432HQD32jazvJxbzEouz+GP84EfSdoCuD1t2wU4DphaVGBm1nGcW8xKLk9R8U1gEfBl4LS07TngZOD7xYRlZh3IucWs5PKMUxHANGCapLFp26KiAzOzzuLcYlZ+ucapqPAX3sxawbnFrJw8gp2ZmZkVwkWFmZmZFcJFhZmZmRWioaJCUrekmyW9rVUBmVnncW4xGx4aKioiogd4Z4tiMbMO5dxiNjzkOfzxE+DzRQdiZh3PucWs5PKcUroGcIikPYG7gb9mZ0bEMUUEZmYdx7nFrOTyFBXbA/ekj7eumhfNhWNmHcy5xazk8oyo+aFWBGJmnc25xaz8cp9SKmkrSVMkjUqnVVxYZtapnFvMyqvhokLSGyTdDPwJuB7YKJ11gaQzG1zXCZL+IGmRpBckXSNpm6pl1pJ0rqSXJS2WdLWkDaqW2UTSdZKWpOv5rqSmhiA3s8Hl3GJWfnn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYWXs5t5iVXJ6KezIwJSKerdor+RiwaSMriohVEoWkg4AXgJ2AmZLWITnFbP+IuCVd5mDgYUnvi4g70ni2BfaMiHnAvZK+Bpwh6eSIWJHjPZrZ4HNuMSu5PEXF2qz6K6JiPLC8uXBYJ72fn97vRPIL46bKAhHxiKSngfcDd6T3D6Rf+oobgf8EtgNmV7+IpJHAyEzTWICenh56enpWC6rSVmueDay3txeAtbpHMGrUKHp7e70tGzDQ528YbUvnFmtIJbeMXCMpQp1fGtOK3JKnqLgNOAD4WjodkrqAY4Hf5FgfAOk6zgJ+HxEPps0bAisiYkHV4vPSeZVl5tWYT2aZaicAX69unD59OqNHj+4zxhkzZvQ5zwY29YBd4YBdmTNnDnPmzGl3OKXT1+dvyZJa/4dLybnFcjlj702SB/te4fySQ5G5JU9RcSxws6R3kxxr/A5J1T4e2CXH+irOJTlP/e+aWEe9TgOmZqbHAs9OnjyZcePGrbZwT08PM2bMYNKkSXR3dw9CeMPL7NmzmTt3LsdcehtzbziPmTNnMnHixHaHVRoDff4WLlzYhqhawrnFGlLJLcfd8DTLVwbzLj/e+aUBrcgtecapeFDS1sARwCJgDEnnpnMjYm7DEQCSfgDsA+wWEc9mZj0PrClp3apfFBuk8yrL7Fy1yg0y82q9h+VkdqdWjt92d3f3+8UeaL7V1tWV9Ade1vMaS5cupaury9sxh74+f8NlWzq3DI+/42Cq5JblK4NlK8P5Jacic0uuU6Mi4lXgW3mem5Wef34O8Alg94h4omqRu0l6g+8BXJ0+ZxuS3uGz0mVmAf8haf2IeCFtmwQsBB5qNkYzGzzOLWbllquokLQeSc/pCWnTQ8BFETG/72fVdC6wP/BxYJGkynHKVyNiaUS8KukCYKqk+SRf5nOAWWnvbIDp6ev/WNKxJMc6TyX5ddNs5y4zG0TOLWbllmfwq92AJ4EjgfXS25HAE+m8RhxG0iv7VmBu5vaZzDJHA9eS/JqYSbLbcb/KzIh4jWT35mskvyx+AlwKnNRgLGbWRs4tZuWXZ0/FuSSD0RyWfukqg8Scl857R70riogBh9+NiGXA4emtr2WeAj5S7+ua2ZDk3GJWcnlG1NwKOLPypYe/VfRT03lmZnk4t5iVXJ6i4h5eP96ZNQG4r7lwzKyDObeYlVxdhz8kvTMz+X3gbElbkYw6B8n4+ocDxxcbnpkNZ84tZsNLvX0q7gUCyB6n/E6N5S4nOSZqZlaPe3FuMRs26i0qNm9pFGbWqZxbzIaRuoqKtAe0mVmhnFvMhpe8g19tTDKO/vpUdfaMiO8XEJeZdSDnFrNya7iokHQQ8F/ACuBlkuOhFUHS2crMrCHOLWbll2dPxTeBU4DTIqK34HjMrHM5t5iVXJ5xKkYDV/pLb2YFc24xK7k8RcUFwKeLDsTMOp5zi1nJ5Tn8cQJwraS9gAdILh/8NxFxTBGBmVnHcW4xK7m8RcUU4NF0urozlZlZHs4tZiWXp6j4MnBIRFxccCxm1tmcW8xKLk+fiuXA74sOxMw6nnOLWcnlKSrOBr5UdCBm1vGcW8xKLs/hj52BD0vaB/gjq3em2q+IwMys4zi3mJVcnqJiAfDzguMwM1uAc4tZqTVcVETEwa0IxMw6m3OLWfnl6VNhZmZmtpo8FxR7gn7OGY+ILZqKyMw6knOLWfnl6VNxVtV0N7AjsBfw3WYDMrOOdVbVtHOLWcnk6VNxdq12SYcD7246IjPrSM4tZuVXZJ+KG4BPFrg+MzNwbjErjSKLik8B8wtcn5kZOLeYlUaejpqzWbUzlYANgTcB/1pQXGbWYZxbzMovT0fNa6qme4EXgVsj4pGmIzKzTnVN1bRzi1nJ5Omo+Y1WBNKstDPXv5P8srkP+FJE/F97ozKzejm3mJXfsBj8StJngKnAN4B3kXzxb5S0flsDM7NSc24xa0zdRYWkXkmvDXBb2cpg+3EMcH5EXBQRDwGHAkuAQ9oUj5nVybnFbPho5PDHJ/qZ937gSNqw50PSmsBOwGmVtojolXRTGlet54wERmaaxgLMnz+fnp6e1Zbv6elhyZIl3Hbbbayxxhr09vYC0NXVtdrjWm2dPv+xxx5jzJgxjFg8j7XWWou7776bhQsXDpn4hvr83t5elixZwssvv0x3d/dqn89Fixat1lYyzi115JbsY89fNbdo/lOo57W/5ZfFixcPifiG+vyW5JaIyH0DtgF+AawELgE2bWZ9OWPYmKTH+Pur2r8D3NnHc05On+Obb8Pp9ubB/v618Hvt3OKbb0PnVnduyXP2B5I2JjnGeCBwI7BDRDyYZ11tchrJcdKs8fR9LvxY4FngLUDpfxa2gbdfc+rZfmOB5wYtohZxbrEGefs1p/Dc0lBRIWkd4ETgS8C9wB4RcVsj62iBl4DXgA2q2jcAnq/1hIhYDiyval7Y1wtIqjxcFBF9Lme1efs1p87tV+rt6tzi70Ye3n7NaUVuaaSj5rHAX4B9gH+MiA8MgS89EbECuBvYo9ImqSudntWuuMysPs4tZsOH0uOAAy8o9QJLgZtIqveaImK/YkKrX3ra1yXAvwD/BxwF/APw9oiYV8D6xwGvAuu4Gm6ct19zhvv2c24Zvn/bVvP2a04rtl8jhz8uJemwMeRExFWS3gScQjJAzb3AXkV86VPLSY7zVu/WtPp4+zVnuG8/55bh+7dtNW+/5hS+/ereU2FmZmbWn2ExoqaZmZm1n4sKMzMzK4SLCjMzMyuEiwozMzMrhIuKGiSNl3SZpIWSFki6QNKYAZ5zq6Souv1wsGJuN0mHS3pS0jJJd0raeYDlPy3pkXT5ByR9ZLBiHYoa2X6SDqrxWVs2mPFafs4vjXFuac5g5xYXFbVdBmwHTCIZkGc34Ed1PO98YKPM7dhWBTiUNHp5aEkfAK4ALgB2BK4BrpG0/aAEPMTkvLz2Qlb9rG3a6jitMM4vdXJuaU5bcku7Lxw01G7ABJJz5t+dadsL6AU27ud5twJntTv+Nm2zO4EfZKa7gDnA8X0sfxVwbVXbHcAP2/1eSrL9DgIWtDtu33L9rZ1fGttezi2Du/2azi3eU7G695Ns1LsybTeRfOnfO8BzPyfpJUkPSjpN0uiWRTlEZC4PfVOlLSJ60+mal4dO22+qaruxn+WHrZzbD2CMpKckPSPpl5K2a3GoVgznlzo5tzSnXbkl11VKh7kNgReyDRGxUtL8dF5fLgeeIrma2zuBM0gu3zzoQwsPsjcCI4DqEQbnAW/v4zkb9rF8f9t3uMqz/R4FDgHuB9YBvgLcLmm7iHi2VYFaIZxf6ufc0py25JaOKSoknQ4cN8BiE/KuPyKyx0QfkDQXuFnSlhHxeN71mlWLiFlkLmgl6XbgYZLrU3ytXXF1MucXGw6KyC0dU1QAZwIXD7DMX0guabxKJxZJawDj6eNyx324M73fChjOX/qGLw+dtjey/HCWZ/utIiJ6JM0m+axZezi/FM+5pTltyS0d06ciIl6MiEcGuK0gqdLWlbRT5ukfJtlWd9ZceW07pPdzi3kHQ1Pkuzz0rOzyqUn9LD9s5dx+q5A0AngHw/yzNpQ5vxTPuaU5bcst7e6dOhRvwA3APcDOwC7An4DLM/PfDDwC7JxOb0mya2gnYDPgYyS/Hn7b7vcySNvrM8Ay4ECSXbz/BbwCbJDOvxQ4LbP8B4Ae4Mskx/ZOBlYA27f7vZRk+50ETAa2IDlN7AqSS4dv2+734ltdf2/nl/q3lXPL4G6/pnNL29/0ULyR7Iq8HFhEcq35C4ExmfmbkZwWtns6/Vbgt8DL6R/wMeA7wLh2v5dB3GZHkHQkW07yi+u9mXm3AhdXLf9pkk5By4EHgY+0+z2UZfsB0zLLPg9cB+zY7vfgW91/a+eXxraXc8sgbb8icosvfW5mZmaF6Jg+FWZmZtZaLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qrKUkPSnpqHbHYWbDi3PL0OSiwszMzArhosLMzMwK4aLC+iTpi5KeSy+Xm23/paQLJW2ZPp4nabGkP0jas5/1bSYpJO2QaVs3bds907a9pBvSdc6T9GNJb2zBWzSzNnBuGb5cVFh/fga8AfhQpUHSeGAv4DJgDHA9sAewI/Br4FeSNsn7gpLWBW4BZgPvTl9rA+CneddpZkOOc8swtUa7A7ChKyJekXQDsD9wc9r8KeAl4DcR0Qvcl3nK1yR9AvgY8IOcL3sEMDsiTqw0SDoEeEbS1hHxp5zrNbMhwrll+PKeChvIZcAnJY1Mpz8HXBkRvZLGSPqepIclLZC0GJgA5P41AUwEPpTunlycrvORdN6WTazXzIYW55ZhyHsqbCC/AgR8VNIfgF2Bo9N53wMmAV8B/gwsBf4HWLOPdfWm98q0dVctMyZ9zeNqPH9uo8Gb2ZDl3DIMuaiwfkXEMkk/J/kVsRXwaETck87eBbg4In4BIGkMsFk/q3sxvd+I5LgmwA5Vy9wDfBJ4MiJWNv0GzGxIcm4Znnz4w+pxGfBR4JD0ccVjwH6SdpA0Ebicfj5TEbEUuAM4XtIESR8ETq1a7FxgPHCFpPekvcCnSLpI0ogC35OZtZ9zyzDjosLqcQswH9iG5MtdcQzwCnA7yW7FG0l+DfTnEJI9ZHcDZwFfzc6MiOdIfqWMAKYDD6TLLeD1XZxmNjw4twwzioh2x2BmZmbDgPdUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFRYoSQdJCkkbdbuWMzMbHC5qDAzM7NCKCLaHYMNI5JGAN3A8vCHy8yso7ioMDMzs0L48IcVKtunQtIlkl6S1F1juemSHm1HjGZm1houKqyVfgy8AZiSbZS0IfBh4CftCMrMzFrDRYW10i3As8A/VbX/I8lnz0WFmdkw4qLCWiYieoHLgI9JGpuZ9Tng9oh4oj2RmZlZK7iosFa7FBgFfAJA0jbATiSHRszMbBhxUWEtFREPAXfz+iGQfwJWAD9tW1BmZtYSLipsMFwKfFjSRsD+wHUR8UqbYzIzs4K5qLDBcAUQwNnAFriDppnZsOSiwlouIl4Efg18GlgAXNfWgMzMrCVcVNhguTS9/2lELG9rJGZm1hIuKqxQEXFxRCginqyatSK996EPM7Nhytf+sEEh6VpgArCVLzRmZjY8rdHuAGx4k/RZ4J3AR4F/c0FhZjZ8eU+FtZSkABYDVwGHRsTKNodkZmYt0nBRIWkvYHFE/C6dPhz4AvAQcLjHHzAzM+tMeTpqfhcYByDpHcCZwPXA5sDU4kIzMzOzMsnTp2Jzkr0SAJ8Ero2IEyW9i6S4MDMzsw6Up6hYAYxOH+/J6+MPzCfdg1E2kgRsDCxqdyxmOY0FnnNHWDNrpzxFxe+AqZJ+D+wMfCZt3xp4tqjABtnGlDd2s4q3AHPaHYSZda48RcURwHnAp4DDIqKSxPYmGYq5jBYBPPPMM4wbt/rOlp6eHqZPn87kyZPp7u4e9ODKztuvOQNtv4ULF/LWt74VvKfNzNqs4aIiIp4G9qnRfnQhEbXRuHHj+iwqRo8ezbhx4/xPMQdvv+Z4+5lZWeQa/EpSF7AVsD5VZ5BExMwC4jIzM7OSabiokPQ+4HJgU0BVswMYUUBcZmZmVjJ5xqn4IXAXsD0wHlgvcxtfXGg23Nx33308/fTT7Q7DzMxaJM/hj7cBn4qIPxcdjA1Pzz6bnFiz2267EYhHH3mYTTbZpM1RmZlZ0fLsqbiTpD+FWV1efvllAMbtvB/Lli7hpZdeanNEZmbWCnn2VJwDnClpQ+ABoCc7MyLuLyIwG35GjHtTu0MwM7MWylNUXJ3eX5hpC5JOm+6oaWZm1qHyXvvDzMzMbBV5Br96qhWBmJmZWbnlHfxqS+AoYELa9BBwdkQ8XlBcZmZmVjINn/0haQpJEbEzcH96ey/wR0mTig3PzMzMyiLPnorTgWkRcXy2UdLpwBnAjCICMzMzs3LJM07FBOCCGu0XAts2F46ZmZmVVZ6i4kVghxrtOwAvNBOMmZmZlVeewx/nAz+StAVwe9q2C3AcMLWowMzMzKxc8hQV3wQWAV8GTkvbngNOBr5fTFhmZmZWNnnGqQhgGjBN0ti0bVHRgZmZmVm55BqnosLFhJmZmVXUVVRIugfYIyJekTSb5BofNUXEu4oKzszMzMqj3j0VvwSWZx73WVQ0StKbSca32BsYDfwZODgi7krnC/gG8AVgXeD3wGER8VhmHeNJrp66L9BLctGzf4uIxUXFaWZmZv2rq6iIiG9kHp9c1ItLWo+kSPgNSVHxIvA24JXMYscCRwIHAk+QdBS9UdK2EbEsXeYyYCNgEtANXAT8CNi/qFjNzMysfw33qZD0F+A9EfFyVfu6wD0RsUUDqzsOeCYiDs60PZFZp0iuMXJqRPwybTsAmAf8PXClpAnAXmlMlb0bXwKul/SViHiusXdoZmZmeeTpqLkZMKJG+0jgLQ2u62Mkex1+BnwQmAOcFxHnp/M3BzYEbqo8ISJelXQn8H7gyvR+QaWgSN1EchjkvcAvql9U0sg03oqxAD09PfT09KwWZKWt1jwbWG9vLwBrdY9g1KhR9Pb2els2YKDPn7elmQ0VdRcVkj6WmZwi6dXM9AhgDzJ7Geq0BXAYyaBZ3wbeA3xf0oqIuISkoIBkz0TWvMy8DakayTMiVkqan1mm2gnA16sbp0+fzujRo/sMdsYMX9akGVMP2BUO2JU5c+YwZ86cdodTOn19/pYsWTLIkZiZ1dbInopr0vsALqma1wM8STIgViO6gLsi4sR0erak7YFDa7xGkU5j1dE/xwLPTp48mXHjxq22cE9PDzNmzGDSpEl0d3e3MKzhafbs2cydO5djLr2NuTecx8yZM5k4cWK7wyqNgT5/CxcubENUZmarq7uoiIguAElPkPRfeKmA159Lchn1rIeBT6aPn0/vN0iXJTN9b2aZ9bMrkLQGMD7z/FVExHJeP5uFpOsGdHd391s0DDTfauvqSi4xs6znNZYuXUpXV5e3Yw59ff68Lc1sqGj4gmIRsXlBBQUkZ35sU9W2NfBU+vgJksJgj8pMSeNI+krMSptmAetK2imzjg+TvLc7C4rTzMzMBlDv4FdHAj+KiGXp4z5FRCPX/5gG3C7pROCnwM7AF9MbERGSzgK+KukxXj+l9DnSwzER8bCkXwPnSzqU5JTSHwBX+swPMzOzwVPv4Y+jScaCWJY+7kvQwEXFIuIPkj5B0sfhJJKi4aiIuCyz2HeAtUnGnVgX+B2wV2aMCoDPkRQSN/P64Ff9Fj9mZmZWrHoHv9q81uMiRMS1wLX9zA+SguOkfpaZjwe6MjMza6uG+1RIOknSauddSholqc9//GZmZja8NVxUkIzvMKZG+2hqjP1gZmZmnSFPUSFqX1BsIjC/uXDMzMysrBoZUfMVkmIigD9JyhYWI0j2Xvyw2PDMzMysLBoZUfMokr0UF5Ic5sgO070CeDIiZtV4npmZmXWARkbUvAT+NqLm7yNiZcuiMjMzs9LJM6Lmb4FNJZ0q6QpJ6wNI2lvSdoVHaGZmZqWQ55TSDwIPkAyVvR+vnwkyEfhGcaGZmZlZmeQ5++N04KsRMYmkL0XFLcD7ConKzMzMSidPUfEO4Bc12l8A3thcOGZmZlZWeYqKBcBGNdp3BOY0FY2ZmZmVVp6i4krgDEkbkoxZ0SVpF+B7wKVFBmdmZmblkaeoOBF4BHiGpJPmQ8BM4Hbg1OJCMzMzszJpZPArACJiBfAFSd8EticpLGZHxGNFB2dmZmbl0XBRURERT0t6Jn1c61ogZmZm1kHyHP5A0uclPQgsA5ZJelDSPxcbmpmZmZVJw3sqJJ0CHAOcA1Su9fF+YJqkTSLipALjMzMzs5LIc/jjMOALEXFFpu1/Jd1PUmi4qDAzM+tAeQ5/dAN31Wi/myb6aJiZmVm55Skqfkyyt6LaF4HLmgvHzMzMyirvnoXPS5oM3JFOvxfYBLhU0tTKQhFxTJPxmZmZWUnkKSq2B+5JH2+Z3r+U3rbPLOfTTM3MzDpInsGvPtSKQMzMzKzcco1TASBpK0lTJI1Kp1VcWGZmZlY2DRcVkt4g6WbgT8D1vH7F0gsknVlkcGZmZlYeefZUTAN6SDpmLsm0XwXsVURQZmZmVj55OmpOBqZExLNVRzweAzYtJCozMzMrnTx7KtZm1T0UFeOB5XkDkXS8pJB0VqZtLUnnSnpZ0mJJV0vaoOp5m0i6TtISSS9I+q4kD8JlZmY2yPIUFbcBB2SmQ1IXcCzwmzxBSHoP8C/A/VWzpgH7Ap8GPghsDPw887wRwHXAmsAHgAOBg4BT8sRhZmZm+eX5RX8scLOkd5P8M/8OsB3JnopdGl2ZpDEkI3F+Afhqpn0d4PPA/hFxS9p2MPCwpPdFxB0kh2K2BfaMiHnAvZK+Bpwh6eSIWJHj/ZmZmVkODe+piIgHga2B3wG/JDkc8nNgx4h4PEcM5wLXRcRNVe07kVxn5G/tEfEI8DTJVVFJ7x9IC4qKG4FxJIWOmZmZDZKG9lRI6gZ+DRwaEd9q9sUlfRZ4F/CeGrM3BFZExIKq9nnpvMoy82rMJ7NMrdcdCYzMNI0F6OnpoaenZ7XlK2215tnAent7AVirewSjRo2it7fX27IBA33+vC3NbKhoqKiIiB5J7yzihSW9FTgbmBQRy4pYZwNOAL5e3Th9+nRGjx7d55NmzJjRypiGvakH7AoH7MqcOXOYM2dOu8Mpnb4+f0uW1Oo3bWY2+PL0qfgJSV+H45t87Z2A9YF7MqemjgB2k3QEMAVYU9K6VXsrNgCeTx8/D+xctd4NMvP6chowNTM9Fnh28uTJjBs3brWFe3p6mDFjBpMmTaK7u3vAN2armj17NnPnzuWYS29j7g3nMXPmTCZOnNjusEpjoM/fwoUL2xCVmdnq8hQVawCHSNoTuBv4a3ZmA1cmvRl4R1XbRcAjwBnAMySDbO0BXA0gaRuSQbdmpcvPAv5D0voR8ULaNglYCDzU1wtHxHIyp79Wipru7u5+i4aB5lttXV1J151lPa+xdOlSurq6vB1z6Ovz521pZkNFs1cp3bpqXt1XJo2IRcCD2TZJfwVeTjuDIukCYKqk+SSFwjnArPTMD4DpJMXDjyUdS9KP4lTg3LRwMDMzs0Ey1K9SejTQS7KnYiTJmR3/monlNUn7AP9Jstfir8AlwEmDGKOZmZmRb09Fy0TE7lXTy4DD01tfz3kK+EhrIzMzM7OB5L70uZmZmVmWiwozMzMrhIsKMzMzK0RdRYWkeyStlz4+SVLfI0SZmZlZR6p3T8UEkmt8QDIS5ZjWhGNmZmZlVe/ZH/cCF0n6HSDgK5IW11owInzZcTMzsw5Ub1FxEPANYB+SAa72BlbWWC4AFxVmZmYdqK6iIiIeBT4LIKkX2CMzLLaZmZlZrhE1fcaImZmZrSbXiJqStgSOIunACcn1N86OiMcLisvMzMxKpuG9DpKmkBQROwP3p7f3An+UNKnY8MzMzKws8uypOB2YFhHHZxslnU5yyfIZRQRmZmZm5ZKnf8QE4IIa7RcC2zYXjpmZmZVVnqLiRWCHGu07AD4jxMzMrEPlOfxxPvAjSVsAt6dtuwDHAVOLCszMzMzKJU9R8U1gEfBl4LS07TngZOD7xYRlZmZmZZNnnIoApgHTJI1N2xYVHZiZmZmVS65xKipcTJiZmVmFR8c0MzOzQrioMDMzs0K4qDAzM7NCNFRUSOqWdLOkt7UqIDMzMyunhoqKiOgB3tmiWMzMzKzE8hz++Anw+aIDMTMzs3LLc0rpGsAhkvYE7gb+mp0ZEccUEZiZmZmVS56iYnvgnvTx1lXzorlwzMzMrKzyjKj5oVYEYmZmZuWW+5RSSVtJmiJpVDqt4sIyMzOzsmm4qJD0Bkk3A38Crgc2SmddIOnMBtd1gqQ/SFok6QVJ10japmqZtSSdK+llSYslXS1pg6plNpF0naQl6Xq+K6mpIcjNzMysMXn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYmZlZE/L8mp8MTImIZ6uOeDwGbNrIiiJilSJE0kHAC8BOwExJ65Ccvrp/RNySLnMw8LCk90XEHWk82wJ7RsQ84F5JXwPOkHRyRKzI8R7NzMysQXmKirVZdQ9FxXhgeXPhsE56Pz+934lk78VNlQUi4hFJTwPvB+5I7x9IC4qKG4H/BLYDZle/iKSRwMhM01iAnp4eenp6Vguq0lZrng2st7cXgLW6RzBq1Ch6e3u9LRsw0OfP29LMhoo8RcVtwAHA19LpkNQFHAv8Jm8g6TrOAn4fEQ+mzRsCKyJiQdXi89J5lWXm1ZhPZplqJwBfr26cPn06o0eP7jPGGTNm9DnPBjb1gF3hgF2ZM2cOc+bMaXc4pdPX52/Jklo1vpnZ4MtTVBwL3Czp3ST9GL5DskdgPLBLE7GcSzIGxt81sY56nQZMzUyPBZ6dPHky48aNW23hnp4eZsyYwaRJk+ju7h6E8IaX2bNnM3fuXI659Dbm3nAeM2fOZOLEie0OqzQG+vwtXLiwDVGZma0uzzgVD0raGjgCWASMIek4eW5EzM0ThKQfAPsAu0XEs5lZzwNrSlq3am/FBum8yjI7V61yg8y8Wu9hOZlDNZW+Id3d3f0WDQPNt9q6upL+wMt6XmPp0qV0dXV5O+bQ1+fP29LMhopcp11GxKvAt5p98XRsi3OATwC7R8QTVYvcTXKmyR7A1elztiE582RWusws4D8krR8RL6Rtk4CFwEPNxmhmZmb1yVVUSFqP5KyMCWnTQ8BFETG/72fVdC6wP/BxYJGkSh+IVyNiaUS8KukCYKqk+SSFwjnArPTMD4Dp6ev/WNKxJP0oTiXZc9Jsx1EzMzOrU57Br3YDngSOBNZLb0cCT6TzGnEYyRkftwJzM7fPZJY5GriWZE/FTJJDGvtVZkbEaySHTl4j2WvxE+BS4KQGYzEzM7Mm5NlTcS7JQFeHpf/QKwNQnZfOe0e9K4qIAYf2johlwOHpra9lngI+Uu/rmpmZWfHyjKi5FXBmpaCAv+0tmJrOMzMzsw6Up6i4h9f7UmRNAO5rLhwzMzMrq7oOf0h6Z2by+8DZkrYiGdESkmt3HA4cX2x4ZmZmVhb19qm4Fwgg2wfiOzWWu5ykv4WZmZl1mHqLis1bGoWZmZmVXl1FRXp2hZmZmVmf8g5+tTHJNTrWp6qzZ0R8v4C4zMzMrGQaLiokHQT8F7ACeJmkr0VFkHTkNDMzsw6TZ0/FN4FTgNMiorfgeMzMzKyk8oxTMRq40gWFmZmZZeUpKi4APl10IGZmZlZueQ5/nABcK2kv4AGSS5P/TUQcU0RgZmZmVi55i4opwKPpdHVHTTMzM+tAeYqKLwOHRMTFBcdiZmZmJZanT8Vy4PdFB2JmZmbllqeoOBv4UtGBmJmZWbnlOfyxM/BhSfsAf2T1jpr7FRGYmZmZlUueomIB8POC4zAzM7OSa7ioiIiDWxGImZmZlVuePhVmZmZmq8lzQbEn6Gc8iojYoqmIzMzMrJTy9Kk4q2q6G9gR2Av4brMBmZmZWTnl6VNxdq12SYcD7246IjMzMyulIvtU3AB8ssD1mZmZWYkUWVR8Cphf4PrMzMysRPJ01JzNqh01BWwIvAn414LiMjMzs5LJ01HzmqrpXuBF4NaIeKTpiMzMzKyU8nTU/EYrAjEzM7NyGzaDX0k6XNKTkpZJulPSzu2OyczMrJPUXVRI6pX02gC3la0Mtp/YPgNMBb4BvAu4D7hR0vrtiMfMzKwTNXL44xP9zHs/cCTt2/NxDHB+RFwEIOlQ4KPAIcDpbYrJzMyso9RdVETEL6vbJG1D8k97X+Ay4KTiQquPpDWBnYDTKm0R0SvpJpJip9ZzRgIjM01jAebPn09PT89qy/f09LBkyRJuu+021lhjDXp7ewHo6upa7XGttk6f/9hjjzFmzBhGLJ7HWmutxd13383ChQuHTHxDfX5vby9Llizh5Zdfpru7e7XP56JFi1ZrMzNrhzxnfyBpY5JDDQcCNwI7RMSDRQbWgDcCI4B5Ve3zgLf38ZwTgK9XN26++ebFRmY1ffGLX2x3CMPVWGBhu4Mws87VUFEhaR3gROBLwL3AHhFxWwviarXTSPpgZI2n78G7xgLPAm8B/LOwcd5+zaln+40Fnhu0iMzMaqi7qJB0LHAc8Dzwj7UOh7TJS8BrwAZV7RuQxLqaiFgOLK9q7vMXnqTKw0UR4V+CDfL2a06d28/b1czarpE9FacDS4E/AwdKOrDWQhGxXxGB1SsiVki6G9iDdGAuSV3p9A8GMxYzM7NO1khRcSmrDs89lEwFLpF0F/B/wFHA2sBF7QzKzMyskzRy9sdBLYyjKRFxlaQ3AaeQXIfkXmCviKjuvJnXcpKOqdWHTKw+3n7N8fYzs1JQxFDd+WBmZmZlMmyG6TYzM7P2clFhZmZmhXBRYWZmZoVwUWFmZmaFcFFRg6Txki6TtFDSAkkXSBozwHNulRRVtx8OVszt1uil5yV9WtIj6fIPSPrIYMU6FDWy/SQdVOOztmww4zUzq8VFRW2XAdsBk4B9gN2AH9XxvPOBjTK3Y1sV4FDS6KXnJX0AuAK4ANiRZNCyayRtPygBDzGNbr/UQlb9rG3a6jjNzAbiU0qrSJoAPAS8JyLuStv2Aq4H3hIRNa+vIOlW4N6IOGqQQh0yJN0J/CEijkinu4BngHMiYrVLz0u6Clg7IvbJtN1Bsv0OHaSwh4wc2+8g4KyIWHcw4zQzG4j3VKzu/cCCSkGRugnoBd47wHM/J+klSQ9KOk3S6JZFOURkLj1/U6UtInrT6ZqXnk/bb6pqu7Gf5YetnNsPYIykpyQ9I+mXkrZrcahmZgPKdenzYW5D4IVsQ0SslDQ/ndeXy4GnSK4U+U7gDGAbYFCvhdIGeS49v2Efy/e3fYerPNvvUeAQ4H5gHeArwO2StouIZ1sVqJnZQDqmqJB0OslVVvszIe/6IyLb5+IBSXOBmyVtGRGP512vWbWImAXMqkxLuh14GPgX4GvtisvMrGOKCuBM4OIBlvkLyeXSV+kgJ2kNYDx9XEq9D3em91sBw7moaPjS82l7I8sPZ3m23yoiokfSbJLPmplZ23RMn4qIeDEiHhngtoLkF+C6knbKPP3DJNvqzporr22H9H5uMe9gaEq3WeXS88Aql56f1cfTZmWXT03qZ/lhK+f2W4WkEcA7GOafNTMb+jppT0VdIuJhSb8Gzpd0KNAN/AC4snLmh6Q3AzcDB0TE/0naEtif5AyRl0n6VEwDZkbE/e14H4Os30vPS7oUmBMRJ6TLnw38VtKXgeuAzwLvBr44yHEPFQ1tP0knAXcAfwbWBf6d5JTS/x7swM3MslxU1PY5kkLiZpKzPq4GjszM7ybphFk5u2MFsCev/zN4Jn3OqYMTbnvVcen5TUi2Y2X52yXtT7J9vg08Bvx9RDw4qIEPEY1uP2A9kjFRNgReIdnT8YGIeGjQgjYzq8HjVJiZmVkhOqZPhZmZmbWWiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwprKUlPSjqq3XGYmVnruagwMzOzQrioMDMzs0K4qLA+SfqipOfSq2Zm238p6UJJW6aP50laLOkPkvbsZ32bSQpJO2Ta1k3bds+0bS/phnSd8yT9WNIbW/AWzcysQC4qrD8/A94AfKjSIGk8sBdwGTCG5MqsewA7Ar8GfiVpk7wvKGld4BZgNsmVS/cCNgB+mnedZmY2OHyVUutTRLwi6QaSy7rfnDZ/CngJ+E1E9AL3ZZ7yNUmfAD5GcpXXPI4AZkfEiZUGSYcAz0jaOiL+lHO9ZmbWYt5TYQO5DPikpJHp9OeAKyOiV9IYSd+T9LCkBZIWAxNILtWd10TgQ+mhj8XpOh9J523ZxHrNzKzFvKfCBvIrQMBHJf0B2BU4Op33PWAS8BXgz8BS4H+ANftYV296r0xbd9UyY9LXPK7G8+c2GryZmQ0eFxXWr4hYJunnJHsotgIejYh70tm7ABdHxC8AJI0BNutndS+m9xuR9JkA2KFqmXuATwJPRsTKpt+AmZkNGh/+sHpcBnwUOCR9XPEYsJ+kHSRNBC6nn89URCwF7gCOlzRB0geBU6sWOxcYD1wh6T3pGSZTJF0kaUSB78nMzArmosLqcQswH9iGpHCoOAZ4Bbid5JDFjSR7GvpzCMkesruBs4CvZmdGxHMke0BGANOBB9LlFvD64RMzMxuCFBHtjsHMzMyGAe+pMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQvx/oSgccolv38QAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_8-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 16"
]
},
{
"cell_type": "code",
"execution_count": 235,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUjElEQVR4nO3deZxcVZn/8c+3QxMSkoDoEGQ0gKAMsgTEDXAQwQQQcFzAcdSfRhwdFFQWh8UFEHEQVEAFdVQ2HUAcUVABs4AY1MBIEgRkx7AkhLCEkMQsdOjn98e5BTeV6nTV7dtdXVXf9+tVr6o699Stp27fOv3Uueeeq4jAzMzMrAxdzQ7AzMzM2ocTCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLK0zSqZKGZOpWSTdKujH3fB9JIenQIXr/iyU9NBTvVfW+W2efc8pQv3enkLSBpLMkPSqpV9JVzY5pqAzld9g6hxMLA0DSlOwfWOW2StJjkqZK+oyksSW9z5ZZY7ZrGesr03COzQbV4cB/Aj8HPgKc09xwzFrbBs0OwIadk4F5QDewBbAPcC5wrKR3RsTtubqnA19rcP1bAqcADwG3NfC6yQ2+TxHri+3jNCcRfxgYBfQ04b07xb7Agog4ptmBmLUDJxZW7bqIuDX3/AxJ+wK/AX4laYeIWAkQEWuANYMZjKTREbEiIp4bzPfpT0Q05R97pKsErmrGew+EpI2A5yKit9mx1GFzYElZK5PUBWwYES33dzMrgw+FWL8i4gbgK8BWwIcq5bWOz0qaJOkPkpZIWi7pXkn/lS3bB/hzVvWi3GGXKdnyGyXdKWl3STMlrQD+K7fsxhrhjZD0X5Iel/R3Sb+S9MqqmB6SdHH1C/PrrCO2dcZYSNpY0jezY/Ors8/6OUmqqheSzpP0ruzzrZb0V0kH1Pg81TGuM8Yii2W5pH+UdFX2+ElJ35A0oo51PiTpN5ImS7otO+x1l6T3VNXbLFvnHdl7LJV0naSJVfUq413eL+l0SQuAFcC4Aut4n6RTJC2QtEzSzyVtImmkpHMlPZGt5yJJI6vW0ee+t75tC7wN2DH3N98nW97o3/eDkv4KrAb6/NtK6sq+O49JWiHpd5JeW72f1rvtsrqfzvapFZKekXSrpA9U1XmLpD9nf+8HJf3HemL8kKTZklZKWizpp8p9r7LPu1zS6BqvvVzp+9jvvmjtyT0WVq+fkP7JTwZ+WKuCpB1JPRu3kw6prAa2A/bKqtydlZ8G/AC4KSv/U241LwWuA34K/A+wqJ+4vgAEcCbpl+fRwAxJu1Z6VupUT2wvyP65/Ir0T+kC0qGT/YGvA/8IVHervwV4D/BdYBnwGeBKSRMi4ukG4qwYAUwFbgE+B7wdOA54EPheHa9/NXAF8H3gEuCjwP9KOiAipmd1XgW8C/hf0uGx8cB/AL+X9NqIeKxqnV8CngO+AYzMHr+2wXWcBKwkHWLbDvg06TBQL/AS4FTgzcCUbH2nQV37Xi1PAv+PtA+Nyd4b4O4Cf999gfcB5wFPkQ6n9eUM4Hjg16S/4cTsfqOqenVtf0kfB75NGiPyrWw9uwBvAi7L6uwMTMs+86mktv/L1Ph+SfoC6YfEz4AfAf9A+jvMlLRbRCwh7TtHAgdl8VVeOxo4BLg4Ip5fzzawdhYRvvkGqaEO4PXrqbMEmJN7fipZb332/OhsHS9bzzpen9WZUmPZjdmy/+hj2Y255/tkdecDY3Plh2Xln8mVPURq6Ppb5/piuxh4KPf8X7K6X6iq97+kf4Lb5sqC9I8uX7ZLVn5UP3+XratjymIJ4EtVdecAt9bxt34oe/17cmXjgMeq/r4jga4a8azKv3fub/EgMKqqfqPruAPozpVflm3Pa6vW8aeqv0e/+956tseNwJ1VZY3+fZ8HXlvHe40nJUq/rCo/JVvPxbmyerfdVdXx13jfX5IStgm5sh1IhzIjV7ZVVvb5qtfvlMX9+ey5SN+9n1fVq3z//rnRv4Nv7XPzoRBrxHJgfWeHLMnu/0XpOHMRq4GLGqj/44hYlnv+c2Ah8I6C71+vd5D+mXy7qvybpEb3wKryGRHxYOVJpEGwS0m/Sov6ftXzmxpY32OkfzaVeJYCPwZ2k7RFVrY6sjESkkZIeilpH7gXeF2NdV4SVb1EBdbx41h7PMstpO15YVW9W4BXSqr0ui7J7gey7+U1+vf9fUTcVcd69yP1Fny3qvw71RUb2HZLgFdIekOtN8wOSewPXBURj+TWfzeppyTvPaRD5D+T9LLKDXgcuJ/Ug0NEBCnJeoekMbnX/yuwAPhDn1vA2p4TC2vEGFI3fl+uAP5I6j5dlB2XfV+DDf2CaGyg5v35J1mD9wDpl91g2gp4rCqpgXRIpbI87xHW9Qype7+IVRHx5ADW90C2rfLuy+63hhfGAhwj6X5SwvcUqSt9F2CTGuucV11QYB3V2+nZ7P7RGuVduXWUse/lNfr3Xeezr2e9kPbRF0TEYtLf7wUNbLszSQnH/0m6X9L5kvKHgP6BdGbRWt+VzL1Vz19NSpzuz94rf9uBdLix4opsve/M4h1DSsj+t8a+ZR3EiYXVRdIrSI3ZA33VyX6t7k063v8TUgN4BTC9gYFcjYyLqFdfjdxQDi7r63iz+igvur4yfR44G5hJGrS7PzAJ+Cu1245af7tG19HX51rv9itp3xuIwdhv69p2Wc/D9sD7ST0F7wX+IOnLBd6zi/R9OSB7r+rbCwM+I+Jm0mG192VFh5ASjSsKvK+1EQ/etHr9v+y+uut0LVnX7fXZ7VhJnwe+SupCnUHf/+SLenX+STbobjvSIL6KZ4BNa7x2K+BvueeNxPYw8HZJY6t+1f5Tbvlwtp0kVf2yfE12/1B2fyjwu4j4WP6FkjYl/XquRxnrqEsd+14jBuvvW3ndduR6ObLDHNW9TXVvu4j4O+kf+hWSNgR+AXxB0hmk3oaVVH1XMttXPX+QlKzNi4j7atSv9jPgs5LGkQ6DPJQlHNbB3GNh/VKax+JLpIbw0vXU26xG8W3ZfeXUwL9n95uWFN6HtfasoIcCLyedWVLxIPDmrMEFQNLBwFqnpTYY27WkHo+jqsqPISUo163ziuFlS+DdlSfZP4YPA7dFxONZ8fNU9ahIOox0VkS9ylhHv+rc9xoxWH/f60mDIz9ZVV79PlDntsuSkhdkhxLvyl7bHensjKnAuyRNyL1uB1IvSN4vsvc9JUvS8++j6vciJTMjSTOWHkBKNKzDucfCqh0o6Z9I+8Z40ml0k0i/tN4Z65/052RJewPXZPU3Bz5FGj1eGcz1IGmw2RGSlpH+md8SEfUeo662mNTte1EW79GkwzX5U2J/REo4fivpZ8C2pK7lB9deVUOx/Rr4HfBVSVsDfyGdivsvwLn5gZrD1H3ABdmAv0Wkaa3Hk047rfgN6W96EeksjJ2BD7J2L09/ylhHPerZ9xoxKH/fiFgk6VvAcZJ+BfyWdLrpgaReiHwPUr3bbpqkx0ljTBaRxkIcBVyT6205hfSP/yZJ3yV9vz9NOqyySy6+ByV9kXRK7NZK101ZBmxDSkR/QDqduFJ/jqQHSD1DI/FhEAOfbupbuvHi6aaV22rS2RXTSHMujK3xmlNZ+1S1fUmnvi3IXr+AdLrgq6te905Sg9ZD7lRKapz2l3vNjdQ+3fT9pPk1FpEmZfoNuVPqcvWPJf2TWUX6R7N79Tr7ie1icqc3ZmVjSMfAF5DmbLiPNKeEquoFcF6NmB6ixmmwVXW2zseRi2V5f3+P9azzoWw7TSb9w1xFGpR4aFW9kaR/Io9l2/YPpDkk+vpbHFrjvQa0Dvo4DbryWclOL6XOfW89+9Y6+91A/77reb8RpPk3Fmbb5HrSIZangO8V2HafAH6fvX4VKbE+CxhX9b57A7dm2+dB0niJmvsM6eyQm0iDQpdn+8d5wGtq1D092wb3N9Lm+Na+N0V48K5ZJ1GaQfTOiDi42bFYko2beAb4YkR8tcnhmA2Ix1iYmQ0hSaNqFB+d3d84dJGYDQ6PsTAzG1r/qnTtl2tJhxneAvwbMC0i/tjMwMzK4MTCzGxo3U46M+R40lTqi0jX+PhiM4MyK4vHWJiZmVlpPMbCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwuomaYqkkLR1P/UeknTx0ERlZq3E7Uj7c2JhZmaWI2k/SRdKuk/SCkl/k/QjSS9vdmytQBHR7BisRUgaAXQDq2M9O46kh4AbI2LKEIVmZi2iFdoRSbcCmwH/C9wPvAo4ClgB7BoRjw91TK1kg2YHYK0jIp4Hnm92HGbWulqkHTkW+ENE9FYKJP0W+D0pwfhiswJrBT4UYnWrPjaq5IuS5mfdhb+TtGON150qaZ1fJrWOtWbHVX8jaR9Jt0paKekOSftky9+TPV8labak3Qbr85pZ+VqhHYmImfmkolIGLAZ2GPhWaG9OLGwgTgO+AvwF+E/gb8A0YOMBrnc74DLg18BJwEuAX0v6IHAO8D/AKcC2wM8keT82a10t0Y5IGgOMAZ4aYFxtz4dCrBBJ/wAcD1wDHFI5Virpq8DnB7j67YE9I2JWts67gKnAD4F/iohHsvJngP8G9gZuHOB7mtkQa7F25GhgQ+CKAcbV9vxLz4p6O+lL9p2qAVjnlrDuuyqNQeaW7P6GSmNQVf6qEt7TzIZeS7QjkvYm9W78LCJuKCG2tubEworaKru/P18YEU8Czwxw3fkvPRHxbPbw0ap6lfKXDPD9zKw5hn07IumfgF8CdwL/PsCYOoITCxsKfZ1SNqKP8r5GjPdVrsbCMbMWNOTtiKRXksZ7PAu8IyKWrTdCA5xYWHEPZ/evzhdmx0yrM/9nsmWbVpVvhZl1smHbjkh6KSmpGAnsHxELB+N92pETCytqBtADfFpSPtM/ukbdB7P7vSsFkjYGPjJo0ZlZKxiW7Ui23muBfyT1VNzfz0ssx2eFWCER8aSkb5BO4/qNpGuB3YADWfd0rGmk450XSPo6qSvycOBJYMLQRW1mw8kwbkcuBd4IXAjsICk/d8XyiLiq5PdrK04sbCC+CKwCjgDeRhpdPZl06tgLIqJH0ruB75LOV3+cNOr7GeCiIYzXzIaf4diO7JrdH57d8h4Grir5/dqKrxViZmZmpfEYCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMytNw4mFpAMkvSX3/EhJt0m6TJKnVjazQty2mLWHIj0WXwfGAUjaGfgmaSKRbYCzywvNzDqM2xazNlBkHottgLuyx+8FfhMRn5f0OlIj0HayGeG2BDxPvA1XY4HHorXPH++4tgXcvtiw13DbUiSxeA4YnT1+O/Dj7PFisl8bbWhLYH6zgzDrxyuABc0OYgA6sW0Bty82/DXUthRJLP4AnC3pj6QpT/81K38N7fvlWAbw6KOPMm7cuu1bT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhJa/xdvJ7YtsJ72xd+Vxnh7NWaw2pYiicVRpClVDwU+GRGVLOZA4LcF1tcyxo0b12diMXr0aMaNG+eduQ7eXo3poO3VsW0L1G5fOuhvXwpvr8YM1vZqOLGIiEeAg2uUH1NKRGbWkdy2mLWHQhchk9QFbAdsTtWZJRExs4S4zKwDuW0xa30NJxaS3gxcBmwFqGpxACNKiMvMOozbFrP2UGQei+8DtwI7AZsBL8ndNisaiKQTJYWkc3NlG0k6X9LTkpZLulLS+KrXTZB0jaQVkp6Q9HVJG1TV2UfSHEmrJT0gaUrROK08f/nLX5gzZw6PPPJIs0Ox4WFQ2hZw+9Jp3LY0V5FDIa8GDo2IB8oKQtIbgP8Abq9adA5wEHAY8CxwHvALYK/sdSOAa4DHgT2Bl5NOUesBPp/V2Sar833gg8B+wI8kLYyIqWV9Bqvf/PlpgP/ee+/NypUr2WjUaO69524mTJjQ5MisyUpvW8DtSydx2zI8FOmxuIV0DLQUksYAlwIfB57JlW8CfAw4NiJuiIjZwEeBPbMuU4DJwGuBD0XEbRFxHfAl4EhJG2Z1jgDmRcRxEXF3RJwH/BzwgLAmefrppwHY7IBP89KDj2PVyhU89dRTTY7KhoFS2xZw+9Jp3LYMD0V6LL4DfFPSFsAdpOz9BRFR/augP+cD10TEDElfzJXvDnQDM3LrvkfSI8AewM3Z/R0RsSj3uqnA94AdgblZnRmsbSpwbl8BSRoJjMwVjYV0ak5PT8869StltZbZunp7ewEYs/kr6F4TrBg1it7eXm+/PvS3f7XRdiu7bYEWb1/ctjTGbUtjBqttKZJYXJndX5grC9Jgq4YGWEl6P/A64A01Fm8BPBcRS6rKF2XLKnUW1VhOHXXGSRoVEStrvPdJwCnVhdOmTWP06NE1qifTp0/vc5mt68wDs+7JQy5nwYIFLFjQypNGDr6+9q8VK1YMcSSDprS2BdqrfXHb0hi3LY0pu20peq2QAZP0SuBbwKSIWFXGOkt0Bmtf9GgsMH/y5Ml9TpA1ffp0Jk2a5ElZ6jB37lwWLlzICdc9wuo1waLLTmTmzJlMnDix2aENS/3tX0uXLm1CVIOilLYF2qd9cdvSGLctjRmstqXIBFkPF3qnde1OOld9TroGD5B+kewt6Shgf2BDSZtW/aoYTxpMRXb/xqr1js8tq9yPr1FnaR+/JoiI1cDqyvNKfN3d3ev9cve33JKurjS0Z/WaYNWaYOXKlXR1dXnb9aOv/atdtluJbQu0WfvitqU+bluKKbttKTJ4E0nbSvqOpBnZ7duStm1wNdcDOwO75m63kgZaVR73kEZZV953e2ACMCsrmgXsLGnz3HonAUt58SqJs/LryNWZhZkNKyW1LeD2xaxpikyQtT/wK+A24I9Z8V7AXyUdEhF1HQyMiGXAnVXr/jvwdETcmT2/gHRRosWkL/N3gFkRcXP2kmmkL/hPJB1POt55OnB+9qsA0mlgR0k6i3Tsdl/gfaTTzMxsmCirbQG3L2bNVGSMxdeAcyLixHyhpK8BZwJljjI6BuglDeoaSRpt/anKwoh4XtLBpFHas4C/A5cAJ+fqzJN0EOmc9c+SrpL47z7H3GzYGcq2Bdy+mA2KIonFDqSMvNqFwNEDCSYi9ql6vgo4Mrv19ZqHgXf0s94bgd0GEpuZDbpBa1vA7YvZUCkyxuJJ0jHKarsCTwwkGDPraG5bzNpAkR6LHwI/kPQq4E9Z2V7ACax9CpWZWSPctpi1gSKJxVeAZcBxpPOxAR4DTgW+XU5YZtaB3LaYtYEi81gEaaDSOZLGZmXLyg7MzDqL2xaz9lCkx+IF/tKb2WBw22LWuupKLCTNAfaLiGckzSXN219TRLyurODMrL25bTFrP/X2WFzNi1PQXs16vvxmZg1w22LWZupKLCLiy7nHpw5aNGbWUdy2mLWfhuexkPQ3SS+tUb6ppL+VE5aZdRq3LWbtocgEWVuTrhJYbSTwigFFY2adbGvctpi1vLrPCpH0ztzT/SU9m3s+gnSFv3llBWZmncFti1l7aeR006uy+yBdiCevB3iINLGNmVkjrsru3baYtYG6E4uI6AKQNA94Q0Q8NWhRmVnHcNti1l6KzLy5zWAEYmadzW2LWXuod4KszwA/iIhV2eM+RYTn9DezurhtMWs/9fZYHANcCqzKHvcl8MWCzKx+blvM2ky9E2RtU+uxmdlAuG0xaz9FJsg6WdLoGuWjJJ1cTlhm1mnctpi1hyITZJ0CjKlRPjpbZmZWhNsWszZQJLEQtS8UNBFYPLBwzKyDuW0xawONzLz5DOlLH8B9kvINwAjSL43vlxuembU7ty1m7aWReSyOJv2iuJDULZmfdvc54KGImFVeaGbWIY7GbYtZ26j7UEhEXBIRFwNvA76bPa/cLi/yxZf0SUm3S1qa3WZJOjC3fCNJ50t6WtJySVdKGl+1jgmSrpG0QtITkr4uaYOqOvtImiNptaQHJE1pNFYzGxxuW8zaS8NjLCLi98BWkk6XdLmkzQEkHShpxwZXNx84EdgdeD1wA3B1bj3nAIcAhwFvBbYEflF5saQRwDXAhsCewEeAKcBpuTrbZHV+B+wKnAv8SNL+DcZqZoPIbYtZeyhyuulbgTuANwHv4cVR3BOBLzeyroj4dURcGxH3R8R9EfEFYDnwZkmbAB8Djo2IGyJiNvBRYE9Jb85WMRl4LfChiLgtIq4DvgQcKWnDrM4RwLyIOC4i7o6I84Cfs/7JeMxsiLltMWsPDV8rBPga8MWIOFvSslz5DcBRRQPJfiEcBmwMzCL90ugGZlTqRMQ9kh4B9gBuzu7viIhFuVVNBb4H7AjMzerMYG1TSb8u+oplJDAyVzQWoKenh56ennXqV8pqLbN19fb2AjByAwEwatQoent7vf360N/+1Ubbre3bliyeutsXty2NcdvSmMFqW4okFjsDH6hR/gTwskZXJmln0pd9I9IvindHxF2SdgWei4glVS9ZBGyRPd4ie169nDrqjJM0KiJW1gjrJGqcNz9t2jRGj15n/p4XTJ8+vc9ltq4zD5yQHhxyOQsWLGDBggXNDWiY62v/WrFixRBHMmg6oW2BAu2L25bGuG1pTNltS5HEYgnwcmBeVfluQJG/3r2k45ObAIcCl2Rdos10BnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoltD+bQs00L64bWmM25bGDFbbUiSx+ClwpqTDSOedd0naC/gG8ONGVxYRzwEPZE9nS3oD8FngCmBDSZtW/bIYDzyePX4ceGPVKsfnllXux9eos7SvXxQRsRpYXXkupW617u7u9X65+1tuSVdXGtqzek2wak2wcuVKurq6vO360df+1Ubbre3bliyuhtsXty31cdtSTNltS5GZNz8P3AM8ShpcdRcwE/gTcHqhKNaNaSQwG+gB9qsskLQ9MIHUvUl2v3Nl9HhmErA0i6tSZz/WNim3DjMbHty2mLWBhnsssl8BH5f0FWAnUgMwNyLub3Rdks4ArgMeIXUHfgDYB9g/Ip6VdAFwtqTFpC/0d4BZEXFztopppC/5TyQdTzrmeTpwfvarANKMfUdJOos0Ac++wPuAgxqN18wGj9sWs/ZQ5FAIABHxiKRHs8e15vevx+akLs6Xk2bbu530xa+MJDkG6AWuJP3SmAp8KhfD85IOJo3UngX8HbgEODlXZ56kg0jnrX+WdH77v0fE1IIxm9kgctti1toKJRaSPkb6Yr46e34/cG5E/KiR9UTEx/pZvgo4Mrv1Vedh4B39rOdG0gAwMxvG3LaYtb6GEwtJpwHHknUdZsV7AOdImhARJ/f5YjOzPrhtMWsPRXosPgl8PCIuz5X9StLtpAbBX34zK8Jti1kbKHJWSDdwa43y2QxgzIaZdTy3LWZtoEhi8RPSL4tqnwAuHVg4ZtbB3LaYtYGivwI+JmkyaU59SBcNmgD8WNILM8pFxLEDjM/MOovbFrMWVySx2AmYkz3eNrt/KrvtlKtX9DQxM+tMblvM2kCRCbLeNhiBmFlnc9ti1h6KjLEAQNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGtJM9sBXCDpm2UGZ2adw22LWXso0mNxDukCPhOA/MXarwAOKCMoM+tIblvM2kCRwZuTSXPuz6/qobwf2KqUqMysE7ltMWsDRXosNmbtXxMVmwGra5SbmdXDbYtZGyiSWNwEfDj3PCR1AccDvyslKjPrRG5bzNpAkUMhxwPXS3o9sCFwFrAj6VfFXiXGZmadxW2LWRtouMciIu4EXgP8Abia1H35C2C3iHiw3PDMrFO4bTFrDw31WEjqBn4LHBERXx2ckMys07htMWsfDfVYREQPsMsgxWJmHcpti1n7KDJ483+Aj5UdiJl1PLctZm2gyODNDYDDJb0dmA38Pb/QVx00s4Lctpi1gYFe3fQ1Vct81UEzK8pti1kb8NVNzWxYcNti1h4KX93UzMzMrFpTEwtJJ0n6s6Rlkp6QdJWk7avqbCTpfElPS1ou6UpJ46vqTJB0jaQV2Xq+LmmDqjr7SJojabWkByRNGYKPaGZN4LbFrHma3WPxVuB84M3AJKAbmCZp41ydc4BDgMOy+luSJs0BQNII4BrSTH17Ah8BpgCn5epsk9X5HbArcC7wI0n7D8qnMrNmc9ti1iRFBm+WJiLWuhRyluk/AewOzJS0Cen0sw9ExA1ZnY8Cd0t6c0TcTLoi4muBt0fEIuA2SV8CzpR0akQ8BxwBzIuI47K3ulvSW4BjgKmD/kHNbEi5bTFrnroSC0lzgP0i4hlJJwPfiIhaVyEcqE2y+8XZ/e6kXxozKhUi4h5JjwB7ADdn93dkX/yKqcD3SNcZmJvVmcHappJ+XaxD0khgZK5oLEBPTw89PT3r1K+U1Vpm6+rt7QVg5Abp0tijRo2it7fX268P/e1frbzdOq1tgcbaF7ctjXHb0pjBalvq7bHYgTRv/zPAKcD3qX1548KyqxieC/wxu2YAwBbAcxGxpKr6omxZpc6iGsupo844SaMiYmXVspNIn3Mt06ZNY/To0X1+hunTp/e5zNZ15oET0oNDLmfBggUsWLCguQENc33tXytWDMb/4SHTaW0LFGhf3LY0xm1LY8puW+pNLG4DLpL0B0DA5yQtr1UxIk6rVV6H80nnsb+l4OvLdAZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRVmtvorLYFGmhf3LY0xm1LYwarbak3sZgCfBk4mDRRzYHAmhr1gtzApnpJOi9b994RMT+36HFgQ0mbVv2yGJ8tq9R5Y9Uqx+eWVe7H16iztNYviohYDazOxQdAd3f3er/c/S23pKsrjRlevSZYtSZYuXIlXV1d3nb96Gv/avHtNoUOalugWPvitqU+bluKKbttqSuxiIh7gfcDSOolHRN9otA75ih9o74DvBvYJyLmVVWZDfQA+wFXZq/ZHpgAzMrqzAK+IGnzXEyTgKXAXbk676ha96TcOsysCdy2mLWfIjNvlnmK6vnAB4B/AZZJqhy3fDYiVkbEs5IuAM6WtJj0hf4OMCsbtQ0wjfQl/4mk40nHPE8Hzs9+GUA6bnuUpLOAC4F9gfcBB5X4WcxsANy2mLWHQqebStoWOJo08ArSl+9bEfFgg6v6ZHZ/Y1X5R4GLs8fHAL2kXxUjSSOuP1WpGBHPSzqYNFJ7FunCRZcAJ+fqzJN0EOm89c8C84F/jwifDmY2jLhtMWt9DScW2cQvvyINuvpjVrwX8FdJh0RE3cOXI0J11FkFHJnd+qrzMOt2R1bXuRHYrd7YzGxouW0xaw9Feiy+BpwTESfmCyV9DTgT8HlRZlaE2xazNlDkmOYOwAU1yi8kzVJnZlaE2xazNlAksXiSNCd+tV1JU+aamRXhtsWsDRQ5FPJD4AeSXgX8KSvbCziBtSd9MTNrhNsWszZQJLH4CrAMOI40gxzAY8CpwLfLCcvMOpDbFrM2UGQeiyCdWnWOpLFZ2bKyAzOzzuK2xaw9DOiy6f7Sm9lgcNti1rrKnOnOzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmncdti1n7aCixiIgeYJdBisXMOpTbFrP2UeRQyP8AHys7EDPreG5bzNpAkdNNNwAOl/R2YDbpUsIviIhjywjMzDqO2xazNlAksdgJmJM9fk3VshhYOGbWwdy2mLWBIjNvvm0wAjGzzua2xaw9FD7dVNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGuBl2eLLpD0zTKDM7PO4bbFrD0U6bE4B+gBJgArcuVXAAeUEZSZdSS3LWZtoMjgzcnA/hExv6qH8n5gq1KiMrNO5LbFrA0U6bHYmLV/TVRsBqweWDhm1sHctpi1gSKJxU3Ah3PPQ1IXcDzwu1KiMrNO5LbFrA0USSyOBz4h6TpgQ+As4E5gb+CERlYkaW9Jv5b0mKSQ9K6q5ZJ0mqSFklZKmlF9LQFJm0m6VNJSSUskXSBpTFWdXSTdJGmVpEclHV/gc5vZ4HLbYtYGGk4sIuJO0uQ1fwCuJnVf/gLYLSIebHB1GwN/AY7sY/nxwGeAI4A3kWbimyppo1ydS4EdgUnAwaRG6AeVhZLGAdOAh4Hdgf8ETpX0iQZjNbNB5LbFrD0UGbxJRDwLfHWgbx4R1wHXAVSfqp6du340cHpEXJ2VfRhYBLwL+KmkHUijxd8QEbdmdT4NXCvpcxHxGPBB0q+fwyPiOeCvknYFjiXXSJhZ87ltMWt9hRILSS8hXSxoh6zoLuCiiFhcVmDANsAWwIxKQUQ8K+kWYA/gp9n9ksoXPzMD6CX9CvllVmdm9sWvmAqcIOklEfFM9RtLGgmMzBWNBejp6aGnp2edQCtltZbZunp7ewEYuUFq8EeNGkVvb6+3Xx/627/aabu1e9sCjbUvblsa47alMYPVtjScWEjaG/g18CxQ+dJ9BjhZ0iERMbNQJOvaIrtfVFW+KLdsC+CJ/MKIWCNpcVWdeTXWUVlW68t/EnBKdeG0adMYPXp0nwFPnz69z2W2rjMPnJAeHHI5CxYsYMGCBc0NaJjra/9asaLWiRStp0PaFijQvrhtaYzblsaU3bYU6bE4nzRhzScj4nkASSOA72bLdi4UyfByBnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoOqFtgQbaF7ctjXHb0pjBaluKJBbbAYdWvvgAEfG8pLNZ+1SxgXo8ux8PLMyVjwduy9XZPP8iSRuQznt/PFdnfNW6x+eWrSMiVpM7b75yjLa7u3u9X+7+llvS1ZXGDK9eE6xaE6xcuZKuri5vu370tX+10XZr+7YFirUvblvq47almLLbliKnm87hxeOfeTuQRmGXZR7py7lfpSAbhf0mYFZWNAvYVNLuudftS/pct+Tq7C0pv4UmAff2dQzUzJrCbYtZG6irx0LSLrmn3wa+JWk74Oas7M2k07pObOTNs3PCt8sVbZONql4cEY9IOhf4oqT7SY3BV4DHgKsAIuJuSb8FfijpCKAbOA/4aTZqG+Ay0vHMCySdCewEfBY4ppFYzax8blvM2k+9h0JuAwLIn7d1Vo16l5GOkdbr9aw9o17luOMlwJTsPTYmnbq1Ken89gMiYlXuNR8kfeGvJ43YvpI04At4YbT3ZNIx2tnAU8BpEeHTwcya7zbctpi1lXoTi20G480j4kbWblCqlwdwcnbrq85i4AP9vM/twD8Xi9LMBpHbFrM2U1diEREPD3YgZtZ53LaYtZ+iE2RtCbyFNGp6rQGgEfHtEuIysw7ktsWs9RWZIGsK8N/Ac8DTpOOjFUEagGVm1hC3LWbtoUiPxVeA04AzIqK35HjMrHO5bTFrA0XmsRhNOuXKX3wzK5PbFrM2UCSxuAA4rOxAzKzjuW0xawNFDoWcBPxG0gHAHcBalz+LiGPLCMzMOo7bFrM2UDSx2B+4N3tePcDKzKwIty1mbaBIYnEccHhEXFxyLGbW2dy2mLWBImMsVgN/LDsQM+t4blvM2kCRxOJbwKfLDsTMOp7bFrM2UORQyBuBfSUdDPyVdQdYvaeMwMys47htMWsDRRKLJcAvSo7DzGwJblvMWl7DiUVEfHQwAjGzzua2xaw9FBljYWZmZlZTkYuQzWM955RHxKsGFJGZdSS3LWbtocgYi3OrnncDuwEHAF8faEBm1rHOrXrutsWsBRUZY/GtWuWSjgReP+CIzKwjuW0xaw9ljrG4DnhvieszMwO3LWYtpczE4lBgcYnrMzMDty1mLaXI4M25rD3ASsAWwD8AnyopLjPrMG5bzNpDkcGbV1U97wWeBG6MiHsGHJGZdaqrqp67bTFrQUUGb355MAIZCtkgsP8k/Qr6C/DpiPi/5kZlZuC2xaxddMwEWZL+FTgb+DLwOtKXf6qkzZsamJm1NLctZmurO7GQ1Cvp+X5uawYz2AE6FvhhRFwUEXcBRwArgMObG5ZZZ3PbYtZeGjkU8u71LNsD+AzDtAdE0obA7sAZlbKI6JU0gxR7df2RwMhc0ViAxYsX09PTU12dnp4eVqxYwU033URXVxddXV309va+cA8MadlQv1+jcd17772MGTMGLX4Y9TzPRhttxOzZs1m+fHlHbJtGX7NmzRpWrFjB008/TXd39zr737Jly9YpazEd07Zkr6m7fRmqtqWs9TQ7hsFoW9pl2wxp2xIRhW/A9sAvgTXAJcBWA1nfYN2ALUmjzfeoKj8LuKVG/VOz+r751kq3f2z2d63E72xbti1uX3xr0VtDbUuRs0KQtCXpeOJHgKnArhFxZ5F1DVNnkI6Z5m1G3+fSjwXmA68AWv7n4xDw9mpMPdtrLPDYkEU0SDqgbYHG2hd/Vxrj7dWYQWlbGkosJG0CfB74NHAbsF9E3NTIOprkKeB5YHxV+Xjg8erKEbEaWF1VvLSvlUuqPFwWEX3Ws8TbqzF1bq+W3o6d0rZAY+2LvyuN8fZqzGC1LY0M3jwe+BtwMPBvEbFni3zxiYjngNnAfpUySV3Z81nNisvM3LaYtRtlx/z6ryj1AiuBGaQMvaaIeE85oZUrOyXsEuA/gP8DjgbeB/xTRCwa4LrHAc8CmzhL7p+3V2PafXu5bVnvutv6b182b6/GDNb2auRQyI9JgzhaUkRcIekfgNNIk9jcBhww0C9+ZjXpuHB196bV5u3VmHbfXm5b+tbuf/uyeXs1ZlC2V909FmZmZmb9GZbnhpuZmVlrcmJhZmZmpXFiYWZmZqVxYmFmZmalcWJRkKTNJF0qaamkJZIukDSmn9fcKCmqbt8fqpiHkqQjJT0kaZWkWyS9sZ/6h0m6J6t/h6R3DFWsw0Ej20vSlBr70aqhjNcGj9uW9XPb0phmtC1OLIq7FNgRmESa2Gdv4Ad1vO6HwMtzt+MHK8BmafQy0pL2BC4HLgB2A64CrpK005AE3GQFL7u9lLX3o60GO04bMm5b+uC2pTFNa1uafRGfVrwBO5DOu399ruwAoBfYcj2vuxE4t9nxD8H2uQU4L/e8C1gAnNhH/SuA31SV3Qx8v9mfZZhurynAkmbH7dug7AtuW9a/fdy2DO72KqVtcY9FMXuQNv6tubIZpC//m/p57QclPSXpTklnSBo9aFE2Qe4y0jMqZRHRmz2veRnprHxGVdnU9dRvGwW3F8AYSQ9LelTS1ZJ2HORQbWi4bemD25bGNLNtKXR1U2ML4Il8QUSskbQ4W9aXy4CHSVeK2wU4k3R56GE5VXFBLwNGANWzDi4C/qmP12zRR/31bct2UWR73QscDtwObAJ8DviTpB0jYv5gBWpDwm1L39y2NKZpbYsTixxJXwNO6KfaDkXXHxH546R3SFoIXC9p24h4sOh6rbNExCxyF7iS9CfgbtK1Kr7UrLisb25brBWU1bY4sVjbN4GL+6nzN9LlkNca/CJpA2Az+rhUch9uye63A9rly9/wZaSz8kbqt5Mi22stEdEjaS5pP7LhyW3LwLltaUzT2haPsciJiCcj4p5+bs+RMrpNJe2ee/m+pO15S82V17Zrdr+wnE/QfFHsMtKz8vUzk9ZTv20U3F5rkTQC2Jk22o/ajduWgXPb0pimti3NHrXaqjfgOmAO8EZgL+A+4LLc8n8E7gHemD3fltSVtDuwNfBO0i+J3zf7swzCtvlXYBXwEVL37n8DzwDjs+U/Bs7I1d8T6AGOIx37OxV4Dtip2Z9lmG6vk4HJwKtIp5BdTrrs+Gub/Vl8K2V/cNvS97Zx2zK426uUtqXpH7xVb6SuycuAZaTr2V8IjMkt35p02tg+2fNXAr8Hns7+0PcDZwHjmv1ZBmn7HEUaTLaa9EvrTbllNwIXV9U/jDRwaDVwJ/COZn+G4bq9gHNydR8HrgF2a/Zn8K20fcFty/q3j9uWQdpeZbUtvmy6mZmZlcZjLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4sbMhJekjS0c2Ow8zai9uW4cGJhZmZmZXGiYWZmZmVxomFNUTSJyQ9ll1+N19+taQLJW2bPV4kabmkP0t6+3rWt7WkkLRrrmzTrGyfXNlOkq7L1rlI0k8kvWwQPqKZNYHblvbhxMIa9b/AS4G3VQokbQYcAFwKjAGuBfYDdgN+C/xa0oSibyhpU+AGYC7w+uy9xgM/K7pOMxt23La0iQ2aHYC1loh4RtJ1wAeA67PiQ4GngN9FRC/wl9xLviTp3cA7gfMKvu1RwNyI+HylQNLhwKOSXhMR9xVcr5kNE25b2od7LKyIS4H3ShqZPf8g8NOI6JU0RtI3JN0taYmk5cAOQOFfFcBE4G1ZV+XybJ33ZMu2HcB6zWx4cdvSBtxjYUX8GhBwkKQ/A/8MHJMt+wYwCfgc8ACwEvg5sGEf6+rN7pUr666qMyZ7zxNqvH5ho8Gb2bDltqUNOLGwhkXEKkm/IP2a2A64NyLmZIv3Ai6OiF8CSBoDbL2e1T2Z3b+cdJwTYNeqOnOA9wIPRcSaAX8AMxuW3La0Bx8KsaIuBQ4CDs8eV9wPvEfSrpImApexnv0sIlYCNwMnStpB0luB06uqnQ9sBlwu6Q3Z6PD9JV0kaUSJn8nMms9tS4tzYmFF3QAsBrYnfcErjgWeAf5E6mKcSvpVsD6Hk3rPZgPnAl/ML4yIx0i/VkYA04A7snpLeLG708zag9uWFqeIaHYMZmZm1ibcY2FmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYYNK0hRJIWnrZsdiZmaDz4mFmZmZlUYR0ewYrI1JGgF0A6vDO5uZWdtzYmFmZmal8aEQG1T5MRaSLpH0lKTuGvWmSbq3GTGamVl5nFjYUPoJ8FJg/3yhpC2AfYH/aUZQZmZWHicWNpRuAOYDH6oq/zfSvujEwsysxTmxsCETEb3ApcA7JY3NLfog8KeImNecyMzMrCxOLGyo/RgYBbwbQNL2wO6kwyRmZtbinFjYkIqIu4DZvHg45EPAc8DPmhaUmZmVxomFNcOPgX0lvRz4AHBNRDzT5JjMzKwETiysGS4HAvgW8Co8aNPMrG04sbAhFxFPAr8FDgOWANc0NSAzMyuNEwtrlh9n9z+LiNVNjcTMzErjxMIGVURcHBGKiIeqFj2X3fswiJlZG/G1QqwpJP0G2AHYzhcnMzNrHxs0OwDrLJLeD+wCHAR81kmFmVl7cY+FDSlJASwHrgCOiIg1TQ7JzMxK1HBiIekAYHlE/CF7fiTwceAu4EjPR2BmZta5igze/DowDkDSzsA3gWuBbYCzywvNzMzMWk2RMRbbkHonAN4L/CYiPi/pdaQEw8zMzDpUkcTiOWB09vjtvDgfwWKynox2I0nAlsCyZsdi1oexwGMeDGtmzVYksfgDcLakPwJvBP41K38NML+swIaZLWnfz2bt4xXAgmYHYWadrUhicRTwXeBQ4JMRUWnIDiRN09yOlgE8+uijjBu3bqdMT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhLco2Zmw0DDiUVEPAIcXKP8mFIiGsbGjRvXZ2IxevRoxo0b53+UdfD2aoy3l5m1kkITZEnqArYDNqfqzJKImFlCXGZmZtaCGk4sJL0ZuAzYClDV4gBGlBCXmZmZtaAi81h8H7gV2AnYDHhJ7rZZ0UAknSgpJJ2bK9tI0vmSnpa0XNKVksZXvW6CpGskrZD0hKSvS9qgqs4+kuZIWi3pAUlTisZp5fnLX/7CnDlzeOSRR5odipmZlaTIoZBXA4dGxANlBSHpDcB/ALdXLTqHdE2Jw4BngfOAXwB7Za8bAVwDPA7sCbycdPprD/D5rM42WZ3vAx8E9gN+JGlhREwt6zNY/ebPTyfY7L333qxcuZKNRo3m3nvuZsKECU2OzMzMBqpIj8UtpPEVpZA0BriUNC34M7nyTYCPAcdGxA0RMRv4KLBndjgGYDLwWuBDEXFbRFwHfAk4UtKGWZ0jgHkRcVxE3B0R5wE/B9p+sOlw9fTTTwOw2QGf5qUHH8eqlSt46qmnmhyVmZmVoUhi8R3gm5KmSNpd0i75W4H1nQ9cExEzqsp3B7qBF8oj4h7gEWCPrGgP4I6IWJR73VTSRF075upUr3tqbh3WJN2b/SPdL31ls8MwM7MSFTkUcmV2f2GuLEgDORsavJldQvt1wBtqLN4CeC4illSVL8qWVeosqrGcOuqMkzQqIlbWiGskMDJXNBbSaX89PT3rBFopq7XM1tXb2wvAyA3S2N9Ro0bR29vr7deH/vYvbzczG06KXitkwCS9EvgWMCkiVpWxzhKdBJxSXTht2jRGjx5do3oyffr0wYyp7Zx5YDam4pDLWbBgAQsWeNLI9elr/1qxYsUQR2Jm1rciE2Q9XNJ7706aB2NOuhQHkHo79pZ0FLA/sKGkTat6LcaTBmuS3b+xar3jc8sq9+Nr1Flaq7cicwZrX6l1LDB/8uTJfU6QNX36dCZNmuQJjOowd+5cFi5cyAnXPcLqNcGiy05k5syZTJw4sdmhDUv97V9Lly5tQlRmZrUVnSBrW+BoYIes6C7gWxHxYAOruR7YuarsIuAe4EzgUdLZHfuRHX6RtD0wAZiV1Z8FfEHS5hHxRFY2CVjKi1dgnQW8o+p9JuXWsY6IWA2srjyvJD7d3d3rTRz6W25JV1ca2rN6TbBqTbBy5Uq6urq87frR1/7l7WZmw0mRCbL2B34F3Ab8MSveC/irpEMioq7jARGxDLizat1/B56OiDuz5xeQLni2mJQsfAeYFRE3Zy+ZRkogfiLpeNJ4itOB87PkANJppkdJOos0LmRf4H2k01jNzMysREV6LL4GnBMRJ+YLJX2N1NNQ5kCDY4BeUo/FSNLZHJ+qLIyI5yUdDHyP1APxd+AS4ORcnXmSDiLNifFZ0lVK/91zWJiZmZWvSGKxA+kXf7ULSYdHCouIfaqerwKOzG59veZh1j3UUV3nRmC3gcRmZmZm/Ssyj8WTwK41yncFnqhRbmZmZh2iSI/FD4EfSHoV8KesbC/gBNY+k8LMzMw6TJHE4ivAMuA40mmZAI8BpwLfLicsMzMza0VF5rEI0kDIcySNzcqWlR2YmZmZtZ5C81hUOKEwMzOzvLoSC0lzgP0i4hlJc0nXBKkpIl5XVnBmZmbWWurtsbiaF2eivJr1JBZmZmbWuepKLCLiy7nHpw5aNGZmZtbSGp7HQtLfJL20Rvmmkv5WTlhmZmbWiopMkLU16Sqk1UYCrxhQNGZmZtbS6j4rRNI7c0/3l/Rs7vkI0lVI55UVmJmZmbWeRk43vSq7D9KFvvJ6gIdIk2aZmZlZh6o7sYiILgBJ84A3RMRTgxaVmZmZtaQiM29uMxiBmJmZWeurd4KszwA/iIhV2eM+RYSvF2JmZtah6u2xOAa4FFiVPe5L4AuRmZmZdax6J8japtZjMzMzs7wiE2SdLGl0jfJRkk4uJywzMzNrRUUmyDoFGFOjfHS2zMzMzDpUkcRC1L4I2URg8cDCMTMzs1bWyMybz5ASigDuk5RPLkaQejG+X254ZmZm1koamcfiaFJvxYWkQx75Kb2fAx6KiFnlhWZmZmatpu5DIRFxSURcDLwN+G72vHK7vEhSIemTkm6XtDS7zZJ0YG75RpLOl/S0pOWSrpQ0vmodEyRdI2mFpCckfV3SBlV19pE0R9JqSQ9ImtJorGZmZta/hsdYRMTvga0knS7pckmbA0g6UNKODa5uPnAisDvweuAG4Orces4BDgEOA94KbAn8ovJiSSOAa4ANgT2BjwBTgNNydbbJ6vwO2BU4F/iRpP0bjNXMzMz6UeR007cCdwBvAt7Di2eITAS+3Mi6IuLXEXFtRNwfEfdFxBeA5cCbJW0CfAw4NiJuiIjZwEeBPSW9OVvFZOC1wIci4raIuA74EnCkpA2zOkcA8yLiuIi4OyLOA37O+if6MjMzswKKnBXyNeCLETGJNLai4gbgzbVf0j9JIyS9H9gYmEXqxegGZlTqRMQ9wCPAHlnRHsAdEbEot6qpwDhgx1ydGaxtam4dZmZmVpKGL0IG7Ax8oEb5E8DLGl2ZpJ1JicRGpN6Kd0fEXZJ2BZ6LiCVVL1kEbJE93iJ7Xr2cOuqMkzQqIlbWiGkkMDJXNBagp6eHnp6edT5DpazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpwUSSyWAC8H5lWV7wYsKLC+e0ljHzYBDgUuyQ63NNNJ1Jjsa9q0aYwevc6koy+YPn36YMbUds48cEJ6cMjlLFiwgAULiuw+naOv/WvFihVDHImZWd+KJBY/Bc6UdBhpTosuSXsB3wB+3OjKIuI54IHs6WxJbwA+C1wBbChp06pei/HA49njx4E3Vq1yfG5Z5X58jTpLa/VWZM4Azs49HwvMnzx5MuPGjVunck9PD9OnT2fSpEl0d3f3sUqrmDt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7PaiiQWnwfOBx4lTYx1V3Z/GXB6CTF1kQ5DzAZ6gP2AKwEkbQ9MIB06Ibv/gqTNI+KJrGwSsDSLq1LnHVXvMSm3jnVExGpgdeW5lLrsu7u715s49Lfckq6uNLRn9Zpg1Zpg5cqVdHV1edv1o6/9y9vNzIaThhOLrIfh45K+AuxEOitkbkTc3+i6JJ0BXEcakDmWNHZjH2D/iHhW0gXA2ZIWk5KF7wCzIuLmbBXTSAnETyQdTxpPcTpwfpYcQJoN9ChJZ5Em99oXeB9wUKPxmpmZ2foV6bEAICIekfRo9rjWtUPqsTnp8MnLSTN53k5KKioHk48Bekk9FiNJZ3N8KhfD85IOBr5H6oH4O3AJcHKuzjxJB5HmxPgsae6Mf4+IqQVjNjMzsz4USiwkfYz0T//V2fP7gXMj4keNrCciPtbP8lXAkdmtrzoPs+6hjuo6N5IGl5qZmdkgajixkHQacCzZYYmseA/gHEkTIuLkPl9sZmZmba1Ij8UngY9HxOW5sl9Jup2UbDixMDMz61BFZt7sBm6tUT6bAYzZMDMzs9ZXJLH4CanXotongEsHFo6ZmZm1sqI9DB+TNBmonPb5JtL8Ej+W9MLEUhFx7ADjMzMzsxZSJLHYCZiTPd42u38qu+2Uq1f0FFQzMzNrUUUmyHrbYARiZmZmra/IGAsAJG0naX9Jo7LnKi8sMzMza0UNJxaSXirpeuA+4FrSrJkAF0j6ZpnBmZmZWWsp0mNxDuniYBOA/PWarwAOKCMoMzMza01FBm9OJl3PY37V0Y/7ga1KicrMzMxaUpEei41Zu6eiYjNylxo3MzOzzlMksbgJ+HDueUjqAo4HfldKVGZmZtaSihwKOR64XtLrgQ2Bs4AdST0We5UYm5mZmbWYhnssIuJO4DXAH4CrSYdGfgHsFhEPlhuemZmZtZKGeiwkdQO/BY6IiK8OTkhmZmbWqhrqsYiIHmCXQYrFzMzMWlyRwZv/A3ys7EDMzMys9RUZvLkBcLiktwOzgb/nF/qKpmZmZp1roFc3fU3VMl/R1MzMrIP56qZmZmZWmsJXNzUzMzOr1tTEQtJJkv4saZmkJyRdJWn7qjobSTpf0tOSlku6UtL4qjoTJF0jaUW2nq9L2qCqzj6S5khaLekBSVOG4COamZl1lGb3WLwVOB94MzAJ6AamSdo4V+cc4BDgsKz+lqQJuQCQNAK4hjQL6J7AR4ApwGm5OttkdX4H7AqcC/xI0v6D8qnMzMw6VJHBm6WJiLUus571IjwB7A7MlLQJ6dTWD0TEDVmdjwJ3S3pzRNxMutrqa4G3R8Qi4DZJXwLOlHRqRDwHHAHMi4jjsre6W9JbgGOAqYP+Qc3MzDpEXT0W2SGEl2SPT5Y0epDi2SS7X5zd707qxZhRqRAR9wCPAHtkRXsAd2RJRcVUYBzpGiaVOjNY29TcOszMzKwE9fZY7EC6JsgzwCnA96l96fTCsiukngv8MbseCcAWwHMRsaSq+qJsWaXOohrLqaPOOEmjImJlVSwjgZG5orEAPT099PT0rBN7pazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpzUm1jcBlwk6Q+AgM9JWl6rYkScVqu8DueT5sh4S8HXl+kkUgK1lmnTpjF6dN+dNdOnTx/MmNrOmQdOSA8OuZwFCxawYMGC5gY0zPW1f61YUWqOb2Y2IPUmFlOALwMHkybBOhBYU6NekBs0WS9J52Xr3jsi5ucWPQ5sKGnTql6L8dmySp03Vq1yfG5Z5X58jTpLq3srMmcAZ+eejwXmT548mXHjxq1Tuaenh+nTpzNp0iS6u7trfUTLmTt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7Pa6kosIuJe4P0AknqB/SLiiYG+uSQB3wHeDewTEfOqqswGeoD9gCuz12wPTABmZXVmAV+QtHkupknAUuCuXJ13VK17Um4da4mI1cDqXJwAdHd3rzdx6G+5JV1daWjP6jXBqjXBypUr6erq8rbrR1/7l7ebmQ0nRWbeLPMU1fOBDwD/AiyTVBkT8WxErIyIZyVdAJwtaTEpWfgOMCs7IwRgGimB+Imk40njKU4Hzs8SBEhjQo6SdBZwIbAv8D7goBI/i5mZWccrdLqppG2Bo0mDOiH9Y/9WRDzY4Ko+md3fWFX+UeDi7PExQC+px2Ik6WyOT1UqRsTzkg4Gvkfqgfg7cAlwcq7OPEkHkebE+CwwH/j3iPCppmZmZiVqOLHIJpX6FWlA5x+z4r2Av0o6JCLqHsEYEaqjzirgyOzWV52HWfdQR3WdG4Hd6o3NzMzMGlekx+JrwDkRcWK+UNLXgDMBnxphZmbWoYqMl9gBuKBG+YWkGTDNzMysQxVJLJ4kXW+j2q6k6bjNzMysQxU5FPJD4AeSXgX8KSvbCziBted+MDMzsw5TJLH4CrAMOI40kRTAY8CpwLfLCcvMzMxaUZF5LIJ02uY5ksZmZcvKDszMzMxaz4Aum+6EwszMzPLKnEXTzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmZmatq6HEIiJ6gF0GKRYzMzNrcUUOhfwP8LGyAzEzM7PWV+R00w2AwyW9HZhNukz5CyLi2DICMzMzs9ZTJLHYCZiTPX5N1bIYWDhmZmbWyorMvPm2wQjEzMzMWl/h000lbSdpf0mjsucqLywzMzNrRQ0nFpJeKul64D7gWuDl2aILJH2zzODMzMystRTpsTgH6AEmACty5VcAB5QRlJmZmbWmIoM3JwP7R8T8qqMf9wNblRKVmZmZtaQiPRYbs3ZPRcVmwOqBhWNmZmatrEhicRPw4dzzkNQFHA/8rpSozMzMrCUVORRyPHC9pNcDGwJnATuSeiz2KjE2MzMzazEN91hExJ2kibH+AFxNOjTyC2C3iHiwkXVJ2lvSryU9JikkvatquSSdJmmhpJWSZlRfAE3SZpIulbRU0hJJF0gaU1VnF0k3SVol6VFJxzf6uc3MzKx/RXosiIhnga+W8P4bA38BLiQlJ9WOBz4DfASYB3wFmCrptRGxKqtzKemU10lAN3AR8APgAwCSxgHTgBnAEcDOwIWSlkTED0r4DGZmZpYplFhIegnpQmQ7ZEV3ARdFxOJG1hMR1wHXZeusfg8BRwOnR8TVWdmHgUXAu4CfStqBdIrrGyLi1qzOp4FrJX0uIh4DPkg6ZHN4RDwH/FXSrsCxpATEzMzMStJwYiFpb+DXwLPArVnxZ4CTJR0SETNLim0bYAtSTwOQekok3QLsAfw0u19SSSoyM4Be4E3AL7M6M7OkomIqcIKkl0TEMzU+40hgZK5oLEBPTw89PT3rBFopq7XM1tXb2wvAyA1SMjlq1Ch6e3u9/frQ3/7l7WZmw0mRHovzSZNhfTIingeQNAL4brZs55Ji2yK7X1RVvii3bAvgifzCiFgjaXFVnXk11lFZtk5iAZwEnFJdOG3aNEaPHt1nwNOnT+9zma3rzAMnpAeHXM6CBQtYsGBBcwMa5vrav1asqHX2t5lZcxRJLLYDDq0kFQAR8byks1n7NNRWdgZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRlZlZbkcRiDmlsxb1V5TuQBmKW5fHsfjywMFc+HrgtV2fz/IskbUA69fXxXJ3xVesen1u2johYTW6yr8r4j+7u7vUmDv0tt6SrK52MtHpNsGpNsHLlSrq6urzt+tHX/uXtZmbDSV2JhaRdck+/DXxL0nbAzVnZm4EjgRNLjG0e6R//fmSJRHaGx5uA72V1ZgGbSto9ImZnZfuSTqO9JVfnq5K6I6JyMHoScG+t8RVmZmZWXL09FrcBAeRP3TirRr3LSOMv6pLNN7Fdrmib7IyNxRHxiKRzgS9Kup8XTzd9DLgKICLulvRb4IeSjiCdbnoe8NPsjJBKTKeQrr56JrAT8FngmHrjNDMzs/rUm1hsM0jv/3rWnga8Mq7hEmAKKXnZmHRa6KakSbkOyM1hAel00vOA60lng1xJOksFeOFMksmkgaWzgaeA0zyHhZmZWfnqSiwi4uHBePOIuJG1e0Gqlwdwcnbrq85issmw1lPnduCfi0VpZmZm9So6QdaWwFtIAyfXmhY8Ir5dQlxmZmbWgopMkDUF+G/gOeBp0tiLiiAN7jQzM7MOVKTH4ivAacAZEdFbcjxmZmbWwhq+uikwmnTWhZMKMzMzW0uRxOIC4LCyAzEzM7PWV+RQyEnAbyQdANwBrHUFpIg4tozAzMzMrPUUTSz258UpvasHb5qZmVmHKpJYHAccHhEXlxyLmZmZtbgiYyxWA38sOxAzMzNrfUUSi28Bny47EDMzM2t9RQ6FvBHYV9LBwF9Zd/Dme8oIzMzMzFpPkcRiCfCLkuMwMzOzNtBwYhERHx2MQMzMzKz1FRljYWZmZlZTkYuQzWM981VExKsGFJGZmZm1rCJjLM6tet4N7AYcAHx9oAGZmZlZ6yoyxuJbtcolHQm8fsARmZmZWcsqc4zFdcB7S1yfmZmZtZgyE4tDgcUlrs/MzMxaTJHBm3NZe/CmgC2AfwA+VVJcZmZm1oKKDN68qup5L/AkcGNE3DPgiMzMzKxlFRm8+eXBCMTMzMxaX0dNkCXpSEkPSVol6RZJb2x2TGZmZu2k7sRCUq+k5/u5rRnMYAdC0r8CZwNfBl4H/AWYKmnzpgZmZmbWRho5FPLu9SzbA/gMw7sH5FjghxFxEYCkI4CDgMOBrzUzMDMzs3ZRd2IREVdXl0nanvRP+RDgUuDk8kIrj6QNgd2BMyplEdEraQYpKaquPxIYmSsaC7B48WJ6enqqq9PT08OKFSu46aab6Orqoquri97e3hfugSEtG+r3azSue++9lzFjxqDFD6Oe59loo42YPXs2y5cv74ht0+hr1qxZw4oVK3j66afp7u5eZ/9btmzZOmVmZs1S5KwQJG1JOqTwEWAqsGtE3FlmYCV7GTACWFRVvgj4pxr1TwJOqS7cZpttyo/MAPjEJz7R7BDawVhgabODMLPO1lBiIWkT4PPAp4HbgP0i4qZBiKvZziCNx8jbjL4nABsLzAdeAfjnY/+8vRpTz/YaCzw2ZBGZmfWh7sRC0vHACcDjwL/VOjQyjD0FPA+MryofT/o8a4mI1cDqquI+fwlKqjxcFhH+xdgPb6/G1Lm9vB3NbFhopMfia8BK4AHgI5I+UqtSRLynjMDKFBHPSZoN7Ec2wZekruz5eU0MzczMrK00klj8mLWn8m41ZwOXSLoV+D/gaGBj4KJmBmVmZtZOGjkrZMogxjHoIuIKSf8AnEa6tsltwAERUT2gs4jVpMGs1YdPrDZvr8Z4e5lZy1BEK3dCmJmZ2XAynCe0MjMzsxbjxMLMzMxK48TCzMzMSuPEwszMzErjxKIgSZtJulTSUklLJF0gaUw/r7lRUlTdvj9UMQ+lRi9RL+kwSfdk9e+Q9I6hinU4aGR7SZpSYz9aNZTxmpn1xYlFcZcCOwKTgIOBvYEf1PG6HwIvz92OH6wAm6XRS9RL2hO4HLgA2I00idlVknYakoCbrNHtlVnK2vvRVoMdp5lZPXy6aQGSdgDuAt4QEbdmZQcA1wKviIia12yQdCNwW0QcPUShNoWkW4A/R8RR2fMu4FHgOxGxziXqJV0BbBwRB+fKbiZtqyOGKOymKbC9pgDnRsSmQxmnmVk93GNRzB7AkkpSkZkB9AJv6ue1H5T0lKQ7JZ0hafSgRdkEuUvUz6iURURv9nydS9Rn9sjXz0xdT/22UXB7AYyR9LCkRyVdLWnHQQ7VzKwuhS6bbmwBPJEviIg1khZny/pyGfAw6SqUuwBnAtsDw+76KgPQ6CXqIW2zWvXXty3bRZHtdS9wOHA7sAnwOeBPknaMiPmDFaiZWT2cWORI+hrpCq7rs0PR9UdEfgzGHZIWAtdL2jYiHiy6XussETELmFV5LulPwN3AfwBfalZcZmbgxKLaN4GL+6nzN9Kl1tcaWCdpA2AzalyGfT1uye63A9olsWjoEvWZxxus306KbK+1RESPpLmk/cjMrKk8xiInIp6MiHv6uT1H+rW4qaTdcy/fl7Q9b6m58tp2ze4XlvMJmi/bPpVL1ANrXaJ+Vh8vm5Wvn5m0nvpto+D2WoukEcDOtNF+ZGatyz0WBUTE3ZJ+C/xQ0hFAN3Ae8NPKGSGS/hG4HvhwRPyfpG2BD5DOHHmaNMbiHGBmRNzejM8xiNZ7iXpJPwYWRMRJWf1vAb+XdBxwDfB+4PXAJ4Y47mZpaHtJOhm4GXgA2BT4T9Lppj8a6sDNzKo5sSjug6Rk4nrS2SBXAp/JLe8mDcysnPXxHPB2Xvyn8Wj2mtOHJtyhU8cl6ieQtlml/p8kfYC0Lf4LuB94V0TcOaSBN0mj2wt4CWk+lC2AZ0g9HntGxF1DFrSZWR88j4WZmZmVxmMszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLGzISXpI0tHNjsPMzMrnxMLMzMxK48TCzMzMSuPEwhoi6ROSHsuuwJkvv1rShZK2zR4vkrRc0p8lvX0969taUkjaNVe2aVa2T65sJ0nXZetcJOknkl42CB/RzMwGwImFNep/gZcCb6sUSNoMOAC4FBhDuoLrfsBuwG+BX0uaUPQNJW0K3ADMJV319ABgPPCzous0M7PB4aubWkMi4hlJ15EuAX99Vnwo8BTwu4joBf6Se8mXJL0beCfparBFHAXMjYjPVwokHQ48Kuk1EXFfwfWamVnJ3GNhRVwKvFfSyOz5B4GfRkSvpDGSviHpbklLJC0HdiBd+ruoicDbssMgy7N13pMt23YA6zUzs5K5x8KK+DUg4CBJfwb+GTgmW/YNYBLwOeABYCXwc2DDPtbVm90rV9ZdVWdM9p4n1Hj9wkaDNzOzwePEwhoWEask/YLUU7EdcG9EzMkW7wVcHBG/BJA0Bth6Pat7Mrt/OWkMBcCuVXXmAO8FHoqINQP+AGZmNmh8KMSKuhQ4CDg8e1xxP/AeSbtKmghcxnr2s4hYCdwMnChpB0lvBU6vqnY+sBlwuaQ3ZGee7C/pIkkjSvxMZmY2QE4srKgbgMXA9qTkoeJY4BngT6TDF1NJPQ7rczip92w2cC7wxfzCiHiM1BMyApgG3JHVW8KLh1LMzGwYUEQ0OwYzMzNrE+6xMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0vx/Ro5EHfQdraUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPTElEQVR4nO3deZxcVZ338c+3Q5N0gABBWZVFQAY3QFBBHBRZAm6jiOITZxTBGUTUAfQBRWXTEdzCIqiDDyAoERzRKCqCbAMoxrDviLIbtpCEBNNJOvTv+ePcgptKdXfV7VtdXVXf9+t1X1117qlzf3Xr1ulf3eVcRQRmZmZmZeppdQBmZmbWeZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGDYSiQdL2lMhneVdI2ka3LP3yYpJO0/Rsv/oaSHxmJZVcvdPHufB471sruFpNUkfUPSo5IGJc1qdUztLvf9fFurY7H24ASjg0k6MOsQKtNSSXMlXSbpM5LWKmk5G2eJyfZltFem8RybNdVBwP8FfgZ8FDilteGYdZ/VWh2AjYljgQeBXmBD4G3AqcCRkt4TEbfn6n4VOLnB9jcGjgMeAm5t4HV7N7icIoaL7d9pTZL9MNAHDLRg2d3i7cDfI+KIVgdi1q2cYHSHSyPixtzzkyS9Hfg18CtJ20ZEP0BErABWNDMYSZMjYklELG/mckYSES35Bx/pDoNLW7Hs0ZA0CVgeEYOtjqUO6wMLy2pMUg+wekS03edm1io+RNKlIuIq4CvAZsC/VsprnYMhaS9J10taKOk5SfdJ+lo2723AnKzqubnDMQdm86+RdKekHSVdK2kJ8LXcvGtqhDdB0tckPSHpH5J+JenlVTE9JOmH1S/Mt1lHbKucgyFpDUnfzo7dL8ve6+ckqapeSDpD0nuz97dM0l2S9qnxfqpjXOUcjCyW5yRtImlW9vhpSd+SNKGONh+S9GtJe0u6NTscdrek/arqTc3avCNbxiJJl0rarqpe5Xj7hyR9VdLfgSXAlAJtfFDScZL+LmmxpJ9JWlvSREmnSnoqa+dcSROr2hhy2xtu3QK7A6/OfeZvy+Y3+vl+WNJdwDJg2M9W0r6S/jd7j4skzZE0varOByTdJKlf0jxJP5a0SW7+57Jlb1aj/ZMkLZe07nBxZHV3ytr5aI1507J578qebybpu9m66Jf0jKT/kbR5HcsZ8XuYK5so6QRJf83W/aNK58lMrH69dQbvwehuPyL9s98b+EGtCpJeTdrTcTvpUMsyYCtg16zKPVn5icBZwHVZ+R9zzawHXApcCPwYeHKEuL4IBPB10i/Rw4ErJG1f2dNSp3pie0H2T+ZXpH9OZ5MOqUwDvglsAlTvbn8LsB/wXWAx8BngYkmbRsQzDcRZMQG4DJgNfA7YE/gs8Dfge3W8fmvgIuD7wHnAx4D/kbRPRPw+q/MK4L3A/5AOm20AHAL8r6RXRcTcqja/DCwHvgVMzB6/qsE2vgD0kw69bQV8mnR4aBBYFzge2Bk4MGvvRKhr26vlaeDfSNvQmtmyAe4p8Pm+HfggcAYwj3SYrSalZPEc4C7gJNLekx1IScnMXJ1zSUnvF0jr7T+BXSXtEBELgZ8C38iW+82qxXwQuDwiFgzz/gGIiBslPZC95ryq2QcAC0jbGsAbgDeTvp+PAZsDhwLXZJ/nkpGWNxKlPUC/In1nziJ9N19LWuevJG1P1mkiwlOHTqQOO4CdhqmzELg59/x4sr342fPDszZeMkwbO2V1Dqwx75ps3iFDzLsm9/xtWd3HgLVy5R/Iyj+TK3sI+GEdbQ4X2w+Bh3LP/yWr+8Wqev9D+me4Za4sSP/w8mWvy8o/NcLnsnl1TFksAXy5qu7NwI11fNYPZa/fL1c2BZhb9flOBHpqxLM0v+zcZ/E3oK+qfqNt3AH05spnZuvzt1Vt/LHq8xhx2xtmfVwD3FlV1ujn+zzwqjqWtTawCPgTMKlqnrK/vaTE+o58HeCd2bJOqFoPN1a184as3r81sA6+RkoI182VrU5KLs7OlfXVeO3O1cvLfZ5vK/A9/Ndsfb6lqt4hWZtvbvQz9jT+Jx8iseeA4a4mWZj9/ZfsV0gRy0i/3Op1fkQszj3/GfA48I6Cy6/XO0id4OlV5d8GBOxbVX5FRPyt8iTSybKLSHsJivp+1fPrGmhvLvCLXDyLgPOBHSRtmJUti+wcCkkTJK1H2gbuA15fo83zomqvUYE2zo+Vz3eZTVqf51TVmw28XFJlz+rC7O9otr28Rj/f/42Iu+tody/Sd+jkqDpHIyIqhxt3Iu2N+26+TkT8BriXlGhUXATsKGnLXNkBpO/RL+uIJ99OL2kvW8XewDrZvEoML3y+knqzz/OvpPVf6/Ms4gOkvRb3SnpJZQKuyubvXtJybBxxgmFrknbvD+Ui4A/A/wOelHRhdky9kW3n79HYCZ33559knfRfSb+Sm2kzYG5VcgOpY6zMz3ukRhsLSLv9i1gaEU+Por2/5v6hVfwl+7s5pF3Vko6QdD/pH9Y80mGF15F+iVd7sLqgQBvV6+nZ7O+jNcp7cm2Use3lNfr5rvLeh1BJBO4cYdmQkrBq91Ytu7JH5QB44dDdB0gnay+qMyYi4ras7QNyxQeQPq/KP3Yk9Uk6UdKjrPx5rkPtz7OIrYFXZ+3mp8r2uX5Jy7FxxOdgdDFJLyN1IH8dqk5E9EvajfQL452kY8oHAFdJ2jsinq9jUY2cN1GvoQYDm0D6lToWhlqOhigv2l6ZjiGd3HsO6fyK+aR/ZqdS+wdHrc+u0TaGel/Drr+Str3RaMZ2O6KImCvpOtL5E18jHa7YFDi6QHMXAV/M9hYsBt4D/CTS1WIV3yGdr3MqcAMp0QvSORkjJXP1fg97SIeHjhyifnWyaR3ACUZ3+7fs72XDVcp2h1+ZTUdKOgb4L1LHfwVDdzJFbZ1/kv2C24p0sl/FAtIvrGqbAQ/knjcS28PAnpLWqvqV+0+5+ePZVpJUtRfjldnfh7K/+wNXR8TB+RdKWof0y7UeZbRRlzq2vUY06/OtHCZ7DUMn65W2tyG39yBXVr3si4DvStqGlFQtAS4pENtFpHFg3k86B2QKKXHI2590KOyzlQKlS5LXqaP9er+HfwO2A66ssZfNOpQPkXQppXEwvkzaDXzBMPWm1ii+NftbubzsH9nfdUoK7yNaeZTR/YGNSFeiVPwN2FnS6pWC7LK7lS5nbTC235J+eX2qqvwIUqJy6SqvGF82Bt5XeSJpCvAR4NaIeCIrfp6qPSySPkC6iqJeZbQxojq3vUY06/O9nLR34AvZP+YXZMkxwI3AU8An8pdlStoX2Bb4TVWbF5PW8/8hHR75dUT8gwZFxD2kPQcHZNPjwLVV1Vb5PElX+ox4eTT1fw9/Sto+/r26gewQzRp1LMvajPdgdId9Jf0T6fPegHT53V6kX03vqT4xrcqx2W7q32T11wc+SbrS4/qszt9IJ4R9QtJi0j/12RFR7zHsavOB6yWdm8V7OOmXYf5S2v9HSjx+J+mnpOPg/8qLvyYrGontEuBq4L+yMQBuI50U9y/AqfkTOsepvwBnS3oD6dfqQaT197FcnV+TPtNzSVcrvBb4MCv/2hxJGW3Uo55trxFN+XwjYpGkI0jb5BxJM0m/7LcDJgMfjYgBSUeTTnb+X0k/4cXLVB+iaijziHhK0tWkQwprkTsps4CLSJf+LiVdPVI9UNqvgX+T9CxwN7AL6RLpei61rvd7+CPSIZ/vS9qddG7NBNLeow+SLhe+Eessrb6MxVPzJl68TLUyLSP9grmcNGbDWjVeczwrX6b6dmAW8Pfs9X8nXWa4ddXr3kMaA2CA3CWY1LhcMPeaa6h9meqHSMeenyTtGv41sGmN1x9J+mezlPQPZ8fqNkeI7YfkLovMytYEZmTvcznpn/bnyC43zNUL4IwaMT1Ejcv2qupsno8jF8tzI30ew7T5ULae9ib941xKOnlx/6p6E0ljWszN1u31pGP8Q30W+9dY1qjaYIjLpyvvleyyVOrc9obZtlbZ7kb7+Y6wzHeT/nEuIZ3HMBv4UFWdD5IuPV5K+gf+Y2CTIdr7eBbHIqouf20wrq14sQ/Ytcb8dUjn0zxN2hPzO9Jhm5W2ZWpcptrg97AXOIp0MuxS0g+JG0ljnEwp+v48jd+pco22mbUxpRFJ74yId7U6FjMz8DkYZmZm1gQ+B8PMrI1I6mPk8SnmR4tvJmjmBMPMrL0cwMgj4+5OOg/CrGV8DoaZWRuRtBFpVMzh3BR13BTNrJmcYJiZmVnpfJKnmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4Jho05ScdLitzzhyT9sIUhmVkHcN8yvjjBMDMzs9Kt1uoAzIBtgMFWB2FmHcd9Sws5wbCWi4hlrY7BzDqP+5bW8iESaypJb5E0R9JSSX+TdEiNOj5OamYNcd8y/nkPhjWNpNcClwNPA8eTtrcTgCdbGJaZtTn3Le3BCYY104mAgH+OiEcAJF0M3NHSqMys3blvaQM+RGJNIWkCMA2YVekAACLiHuCylgVmZm3NfUv7cIJhzfJSoA+4v8a8+8Y4FjPrHO5b2oQTDDMzMyudEwxrlqeBfmDrGvO2GeNYzKxzuG9pE04wrCki4nnS8dD3Stq0Ui5pW9LxUzOzhrlvaR9OMKyZjsv+XifpaElfBK4G7mphTGbW/ty3tAEnGNY0EXE76RfF06TLyg4idQy/aGVcZtbe3Le0B0XEyLXMzMzajKRHgcsi4uOtjqUbeQ+GmZl1HEm9wHrAvFbH0q08kqeZmXUUSdOAD5HGy7iyxeF0LR8iMTOzjiLpamAr4HsR8bVWx9OtGj5EImkfSW/JPT9M0q2SZkpat9zwzKxbuG+xskTE7hHxcicXrVXkHIxvAlPghTvafRv4LbAFMKO80Mysy7hvMesgRc7B2AK4O3v8fuDXEXGMpNeTOgMzsyLct5h1kCIJxnJgcvZ4T+D87PF8sl8f7UaSgI2Bxa2OxaxkawFzoz1OtnLfYtY+RuxbiiQY1wMzJP0BeCNwQFb+SuCxAu2NBxvTvrGbjeRlwN9bHUQd3LeYtZdh+5YiCcangO8C+wOHRkSl8X2B3zXSkKQvAPsB/0S6ec0fgaMj4r5cnUmkY7EfAiaSxqD/ZEQ8mauzKfA9YHfgOeA84AsRsaLOUBYDPProo0yZMj5+KA0MDHD55Zez995709vb2+pwCmn399Du8S9atIiXv/zl0D6/nt23jIF2367B76HV6u1bGk4wIuIR4F01yo9otC3grcCZwJwslq8Bl0t6VUT8I6tzCvBO4APAs8AZwM+BXQEkTQB+AzwBvBnYiLRrdQA4ppFgpkyZMq46gcmTJzNlypS22/gq2v09tHv87cZ9y9johO3a76E9FBpoS1IP6Rrj9am6EiUirq23nYjYp6rdA4GngB2BayWtDRwMTI+Iq7I6HwPukbRzRPwJ2Bt4FbBn9svjVklfBr4u6fiIWF7kPZrZ2HPfYtY5Gk4wJO0MzAQ2A1Q1O4AJo4hn7ezv/OzvjkAvcMULC4i4V9IjwC7An7K/d+R3a5J2dX4PeDVwS433MJG0S7RiLUgZ5cDAwCjCL08ljvESTxHt/h46Jf524b5lbLT7dg1+D61Wb8xF9mB8H7iRtGvxcdIXf9SyXy6nAn+IiDuz4g2B5RGxsKr6k9m8Sp0na8wnV6faF3jxdr8vuPzyy5k8eXKN6q3z+9//vtUhjFq7v4d2jX/JkiWtDqFR7lvGULtu13l+D61Rd98SEQ1NwD+ArRp9XR3tfg94CHhZrmw6sKxG3T8DX88en0W6W15+/mRS57TvEMuaSLrsrTJtAsS8efNi+fLlq0wPPPBArDt1vejr64u+vr5Yd+p68cADD9Q9v0hbU6dOjVmzZsVGG29SuK1mxVZvWxttvEnMmjUrpk6d2tR1Vl1nuLbqqVvmZ9Cq9b98+fKYN29eZN+DKWV/X5sxuW9p7vZT/b0cbrtu5HvSzn1LK99npX+5//77x822UW8fWm/fUmQkz9mkY6SlkXQG6eSu3SMif0nXE8DqktapeskG2bxKnQ1qzCdXZyURsSwiFlUmsjNhe3t7a04LFixgwfxnmLzHJ5m8xydZMP8ZFixYUPf8Im31vTXdXXjhgvmF22pWbPW2tXBB2hvd99aPN3Wd5eusvv17hm2rnrplfgatWv+Vqc24bxmD70nlezncdt3I96Sd+5ZWvs8X+peFC8fNtlFvH1pv31LkEMl3gG9L2hC4g3RGdf4Ldnu9DWWD0HwHeB/wtoh4sKrKTVn7ewAXZ6/ZBtgUuCGrcwPwRUnrR8RTWdlewCJeHBWwFL3rvXxU8xtqa+ompbVVb5166zbSFgz/XsqMC2DC2uvX3d5Idcv8DFq5/tuI+5aC84vWrceI35MO6Ftg7N9n72rVpxkVb6usuKCxPnQkRRKMi7O/5+TKgnRSVqMnYp1J2lX5L8DirGMBeDYi+iPiWUlnkwbfmU/6Yn8HuCHSWd4Al5O+7D+SdBTp2OhXgTMjYlnjb8/MWsR9i1kHKXovkrIcmv29pqr8Y8APs8dHAIOkzueFwXAqFSPieUnvIh1nvYF0HPc84NgS4zSz5nPfYtZBigy09XBZC4+IEfcRRcRS4LBsGi6md5QVl5mNPfctZp2l6EBbWwKHA9tmRXcDp0XE30qKy8y6kPsWs87R8FUkkqaRvvRvBG7PpjcBd0naq9zwzKxbuG8x6yxF9mCcDJwSEZ/PF0o6Gfg60H6jhpjZeOC+xayDFBkHY1vg7Brl55DG7TczK8J9i1kHKZJgPA1sX6N8e9LNhMzMinDfYtZBihwi+QFwlqRXAH/MynYFjgZmlBWYmXUd9y1mHaRIgvEV0vC3nwVOysrmAscDp5cTlpl1IfctZh2kyDgYAZwCnCJpraxscdmBmVl3cd9i1lkKjYNR4S+/mTWD+xaz9ldXgiHpZmCPiFgg6RbSfQFqiojXlxWcmXU29y1mnavePRi/BJblHg/ZCZiZNcB9i1mHqivBiIgTco+Pb1o0ZtZV3LeYda4iQ4U/IGm9GuXrSHqgnLDMrNu4bzHrLEUG2tocmFCjfCLwslFFY2bdbHPct5h1jLqvIpH0ntzTaZKezT2fAOwBPFhWYGbWHdy3mHWmRi5TnZX9DeC8qnkDwEOkAXLMzBoxK/vrvsWsg9SdYERED4CkB4E3RMS8pkVlZl3DfYtZZyoykucWzQjEzLqb+xazzlLvQFufAc6KiKXZ4yFFhO8ZYGZ1cd9i1rnq3YNxBHABsDR7PJTANyUys/q5bzHrUPUOtLVFrcdmZqPhvsWscxUZaOtYSZNrlPdJOracsMys27hvMessRQbaOg5Ys0b55GyemVkR7lvMOkiRBEPUviHRdsD8hhqSdpN0iaS5kkLSe6vm/zArz0+/q6ozVdIFkhZJWijpbEm1OikzG9/ct5h1kEZG8lxA+vIH8BdJ+Y5gAumXx/cbXP4awG3AOcDPh6jzO+BjuefLquZfAGwE7AX0AucCZwHTG4zFzFrAfYtZZ2pkHIzDSb8wziHtrswP57sceCgibmhk4RFxKXApgKShqi2LiCdqzZC0LbAPaXCeG7OyTwO/lfS5iJjbSDxm1hKH477FrOM0MpLnefDCaHt/iIgVTYtqZW+T9BSwALgK+FJEPJPN2wVYWOkAMlcAg8CbgF/UalDSRNINlCrWAhgYGGBgYGCV+oODg/T19TFptdRR9fX1MTg4+ELdkeYXaWtiCW01K7ZG2gKYuJqaus5WqtM7Ydi26qlb5mfQqvUPDFk+3rhvGZvtJ19npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRdQ65DnCi6QtSbsWtwT+MyKekrQv8EhE3NVwg6nNAN4XEbNyZR8ClpBudLQl8DXgOWCXiHhe0jHARyNim6q2ngKOi4jvDbGs46lx0tjMmTOZPHmVk9jN2tKSJUuYPn06wNoRsajV8dTDfYvZ+Fd33xIRDU3AW0lfzN+Tjlm+Iiv/PPCzRtvLtRvAe0eo84qs3h7Z82OA+2rUewo4dJh2JgJTctMmQMybNy+WL1++yjRnzpzo6+uLzQ8+LTY/+LTo6+uLOXPm1D2/SFvbHHJ6zJo1K6ZOnVq4rWbFVm9bU6dOjVmzZsU2h5ze1HWWr7Pxuw8ftq166pb5GbRq/S9fvjzmzZtXOa9hStHv5VhO7luau/1Ufy+H264b+Z60c9/SyvdZ6V9mz549braNevvQevuWhu9FApxM2pU4Q9LiXPlVwKcKtFe3iHhA0jxgK+BK4Alg/XwdSasBU7N5Q7WzjNwJXZVjtL29vfT29q5Sv6enh/7+fpauSHt7+vv76enpeaHuSPOLtLWshLaaFVsjbQEsWxFNXWf5On0Dzw/bVj11y/wMWrX+gSHLxzH3LWP0PRmprXzdkb4n7dy3tPp9VsrG07ZRTx9ab99S5DLV11L7+ONTwEsKtFc3SS8D1gMez4puANaRtGOu2ttJ72t2M2Mxs9K5bzHrIEX2YCwkXbr1YFX5DsDfG2kou6Z8q1zRFpK2J13zPp90LPNi0i+GLYFvAH8FLgOIiHuya9d/IOkTpEvJzgAuDJ/lbdZuFuK+xaxjFNmDcSHwdUkbko7B9EjaFfgWcH6Dbe0E3JJNADOyxycCzwOvA34F/AU4G7gJ+OdsN2TFh4F7Sbs1fwtcD/xH42/LzFrMfYtZBymyB+MY4EzgUdIgOHdnf2cCX22koYi4hnT9+1Cm1dHGfDzwjVkncN9i1kEaTjAiYjnw75K+AryGNMreLRFxf9nBmVn3cN9i1lmK7MEAICIekfRo9rjxwTTMzGpw32LWGYqcg4GkgyXdCSwFlkq6U9LHyw3NzLqN+xazztHwHgxJJwJHAt8hXcoFaVjdUyRtGhHHlhifmXUJ9y1mnaXIIZJDgX+PiJ/kyn4l6XZSx+BOwMyKcN9i1kGKHCLpBW6sUX4Tozinw8y6nvsWsw5SJMH4EemXRrX/AC4YXThm1sXct5h1kKK/Cg6WtDfwp+z5m4BNgfMlzahUiogjRxmfmXUX9y1mHaJIgvEa4Obs8ZbZ33nZ9JpcPV9eZmaNcN9i1kGKDLS1ezMCMbPu5r7FrLMUGgcDQNJWkqZJ6sueDzcsr5lZXdy3mHWGhhMMSetJupJ0k6Dfku5+CHC2pG+XGZyZdQ/3LWadpcgejFOAAdKJV0ty5RcB+5QRlJl1JfctZh2kyEmeewPTIuKxqj2X9wOblRKVmXUj9y1mHaTIHow1WPnXRcVUYNnowjGzLua+xayDFEkwrgM+knseknqAo4CrS4nKzLqR+xazDlLkEMlRwJWSdgJWB74BvJr0K2PXEmMzs+7ivsWsgzS8ByMi7gReCVwP/JK0W/PnwA4R8bdywzOzbuG+xayzNLQHQ1Iv8DvgExHxX80Jycy6jfsWs87T0B6MiBgAXtekWMysS7lvMes8RU7y/DFwcNmBmFnXc99i1kGKnOS5GnCQpD2Bm4B/5Gf6LodmVpD7FrMOMtq7qb6yap7vcmhmRblvMesgRa4i2X2Y6e2NtCVpN0mXSJorKSS9t2q+JJ0o6XFJ/ZKukLR1VZ2pki6QtEjSQklnS1qz0fdlZq3lvsWssxS+m2pJ1gBuAw4bYv5RwGeATwBvIu0yvUzSpFydC0jXyu8FvAvYDTirWQGbWVtw32LWYkUOkZQmIi4FLgWoviNzdovmw4GvRsQvs7KPAE8C7wUulLQt6SZIb4iIG7M6nwZ+K+lzETF3bN6JmY0n7lvMWq+lCcYItgA2BK6oFETEs5JmA7sAF2Z/F1Y6gMwVwCDpV8kvajUsaSIwMVe0FsDAwAADAwOr1B8cHKSvr49Jq6WOqq+vj8HBwRfqjjS/SFsTS2irWbE10hbAxNXU1HW2Up3eCcO2VU/dMj+DVq1/YMhy686+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRYyPc6ckBfC+iJiVPX8z8Adg44h4PFfvp0BExAGSjgE+GhHbVLX1FHBcRHxviGUdDxxXXT5z5kwmT55c0jsya60lS5Ywffp0gLUjYlGr42kV9y1m5aq7b4mIESfSmd3rZo+PBSbX87pGJtJZ4u/NPX9zVrZRVb2fAhdlj48B7qvR1lPAocMsayIwJTdtAsS8efNi+fLlq0xz5syJvr6+2Pzg02Lzg0+Lvr6+mDNnTt3zi7S1zSGnx6xZs2Lq1KmF22pWbPW2NXXq1Jg1a1Zsc8jpTV1n+Tobv/vwYduqp26Zn0Gr1v/y5ctj3rx5kX2HppT9fS3xe+++ZYy2n+rv5XDbdSPfk3buW1r5Piv9y+zZs8fNtlFvH1pv31LvIZJtSSdNLSBl59+n9m2Vy/RE9ncD4PFc+QbArbk66+dfJGk10s2RnmAIEbGM3O2fK8doe3t76e3tXaV+T08P/f39LF2R9vb09/fT09PzQt2R5hdpa1kJbTUrtkbaAli2Ipq6zvJ1+gaeH7ateuqW+Rm0av0DQ5aPM+5bxmj7ydcZqa183ZG+J+3ct7T6fVbKxtO2UU8fWm/fUm+CcStwrqTrAQGfk/RcrYoRcWKdbY7kQdIXeY9s+UiaQjr+Wdk9eQOwjqQdI+KmrOztpKtjZpcUh5k1z624bzHrSPUmGAcCJ5Au1QpgX2BFjXoB1N0JZNeUb5Ur2kLS9sD8iHhE0qnAlyTdT+oUvgLMBWYBRMQ9kn4H/EDSJ4Be4AzgwvBZ3mbt4EDct5h1pLoSjIi4D/gQgKRBYI+IeKqE5e8EXJ17PiP7ex6p4/kGaffpWcA6pNs47xMRS3Ov+TDpi38l6Qzvi0nXt5vZOOe+xaxzNXyZakSUNjhXRFxD2i061Pwgnfh17DB15gPTy4rJzFrDfYtZZyk0DoakLUkD1WybFd0NnBYRfyspLjPrQu5bzDpHw78YJE0jfenfCNyeTW8C7pK0V7nhmVm3cN9i1lmK7ME4GTglIj6fL5R0MvB14PdlBGZmXcd9i1kHKXLMc1vg7Brl5wCvGl04ZtbF3LeYdZAiCcbTwPY1yrcnjXJnZlaE+xazDlLkEMkPgLMkvQL4Y1a2K3A0L14KZmbWKPctZh2kSILxFWAx8FngpKxsLnA8cHo5YZlZF3LfYtZBioyDEcApwCmS1srKFpcdmJl1F/ctZp2l0DgYFf7ym1kzuG8xa3+ljZxnZmZmVuEEw8zMzErnBMPMzMxK11CCIalX0pWStm5WQGbWfdy3mHWehhKMiBgAXtekWMysS7lvMes8RQ6R/Bg4uOxAzKzruW8x6yBFLlNdDThI0p7ATcA/8jMj4sgyAjOzruO+xayDFEkwXgPcnD1+ZdW8GF04ZtbF3LeYdZAiI3nu3oxAzKy7uW8x6yyFL1OVtJWkaZL6sucqLywz61buW8w6Q8MJhqT1JF0J/AX4LbBRNutsSd8uMzgz6x7uW8w6S5E9GKcAA8CmwJJc+UXAPmUEZWZdyX2LWQcpcpLn3sC0iHisas/l/cBmpURlZt3IfYtZBymyB2MNVv51UTEVWDa6cMysi7lvMesgRRKM64CP5J6HpB7gKODqUqLKSDpeUlRN9+bmT5J0pqRnJD0n6WJJG5QZg5mNmTHrW8D9i1mzFTlEchRwpaSdgNWBbwCvJv3K2LXE2CruAvbMPV+Re3wK8E7gA8CzwBnAz5sUh5k111j3LeD+xaxpioyDcaekVwKfAhYDa5K+dGdGxOMlxwewIiKeqC6UtDZpWOHpEXFVVvYx4B5JO0fEn5oQi5k1SQv6FnD/YtY0RfZgEBHPAv9VcixD2VrSXGApcAPwhYh4BNgR6AWuyMV1r6RHgF2AITsASROBibmitQAGBgYYGBhYpf7g4CB9fX1MWi2deNbX18fg4OALdUeaX6StiSW01azYGmkLYOJqauo6W6lO74Rh26qnbpmfQavWPzBk+Xg2xn0LlNy/jOe+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRTQ+Aq+kdUnZ/bZZ0d3AuRExv+HGhl/OvqRfMfeRrok/DtiENKTwu7NlTqx6zZ+BqyPi6GHaPT5rayUzZ85k8uTJpcVv1kpLlixh+vTpAGtHxKJWx1OPsepbsmWV3r+4b7FuUHffEhENTcBupOORj5B2X/4ceDgr263R9hpc9jrZcg4GpgPLatT5M/D1EdqZCEzJTZsAMW/evFi+fPkq05w5c6Kvry82P/i02Pzg06Kvry/mzJlT9/wibW1zyOkxa9asmDp1auG2mhVbvW1NnTo1Zs2aFdsccnpT11m+zsbvPnzYtuqpW+Zn0Kr1v3z58pg3b16Q7uExpZnfyxK/3y3rW8rqX8Zz31L9vRxuu27ke9LOfUsr32elf5k9e/a42Tbq7UPr7VuKHCI5kzTwzaER8TyApAnAd7N5ry3QZl0iYqGkvwBbAb8HVpe0TkQszFXbAFjlmGpVO8vIXfZWuea+t7eX3t7eVer39PTQ39/P0hVpb09/fz89PT0v1B1pfpG2lpXQVrNia6QtgGUroqnrLF+nb+D5Yduqp26Zn0Gr1j8wZPk41rK+BcrpX8Zz35KvM1Jb+bojfU/auW9p9fuslI2nbaOePrTevqXIZapbAd+udAAA2eMZ2bymkbQmsCXwOOl2zgPAHrn525BGAbyhmXGYWVO0rG8B9y9mZSuyB+Nm0vHR+6rKtwVuG3VEOZK+BVxC2k26MXAC8Dzwk4h4VtLZwAxJ84FFwHeAG8JneJu1ozHrW8D9i1mz1ZVgSHpd7unpwGmStuLFM6l3Bg4DPl9ueLwM+AmwHvA0cD2wc0Q8nc0/AhgELiYd+7wM+GTJMZhZk7SwbwH3L2ZNVe8ejFtJJ3TkbxDwjRr1ZpKOoZYiIj40wvylpM7nsLKWaWZj6lZa0LeA+xezZqs3wdiiqVGYWbdy32LWoepKMCLi4WYHYmbdx32LWecqNJKnpI2BtwDrU3UlSkScXkJcZtaF3LeYdY6GEwxJBwL/DSwHniEdP60I0olaZmYNcd9i1lmK7MH4CnAicFJEDJYcj5l1L/ctZh2kyEBbk4EL3QGYWcnct5h1kCIJxtnAB8oOxMy6nvsWsw5S5BDJF4BfS9oHuIM0nO4LIuLIMgIzs67jvsWsgxRNMKbx4nC+1SdimZkV4b7FrIMUSTA+CxwUET8sORYz627uW8w6SJFzMJYBfyg7EDPreu5bzDpIkQTjNODTZQdiZl3PfYtZBylyiOSNwNslvQu4i1VPxNqvjMDMrOu4bzHrIEUSjIXAz0uOw8xsIe5bzDpGwwlGRHysGYGYWXdz32LWWYqcg2FmZmY2rCI3O3uQYa5Jj4hXjCoiM+tK7lvMOkuRczBOrXreC+wA7AN8c7QBmVnXOrXqufsWszZW5ByM02qVSzoM2GnUEZlZV3LfYtZZyjwH41Lg/SW2Z2YG7lvM2lKZCcb+wPwS2zMzA/ctZm2pyEmet7DyiVgCNgReCnyypLjMrMu4bzHrLEVO8pxV9XwQeBq4JiLuHXVEZtatZlU9d99i1saKnOR5QjMCGa3sRLD/S/rFcxvw6Yj4c2ujMrN6uW8x6ywdMdCWpAOAGcAJwOtJncBlktZvaWBm1tbct5gVV3eCIWlQ0vMjTCuaGewwjgR+EBHnRsTdwCeAJcBBLYrHzOrkvsWsMzVyiOR9w8zbBfgMLdgjIml1YEfgpEpZRAxKuiKLy8zGN/ctZh2o7gQjIn5ZXSZpG+Bk4N3ABcCx5YVWt5cAE4Anq8qfBP6p1gskTQQm5orWApg/fz4DAwOr1F+0aBGTJk1CzzwIwKRJk7jpppt47rnnGBwc5P777685f9GiRfT09DA4OPjC35Hq3nfffWn+/IdZsuSlNdsCVq47zHKHWl4l9kpb9dQt8j6XLFmC5j889Pscpq0i73PC4ieHbaueui+8z6rPYKzW2YjbRm7+okWLeOaZZ2pt5ixevLhm+XjjvqWxz7yM78mSJUvK+560cd/Syvep3gksWfJSbrnlFp577rlS+oMy+9BS+paIaHgCNgZ+ACwHLgFeU6SdMqYslgB2qSr/BjB7iNccn73Gk6dumDZp1ffTfYsnTx09Ddu3NHQViaS1gWOATwO3AntExHWNtNEE84DngQ2qyjcAnhjiNSeRTtzKm8r4GsxnLeAx4GVAe/wUXVW7v4d2jx/Se5jb6iBG4r5lTHXKdu330Foj9i11JxiSjgKOJn2x/k/U2K3ZChGxXNJNwB5k19FL6smenzHEa5YBy6qKFzUxzIZJqjxcHBHjKrZ6tft7aPf4M+M+bvctY6sTtmu/h3FhxJiV7dYbkaRBoB+4gpTV1xQR+9UbXVmyS8nOAw4B/gwcDnwQ+KeIqD5+2hYkTQGeBdZu042v7d9Du8ffLty3jK1O2K79HtpDI4dIzicdcxl3IuIiSS8FTiQNhnMrsE+7dgBmXcZ9i1kHauQqkgObGMeoRcQZDLHbsk0tIw3uU727tZ20+3to9/jbgvuWMdcJ27XfQxuo+xCJmZmZWb06YqhwMzMzG1+cYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYLQBSQ9Jiqrp862OaziSDsviXipptqQ3tjqmekk6vsb6vrfVcZk1Q7v1L+5b2kdDQ4VbSx1LukdDxbgdWjYbnGgG6dbWs0mDE10maZuIeKqVsTXgLmDP3PNW3S7cbCy0Rf/ivqW9OMFoH4sjYqj7H4w3RwI/iIhzASR9AngncBDpDpntYEUbrW+z0WqX/sV9SxvxIZL28XlJz0i6RdL/lTQuk0NJqwM7koZ9BiAiBrPnu7QqrgK2ljRX0gOSLpC0aasDMmuicd+/uG9pP+NuI7KaTgduJt2R8c2kOzZuRMrmx5uXABOA6qGUnwT+aezDKWQ2cCBwH2k9HwdcJ+k1ETEudx2bjUK79C/uW9qME4wWkXQy6Q6Sw9k2Iu6NiPztn2+XtBz4b0lfyO7eaCWKiEtzT2+XNBt4mHSTq7NbE5VZ/dy/jE/d1rc4wWidbwM/HKHOA0OUzyZ9dpuTMuHxZB7pjpgbVJVvQLodd9uJiIWS/gJs1epYzOrUif2L+5Y24wSjRSLiaeDpgi/fHhgExt1Z0xGxXNJNwB7ALABJPdnztrxhlKQ1gS2BH7U6FrN6dGL/4r6l/TjBGOck7QK8CbiadOnYLsApwI8jYkErYxvGDOA8STcCfyZdSrYGcG4rg6qXpG8Bl5B2XW5MuuPh88BPWhmXWdnasH9x39JGnGCMf8uADwHHAxOBB0kdwIxhXtNSEXGRpJcCJwIbArcC+0RE9clZ49XLSF/49Ui/Aq8Hds5+FZp1krbqX9y3tBffrt3MzMxK53EwzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMGzMSHpI0uGtjsPMOov7lvHJCYaZmZmVzgmGmZmZlc4JhtVF0n9ImpvdvTBf/ktJ50jaMnv8pKTnJM2RtOcw7W0uKSRtnytbJyt7W67sNZIuzdp8UtKPJL2kCW/RzFrAfUvncoJh9fof0g16dq8USJoK7ANcAKwJ/JZ06+QdgN8Bl0jatOgCJa0DXAXcAuyULWsD4KdF2zSzccd9S4fy3VStLhGxQNKlwHTgyqx4f2AecHVEDAK35V7yZUnvA94DnFFwsZ8CbomIYyoFkg4CHpX0yoj4S8F2zWyccN/SubwHwxpxAfB+SROz5x8GLoyIQUlrSvqWpHskLZT0HLAtUPhXBrAdsHu2C/O5rM17s3lbjqJdMxtf3Ld0IO/BsEZcAgh4p6Q5wD8DR2TzvgXsBXwO+CvQD/wMWH2Itgazv8qV9VbVWTNb5tE1Xv94o8Gb2bjlvqUDOcGwukXEUkk/J/262Aq4LyJuzmbvCvwwIn4BIGlNYPNhmns6+7sR6TgowPZVdW4G3g88FBErRv0GzGxcct/SmXyIxBp1AfBO4KDsccX9wH6Stpe0HTCTYbaviOgH/gR8XtK2kt4KfLWq2pnAVOAnkt6QnU0+TdK5kiaU+J7MrPXct3QYJxjWqKuA+cA2pC96xZHAAuCPpF2Pl5F+JQznINJetJuAU4Ev5WdGxFzSr5cJwOXAHVm9hby4G9TMOoP7lg6jiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPGhKTjJUXueUg6o5UxmZlZ8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBsNJJeoukOZKWSvqbpEPqfN2XJA1K+nSzYzQzs+ZardUBWGeR9FrgcuBp4HjSNnYC8OQIr/sqcAxwSET8oMlhmplZkznBsLKdCAj454h4BEDSxcAdQ71A0reAI4CPRcR5YxKlmZk1lQ+RWGkkTQCmAbMqyQVARNwDXFb7JToD+E/gX51cmJl1Du/BsDK9FOgD7q8x7z7gHVVlHwHWBA6NiJ80OTYzMxtD3oNhrfQH0rkZn5I0tdXBmJlZeZxgWJmeBvqBrWvM26ZG2V+BvYGNgd9JWquJsZmZ2RhygmGliYjnSedavFfSppVySduSzs2o9ZrbSYdOtgUukdQ3FrGamVlzOcGwsh2X/b1O0tGSvghcDdw11Asi4k/AvwA7Az+T1Nv8MM3MrJmcYFipsj0S00iHS04EDiIlHb8Y4XVXAR8kHTL5kSRvm2ZmbUwRMXItMzMzswb4V6KZmZmVzgmGmZmZlc4JhpmZmZWu4QRD0j6S3pJ7fpikWyXNlLRuueGZmZlZOyqyB+ObwBR44c6Z3wZ+C2wBzCgvNDMzM2tXRe5FsgVwd/b4/cCvI+IYSa8nJRpmZmbW5YokGMuBydnjPYHzs8fzyfZstBtJIg1XvbjVsZiVbC1gbvh6dDMbY0USjOuBGZL+ALwROCArfyXwWFmBjbGNad/YzUbyMuDvrQ7CzLpLkQTjU8B3gf1Jt9mudFz7Ar8rK7Axthjg0UcfZcqUVXfCDAwMcPnll7P33nvT2+tRrEfD67Ic9azHRYsW8fKXvxy8Z87MWqDhBCMiHgHeVaP8iFIiaqEpU6YMmWBMnjyZKVOm+J/iKHldlsPr0czGuyJ7MMjuE7EVsD5VV6JExLUlxGVmZmZtrOEEQ9LOwExgM0BVswOYUEJcZmZm1saK7MH4PnAj8E7gcVJSYWZmZvaCIgnG1sD+EfHXsoMZ72677TZ6enp4yUtewqabbtrQax955BHmzZsHUOj1ZbfRyhggrcv111+/q9dDkRgqrxkcHGx4eWZmYyoiGpqAq4B9Gn3deJ5I43fEs88+G7U88MADMWvWrOjr6wsgJvVNjocffrhm3VoefvjhmNQ3OUh7exp+fTPaaFUM+XXZzeuhSAz51/T19cWsWbPigQceGLL+s88+W4lxSoyD75knT566ayoyVPh3gG9LOlDSjpJel58KZzrj2DPPPAPA1H0+zXrv+ixL+5e88Ou1HvPmzWNp/xLWe9dnC72+7DbW3uWAlsVQWZdT3rhfV6+HIjHklzt1n08DL65PM7Pxpsghkouzv+fkyoJ0wmdHn+TZO3UTnl9R/JST3vVePvoYSmhjwtrrtz6GKS9tfQzjYT0UiKF3vZfTu1r1+dVmZuNL0XuRmJmZmQ2pyEBbDzcjEDMzM+scRc7BQNKWkr4j6YpsOl3SlgXaOVTS7ZIWZdMNkvbNzZ8k6UxJz0h6TtLFkjaoamNTSb+RtETSU5K+KanQAGJmZmZWjoYTDEnTSLdrfyNweza9CbhL0l4NNvcY8HlgR2An0hUqv5T06mz+KcC7gQ8AbyXdlOznuVgmAL8BVgfeDHwUOBA4sdH3ZWZmZuUp8kv/ZOCUiPh8vlDSycDXgd/X21BEXFJV9EVJhwI7S3oMOBiYHhFXZcv4GHCPpJ0j4k/A3sCrgD0j4kngVklfBr4u6fiIWF7g/ZmZmdkoFTlEsi1wdo3yc0j/7AuRNEHSh4A1gBtIezV6gSsqdSLiXuARYJesaBfgjiy5qLiMNK7FqzEzM7OWKLIH42lge+D+qvLtgacabUzSa0kJxSTgOeB9EXG3pO2B5RGxsOolTwIbZo83zJ5XzydXp9YyJwITc0VrQbpD5cDAwCr1K6MmTswuDezr62NwcLBm3VoGBwfp6+tjUsHXl95G74SWxgC0PIbxsB4ajSG/3Mq2ONzrGonHzKxsimhsXAdJxwJHkA6V/DEr3hU4GpgREV9psL3VgU2BtYH9gY+TzrfYHjg3IiZW1f8zcHVEHC3pLGCziJiWmz8Z+Afwjoi4dIhlHg8cV10+c+ZMJk+e3Ej4ZuPWkiVLmD59OsDaEbGo1fGYWZdpdOhP0oBaR5BO0BzMpseA/yRLWEYzkQ6J/DfwdtLAXetUzX8YOCJ7fCJwa9X8LbLX7TDMMiaSDqNUpk2AmDdvXixfvnyVafbs2TFr1qzY5pDTY/ODT4u+vr6YM2dOzbq1pjlz5kRfX19sfvBphV5fdhsbv/vwlsVQWZev2O+zXb0eisSQX+42h5wes2bNitmzZw9Zf968eR4q3JMnTy2bioyDEaSrO06RtFZWtrjRdobRQ0oAbgIGgD3IRg+VtA1pb8cNWd0bSCeGrh8RlcMzewGLSFe6DPUelgHLKs+ltLu5t7eX3t7eVQPqSaeqLFsRLF0R9Pf309PTU7NuzTfU00N/fz9Ls1FAG3192W30DTzf0hgAlrY4hvGwHhqNoXq5lbKhXtdIPGZmZRvVeBGjTSwknQRcSjpxcy1gOvA2YFpEPCvpbGCGpPmkpOE7wA2RriABuJyUSPxI0lGk8y6+CpyZJRFmZmbWAnUlGJJuBvaIiAWSbiHtdq0pIl7fwPLXB84HNgKeJY2pMS0iKpe6HkE6BHMxaa/GZcAnc8t6XtK7gO+R9mb8AzgPOLaBGMzMzKxk9e7B+CUvHlL4JcMkGI2IiINHmL8UOCybhqrzMPCOMuIxMzOzctSVYETECbnHxzctGjMzM+sIRYYKf0DSejXK15H0QDlhmZmZWTsrMpLn5sCEGuUTgZeNKhozMzPrCHVfRSLpPbmn0yQ9m3s+gXQ56YNlBWZmZmbtq5HLVGdlf4N0pUbeAPAQ8NnRh2RmZmbtru4EIyJ6ACQ9CLwhIuY1LSozMzNra0VG8tyiGYGYmZlZ56h3oK3PAGdFxNLs8ZAi4vRSIjMzM7O2Ve8ejCOAC4Cl2eOhBOAEw8zMrMvVO9DWFrUem5mZmdVSZKCtYyVNrlHeJ8n3ADEzM7NCA20dB6xZo3xyNs/MzMy6XJEEQ9S+2dl2wPzRhWNmZmadoJGRPBeQEosA/iIpn2RMIO3V+H654ZmZmVk7amQcjMNJey/OIR0KyQ8Vvhx4KCJuKC80MzMza1eNjOR5HrwwkucfImJF06IyMzOzttbwORgR8b/AZpK+KuknktYHkLSvpFeXHqGZmZm1nSKXqb4VuAN4E7AfL15Rsh1wQnmhmZmZWbsqchXJycCXImIv0rkXFVcBO5cSlZmZmbW1IgnGa4Ff1Ch/CnjJ6MIxMzOzTlAkwVgIbFSjfAfg76OKxszMzDpCkQTjQuDrkjYkjYnRI2lX4FvA+WUGZ2ZmZu2pSIJxDHAv8CjpBM+7gWuBPwJfLS80MzMza1eNDLQFQEQsB/5d0leA15CSjFsi4v6ygzMzM7P21HCCURERj0h6NHtc694kZmZm1qWKHCJB0sGS7gSWAksl3Snp4+WGZmZmZu2q4T0Ykk4EjgS+A1TuPbILcIqkTSPi2BLjMzMzszZU5BDJocC/R8RPcmW/knQ7KelwgmFmZtblihwi6QVurFF+E6M4p8PMzMw6R5EE40ekvRjV/gO4YHThmJmZWScousfhYEl7A3/Knr8J2BQ4X9KMSqWIOHKU8ZmZmVkbKrIH4zXAzcDTwJbZNC8rew1pyPAdgO1HakjSFyTNkbRY0lOSZknapqrOJElnSnpG0nOSLpa0QVWdTSX9RtKSrJ1vSvLhGjMzsxYpMtDW7iUu/63AmcCcLJavAZdLelVE/COrcwrwTuADwLPAGcDPgV0BJE0AfgM8AbyZdJ+U84EB0qijZmZmNsYK/8qXtBVp78W1EdEvSY0OuBUR+1S1eSDprqw7AtdKWhs4GJgeEVdldT4G3CNp54j4E7A38Cpgz4h4ErhV0pdJ90s5Pht51MzMzMZQkXEw1gN+CuxOutnZ1sADwNmSFkTEZ0cRz9rZ3/nZ3x1JV61cUakQEfdKeoQ09safsr93ZMlFxWXA94BXA7fUeA8TgYm5orUABgYGGBgYWCWowcFBACauJgD6+voYHBysWbeWwcFB+vr6mFTw9aW30TuhpTEALY9hPKyHRmPIL7eyLQ73ukbiMTMrmxod5VvS+cD6wMeBe4DtIuIBSdOAGRHx6kKBSD3Ar4B1IuItWdl04NyImFhV98/A1RFxtKSzgM0iYlpu/mTgH8A7IuLSGss6HjiuunzmzJlMnjy5SPhm486SJUuYPn06wNoRsajV8ZhZdylyiGRvYFpEPCYpX34/sNkoYjmTdJLoW0bRRr1OAmbknq8FPLb33nszZcqUVSrfcsstPP744xx96SMsWxE8OfPzXHvttWy33XZ1Ley2225jt912Y4PpJwM0/Pqy21h3z0NYcMV/tySGyro88vzrePzS73bteigSQ365E1cTX993UzbaaCN22GGHmvUXLXJOYWatUyTBWANYUqN8KrCsSBCSzgDeBewWEY/lZj0BrC5pnYhYmCvfIJtXqfPGqiY3yM1bRUQsy8daSZR6e3vp7e1dpX5PT7rYZtmKYOmKoL+/n56enpp1a+np6aG/v5+lK9LeokZfX3YbfQPPtzQGgKUtjmE8rIdGY6hebqVsqNc1Eo+ZWdmKXKZ6HfCR3PPIDm8cBVzdSENKzgDeB7w9Ih6sqnIT6WqQPXKv2YY05kblPig3AK+VtH7udXsBi4C7G4nHzMzMylFkD8ZRwJWSdgJWB75BOplyKtmlow04E5gO/AuwWNKGWfmzEdEfEc9KOhuYIWk+KWn4DnBDdgUJwOWkROJHko4CNgS+CpyZ7akwMzOzMdbwHoyIuBN4JXA98EvSIZOfAztExN8abO5Q0pUj1wCP56YDcnWOAH4NXAxcSzrssV8unudJh1eeJ+3N+DFpHAzfdM3MzKxFGtqDIakX+B3wiYj4r9EuPCJUR52lwGHZNFSdh4F3jDYeMzMzK0dDezAiYgB4XZNiMTMzsw5R5CTPH5NG1zQzMzOrqchJnqsBB0nak3SVxz/yM30HVTMzMyuSYFTupgrpZM+8xoYFNTMzs47U6rupmpmZWQcqcg6GmZmZ2bCcYJiZmVnpnGCYmZlZ6ZxgmJmZWenqSjAk3Sxp3ezxsZImNzcsMzMza2f17sHYlnTPEYDjgDWbE46ZmZl1gnovU70VOFfS9YCAz0l6rlbFiDixpNjMzMysTdWbYBwInEC6a2kA+wIratQLwAmGmZlZl6srwYiI+4APAUgaBPaIiKeaGZiZmZm1ryIjefrKEzMzMxtWkXuRIGlL4HDSyZ8AdwOnRcTfSorLzMzM2ljDeyMkTSMlFG8Ebs+mNwF3Sdqr3PDMzMysHRXZg3EycEpEfD5fKOlk4OvA78sIzMzMzNpXkfMptgXOrlF+DvCq0YVjZmZmnaBIgvE0sH2N8u0BX1liZmZmhQ6R/AA4S9IrgD9mZbsCRwMzygrMzMzM2leRBOMrwGLgs8BJWdlc4Hjg9HLCMjMzs3ZWZByMAE4BTpG0Vla2uOzAzMzMrH0VGgejwomFmZmZ1eJROc3MzKx0TjDMzMysdE4wzMzMrHQNJRiSeiVdKWnrZgVkZmZm7a+hBCMiBoDXNSkWMzMz6xBFDpH8GDi47EDMzMyscxS5THU14CBJewI3Af/Iz4yII8sIzMzMzNpXkT0YrwFuJo3m+Upgh9y0fSMNSdpN0iWS5koKSe+tmi9JJ0p6XFK/pCuqz/+QNFXSBZIWSVoo6WxJaxZ4X2ZmZlaSIiN57l7i8tcAbiPdifXnNeYfBXwG+CjwIGmY8sskvSoilmZ1LgA2AvYCeoFzgbOA6SXGaWZmZg0oPJKnpK2ALYFrI6JfkrJhxOsWEZcCl2btVbcv4HDgqxHxy6zsI8CTwHuBCyVtC+wDvCEibszqfBr4raTPRcTcou/PzMzMims4wZC0HvBTYHcggK2BB4CzJS2IiM+WFNsWwIbAFZWCiHhW0mxgF+DC7O/CSnKRuQIYBN4E/GKI9zARmJgrWgtgYGCAgYGBVeoPDg4CMHG1lAT19fUxODhYs24tg4OD9PX1Mang60tvo3dCS2MAWh7DeFgPjcaQX25lWxzudY3EY2ZWNjW40wFJ5wPrAx8H7gG2i4gHJE0DZkTEqwsFIgXwvoiYlT1/M/AHYOOIeDxX76eke64dIOkY4KMRsU1VW08Bx0XE94ZY1vHAcdXlM2fOZPLkyUXCNxt3lixZwvTp0wHWjohFrY7HzLpLkUMkewPTIuKxqsMa9wOblRJV850EzMg9Xwt4bO+992bKlCmrVL7lllt4/PHHOfrSR1i2Inhy5ue59tpr2W677epa2G233cZuu+3GBtNPBmj49WW3se6eh7Dgiv9uSQyVdXnk+dfx+KXf7dr1UCSG/HInria+vu+mbLTRRuywww416y9a5JzCzFqnSIKxBrCkRvlUYNnowlnJE9nfDYDHc+UbALfm6qyff5Gk1bJYnmAIEbGMXKyVRKm3t5fe3t5V6vf0pIttlq0Ilq4I+vv76enpqVm3lp6eHvr7+1m6Iu0tavT1ZbfRN/B8S2MAWNriGMbDemg0hurlVsqGel0j8ZiZla3IZarXAR/JPQ9JPaQrPq4uJarkQVKSsEelQNIU0rkVN2RFNwDrSNox97q3k97X7BJjMTMzswYU2YNxFHClpJ2A1YFvAK8m7TXYtZGGsvEqtsoVbSFpe2B+RDwi6VTgS5Lu58XLVOcCswAi4h5JvwN+IOkTpMtUzwAu9BUkZmZmrVNkHIw7Jb0S+BRpsK01SWNYnJk/GbNOO7HyXo/KeRHnAQeSkpc1SONarANcD+yTGwMD4MOkpOJK0tUjF5PGzjAzM7MWKTQORkQ8C/zXaBceEdcAGmZ+AMdm01B15uNBtczMzMaVQgmGpHVJNzzbNiu6Gzg3+2dvZmZmXa7hkzwl7QY8RDoMsW42fQZ4MJtnZmZmXa7IHowzgYuAQyPieQBJE4DvZvNeW154ZmZm1o6KXKa6FfDtSnIBkD2ewcpXhJiZmVmXKpJg3MyL517kbUu6M6qZmZl1uboOkUh6Xe7p6cBp2d1U/5SV7QwcBny+3PDMzMysHdV7DsatpDun5i8p/UaNejNJ52eYmZlZF6s3wdiiqVGYmZlZR6krwYiIh5sdiJmZmXWOogNtbQy8hXQn05VOFI2I00uIy8zMzNpYwwmGpAOB/waWA8+Qzs2oCNJJoGZmZtbFiuzB+ApwInBSRAyWHI+ZmZl1gCLjYEwm3Q7dyYWZmZnVVCTBOBv4QNmBmJmZWecocojkC8CvJe0D3AEM5GdGxJFlBGZmZmbtq2iCMQ24L3tefZKnmZmZdbkiCcZngYMi4oclx2JmZmYdosg5GMuAP5QdiJmZmXWOIgnGacCnyw7EzMzMOkeRQyRvBN4u6V3AXax6kud+ZQRmZmZm7atIgrEQ+HnJcZiZmVkHaTjBiIiPNSMQMzMz6xxFzsEwMzMzG1aRm509yDDjXUTEK0YVkZmZmbW9IudgnFr1vBfYAdgH+OZoAzIzM7P2V+QcjNNqlUs6DNhp1BGZmZlZ2yvzHIxLgfeX2J6ZmZm1qTITjP2B+SW2Z2ZmZm2qyEmet7DySZ4CNgReCnyypLjMzMysjRU5yXNW1fNB4Gngmoi4d9QRmZmZWdsrcpLnCc0IxMzMzDpHxwy0JekwSQ9JWipptqQ3tjomMzOzblV3giFpUNLzI0wrmhnsMLEdAMwATgBeD9wGXCZp/VbEY2Zm1u0aOUTyvmHm7QJ8htbtETkS+EFEnAsg6RPAO4GDgJNbFJOZmVnXqjvBiIhfVpdJ2ob0D/zdwAXAseWFVh9JqwM7AidVyiJiUNIVpMSn1msmAhNzRWsBzJ8/n4GBgVXqL1q0iCVLlqD5D6OB55k0aRI33XQTzz33HIODgwD09PQM+fi+++5j0qRJ6JkHAV54/aJFi2q+rlbZ/fffX7ONemPItzFh8ZMjxlArnqFiyLdRTwxrrrkmE55rbQzjYT00GkN+O1LvBJYseSmLFi3imWeeqbWZs3jx4prlZmZjQRFD3lZk6BdJG5MOR3wUuAz4QkTcWXJsjcTyd+DNEXFDrvwbwFsj4k01XnM8cNyYBWnWWi+LiL+3Oggz6y4NXUUiaW3gGODTwK3AHhFxXRPiaraTSOds5E1l6IHC1gIeA14G+Gfh6HhdlqPe9bgWMHdMIjIzy6k7wZB0FHA08ATwf2odMmmRecDzwAZV5RuQYl1FRCwDllUVLxpqAZIqDxdHxJD1bGRel+VoYD16HZtZSzSyB+NkoB/4K/BRSR+tVSki9isjsHpFxHJJNwF7kA0CJqkne37GWMZiZmZmSSMJxvmsPET4eDIDOE/SjcCfgcOBNYBzWxmUmZlZt2rkKpIDmxjHqETERZJeCpxIui/KrcA+EfFkSYtYRjqptfqwijXO67IcXo9mNq4VuorEzMzMbDgdM1S4mZmZjR9OMMzMzKx0TjDMzMysdE4wzMzMrHROMEbg28CPnqTjJUXVdG+r42oHknaTdImkudl6e2/VfEk6UdLjkvolXSFp6xaFa2b2AicYw/Bt4Et1F7BRbnpLa8NpG2uQtrvDhph/FOlOxp8A3gT8g7SNThqb8MzMavNlqsOQNBuYExGfyp73AI8C34kI3wa+TtnN5d4bEdu3OJS2JimA90XErOy5SPcZ+XZEfCsrWxt4EjgwIi5sVaxmZt6DMYTcbeCvqJRFxGD2vOZt4G1YW2e7+R+QdIGkTVsdUAfYgjSwXH4bfRaYjbdRM2sxJxhDewkwgfRrMO9JUqdu9ZsNHAjsAxxK+sd4naS1WhlUB6hsh95GzWzcaeh27WZFRMSluae3Z4eeHgY+CJzdmqjMzKyZvAdjaA3fBt7qExELgb8AW7U4lHZX2Q69jZrZuOMEYwgRsRyo3AYeWOk28De0Kq5OIGlNYEvg8VbH0uYeJCUS+W10CulqEm+jZtZSPkQyPN8GvgSSvgVcQjossjHpst/ngZ+0Mq52kCVj+T09W0jaHpgfEY9IOhX4kqT7SQnHV0hXlswa41DNzFbiBGMYY3Ab+G7xMlIysR7wNHA9sHNEPN3SqNrDTsDVueczsr/nkU6c/QYp6T0LWIe0bveJiKVjF6KZ2ao8DoaZmZmVzudgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYNiYkfSQpMNbHYeZmTWfEwwzMzMrnRMMMzMzK50TDKuLpP+QNDe7o2y+/JeSzpG0Zfb4SUnPSZojac9h2ttcUmQ37qqUrZOVvS1X9hpJl2ZtPinpR5Je0oS3aGZmJXKCYfX6H9LNynavFEiaCuwDXACsCfyWdOvwHYDfAZdI2rToAiWtA1wF3EK66dc+wAbAT4u2aWZmY8N3U7W6RMQCSZcC04Ers+L9gXnA1RExCNyWe8mXJb0PeA9wRsHFfgq4JSKOqRRIOgh4VNIrI+IvBds1M7Mm8x4Ma8QFwPslTcyefxi4MCIGJa0p6VuS7pG0UNJzwLZA4T0YwHbA7tnhkeeyNu/N5m05inbNzKzJvAfDGnEJIOCdkuYA/wwckc37FrAX8Dngr0A/8DNg9SHaGsz+KlfWW1VnzWyZR9d4/eONBm9mZmPHCYbVLSKWSvo5ac/FVsB9EXFzNntX4IcR8QsASWsCmw/T3NPZ341I51gAbF9V52bg/cBDEbFi1G/AzMzGjA+RWKMuAN4JHJQ9rrgf2E/S9pK2A2YyzPYVEf3An4DPS9pW0luBr1ZVOxOYCvxE0huyK1WmSTpX0oQS35OZmZXMCYY16ipgPrANKYmoOBJYAPyRdFjjMtIeiOEcRNqLdhNwKvCl/MyImEvaMzIBuBy4I6u3kBcPsZiZ2TikiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK9/8BYaMikxAoPNsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGr0lEQVR4nO3deZxkVX3//9d7hgEZYUA0gqgoQlTcAFFc8EtQmAEVzdc9X81PEZe4oEFM3KKIaAK4sCSSGBVBFNQkGo0isiniAkTZBFlEZB2RHQechR76/P64t7Wmpnum6/btrq7q1/PxqEfVPffUrU/drjr9qXPPPTelFCRJktowr98BSJKk4WFiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNioRmR5JAkMzLNa5Kzk5zdsbxHkpLk5TP0+ickuW4mXqvrdR9dv8/9Zvq154okGyT5eJIbk4wm+Wa/Y5JmGxML9SzJfvU/sLHbyiS/TXJakncm2bSl19m6Tkh2amN7bZrNsWla7Q/8PfBfwOuAo/obTnuSPL5Omi5Ock+Sm5OckuRp/Y5Ng2WDfgeggXYwcC2wANgK2AM4GjgoyYtLKb/oqPsx4PAet7818GHgOuDiHp63pMfXaWJdsb2J/iTt1wMbAyN9eO254nnA0lLKu/odyDR4I/AG4OvAvwKbAX8DnJdkn1LKmf0MToPDxEJTcWop5ecdy4cleR7wHeB/kuxQSlkBUEpZDayezmCSLCylLC+l3Dedr7M+pZS+/GMv1RUFV/bjtaciyQOA+0opo/2OZRIeCtzd1saSzAM2LKVM6u+WJMADxr5XLfsKcEgp5d6O1/sCcAVwCGBioUnxUIhaVUr5PvBR4FHAX4+VjzfGIsniJD9OcneSe5NcleSf6nV7AD+rqx7fcdhlv3r92UkuS7JLknOSLAf+qWPd2eOENz/JPyX5XZI/JPmfJI/sium6JCd0P7Fzm5OIba0xFkkemORT9bH5VfV7/bv6H0VnvZLk00n+b/3+ViX5ZZJ9xnk/3TGuNcaijuXeJA9P8s368W1JPplk/iS2eV2S7yRZUneRr0xyeZKXdtXbot7mpfVrLEtyapIdu+qNjXf5qyQfS7IUWA4sarCNVyb5cJKlddf9fyXZLMlGSY5Ocmu9neOTbNS1jQk/e+vat8BzgSd2/M33qNf3+vd9TZJfAquACf+2Hft/7yQ/B1ZQ9SKQ5PVJvl+/z1X13+Wt69jGc5L8b/03/E2S13bWK6Vc0JlU1GV3AD8CdpgoRqmbPRaaDl+i+ie/BPjceBWSPJGqZ+MXVIdUVgHbA7vVVa6oyw8FPkvVuAH8tGMzDwZOBb4KfBm4ZT1x/QNQgCOofnkeCJyZZKcefwFOJrY/qv+5/A/VP6XjqA6d7A18Ang40N2t/hzgpVTd0fcA7wS+nmSbuqHv1XzgNOB84O+AvYB3A9cA/zaJ5/858DXgM8AXgdcD/5mqe/yMus5jgP8L/CfV4bEtqf4B/jDJE0opv+3a5oeA+4BPAhvVj5/Q4zbeT/WP9nCqz847qA4DjQIPovqV/Uxgv3p7h8KkPnvjuQ34/6g+Q5vUrw1wRYO/7/OAVwKfBm6nOpy2Lo+j6k34d6rv01V1+VuBX9avvRp4EfCvSeaVUo7t2sb2VONCjqP6G+4PnJDkglLKL9fz+lvVcUqTU0rx5q2nG1VDXYCnraPO3cCFHcuHUPfW18sH1tt4yDq28bS6zn7jrDu7Xvc3E6w7u2N5j7ruTcCmHeWvqMvf2VF2HXDCJLa5rthOAK7rWP7Luu4/dNX7T6p/gtt1lBWqf3SdZU+pyw9Yz9/l0d0x1bEU4ENddS8Efj6Jv/V19fNf2lG2CPht1993I2DeOPGs7Hztjr/FNcDGXfV73calwIKO8pPr/fndrm38tOvvsd7P3jr2x9nAZV1lvf597weeMMnXG9v/e4+zbuNxyr4HXDPBNv5PR9mf1fv1k+t5/f9Tv4dDe91X3ubuzUMhmi73Aus6O+Tu+v4vUx1nbmIVcHwP9U8spdzTsfxfwM3ACxq+/mS9gOqfyT93lX8KCPD8rvIzSynXjC2UahDsMqpegaY+07X8ox6291vgvzviWQacCOycZKu6bFWpx0gkmZ/kwVSfgauAp46zzS+Wrl6iBts4saw5nuV8qv35ha565wOPTDLWQ3t3fT+Vz16nXv++PyylXN7D9q8tpZzWXdi5/+pDQA8Bfgg8JslmXdUvL6X8qOO5t1Ht1wk/A0keSpWsXQt8vId4NceZWGi6bELVjT+RrwE/AT4P3JLkq/Ux814+k0tLbwM1r+5cKKUU4NdUv4qn06OA33YlNVAdUhlb3+mGcbZxF1X3fhMr638kTbf363pfdfpVff9oqAYhJnlXkqupEr7bqQ4fPIXq7IJu13YXNNhG9376fX1/4zjl8zq20cZnr1Ovf9+13vt6jFs/yW5JzkzyB6pk6TbqcUasvb96+kwleSDV4aJNgb8sXWMvpHUxsVDrkjyCqmH79UR16l9bu1Md7/8S1T+PrwFnZBKDCmvTMTJ+okm8JhtTG+6foDwTlDfdXps+ABwJnEM1aHdvYDHVGIDx2pnx/na9bmOi97XO/dfSZ28qev3crlU/yXbAWcBDgIOAF1Ltq7F5Nbr316Q/U0k2BL5BtV/+spRyWY/xao5z8Kamw/9X36/Vfdup7vY+q74dlOQDwD9SDYI7k4n/yTf1550L9aC77akG8Y25C9h8nOc+CvhNx3IvsV0P7JVk065ftY/vWD+bbZ8kXb0Wj63vr6vvXw78oJTyhs4nJtmcyQ/8a2MbkzKJz14v+vH3fRHVmJQXl1L+2BuR5LlT2Wjda3MisCfwylLKD6cUpeYkeyzUqlTzWHyIqvv2pHXU22Kc4ovr+7FTA/9Q32/eUnivzZqzgr4ceBjVmSVjrgGeWf9qAyDJvsAap6X2GNt3qXo8DugqfxdVgnLqWs+YXbYGXjK2kGQR8Frg4lLK7+ri++n69ZvkFVRnRUxWG9tYr0l+9nrRj7/vWA/EH/dXPa7i9VPc7r8ArwLeVkr5xhS3pTnKHgtNxfOTPJ7qc7Ql1Wl0i6l+ob24rHvSn4OT7A6cUtd/KPA2qjM3flzXuYbq2PFbktxD9c/8/FJKr8eox9wJ/DjJ8XW8B1Idruk8JfbzVAnH95L8B7AdVbf8NWtuqqfYvg38APjHJI8GLqE6FfcvgaM7B2rOUr8CjkvydKpTeven2n+d/8S+Q/U3PZ7qLIwnA69hzV6e9WljG5Mxmc9eL/rx9z2d6hTdbyf5d6oxTW8CbqVKlnuW5ECq/XAusDzJX3dV+e9Syh/WeqLUxcRCU3FofX8f1T/tS6n+WR8/zkC2bv9DNfBvf6rjxLdTjWj/cCnl91DNYJnkdcBhVGc1bED1z6xpYvFPVMeN3081KO0sql9my8cqlFJOS/JuquPWRwM/B/alGuFPR71Jx1ZKGU3yYqr99aq63nVU15z4VHf9WehqqjkiPkE1p8K1wKu6zlT4J+CBwKup3uOFVMf9e5nGvY1tTMZ6P3u96Mfft5RyVaqL6n2Mai6Q31HNSXIba58VM1k71ffPqm/dtuVPPXXShLL2YG9JqqSaQfSyUsq+/Y5F0mBwjIUkSWqNiYUkSWqNiYUkSWqNYywkSVJr7LGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbHQpCXZL0lJ8uj11LsuyQkzE5WkQWI7MvxMLCRJ6pBkzyRfSPKrJMuT/CbJ55M8rN+xDYKUUvodgwZEkvnAAmBVWccHJ8l1wNmllP1mKDRJA2IQ2pEkPwe2AP4TuBp4DHAAsBzYqZTyu5mOaZBs0O8ANDhKKfcD9/c7DkmDa0DakYOAH5dSRscKknwP+CFVgvHBfgU2CDwUoknrPjaaygeT3FR3F/4gyRPHed4hSdb6ZTLesdb6uOp3kuyR5OdJViS5NMke9fqX1ssrk1yQZOfper+S2jcI7Ugp5ZzOpGKsDLgT2GHqe2G4mVhoKg4FPgpcAvw98BvgdOCBU9zu9sDJwLeB9wMPAr6d5DXAUcCXgQ8D2wH/kcTPsTS4BqIdSbIJsAlw+xTjGnoeClEjSf4MeA9wCvCisWOlSf4R+MAUN/844NmllHPrbV4OnAZ8Dnh8KeWGuvwu4N+B3YGzp/iakmbYgLUjBwIbAl+bYlxDz196amovqi/Zv3QNwDq6hW1fPtYY1M6v778/1hh0lT+mhdeUNPMGoh1JsjtV78Z/lFK+30JsQ83EQk09qr6/urOwlHIbcNcUt935paeU8vv64Y1d9cbKHzTF15PUH7O+HUnyeOC/gcuAN04xpjnBxEIzYaJTyuZPUD7RiPGJytNbOJIG0Iy3I0keSTXe4/fAC0op96wzQgEmFmru+vr+zzsL62Om3Zn/XfW6zbvKH4WkuWzWtiNJHkyVVGwE7F1KuXk6XmcYmVioqTOBEeAdSToz/QPHqXtNfb/7WEGSBwKvm7boJA2CWdmO1Nv9LvBwqp6Kq9fzFHXwrBA1Ukq5LcknqU7j+k6S7wI7A89n7dOxTqc63nlckk9QdUXuD9wGbDNzUUuaTWZxO3ISsCvwBWCHJJ1zV9xbSvlmy683VEwsNBUfBFYCbwGeSzW6egnVqWN/VEoZSfIS4F+pzlf/HdWo77uA42cwXkmzz2xsR3aq7/evb52uB77Z8usNFa8VIkmSWuMYC0mS1BoTC0mS1BoTC0mS1BoTC0mS1JqeE4sk+yR5Tsfy25NcnOTkJE6tLKkR2xZpODTpsfgEsAggyZOBT1FNJLItcGR7oUmaY2xbpCHQZB6LbYHL68cvA75TSvlAkqdSNQJDp54RbmvAeeI1W20K/LYM9vnjti3S7NNz29IksbgPWFg/3gs4sX58J/WvjSG0NXBTv4OQ1uMRwNJ+BzEFti3S7NRT29IksfgxcGSSn1BNefqquvyxDO8X5B6AG2+8kUWL1m7fRkZGOP3001myZAkLFiyY8eAGjfurN+vbX8uWLeORj3wkDP6vXtuWLn5XeuP+6s10tS1NEosDqKZUfTnw1lLKWBbzfOB7DbY3MBYtWjThl3/hwoUsWrTID/MkuL96M4f2l21Llzn0t2+F+6s307W/ek4sSik3APuOU/6uViKSNCfZtkjDodFFyJLMA7YHHkrXmSWllHNaiEvSHGTbIg2+nhOLJM8ETgYeBaRrdQHmtxCXpDnGtkUaDk16LD4D/Bx4IXAz1Rde6tkll1zCvHnzeMhDHsI222zT73DUf7YtaoVtS381SSz+HHh5KeXXbQejueGmm6oB/rvvvjsrVqzgARsv5Korr7ABkG2LpsS2ZXZoMvPm+VTHQKVG7rjjDgC22OcdPHjfd7NyxXJuv/32PkelWcC2RVNi2zI7NOmx+BfgU0m2Ai4FRjpXllJ+0UZgGn4Ltng496+2t1t/ZNuiVti29FeTxOLr9f0XOsoK1WArB1hJasq2RRoCTa8VIklts22RhkCTCbKun45AJM1tti3ScGg6QdZ2wIHADnXR5cAxpZRrWopL0hxk2yINvp7PCkmyN9WXfVfgF/XtGcAvkyxuNzxJc4VtizQcmvRYHA4cVUp5X2dhksOBI4Az2ghM0pxj2yINgSbzWOwAHDdO+ReAJ0wtHElzmG2LNASaJBa3ATuNU74TcOtUgpE0p9m2SEOgyaGQzwGfTfIY4Kd12W7Ae4Ej2wpM0pxj2yINgSaJxUeBe4B3A4fVZb8FDgH+uZ2wJM1Bti3SEGgyj0UBjgKOSrJpXXZP24FJmltsW6Th0GgeizF+6SVNB9sWaXBNKrFIciGwZynlriQXUc3bP65SylPbCk7ScLNtkYbPZHssvgWs6njsZeMktcG2RRoyk0osSikf6Xh8yLRFI2lOsW2Rhk+TKb1/k+TB45RvnuQ37YQlaa6xbZGGQ5MJsh4NzB+nfCPgEVOKRtJc9mhsW6SBN+mzQpK8uGNx7yS/71ieD+wJXNtWYJLmBtsWabj0crrpN+v7Anyxa90IcB3VxDaS1Itv1ve2LdIQmHRiUUqZB5DkWuDppZTbpy0qSXOGbYs0XJrMvLntdAQiaW6zbZGGw2QnyHon8NlSysr68YRKKc7pL2lSbFuk4TPZHot3AScBK+vHEyl4sSBJk2fbIg2ZyU6Qte14jyVpKmxbpOHTZIKsg5MsHKd84yQHtxOWpLnGtkUaDk0myPowsMk45QvrdY0keV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJKmjW2LNASaJBZh/AsF7Qjc2SSIJE8H/gb4Rdeqo4AXAa8A/gLYGvhGx/PmA6cAGwLPBl4H7Acc2lFn27rOD4CdgKOBzyfZu0mskqaNbYs0BHqZefMuqi99AX6VpLMBmE/1S+MzvQaQZBOqwVtvAj7YUb4Z8Abg1aWU79dlrweuSPLMUsp5wBLgCcBepZRbgIuTfAg4IskhpZT7gLcA15ZSxibYuSLJc6gGip3Wa7yS2mXbIg2XXuaxOJDqF8UXqLolO6fdvQ+4rpRyboMYjgVOKaWcmeSDHeW7AAuAM8cKSilXJrkBeBZwXn1/af3FH3Ma8G/AE4GL6jpnsqbTqH5dSOq/A7FtkYZGLzNvfhH+ODveT0opq6f64kn+Cngq8PRxVm8F3FdKubur/JZ63VidW8ZZzyTqLEqycSllxThxbUR14aMxmwKMjIwwMjKyVqBjZeOt09pGR0cB2GiDALDxxhszOjrq/pvA+j5fg77fbFtsW9pi29Kb6Wpbmsy8+cMk29Vdh9sBf1tKuTXJ84EbSim/nMx2kjwSOAZYXEpZ2Wsc0+z9jDNY7PTTT2fhwrUGrf/RGWecMZ0xDZ0jnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUwP2xbblrbYtvSm7bal58QiyV8ApwI/AXYH/gG4lWqA1RuAl09yU7sADwUuTDJWNh/YPckBwN7Ahkk27/plsSXwu/rx74Bdu7a7Zce6sfstx6mzbLxfFLXDgCM7ljcFblqyZAmLFi1aq/LIyAhnnHEGixcvZsGCBRNsUmMuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqvbZtti2TJVtS2+mq23pObEADgc+WEo5Msk9HeXfBw7oYTtnAU/uKjseuBI4AriR6sqGewJfB0jyOGAbYOx467nAPyR5aCnl1rpsMbAMuLyjzgu6XmdxxzbWUkpZBawaWx5rnBYsWLDOL/f61qsyb151MtKq1YWVqwsrVqxg3rx57rv1mOjzNUT7zbZlArYtk2Pb0kzbbUuTxOLJwKvHKb8VeMhkN1JKuQe4rLMsyR+AO0opl9XLxwFHJrmT6gv9L8C59ahtgNOpvuRfSvIeqmOeHwOOrb/AUI0mPyDJx6kGhz0PeCXwwsnGKmlG2LZIQ6DJPBZ3Aw8bp3xnoO0DWe8CvkP1q+Icqq7Hl46tLKXcD+wL3E/1K+HLwInAwR11rqX6oi8GLgHeDbyxlOLpYNLscje2LdLAa9Jj8VWqc7lfQXXe+bwkuwGfpPriNVZK2aNreSXw9vo20XOuZ+3uyO46Z1M1TpJmL9sWaQg06bH4ANWxyhupJq65nCrj/ylVV6EkNWHbIg2BJqeb3ge8KclHgSdRNQAXlVKubjs4SXOHbYs0HJocCgGglHJDkhvrx+PN7y9JPbNtkQZbk0MhJHlDksuAlcDKJJcleWO7oUmaa2xbpMHXZIKsQ4GDqE/PqoufBRyVZJtSysETPlmSJmDbIg2HJodC3gq8qZTylY6y/0nyC6oGwS+/pCZsW6Qh0ORQyALg5+OUX8AUxmxImvNsW6Qh0CSx+BLVL4tubwZOmlo4kuYw2xZpCDT9FfCGJEuAselvn0E1z/6JSf54gZ1SykFTjE/S3GLbIg24JonFk4AL68fb1fe317cnddTzNDFJvbBtkYZAkwmynjsdgUia22xbpOHQaB4LgCTbJ9k7ycb1ctoLS9JcZdsiDbaeE4skD05yFvAr4Lv86WqExyX5VJvBSZo7bFuk4dCkx+IoYIRqQNXyjvKvAfu0EZSkOcm2RRoCTQZvLgH2LqXc1NVDeTXwqFaikjQX2bZIQ6BJj8UDWfPXxJgtgFVTC0fSHGbbIg2BJonFj4DXdiyXJPOA9wA/aCUqSXORbYs0BJocCnkPcFaSpwEbAh8Hnkj1q2K3FmOTNLfYtkhDoOcei1LKZcBjgR8D36LqvvwGsHMp5Zp2w5M0V9i2SMOhpx6LJAuA7wFvKaX84/SEJGmusW2RhkdPPRallBHgKdMUi6Q5yrZFGh5NBm9+GXhD24FImvNsW6Qh0GTw5gbA/kn2Ai4A/tC50qsOSmrItkUaAlO9uulju9Z51UFJTdm2SEPAq5tKmhVsW6Th0PjqppIkSd1MLCRJUmtMLCRJUmtMLCRJUmsmlVgkuTDJg+rHBydZOL1hSZoLbFuk4TPZHosdqObtB/gwsMn0hCNpjrFtkYbMZE83vRg4PsmPgQB/l+Te8SqWUg5tKTZJw+9ibFukoTLZxGI/4CPAvlQT1TwfWD1OvQL45Zc0Wfth2yINlUklFqWUq4C/AkgyCuxZSrl1OgOTNPxsW6Th02TmTc8kkdQ62xZpODS5VghJtgMOpBp4BXA5cEwp5ZqW4pI0B9m2SIOv518ISfam+rLvCvyivj0D+GWSxe2GJ2musG2RhkOTHovDgaNKKe/rLExyOHAEcEYbgUmac2xbpCHQ5JjmDsBx45R/AXjC1MKRNIfZtkhDoElicRuw0zjlOwGO5pbUlG2LNASaHAr5HPDZJI8BflqX7Qa8FziyrcAkzTm2LdIQaNJj8VGqiWreAfywvh0AHAJ8rJcNJXl/kp8luSfJrUm+meRxXXUekOTYJHckuTfJ15Ns2VVnmySnJFleb+cTSTboqrNHfV2CVUl+nWS/nt+5pOlk2yINgZ4Ti1I5qpTyCGAzYLNSyiNKKceUUkqPm/sL4FjgmcBiYAFwepIHdtQ5CngR8Iq6/tbAN8ZWJpkPnAJsCDwbeB3VbH6HdtTZtq7zA6pu1aOBz9ej0CXNArYt0nBoNI/FmFLKPVN8/j6dy3WmfyuwC3BOks2ANwCvLqV8v67zeuCKJM8spZwHLKEa2LVXKeUW4OIkHwKOSHJIKeU+4C3AtaWUd9cvdUWS5wDvAk6bynuQ1D7bFmlwTSmxmAab1fd31ve7UP3SOHOsQinlyiQ3AM8CzqvvL62/+GNOA/4NeCJwUV3nTNZ0GtWvi7Uk2QjYqKNoU4CRkRFGRkbWqj9WNt46rW10dBSAjTYIABtvvDGjo6Puvwms7/PlfpsU25Y5wLalN9PVtsyaxCLJPKov409KKZfVxVsB95VS7u6qfku9bqzOLeOsZxJ1FiXZuJSyomvd+6ku4byG008/nYULF074Hs44w9Pse3HE87epHrzoKyxdupSlS5f2N6BZbqLP1/Lly2c4ksFi2zL32Lb0pu22ZdYkFlTHQ58EPKffgQCHseYo9E2Bm5YsWcKiRYvWqjwyMsIZZ5zB4sWLWbBgwUzFOLAuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqoFi2zJH2Lb0Zrralp4SiyQLgO8BbymlXN3oFcff7qepLpu8eynlpo5VvwM2TLJ51y+LLet1Y3V27drklh3rxu63HKfOsnF+UVBKWQWs6ogPgAULFqzzy72+9arMm1eNGV61urBydWHFihXMmzfPfbceE32+hmG/2bbYtrTBtqWZttuWns4KKaWMAE9p9ErjSOXTwEuA55VSru2qcgEwAuzZ8ZzHAdsA59ZF5wJPTvLQjuctBpZRXXdgrM6erGlxxzYk9ZFtizQ8msxj8WWq0dRtOBb4a+DVwD1JtqpvGwOUUn5PNcXvkUmem2QX4Hjg3HrUNsDpVF/yLyXZsT7N62PAsfWvA4DPAI9J8vEkj0/yNuCVVKebSZodbFukIdBkjMUGwP5J9qLK+v/QubKUclAP23prfX92V/nrgRPqx+8CRoGvU42mPg14W8fr3Z9kX6qR2ufW8XwROLijzrVJXkj1Zf9b4CbgjaUUTweTZg/bFmkINEksngRcWD9+bNe6niaxKaVkEnVWAm+vbxPVuR54wXq2czawcy/xSZpRti3SEOg5sSilPHc6ApE0t9m2SMOhyRgLAJJsn2TvsWOWGRveLElTYNsiDbaeE4skD05yFvAr4LvAw+pVxyX5VJvBSZo7bFuk4dCkx+IoqtO0tgE6p+X6GrDPuM+QpPWzbZGGQJPBm0uAvUspN3X1UF4NPKqVqCTNRbYt0hBo0mPxQNb8NTFmCzpmlJOkHtm2SEOgSWLxI+C1HculvsjPe4AftBKVpLnItkUaAk0OhbwHOCvJ04ANgY9TXUJ4C2C3FmOTNLfYtkhDoOcei/qyw48Ffgx8i6r78hvAzqWUa9oNT9JcYdsiDYdGl02v59n/x5ZjkTTH2bZIg69RYpHkQVQXC9qhLrocOL6UcmdbgUmae2xbpMHXZIKs3YHrgHcCD6pv7wSurddJUs9sW6Th0KTH4liqCWveWkq5HyDJfOBf63VPbi88SXOIbYs0BJqcbro98KmxLz5UlxcGjqzXSVITti3SEGiSWFzIn45/dtoBuGRq4Uiaw2xbpCEwqUMhSZ7SsfjPwDFJtgfOq8ueCbwdeF+74UkaZrYt0vCZ7BiLi4ECdE7g//Fx6p1MdYxUkibjYmxbpKEy2cRi22mNQtJcZdsiDZlJJRallOunOxBJc49tizR8mk6QtTXwHOChdA0ALaX8cwtxSZqDbFukwddzYpFkP+DfgfuAO6iOj44pVAOwJKknti3ScGjSY/FR4FDgsFLKaMvxSJq7bFukIdBkHouFwFf94ktqmW2LNASaJBbHAa9oOxBJc55tizQEmhwKeT/wnST7AJcCI50rSykHtRGYpDnHtkUaAk0Ti72Bq+rl7gFWktSEbYs0BJokFu8G9i+lnNByLJLmNtsWaQg0GWOxCvhJ24FImvNsW6Qh0CSxOAZ4R9uBSJrzbFukIdDkUMiuwPOS7Av8krUHWL20jcAkzTm2LdIQaJJY3A18o+U4JOlubFukgddzYlFKef10BCJpbrNtkYZDkzEWkiRJ42pyEbJrWcc55aWUx0wpIklzkm2LNByajLE4umt5AbAzsA/wiakGJGnOOrpr2bZFGkBNxlgcM155krcDT5tyRJLmJNsWaTi0OcbiVOBlLW5PksC2RRoobSYWLwfubHF7kgS2LdJAaTJ48yLWHGAVYCvgz4C3tRSXpDnGtkUaDk0Gb36za3kUuA04u5Ry5ZQjkjRXfbNr2bZFGkBNBm9+ZDoCmQn1ILC/p/oVdAnwjlLK//Y3Kklg2yINizkzQVaSVwFHAh8Bnkr15T8tyUP7GpikgWbbIq1p0olFktEk96/ntno6g52ig4DPlVKOL6VcDrwFWA7s39+wpLnNtkUaLr0cCnnJOtY9C3gns7QHJMmGwC7AYWNlpZTRJGdSxd5dfyNgo46iTQHuvPNORkZGuqszMjLC8uXL+dGPfsQGG2zA6OgoAPPmzWN0dPSP951l61s/E2X9iuHqq69mk002IXdeT0bu5wEPeAAXXHAB995775zfN+PFsHr1apYvX84dd9zBggUL1vr83XPPPWuVDRjblkm0LfPmzZs1n8nZGsNVV101I23LbNgPbcQ1bW1LKaXxDXgc8N/AauCLwKOmsr3pugFbU402f1ZX+ceB88epf0hd35u3Qbo9vN/ftRa/s7Yt3rzNnltPbUuTs0JIsjXV8cTXAacBO5VSLmuyrVnqMKpjpp22YOJz6TcFbgIeAQz8z8cZ4P7qzWT216bAb2csomli27IWvyu9cX/1Zlralp4SiySbAR8A3gFcDOxZSvlRL9vok9uB+4Etu8q3BH7XXbmUsgpY1VW8bKKNJxl7eE8pZcJ6qri/ejPJ/TXQ+9G2ZXx+V3rj/urNdLUtvQzefA/wG2Bf4P+VUp49IF98Sin3ARcAe46VJZlXL5/br7gk2bZIwyb1cb/1V0xGgRXAmVQZ+rhKKS9tJ7R21aeEfRH4G+B/gQOBVwKPL6XcMsVtLwJ+D2xmlrx+7q/eDPv+sm1Z57aH+m/fNvdXb6Zrf/VyKOREqkEcA6mU8rUkfwYcSjWJzcXAPlP94tdWUR0X7u7i1PjcX70Z9v1l2zKxYf/bt8391Ztp2V+T7rGQJElan1l5brgkSRpMJhaSJKk1JhaSJKk1JhaSJKk1JhYNJdkiyUlJliW5O8lxSTZZz3POTlK6bp+ZqZhnUpK3J7kuycok5yfZdT31X5Hkyrr+pUleMFOxzga97K8k+43zOVo5k/Fq+ti2rJttS2/60baYWDR3EvBEYDHVxD67A5+dxPM+Bzys4/ae6QqwX3q9jHSSZwNfAY4Ddga+CXwzyZNmJOA+a3jZ7WWs+Tl61HTHqRlj2zIB25be9K1t6fdFfAbxBuxAdd790zrK9gFGga3X8byzgaP7Hf8M7J/zgU93LM8DlgLvm6D+14DvdJWdB3ym3+9llu6v/YC7+x23t2n5LNi2rHv/2LZM7/5qpW2xx6KZZ1Ht/J93lJ1J9eV/xnqe+5oktye5LMlhSRZOW5R90HEZ6TPHykopo/XyWpeRrj2rs37ttHXUHxoN9xfAJkmuT3Jjkm8leeI0h6qZYdsyAduW3vSzbWl0dVOxFXBrZ0EpZXWSO+t1EzkZuJ7qSnFPAY6gujz0rJyquKGHAPOB7lkHbwEeP8Fztpqg/rr25bBosr+uAvYHfgFsBvwd8NMkTyyl3DRdgWpG2LZMzLalN31rW0wsOiQ5HHjveqrt0HT7pZTO46SXJrkZOCvJdqWUa5puV3NLKeVcOi5wleSnwBVU16r4UL/i0sRsWzQI2mpbTCzW9CnghPXU+Q3V5ZDXGPySZANgC8a5VPI6nF/fbw8My5e/p8tI137XY/1h0mR/raGUMpLkIqrPkWYn25aps23pTd/aFsdYdCil3FZKuXI9t/uoMrrNk+zS8fTnUe3P88fd+Ph2qu9vbucd9F9pdhnpczvr1xavo/7QaLi/1pBkPvBkhuhzNGxsW6bOtqU3fW1b+j1qdVBvwKnAhcCuwG7Ar4CTO9Y/HLgS2LVe3o6qK2kX4NHAi6l+Sfyw3+9lGvbNq4CVwOuounf/HbgL2LJefyJwWEf9ZwMjwLupjv0dAtwHPKnf72WW7q+DgSXAY6hOIfsK1WXHn9Dv9+Ktlc+DbcvE+8a2ZXr3VyttS9/f+KDeqLomTwbuobqe/ReATTrWP5rqtLE96uVHAj8E7qj/0FcDHwcW9fu9TNP+OYBqMNkqql9az+hYdzZwQlf9V1ANHFoFXAa8oN/vYbbuL+Cojrq/A04Bdu73e/DW2mfBtmXd+8e2ZZr2V1tti5dNlyRJrXGMhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhWZUkuuSHNjvOCQNH9uX2cHEQpIktcbEQpIktcbEQpOW5M1Jfltferez/FtJvpBku/rxLUnuTfKzJHutY3uPTlKS7NRRtnldtkdH2ZOSnFpv85YkX0rykGl4i5L6xPZleJhYqBf/CTwYeO5YQZItgH2Ak4BNgO8CewI7A98Dvp1km6YvmGRz4PvARcDT6tfaEviPptuUNCvZvgyJDfodgAZHKeWuJKcCrwbOqotfDtwO/KCUMgpc0vGUDyV5CfBi4NMNX/YA4KJSygfGCpLsD9yY5LGllF813K6kWcT2ZXjYY6FenQS8LMlG9fJrgK+WUkaTbJLkk0muSHJ3knuBHYDGvyiAHYHn1t2U99bbvLJet90Utitp9rF9GQL2WKhX3wYCvDDJz4D/A7yrXvdJYDHwd8CvgRXAfwEbTrCt0fo+HWULuupsUr/me8d5/s29Bi9pVrN9GQImFupJKWVlkm9Q/ZLYHriqlHJhvXo34IRSyn8DJNkEePQ6Nndbff8wqmOcADt11bkQeBlwXSll9ZTfgKRZy/ZlOHgoRE2cBLwQ2L9+POZq4KVJdkqyI3Ay6/iMlVJWAOcB70uyQ5K/AD7WVe1YYAvgK0meXo8M3zvJ8Unmt/ieJM0Oti8DzsRCTXwfuBN4HNWXe8xBwF3AT6m6F0+j+kWwLvtT9ZxdABwNfLBzZSnlt1S/VOYDpwOX1vXu5k9dnZKGh+3LgEsppd8xSJKkIWGPhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhaZVkv2SlCSP7ncskqTpZ2IhSZJak1JKv2PQEEsyH1gArCp+2CRp6JlYSJKk1ngoRNOqc4xFki8muT3JgnHqnZ7kqn7EKElqj4mFZtKXgAcDe3cWJtkKeB7w5X4EJUlqj4mFZtL3gZuAv+4q/39Un0UTC0kacCYWmjGllFHgJODFSTbtWPUa4KellGv7E5kkqS0mFpppJwIbAy8BSPI4YBeqwySSpAFnYqEZVUq5HLiAPx0O+WvgPuA/+haUJKk1JhbqhxOB5yV5GPBq4JRSyl19jkmS1AITC/XDV4ACHAM8BgdtStLQMLHQjCul3AZ8D3gFcDdwSl8DkiS1xsRC/XJiff8fpZRVfY1EktQaEwtNq1LKCaWUlFKu61p1X33vYRBJGiJeK0R9keQ7wA7A9l6cTJKGxwb9DkBzS5K/Ap4CvBD4W5MKSRou9lhoRiUpwL3A14C3lFJW9zkkSVKLek4skuwD3FtK+XG9/HbgTcDlwNudj0CSpLmryeDNTwCLAJI8GfgU8F1gW+DI9kKTJEmDpskYi22peicAXgZ8p5TygSRPpUowJEnSHNUksbgPWFg/3os/zUdwJ3VPxrBJEmBr4J5+xyJNYFPgtw6GldRvTRKLHwNHJvkJsCvwqrr8scBNbQU2y2zN8L43DY9HAEv7HYSkua1JYnEA8K/Ay4G3llLGGrLnU03TPIzuAbjxxhtZtGjtTpmRkRFOP/10lixZwoIFC2Y8uEHj/urN+vbXsmXLeOQjHwn2qEmaBXpOLEopNwD7jlP+rlYimsUWLVo0YWKxcOFCFi1a5D/KSXB/9cb9JWmQNJogK8k8YHvgoXSdWVJKOaeFuCRJ0gDqObFI8kzgZOBRQLpWF2B+C3FJkqQB1KTH4jPAz6mmZL6ZKpmQenbJJZcwb948HvKQh7DNNtv0OxxJUguaJBZ/Dry8lPLrtoPR3HDTTdUJNrvvvjsrVqzgARsv5KorrzC5kKQh0GTmzfOpxldIjdxxxx0AbLHPO3jwvu9m5Yrl3H777X2OSpLUhiY9Fv8CfCrJVsClwEjnylLKL9oITMNvwRYP5/7VHkmTpGHSJLH4en3/hY6yQjWQ08GbkiTNYU2vFSJJkrSWJhNkXT8dgUiSpMHXdIKs7YADgR3qosuBY0op17QUlyRJGkA9nxWSZG+qRGJX4Bf17RnAL5Msbjc8SZI0SJr0WBwOHFVKeV9nYZLDgSOAM9oITJIkDZ4m81jsABw3TvkXgCdMLRxJkjTImiQWtwE7jVO+E3DrVIKRJEmDrcmhkM8Bn03yGOCnddluwHuBI9sKTJIkDZ4micVHgXuAdwOH1WW/BQ4B/rmdsCRJ0iBqMo9FAY4CjkqyaV12T9uBSZKkwdNoHosxJhSSJKnTpBKLJBcCe5ZS7kpyEdU1QcZVSnlqW8FJkqTBMtkei28Bqzoee0lKSZK0lkklFqWUj3Q8PmTaopEkSQOtyZTev0ny4HHKN0/ym3bCkiRJg6jJBFmPBuaPU74R8IgpRSNJkgbapM8KSfLijsW9k/y+Y3k+sCdwbVuBSZKkwdPL6abfrO8L8MWudSPAdVSTZkmSpDlq0olFKWUeQJJrgaeXUm6ftqgkSdJAajLz5rbTEYgkSRp8k50g653AZ0spK+vHEyqleL0QSZLmqMn2WLwLOAlYWT+eSMELkUmSNGdNdoKsbcd7LEmS1KnJBFkHJ1k4TvnGSQ5uJyxJkjSImkyQ9WFgk3HKF9brJEnSHNUksQjjX4RsR+DOpoEkeV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJIkaWK9zLx5F1VCUYBfJelMLuZT9WJ8pkkQSZ4O/A3wi65VRwEvBF4B/B74NPANYLf6efOBU4DfAc8GHgacSDVh1wfqOtvWdT4DvIZqhtDPJ7m5lHJak3glSdL4epnH4kCq3oovUB3y6JzS+z7gulLKub0GkGQTqjNO3gR8sKN8M+ANwKtLKd+vy14PXJHkmaWU84AlwBOAvUoptwAXJ/kQcESSQ0op9wFvAa4tpYzNCnpFkudQnd1iYiFJUot6mXnzi/DHmTd/UkpZ3VIMxwKnlFLOTPLBjvJdgAXAmR0xXJnkBuBZwHn1/aV1UjHmNODfgCcCF9V1zmRNpwFHTxRQko2oLqo2ZlOAkZERRkZG1qo/VjbeOq1tdHQUgI02CAAbb7wxo6Oj7r8JrO/z5X6TNJs0mXnzh0m2q3sPtgP+tpRya5LnAzeUUn452W0l+SvgqcDTx1m9FXBfKeXurvJb6nVjdW4ZZz2TqLMoycallBXjvPb7GWcg6umnn87ChWudEPNHZ5xxxoTrtLYjnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUjSxHpOLJL8BXAq8BNgd+AfgFupBm++AXj5JLfzSOAYYHEpZWWvcUyzw4AjO5Y3BW5asmQJixYtWqvyyMgIZ5xxBosXL2bBggUzFePAuuiii7j55pt576k3sGp14ZaT38c555zDjjvu2O/QZqX1fb6WLVvWh6gkaXw9JxbA4cAHSylHJrmno/z7wAE9bGcX4KHAhUnGyuYDuyc5ANgb2DDJ5l29FltSDdakvt+1a7tbdqwbu99ynDrLJuitoJSyClg1tjwW34IFC9aZOKxvvSrz5lUnI61aXVi5urBixQrmzZvnvluPiT5f7jdJs0mT002fDPz3OOW3Ag/pYTtn1dvaqeP2c6qBnGOPR6jO4gAgyeOAbYCxQaLnAk9O8tCO7S4GlgGXd9TZkzUt7tiGJElqSZMei7upTuu8tqt8Z2DSB8lLKfcAl3WWJfkDcEcp5bJ6+TjgyCR3UiUL/wKcW58RAnA6VQLxpSTvoRpP8THg2LrXAarTTA9I8nGqM1qeB7yS6jRWSZLUoiY9Fl+lOp1zK6o5LeYl2Q34JNUcEm16F/Ad4OvAOVSHNV46trKUcj+wL3A/VQ/El+sYDu6ocy1VErEYuAR4N/BG57CQJKl9TXosPkB1iuiNVGMiLq/vT6bqLWislLJH1/JK4O31baLnXA+8YD3bPZuqR0WSJE2jJqeb3ge8KclHgSdRzbh5USnl6raDkyRJg6VJjwUApZQbktxYPx7v2iGSJGmOaTLGgiRvSHIZsBJYmeSyJG9sNzRJkjRomkyQdShwEPUZGnXxs4CjkmxTSjl4widLkqSh1uRQyFuBN5VSvtJR9j9JfkGVbJhYSJI0RzU5FLKAavKqbhcwhTEbkiRp8DVJLL5E1WvR7c1Us2ZKkqQ5qmkPwxuSLKG6dDnAM6im2j4xyR8v3lVKOWiK8UmSpAHSJLF4EnBh/Xi7+v72+vakjnqegipJ0hzTZIKs505HIJIkafA1mscCIMn2SfZOsnG9nPU9R5IkDbeeE4skD05yFvAr4LtUVzoFOC7Jp9oMTpIkDZYmPRZHASNUgzWXd5R/DdinjaAkSdJgajJ4cwmwdynlpq6jH1cDj2olKkmSNJCa9Fg8kDV7KsZsAayaWjiSJGmQNUksfgS8tmO5JJkHvAf4QStRSZKkgdTkUMh7gLOSPA3YEPg48ESqHovdWoxNkiQNmJ57LEoplwGPBX4MfIvq0Mg3gJ1LKde0G54kSRokPfVYJFkAfA94SynlH6cnJEmSNKh66rEopYwAT5mmWCRJ0oBrMnjzy8Ab2g5EkiQNviaDNzcA9k+yF3AB8IfOlV7RVJKkuWuqVzd9bNc6r2gqSdIc5tVNJUlSaxpf3VSSJKmbiYUkSWqNiYUkSWqNiYUkSWrNpBKLJBcmeVD9+OAkC6c3LEmSNIgm22OxA9U1QQA+DGwyPeFIkqRBNtnTTS8Gjk/yYyDA3yW5d7yKpZRDW4pNkiQNmMkmFvsBHwH2pZoE6/nA6nHqFcDEQpKkOWpSiUUp5SrgrwCSjAJ7llJunc7AJEnS4Gky86ZnkkiSpHE1uVYISbYDDqQa1AlwOXBMKeWaluKSJEkDqOfehyR7UyUSuwK/qG/PAH6ZZHG74UmSpEHSpMficOCoUsr7OguTHA4cAZzRRmCSJGnwNBkvsQNw3DjlXwCeMLVwJEnSIGuSWNwG7DRO+U6AZ4pIkjSHNTkU8jngs0keA/y0LtsNeC9wZFuBSZKkwdOkx+KjVJNgvQP4YX07ADgE+FgvG0ry/iQ/S3JPkluTfDPJ47rqPCDJsUnuSHJvkq8n2bKrzjZJTkmyvN7OJ5Js0FVnj/qaJ6uS/DrJfj2/c0mStE49JxalclQp5RHAZsBmpZRHlFKOKaWUHjf3F8CxwDOBxcAC4PQkD+yocxTwIuAVdf2tgW+MrUwyHzgF2BB4NvA6qplCD+2os21d5wdUh2yOBj5fn+EiSZJa0mgeizGllHum+Px9OpfrXoRbgV2Ac5JsBrwBeHUp5ft1ndcDVyR5ZinlPGAJ1aDRvUoptwAXJ/kQcESSQ0op9wFvAa4tpby7fqkrkjwHeBdw2lTegyRJ+pMpJRbTYLP6/s76fheqXowzxyqUUq5McgPwLOC8+v7SOqkYcxrwb8ATgYvqOmeyptOoei7WkmQjYKOOok0BRkZGGBkZWav+WNl467S20dFRADbaIABsvPHGjI6Ouv8msL7Pl/tN0mwyaxKLJPOo/tH/pJRyWV28FXBfKeXuruq31OvG6twyznomUWdRko1LKSu61r2f6vLwazj99NNZuHDhhO/hjDOcwqMXRzx/m+rBi77C0qVLWbp0aX8DmuUm+nwtX758hiORpInNmsSCaqzFk4Dn9DsQ4DDWPMNlU+CmJUuWsGjRorUqj4yMcMYZZ7B48WIWLFgwUzEOrIsuuoibb76Z9556A6tWF245+X2cc8457Ljjjv0ObVZa3+dr2bJlfYhKksbXU2KRZAHwPeAtpZSr2woiyaepLsm+eynlpo5VvwM2TLJ5V6/FlvW6sTq7dm1yy451Y/dbjlNn2Ti9FZRSVgGrOuIDYMGCBetMHNa3XpV586oxw6tWF1auLqxYsYJ58+a579Zjos+X+03SbNLTWSGllBHgKW29eCqfBl4CPK+Ucm1XlQuAEWDPjuc8DtgGOLcuOhd4cpKHdjxvMbCM6pomY3X2ZE2LO7YhSZJa0GQeiy9TnanRhmOBvwZeDdyTZKv6tjFAKeX3VNOHH5nkuUl2AY4Hzq3PCAE4nSqB+FKSHetTSD8GHFv3PAB8BnhMko8neXyStwGvpDqVVZIktaTJGIsNgP2T7EXVo/CHzpWllIN62NZb6/uzu8pfD5xQP34XMAp8nepMjdOAt3W83v1J9qU6C+TcOp4vAgd31Lk2yQupEom/BW4C3lhK8VRTSZJa1CSxeBJwYf34sV3repogq5SSSdRZCby9vk1U53rgBevZztnAzr3EJ0mSetNzYlFKee50BCJJkgZfkzEWACTZPsneY+MhMnbqhCRJmrN6TiySPDjJWcCvgO8CD6tXHZfkU20GJ0mSBkuTHoujqE4B3QbonPLva8A+4z5DkiTNCU0Gby4B9i6l3NR19ONq4FGtRCVJkgZSkx6LB7JmT8WYLeiYrVKSJM09TRKLHwGv7Vgu9QXE3gP8oJWoJEnSQGpyKOQ9wFlJngZsCHyc6vLkWwC7tRibJEkaMD33WNSXNH8s8GPgW1SHRr4B7FxKuabd8CRJ0iBpdNn0+hoe/9hyLJIkacA1SiySPIjqQmQ71EWXA8eXUu5sKzBJkjR4mkyQtTtwHfBO4EH17Z3AtfU6SZI0RzXpsTiWajKst5ZS7gdIMh/413rdk9sLT5IkDZImp5tuD3xqLKmA6tLlwJH1OkmSNEc1SSwu5E9jKzrtAFwytXAkSdIgm9ShkCRP6Vj8Z+CYJNsD59VlzwTeDryv3fAkSdIgmewYi4uBAnReHOTj49Q7mWr8hSRJmoMmm1hsO61RSJKkoTCpxKKUcv10ByJJkgZf0wmytgaeAzyUrgGgpZR/biEuSZI0gHpOLJLsB/w7cB9wB9XYizGFanCnJEmag5r0WHwUOBQ4rJQy2nI8kiRpgDWZx2Ih8FWTCkmS1K1JYnEc8Iq2A5EkSYOvyaGQ9wPfSbIPcCkw0rmylHJQG4FJkqTB0zSx2Bu4ql7uHrwpSZLmqCaJxbuB/UspJ7QciyRJGnBNxlisAn7SdiCSJGnwNUksjgHe0XYgkiRp8DU5FLIr8Lwk+wK/ZO3Bmy9tIzBJkjR4miQWdwPfaDkOSZI0BHpOLEopr5+OQCRJ0uBrMsZCkiRpXE0uQnYt65ivopTymClFJEmSBlaTMRZHdy0vAHYG9gE+MdWAJEnS4GoyxuKY8cqTvB142pQjkiRJA6vNMRanAi9rcXuSJGnAtJlYvBy4s8XtSZKkAdNk8OZFrDl4M8BWwJ8Bb2spLkmSNICaDN78ZtfyKHAbcHYp5copRyRJkgZWk8GbH5mOQCRJ0uCbUxNkJXl7kuuSrExyfpJd+x2TJEnDZNKJRZLRJPev57Z6OoOdiiSvAo4EPgI8FbgEOC3JQ/samCRJQ6SXQyEvWce6ZwHvZHb3gBwEfK6UcjxAkrcALwT2Bw7vZ2CSJA2LSScWpZRvdZcleRzVP+UXAScBB7cXWnuSbAjsAhw2VlZKGU1yJlVS1F1/I2CjjqJNAe68805GRka6qzMyMsLy5cv50Y9+xAYbbMDo6CgA8+bNY3R09I/3nWXrWz8TZf2K4eqrr2aTTTYhd15PRu7nAQ94ABdccAH33nvvnN8348WwevVqli9fzh133MGCBQvW+vzdc889a5VJUr80OSuEJFtTHVJ4HXAasFMp5bI2A2vZQ4D5wC1d5bcAjx+n/vuBD3cXbrvttu1HJgDe/OY39zuEYbApsKzfQUia23pKLJJsBnwAeAdwMbBnKeVH0xBXvx1GNR6j0xZMPAHYpsBNwCMAfz6un/urN5PZX5sCv52xiCRpApNOLJK8B3gv8Dvg/413aGQWux24H9iyq3xLqvezhlLKKmBVV/GEvwSTjD28p5TiL8b1cH/1ZpL7y/0oaVbopcficGAF8GvgdUleN16lUspL2wisTaWU+5JcAOxJPcFXknn18qf7GJokSUOll8TiRNacynvQHAl8McnPgf8FDgQeCBzfz6AkSRomvZwVst80xjHtSilfS/JnwKFU1za5GNinlNI9oLOJVVSDWbsPn2h87q/euL8kDYyUMsidEJIkaTaZzRNaSZKkAWNiIUmSWmNiIUmSWmNiIUmSWmNi0VCSLZKclGRZkruTHJdkk/U85+wkpev2mZmKeSb1eon6JK9IcmVd/9IkL5ipWGeDXvZXkv3G+RytnMl4JWkiJhbNnQQ8EVgM7AvsDnx2Es/7HPCwjtt7pivAfun1EvVJng18BTgO2JlqErNvJnnSjATcZ73ur9oy1vwcPWq645SkyfB00waS7ABcDjy9lPLzumwf4LvAI0op416zIcnZwMWllANnKNS+SHI+8LNSygH18jzgRuBfSilrXaI+ydeAB5ZS9u0oO49qX71lhsLumwb7az/g6FLK5jMZpyRNhj0WzTwLuHssqaidCYwCz1jPc1+T5PYklyU5LMnCaYuyDzouUX/mWFkpZbReXusS9bVnddavnbaO+kOj4f4C2CTJ9UluTPKtJE+c5lAlaVIaXTZdbAXc2llQSlmd5M563UROBq6nugrlU4AjgMcBs+76KlPQ6yXqodpn49Vf174cFk3211XA/sAvgM2AvwN+muSJpZSbpitQSZoME4sOSQ6nuoLruuzQdPullM4xGJcmuRk4K8l2pZRrmm5Xc0sp5Vzg3LHlJD8FrgD+BvhQv+KSJDCx6PYp4IT11PkN1aXW1xhYl2QDYAvGuQz7Opxf328PDEti0dMl6mu/67H+MGmyv9ZQShlJchHV50iS+soxFh1KKbeVUq5cz+0+ql+LmyfZpePpz6Pan+ePu/Hx7VTf39zOO+i/ev+MXaIeWOMS9edO8LRzO+vXFq+j/tBouL/WkGQ+8GSG6HMkaXDZY9FAKeWKJN8DPpfkLcAC4NPAV8fOCEnycOAs4LWllP9Nsh3waqozR+6gGmNxFHBOKeUX/Xgf02idl6hPciKwtJTy/rr+McAPk7wbOAX4K+BpwJtnOO5+6Wl/JTkYOA/4NbA58PdUp5t+fqYDl6RuJhbNvYYqmTiL6myQrwPv7Fi/gGpg5thZH/cBe/Gnfxo31s/52MyEO3MmcYn6baj22Vj9nyZ5NdW++CfgauD/llIum9HA+6TX/QU8iGo+lK2Au6h6PJ5dSrl8xoKWpAk4j4UkSWqNYywkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCw0o5Jcl+TAfschSZoeJhaSJKk1JhaSJKk1JhaatCRvTvLb+uqbneXfSvKFJNvVj29Jcm+SnyXZax3be3SSkmSnjrLN67I9OsqelOTUepu3JPlSkodMw1uUJE2RiYV68Z/Ag4HnjhUk2QLYBzgJ2ITq6q17AjsD3wO+nWSbpi+YZHPg+8BFVFc83QfYEviPptuUJE0fr26qSSul3JXkVKrLv59VF78cuB34QSllFLik4ykfSvIS4MVUV4Jt4gDgolLKB8YKkuwP3JjksaWUXzXcriRpGthjoV6dBLwsyUb18muAr5ZSRpNskuSTSa5IcneSe4EdqC773dSOwHPrwyD31tu8sl633RS2K0maBvZYqFffBgK8MMnPgP8DvKte90lgMfB3wK+BFcB/ARtOsK3R+j4dZQu66mxSv+Z7x3n+zb0GL0maXiYW6kkpZWWSb1D1VGwPXFVKubBevRtwQinlvwGSbAI8eh2bu62+fxjVGAqAnbrqXAi8DLiulLJ6ym9AkjStPBSiJk4CXgjsXz8eczXw0iQ7JdkROJl1fMZKKSuA84D3JdkhyV8AH+uqdiywBfCVJE+vzzzZO8nxSea3+J4kSS0wsVAT3wfuBB5HlTyMOQi4C/gp1eGL06h6HNZlf6qeswuAo4EPdq4spfyWqidkPnA6cGld727+dChFkjRLpJTS7xgkSdKQsMdCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS15v8Herd6cf8h/7wAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_16-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 32"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"gasdev idum\n",
"gasdev idum2\n",
"gasdev iy\n",
"cov_value di\n",
"cov_value dj\n",
"cov_value dk\n",
"ran2 idum\n",
"ran2 idum2\n",
"ran2 iy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCyUlEQVR4nO3de5gkZXn38e9vl2XlNIt4WDwhKB7wBIpB8UBQ5KCoUaPiq3mVYDQqaBCNilFB1CBqQCMaXxVRjCiaGDziAiqCiihHQRARWQ4LrCKwC4FdFvZ5/6hq7G1mZqd7a6Z3qr+f6+qrp55+quru6u577q56qjqlFCRJkpowZ9gBSJKk9rCwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGw0MCSHJpkRi7dmuS0JKd1Te+apCR56Qyt/4tJFs/EunrWu3X9PPed6XWPiiQbJPlIkquTrE5y4rBjmikz+RnW6LCwEABJ9q3/gXVuK5Jcm2RRkrck2ayh9TywTmY7NLG8Jq3PsWla7Qf8M/BfwGuAo4YbjjS7bTDsALTeeR9wBTAP2BLYFfg4cFCSF5ZSft3V94PAh/tc/gOBQ4DFwPl9zLdHn+sZxGSxvY7hFOJXAhsBq4aw7lHxbGBJKeWtww5EagMLC/U6qZRydtf04UmeDXwX+HaS7UoptwOUUu4E7pzOYJJsXEq5rZRyx3SuZ21KKUP5x16qXwlcMYx1r4sk9wLuKKWsHnYsU3B/4OamFpZkDrBhKWXWvW5SEzwUorUqpfwI+ADwUODvOu3jHZ9NsnuSnya5OcmtSS5N8q/1Y7sCv6q7Htt12GXf+vHTklyUZMckpye5DfjXrsdOGye8uUn+Ncn1Sf43ybeTPKQnpsVJvtg7Y/cypxDbPcZYJNkkyb/Vx+ZX1s/17UnS068kOTrJi+rntzLJb5LsNc7z6Y3xHmMs6lhuTfKgJCfWf/8pyceSzJ3CMhcn+W6SPZKcXx/2ujjJS3r6bVEv88J6HcuTnJRk+55+nfEur0jywSRLgNuAsQGW8fIkhyRZkuSWJP+VZEGS+Uk+nuSP9XKOTTK/ZxkTvvcm27bAs4DHdr3mu9aP9/v6virJb4CVwISvbZI59Wfn2iS3Jflxksf0vk+nuu3qvm+u31O3JbkpydlJXtnT5xlJflW/3pcn+cdJYvy7JOckuT3JjUm+lq7PVf18b02y8TjzfjXV53Gt70W1k3ssNFVfpvonvwfwufE6JHks1Z6NX1MdUlkJbAs8ve5ySd1+GPBZ4Iy6/eddi7kPcBLwNeA/gaVrietfgAIcQfXN80Dg1CQ7dPasTNFUYrtb/c/l21T/lI6hOnSyJ/BR4EFA7271ZwAvAT4N3AK8BfjvJFuVUv7cR5wdc4FFwFnA24HnAG8DLgf+YwrzPwI4AfgM8CXg74FvJNmrlHJK3edhwIuAb1AdHlsI/CPwkySPKaVc27PM9wJ3AB8D5td/P6bPZRwM3E51iG1b4M1Uh4FWA/cGDgWeCuxbL+8wmNJ7bzx/Av4v1Xto03rdAJcM8Po+G3g5cDRwA9XhtIkcDrwD+A7Va7h9fX+vnn5T2v5JXgf8O9UYkU/Uy3kC8BTg+LrP44GT6+d8KFXufz/jfL6S/AvVF4mvA58H7kf1Opye5ImllJup3jv7A3vX8XXm3Rh4AfDFUspdk2wDtVkpxZs3qBJ1AZ48SZ+bgXO7pg+l3ltfTx9YL+O+kyzjyXWffcd57LT6sX+c4LHTuqZ3rfteA2zW1f6yuv0tXW2LqRLd2pY5WWxfBBZ3Tf9N3fdfevp9g+qf4MO72grVP7rutifU7Qes5XXZujemOpYCvLen77nA2VN4rRfX87+kq20MuLbn9Z0PzBknnhXd6+56LS4HNurp3+8yLgTmdbUfX2/P7/cs4+c9r8da33uTbI/TgIt62vp9fe8CHjOFdS2kKpT+p6f9kHo5X+xqm+q2O7E3/nHW+z9UBdtWXW3bUR3KLF1tD63b3t0z/+PquN9dT4fqs/dfPf06n79n9vs6eGvPzUMh6setwGRnh9xc3/9NquPMg1gJHNtH/+NKKbd0Tf8XcB3wvAHXP1XPo/pn8u897f9GlXSf29N+ainl8s5EqQbBLqf6Vjqoz/RMn9HH8q6l+mfTiWc5cBzwxCRb1m0rSz1GIsncJPeheg9cCjxpnGV+qfTsJRpgGceVNceznEW1Pb/Q0+8s4CFJOntdb67v1+W9163f1/cnpZSLp7Dc3aj2Fny6p/2TvR372HY3Aw9O8lfjrbA+JLEncGIp5aqu5V9Ctaek20uoDpF/Pcl9OzfgeuAyqj04lFIKVZH1vCSbds2/D7AE+OmEW0CtZ2GhfmxKtRt/IicAP6Pafbq0Pi778j4T/ZLS30DNy7on6oT3e6pvdtPpocC1PUUNVIdUOo93u4p7uolq9/4gVpRS/rQOy/t9va26/a6+3xruHgvw1iSXURV8N1DtSn8CsGCcZV7R2zDAMnq307L6/upx2ud0LaOJ9163fl/fezz3SZYL1Xv0bqWUG6lev7v1se2OoCo4fpnksiSfStJ9COh+VGcWrfFZqV3aM/0IqsLpsnpd3bftqA43dpxQL/eFdbybUhVk3xjnvaURYmGhKUnyYKpk9vuJ+tTfVnehOt7/ZaoEeAJwSh8DufoZFzFVEyW5mRxcNtHx5kzQPujymvRu4EjgdKpBu3sCuwO/YfzcMd5r1+8yJnpek26/ht5762I63rdT2nb1nodHAa+g2lPwt8BPk7x/gHXOofq87FWvq/d294DPUsovqA6rvbxuegFVoXHCAOtVizh4U1P1f+v73l2na6h33f6wvh2U5N3Ah6h2oZ7KxP/kB/WI7ol60N22VIP4Om4CNh9n3ocCf+ia7ie2K4HnJNms51vto7seX59tmyQ93ywfWd8vru9fCvy4lPLa7hmTbE717XkqmljGlEzhvdeP6Xp9O/NtS9dejvowR+/epilvu1LK/1L9Qz8hyYbAN4F/SXI41d6G2+n5rNQe1TN9OVWxdkUp5Xfj9O/1deCfkoxRHQZZXBccGmHusdBapbqOxXupEuFXJum3xTjN59f3nVMD/7e+37yh8F6dNa8K+lLgAVRnlnRcDjy1TrgAJHk+sMZpqX3G9n2qPR4H9LS/lapAOekec6xfHgi8uDNR/2N4NXB+KeX6uvkuevaoJHkZ1VkRU9XEMtZqiu+9fkzX6/tDqsGRb+xp710PTHHb1UXJ3epDiRfX884r1dkZi4AXJdmqa77tqPaCdPtmvd5D6iK9ez3pXRdVMTOf6oqle1EVGhpx7rFQr+cmeTTVe2Mh1Wl0u1N903phmfyiP+9Lsgvwvbr//YE3UY0e7wzmupxqsNkbktxC9c/8rFLKVI9R97qRarfvsXW8B1Idruk+JfbzVAXHD5J8HXg41a7ly9dcVF+xfQf4MfChJFsDF1Cdivs3wMe7B2qup34HHFMP+FtKdVnrhVSnnXZ8l+o1PZbqLIzHA69izb08a9PEMqZiKu+9fkzL61tKWZrkE8Dbknwb+AHV6abPpdoL0b0Haarb7uQk11ONMVlKNRbiAOB7XXtbDqH6x39Gkk9Tfb7fTHVY5Qld8V2e5D1Up8Runep3U24BtqEqRD9LdTpxp/+5SX5PtWdoPh4GEXi6qbfqxl9ON+3cVlKdXXEy1TUXNhtnnkNZ81S1Z1Od+raknn8J1emCj+iZ74VUCW0VXadSMs5pf13znMb4p5u+gur6GkupLsr0XbpOqevqfxDVP5kVVP9oduxd5lpi+yJdpzfWbZtSHQNfQnXNht9RXVMiPf0KcPQ4MS1mnNNge/ps3R1HVyy3ru31mGSZi+vttAfVP8wVVIMSX9rTbz7VP5Fr6237U6prSEz0Wrx0nHWt0zKY4DToznOlPr2UKb73Jnlv3eN9t66v7yTrm0t1/Y3r6m3yQ6pDLDcA/zHAtns98JN6/hVUhfVHgLGe9e4CnF1vn8upxkuM+56hOjvkDKpBobfW74+jgUeO0/eD9Ta4rJ+c4629t5Ti4F1plKS6guhFpZTnDzsWVepxEzcB7ymlfGjI4UjrxDEWkjSDkmw0TvOB9f1pMxeJND0cYyFJM2ufVL/98n2qwwzPAP4PcHIp5WfDDExqgoWFJM2sX1OdGfIOqkupL6X6jY/3DDMoqSmOsZAkSY1xjIUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUGlmTfJCXJ1mvptzjJF2cmKkmziXmkfSwsJEmaRJLdknwhye+S3JbkD0k+n+QBw45tfZRSyrBj0CyVZC4wD1hZJnkjJVkMnFZK2XeGQpM0S8yGPJLkbGAL4BvAZcDDgAOA24AdSinXz3RM67MNhh2AZq9Syl3AXcOOQ9LsNUvyyEHAT0spqzsNSX4A/ISqwHjPsAJbH3koRAPrPTaaynuSXFPvLvxxkseOM9+hSe7xzWS8Y631cdXvJtk1ydlJbk9yYZJd68dfUk+vSHJOkidO1/OV1LzZkEdKKad3FxWdNuBGYLt13wrtYmGhJh0GfAC4APhn4A/AycAm67jcbYHjge8ABwP3Br6T5FXAUcB/AocADwe+nsT3tTR7zYo8kmRTYFPghnWMq3U8FKJGJLkf8A7ge8ALOsdKk3wIePc6Lv5RwNNKKWfWy7wYWAR8Dnh0KeWquv0m4P8BuwCnreM6Jc2wWZZHDgQ2BE5Yx7hax292aspzqD5kn+wZgPXxBpZ9cScZ1M6q73/USQY97Q9rYJ2SZt6syCNJdqHau/H1UsqPGoitVSws1JSH1veXdTeWUv4E3LSOy+7+0FNKWVb/eXVPv077vddxfZKGY73PI0keDfwPcBHwD+sYUytZWGgYJjqlbO4E7RONGJ+oPf2FI2kWmvE8kuQhVOM9lgHPK6XcMmmEI8rCQk25sr5/RHdjfcy0t/K/qX5s8572hyJplK23eSTJfaiKivnAnqWU66ZjPW1gYaGmnAqsAt6cpLvSP3CcvpfX97t0GpJsArxm2qKTNBusl3mkXu73gQdR7am4bC2zjDTPClEjSil/SvIxqtO4vpvk+8ATgedyz9OxTqY63nlMko9S7YrcD/gTsNXMRS1pfbIe55GvADsBXwC2S9J97YpbSyknNry+Wc3CQk16D7ACeAPwLKrR1XtQnTp2t1LKqiQvBj5Ndb769VSjvm8Cjp3BeCWtf9bHPLJDfb9ffet2JXBiw+ub1fytEEmS1BjHWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZ4HYuG1FeJeyDgteM1DJsB1xbPH28dc4uGrO/cYmHRnAcC1ww7CI20BwNLhh2EGmdu0bD1lVssLJpzC8DVV1/N2NjYGg+sWrWKk08+mT322IN58+YNJbj1mdtn7SbbRsuXL+chD3kI+I22rSbMLeDnZ23cPpObjtxiYdGwsbGxcQuLjTfemLGxMd/Y43D7rJ3bSOPlFvC9sTZun8lNx/Zx8KYkSWqMhYUkSWqMhYUkSWpM34VFkr2SPKNrev8k5yc5Psm9mw1P0qgwt0jtMMgei48CYwBJHg/8G/B9YBvgyOZC06i54IILOPfcc7nqqquGHYqGw9yiaXPBBReYW2bIIGeFbANcXP/9t8B3SynvTvIkqiQg9eWaa6pT9HfZZRduv/127rXRxlz620vYaquthhyZZpi5RY3rzi+FmFtmwCB7LO4ANq7/fg5wcv33jdTfNqR+/PnPfwZgi73ezH2e/zZW3H4bN9xww5Cj0hCYW9S4Tn4Z2+kl5pYZMsgei58CRyb5GbATsE/d/ki8OpzWwbwtHsRdd3pF6hFmbtG0mTt2v2GHMDIG2WNxAHAn8FLgjaWUzmU+nwv8oKnAJI0cc4vUAn3vsSilXAU8f5z2tzYSkaSRZG6R2mGgS3onmQNsC9yfnr0epZTTG4hL0ggyt0izX9+FRZKnAscDDwXS83AB5jYQl6QRY26R2mGQPRafAc4G9gauo/rAS9K6MrdILTBIYfEI4KWllN83HYykkWZukVpgkLNCzqI6BrrOkrwxya+TLK9vZyZ5btfj90ryqSR/TnJrkv9OsrBnGVsl+V6S25L8MclHk2zQ02fXJOcmWZnk90n2HSeW/ZMsTrIiyVlJdmriOUqaMnOL1AKD7LH4JPBvSbYELgRWdT9YSvl1H8u6BngXcBnVMdXXAN9K8sRSym+Ao6h2i74MWAYcDXwTeDpAkrnA94DrgacBDwCOq2N6d91nm7rPZ4BXAbsBn09yXSllUd1nH6pLBr+BKrkdCCxK8qhSyh/7eD6SBmdukVpgkMLiv+v7L3S1FaoPb18DrEop3+lp+pckbwSemuQa4LXAK0spPwJI8vfAJUmeWkr5BbAH8BjgOaWUpcD5Sd4LHJHk0FLKHVQf6CtKKW+r13FJ/UNHbwUW1W0HAZ8rpRxbr+cNVElnP+DDU30+ktaJuUVqgUF/K6Rx9TeElwGbAGcCOwLzgFM7fUopv01yFbAz8Iv6/sL6g9+xCPgP4LHAeXWfU1nTIuDj9Xo3rNd1eNd6Vic5tZ53onjnA/O7mjYDWLVqFatWrfFF6+7p3nZVVq9eDcD8DaoTATbaaCNWr17t9uoy2XuoRdvJ3EJ/uaXT3n2vNXXyy73mzTW3jGM6cssgF8i6cqA1TaD+FcMzgXsBtwIvLqVcnGQH4I5Sys09sywFtqz/3rKe7n2cKfQZS7IRcG+qb0Lj9Xn0JKEfDBzS23jyySez8cYbj9MdTjnllEkWpyOeW/8w0Au+ypIlS1iyZMnkM4yg8d5Dt9122xAiaZ655W595xYwv6zNka9+Jrz6meaWCTSZWwa9QNbDqY4Vblc3XQx8opRy+QCLuxTYAVhAdSnfLyX560HimmGHs+ZPOW8GXLPHHnswNrbm7yWtWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVPHML0EduAfPL2nTyy0HHncF1J33a3NJjOnLLIBfI2hP4NnA+8LO6+enAb5K8oJTSV9lcH6vsnF52TpK/Av4JOAHYMMnmPd8sFlINqKK+7x1hvbDrsc79wnH6LC+l3J7kLuCuCfpczwRKKSuBlZ3ppNqNP2/evAk/3JM9NsrmzKlOTlp5Z2HFnYXbb7+dOXPmuK3GMd57qC3bydxyd9x955apPD6qOvllxaq7zC2TaDK3DHK66YeBo0opTymlHFTfnkJ1XPGIgaK4Z0zzgXOoRmDv1nkgyaOArah2b1LfPz7J/bvm3x1YTvVNp9NnN9a0e2cZdfI5p2c9c+rpM5E0U8wtUgsMcihkO+Dl47R/gWoX5pQlORw4CbiKanffK4FdgT1LKcuSHEP1M8o3Un2gPwmcWY/aBjiZ6kP+5STvoDrm+UHgU3XVD9WpYAck+Ugd47Pr+PfuCuVIqt2kZwO/rJ/HJsCx/TwfSevE3CK1wCCFxZ+ojlte1tO+A9Dvedn3pzo3/AFU55L/muqD39nl+VZgNdVpaPOpRly/qTNzKeWuJM+nGql9JvC/wJeA93X1uSLJ3lTnrf8T1fnt/9A5z7zuc0KS+wGHUSWQ84G9ekaES5pe5hapBQYpLD4HfDbJw4Cf121PB97JmgOO1qqU8tq1PL4C2L++TdTnSuB5a1nOacAT19LnaKqL5EgaDnOL1AKDFBYfAG4B3sZfzs++FjgU+PdmwpI0gswtUgsMch2LQrXr76gkm9VttzQdmKTRYm6R2mGg61h0+KGXNB3MLdLsNaXCIsm5wG6llJuSnEd13f5xlVKe1FRwktrN3CK1z1T3WHyLv1yw5VtM8uGXpD6YW6SWmVJhUUp5f9ffh05bNJJGirlFap++r7yZ5A9J7jNO++ZJ/tBMWJJGjblFaodBLum9NdUv9vWaDzx4naKRNMq2xtwizXpTPiskyQu7JvdMsqxrei7V9e+vaCowSaPB3CK1Sz+nm55Y3xeqS9t2WwUsprqwjST148T63twitcCUC4tSyhyAJFcAf1VKuWHaopI0MswtUrsMcuXNbaYjEEmjzdwitcNUL5D1FuCzpZQV9d8TKqV4TX9JU2Jukdpnqnss3gp8BVhR/z2Rgj8WJGnqzC1Sy0z1AlnbjPe3JK0Lc4vUPoNcIOt9STYep32jJO9rJixJo8bcIrXDIBfIOgTYdJz2jevHJGkQ5hapBQYpLML4PxS0PXDjuoUjaYSZW6QW6OfKmzdRfegL8Lsk3QlgLtU3jc80G56ktjO3SO3Sz3UsDqT6RvEFqt2S3ZfdvQNYXEo5s7nQJI2IAzG3SK3Rz5U3vwR3Xx3vZ6WUO6ctKkkjw9witUvfYyxKKT8BHprkg0m+muT+AEmem+SxjUcoaSSYW6R2GOR0078GLgSeAryEv4zi3h54f3OhSRol5hapHQY5K+TDwHtKKbtTHf/s+BHw1EaikjSKzC1SCwxSWDwe+J9x2v8I3HfdwpE0wswtUgsMUljcDDxgnPYnAkvWKRpJo+xmzC3SrDdIYfE14IgkW1Kddz4nydOBjwHHNRmcpJFibpFaYJDC4t3Ab4GrqQZXXQycDvwc+GBzoUkaMeYWqQX6uUAWAKWUO4DXJfkA8DiqBHBeKeWypoOTNDrMLVI79F1YdJRSrkpydf33eNf3l6S+mVuk2W2QQyEkeW2Si4AVwIokFyX5h2ZDkzRqzC3S7Nf3HoskhwEHAZ8EOtfv3xk4KslWpZT3NRifpBFhbpHaYZBDIW8EXldK+WpX27eT/JoqIfjhlzQIc4vUAoMcCpkHnD1O+zmsw5gNSSPP3CK1wCCFxZepvln0ej3wlXULR9IIM7dILTDQ4E3gtfWgqs/XtwuB1wGrkxzZua1tIUkOTvKrJLck+WOSE5M8qqfPvZJ8Ksmfk9ya5L+TLOzps1WS7yW5rV7OR5Ns0NNn1yTnJlmZ5PdJ9h0nnv2TLE6yIslZSXYaaOtIGpS5RZrlBiksHgecC/wJeHh9u6FuexzV5XefCOwwhWX9NfApqh8Y2p1qV+jJSTbp6nMU8ALgZXX/BwLf7DyYZC7wPWBD4GnAa4B9gcO6+mxT9/lxHdfHgc8n2bOrzz7AkVS/ovgk4AJgUeenmyVNO3OL1AKDXCDrWU2tvJSyV/d0Xen/EdgROD3JAuC1wCtLKT+q+/w9cEmSp5ZSfgHsATwGeE4pZSlwfpL3Ul0a+ND6ojtvAK4opbytXtUlSZ4BvBVYVLcdBHyulHJsvZ43AHsD+1H96qKkaWRukdph4AFRSbal+kZxeinl9iRp4GI2C+r7G+v7Ham+aZza6VBK+W2Sq6hOQ/tFfX9h/cHvWAT8B/BY4Ly6z6msaRHVtwuSbFiv6/Cu9axOcmo97z0kmQ/M72raDGDVqlWsWrVqjb6d6d52VVavXg3A/A0CwEYbbcTq1avdXl0mew+1bTuZW6aeWzrt3fdaUye/3GveXHPLOKYjtwxyHYv7AF8HnkX1Q0GPAP4AHJPkpq7Kvd/lzqH6MP6slHJR3bwlcEcp5eae7kvrxzp9lo7zOFPoM5ZkI+DewNwJ+jx6gpAPBg7pbTz55JPZeOONx53hlFNOmWBRAjjiuVtVf7zgqyxZsoQlS/xBy17jvYduu+22IUTSPHPL3frOLWB+WZsjX/1MePUzzS0TaDK3DLLH4ihgFbAVcElX+wlUxxEH+vBTHQ99HPCMAeefaYdTPd+OzYBr9thjD8bGxtbouGrVKk455RR233135s2bN5MxzgrnnXce1113He886SpW3llYevy7OP3009l+++2HHdp6Y7L30PLly4cUVePMLZUp5xYwv6xNJ78cdNwZXHfSp80tPaYjtwxSWOwB7FlKuSZJd/tlwEMHCSLJ0cDzgV1KKdd0PXQ9sGGSzXu+WSysH+v06R1hvbDrsc79wnH6LK93td4F3DVBn+sZRyllJbCy6zkAMG/evAk/3JM9NsrmzKnGEK+8s7DizsLtt9/OnDlz3FbjGO891KLtZG5hsNwylcdHVSe/rFh1l7llEk3mlkHOCtkEGG//yBZ0fRimIpWjgRcDzy6lXNHT5RyqbzC7dc3zKKpvNJ1L/p4JPL5nhPXuwHKqn13u9NmNNe3eWUY9COucnvXMqafPRNJMMLdILTBIYXEG8Oqu6VJ/UN5BdcpVPz4F/B3wSuCWJFvWt40ASinLgGOAI5M8K8mOwLHAmfWobYCTqT7kX06yfX2a1weBT9WVP8BngIcl+UiSRyd5E/Byql2vHUdS/WTza5JsRzVAa5N6fZKmn7lFaoFBDoW8A/hhkidTnd/9EaoR0lsAT+9zWZ2r7J3W0/73wBfrv98KrAb+m2qk9CLgTZ2OpZS7kjyf6sN6JvC/wJfo+l2BUsoVSfam+rD/E3AN8A+llEVdfU5Icj+qc9S3BM4H9uoZES5p+phbpBYY5DoWFyV5JHAAcAuwKdVFZT5VSrmuz2VlCn1WAPvXt4n6XAk8by3LOY3q4jqT9TkaOHptMUlqnrlFaoe+Cosk84AfAG8opXxoekKSNGrMLVJ79DXGopSyCnjCNMUiaUSZW6T2GGTw5n9SXQpXkppkbpFaYJDBmxsA+yV5DtVpVP/b/WAp5aAmApM0cswtUgsMUlh0foEQ4JE9j63r9fwljS5zi9QCQ/11U0nqMLdI7TDIGAtJkqRxWVhIkqTGWFhIkqTGWFhIkqTGTKmwSHJuknvXf78vycbTG5akUWBukdpnqnsstqP6NT6AQ6iu4S9J68rcIrXMVE83PR84NslPgQBvT3LreB1LKYc1FJuk9jsfc4vUKlMtLPYF3g88n+pCNc8F7hynX6H6aWBJmop9MbdIrTKlwqKUcinwCoAkq4HdSil/nM7AJLWfuUVqn0GuvOmZJJIaZ26R2mGQ3wohycOBA6kGXgFcDHyilHJ5Q3FJGkHmFmn26/sbQpI9qT7sOwG/rm9PAX6TZPdmw5M0KswtUjsMssfiw8BRpZR3dTcm+TBwBHBKE4FJGjnmFqkFBjmmuR1wzDjtXwAes27hSBph5hapBQYpLP4E7DBO+w6Ao7klDcrcIrXAIIdCPgd8NsnDgJ/XbU8H3gkc2VRgkkaOuUVqgUEKiw8AtwBvAw6v264FDgX+vZmwJI0gc4vUAoNcx6IARwFHJdmsbrul6cAkjRZzi9QOA13HosMPvaTpYG6RZi+vdCdJkhpjYSFJkhpjYSFJkhrTV2GRZF6SHyZ5xHQFJGn0mFuk9uirsCilrAKeME2xSBpR5hapPQY5FPKfwGubDkTSyDO3SC0wyOmmGwD7JXkOcA7wv90PllIOaiIwSSPH3CK1wCCFxeOAc+u/H9nzWFm3cCSNMHOL1AKDXHnzWdMRiKTRZm6R2mHg002TbJtkzyQb1dNpLixJo8rcIs1ufRcWSe6T5IfA74DvAw+oHzomyb81GZyk0WFukdphkD0WRwGrgK2A27raTwD26mdBSXZJ8p0k1yYpSV7U83iSHJbkuiS3Jzm19zz3JFsk+UqS5UluTnJMkk17+jwhyRlJViS5Osk7xonlZUl+W/e5MMnz+nkuktaZuUVqgUEKiz2Ad5ZSrulpvwx4aJ/L2gS4ANh/gsffAbwFeAPwFKpR4ouS3Kurz1eAxwK7A88HdgE+23kwyRhwMnAlsCPwz8ChSV7f1edpwFeBY4AnAicCJyZ5XJ/PR9LgzC1SCwxyVsgmrPltomMLYGU/CyqlnAScBNB7GLU+rnog8MFSyrfqtlcDS4EXAV9Lsh3VN5m/KqWcXfd5M/D9JG8vpVwLvArYENivlHIH8JskOwAH8Zck8U/AD0opH62n35tkd+AAqsQjafqZW6QWGKSwOAN4NfDeerokmUP1DeDHTQUGbANsCZzaaSilLEtyFrAz8LX6/ubOB792KrCa6lvI/9R9Tq8/+B2LgHcmuXcp5aa6z5E9619ElWTGlWQ+ML+raTOAVatWsWrVqjX6dqZ721VZvXo1APM3qP4BbLTRRqxevdrt1WWy91CLtpO5hf5yS6e9+15r6uSXe82ba24Zx3TklkEKi3cAP0zyZKpq/SNUuwu3AJ4+UBTj27K+X9rTvrTrsS2BP3Y/WEq5M8mNPX2uGGcZncduqu8nW894DgYO6W08+eST2Xjjjced4ZRTTplkcTriuVtVf7zgqyxZsoQlS5YMN6D10HjvodtuG+9L/qxkbqn0nVvA/LI2R776mfDqZ5pbJtBkbhnkOhYXJXkk1a68W4BNgW8CnyqlXDdQFLPT4az5TWQz4Jo99tiDsbGxNTquWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVLHPL3aacW8D8sjad/HLQcWdw3UmfNrf0mI7cMsgeC0opy4APDbTGqbu+vl8IdCeVhcD5XX3u3z1Tkg2ovuFc39VnYc+yF3Y9Nlmf65lAKWUlXcd9O8dx582bN+GHe7LHRtmcOdUY4pV3FlbcWbj99tuZM2eO22oc472H2rSdzC2D5ZapPD6qOvllxaq7zC2TaDK3DHSBrCT3TvL2+vSrY5K8LckWA0UwsSuoPny7da13jOr45pl105nA5kl27Jrv2VTP66yuPrsk6d5CuwOX1sdAO312Y027d61H0gwwt0iz3yAXyNoFWEx1qta969tbgCvqx/pZ1qZJdqhHUgNsU09vVUopwMeB9yR5YZLHA8cB11KdskUp5RLgB8DnkuyU5OnA0cDX6lHbAMcDd1BdZOexSfahGqndvavxE8BedRJ7dJJDgSfXy5I0A8wtUjsMcijkU1QXrHljKeUugCRzgU/Xjz2+j2U9mTVHe3c+kF8C9qUavLUJ1albmwM/BfYqpazomudVVB/SH1KN2P5vqmQE3D3ae486tnOAG4DDSimf7erz8ySvBD4I/CvVefMvKqVc1MdzkbRuzC1SCwxSWGwLvLTzwQcopdyV5EiqU8WmrJRyGjDh7wDU3yzeV98m6nMj8Mq1rOfXwDPX0ucbwDcm6yNpWplbpBYYZIzFucB247RvR3WlO0kahLlFaoEp7bFI8oSuyX8HPpFkW+AXddtTqS6d+65mw5PUZuYWqX2meijkfKCw5q7Fj4zT73iqY6SSNBXnY26RWmWqhcU20xqFpFFlbpFaZkqFRSnlyukORNLoMbdI7TPQlTeTPBB4BtWV6dYYAFpK+fcG4pI0gswt0uzXd2GRZF/g/1FdGObPVMdHOwrVACxJ6ou5RWqHQfZYfAA4DDi8lLK64XgkjS5zi9QCg1zHYmOqy9r6wZfUJHOL1AKDFBbHAC9rOhBJI8/cIrXAIIdCDga+m2Qv4EJgVfeDpZSDmghM0sgxt0gtMGhhsSdwaT3dO8BKkgZhbpFaYJDC4m3AfqWULzYci6TRZm6RWmCQMRYrgZ81HYikkWdukVpgkMLiE8Cbmw5E0sgzt0gtMMihkJ2AZyd5PvAb7jnA6iVNBCZp5JhbpBYYpLC4Gfhmw3FI0s2YW6RZr+/CopTy99MRiKTRZm6R2mGQMRaSJEnjGuRHyK5gknPKSykPW6eIJI0kc4vUDoOMsfh4z/Q84InAXsBH1zUgSSPr4z3T5hZpFhpkjMUnxmtPsj/w5HWOSNJIMrdI7dDkGIuTgL9tcHmSBOYWaVZpsrB4KXBjg8uTJDC3SLPKIIM3z2PNAVYBtgTuB7ypobgkjRhzi9QOgwzePLFnejXwJ+C0Uspv1zkiSaPqxJ5pc4s0Cw0yePP90xGIpNFmbpHawQtkSZKkxkx5j0WS1Uxy8ZpaKaUMcnhF0ogyt0jt0s8H9cWTPLYz8BbcAyKpf+YWqUWmXFiUUr7V25bkUcCHgRcAXwHe11xokkaBuUVql4G+BSR5YJLPARdSFSc7lFJeU0q5stHoJI0Uc4s0+/VVWCRZkOQI4PfAY4HdSikvKKVcNC3RSRoJ5hapPfoZvPkO4J3A9cD/GW/3pST1y9witUs/gzc/DNxO9Y3iNUleM16nUspLmghM0sgwt0gt0k9hcRxrPyVs1qt/SfGfqS4lfAHw5lLKL4cbldRq5hapRfo5K2TfaYxjvZBkH+BI4A3AWcCBwKIkjyql/HGYsUltZW4xt6hdPDd8TQcBnyulHFtKuZgqCdwG7DfcsCTNcuYWjQwLi1qSDYEdgVM7baWU1fX0zsOKS9LsZm7RqPESuX9xX2AusLSnfSnw6N7OSeYD87uaNgO48cYbWbVq1Rp9V61axW233cYZZ5zBnDlzmDNnDqtXr777HrhH22SPta3/pZdeyqabbkpuvJKsuot73etenHPOOdx6662NxbO+b4O1PbZ69Wpuu+02/vznPzNv3rw13l+33HJL79tT65dpyy2wZn7ZYIMNhv5eXd/6X3bZZWy66abMvXXplHLLMOIf5jabjtxiYTG4g4FDehu32WabIYTSPq9//euHHcJstBmwfNhBaJ2ZW6aRuWUgfeUWC4u/uAG4C1jY076Q6vz6XodTDcbqtgVw4zh9NwOuAR4M+PXyntw+a7e2bbQZcO2MRqSpms7cAn5+1sbtM7nGc4uFRa2UckeSc4DdgBMBksypp48ep/9KYGVP87gVXZLOn7eUUvxG2cPts3ZT2EZut/XUdOaWelmdP/38jMPtM7npyC0WFms6EvhSkrOBX1KdErYJcOwwg5I065lbNDIsLLqUUk5Icj/gMKqL2JwP7FVK6R10JUlTZm7RKLGw6FFKOZpxdk+uo5XA+7nn7k1V3D5r5zaa5aYpt4DvjbVx+0yu8e2TUlp/JV1JkjRDvECWJElqjIWFJElqjIWFJElqjIWFJElqjIXFNEmyRZKvJFme5OYkxyTZdC3znJak9Nw+M1MxT6ck+ydZnGRFkrOS7LSW/i9L8tu6/4VJnjdTsQ5LP9soyb7jvFdWzGS8Gg5zyz2ZXyY307nFwmL6fAV4LLA78HxgF+CzU5jvc8ADum7vmK4AZ0qSfaguEPR+4EnABcCiJPefoP/TgK8CxwBPpLpa4YlJHjcjAQ9Bv9uotpw13ysPne44tV4wt3Qxv0xuKLmllOKt4RuwHVCAJ3e17QWsBh44yXynAR8fdvzTsD3OAo7ump4DLAHeNUH/E4Dv9rT9AvjMsJ/LerSN9gVuHnbc3mb8fWJuuedzM780u33WObe4x2J67Ez1wpzd1XYq1Yf/KWuZ91VJbkhyUZLDk2w8bVHOgCQbAjtSPX8ASimr6+mdJ5ht5+7+tUWT9J/VBtxGAJsmuTLJ1Um+leSx0xyqhs/c0sX8Mrlh5RavvDk9tgT+2N1QSrkzyY31YxM5HriS6pfkngAcATwKeMk0xTkT7gvMBXovXbwUePQE82w5Qf/Jtt1sNsg2uhTYD/g1sAB4O/DzJI8tpVwzXYFq6MwtazK/TG4oucXCog9JPgy8cy3dtht0+aWU7uOkFya5DvhhkoeXUi4fdLlqn1LKmcCZnekkPwcuAf4ReO+w4tJgzC1aXzSRWyws+vNvwBfX0ucPwPXAGgNjkmwAbFE/NlVn1ffbArP1w38DcBewsKd9IRNvi+v77D/bDbKN1lBKWZXkPKr3imYfc8tgzC+TG0pucYxFH0opfyql/HYttzuoqr3Nk+zYNfuzqbb3WeMufHw71PfXNfMMZl69Pc4Bduu0JZlTT585wWxndvev7T5J/1ltwG20hiRzgcczi98ro8zcMhjzy+SGlluGPWK1rTfgJOBcYCfg6cDvgOO7Hn8Q8Ftgp3r64VS7mXYEtgZeSPVN4ifDfi4NbIt9gBXAa6h25/4/4CZgYf34ccDhXf2fBqwC3kZ1HPBQ4A7gccN+LuvRNnofsAfwMKpTyL4K3A48ZtjPxdu0v1fMLWtuD/NLs9tnnXPL0J90W29UuyaPB24BlgFfADbtenxrqtPGdq2nHwL8BPhz/Sa4DPgIMDbs59LQ9jiAavDYSqpvVk/peuw04Is9/V9GNYhoJXAR8LxhP4f1aRsBR3X1vR74HvDEYT8HbzPyPjG33HObmF8a2j5N5BZ/Nl2SJDXGMRaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhYauiSLkxw47DgktYu5ZTgsLCRJUmMsLCRJUmMsLLROkrw+ybX1L+Z1t38ryReSPLz+e2mSW5P8KslzJlne1klKkh262jav23btantckpPqZS5N8uUk952GpyhpCMwts5eFhdbVN4D7AM/qNCTZAtgL+AqwKfB9qp/pfSLwA+A7SbYadIVJNgd+BJwHPLle10Lg64MuU9J6x9wyS20w7AA0u5VSbkpyEvBK4Id180uBG4Afl1JWAxd0zfLeJC+m+unmowdc7QHAeaWUd3cakuwHXJ3kkaWU3w24XEnrCXPL7OUeCzXhK8DfJplfT78K+FopZXWSTZN8LMklSW5OciuwHTDwtwpge+BZ9a7KW+tl/rZ+7OHrsFxJ6xdzyyzkHgs14TtAgL2T/Ap4JvDW+rGPAbsDbwd+D9wO/Bew4QTLWl3fp6ttXk+fTet1vnOc+a/rN3hJ6y1zyyxkYaF1VkpZkeSbVN8mtgUuLaWcWz/8dOCLpZT/AUiyKbD1JIv7U33/AKrjnAA79PQ5F/hbYHEp5c51fgKS1kvmltnJQyFqyleAvYH96r87LgNekmSHJNsDxzPJ+66UcjvwC+BdSbZL8tfAB3u6fQrYAvhqkr+qR4fvmeTYJHMbfE6Shs/cMstYWKgpPwJuBB5F9QHvOAi4Cfg51S7GRVTfCiazH9XetHOAjwPv6X6wlHIt1beVucDJwIV1v5v5y+5OSe1gbpllUkoZdgySJKkl3GMhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIa08rCIskuSb6T5NokJcmLpjDPrknOTbIyye+T7Dv9kUqS1C6tLCyATYALgP2n0jnJNsD3gB8DOwAfBz6fZM9pik+SpFZKKWXYMUyrJAV4cSnlxEn6HAHsXUp5XFfb14DNSyl7TX+UkiS1wwbDDmA9sTNwak/bIqo9F+NKMh+Y39O8BXBjo5FJU7MZcG1p+zcFSes9C4vKlsDSnralwFiSjUopt48zz8HAIdMemTR1DwaWDDsISaPNwmJwhwNHdk1vBlxz9dVXMzY2NqSQNIqWL1/OQx7yEIBbhh2LJFlYVK4HFva0LQSWT7C3glLKSmBlZzoJAGNjYxYWkqSR1dazQvp1JrBbT9vudbskSZqiVhYWSTZNskOSHeqmberprerHD09yXNcsnwEeluQjSR6d5E3Ay4GjZjZySZJmt1YWFsCTgfPqG1RjIc4DDqunHwBs1elcSrkC2JtqL8UFwNuAfyilLJqpgCVJaoPWX8dipiQZA5YtW7bMMRaaUcuXL2fBggUAC0opy4cdj6TR1tY9FpIkaQgsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmNaW1gk2T/J4iQrkpyVZKe19D8wyaVJbk9ydZKjktxrpuKVJKkNWllYJNkHOBJ4P/Ak4AJgUZL7T9D/lcCH6/7bAa8F9gH+dUYCliSpJVpZWAAHAZ8rpRxbSrkYeANwG7DfBP2fBvyslHJ8KWVxKeVk4KvApHs5JEnSmlpXWCTZENgROLXTVkpZXU/vPMFsPwd27BwuSfIw4HnA9ydZz/wkY50bsFlDT0GSpFlrg2EHMA3uC8wFlva0LwUePd4MpZTjk9wX+GmSUG2Xz5RSJjsUcjBwSAPxSpLUGq3bYzGIJLsC7wbeRDUm4yXA3kneO8lshwMLum4Pnt4oJUla/7Vxj8UNwF3Awp72hcD1E8zzAeDLpZTP19MXJtkE+GySD9WHUtZQSlkJrOxMVzs6JEkaba3bY1FKuQM4B9it05ZkTj195gSzbQz0Fg93dWZvOkZJktqqjXssoDrV9EtJzgZ+CRwIbAIcC5DkOGBJKeXguv93gIOSnAecBWxLtRfjO6WUu5AkSVPSysKilHJCkvsBhwFbAucDe5VSOgM6t2LNPRQfBEp9/yDgT1TFxr/MVMySJLVBSinDjqEV6lNOly1btoyxsbFhh6MRsnz5chYsWACwoJSyfNjxSBptrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/82TfCrJdUlWJvldkufNVLySJLXBBsMOYDok2Qc4EngDcBZwILAoyaNKKX8cp/+GwCnAH4GXAkuAhwI3z1DIkiS1QisLC+Ag4HOllGMBkrwB2BvYD/jwOP33A7YAnlZKWVW3LZ6BOCVJapXWHQqp9z7sCJzaaSulrK6nd55gthcCZwKfSrI0yUVJ3p1k7iTrmZ9krHMDNmvuWUiSNDu1rrAA7gvMBZb2tC8FtpxgnodRHQKZCzwP+ADwNuA9k6znYGBZ1+2awUOWJKkd2lhYDGIO1fiK15dSzimlnAB8iGqMxkQOBxZ03R487VFKkrSea+MYixuAu4CFPe0LgesnmOc6YFUp5a6utkuALZNsWEq5o3eGUspKYGVnOsk6BS1JUhu0bo9FXQScA+zWaUsyp54+c4LZfgZsW/freCRw3XhFhSRJGl/rCovakcDrkrwmyXbAfwCbAJ2zRI5LcnhX//+gOivkE0kemWRv4N3Ap2Y4bkmSZrU2HgqhlHJCkvsBh1EN2Dwf2KuU0hnQuRWwuqv/1Un2BI4Cfk11HYtPAEfMZNySJM12KaUMO4ZWqE85XbZs2TLGxsaGHY5GyPLly1mwYAHAglLK8mHHI2m0tfVQiCRJGgILC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1JjWFhZJ9k+yOMmKJGcl2WmK870iSUly4jSHKElS67SysEiyD3Ak8H7gScAFwKIk91/LfFsDHwPOmO4YJUlqo1YWFsBBwOdKKceWUi4G3gDcBuw30QxJ5gJfAQ4B/jAjUUqS1DKtKyySbAjsCJzaaSulrK6nd55k1vcBfyylHDPF9cxPMta5AZutQ9iSJLVC6woL4L7AXGBpT/tSYMvxZkjyDOC1wOv6WM/BwLKu2zV9RypJUsu0sbDoS5LNgC8Dryul3NDHrIcDC7puD56G8CRJmlU2GHYA0+AG4C5gYU/7QuD6cfo/HNga+E6STtscgCR3Ao8qpVzeO1MpZSWwsjPdNa8kSSOrdXssSil3AOcAu3Xaksypp88cZ5bfAo8Hdui6fRv4cf331dMYriRJrdLGPRZQnWr6pSRnA78EDgQ2AY4FSHIcsKSUcnApZQVwUffMSW4GKKWs0S5JkibXysKilHJCkvsBh1EN2Dwf2KuU0hnQuRWwekjhSZLUWimlDDuGVqhPOV22bNkyxsbGhh2ORsjy5ctZsGABwIJSyvJhxyNptLVujIUkSRoeCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktSY1hYWSfZPsjjJiiRnJdlpkr6vS3JGkpvq26mT9ZckSeNrZWGRZB/gSOD9wJOAC4BFSe4/wSy7Al8FngXsDFwNnJzkQdMfrSRJ7ZFSyrBjaFySs4BflVIOqKfnUBULnyylfHgK888FbgIOKKUcN8V1jgHLli1bxtjY2ODBS31avnw5CxYsAFhQSlk+7HgkjbbW7bFIsiGwI3Bqp62Usrqe3nmKi9kYmAfcOMl65icZ69yAzQaPWpKkdmhdYQHcF5gLLO1pXwpsOcVlHAFcS1dxMo6DgWVdt2v6C1OSpPZpY2GxTpK8C3gF8OJSyopJuh4OLOi6PXgGwpMkab22wbADmAY3AHcBC3vaFwLXTzZjkrcD7wKeU0r59WR9SykrgZVd8w4UrCRJbdK6PRallDuAc4DdOm314M3dgDMnmi/JO4D3AnuVUs6e7jglSWqjNu6xgOpU0y8lORv4JXAgsAlwLECS44AlpZSD6+l3AocBrwQWJ+mMxbi1lHLrDMcuSdKs1crCopRyQpL7URULWwLnU+2J6Azo3ApY3TXLG4ENgf/qWdT7gUOnNVhJklqkldexGAavY6Fh8ToWktYnrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/5cl+W3d/8Ikz5upWCVJaotWFhZJ9gGOBN4PPAm4AFiU5P4T9H8a8FXgGOCJwInAiUkeNyMBS5LUEimlDDuGxiU5C/hVKeWAenoOcDXwyVLKh8fpfwKwSSnl+V1tvwDOL6W8YYrrHAOWLVu2jLGxsSaehjQly5cvZ8GCBQALSinLhx2PpNG2wbADaFqSDYEdgcM7baWU1UlOBXaeYLadqfZwdFsEvGiS9cwH5nc1bQZVkpdmku85SeuT1hUWwH2BucDSnvalwKMnmGfLCfpvOcl6DgYO6W18yEMeMrUopeZtAVhlSBqqNhYWM+Vw1tzLsRlwDfBg4JahRDR7ue3WTWf73TjsQCSpjYXFDcBdwMKe9oXA9RPMc32f/SmlrARWdqaTdP68xePc/XHbrZuu7SdJQ9e6s0JKKXcA5wC7ddrqwZu7AWdOMNuZ3f1ru0/SX5IkjaONeyygOkTxpSRnA78EDgQ2AY4FSHIcsKSUcnDd/xPAT5K8Dfge8ArgycDrZzhuSZJmtVYWFqWUE5LcDziMagDm+cBepZTOAM2tgNVd/X+e5JXAB4F/BS4DXlRKuaiP1a6kum7GyrV11D247daN20/SeqOV17GQJEnD0boxFpIkaXgsLCRJUmMsLCRJUmMsLCRJUmMsLPrgT7EPrp9tl2TfJKXntmIm411fJNklyXeSXFtvhxdNYZ5dk5ybZGWS3yfZd/ojlaSKhcUU+VPsg+t329WWAw/ouj10uuNcT21Ctb32n0rnJNtQXYvlx8AOwMeBzyfZc5rik6Q1eLrpFA3jp9jbYoBtty/w8VLK5jMZ5/ouSQFeXEo5cZI+RwB7l1Ie19X2NWDzUspe0x+lpFHnHosp6Pop9lM7baWU1fX0ZD/FfmpP26JJ+rfSgNsOYNMkVya5Osm3kjx2mkNtC993kobKwmJqJvsp9ol+Wn2Qn2Jvo0G23aXAfsDfAH9H9T79eZIHT1eQLTLR+24syUZDiEfSiGnlJb01u5VSzqTrB+CS/By4BPhH4L3DikuStHbusZiaGfkp9pYaZNutoZSyCjgP2LbZ0Fppovfd8lLK7UOIR9KIsbCYAn+KfXADbrs1JJkLPB64bjpibBnfd5KGykMhU+dPsQ+ur22X5H3AL4DfA5sD/0x1uunnZzrwYUuyKWvuqdkmyQ7AjaWUq5IcDjyolPLq+vHPAAck+QjwBeDZwMuBvWcwbEkjzMJiiob0U+yt0O+2A+4NfK7uexPVHo+nlVIunrGg1x9PpromRceR9f2XgH2prvGxVefBUsoVSfYGjgL+CbgG+IdSyqIZiVbSyPM6FpIkqTGOsZAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY35/1Z1kQi6TFVhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOoklEQVR4nO3deZwcdZ3/8dd7kiGZGAIEDAgYYAFZBBTFg8MDREhUdL1x0RWEdcFFXQ4XFJVLdsWLS1AXf8ghRFDRUVSO5VpFMAaQWxA5whGuIZAEMkkG5vP7o6pDpdMz00fV9FTP+/l49GO6v1X9/X6qp+Yzn65TEYGZmZlZnrraHYCZmZl1HhcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7Fxi2CknHShqVy7tKulbStZnXu0oKSR8epfHPkfTgaIxVNe6m6XLuN9pjjxeSJkr6pqSHJQ1K6m13TGWX+fvctd2xWDm4wOhgkvZLE0LlsUzSAkmXS/q8pDVzGmfDtDDZPo/+8jSWY7NC7Q/8J/BzYF/g5PaGYzb+TGx3ADYqjgYeALqBDYBdgVOAwyS9LyJuy8x7AnBig/1vCBwDPAjc0sD79mxwnGYMF9unaU+RPR/oAQbaMPZ48Q7g0Yg4tN2BmI1XLjDGh0sj4sbM669LegfwG+DXkraOiH6AiHgBeKHIYCRNiYilEbGiyHFGEhFt+QcfyR0Gl7Vj7FZImgysiIjBdsdShxnAs3l1JqkLWCMiSvd7M2sX7yIZpyLiauBrwCbAJyrttY7BkLSHpOskPSvpOUn3SPrvdNquwLx01rMzu2P2S6dfK+kOSTtI+r2kpcB/Z6ZdWyO8CZL+W9Ljkp6X9GtJr6yK6UFJ51S/MdtnHbGtdgyGpJdJ+k667355uqxfkKSq+ULS6ZLeny7fckl3SppdY3mqY1ztGIw0luckbSSpN33+lKRvS5pQR58PSvqNpD0l3ZLuDrtL0ger5pue9nl7OsZiSZdKem3VfJX97R+TdIKkR4GlwLQm+viopGMkPSppiaSfS1pL0iRJp0h6Mu3nbEmTqvoYct0b7rMFdgO2yfzOd02nN/r7/bikO4HlwLC/W0nvkvR/6TIuljRP0j5V83xE0k2S+iX1STpf0kaZ6V9Ix96kRv9fl7RC0jrDxZHO+4a0n31rTJuVTtsrfb2JpO+ln0W/pKcl/UzSpnWMM+LfYaZtkqTjJP09/ewfVnKczKTq91tn8BaM8e3HJP/s9wR+WGsGSduQbOm4jWRXy3JgC2CXdJa/pu3HA2cCf0jbr890sy5wKXAhcD7wxAhxfRkI4Bsk30QPAa6UtH1lS0ud6oltpfSfzK9J/jmdRbJLZRbwLWAjoHpz+1uADwLfA5YAnwculjQzIp5uIM6KCcDlwFzgC8A7gcOB+4Dv1/H+LYGLgB8A5wKfAn4maXZE/G86zz8A7wd+RrLbbH3gQOD/JL06IhZU9flVYAXwbWBS+vzVDfbxJaCfZNfbFsDnSHYPDQLrAMcCOwL7pf0dD3Wte7U8BfwLyTo0NR0b4K9N/H7fAXwUOB3oI9nNVpOSYvFHwJ3A10m2nryOpCiZk5nnbJKi90skn9t/ALtIel1EPAv8FPhmOu63qob5KHBFRDwzzPIDEBE3Sro/fc+5VZP3Bp4hWdcA3gjsTPL3+QiwKfAZ4Nr097l0pPFGomQL0K9J/mbOJPnb3I7kM38VyfpknSYi/OjQB0nCDuANw8zzLHBz5vWxpFvx09eHpH2sN0wfb0jn2a/GtGvTaQcOMe3azOtd03kfAdbMtH8kbf98pu1B4Jw6+hwutnOABzOv/ymd98tV8/2M5J/h5pm2IPmHl217Tdr+2RF+L5tWx5TGEsBXq+a9Gbixjt/1g+n7P5hpmwYsqPr9TgK6asSzLDt25ndxH9BTNX+jfdwOdGfa56Sf5++q+ri+6vcx4ro3zOdxLXBHVVujv98XgVfXMdZawGLgT8DkqmlKf3aTFNa3Z+cB3pOOdVzV53BjVT9vTOf7lwY+g/8mKQjXybStQVJcnJVp66nx3h2rx8v8Pndt4u/wE+nn+Zaq+Q5M+9y50d+xH2P/4V0k9hww3Nkkz6Y//yn9FtKM5STf3Op1XkQsybz+OfAY8O4mx6/Xu0mS4GlV7d8BBLyrqv3KiLiv8iKSg2UXk2wlaNYPql7/oYH+FgC/zMSzGDgPeJ2kDdK25ZEeQyFpgqR1SdaBe4DX1+jz3KjaatREH+fFqse7zCX5PH9UNd9c4JWSKltWn01/trLuZTX6+/2/iLirjn73IPkbOjGqjtGIiMruxjeQbI37XnaeiPgtcDdJoVFxEbCDpM0zbXuT/B39qo54sv10k2xlq9gTWDudVolh5e9XUnf6+/w7yedf6/fZjI+QbLW4W9J6lQdwdTp9t5zGsTHEBYZNJdm8P5SLgD8C/w94QtKF6T71RtadR6OxAzrvzb5Ik/TfSb4lF2kTYEFVcQNJYqxMz3qoRh/PkGz2b8ayiHiqhf7+nvmHVvG39OemkGyqlnSopHtJ/mH1kexWeA3JN/FqD1Q3NNFH9ee0KP35cI32rkwfeax7WY3+fldb9iFUCoE7RhgbkiKs2t1VY1e2qOwNK3fdfYTkYO3FdcZERNya9r13pnlvkt9X5R87knokHS/pYVb9fa5N7d9nM7YEtkn7zT4q6+eMnMaxMcTHYIxjkjYmSSB/H2qeiOiX9DaSbxjvIdmnvDdwtaQ9I+LFOoZq5LiJeg11MbAJJN9SR8NQ42iI9mb7y9NRJAf3/ojk+IqFJP/MTqH2F45av7tG+xhquYb9/HJa91pRxHo7oohYIOkPJMdP/DfJ7oqZwJFNdHcR8OV0a8ES4H3ATyI5W6ziuyTH65wC3EBS6AXJMRkjFXP1/h12keweOmyI+auLTesALjDGt39Jf14+3Ezp5vCr0sdhko4C/osk8V/J0EmmWVtmX6Tf4LYgOdiv4hmSb1jVNgHuz7xuJLb5wDslrVn1LfcfM9PHsi0kqWorxqvSnw+mPz8MXBMRB2TfKGltkm+u9cijj7rUse41oqjfb2U32bYMXaxX+t6KzNaDTFv12BcB35O0FUlRtRS4pInYLiK5DsyHSI4BmUZSOGR9mGRX2OGVBiWnJK9dR//1/h3eB7wWuKrGVjbrUN5FMk4puQ7GV0k2A18wzHzTazTfkv6snF72fPpz7ZzC+6RWvcroh4FXkJyJUnEfsKOkNSoN6Wl3q5zO2mBsvyP55vXZqvZDSQqVS1d7x9iyIfCBygtJ04BPArdExONp84tUbWGR9BGSsyjqlUcfI6pz3WtEUb/fK0i2Dnwp/ce8UlocA9wIPAkclD0tU9K7gK2B31b1eTHJ5/zPJLtHfhMRz9OgiPgryZaDvdPHY8Dvq2Zb7fdJcqbPiKdHU//f4U9J1o9PV3eQ7qJ5WR1jWcl4C8b48C5J/0jy+16f5PS7PUi+Nb2v+sC0Kkenm6l/m84/A/h3kjM9rkvnuY/kgLCDJC0h+ac+NyLq3YddbSFwnaSz03gPIflmmD2V9v+RFB6XSfopyX7wT/DSt8mKRmK7BLgG+K/0GgC3khwU90/AKdkDOseovwFnSXojybfV/Uk+v09l5vkNye/0bJKzFbYDPs6q3zZHkkcf9ahn3WtEIb/fiFgs6VCSdXKepDkk3+xfC0wB9o2IAUlHkhzs/H+SfsJLp6k+SNWlzCPiSUnXkOxSWJPMQZlNuIjk1N9lJGePVF8o7TfAv0haBNwF7ERyinQ9p1rX+3f4Y5JdPj+QtBvJsTUTSLYefZTkdOEbsc7S7tNY/CjuwUunqVYey0m+wVxBcs2GNWu851hWPU31HUAv8Gj6/kdJTjPcsup97yO5BsAAmVMwqXG6YOY911L7NNWPkex7foJk0/BvgJk13n8YyT+bZST/cHao7nOE2M4hc1pk2jYVOCldzhUk/7S/QHq6YWa+AE6vEdOD1Dhtr2qeTbNxZGJ5bqTfxzB9Pph+TnuS/ONcRnLw4oer5ptEck2LBelnex3JPv6hfhcfrjFWS30wxOnTlWUlPS2VOte9Ydat1da7Vn+/I4z5XpJ/nEtJjmOYC3ysap6Pkpx6vIzkH/j5wEZD9PevaRyLqTr9tcG4tuClHLBLjelrkxxP8xTJlpjLSHbbrLIuU+M01Qb/DruBI0gOhl1G8kXiRpJrnExrdvn8GLuPyjnaZlZiSq5IekdE7NXuWMzMwMdgmJmZWQF8DIaZWYlI6mHk61MsjDbfTNDMBYaZWbnszchXxt2N5DgIs7bxMRhmZiUi6RUkV8Uczk1Rx03RzIrkAsPMzMxy54M8zczMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMGzMkHSspMi8flDSOW0MycxKyLlkbHCBYWZmZrmb2O4AzIaxFTDY7iDMrPScS9rABYaNWRGxvN0xmFn5OZe0h3eRWFtIeoukeZKWSbpP0oE15vF+UzMblnPJ2OUtGDbqJG0HXAE8BRxLsh4eBzzRxrDMrGScS8Y2FxjWDscDAt4aEQ8BSLoYuL2tUZlZ2TiXjGHeRWKjStIEYBbQW0kIABHxV+DytgVmZqXiXDL2ucCw0fZyoAe4t8a0e0Y5FjMrL+eSMc4FhpmZmeXOBYaNtqeAfmDLGtO2GuVYzKy8nEvGOBcYNqoi4kWS/aPvlzSz0i5pa5L9qWZmI3IuGftcYFg7HJP+/IOkIyV9GbgGuLONMZlZ+TiXjGEuMGzURcRtJN8wniI5zWx/kkTxy3bGZWbl4lwytikiRp7LzMyspCQ9DFweEf/a7ljGE2/BMDOzjiWpG1gX6Gt3LOONr+RpZmYdSdIs4GMk18u4qs3hjDveRWJmZh1J0jXAFsD3I+K/2x3PeFPILhJJsyW9JfP6YEm3SJojaZ0ixjSzzuNcYq2IiN0i4pUuLtqjqGMwvgVMg5V3u/sO8DtgM+CkgsY0s87jXGJWUkUdg7EZcFf6/EPAbyLiKEmvJ0kOZmb1cC4xK6miCowVwJT0+TuB89LnC0m/jZSJJAEbAkvaHYtZi9YEFkR5Dr5yLjEbm0bMJUUVGNcBJ0n6I/AmYO+0/VXAIwWNWaQNKWfcZrVsDDza7iDq5FxiNnYNm0uKKjA+C3wP+DDwmYioBPAu4LKCxizSEoCHH36YadPG5pemgYEBrrjiCvbcc0+6u7vbHU7dHPfoWbx4Ma985SuhXN+enUtGWRnXbXDco6neXFJIgRERDwF71Wg/tIjxRsu0adPGdFKYMmUK06ZNK81KCo7bhudcMvrKum477rGnsAttSeoiOf94BlVnq0TE74sa18w6i3OJWTkVUmBI2hGYA2wCqGpyABOKGNfMOotziVl5FbUF4wfAjcB7gMdIEkFHe+ihh+jrSy51v3z5ciZNmgTAeuutx8yZM1eZp1Zb9n1DTa+012qruPXWWxkYGGhp/HrGymtZHnnkkZbjrhVrM8vSyO8tG/eMGTNa6qvVdWCosTqEc0mB63HRuaTZXFbvsmTbR8olReeyZn8HtXJJ0evAUH3lnksiIvcH8DywRRF9t+NBcjpcLFq0KGqZP39+TO6ZEiTJL1DXyueTe6bE/PnzV5mnVlv2fUNNn9wzJa6//vrV2ubPnx/3339/9Pb2Rk9PT8vjjzRWnsuyzvR1W467VqzNLEsj42fjbrWvVteBWmPVsmjRosp809r9N9XA355zSYHrcdG5pJlc1siy1JtLis5leeaS0chlo5VLirqS51ySfabjQl9fH8v6l7LuXoez1ls/ATHIunsdzrp7Hc6y/qX09fWtnGetnfZerS37vqGmV/q6//77V2vr6+vj6aefBmDqNru1NH49Y+W9LADTdt67qbhrxdrMskzdbo+GxweYPvtzufTV7Dow1PrWQZxLCl6Pi8olzeayepelkVxSdC7LM5cUnctGM5cUtYvku8B3JG0A3A4MZCdGxG0FjdtW3eu+subzrAlrzRj2fSNNH6l/vWydlsZvZKy8lgVg4rQZLY1Vq62RZemaOr3h8QG6p2+US1+trgNDjdUBnEsKXo+LyiWt5rKRlqWZXDIauSyvXFLUOjCauaSoAuPi9OePMm1BcpCWD8wys3o5l5iVVJH3IjEza5VziVlJFXWhrflF9Gtm44tziVl5FXmhrc2BQ4Ct06a7gFMj4r6ixjSzzuNcYlZOhZxFImkWSRJ4E3Bb+ngzcKekPYoY08w6j3OJWXkVtQXjRODkiPhitlHSicA3gP8taFwz6yzOJWYlVdR1MLYGzqrR/iPg1QWNaWadx7nErKSKKjCeArav0b498GRBY5pZ53EuMSuponaR/BA4U9I/ANenbbsARwInFTSmmXUe5xKzkiqqwPgasAQ4HPh62rYAOBY4raAxzazzOJeYlVQhu0jS+6GcHBEbA2sBa0XExhFxaqR3/KmXpI0knS/paUn9km6X9IbMdEk6XtJj6fQrJW1Z1cd0SRdIWizpWUlnSZqaz9KaWVGcS8zKq6hjMFaKiCURsaSZ90paB/gjyf0H3kVyUNfhwDOZ2Y4APg8cRHL62vPA5ZImZ+a5ANgG2APYC3gbcGYzMZlZeziXmJVLbrtIJN0M7B4Rz0j6C8l9AmqKiNfX2e2RwMMR8alM2wOZMUVyAZ4TIuJXadsngSeA9wMXStoamA28MSJuTOf5HPA7SV+IiAV1xmJmo8C5xKwz5HkMxq+A5ZnnDW2+HML7SL5B/Ax4O/Ao8L2I+GE6fTNgA+DKyhsiYpGkucBOwIXpz2crCSF1JTBI8i3ll9WDSpoETMo0rQkwMDDAwMBA9ewMDg7S09PD5IliQveElc8Benp6GBwcXPl8cjp9lbbs+4aYXnleq21wcHDl/JPXmNja+HWMlfeyACvnbXSsWrE2tSxrTGSgwfEBJk1ULn01uw4Mtb7VWk9rtY1RziWjuB4XlkuazGV1L0sDuWTEsVpcljxzSc3xC/7cisolanA35qiStCx9ehLwM+CNwKnAQRFxrqSdSTZ7bhgRj2Xe91OS3bd7SzoK2Dcitqrq+0ngmIj4fo1xjwWOqW6fM2cOU6ZMyWfhzEbZ0qVL2WeffSA5jmFxu+MZTc4lZvmpO5dERO4P4H5g3RrtawP3N9DPCuD6qrbTgBvS5zuTfLt5RdU8PwUuSp8fBdxTo+8ngc8MMe4kYFrmsREQfX19sWLFitUe8+bNi56entj0gFNjow8csfL5pgecGj09PTFv3ryV82z43kNWa8u+b6jplb7OP//8mv3PnTs3ent7Y+Ye+7Y0fj1j5bks06dPj97e3tj8o19qaqxasTazLDPe/vGGxq/EvdWBp7XcVyvrwFDrW631tK+vL9K/l2lF/N07lxSfS/Jej4vMJc3msnqXpZFcUnQuyzOXFJ3LRjOXFHWa6qbAhBrtk4CNG+jnMZL7EGT9FfhQ+vzx9Of66bxkXt+SmWdGtgNJE4HpmfevIiKW89ImWpLds9Dd3U13d/dq83d1ddHf38+yF4KBgRdXPgfo7++nq6tr5fOedHq2Lfu+oaZXntdqq8wLsGzFCy2NX+9YeS4LwLImP7dasTazLN1NfG4Ay1+IXPpqdh0Yan2rtZ7WaiuBTXEuAYpbj4vKJa3ksnqWpZFcMtJYrS5Lnrmk1vhFf25F5ZJcCwxJ78u8nCVpUeb1BGB3MgdW1eGPwFZVba8CKrdwfoDkD3t30iQgaRrJ/tDK5sobgLUl7RARN6Vt7yA5g2ZuA7GY2ShxLjErv7y3YPSmPwM4t2raAPAgyalh9ToZuD7d9/lTkjsq/lv6ICJC0inAVyTdS5IkvkZyIZ7edJ6/SroM+KGkg4Bu4HTgwvBR32ZjVW/607nErKRyLTAiogtA0gMkp3L1tdjfPEkfILmC39Ekf/SHRMQFmdm+CbyM5Fz0tYHrgNkRsSwzz8dJEsFVJEd8X0xyvruZjUHOJWblV8gxGBGxWY59/Qb4zTDTgyRhHD3MPAuBffKKycxGh3OJWXnleaGtzwNnRsSy9PmQIsL3EDCzmpxLzDpDnlswDiW5jO6y9PlQAt+kyMyG5lxi1gFyKzCymzLz3KxpZuOLc4lZZyjkZmeSjpa02mXqJPVIGnL/pplZlnOJWXkVdTfVY4BatzCeQo3L5pqZDcG5xKykiiowRO0bFL0WWFjQmGbWeZxLzEoq7yt5PkOSDAL4m6RsYphA8k3kB3mOaWadx7nErPzyvg7GISTfOH5Esvkye3nfFcCDEXFDzmOaWec5BOcSs1LL+0qe58LKq+/9MSJeyLN/MxsfnEvMyq+QYzAi4v+ATSSdIOknkmYASHqXpG2KGNPMOo9ziVl5FXWa6tuB20nuRPhBXjoK/LXAcUWMaWadx7nErLyKOovkROArEbEHyf7SiquBHQsa08w6j3OJWUkVVWBsB/yyRvuTwHoFjWlmnce5xKykiiowngVeUaP9dcCjBY1pZp3nWZxLzEqpqALjQuAbkjYgOY+9S9IuwLeB8woa08w6j3OJWUkVVWAcBdwNPExyUNZdwO+B64ETChrTzDqPc4lZSeV9oS0AImIF8GlJXwO2JUkMf4mIe4sYz8w6k3OJWXkVUmBURMRDkh5On9e6n4CZ2YicS8zKp6hdJEg6QNIdwDJgmaQ7JP1rUeOZWWdyLjErp0K2YEg6HjgM+C5QuV/ATsDJkmZGxNFFjGtmncW5xKy8itpF8hng0xHxk0zbryXdRpIonBTMrB7OJWYlVdQukm7gxhrtN1HwcR9m1lGcS8xKqqgC48ck3zyq/RtwQUFjmlnncS4xK6kivwEcIGlP4E/p6zcDM4HzJJ1UmSkiDiswBjMrP+cSsxIqqsDYFrg5fb55+rMvfWybmc+nm5nZcJxLzEqqqAtt7VZEv2Y2vjiXmJVXYdfBAJC0haRZknrS1ypyPDPrTM4lZuVTSIEhaV1JVwF/A37HS3dDPEvSd4oY08w6j3OJWXkVtQXjZGCA5ECspZn2i4DZzXYq6YuSQtIpmbbJks6Q9LSk5yRdLGn9qvfNlPRbSUslPSnpW5J8ipvZ2OdcYlZSRf1h7AnMiohHqrZk3gts0kyHkt4IHAjcVjXpZOA9wEeARcDpwC+AXdL3TQB+CzwO7EzyDeg8kqR1VDOxmNmocS4xK6mitmC8jFW/bVRMB5Y32pmkqSTnvH8aeCbTvhZwAHBYRFwdETcBnwJ2lrRjOtuewKuBT0TELRFxKfBV4GBJazQai5mNKucSs5IqagvGH4BPkvzxAYSkLuAI4Jom+jsD+G1EXCnpK5n2HUiu9HdlpSEi7pb0EMn9Cv6U/rw9Ip7IvO9y4PvANsBfqgeTNAmYlGlaE2BgYICBgYHVghscHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuURF3PlY0rbAVSTnr78D+DXJH+B0YJeIuK+Bvj4GfBl4Y0Qsk3QtcEtEHCJpH+DsiJhU9Z4/A9dExJGSzgQ2iYhZmelTgOeBd6ffQqrHPBY4prp9zpw5TJkypd7QzcaUpUuXss8++wCsFRGL2x1PPZxLzMaeunNJRBTyANYi+WP+KcnR3ycAr2iwj1cCTwCvybRdC5ySPt8HWF7jfX8GvpE+PxO4vGr6FJIL87xriHEnAdMyj42A6OvrixUrVqz2mDdvXvT09MSmB5waG33giJXPNz3g1Ojp6Yl58+atnGfD9x6yWlv2fUNNr/R1/vnn1+x/7ty50dvbGzP32Lel8esZK89lmT59evT29sbmH/1SU2PVirWZZZnx9o83NH4l7q0OPK3lvlpZB4Za32qtp319fZGu99OK+rt3Lik2l+S9HheZS5rNZfUuSyO5pOhclmcuKTqXjWYuyX0XiaRu4DLgoIj4rxa72wGYAdycOcBrAvA2SZ8FZgFrSFo7Ip7NvG99kgOxSH++qarf9TPTVhMRy8ns362M3d3dTXd392rzd3V10d/fz7IXgoGBF1c+B+jv76erq2vl8550erYt+76hplee12qrzAuwbMULLY1f71h5LgvAsiY/t1qxNrMs3U18bgDLX4hc+mp2HRhqfau1ntZqG8ucS0ZnPS4ql7SSy+pZlkZyyUhjtboseeaSWuMX/bkVlUtyP8gzIgaA1+TU3VXAdsD2mceNJAdpVZ4PALtX3iBpK5JT2m5Im24AtpM0I9PvHsBi4K6c4jSznDmXmJVbUQd5nk9yRPYXW+kkIpYAd2TbJD0PPB0Rd6SvzwJOkrSQ5A/9u8ANEVG5MdIVJH/8P5Z0BLABySbWM9JvF2Y2djmXmJVUUQXGRGB/Se8EbiI5CGqlyPeuh4cCg8DFJPs7Lwf+PTPWi5L2IjnS+4Y0lnOBo3OMwcyK4VxiVlKjcTfVV1VNa+m0lYjYter1MuDg9DHUe+YD725lXDNrC+cSs5Ly3VTNbMxyLjErr0LvpmpmZmbjkwsMMzMzy50LDDMzM8udCwwzMzPLXW4FhqSbJa2TPj86vUa/mVlDnEvMOkOeWzC2Jrm1MiQ395maY99mNn44l5h1gDxPU70FOFvSdYCAL0h6rtaMEXF8juOaWWe5BecSs9LLs8DYDzgO2Iv07oLACzXmC8BJwcyGsh/OJWall1uBERH3AB8DkDQI7B4RT+bVv5mND84lZp2hqCt5+uwUM2uZc4lZeRV1LxIkbQ4cQnLAFiR3ITw1Iu4rakwz6zzOJWblVMi3A0mzSJLAm4Db0sebgTsl7VHEmGbWeZxLzMqrqC0YJwInR8QXs42STgS+AfxvQeOaWWdxLjErqaL2b24NnFWj/UfAqwsa08w6j3OJWUkVVWA8BWxfo317wEeDm1m9nEvMSqqoXSQ/BM6U9A/A9WnbLsCRwEkFjWlmnce5xKykiiowvgYsAQ4Hvp62LQCOBU4raEwz6zzOJWYlVdR1MAI4GThZ0ppp25IixjKzzuVcYlZehV0Ho8LJwMzy4FxiVi6+Sp6ZmZnlzgWGmZmZ5c4FhpmZmeUu9wJDUrekqyRtmXffZjZ+OJeYlVvuBUZEDACvybtfMxtfnEvMyq2oXSTnAwcU1LeZjR/OJWYlVdRpqhOB/SW9E7gJeD47MSIOK2hcM+ssziVmJVVUgbEtcHP6/FVV06KgMc2s8ziXmJVUUVfy3K2Ifs1sfHEuMSuvQk9TlbSFpFmSetLXavD9X5I0T9ISSU9K6pW0VdU8kyWdIelpSc9JuljS+lXzzJT0W0lL036+Janwq5iaWT6cS8zKp5ACQ9K6kq4C/gb8DnhFOuksSd9poKu3A2cAOwJ7AN3AFZJelpnnZOC9wEfS+TcEfpGJZQLwW2ANYGdgX2A/4PiGF8zMRpVziVl5FbUF42RgAJgJLM20XwTMrreTiJgdEedExJ0RcSvJH/NMYAcASWuRHGF+WERcHRE3AZ8Cdpa0Y9rNnsCrgU9ExC0RcSnwVeBgSWu0spBmVjjnErOSKmrT3p7ArIh4pGpL5r3AJi30u1b6c2H6cweSbyJXVmaIiLslPQTsBPwp/Xl7RDyR6edy4PvANsBfqgeRNAmYlGlaE2BgYICBgYHVghocHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuUTJ3ZDzJWkJ8PqIuDd9/tqIuF/SG4DLI2LdJvrsAn4NrB0Rb0nb9gHOjohJVfP+GbgmIo6UdCawSUTMykyfQnK627vTbyHVYx0LHFPdPmfOHKZMmdJo6GZjwtKlS9lnn30A1oqIxe2Opx7OJWZjT925JCJyf5DsK/1a+nwJsBnJ7pifAj9vss/vAw8CG2fa9gGW15j3z8A30udnkiSi7PQpJKe4vWuIsSYB0zKPjYDo6+uLFStWrPaYN29e9PT0xKYHnBobfeCIlc83PeDU6OnpiXnz5q2cZ8P3HrJaW/Z9Q02v9HX++efX7H/u3LnR29sbM/fYt6Xx6xkrz2WZPn169Pb2xuYf/VJTY9WKtZllmfH2jzc0fiXurQ48reW+WlkHhlrfaq2nfX19ka7304r4u3cuKT6X5L0eF5lLms1l9S5LI7mk6FyWZy4pOpeNZi4pahfJEcBV6beMNYBvkmxCnA7s0mhnkk4H9gLeFhGPZCY9Dqwhae2IeDbTvn46rTLPm6q6XD8zbTURsRxYnhkfgO7ubrq7u1ebv6uri/7+fpa9EAwMvLjyOUB/fz9dXV0rn/ek07Nt2fcNNb3yvFZbZV6AZSteaGn8esfKc1kAljX5udWKtZll6W7icwNY/kLk0lez68BQ61ut9bRWWwk4lxS8HheVS1rJZfUsSyO5ZKSxWl2WPHNJrfGL/tyKyiWFHOQZEXeQXBTnOuBXwMtIjsZ+XUTcV28/SpwOfAB4R0Q8UDXLTSQHgO2eec9WJAdv3ZA23QBsJ2lG5n17AIuBuxpZLjMbXc4lZuVV2PnbEbEI+K8WuzmDZNPlPwFLJG2Qti+KiP6IWCTpLOAkSQtJ/tC/C9wQEX9K572C5I//x5KOADYATgDOSL9dmNkY5lxiVk6FFRiS1iE57WvrtOkukoOoFg79rtV8Jv15bVX7p4Bz0ueHAoPAxST7Oy8H/r0yY0S8KGkvkv2uN5AckHUucHQDcZhZmziXmJVTIQWGpLcBlwCLgBvT5s8DR0t6b0T8vp5+ImLEq/VFxDLg4PQx1DzzgXfXM6aZjR3OJWblVdQWjDNILoTzmYh4EVZeBe976bTtChrXzDqLc4lZSRV1Jc8tgO9UEgIkmxeBk9JpZmb1cC4xK6miCoybeWl/adbWwK0FjWlmnce5xKykcttFIuk1mZenAadK2oLkEruQ3GToYOCLeY1pZp3HucSsM+R5DMYtJFf2yh5M9c0a880h2adqZlbLLTiXmJVengXGZjn2ZWbjl3OJWQfIrcBIT98yM2uJc4lZZyjyQlsbAm8BZlB1MGlEnFbUuGbWWZxLzMqpqAtt7Qf8D7ACeJpkf2pFkBy4ZWY2LOcSs/IqagvG14Djga9HxGBBY5hZ53MuMSupoq6DMQW40AnBzFrkXGJWUkUVGGcBHymobzMbP5xLzEqqqF0kXwJ+I2k2cDswkJ0YEYcVNK6ZdRbnErOSKrLAmAXck76uPjDLzKweziVmJVVUgXE4sH9EnFNQ/2Y2PjiXmJVUUcdgLAf+WFDfZjZ+OJeYlVRRBcapwOcK6tvMxg/nErOSKmoXyZuAd0jaC7iT1Q/M+mBB45pZZ3EuMSupogqMZ4FfFNS3mY0fz+JcYlZKhRQYEfGpIvo1s/HFucSsvIo6BsPMzMzGsaJudvYAw5yjHhH/UMS4ZtZZnEvMyquoYzBOqXrdDbwOmA18q6AxzazznFL12rnErCSKOgbj1Frtkg4G3lDEmGbWeZxLzMprtI/BuBT40CiPaWadx7nEbIwb7QLjw8DCUR7TzDqPc4nZGFfUQZ5/YdUDswRsALwc+PcixjSzzuNcYlZeRR3k2Vv1ehB4Crg2Iu4uaEwz6zy9Va+dS8xKoqiDPI8rot9WpQeG/SfJN6Bbgc9FxJ/bG5WZDcW5xKy8xs2FtiTtDZwEHAe8niQpXC5pRlsDM7NScS4xq0+uBYakQUkvjvB4Ic8xG3AY8MOIODsi7gIOApYC+7cpHjMbgnOJWfnlvYvkA8NM2wn4PG3YaiJpDWAH4OuVtogYlHRlGpeZjS3OJWYll2uBERG/qm6TtBVwIvBe4ALg6DzHrNN6wATgiar2J4B/rJ5Z0iRgUqZpTYCFCxcyMDBQPTuLFy9m8uTJ6OkH6Fry1MrnAJMnT+amm25a+XzCkidWa8u+b6jplef33HPPkP1PnTqV7v5nWhq/3rHyXJalS5fSteTxpsaqFWszy9K9bGHD4y9duhQtnJ9LX82uA7WWdfHixTz99NOrradLlixZrW2sci4ZvfW4qFzSSi6rZ1kaySVF57I8c0nRuWxUc0lEFPIANgR+CKwALgG2LWqsOmMJYKeq9m8Cc2vMf2w6vx9+dOJjo3b9LTqX+OFHRz2GzSW5n0UiaS3gKOBzwC3A7hHxh7zHaVAf8CKwflX7+sDjNeb/OslBXFnTGdsX9lkTeATYGCjPV1XHPdrWBBa0O4h6OJe0TZnXbcc9ekbMJbkWGJKOAI4k+UP756ixmbMdImKFpJuA3UnPq5fUlb4+vcb8y4HlVc2LCw6zJZIqT5dExJiONctxj7pSxOpc0j5lXbcd96gbMValm/FyIWkQ6AeuJKnya4qID+Y2aJ3SU8vOBQ4E/gwcAnwU+MeIqN6fWjqSpgGLgLXKtJI6bqvFuaR9yrpuO+6xJ+9dJOeR7JcZcyLiIkkvB44nuTjOLcDsTkgIZh3IucSs5PI+i2S/PPvLW0ScTo3NmB1iOcmFf6o3x451jttW41zSVmVdtx33GJPrLhIzMzMzGEeXCjczM7PR4wLDzMzMcucCw8zMzHLnAsPMzMxy5wKjA0j6sqTrJS2V9OwQ88yU9Nt0niclfUtS7ldybYSkgyU9KGmZpLmS3tTOeGqR9DZJl0haICkkvb9quiQdL+kxSf2SrpS0ZZvCNWtaWfNIGteYziXjNY+4wOgMawA/A75fa6KkCcBv0/l2BvYF9iM5j78t0osVnURyetbrgVuByyXNaFdMQ3gZSWwHDzH9CJI7ex4EvBl4nmQ5Jo9OeGa5KV0egdLkkvGZR9p9IyM/cr0R037AszXa30V6/4RM20EkV49bo02xzgVOz7zuAh4Fvtjuz3GYmAN4f+a1gMeAL2Ta1gKWAR9rd7x++NHMo0x5JI2hVLlkPOURb8EYH3YCbo9VrzR4OTAN2Ga0g5G0BrADyWWgAYiIwfT1TqMdTws2I7mSY3Y5FpEkvDIth1k9xlQegY7JJR2bR1xgjA8bANWXMX4iM220rQdMoHZM7YinWZVYy74cZvUYa3kEOiOXdGwecYExRkk6MT0YaLjHP7Y7TjMbu5xHrJ3afvSvDek7wDkjzHN/nX09DlQfVb1+Ztpo6yPdl1vVvj7tiadZlVjXJ9mHSub1LaMejdnqOjmPQGfkko7NI96CMUZFxFMRcfcIjxV1dncDsF3VUdV7AIuBu3IPfgRp3DcBu1faJHWlr28Y7Xha8ABJcsguxzSSo8DLtBzWoTo5j0DH5JKOzSPegtEBJM0EpgMzgQmStk8n/T0ingOuIEkAP5Z0BMl+vROAMyKiXXfwOwk4V9KNwJ+BQ0hO5Tq7TfHUJGkqsEWmabP0810YEQ9JOgX4iqR7SRLF14AFQO8oh2rWkpLmEShBLhm3eaTdp7H40fqDZBNo1HjsmplnE+B3wFLgKeDbwMQ2x/1ZYD7JbYrnAm9u92dZI8Zdh/hsz0mni+Q6AI+TnFZ2JfCqdsfthx+NPsqaR9K4xnQuGa95xLdrNzMzs9z5GAwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMGxMkPSjpkHbHYWbl5TwytrjAMDMzs9y5wDAzM7PcucCwlkn6N0kL0rsYZtt/JelHkjZPnz8h6TlJ8yS9c5j+NpUUmZstIWnttG3XTNu2ki5N+3xC0o8lrVfAIppZwZxHOo8LDMvDz4B1gd0qDZKmA7OBC4CpJDdI2h14HXAZcEl698amSFobuBr4C/CGdKz1gZ8226eZtZXzSIfx7dqtZRHxjKRLgX2Aq9LmDwN9wDURMQjcmnnLVyV9AHgfcHqTw34W+EtEHFVpkLQ/8LCkV0XE35rs18zawHmk83gLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNPfPIDXArulmzWfS/u8O522eQv9mln7OI90EG/BsLxcAgh4j6R5wFuBQ9Np3wb2AL4A/B3oB34OrDFEX4PpT2XauqvmmZqOeWSN9z/WaPBmNiY4j3QQFxiWi4hYJukXJN84tgDuiYib08m7AOdExC8BJE0FNh2mu6fSn68g2TcKsH3VPDcDHwIejIgXWl4AM2s755HO4l0klqcLgPcA+6fPK+4FPihpe0mvBeYwzLoXEf3An4AvStpa0tuBE6pmOwOYDvxE0hvTI8xnSTpb0oQcl8nMRpfzSIdwgWF5uhpYCGxF8sdfcRjwDHA9yebIy0m+OQxnf5ItbDcBpwBfyU6MiAUk32gmAFcAt6fzPctLm0bNrHycRzqEIqLdMZiZmVmH8RYMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwxrO0nHSorM65B0ejtjMjOz1rjAMDMzs9y5wDAzM7PcucAwMzOz3LnAsFEl6S2S5klaJuk+SQfW+b6vSBqU9LmiYzQzs9ZNbHcANn5I2g64AngKOJZk/TsOeGKE950AHAUcGBE/LDhMMzPLgQsMG03HAwLeGhEPAUi6GLh9qDdI+jZwKPCpiDh3VKI0M7OWeReJjQpJE4BZQG+luACIiL8Cl9d+i04H/gP4hIsLM7Ny8RYMGy0vB3qAe2tMuwd4d1XbJ4GpwGci4icFx2ZmZjnzFgwbq/5IcmzGZyVNb3cwZmbWGBcYNlqeAvqBLWtM26pG29+BPYENgcskrVlgbGZmljMXGDYqIuJFkmMt3i9pZqVd0tYkx2bUes9tJLtOtgYukdQzGrGamVnrXGDYaDom/fkHSUdK+jJwDXDnUG+IiD8B/wTsCPxcUnfxYZqZWatcYNioSbdIzCLZXXI8sD9J0fHLEd53NfBRkl0mP5bk9dbMbIxTRIw8l5mZmVkD/E3QzMzMcucCw8zMzHLnAsPMzMxy13CBIWm2pLdkXh8s6RZJcyStk294ZmZmVkbNbMH4FjANVt4d8zvA74DNgJPyC83MzMzKqpl7kWwG3JU+/xDwm4g4StLrSQoNMzMzG+eaKTBWAFPS5+8EzkufLyTdstFpJInkktVL2h2LWYvWBBaEz083s4I1U2BcB5wk6Y/Am4C90/ZXAY/kFdgYsyGdu2w2/mwMPNruIMysszVTYHwW+B7wYZJbaVcS1buAy/IKbIxZAvDwww8zbdrqG2kGBga44oor2HPPPenuLseVrB3z6BhLMS9evJhXvvKV4C1xZjYKGi4wIuIhYK8a7YfmEtEYNm3atCELjClTpjBt2rS2/xOpl2MeHWWM2cwsD81swSC9F8QWwAyqzkSJiN/nEJeZmZmVWMMFhqQdgTnAJoCqJgcwIYe4zMzMrMSa2YLxA+BG4D3AYyRFhZmZmdlKzRQYWwIfjoi/5x1M2d166610dXWx3nrrMXPmzNWmP/TQQ/T19TU9vXo+oOa89Ux/8sknAXjkkUfYbLPNCh1ruOmNzPvII8mJPLfeeiszZswodKw8l6sS81DrxmjHYmY2KiKioQdwNTC70feV+UFyfY9YtGhR1HL//fdHb29v9PT0BBCTe6bE/PnzV5ln/vz5MblnStPTa81Xa956p/f09ERvb2+sM33dwscaanqjY60zfd2Vn3PRY+W1XCOtG6MZy6JFiyrzTYsx8Hflhx9+dPajmUuFfxf4jqT9JO0g6TXZRxP9ld7TTz8NwPTZn2PdvQ5nWf/Sld8oK/r6+ljWv5S1dtq7qenV86271+E1x6p3+vTZnwMYlbGGmt7MWJXPeTTGymO5Rlo3RjMWM7PR1MwukovTnz/KtAXJAZ/j+iDP7ukb8eILwx+SMmGtGS1NXznWuq9sbfr0jeoaJ5exRpje6LzDxZ7nWLku1wjrxmjGYmY2Gpq9F4mZmZnZkJq50Nb8IgIxMzOzztHshbY2Bw4Btk6b7gJOjYj7corLzMzMSqzhgzwlzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezZymujVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8eeLKVYMzMzKwzNLOL5IfAmZL+Abg+bdsFOBI4Ka/AzMzMrLyaKTC+BiwBDge+nrYtAI4FTssnLDMzMyuzZq6DEcDJwMmS1kzbluQdmJmZmZVXU9fBqHBhYWZmZrXUVWBIuhnYPSKekfQXknuO1BQRr88rODMzMyunerdg/ApYnnk+/B29zMzMbFyrq8CIiOMyz48tLBozMzPrCM1cKvx+SevWaF9b0v35hGVmZmZl1syFtjYFJtRonwRs3FI0ZmZm1hHqPotE0vsyL2dJWpR5PQHYHXggr8DMzMysvBo5TbU3/RnAuVXTBoAHSS6+ZWZmZuNc3QVGRHQBSHoAeGNE9BUWlZmZmZVaM1fy3KyIQMzMzKxz1Huhrc8DZ0bEsvT5kCLC9yMxMzMb5+rdgnEocAGwLH0+lMA3PDMzMxv36r3Q1ma1npuZmZnV0syFto6WNKVGe4+koxvs622SLpG0QFJIen/VdEk6XtJjkvolXSlpy6p5pku6QNJiSc9KOkvS1Kp5XiPpD5KWSXpY0hGNxGlmZmaNaeZCW8cAU2u0T0mnNeJlwK3AwUNMPwL4PHAQ8GbgeeBySZMz81wAbAPsAewFvA04szJR0jTgCmA+sAPwn8Cxkv6twVjNzMysTs3crl3UvtnZa4GFjXQUEZcClwJIWnWQpOEQ4ISI+FXa9kngCeD9wIWStgZmk5w2e2M6z+eA30n6QkQsAD4OrAHsHxErgDslbQ8cRqYQMTMzs/w0ciXPZ0gKiwD+JilbZEwg2arxgxxj2wzYALiy0hARiyTNBXYCLkx/PlspLlJXAoMkWzx+mc7z+7S4qLgcOFLSOhHxTPXAkiaRXPq8Yk2AgYEBBgYGVgt0cHAQgEkTkyKpp6eHwcHBVeYdHBykp6eHyd0Tmpq+2nxDjFXv9OFizXusoaY3M1blcx6NsfJarkrMRYzVSCy12szMiqKI+u68Lmlfkq0XPyLZspC9VPgK4MGIuKHpQJKC5QMR0Zu+3hn4I7BhRDyWme+nQETE3pKOAvaNiK2q+noSOCYivi/pCuCBiDgwM/3VwJ3AqyPirzViOZYau3vmzJnDlCmrHX5iVgpLly5ln332AVgrIha3Ox4z63AR0dADeDswsdH31dFvAO/PvN45bXtF1Xw/BS5Knx8F3FOjryeBz6TPrwD+p2r6q9O+tx4ilknAtMxjIyD6+vpixYoVqz3mzp0bvb29sdWBp8WmB5waPT09MW/evFXmmTdvXvT09MSG7z2kqenV8216wKk1x6p3+lYHnha9vb0xffr0wscaanqjY02fPn3l51z0WHkt10jrxmjG0tfXV9kCOS3vv18//PDDj+pHM1fy/D9Jm0v6FLA58B8R8aSkdwEPRcSdjfY5hMfTn+sDj2Xa1wduycwzI/smSROB6Zn3P56+J2v9zLTVRMRyYHmmTwC6u7vp7u5ebf6uruRY2eUvBMteCPr7++nq6lpl3q6uLvr7++kZeLGp6dXzLXsh2fJUPW+905cPMb2IsYaa3sxYlc95NMbKa7kqMddaN0YzllptZmZFaeY01bcDt5Mc4/BBXjqj5LXAcfmFxgMkBcDumbGnpeNWdsXcAKwtaYfM+95BslxzM/O8TVI2u+5BsuVjteMvzMzMrHXNnKZ6IvCViNiD5NiLiquBHRvpSNJUSdunZ3UAbJa+nhkRAZwCfEXS+yRtB5wHLCC9s2skx09cBvxQ0psk7QKcDlwYyRkkAHPSOM+StI2kvYH/AE5qdMHNzMysPs2cprodsE+N9ieB9Rrs6w3ANZnXlX/65wL7Ad8kuVbGmcDawHXA7IhYlnnPx0mKiqtIzh65mOTaGcDKM0/2BM4AbgL6gOMjwqeompmZFaSZAuNZ4BUkuzCyXgc82khHEXEtyZkpQ00P4Oj0MdQ8C6ld8GTnuQ14ayOxmZmZWfOa2UVyIfANSRuQHJHele6a+DbJLgwzMzMb55opMI4C7gYeJjnA8y7g98D1wAn5hWZmZmZl1cxpqiuAT0v6GrAtSZHxl4i4N+/gzMzMrJyaOQYDgIh4SNLD6fP6LgdqZmZm40Izu0iQdICkO4BlwDJJd0j613xDMzMzs7JqeAuGpONJ7kT6XV664NVOwMnp9SuGPOPDzMzMxodmdpF8Bvh0RPwk0/ZrSbeRFB0uMMzMzMa5ZnaRdAM31mi/iRaO6TAzM7PO0UyB8WOSrRjV/g24oLVwzMzMrBM0u8XhgPTy239KX78ZmAmcJ2nlPT4i4rAW4zMzM7MSaqbA2Ba4OX2+efqzL31sm5nPp66amZmNU81caGu3IgIxMzOzztHUdTAAJG0haZaknvT1kDctMzMzs/Gl4QJD0rqSrgL+BvyO5M6qAGdJ+k6ewZmZmVk5NbMF42RggOSgzqWZ9ouA2XkEZWZmZuXWzEGeewKzIuKRqr0i9wKb5BKVmZmZlVozWzBexqpbLiqmA8tbC8fMzMw6QTMFxh+AT2Zeh6Qu4AjgmlyiMjMzs1JrZhfJEcBVkt4ArAF8E9iGZAvGLjnGZmZmZiXV8BaMiLgDeBVwHfArkl0mvwBeFxH35RuemZmZlVFDWzAkdQOXAQdFxH8VE5KZmZmVXUNbMCJiAHhNQbGYmZlZh2jmIM/zgQPyDsTMzMw6RzMHeU4E9pf0TuAm4PnsRN9B1czMzFq9m+qrqqb5DqpmZmbmu6mamZlZ/pq+m6qZmZnZUFxgmJmZWe5cYJiZmVnuXGCYmZlZ7uoqMCTdLGmd9PnRkqYUG5aZmZmVWb1bMLYmuecIwDHA1GLCMTMzs05Q72mqtwBnS7oOEPAFSc/VmjEijs8pNjMzMyupeguM/YDjgL1ILqb1LuCFGvMF4ALDzMxsnKurwIiIe4CPAUgaBHaPiCeLDMzMzMzKq5krefrMEzMzMxtWM/ciQdLmwCEkB38C3AWcGhH35RSXmZmZlVjDWyMkzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezRxPsTVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8e8JklZmZm1lSB8UPgTElHSnpr+vgi8D/ptNxIOlZSVD3uzkyfLOkMSU9Lek7SxZLWr+pjpqTfSloq6UlJ35LU1MGtZmZmVp9m/tF+DVgCHA58PW1bABwLnJZPWKu4E3hn5nX2Al8nA+8BPgIsAk4HfgHsAiBpAvBb4HFgZ+AVwHnAAHBUAbGamZkZzV0HI0j+sZ8sac20bUnegWW8EBGPVzdKWgs4ANgnIq5O2z4F/FXSjhHxJ2BPkuNC3hkRTwC3SPoq8A1Jx0bEigLjNjMzG7daumhWRCwpuLgA2FLSAkn3S7pA0sy0fQegG7gyE8/dwEPATmnTTsDtaXFRcTkwDdim4LjNzMzGrbF+LMJckvug3EOye+MY4A+StgU2AFZExLNV73kinUb684ka08nMsxpJk4BJmaY1AQYGBhgYGFht/sHBQQAmTRQAPT09DA4OrjLv4OAgPT09TO6e0NT01eYbYqx6pw8Xa95jDTW9mbEqn/NojJXXclViLmKsRmKp1WZmVhQlezzKQdLawHzgMKAfODsiJlXN82fgmog4UtKZwCYRMSszfQrwPPDuiLh0iHGOJSlmVjFnzhymTJmS09KYja6lS5eyzz77AKwVEYvbHY+ZdbiIKNUDmEdycOk7SO7eunbV9PnAoenz44FbqqZvlr7vdcOMMYlkN0rlsREQfX19sWLFitUec+fOjd7e3tjqwNNi0wNOjZ6enpg3b94q88ybNy96enpiw/ce0tT06vk2PeDUmmPVO32rA0+L3t7emD59euFjDTW90bGmT5++8nMueqy8lmukdWM0Y+nr64t03Z/W7r9jP/zwo/MfDe0ikdQNXAYcFBH3tlTZNEHSVGBz4MfATSRng+wOXJxO3wqYCdyQvuUG4MuSZsRLd3/dA1hMcrnzmiJiObA8My4A3d3ddHd3rzZ/V1dyKMvyF4JlLwT9/f10dXWtMm9XVxf9/f30DLzY1PTq+Za9kGx5qp633unLh5hexFhDTW9mrMrnPBpj5bVclZhrrRujGUutNjOzojRUYETEgKTXFBVMNUnfBi4h2SqxIXAc8CLwk4hYJOks4CRJC0mKhu8CN0RyBgnAFSSFxI8lHUFy3MUJwBlpEWFmZmYFaOYskvNJTg8dDRsDPyE5yPOnwNPAjhHxVDr9UOA3JFswfk9yvYsPVt4cES8Ce5EUJTeksZ8HHD1K8ZuZmY1LzZxFMhHYX9I7SXZTPJ+dGBGH5RFY2tfHRpi+DDg4fQw1z3zg3XnFZGZmZiNrpsDYFrg5ff6qqmnlOSXFzMzMCtPMlTx3KyIQMzMz6xxNX8lT0haSZknqSV8rv7DMzMyszBouMCStK+kq4G/A70iusAlwlqTv5BmcmZmZlVMzWzBOJrn+xExgaab9ImB2HkGZmZlZuTVzkOeewKyIeKRqr8i9wCa5RGVmZmal1swWjJex6paLiulkrn5pZmZm41czBcYfgE9mXoekLuAI4JpcojIzM7NSa2YXyRHAVZLeAKwBfBPYhmQLxi45xmZmZmYl1fAWjIi4g+QCW9cBvyLZZfILkruT3pdveGZmZlZGzWzBICIWAf+VcyxmZmbWIZoqMCStQ3LDs63TpruAsyNiYV6BmZmZWXk1c6GttwEPAp8H1kkfnwceSKeZmZnZONfMFowzSC6q9Zn0duhImgB8L522XX7hmZmZWRk1c5rqFsB3KsUFQPr8pHSamZmZjXPNFBg389KxF1lbA7e2Fo6ZmZl1grp2kUh6TeblacCpkrYA/pS27QgcDHwx3/DMzMysjOo9BuMWIIDszUe+WWO+OSTHZ5iZmdk4Vm+BsVmhUZiZmVlHqavAiIj5RQdiZmZmnaPZC21tCLwFmEHVgaIRcVoOcZmZmVmJNVxgSNoP+B9gBfA0ybEZFUFyEKiZmZmNY81swfgacDzw9YgYzDkeMzMz6wDNXAdjCnChiwszMzMbSjMFxlnAR/IOxMzMzDpHM7tIvgT8RtJs4HZgIDsxIg7LIzAzMzMrr2YLjFnAPenr6oM8zczMbJxrpsA4HNg/Is7JORYzMzPrEM0cg7Ec+GPegZiZmVnnaKbAOBX4XN6BmJmZWedoZhfJm4B3SNoLuJPVD/L8YB6BmZmZWXk1U2A8C/wi5zjMzMysgzRcYETEp4oIxMzMzDpHM8dgmJmZmQ2rmZudPcAw17uIiH9oKSIzMzMrvWaOwTil6nU38DpgNvCtVgMyMzOz8mvmGIxTa7VLOhh4Q8sRmZmZWenleQzGpcCHcuzPzMzMSirPAuPDwMIc+zMzM7OSauYgz7+w6kGeAjYAXg78e05xmZmZWYk1c5Bnb9XrQeAp4NqIuLvliMzMzKz0mjnI87giAjEzM7POMa4utCXpYEkPSlomaa6kN7U7JjMzs05Ud4EhaVDSiyM8Xigy2FZI2hs4CTgOeD1wK3C5pBltDczMzKwDNbKL5APDTNsJ+Dxje4vIYcAPI+JsAEkHAe8B9gdObGdgZmZmnabuAiMiflXdJmkrkn/O7wUuAI7OL7T8SFoD2AH4eqUtIgYlXUlSHFXPPwmYlGlaE2DhwoUMDAxUz87ixYtZunQpWjgfDbzI5MmTuemmm1i8eDFdXV0MDg5y7733MnnyZCYseaKp6QBdXV3cc889TJ48GT39AMBq89Y9feF8li59+eiMNcT0wcHB1ZZ/pL4qn3MRYz333HMtTR9qrKlTp662brQ61nDTFy9ezNNPP73aerpkyZJafx5mZoVQxJC3FRn6TdKGJLsa9gUuB74UEXfkHFtu0ngfBXaOiBsy7d8E3h4Rb66a/1jgmFEN0mz0bBwRj7Y7CDPrbA2dRSJpLeAo4HPALcDuEfGHAuJqt6+THK+RNZ2hLyS2JvAIsDFQlq+Jjnl0jLWY1wQWtDsIM+t8dRcYko4AjgQeB/651i6TMawPeBFYv6p9fZLlWUVELAeWVzUvHqpzSZWnSyJiyPnGEsc8OsZgzGMhBjMbBxrZgnEi0A/8HdhX0r61ZoqID+YRWJ4iYoWkm4DdSS8UJqkrfX16G0MzMzPrSI0UGOex6iXCy+Yk4FxJNwJ/Bg4BXgac3c6gzMzMOlEjZ5HsV2AchYuIiyS9HDie5N4ptwCzI+KJHLpfTnLQa/VulbHMMY+OMsZsZtayps4iMTMzMxvOWL4wlpmZmZWUCwwzMzPLnQsMMzMzy50LDDMzM8udC4wclOk28JKOlRRVj7vbHVeWpLdJukTSgjS+91dNl6TjJT0mqV/SlZK2bFO4lZhGivmcGp/7ZW0K18yscC4wWlTS28DfCbwi83hLe8NZzctIPseDh5h+BMndew8C3gw8T/KZTx6d8GoaKWaAy1j1c//nUYjLzKwtGroXidVUxtvAvxARq10ifayIiEuBS2GVS22TvhbJRdJOqFyuXtIngSeA9wMXjmKoKw0Xc8bysfy5m5nlyVswWpC5DfyVlbaIGExfr3Yb+DFky3RT/v2SLpA0s90BNWAzkgulZT/zRcBcxvZnDrCrpCcl3SPp+5LWbXdAZmZFcYHRmvWACSTfnrOeIPknOBbNBfYDZgOfIfmH/QdJa7YzqAZUPtcyfeaQ7B75JMn9b44E3g5cKmlCW6MyMyuId5GMM+mm/IrbJM0F5gMfBc5qT1SdLyKyu25ul3QbcB+wK3BVW4IyMyuQt2C0pqHbwI9FEfEs8DdgizaHUq/K51razxwgIu4nWX/K8rmbmTXEBUYLImIFULkNPLDKbeBvaFdcjZA0FdgceKzdsdTpAZJCIvuZTyM5m6QUnzmApI2BdSnP525m1hDvImldqW4DL+nbwCUku0U2JDm99kXgJ+2MKysterLf7DeTtD2wMCIeknQK8BVJ95IUHF8DFgC9oxzqSsPFnD6OAS4mKY42B74J/B24fHQjNTMbHS4wWlTwbeCLsDFJMbEu8BRwHbBjRDzV1qhW9Qbgmszrk9Kf55IcoPpNkiLuTGBtkmWYHRHLRi/E1QwX82eA1wD7ksS7ALgC+GpE+DbuZtaRfLt2MzMzy52PwTAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucCwMUHSg5IOaXccZmaWDxcYZmZmljsXGGZmZpY7FxjWMkn/JmlBeifZbPuvJP1I0ubp8yckPSdpnqR3DtPfppIivVlYpW3ttG3XTNu2ki5N+3xC0o8lrVfAIpqZWYNcYFgefkZy87TdKg2SpgOzgQuAqcDvSG6x/jrgMuASSTObHVDS2sDVwF9IbjQ2G1gf+GmzfZqZWX58N1VrWUQ8I+lSYB/gqrT5w0AfcE1EDAK3Zt7yVUkfAN4HnN7ksJ8F/hIRR1UaJO0PPCzpVRHxtyb7NTOzHHgLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNNbMIDXArulu0eeS/u8O522eQv9mplZDrwFw/JyCSDgPZLmAW8FDk2nfRvYA/gC8HegH/g5sMYQfQ2mP5Vp666aZ2o65pE13v9Yo8GbmVm+XGBYLiJimaRfkGy52AK4JyJuTifvApwTEb8EkDQV2HSY7p5Kf76C5BgLgO2r5rkZ+BDwYES80PICmJlZrryLxPJ0AfAeYP/0ecW9wAclbS/ptcAchln3IqIf+BPwRUlbS3o7cELVbGcA04GfSHpjeqbKLElnS5qQ4zKZmVkTXGBYnq4GFgJbkRQRFYcBzwDXk+zWuJxkC8Rw9ifZwnYTcArwlezEiFhAsmVkAnAFcHs637O8tIvFzMzaRBHR7hjMzMysw3gLhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5e7/A1cYIVn9G7g9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXTklEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCFdAwIDgAigimBA2rxvqV/0hgnpRUCF4WbyKiCiLyqLg9YqsXkCuoqBizAJiUAJKCAiyCBiWhBCWAAGzTTKf3x+nGmo6PUvX1ExP97yfj0c/evrU6epP1/R85tNVp04pIjAzMzMrQ1ujAzAzM7PW4cLCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIGhaSTJQ3KNK+SbpR0Y+7xXpJC0ocG6fUvkfTwYLxW1etukb3PQwf7tYcLSetIOlPSY5I6JV3T6JjMhhoXFlY3SYdm/8AqtxWSHpc0XdIXJY0t6XU2ywqSncpYX5mGcmw2oA4D/hP4BfBJ4OzGhlMeSdtmRdMdkl6QtEjSdZJ2bXRs1lzWaXQA1tROAuYD7cCmwF7AOcBUSe+NiL/l+p4KnF7n+jcDvg48DNxRx/Mm1/k6RfQU22doTNH+CDAK6GjAaw8XewMLI+KYRgcyAD4NHA5cDfwQ2AD4D+AWSVMiYlYjg7Pm4cLC+mNaRNyWe3yapL2B3wK/lrRdRCwHiIjVwOqBDEbS6IhYFhGrBvJ1ehMRDfnHHumKgisa8dr9IWk9YFVEdDY6lj7YBHiurJVJagPWjYg+/d4kCViv8ndVsiuBkyPixdzrXQTcC5wMuLCwPvGhECtVRNwAfBPYHPhEpb3WGAtJkyT9SdJzkl6UdL+kb2fL9gL+mnW9OHfY5dBs+Y2S7pa0i6TZkpYB384tu7FGeCMkfVvSE5L+JenXkl5XFdPDki6pfmJ+nX2Iba0xFpLWl/S97Nj8yuy9fjn7R5HvF5LOk/S+7P2tlPR3SVNqvJ/qGNcaY5HF8qKk10i6Jvv5KUnflTSiD+t8WNJvJU3OdpGvkHSPpA9U9ds4W+dd2WsslTRN0sSqfpXxLh+VdKqkhcAyYFyBdXxY0tclLcx23f9C0gaSRko6R9KT2XouljSyah3dfvZ62rbAu4Htc7/zvbLl9f5+Py7p78BKoNvfbW777yvpNmA5aS8Ckj4l6Ybsfa7Mfi+f62Ed75D0l+x3+E9Jh+T7RcTcfFGRtT0D3ARs112MZtW8x8IGwk9J/+QnAxfU6iBpe9Kejb+RDqmsBLYG9si63Ju1nwL8mJTcAG7OreYVwDTgZ8D/Aot7ieu/gADOIH3zPBqYJWmnOr8B9iW2l2T/XH5N+qd0IenQyb7Ad4DXANW71d8BfIC0O/oF4IvA1ZImZIm+XiOA6cCtwJeB9wDHAg8B/92H5/8bcBXwI+BS4FPAz5V2j8/M+rweeB/wc9LhsfGkf4B/lPTGiHi8ap1fA1YB3wVGZj+/sc51nEj6R3s66bPzBdJhoE5gI9K37LcDh2brOwX69Nmr5Sng/yN9hsZkrw1wb4Hf797Ah4HzgKdJh9N6sg1pb8L/kP6e7s/aPwf8PXvt1cBBwA8ltUXE+VXr2Jo0LuRC0u/wMOASSXMj4u+9vP6mWZxmfRMRvvlW142UqAPYtYc+zwG35x6fTLa3Pnt8dLaOV/awjl2zPofWWHZjtuw/ull2Y+7xXlnfBcDYXPvBWfsXc20PA5f0YZ09xXYJ8HDu8b9nff+rqt/PSf8Et8q1BekfXb7tTVn7Ub38XraojimLJYCvVfW9HbitD7/rh7PnfyDXNg54vOr3OxJoqxHPivxr534XDwGjqvrXu467gPZc+xXZ9vxd1Tpurvp99PrZ62F73AjcXdVW7+93DfDGPr5eZfvvW2PZqBptvwce6mYd78y1vSrbrt/t5fXfmb2HU+rdVr4N35sPhdhAeRHo6eyQ57L7f1c6zlzESuDiOvpfFhEv5B7/AlgE7F/w9ftqf9I/k+9XtX8PELBfVfusiHio8iDSINilpL0CRf2o6vFNdazvceBXuXiWApcBO0vaNGtbGdkYCUkjJL2C9Bm4H3hzjXVeGlV7iQqs47LoOp7lVtL2vKiq363A6yRV9tA+l93357OXV+/v948RcU8d658fEdOrG/PbLzsE9Ergj8DrJW1Q1f2eiLgp99ynSNu128+ApE1Ixdp84Mw64rVhzoWFDZQxpN343bkK+DPwE2CxpJ9lx8zr+UwujPoGaj6QfxARATxI+lY8kDYHHq8qaiAdUqksz3u0xjqeJe3eL2JF9o+k6PoezLZV3j+y+y0gDUKUdIykB0gF39OkwwdvIp1dUG1+dUOBdVRvp+ez+8dqtLfl1lHGZy+v3t/vWu+9FzX7S9pD0ixJ/yIVS0+RjTNi7e1V12dK0vqkw0VjgX+PqrEXZj1xYWGlk/RaUmJ7sLs+2betPUnH+39K+udxFTBTfRhUmBmIkfHdTeLV15jKsKabdnXTXnR9ZfoKcBYwmzRod19gEmkMQK08U+t3V+86untfPW6/kj57/VHv53at/pK2Aq4HXglMBQ4gbavKvBrV26vPnylJ6wK/JG2Xf4+Iu+uM14Y5D960gfD/Zfdr7b7Ny3Z7X5/dpkr6CvAt0iC4WXT/T76of8s/yAbdbU0axFfxLLBhjeduDvwz97ie2B4B3iNpbNW32m1zy4eyrSWpaq/FG7L7h7P7DwF/iIjD80+UtCF9H/hXxjr6pA+fvXo04vd7EGlMynsj4qW9EZLe3Z+VZnttLgP2AT4cEX/sV5Q2LHmPhZVKaR6Lr5F2317eQ7+NazTfkd1XTg38V3a/YUnhHaKus4J+CHg16cySioeAt2ff2gCQdCDQ5bTUOmP7HWmPx1FV7ceQCpRpaz1jaNkMeH/lgaRxwCHAHRHxRNa8hqpvv5IOJp0V0VdlrKNXffzs1aMRv9/KHoiXtlc2ruJT/VzvD4CPAJ+PiF/2c102THmPhfXHfpK2JX2OxpNOo5tE+ob23uh50p+TJO0JXJf13wT4POnMjT9lfR4iHTs+QtILpH/mt0ZEvceoK5YAf5J0cRbv0aTDNflTYn9CKjh+L+n/gK1Iu+Uf6rqqumL7DfAH4FuStgDuJJ2K++/AOfmBmkPUP4ALJb2FdErvYaTtl/8n9lvS7/Ri0lkYOwIfp+tent6UsY6+6Mtnrx6N+P3OIJ2i+xtJ/0Ma0/QZ4ElSsVw3SUeTtsMcYJmkT1R1+VVE/GutJ5pVcWFh/XFKdr+K9E/7LtI/64trDGSr9mvSwL/DSMeJnyaNaP96RDwPaQZLSZ8ETiOd1bAO6Z9Z0cLi26TjxieSBqVdT/pmtqzSISKmSzqWdNz6HOA24EDSCH9y/focW0R0SnovaXt9JOv3MOmaE9+r7j8EPUCaI+I7pDkV5gMfqTpT4dvA+sDHSO/xdtJx/3qmcS9jHX3R62evHo34/UbE/UoX1TuVNBfIE6Q5SZ5i7bNi+mqn7H637FZtS17eU2fWLa092NvMLFGaQfTuiDiw0bGYWXPwGAszMzMrjQsLMzMzK40LCzMzMyuNx1iYmZlZabzHwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIKk3SopJC0RS/9HpZ0yeBEZWbNxHmk9biwMDMz64GkfSRdJOkfkpZJ+qekn0h6daNjG4oUEY2OwZqUpBFAO7AyevggSXoYuDEiDh2k0MysSTRDHpF0G7Ax8HPgAeD1wFHAMmCniHhisGMaytZpdADWvCJiDbCm0XGYWfNqkjwyFfhTRHRWGiT9HvgjqcD4aqMCG4p8KMQKqz42quSrkhZkuwv/IGn7Gs87WdJa30xqHWvNjqv+VtJekm6TtFzSXZL2ypZ/IHu8QtJcSTsP1Ps1s/I1Qx6JiNn5oqLSBiwBtuv/VmgtLiysTKcA3wTuBP4T+CcwA1i/n+vdGrgC+A1wIrAR8BtJHwfOBv4X+DqwFfB/kvy5NmteTZFHJI0BxgBP9zOuluNDIVYKSa8CjgOuAw6qHCuV9C3gK/1c/TbA7hExJ1vnPcB04AJg24h4NGt/FvgfYE/gxn6+ppkNsibLI0cD6wJX9TOuluNvdlaW95D+yH5QNQDrnBLWfU8lGWRuze5vqCSDqvbXl/CaZjb4miKPSNqTtHfj/yLihhJiaykuLKwsm2f3D+QbI+Ip4Nl+rjv/R09EPJ/9+FhVv0r7Rv18PTNrjCGfRyRtC/wKuBv4dD9jakkuLKwRujulbEQ37d2NGO+uXfWFY2ZNaNDziKTXkcZ7PA/sHxEv9BjhMOXCwsrySHb/b/nG7JhpdeX/bLZsw6r2zTGz4WzI5hFJryAVFSOBfSNi0UC8TitwYWFlmQV0AF+QlK/0j67R96Hsfs9Kg6T1gU8OWHRm1gyGZB7J1vs74DWkPRUP9PKUYc1nhVgpIuIpSd8lncb1W0m/A3YG9mPt07FmkI53XijpO6RdkYcBTwETBi9qMxtKhnAeuRx4K3ARsJ2k/NwVL0bENSW/XlNzYWFl+iqwAjgCeDdpdPVk0qljL4mIDknvB35IOl/9CdKo72eBiwcxXjMbeoZiHtkpuz8su+U9AlxT8us1NV8rxMzMzErjMRZmZmZWGhcWZmZmVhoXFmZmZlYaFxZmZmZWmroLC0lTJL0j9/hISXdIukKSp1I2s0KcW8xaQ5E9Ft8BxgFI2hH4HmnikC2Bs8oLzcyGGecWsxZQZB6LLYF7sp8/CPw2Ir4i6c2kJDAsZbPEbQZ47nhrhLHA49Hc5487t9Tg3GINVnduKVJYrAJGZz+/B7gs+3kJ2beNYWozYEGjg7Bh7bXAwkYH0Q/OLbU5t1ij1ZVbihQWfwLOkvRn0hSnH8na38Dw/vC/APDYY48xblzXHNjR0cGMGTOYPHky7e3tDQluKPP26V1P22jp0qW87nWvg+b/RuvcUlu3uQX899Mbb5+eDURuKVJYHEWaQvVDwOciolLF7Af8vsD6Wsq4ceNqFhajR49m3Lhx/mDX4O3Tu2GyjZxbelArt8Cw+WwU5u3Ts4HYPnUXFhHxKHBgjfZjSonIzIYl5xaz1lDoImSS2oCtgU2oOrMkImaXEJeZDUPOLWbNr+7CQtLbgSuAzQFVLQ5gRAlxmdkw49xi1hqK7LH4EXAbcACwiPQHb9Zvd955J21tbbzyla9kwoQJjQ7HBp9ziw2YO++8k0022cS5ZRAUKSz+DfhQRDxYdjA2PC1YkAb877nnnixfvpz1Ro3m/vvudQIYfpxbrHT5/BLIuWUQFJl581bSMdBSSTpBUkg6J9e2nqTzJT0j6UVJV0saX/W8CZKuk7RM0pOSviNpnao+e0m6XdJKSQ9KOrTG6x8p6WFJKyTdKumtZb9Hq+2ZZ54BYOMpX+AVBx7LiuXLePrppxsclTXAgOQWcH4Zzir5ZdxbP+DcMkiK7LH4AfA9SZsCdwEd+YUR8bd6VyjpLcB/ANXPPZu0W/Rg4HngPOCXwB7Z80YA1wFPALsDryZNqtMBfCXrs2XW50fAx4F9gJ9IWhQR07M+HyFNGXwEKbkdDUyXtE1EPFnv+7Fi2jd+DWtWe+/3MFZ6bgHnF0tGjHtVo0MYNooUFldn9xfl2oI02KruAVaSxgCXA58Bvppr3wA4HPhYRNyQtX0KuFfS2yPiFmAy8EbgPRGxGLhD0teAMySdHBGrSH/M8yPi2GzV92YXOjoGmJ61TQUuiIiLs9c5gpRwDgNOr+f9mFlhpeYWcH4xa4Si1wop0/nAdRExS9JXc+27AO3ArEpDRNwn6VFgN+CW7P6u7I++Yjrw38D2wLyszyy6mg6cAyBp3ey1Tsu9TqekWdlza5I0EhiZaxoLabKRjo4uX7ReelzdbklnZycAI9dJJwKMGjWKzs5Ob6+cnj5DLbSdys4t0IT5pZ7cUmnP31tXlfyyXvsI55YaBiK3FJkg65FCr1SDpI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSN+EavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZQOqDrqShQsXsnBhM1/2YmDU+gwtW7asAZGUr8zcAk2dX+rOLeD80puzDnknHPJO55ZulJlbik6QtRXpOOF2WdM9wLkR8VAd63gdcC4wKSJWFImjwU6j66WcxwILJk+eXHNK75kzZzJp0iRPKVvDvHnzWLRoEcdPe5SVq4PFV5zA7NmzmThxYqNDGzJ6+gwtXbq0QVGVr4zckq2nmfNLn3MLOL/0ppJfpl52E4um/dC5pcpA5JYiE2TtC/wauAP4c9a8B/B3SQdFRF/L5l1Is+vdnq4KDKTKfk9JRwH7AutK2rDqW8V40mAqsvvq0dXjc8sq9+Nr9FkaEcslrQHWdNPnCboRESuBlZXHlffQ3t7e7R93T8uGs7a2dHLSytXBitXB8uXLaWtr87aqodZnqFW2U4m5BZo4vxTJLX1ZPlxV8suKjjXOLT0oM7cUOd30dODsiHhbREzNbm8jHVM8o471XA/sCOyUu91GGmhV+bmDNMoaAEnbABOAOVnTHGBHSZvk1jsJWEr6plPpsw9dTaqsIxuANbfqddqyx3Mws8FSVm4B5xezhilyKGQ74MM12i8i7cLsk4h4Abg73ybpX8AzEXF39vhC0mWUl5D+mH8AzMlGbAPMIP2B/1TScaTjnacC52dVP6TTwI6SdGYW495Z/AfkXvos4FJJtwF/yd7H+sDFfX0/ZtZvpeQWcH4xa6QihcVTpIr/gar2nYCyz8k+BugknYY2kjTa+vOVhRGxRtKBpFHac4B/AZcCJ+X6zJd0AOmc9S8BC4BPV84xz/pcJelVwCmk5HEHMKVqNLiZDazBzC3g/GI2IIoUFhcAP5b0euDmrG0P4Hi6DjiqW0TsVfV4BXBkduvuOY8A+/ey3huBnXvpcx5pghwza4wByy3g/GI2WIoUFt8EXgCO5eVzsx8HTga+X05YZjYMObeYtYAi81gEabff2ZLGZm0vlB2YmQ0vzi1mraHQPBYV/qM3s4Hg3GLWvPpUWEi6HdgnIp6VNI80b39NEfHmsoIzs9bm3GLWevq6x+JaXp6w5Vp6+OM3M6uDc4tZi+lTYRER38j9fPKARWNmw4pzi1nrqXvmTUn/lPSKGu0bSvpnOWGZ2XDj3GLWGopM6b0Fac79aiOB1/YrGjMbzrbAucWs6fX5rBBJ78093FfS87nHI0hz388vKzAzGx6cW8xaSz2nm16T3QdpWtu8DuBh0sQ2Zmb1uCa7d24xawF9Liwiog1A0nzgLRHx9IBFZWbDhnOLWWspMvPmlgMRiJkNb84tZq2hrxNkfRH4cUSsyH7uVkR4Tn8z6xPnFrPW09c9FscAlwMrsp+7E/hiQWbWd84tZi2mrxNkbVnrZzOz/nBuMWs9RSbIOknS6BrtoySdVE5YZjbcOLeYtYYiE2R9HRhTo310tszMrAjnFrMWUKSwELUvFDQRWNK/cMxsGHNuMWsB9cy8+Szpjz6Af0jKJ4ARpG8aPyo3PDNrdc4tZq2lnnksjiZ9o7iItFsyP+3uKuDhiJhTXmhmNkwcjXOLWcuoZ+bNS+Gl2fH+HBGrBywqMxs2nFvMWkvdYywi4o/A5pJOlXSlpE0AJO0nafvSIzSzYcG5xaw1FDnd9F3AXcDbgA/w8ijuicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXsysf5xbzFpDkbNCTge+GhGTSMc/K24A3l7nuhYAJwC7ALtm67g29+3kbOAg4GDgXcBmwC8rT5Y0ArgOWBfYHfgkcChwSq7PllmfPwA7AecAP5G0b67PR4CzSMnrzcCdwPTKNyYzGxTOLWYtoEhhsSPwqxrtTwKvrGdFEfGbiPhdRDwQEf+IiP8CXgTeLmkD4HBgakTcEBFzgU8Bu0uqJJnJwBuBT0TEHRExDfgacKSkdbM+RwDzI+LYiLg3Is4DfkHX6YOnAhdExMURcU/2nGXAYfW8HzPrF+cWsxZQ99VNgeeAVwPzq9p3BhYWDST7hnAwsD4wh/RNox2YVekTEfdJehTYDbglu78rIhbnVjUd+G9ge2Be1mcWXU0nfbsgSxK7AKflXqdT0qzsud3FOxIYmWsaC9DR0UFHR0eXvpXH1e2WdHZ2AjByHQEwatQoOjs7vb1yevoMtdB2eg7nlrpyS6U9f29dVfLLeu0jnFtqGIjcUqSw+BlwhqSDSeedt0naA/gucFm9K5O0I+mPfT3SN4r3R8Q9knYCVkXEc1VPWQxsmv28afa4ejl96DNO0ihgI9K58rX6bNtD6CdSYzbAGTNmMHr0WrMSAzBz5sweVmdn7Dch/XDQlSxcuJCFCwv/L2lZtT5Dy5Yta0AkA8K5Jak7t4DzS2/OOuSdcMg7nVu6UWZuKVJYfAU4H3iM9EdzT3Z/BXBqgfXdTzo+uQHwIeDSbBDXUHca6dhpxVhgweTJkxk3blyXjh0dHcycOZNJkybR3t4+mDE2hXnz5rFo0SKOn/YoK1cHi684gdmzZzNx4sRGhzZk9PQZWrp0aYOiKp1zS9Ln3ALOL72p5Jepl93Eomk/dG6pMhC5pe7CIiJWAZ+R9E1gB9LI7XkR8UCRALL1PZg9nCvpLcCXgKuAdSVtWPXNYjzwRPbzE0D1COvxuWWV+/E1+iyNiOWS1gBruunzBN2IiJXAyspjKe3Gb29v7/aPu6dlw1lbWxrqs3J1sGJ1sHz5ctra2rytaqj1GWqV7eTc8lLcdeeWviwfrir5ZUXHGueWHpSZW4oM3gQgIh4FpgE/L/qH34020vHFuUAHsE9lgaRtgAmk3Ztk9ztWjbCeBCwlfdup9NmHriZV1pEln7lVr9OWPfZsf2aDzLnFrLkVKiwkHS7pbmAFsELS3ZI+XWA9p0naU9IWknaUdBqwF3B5RDwPXAicJendknYBLgbmRMQt2SpmkP7IfyppYnaa16nA+VnVD+kaA6+XdKakbSV9Hvgw6XSzirNI35Q+KWk70gCt9bPXM7NB4txi1vzqPhQi6RTSKVQ/4OWqezfgbEkTIuKkOla3CWlQ1qtJ1wf4G7BvRFRGkRwDdAJXk75pTAc+X3lyRKyRdCDpj3UO8C/gUuCkXJ/5kg4g/bF/iXR++6cjYnquz1WSXkU6R31T4A5gStWIcDMbQM4tZq2hyODNzwGfiYgrc22/lvQ3UkLo8x9/RBzey/IVwJHZrbs+jwD797KeG0mnrPXU5zzgvJ76mNmAcm4xawFFDoW0A7fVaJ9LsULFzAycW8xaQpHC4qekbxbVPgtc3r9wzGwYc24xawFFvwUcLmkyaYY6SBcNmgBcJuml868jYmo/4zOz4cW5xazJFSksdgBuz37eKrt/OrvtkOsX/YjLzIYf5xazFlBkgqx3D0QgZja8ObeYtYbCE2RJ2lrSvtmc+KgyPZyZWT84t5g1t7oLC0mvkHQ98A/gd6TzxAEulPS9MoMzs+HDucWsNRTZY3E2aTrcCUD+0mdXAVPKCMrMhiXnFrMWUGTw5mTSDHYLqvZQPgBsXkpUZjYcObeYtYAieyzWp+u3iYqNyV2Rz8ysTs4tZi2gSGFxE3BI7nFkV+w7DvhDKVGZ2XDk3GLWAoocCjkOuF7SrsC6wJnA9qRvFXuUGJuZDS/OLWYtoO49FhFxN/AG4E/AtaTdl78Edo6Ih8oNz8yGC+cWs9ZQ1x4LSe3A74EjIuJbAxOSmQ03zi1mraOuPRYR0QG8aYBiMbNhyrnFrHUUGbz5v8DhZQdiZsOec4tZCygyeHMd4DBJ7wHmAv/KL/RVB82sIOcWsxbQ36ubvqFqma86aGZFObeYtQBf3dTMhgTnFrPWUPjqpmZmZmbVXFiYmZlZaRpaWEg6UdJfJb0g6UlJ10japqrPepLOl/SMpBclXS1pfFWfCZKuk7QsW893JK1T1WcvSbdLWinpQUmH1ojnSEkPS1oh6VZJbx2QN25mA8q5xaxxGr3H4l3A+cDbgUlAOzBD0vq5PmcDBwEHZ/03I83GB4CkEcB1pCmAdwc+CRwKnJLrs2XW5w/ATsA5wE8k7Zvr8xHgLOAbwJuBO4HpkjYp7+2a2SBxbjFrkD4VFlk1vlH280mSRpfx4hExJSIuiYi/R8SdpD/aCcAu2WttQDqvfWpE3BARc4FPAbtLenu2msnAG4FPRMQdETEN+BpwpKR1sz5HAPMj4tiIuDcizgN+ARyTC2cqcEFEXBwR92TPWQYcVsZ7NbO1ObeYtZ6+nhWyHWne/meBrwM/ovbljftrg+x+SXa/C+mbxqxKh4i4T9KjwG7ALdn9XRGxOLee6cB/ky5gNC/rM4uuppO+XZAliV2A03Kv0ylpVvbctUgaCYzMNY0F6OjooKOjo0vfyuPqdks6OzsBGLmOABg1ahSdnZ3eXjk9fYaafDs5t1SpJ7dU2vP31lUlv6zXPsK5pYaByC19LSzuAC6W9CdAwJclvVirY0ScUqu9N9nlkc8B/pxdjAhgU2BVRDxX1X1xtqzSZ3GN5fShzzhJo4CNgBHd9Nm2m5BPJCXCLmbMmMHo0bW/dM2cObObVRnAGftNSD8cdCULFy5k4cKFjQ1oCKr1GVq2bCD+Dw+aO3BuqVZ3bgHnl96cdcg74ZB3Ord0o8zc0tfC4lDS8cEDSRPV7AesrtEvyB1/rNP5pAly3lHw+YPtNNJx04qxwILJkyczbty4Lh07OjqYOXMmkyZNor29fTBjbArz5s1j0aJFHD/tUVauDhZfcQKzZ89m4sSJjQ5tyOjpM7R06dIGRVWKQ3Fuqdbn3ALOL72p5Jepl93Eomk/dG6pMhC5pU+FRUTcD3wUQFInsE9EPFnoFWuQdB4psewZEQtyi54A1pW0YdU3i/HZskqf6hHW43PLKvfja/RZGhHLJa0B1nTT5wlqiIiVwMrcewCgvb292z/unpYNZ21taajPytXBitXB8uXLaWtr87aqodZnqJm3k3PL2orklr4sH64q+WVFxxrnlh6UmVvqPiskItrK+sNXch7wfmDviJhf1WUu0AHsk3vONqRBWHOypjnAjlUjrCcBS4F7cn32oatJlXVExKrstfKv05Y9noOZDTjnFrPWUORaIUjaCjiaNPAK0h/ZuRHxUJ2rOh/4GPDvwAuSKsctn4+I5RHxvKQLgbMkLSH9Qf8AmBMRt2R9Z2Sv/1NJx5GOeZ4KnJ9V/pAGhB0l6UzgImBv4MPAAblYzgIulXQb8Jfs/a0PXFznezKzgpxbzJpf3YVFdn72r0mDrv6cNe8B/F3SQRFRzwiiz2X3N1a1fwq4JPv5GKATuJo0Uno68PlKx4hYI+lA0kjtOaQrIl4KnJTrM1/SAaTz1r8ELAA+HRHTc32ukvQq0nHcTbP3N6VqRLiZDRDnFrPWUGSPxenA2RFxQr5R0unAGUCf//gjQn3oswI4Mrt11+cRYP9e1nMjsHMvfc4DzustJjMbEM4tZi2gyMyb2wEX1mi/iDSZjJlZEc4tZi2gSGHxFGnq2mo7AaWN5jazYce5xawFFDkUcgHwY0mvB27O2vYAjqfruddmZvVwbjFrAUUKi28CLwDH8vI0tY8DJwPfLycsMxuGnFvMWkDdhUVEBGkE9NmSxmZtL5QdmJkNL84tZq2h0DwWFf6jN7OB4Nxi1ryKDN40MzMzq8mFhZmZmZXGhYWZmZmVpq7CQlK7pOsl/dtABWRmw49zi1nrqKuwiIgO4E0DFIuZDVPOLWato8ihkP8FDi87EDMb9pxbzFpAkdNN1wEOk/QeYC7pin8viYipZQRmZsOOc4tZCyhSWOwA3J79/IaqZdG/cMxsGHNuMWsBRWbefPdABGJmw5tzi1lrKHy6qaStJe0raVT2WOWFZWbDlXOLWXOru7CQ9ApJ1wP/AH4HvDpbdKGk75UZnJkNH84tZq2hyB6Ls4EOYAKwLNd+FTCljKDMbFhybjFrAUUGb04G9o2IBVV7KB8ANi8lKjMbjpxbzFpAkT0W69P120TFxsDK/oVjZsOYc4tZCyhSWNwEHJJ7HJLagOOAP5QSlZkNR84tZi2gyKGQ44DrJe0KrAucCWxP+laxR4mxmdnw4txi1gLq3mMREXeTJq/5E3AtafflL4GdI+KhetYlaU9Jv5H0uKSQ9L6q5ZJ0iqRFkpZLmlV9kSJJG0u6XNJSSc9JulDSmKo+b5J0k6QVkh6TdFyNWA6WdF/W5y5J+9fzXsysf5xbzFpDoXksIuL5iPhWRHw4IvaPiK9GxKICq1ofuBM4spvlxwFfBI4A3kaa4ne6pPVyfS4nfauZBBwI7An8uLJQ0jhgBvAIsAvwn8DJkj6b67M7cCVwIbAzcA1wjaQdCrwnMyvIucWs+RU5FIKkjUgXC9oua7oHuDgiltSznoiYBkzL1ln9GgKOBk6NiGuztkOAxcD7gJ9J2o50GtpbIuK2rM8XgN9J+nJEPA58nLRb9bCIWAX8XdJOwFReThJfAn4fEd/JHn9N0iTgKFLiMbNB4Nxi1vzqLiwk7Qn8BngeuC1r/iJwkqSDImJ2SbFtCWwKzKo0RMTzkm4FdgN+lt0/V/nDz8wCOknfQn6V9Zmd/eFXTAeOl7RRRDyb9Tmr6vWnk5JMTZJGAiNzTWMBOjo66Ojo6NK38ri63ZLOzk4ARq6T/gGMGjWKzs5Ob6+cnj5DrbKdnFuSenJLpT1/b11V8st67SOcW2oYiNxSZI/F+aQJaz4XEWsAJI0Afpgt27FQJGvbNLtfXNW+OLdsU+DJ/MKIWC1pSVWf+TXWUVn2bHbf0+vUciLw9erGGTNmMHr06JpPmDlzZg+rszP2m5B+OOhKFi5cyMKFCxsb0BBU6zO0bFmtMzSbknNLUnduAeeX3px1yDvhkHc6t3SjzNxSpLDYGvhQ5Q8fICLWSDqLrqeKtbrT6PpNZCywYPLkyYwbN65Lx46ODmbOnMmkSZNob28fzBibwrx581i0aBHHT3uUlauDxVecwOzZs5k4cWKjQxsyevoMLV26tEFRlc65JelzbgHnl95U8svUy25i0bQfOrdUGYjcUqSwuJ10/PP+qvbtSIOlyvJEdj8eyA/eGg/ckeuzSf5JktYhnZ72RK7P+Kp1j88t66nPE3QjIlaSm7Snchy3vb292z/unpYNZ21taQzxytXBitXB8uXLaWtr87aqodZnqIW2k3MLxXJLX5YPV5X8sqJjjXNLD8rMLX06KyQ7pepNkt4EfB84V9KXJb0ju32ZNM//2YWiqG0+6Y9vn1wc40jHN+dkTXOADSXtknve3qT3dWuuz56S8ltoEnB/dgy00mcfupqUex0zGwDOLWatp697LO4AAsgPrz6zRr8rSMdI+yQ7J3zrXNOW2ajqJRHxqKRzgK9KeoCUDL4JPE46ZYuIuFfS74ELJB0BtAPnAT/LRm1XYvo66QqJZwA7kEZqH5N73XOBP0o6FrgO+CiwK/BZzGwg3YFzi1lL6WthseUAvf6udJ2qt3Jc8VLgUFKCWZ906taGpIlzpkTEitxzPk76g7+eNGL7atJIcuCl0d6TSYO/5gJPA6dExI9zfW6W9DHgVODbpIsevS+bsMfMBo5zi1mL6VNhERGPDMSLR8SNdP2mUr08gJOyW3d9lgAf6+V1/ga8s5c+Pwd+3lMfMyuXc4tZ6yk6QdZmwDtIg5u6jNOIiO+XEJeZDUPOLWbNr8gEWYcC/wOsAp4hHR+tCNIALDOzuji3mLWGInssvgmcApwWEZ0lx2Nmw5dzi1kLKHIRstGkkdH+wzezMjm3mLWAIoXFhcDBZQdiZsOec4tZCyhyKORE4LeSpgB3AV2uUhIRU8sIzMyGHecWsxZQtLDYl5en3a0eYGVmVoRzi1kLKFJYHAscFhGXlByLmQ1vzi1mLaDIGIuVwJ/LDsTMhj3nFrMWUKSwOBf4QtmBmNmw59xi1gKKHAp5K7C3pAOBv7P2AKsPlBGYmQ07zi1mLaBIYfEc8MuS4zAzew7nFrOmV3dhERGfGohAzGx4c24xaw1FxliYmZmZ1VTkImTz6eGc8oh4fb8iMrNhybnFrDUUGWNxTtXjdmBnYArwnf4GZGbD1jlVj51bzJpQkTEW59Zql3QksGu/IzKzYcm5xaw1lDnGYhrwwRLXZ2YGzi1mTaXMwuJDwJIS12dmBs4tZk2lyODNeXQdYCVgU+BVwOdLisvMhhnnFrPWUGTw5jVVjzuBp4AbI+K+fkdkZsPVNVWPnVvMmlCRwZvfGIhAhopsoNh/kr4p3Ql8ISL+0tiozFqfc4tZa/AEWTmSPgKcBXwDeDPpj3+6pE0aGpiZNTXnFhtO+lxYSOqUtKaX2+qBDHYQTAUuiIiLI+Ie4AhgGXBYY8Mya13OLWatpZ5DIe/vYdluwBdp4j0gktYFdgFOq7RFRKekWaT3V91/JDAy1zQWYMmSJXR0dLkoIx0dHSxbtoybbrqJtrY22tra6OzsfOkeWKutp2Wt1v/+++9nzJgxaMkjqGMN6623HnPnzuXFF18sLZ6hvg16W9bZ2cmyZct45plnaG9v7/L5euGFF6o/ns3GuaVr/z7nFuiaX9ZZZ52Gf1aHWv8HHniAMWPGMOLFxX3KLY2Iv5HbbEByS0QUvgHbAL8CVgOXApv3Z32NvAGbkUak71bVfiZwa43+J2f9ffNtqNxe0+i/oxL/Hp1bfPNt6Nzqyi1FzgpB0makY4WfBKYDO0XE3UXW1cROIx0zzduY2ufbjwUWAK8Fmv7r5QDw9uldb9toLPD4oEY0AJxbgPpyC/jvpzfePj0rPbfUVVhI2gD4CvAF4A5gn4i4qZ51DGFPA2uA8VXt44EnqjtHxEpgZVXz0lorllT58YWIqNlnOPP26V0ftlFTbzfnlpfVk1vAfz+98fbp2UDklnoGbx4H/BM4EPh/EbF7C/3hExGrgLnAPpU2SW3Z4zmNisus1Tm3mLUWZcf0eu8odQLLgVmk6rumiPhAOaENvuyUsEuB/wD+AhwNfBjYNiIW92O944DngQ1cMa/N26d3rbyNnFuK55Zs3S372SiDt0/PBmL71HMo5DLSII6WFRFXSXoVcAppEps7gCn9/cMn7db8Bmvv3rTE26d3rbyNnFv6p5U/G2Xw9ulZ6dunz3sszMzMzHrTtOeGm5mZ2dDjwsLMzMxK48LCzMzMSuPCwszMzErjwmKASNpY0uWSlkp6TtKFksb08pwbJUXV7UeDFfNAknSkpIclrZB0q6S39tL/YEn3Zf3vkrT/YMXaKPVsI0mH1visrBjMeK0xnFvW5vzSs8HOLS4sBs7lwPbAJNLEP3sCP+7D8y4AXp27HTdQAQ6Wei8ZLWl34ErgQmBn4BrgGkk7DErADVDwstpL6fpZ2Xyg47Qhwbklx/mlZw3JLY2+QE8r3oDtSOfl75prmwJ0Apv18LwbgXMaHf8AbI9bgfNyj9uAhcAJ3fS/CvhtVdstwI8a/V6G0DY6FHiu0XH7NuifE+eWtd+b80u526ffucV7LAbGbqRfzG25tlmkP/639fLcj0t6WtLdkk6TNHrAohwEuUtGz6q0RURn9nitS0Zndsv3z0zvoX9TK7iNAMZIekTSY5KulbT9AIdqjefckuP80rNG5ZZCVze1Xm0KPJlviIjVkpZky7pzBfAI6UpybwLOIF0+ummnMgZeCYwAqmcYXAxs281zNu2mf0/brpkV2Ub3A4cBfwM2AL4M3Cxp+4hYMFCBWsM5t3Tl/NKzhuQWFxZ1kHQ6cHwv3bYruv6IyB8nvUvSIuB6SVtFxENF12utJyLmkLuAlaSbgXtJ16L4WqPismKcW2yoKCO3uLCoz/eAS3rp80/SpZC7DIyRtA6wMTUuk9yDW7P7rYFm/eOv65LRmSfq7N/simyjLiKiQ9I80mfFmo9zSzHOLz1rSG7xGIs6RMRTEXFfL7dVpGpvQ0m75J6+N2l731pz5bXtlN0vKucdDL4odsnoOfn+mUk99G9qBbdRF5JGADvSxJ+V4cy5pRjnl541LLc0esRqq96AacDtwFuBPYB/AFfklr8GuA94a/Z4K9Jupl2ALYD3kr5J/LHR76WEbfERYAXwSdLu3P8BngXGZ8svA07L9d8d6ACOJR0HPBlYBezQ6PcyhLbRScBk4PWkU8iuJF16/I2Nfi++Dfhnxbml6/Zwfil3+/Q7tzT8TbfqjbRr8grgBdK17i8CxuSWb0E6bWyv7PHrgD8Cz2QfggeAM4FxjX4vJW2Po0iDx1aSvlm9LbfsRuCSqv4HkwYRrQTuBvZv9HsYStsIODvX9wngOmDnRr8H3wblc+LcsvY2cX4pafuUkVt82XQzMzMrjcdYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFhYw0l6WNLRjY7DzFqLc0tjuLAwMzOz0riwMDMzs9K4sLB+kfRZSY9nl+LNt18r6SJJW2U/L5b0oqS/SnpPD+vbQlJI2inXtmHWtleubQdJ07J1Lpb0U0mvHIC3aGYN4NzSvFxYWH/9HHgF8O5Kg6SNgSnA5cAY4HfAPsDOwO+B30iaUPQFJW0I3ADMA3bNXms88H9F12lmQ45zS5Nap9EBWHOLiGclTQM+BlyfNX8IeBr4Q0R0AnfmnvI1Se8H3gucV/BljwLmRcRXKg2SDgMek/SGiPhHwfWa2RDh3NK8vMfCynA58EFJI7PHHwd+FhGdksZI+q6keyU9J+lFYDug8LcKYCLw7mxX5YvZOu/Llm3Vj/Wa2dDi3NKEvMfCyvAbQMABkv4KvBM4Jlv2XWAS8GXgQWA58Atg3W7W1ZndK9fWXtVnTPaax9d4/qJ6gzezIcu5pQm5sLB+i4gVkn5J+jaxNXB/RNyeLd4DuCQifgUgaQywRQ+reyq7fzXpOCfATlV9bgc+CDwcEav7/QbMbEhybmlOPhRiZbkcOAA4LPu54gHgA5J2kjQRuIIePncRsRy4BThB0naS3gWcWtXtfGBj4EpJb8lGh+8r6WJJI0p8T2bWeM4tTcaFhZXlBmAJsA3pD7xiKvAscDNpF+N00reCnhxG2ps2FzgH+Gp+YUQ8Tvq2MgKYAdyV9XuOl3d3mllrcG5pMoqIRsdgZmZmLcJ7LMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4sbNBJOlRSSNqi0bGYmVm5XFiYmZlZaRQRjY7BhhlJI4B2YGX4A2hm1lJcWJiZmVlpfCjEBl1+jIWkSyU9Lam9Rr8Zku5vRIxmZlaMCwtrtJ8CrwD2zTdK2hTYG/jfRgRlZmbFuLCwRrsBWAB8oqr9/5E+ny4szMyaiAsLa6iI6AQuB94raWxu0ceBmyNifmMiMzOzIlxY2FBwGTAKeD+ApG2AXUiHSczMrIm4sLCGi4h7gLm8fDjkE8Aq4P8aFpSZmRXiwsKGisuAvSW9GvgYcF1EPNvgmMzMrE4uLGyouBII4Fzg9XjQpplZU3JhYUNCRDwF/B44GHgOuK6hAZmZWSEuLGwouSy7/7+IWNnQSMzMrBAXFjboIuKSiFBEPFy1aFV278MgZmZNytcKsSFD0m+B7YCtfXEyM7PmtE6jAzCT9FHgTcABwJdcVJiZNS/vsbCGkxTAi8BVwBERsbrBIZmZWUF1FxaSpgAvRsSfssdHAp8B7gGO9NwDZmZmw1eRwZvfAcYBSNoR+B7wO2BL4KzyQjMzM7NmU2SMxZakvRMAHwR+GxFfkfRmUoFhZmZmw1SRwmIVMDr7+T28PPfAErI9GcORJAGbAS80OhYblsYCj3vgq5k1WpHC4k/AWZL+DLwV+EjW/gZgQVmBNaHNGN7v3xrvtcDCRgdhZsNbkcLiKOCHwIeAz0VEJZHtR5qSebh6AeCxxx5j3LiuO246OjqYMWMGkydPpr29vSHBDWXePr3raRstXbqU173udeC9ZWY2BNRdWETEo8CBNdqPKSWiJjdu3LiahcXo0aMZN26c/3HW4O3TO28jM2sWhSbIktQGbA1sQtWZJRExu4S4zMzMrAnVXVhIejtwBbA5oKrFAYwoIS4zMzNrQkX2WPwIuI00/fIiUjFh1m933nknbW1tvPKVr2TChAmNDsfMzAooUlj8G/ChiHiw7GBseFqwIJ1Ms+eee7J8+XLWGzWa+++718WFmVkTKjLz5q2k8RWlknSCpJB0Tq5tPUnnS3pG0ouSrpY0vup5EyRdJ2mZpCclfUfSOlV99pJ0u6SVkh6UdGiN1z9S0sOSVki6VdJby36PVtszzzwDwMZTvsArDjyWFcuX8fTTTzc4KjMzK6LIHosfAN+TtClwF9CRXxgRf6t3hZLeAvwHUP3cs0mHXA4GngfOA34J7JE9bwRwHfAEsDvwatKEXR3AV7I+W2Z9fgR8HNgH+ImkRRExPevzEdJ05EeQCqejgemStomIJ+t9P1ZM+8avYc1qH1kzM2tmRQqLq7P7i3JtQRrIWffgTUljgMtJFzL7aq59A+Bw4GMRcUPW9ingXklvj4hbgMnAG4H3RMRi4A5JXwPOkHRyRKwiFQvzI+LYbNX3SnoHcAwwPWubClwQERdnr3MEqaA5DDi9nvdjZmY2nBW9VkiZzgeui4hZkr6aa98FaAdmVRoi4j5JjwK7Abdk93dlRUXFdOC/ge2BeVmfWXQ1HTgHQNK62WudlnudTkmzsufWJGkkMDLXNBbSfAMdHV124rz0uLrdks7OTgBGrpNOMho1ahSdnZ3eXjk9fYa8ncxsKCkyQdYjZb24pI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSHtZavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZYM1D7qShQsXsnChZ6euVusztGzZsgZEYmZWW9EJsrYijUPYLmu6Bzg3Ih6qYx2vA84FJkXEiiJxNNhpdL1M/FhgweTJk2vOvDlz5kwmTZrkWRNrmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FZkga1/g18AdwJ+z5j2Av0s6KCL6+rV8F9LMnbenC4MCac/BnpKOAvYF1pW0YdVei/GkwZpk99Vnb4zPLavcj6/RZ2lELJe0BljTTZ8n6EZErARWVh5X3kN7e3u3xUNPy4aztrZ0ctLK1cGK1cHy5ctpa2vztqqh1mfI28nMhpIip5ueDpwdEW+LiKnZ7W2kMQtn1LGe64EdgZ1yt9tIAzkrP3eQzuIAQNI2wARgTtY0B9hR0ia59U4ClpL2olT67ENXkyrryAZ4zq16nbbs8RzMzMysz4ocCtkO+HCN9otIh0f6JCJeAO7Ot0n6F/BMRNydPb6QdIn2JaRi4QfAnOyMEIAZpALip5KOI42nOBU4P9ujAOk006MknZnFuHcW/wG5lz4LuFTSbcBfsvexPnBxX9+PmZmZFSssniLtUXigqn0noOw5H44BOkmnuI4knc3x+crCiFgj6UDSWSBzgH8BlwIn5frMl3QAaU6MLwELgE9X5rDI+lwl6VXAKaTi5A5gStXZJmZmZtaLIoXFBcCPJb0euDlr2wM4nq6DGesWEXtVPV4BHJndunvOI8D+vaz3RmDnXvqcR5qAy8zMzAoqUlh8E3gBOJaX5354HDgZ+H45YZmZmVkzKjKPRZAOK5wtaWzW9kLZgZmZmVnzKTSPRYULCjMzM8vrU2Eh6XZgn4h4VtI80jVBaoqIN5cVnJmZmTWXvu6xuJaXJ4O6lh4KCzMzMxu++lRYRMQ3cj+fPGDRmJmZWVOre+ZNSf+U9Ioa7RtK+mc5YZmZmVkzKjKl9xaka3pUGwm8tl/RmJmZWVPr81khkt6be7ivpOdzj0eQrq0xv6zAzMzMrPnUc7rpNdl9kKbNzusAHiZNmmVmZmbDVJ8Li4hoA5A0H3hLRDw9YFGZmZlZUyoy8+aWAxGImZmZNb++TpD1ReDHEbEi+7lbEeHrhZiZmQ1Tfd1jcQxwObAi+7k7gS9EZmZmNmz1dYKsLWv9bGZmZpZXZIKskySNrtE+StJJ5YRlZmZmzajIBFlfB8bUaB+dLTMzM7NhqkhhIWpfhGwisKR/4ZiZmVkzq2fmzWdJBUUA/5CULy5GkPZi/Kjc8MzMzKyZ1DOPxdGkvRUXkQ555Kf0XgU8HBFzygvNzMzMmk09M29eCi/NvPnniFg9YFGZmZlZU6p7jEVE/BHYXNKpkq6UtAmApP0kbV96hGZmZtY0ipxu+i7gLuBtwAd4+QyRicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXszMzKzYWSGnA1+NiEmksRUVNwBvr3NdC4ATgF2AXbN1XJvb83E2cBBwMPAuYDPgl5UnSxoBXAesC+wOfBI4FDgl12fLrM8fgJ2Ac4CfSNo31+cjwFmkwujNwJ3A9MreGDMzM+ubIoXFjsCvarQ/CbyynhVFxG8i4ncR8UBE/CMi/gt4EXi7pA2Aw4GpEXFDRMwFPgXsLqlSwEwG3gh8IiLuiIhpwNeAIyWtm/U5ApgfEcdGxL0RcR7wC7pOTT4VuCAiLo6Ie7LnLAMOq+f9mJmZDXd1X90UeA54NTC/qn1nYGHRQLK9DwcD6wNzSHsx2oFZlT4RcZ+kR4HdgFuy+7siYnFuVdOB/wa2B+ZlfWbR1XTSnguyAmQX4LTc63RKmpU9t7t4RwIjc01jATo6Oujo6OjSt/K4ut2Szs5OAEauIwBGjRpFZ2ent1dOT58hbyczG0qKFBY/A86QdDBpTos2SXsA3wUuq3dlknYkFRLrkfZWvD8i7pG0E7AqIp6respiYNPs502zx9XL6UOfcZJGARuR5uGo1WfbHkI/kRozjc6YMYPRo9ea8RyAmTNn9rA6O2O/CemHg65k4cKFLFxYuE5tWbU+Q8uWLWtAJGZmtRUpLL4CnA88RvqHfE92fwVwaoH13U8a+7AB8CHg0myA6FB3GmlcRsVYYMHkyZMZN25cl44dHR3MnDmTSZMm0d7ePpgxNoV58+axaNEijp/2KCtXB4uvOIHZs2czceLERoc2ZPT0GVq6dGmDojIzW1vdhUVErAI+I+mbwA6ks0LmRcQDRQLI1vdg9nCupLcAXwKuAtaVtGHVXovxwBPZz08A1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyfoRkSsBFZWHktpN357e3u3xUNPy4aztrY01Gfl6mDF6mD58uW0tbV5W9VQ6zPk7WRmQ0mRwZsARMSjwDTg50WLim60kcYuzAU6gH0qCyRtA0wgHTohu9+x6uyNScBS0p6USp996GpSZR1ZYTO36nXasseeSdTMzKwOhQoLSYdLuhtYAayQdLekTxdYz2mS9pS0haQdJZ0G7AVcHhHPAxcCZ0l6t6RdgIuBORFxS7aKGaQC4qeSJmankJ4KnJ/tUYB0/ZLXSzpT0raSPg98mHQqa8VZpL0wn5S0HWnw5/rZ65mZmVkf1X0oRNIppNMzf8DL3+h3A86WNCEiTqpjdZuQBny+mnTtkb8B+0ZEZYTaMUAncDVpL8Z04POVJ0fEGkkHkgqBOcC/gEuBk3J95ks6gFRIfIk0d8anI2J6rs9Vkl5Fmv9iU+AOYErV2SZmZmbWiyKDNz8HfCYirsy1/VrS30jFRp8Li4g4vJflK4Ajs1t3fR4B9u9lPTeSToftqc95wHk99TEzM7OeFTkU0g7cVqN9LsUKFTMzM2sRRQqLn5L2WlT7LHB5/8IxMzOzZlZ0D8PhkiaTZr+EdEGyCcBlkl6a2yEipvYzPjMzM2siRQqLHYDbs5+3yu6fzm475PpFP+IyMzOzJlRkgqx3D0QgZmZm1vwKT5AlaWtJ+2bX20CVqSfNzMxs2Kq7sJD0CknXA/8AfkeagwLgQknfKzM4MzMzay5F9licTZpqewKQv6ziVcCUMoIyMzOz5lRk8OZk0uyYC6qOfjwAbF5KVGZmZtaUiuyxWJ+ueyoqNiZ3tU8zMzMbfooUFjcBh+QeR3Y10OOAP5QSlZmZmTWlIodCjgOul7QrsC5wJrA9aY/FHiXGZmZmZk2m7j0WEXE38AbgT8C1pEMjvwR2joiHyg3PzMzMmkldeywktQO/B46IiG8NTEhmZmbWrOraYxERHcCbBigWMzMza3JFBm/+L3B42YGYmZlZ8ysyeHMd4DBJ7wHmAv/KL/QVTc3MzIav/l7d9A1Vy3xFUzMzs2HMVzc1MzOz0hS+uqmZmZlZNRcWZmZmVpqGFhaSTpT0V0kvSHpS0jWStqnqs56k8yU9I+lFSVdLGl/VZ4Kk6yQty9bzHUnrVPXZS9LtklZKelDSoTXiOVLSw5JWSLpV0lsH5I2bmZm1qEbvsXgXcD7wdmAS0A7MkLR+rs/ZwEHAwVn/zUgzfQIgaQRwHWl68d2BTwKHAqfk+myZ9fkDsBNwDvATSfvm+nwEOAv4BvBm4E5guqRNynu7ZmZmra1PhUX2TX+j7OeTJI0u48UjYkpEXBIRf4+IO0kFwQRgl+y1NiDNmTE1Im6IiLnAp4DdJb09W81k4I3AJyLijoiYBnwNOFLSulmfI4D5EXFsRNwbEecBvwCOyYUzFbggIi6OiHuy5ywDDivjvZqZmQ0Hfd1jsR3pmiAAXwfGDEw4bJDdL8nudyHtxZhV6RAR9wGPArtlTbsBd0XE4tx6pgPjSBdHq/SZRVfTK+vICpBdql6nM3u8G2ZmZtYnfT3d9A7gYkl/AgR8WdKLtTpGxCm12nuTXXr9HODP2YXOADYFVkXEc1XdF2fLKn0W11hOH/qMkzQK2AgY0U2fbbuJdyQwMtc0FqCjo4OOjo4ufSuPq9st6ezsBGDkOgJg1KhRdHZ2envl9PQZ8nYys6Gkr4XFoaSxBweSJsHaD1hdo1+QG9tQp/NJk2+9o+DzB9uJpL03XcyYMYPRo2sfKZo5c+ZAx9TUzthvQvrhoCtZuHAhCxcubGxAQ1Ctz9CyZcsaEImZWW19Kiwi4n7gowCSOoF9IuLJsoKQdB6paNkzIhbkFj0BrCtpw6q9FuOzZZU+1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyeo7TTSYM+KscCCyZMnM27cuC4dOzo6mDlzJpMmTaK9vb2b1Q1f8+bNY9GiRRw/7VFWrg4WX3ECs2fPZuLEiY0Obcjo6TO0dOnSBkVlZra2IjNvlnYmiSQBPwDeD+wVEfOruswFOoB9gKuz52xDGuA5J+szB/gvSZvkip1JwFLgnlyf/avWPamyjohYJWlu9jrXZK/Tlj0+r1bsEbESWJl7LwC0t7d3Wzz0tGw4a2tLH6mVq4MVq4Ply5fT1tbmbVVDrc+Qt5OZDSVFrhWCpK2Ao0mDOiH9Az83Ih6qc1XnAx8D/h14QVJlTMTzEbE8Ip6XdCFwlqQlpGLhB8CciLgl6zsje/2fSjqONJ7iVOD87J8/wI+AoySdCVwE7A18GDggF8tZwKWSbgP+kr2/9YGL63xPZmZmw1bdhUU298OvSQM6/5w17wH8XdJBEVHPQILPZfc3VrV/Crgk+/kYoJO0x2Ik6WyOz1c6RsQaSQcC/03aA/Ev4FLgpFyf+ZIOIM2J8SVgAfDpiJie63OVpFeRxohsmr2/KVVnm5iZmVkPiuyxOB04OyJOyDdKOh04A+hzYRER6kOfFcCR2a27Po+w9qGO6j43Ajv30uc8ujn0YWZmZr0rMl5iO+DCGu0XkSaqMjMzs2GqSGHxFGla7Go7AaWdKWJmZmbNp8ihkAuAH0t6PXBz1rYHcDxdT780MzOzYaZIYfFN4AXgWNJcDgCPAycD3y8nLDMzM2tGReaxCNLZFWdLGpu1vVB2YGZmZtZ8Cs1jUeGCwszMzPJKm0XTzMzMzIWFmZmZlcaFhZmZmZWmrsJCUruk6yX920AFZGZmZs2rrsIiIjqANw1QLGZmZtbkihwK+V/g8LIDMTMzs+ZX5HTTdYDDJL0HmEu6muhLImJqGYGZmZlZ8ylSWOwA3J79/IaqZdG/cMzMzKyZFZl5890DEYiZmZk1v8Knm0raWtK+kkZlj1VeWGZmZtaM6i4sJL1C0vXAP4DfAa/OFl0o6XtlBmdmZmbNpcgei7OBDmACsCzXfhUwpYygzMzMrDkVGbw5Gdg3IhZUHf14ANi8lKjMzMysKRXZY7E+XfdUVGwMrOxfOGZmZtbMihQWNwGH5B6HpDbgOOAPpURlZmZmTanIoZDjgOsl7QqsC5wJbE/aY7FHibGZmZlZk6l7j0VE3E2aGOtPwLWkQyO/BHaOiIfqWZekPSX9RtLjkkLS+6qWS9IpkhZJWi5pVvUF0CRtLOlySUslPSfpQkljqvq8SdJNklZIekzScTViOVjSfVmfuyTtX897MTMzs4LzWETE8xHxrYj4cETsHxFfjYhFBVa1PnAncGQ3y48DvggcAbyNNH34dEnr5fpcTtpjMgk4ENgT+HFloaRxwAzgEWAX4D+BkyV9Ntdnd+BK4EJgZ+Aa4BpJOxR4T2ZmZsNWkUMhSNqIdCGy7bKme4CLI2JJPeuJiGnAtGyd1a8h4Gjg1Ii4Nms7BFgMvA/4maTtSKe4viUibsv6fAH4naQvR8TjwMdJh2wOi4hVwN8l7QRM5eUC5EvA7yPiO9njr0maBBxFKmrMzMysD+ouLCTtCfwGeB64LWv+InCSpIMiYnZJsW0JbArMqjRExPOSbgV2A36W3T9XKSoys4BO0h6OX2V9ZmdFRcV04HhJG0XEs1mfs6pefzqpgKlJ0khgZK5pLEBHRwcdHR1d+lYeV7db0tnZCcDIdVJxOWrUKDo7O729cnr6DHk7mdlQUmSPxfmkybA+FxFrACSNAH6YLduxpNg2ze4XV7Uvzi3bFHgyvzAiVktaUtVnfo11VJY9m9339Dq1nAh8vbpxxowZjB49uuYTZs6c2cPq7Iz9JqQfDrqShQsXsnDhwsYGNATV+gwtW1br7G8zs8YoUlhsDXyoUlQARMQaSWfR9TTUVncaXfdyjAUWTJ48mXHjxnXp2NHRwcyZM5k0aRLt7e2DGWNTmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FSksbieNrbi/qn070kDMsjyR3Y8H8gNDxwN35Ppskn+SpHVIp74+keszvmrd43PLeurzBN2IiJXkJgSrjBFpb2/vtnjoadlw1taWxhCvXB2sWB0sX76ctrY2b6saan2GvJ3MbCjp01kh2emab5L0JuD7wLmSvizpHdnty6RriJxdYmzzSf/Y98nFMY40dmJO1jQH2FDSLrnn7U16X7fm+uwpKZ99JwH3Z+MrKn32oatJudcxMzOzPujrHos7gADyp26cWaPfFaTxF32SzTexda5py+yMjSUR8aikc4CvSnqAVGh8E3icdDooEXGvpN8DF0g6AmgHzgN+lp0RUonp66Srr54B7EA6C+SY3OueC/xR0rHAdcBHgV2Bz2JmZmZ91tfCYssBev1d6ToNeGXMwqXAoaTiZX3SaaEbkiblmhIRK3LP+TipmLiedDbI1aSzVICXziSZTBpYOhd4GjglIn6c63OzpI8BpwLfJl1Q7X3ZZGBmZmbWR30qLCLikYF48Yi4ka57QaqXB3BSduuuzxLgY728zt+Ad/bS5+fAz3vqY2ZmZj0rOkHWZsA7SAMnu4zTiIjvlxCXmZmZNaEiE2QdCvwPsAp4hjT2oiJIgzvNzMxsGCqyx+KbwCnAaRHRWXI8ZmZm1sSKXIRsNOmsCxcVZmZm1kWRwuJC4OCyAzEzM7PmV+RQyInAbyVNAe4CulwBKSKmlhGYmZmZNZ+ihcW+vDyld/XgTTMzMxumihQWxwKHRcQlJcdiZmZmTa7IGIuVwJ/LDsTMzMyaX5HC4lzgC2UHYmZmZs2vyKGQtwJ7SzoQ+DtrD978QBmBmZmZWfMpUlg8B/yy5DjMzMysBdRdWETEpwYiEDMzM2t+RcZYmJmZmdVU5CJk8+lhvoqIeH2/IjIzM7OmVWSMxTlVj9uBnYEpwHf6G5CZmZk1ryJjLM6t1S7pSGDXfkdkZmZmTavMMRbTgA+WuD4zMzNrMmUWFh8ClpS4PjMzM2syRQZvzqPr4E0BmwKvAj5fUlxmZmbWhIoM3rym6nEn8BRwY0Tc1++IzMzMrGkVGbz5jYEIxMzMzJqfJ8iqIulISQ9LWiHpVklvbXRMZmZmzaLPhYWkTklrermtHshgB5qkjwBnAd8A3gzcCUyXtElDAzMzM2sS9RwKeX8Py3YDvkjz7wGZClwQERcDSDoCOAA4DDi9kYGZmZk1gz4XFhFxbXWbpG1I/3APAi4HTiovtMElaV1gF+C0SltEdEqaRSqcqvuPBEbmmsYCLFmyhI6OLleSp6Ojg2XLlnHTTTfR1tZGW1sbnZ2dL90Da7X1tKzV+t9///2MGTMGLXkEdaxhvfXWY+7cubz44oulxTPUt0Fvyzo7O1m2bBnPPPMM7e3tXT5fL7zwQvXH08ysYYqcFYKkzUiHCz4JTAd2ioi7ywysAV4JjAAWV7UvBrat0f9E4OvVjVtuuWX5kQ1Dn/3sZxsdQjMaCyxtdBBmNrzVVVhI2gD4CvAF4A5gn4i4aQDiagankcZj5G1M7UnCxgILgNcC/nq5Nm+f3vW2jcYCjw9qRGZmNfS5sJB0HHA88ATw/2odGmlyTwNrgPFV7eNJ77mLiFgJrKxqrvltUVLlxxciwt8oq3j79K4P28jbzcyGhHr2WJwOLAceBD4p6ZO1OkXEB8oIbLBFxCpJc4F9yCYBk9SWPT6vgaGZmZk1jXoKi8voOpV3KzoLuFTSbcBfgKOB9YGLGxmUmZlZs6jnrJBDBzCOISEirpL0KuAU0vVP7gCmRET1gM56rSQNdq0+dGKJt0/vvI3MrCkootV3QpiZmdlgafYJrczMzGwIcWFhZmZmpXFhYWZmZqVxYWFmZmalcWExQCRtLOlySUslPSfpQkljennOjZKi6vajwYp5INV7OXpJB0u6L+t/l6T9ByvWRqlnG0k6tMZnZcVgxmtmVosLi4FzObA9MAk4ENgT+HEfnncB8Orc7biBCnCw1Hs5ekm7A1cCFwI7kyYsu0bSDoMScAPUu40yS+n6Wdl8oOM0M+uNTzcdAJK2A+4B3hIRt2VtU4DfAa+NiJrXdJB0I3BHRBw9SKEOCkm3An+NiKOyx23AY8APImKty9FLugpYPyIOzLXdQto2RwxS2IOqwDY6FDgnIjYczDjNzHrjPRYDYzfguUpRkZkFdAJv6+W5H5f0tKS7JZ0mafSARTkIcpejn1Vpi4jO7PFal6PP7Jbvn5neQ/+mVnAbAYyR9IikxyRdK2n7AQ7VzKxXhS6bbr3aFHgy3xARqyUtyZZ15wrgEdJVKt8EnAFsAzTl9Vcy9V6OHtI2qtW/p23XzIpso/uBw4C/ARsAXwZulrR9RCwYqEDNzHrjwqIOkk4nXeG1J9sVXX9E5Mdg3CVpEXC9pK0i4qGi67XWExFzgDmVx5JuBu4F/gP4WqPiMjNzYVGf7wGX9NLnn6TLrHcZdCdpHWBjalyCvQe3ZvdbA81aWNR1OfrME3X2b3ZFtlEXEdEhaR7ps2Jm1jAeY1GHiHgqIu7r5baK9E1yQ0m75J6+N2l731pz5bXtlN0vKucdDL5se1QuRw90uRz9nG6eNiffPzOph/5NreA26kLSCGBHmvizYmatwXssBkBE3Cvp98AFko4A2oHzgJ9VzgiR9BrgeuCQiPiLpK2Aj5HOHHmGNMbibGB2RPytEe+jRD1ejl7SZcDCiDgx638u8EdJxwLXAR8FdgU+O8hxD6a6tpGkk4BbgAeBDYH/JJ1u+pPBDtzMLM+FxcD5OKmYuJ50NsjVwBdzy9tJAzMrZ32sAt7Dy/9QHsuec+rghDtw+nA5+gmkbVTpf7Okj5He+7eBB4D3RcTdgxr4IKp3GwEbkeY82RR4lrTHY/eIuGfQgjYzq8HzWJiZmVlpPMbCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwhpO0sOSjm50HGZm1n8uLMzMzKw0LizMzMysNC4srF8kfVbS49nVOPPt10q6SNJW2c+LJb0o6a+S3tPD+raQFJJ2yrVtmLXtlWvbQdK0bJ2LJf1U0isH4C2amVkdXFhYf/0ceAXw7kqDpI2BKcDlwBjSFVv3AXYGfg/8RtKEoi8oaUPgBmAe6aqnU4DxwP8VXaeZmZXDVze1fomIZyVNI13y/fqs+UPA08AfIqITuDP3lK9Jej/wXtLVX4s4CpgXEV+pNEg6DHhM0hsi4h8F12tmZv3kPRZWhsuBD0oamT3+OPCziOiUNEbSdyXdK+k5SS8C25EuA17URODd2WGQF7N13pct26of6zUzs37yHgsrw28AAQdI+ivwTuCYbNl3gUnAl4EHgeXAL4B1u1lXZ3avXFt7VZ8x2WseX+P5i+oN3szMyuPCwvotIlZI+iVpT8XWwP0RcXu2eA/gkoj4FYCkMcAWPazuqez+1aQxFAA7VfW5Hfgg8HBErO73GzAzs9L4UIiV5XLgAOCw7OeKB4APSNpJ0kTgCnr43EXEcuAW4ARJ20l6F3BqVbfzgY2BKyW9JTvzZF9JF0saUeJ7MjOzOrmwsLLcACwBtiEVDxVTgWeBm0mHL6aT9jj05DDS3rS5wDnAV/MLI+Jx0p6QEcAM4K6s33O8fCjFzMwaQBHR6BjMzMysRXiPhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZleb/B9uEx1mzsfasAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_32-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 64"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYxElEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCIqRJSC4AIoIJoTNrwuoV/0h4nJRUFm8gF4ERLwsKouCekVk8QKioqBCzAJiUAJKCJvsyJYQwhIgYLZJ5vP741RDTdOzdE3N9HTP+/l49KO7T52u/nRN9ZlPnzp1ShGBmZmZWRnaGh2AmZmZtQ4nFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWVpikEyQNytStkq6TdF3u+a6SQtJ+g/T+F0h6eDDeq+p9N8k+54GD/d7DhaQ1JJ0m6TFJnZKuaHRMg2Uwv8M2fDixMAAkHZj9A6vclkt6XNJ0SV+RNLak99koa8y2LWN9ZRrKsdmAOgj4L+A3wKeBMxobjllzW6PRAdiQcxzwENAObAjsCpwJHCHpAxFxe67uScApda5/I+B44GHg1jpeN6XO9ymip9g+T2MS8UeAUUBHA957uNgNWBARhzc6ELNW4MTCqk2LiJtzz0+WtBvwR+D3kiZGxDKAiFgFrBrIYCSNjoilEbFyIN+nNxHRkH/ska4SuLwR790fktYCVkZEZ6Nj6YMNgOfKWpmkNmDNiGi6v5tZGXwoxHoVEdcC3wY2Bj5VKa91fFbSZEl/lfScpBcl3Svpf7JluwL/yKqenzvscmC2/DpJd0raXtJsSUuB/8ktu65GeCMk/Y+kJyT9W9LvJb2hKqaHJV1Q/cL8OvsQ2yvGWEhaW9L3s2PzK7LP+jVJqqoXks6W9MHs862Q9E9JU2t8nuoYXzHGIovlRUmvk3RF9vgpSd+TNKIP63xY0h8lTZF0a3bY6y5JH66qt362zjuy91giaZqkSVX1KuNdPi7pJEkLgKXAuALr+Kik4yUtkPSCpN9IWkfSSElnSnoyW8/5kkZWraPbfa+nbQu8D9gy9zffNVte79/3k5L+CawAuv3bSmrLvjuPS1oq6c+S3lq9n/Z122V1v5ztU0slPSvpZkmfqKrzbkn/yP7eD0r6zx5i/JSkuZKWSVos6ZfKfa+yz/uipNE1Xnup0vex133RWpN7LKyvfkH6Jz8FOLdWBUlbkno2bicdUlkBbA7snFW5Oys/EfgpcH1WfkNuNa8CpgG/BP4PWNRLXP8NBHAq6ZfnYcAsSdtWelb6qC+xvST75/J70j+l80iHTvYAvgu8DqjuVn838GHgR8ALwFeAyyVNiIhn6oizYgQwHbgJ+BrwfuBI4EHgx314/ZuAy4CfABcCnwF+LWlqRMzM6rwR+CDwa9LhsfHAfwJ/kfTWiHi8ap3fBFYC3wNGZo/fWuc6vg4sIx1i2xz4MukwUCewHnAC8C7gwGx9J0Kf9r1angL+P9I+NCZ7b4C7C/x9dwM+CpwNPE06nNadk4GjgD+Q/oaTsvu1qur1aftL+jzwA9IYkbOy9WwDvBO4JKuzNTAj+8wnkNr+b1Hj+yXpv0k/JH4F/Ax4DenvMFvSdhHxHGnfOQTYO4uv8trRwL7ABRGxuodtYK0sInzzDVJDHcAOPdR5Drgl9/wEst767Plh2Tpe3cM6dsjqHFhj2XXZsv/sZtl1uee7ZnXnA2Nz5ftn5V/JlT1Mauh6W2dPsV0APJx7/v+yuv9dVe/XpH+Cm+XKgvSPLl+2TVZ+aC9/l02qY8piCeCbVXVvAW7uw9/64ez1H86VjQMer/r7jgTaasSzPP/eub/Fg8Coqvr1ruMOoD1Xfkm2Pa+uWscNVX+PXve9HrbHdcCdVWX1/n1XA2/tw3uNJyVKv6sqPz5bzwW5sr5uuyuq46/xvr8jJWwTcmUTSYcyI1e2cVb2jarXb5XF/Y3suUjfvd9U1at8/95T79/Bt9a5+VCI1eNFoKezQ57L7v+f0nHmIlYA59dR/6KIeCH3/DfAQmCvgu/fV3uR/pn8oKr8+6RGd8+q8lkR8WDlSaRBsEtIv0qL+knV8+vrWN/jpH82lXiWABcB20naMCtbEdkYCUkjJL2KtA/cC7ytxjovjKpeogLruCi6jme5ibQ9f15V7ybgDZIqva7PZff92ffy6v37/iUi7urDencn9Rb8qKr8h9UV69h2zwGvl/T2Wm+YHZLYA7giIh7Nrf9uUk9J3odJh8h/JenVlRvwBHA/qQeHiAhSkrWXpDG5138MWAD8tdstYC3PiYXVYwypG787lwF/I3WfLsqOy360zoZ+QdQ3UPP+/JOswXuA9MtuIG0MPF6V1EA6pFJZnvcor/QsqXu/iOUR8VQ/1vdAtq3y7svuN4GXxgIcLul+UsL3NKkrfRtgnRrrfKi6oMA6qrfT89n9YzXK23LrKGPfy6v37/uKz97DeiHtoy+JiMWkv99L6th2p5ISjr9Lul/SOZLyh4BeQzqzqMt3JXNv1fM3kRKn+7P3yt8mkg43VlyWrfcDWbxjSAnZr2vsWzaMOLGwPpH0elJj9kB3dbJfq7uQjvf/gtQAXgbMrGMgVz3jIvqqu0ZuMAeXdXe8Wd2UF11fmb4BnA7MJg3a3QOYDPyT2m1Hrb9dvevo7nP1uP1K2vf6YyD22z5tu6znYQvg46Sego8Af5X0rQLv2Ub6vkzN3qv69tKAz4i4kXRY7aNZ0b6kROOyAu9rLcSDN62v/r/svrrrtIus6/aa7HaEpG8A3yF1oc6i+3/yRb0p/yQbdLc5aRBfxbPAujVeuzHwr9zzemJ7BHi/pLFVv2rfkls+lG0uSVW/LN+c3T+c3e8H/DkiPpt/oaR1Sb+e+6KMdfRJH/a9egzU37fyus3J9XJkhzmqe5v6vO0i4t+kf+iXSVoT+C3w35JOJvU2LKPqu5LZour5g6Rk7aGIuK9G/Wq/Ar4qaRzpMMjDWcJhw5h7LKxXSvNYfJPUEF7cQ731axTfmt1XTg38d3a/bknhHaCus4LuB7yWdGZJxYPAu7IGFwBJ+wBdTkutM7arST0eh1aVH05KUKa94hVDy0bAhypPsn8MBwC3RsQTWfFqqnpUJO1POiuir8pYR6/6uO/VY6D+vteQBkd+saq8+n2gj9suS0pekh1KvCt7bXukszOmAx+UNCH3uomkXpC832bve3yWpOffR9XvRUpmRpJmLJ1KSjRsmHOPhVXbU9JbSPvGeNJpdJNJv7Q+ED1P+nOcpF2Aq7L6GwBfIo0erwzmepA02OxgSS+Q/pnfFBF9PUZdbTGp2/f8LN7DSIdr8qfE/oyUcPxJ0q+AzUhdyw92XVVdsf0B+DPwHUmbALeRTsX9f8CZ+YGaQ9R9wHnZgL9FpGmtx5NOO634I+lvej7pLIytgU/StZenN2Wsoy/6su/VY0D+vhGxSNJZwJGSfg/8iXS66Z6kXoh8D1Jft90MSU+QxpgsIo2FOBS4KtfbcjzpH//1kn5E+n5/mXRYZZtcfA9KOpZ0SuwmStdNeQHYlJSI/pR0OnGl/i2SHiD1DI3Eh0EMfLqpb+nGy6ebVm4rSGdXzCDNuTC2xmtOoOuparuRTn1bkL1+Ael0wTdVve4DpAatg9yplNQ47S/3muuofbrpx0nzaywiTcr0R3Kn1OXqH0H6J7Oc9I9m++p19hLbBeROb8zKxpCOgS8gzdlwH2lOCVXVC+DsGjE9TI3TYKvqbJKPIxfLi739PXpY58PZdppC+oe5nDQocb+qeiNJ/0Qez7btX0lzSHT3t9ivxnv1ax10cxp05bOSnV5KH/e9HvatV+x3/f379vB+I0jzbyzMtsk1pEMsTwM/LrDtvgD8JXv9clJifRowrup9dwFuzrbPg6TxEjX3GdLZIdeTBoW+mO0fZwNvrlH3pGwb3F9Pm+Nb694U4cG7ZsOJ0gyid0bEPo2OxZJs3MSzwLER8Z0Gh2PWLx5jYWY2iCSNqlF8WHZ/3eBFYjYwPMbCzGxwfUzp2i9Xkw4zvBv4D2BGRPytkYGZlcGJhZnZ4LqddGbIUaSp1BeRrvFxbCODMiuLx1iYmZlZaTzGwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMIKk3SgpJC0SS/1HpZ0weBEZWbNxO1I63FiYWZm1gNJu0v6uaT7JC2V9C9JP5P02kbHNhQpIhodgzUpSSOAdmBF9LAjSXoYuC4iDhyk0MysSTRDOyLpZmB94NfA/cAbgUOBpcC2EfHEYMc0lK3R6ACseUXEamB1o+Mws+bVJO3IEcBfI6KzUiDpT8BfSAnGsY0KbCjyoRArrPrYqJJjJc3Pugv/LGnLGq87QdIrfpnUOtaaHVf9o6RdJd0saZmkOyTtmi3/cPZ8uaS5krYbqM9rZuVrhnYkImbnk4pKGbAYmNj/rdBanFhYmU4Evg3cBvwX8C9gBrB2P9e7OXAJ8Afg68B6wB8kfRI4A/g/4HhgM+BXkrxfmzWvpmhHJI0BxgBP9zOuluNDIVYKSa8BjgKuAvatHCuV9B3gG/1c/RbAThExJ1vnXcB04FzgLRHxaFb+LPC/wC7Adf18TzMbZE3WjhwGrAlc1s+4Wo5/2VlZ3k/6kv2wagDWmSWs+65KY5C5Kbu/ttIYVJW/sYT3NLPB1xTtiKRdSL0bv4qIa0uIraU4sbCybJzd358vjIingGf7ue78l56IeD57+FhVvUr5ev18PzNrjCHfjkh6C/A74E7gc/2MqSU5sbBG6O6UshHdlHc3Yry7ctUXjpk1oUFvRyS9gTTe43lgr4h4occIhyknFlaWR7L7N+ULs2Om1Zn/s9mydavKN8bMhrMh245IehUpqRgJ7BERCwfifVqBEwsryyygA/iypHymf1iNug9m97tUCiStDXx6wKIzs2YwJNuRbL1XA68j9VTc38tLhjWfFWKliIinJH2PdBrXHyVdDWwH7MkrT8eaQTreeZ6k75K6Ig8CngImDF7UZjaUDOF25GLgHcDPgYmS8nNXvBgRV5T8fk3NiYWV6VhgOXAw8D7S6OoppFPHXhIRHZI+BPyIdL76E6RR388C5w9ivGY29AzFdmTb7P6g7Jb3CHBFye/X1HytEDMzMyuNx1iYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaepOLCRNlfTu3PNDJN0q6RJJnkrZzApx22LWGor0WHwXGAcgaWvg+6SJQzYFTi8vNDMbZty2mLWAIvNYbArclT3+CPDHiPiGpLeRGoFhKZslbiPAc8dbI4wFHo/mPn/cbUsNbluswepuW4okFiuB0dnj9wMXZY8Xk/3aGKY2AuY3Oggb1l4PLGh0EP3gtqU2ty3WaHW1LUUSi78Cp0v6G2mK049l5W9meO/8LwA89thjjBvXtQ3s6OhgxowZTJkyhfb29oYEN5R5+/Sup220ZMkS3vCGN0Dz/6J121Jbt20L+PvTG2+fng1E21IksTiUNIXqfsAXI6KSxewJ/KnA+lrKuHHjaiYWo0ePZty4cd6xa/D26d0w2UZuW3pQq22BYbNvFObt07OB2D51JxYR8SiwT43yw0uJyMyGJbctZq2h0EXIJLUBmwMbUHVmSUTMLiEuMxuG3LaYNb+6EwtJ7wIuATYGVLU4gBElxGVmw4zbFrPWUKTH4ifAzcDewELSF96s32677Tba2tp49atfzYQJExodjg0+ty02YG677TY22GADty2DoEhi8SZgv4h4oOxgbHiaPz8N+N9ll11YtmwZa40azb333O0GYPhx22Kly7cvgdy2DIIiM2/eRDoGalaKZ555BoD1p36ZV+1zJMuXLeXpp59ucFTWAG5brHSV9mXcOz7stmWQFOmx+CHwfUkbAncAHfmFEXF7GYHZ8NO+/utYvcq938OY2xYbMCPGvabRIQwbRXosLgcmAj8H/gHcCszL3Rci6RhJIenMXNlaks6R9IykFyVdLml81esmSLpK0lJJT0r6rqQ1qursKukWSSskPSDpwBrvf4ikhyUtl3STpHcU/SxmVsiAtC3g9sVsMBW9VkipJL0d+E+g+hfJGaSBXPsDzwNnA78Fds5eNwK4CngC2Al4LWka4A7gG1mdTbM6PwE+CewO/EzSwoiYntX5GOkiRweTumMPA6ZL2iIiniz785pZTaW3LeD2xWywFZkg65EyA5A0BrgY+DxwbK58HeCzwCci4tqs7DPA3ZLeFRE3AlOAtwLvj4hFwK2SvgmcKumEiFhJ+jI/FBFHZqu+O7s08+HA9KzsCODciDg/e5+DSQ3OQcApZX5eM6ut7LYF3L6YNULRCbI2I2XdE7Oiu4CzIuLBAqs7B7gqImZJOjZXvj3QDsyqFETEPZIeBXYEbszu78i+9BXTgR8DW5K6T3fMryNX58zss6yZvdfJuffplDQre21NkkYCI3NFYyFNj9rR0eXQ8EvPq8st6ezsBGDkGmnqglGjRtHZ2entldPTPtRK26nktgWasH2pp22plOfvratK+7JW+wi3LTUMRNtSZIKsPYDfk457/i0r3hn4p6R9I2JmHev6OPA24O01Fm8IrIyI56rKF2XLKnUW1VhOH+qMkzQKWI808U6tOm/pIfyvA8dXF86YMYPRo0fXqA4zZ/Z50wxLp+6ZnQK276UsWLCABQua+UKdA6PWPrR06dIGRFK+MtuWbH3N2r7U3baA25fenH7Ae+CA97ht6UaZbUuRHotTgDMi4ph8oaRTgFOBPu3dkt4AnAVMjojlBeJotJNJx00rxgLzp0yZUvMiZDNnzmTy5Mm+CE4N8+bNY+HChRw97VFWrAoWXXIMs2fPZtKkSY0ObcjoaR9asmRJg6IqXSltS/aaZm5f+ty2gNuX3lTalyMuup6F037ktqXKQLQtRRKLicBHa5T/nNSF2Vfbk64HcIv00uy9I4BdJB0K7AGsKWndql8V40mDqcjuq0dXj88tq9yPr1FnSUQsk7QaWN1NnSfoRkSsAFZUnlc+Q3t7e7df7p6WDWdtbenkpBWrguWrgmXLltHW1uZtVUOtfaiFtlNZbQs0cftSpG3py/LhqtK+LO9Y7balB2W2LUVON30K2LZG+bZAPSOcrwG2zl5Xud1MGmhVedxBGmUNgKQtgAnAnKxoDrC1pA1y650MLCEdm63U2Z2uJlfWkQ3Amlv1Pm3Z8zmY2WApq20Bty9mDVOkx+Jc4KeS3gjckJXtDBxN1+67HkXEC8Cd+TJJ/waeiYg7s+fnAadLWkz6Mv8QmJON2AaYQfqC/0LSUaTjnScB52RZP6TTwA6VdBrpl89upF9Fe+fe+nTgQkk3A38n/TpaGzi/r5/HzPqtlLYF3L6YNVKRxOLbwAvAkbw80vlx4ATgB+WE9ZLDgU7SxDkjSaOtv1RZGBGrJe1DGqU9B/g3cCFwXK7OQ5L2Jp2z/lVgPvC5yjnmWZ3LJL0GOJHUeNwKTK0aDW5mA2sw2xZw+2I2IIrMYxGkL9EZksZmZS+UEUxE7Fr1fDlwSHbr7jWPAHv1st7rgO16qXM2aYIcM2uAgWxbsnXtWvXc7YvZACg0j0VFmV96M7MKty1mzatPiYWkW4DdI+JZSfOAbq8UFRFvKys4M2ttblvMWk9feyyu5OXTn66khy+/mVkd3LaYtZg+JRYR8a3c4xMGLBozG1bctpi1nrrnsZD0L0mvqlG+rqR/lROWmQ03blvMWkORCbI2Ic1gV20k8Pp+RWNmw9kmuG0xa3p9PitE0gdyT/eQ9Hzu+QjSTHIPlRWYmQ0PblvMWks9p5tekd0HaZKYvA7gYdLENmZm9bgiu3fbYtYC+pxYREQbgKSHgLdHxNMDFpWZDRtuW8xaS5GZNzcdiEDMbHhz22LWGvo6QdZXgJ9GxPLscbciYiDm9DezFuS2xaz19LXH4nDS5YaXZ4+7EwzMxYLMrDW5bTFrMX2dIGvTWo/NzPrDbYtZ6ykyQdZxkkbXKB8l6bharzEz643bFrPWUGSCrOOBMTXKR2fLzMyKcNti1gKKJBai9oWCJgGL+xeOmQ1jblvMWkA9M28+S/rSB3CfpHwDMIL0S+Mn5YZnZq3ObYtZa6lnHovDSL8ofk7qlsxPu7sSeDgi5pQXmpkNE4fhtsWsZdQz8+aF8NLseH+LiFUDFpWZDRtuW8xaS91jLCLiL8DGkk6SdKmkDQAk7Slpy9IjNLNhwW2LWWsocrrpe4E7gHcCH+blUdyTgG+VF5qZDSduW8xaQ5GzQk4Bjo2IyaTjnxXXAu+qZ0WSvijpdklLstscSXvmlq8l6RxJz0h6UdLlksZXrWOCpKskLZX0pKTvSlqjqs6ukm6RtELSA5IOrBHLIZIelrRc0k2S3lHPZzGzfnPbYtYCiiQWWwO/q1H+JPDqOtc1HzgG2B7YgdSAXJnr9jwD2BfYH3gvsBHw28qLJY0ArgLWBHYCPg0cCJyYq7NpVufPwLbAmcDPJO2Rq/Mx4HTSr6K3AbcB0ytdsWY2KNy2mLWAIonFc8Bra5RvByyoZ0UR8YeIuDoi7o+I+yLiv4EXgXdJWgf4LHBERFwbEXOBzwA7Sar8epkCvBX4VETcGhHTgG8Ch0haM6tzMPBQRBwZEXdHxNnAb+h6XYIjgHMj4vyIuCt7zVLgoHo+j5n1y3O4bTFrenVfNh34JXCqpP1J5523SdoZ+B5wUdFAsl8I+wNrA3NIvzTagVmVOhFxj6RHgR2BG7P7OyJiUW5V04EfA1sC87I6s+hqOunXBVkjsT1wcu59OiXNyl7bXbwjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9cQAKNGjaKzs9PbK6enfaiFtpPbFuprWyrl+XvrqtK+rNU+wm1LDQPRthRJLL4BnAM8Rpq85q7s/hLgpHpXJmlr0pd9LdIvig9FxF2StgVWRsRzVS9ZBGyYPd4we169nD7UGSdpFLBeFn+tOm/pIfSvU2Oa4RkzZjB69CsudwDAzJkze1idnbrnhPRg30tZsGABCxbU9SN1WKi1Dy1durQBkQwIty1J3W0LuH3pzekHvAcOeI/blm6U2bbUnVhExErg85K+DWxFGrk9LyLuLxQB3Es6PrkOsB9wYTY6fKg7mXTstGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqMrltuUlfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIj0WAETEo5Ieyx7Xmt+/r+tZCTyQPZ0r6e3AV4HLgDUlrVv1y2I88ET2+AmgeoT1+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXluZS68dvb27v9cve0bDhra0tDfVasCpavCpYtW0ZbW5u3VQ219qFW205uW+pvW/qyfLiqtC/LO1a7belBmW1LkcGbSPqspDuB5cBySXdK+lyhCGrHNBKYC3QAu+fedwtgAql7k+x+66oR1pOBJaRu1Eqd3elqcmUdWeMzt+p92rLnnkbYbBC5bTFrfnX3WEg6kTTS+Ye8/OXYEThD0oSIOK6OdZ0MTAMeJXX3fQLYFdgjIp6XdB5wuqTFpC/0D4E5EXFjtooZpC/5LyQdRTrmeRJwTpb1Q7p40aGSTiNdi2A34KPA3rlQTid1k94M/J107YK1gfP7+lnMrH/ctpi1hiKHQr4IfD4iLs2V/V7S7aQvZ5+//MAGpNHeryVdeOh20he/MorkcKATuJz0S2M68KXKiyNitaR9SCO15wD/Bi7MxxARD0nam3Te+ldJ57d/LiKm5+pcJuk1pHPUNwRuBaZWjQg3s4HltsWsBRRJLNqBm2uUz613fRHx2V6WLwcOyW7d1XkE2KuX9VxHOhe+pzpnA2f3VMfMBpTbFrMWUGSMxS9IvyyqfQG4uH/hmNkw5rbFrAUUPSvks5KmkCaSgXTRoAnARZJeOk0qIo7oZ3xmNry4bTFrckUSi62AW7LHm2X3T2e3rXL1Cp8mZmbDktsWsxZQZIKs9w1EIGY2vLltMWsNheaxAJC0uaQ9sqlrUWUWFzOzfnDbYtbc6k4sJL1K0jXAfcDVvHw1wvMkfb/M4Mxs+HDbYtYaivRYnEGatW4C6fK/FZcBU8sIysyGJbctZi2gyODNKaSJZuZX9VDeD2xcSlRmNhy5bTFrAUV6LNam66+JivXJXTjHzKxOblvMWkCRxOJ64IDc88gurHMU8OdSojKz4chti1kLKHIo5CjgGkk7AGsCpwFbkn5V7FxibGY2vLhtMWsBdfdYRMSdwJuBvwJXkrovfwtsFxEPlhuemQ0XblvMWkNdPRaS2oE/AQdHxHcGJiQzG27ctpi1jrp6LCKiA9hmgGIxs2HKbYtZ6ygyePP/gB4vSWxmVoDbFrMWUGTw5hrAQZLeD8wF/p1f6KsOmllBblvMWkB/r2765qplvuqgmRXltsWsBfjqpmY2JLhtMWsNha9uamZmZlbNiYWZmZmVxomFmZmZlaahiYWkr0v6h6QXJD0p6QpJW1TVWUvSOZKekfSipMslja+qM0HSVZKWZuv5rqQ1qursKukWSSskPSDpwBrxHCLpYUnLJd0k6R0D8sHNbEC5bTFrnD4lFtmXZr3s8XGSRpf0/u8FzgHeBUwG2oEZktbO1TkD2BfYP6u/EWma30psI4CrSNcW2An4NHAgcGKuzqZZnT8D2wJnAj+TtEeuzseA04FvAW8DbgOmS9qgpM9qZlXctpi1nr72WEwkzdsPcDwwpow3j4ipEXFBRPwzIm4jfWknANsDSFqHNGHOERFxbUTMBT4D7CTpXdlqpgBvBT4VEbdGxDTgm8AhktbM6hwMPBQRR0bE3RFxNvAb4PBcOEcA50bE+RFxV/aapcBBZXxWM6vJbYtZi+nr6aa3AudL+isg4GuSXqxVMSJOrFXeR+tk94uz++1JvzRm5dZ/j6RHgR2BG7P7OyJiUW4904Efk66MOC+rM4uuppN+XZA1EtsDJ+fep1PSrOy1ryBpJDAyVzQWoKOjg46Oji51K8+ryy3p7OwEYOQaAmDUqFF0dnZ6e+X0tA81+Xa6FbctXdTTtlTK8/fWVaV9Wat9hNuWGgaibelrYnEgqRtvH9JENXsCq2rUC3LdhPWQ1Eb6Mv4tu8ohwIbAyoh4rqr6omxZpc6iGsvpQ51xkkYB6wEjuqnzlm5C/jrpF1YXM2bMYPTo2r25M2fO7GZVBnDqnhPSg30vZcGCBSxYsKCxAQ1BtfahpUuXNiCS0hyI25Zqdbct4PalN6cf8B444D1uW7pRZtvSp8QiIu4FPg4gqRPYPSKeLPSO3TuHNPPeu0te70A5mXTctGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqPrPbUtNfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIjNvln4miaSzSb9YdomI+blFTwBrSlq36pfF+GxZpU71COvxuWWV+/E16iyJiGWSVgOru6nzBDVExApgRe4zANDe3t7tl7unZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219qFW2U5uW5IibUtflg9XlfZlecdqty09KLNtKfRFlrSZpB9KmpXdfiBpswLrUfbF/xCwW0Q8VFVlLtAB7J57zRakQVhzsqI5wNZVI6wnA0uAu3J1dqeryZV1RMTK7L3y79OWPZ+DmQ0Kty1mza/uxCI7jeouUiZ/e3Z7J/BPSZPrXN05wKeATwAvSNowu40CiIjngfOA0yW9T9L2wPnAnIi4MVvHjCyeX0ialMV3EnBOlvkD/AR4o6TTJL1F0peAj5JON6s4Hfi8pE9LmkgaoLV29n5mNsDctpi1hiJXNz0FOCMijskXSjoFOBWoZwTRF7P766rKPwNckD0+HOgELieNlJ4OfKlSMSJWS9qH9GWdQ7rU8oXAcbk6D0nam/Rl/yowH/hcREzP1blM0mtIA8Q2JI1Wn1o1ItzMBo7bFrMWUCSxmEjKyKv9HDisnhVFhPpQZzlwSHbrrs4jwF69rOc6YLte6pwNnN1bTGY2INy2mLWAImMsniLNMFdtW6Ds0dxmNny4bTFrAUV6LM4FfirpjcANWdnOwNF0PUXKzKweblvMWkCRxOLbwAvAkbw8m9zjwAnAD8oJy8yGIbctZi2gyDwWQRqodIaksVnZC2UHZmbDi9sWs9ZQpMfiJf7Sm9lAcNti1rxKn+nOzMzMhi8nFmZmZlYaJxZmZmZWmroSC0ntkq6R9KaBCsjMhh+3LWato67EIiI6gG0GKBYzG6bctpi1jiKHQv4P+GzZgZjZsOe2xawFFDnddA3gIEnvJ10O+N/5hRFxRBmBmdmw47bFrAUUSSy2Am7JHr+5aln0LxwzG8bctpi1gCIzb75vIAIxs+HNbYtZayh8uqmkzSXtIWlU9rzXyxSbmfXGbYtZc6s7sZD0KknXAPcBVwOvzRadJ+n7ZQZnZsOH2xaz1lCkx+IMoAOYACzNlV8GTC0jKDMblty2mLWAIoM3pwB7RMT8qh7K+4GNS4nKzIYjty1mLaBIj8XadP01UbE+sKJ/4ZjZMOa2xawFFEksrgcOyD0PSW3AUcCfS4nKzIYjty1mLaDIoZCjgGsk7QCsCZwGbEn6VbFzibGZ2fDitsWsBdTdYxERd5Imr/krcCWp+/K3wHYR8WA965K0i6Q/SHpcUkj6YNVySTpR0kJJyyTNqr5IkaT1JV0saYmk5ySdJ2lMVZ1tJF0vabmkxyQdVSOW/SXdk9W5Q9Je9XwWM+sfty1mraHQPBYR8XxEfCciPhoRe0XEsRGxsMCq1gZuAw7pZvlRwFeAg4F3kqb4nS5prVydi0m/aiYD+wC7AD+tLJQ0DpgBPAJsD/wXcIKkL+Tq7ARcCpwHbAdcAVwhaasCn8nMCnLbYtb8ihwKQdJ6pIsFTcyK7gLOj4jF9awnIqYB07J1Vr+HgMOAkyLiyqzsAGAR8EHgl5Imkk5De3tE3JzV+TJwtaSvRcTjwCdJ3aoHRcRK4J+StgWO4OVG4qvAnyLiu9nzb0qaDBxKanjMbBC4bTFrfnUnFpJ2Af4APA/cnBV/BThO0r4RMbuk2DYFNgRmVQoi4nlJNwE7Ar/M7p+rfPEzs4BO0q+Q32V1Zmdf/IrpwNGS1ouIZ7M6p1e9/3RSI1OTpJHAyFzRWICOjg46Ojq61K08ry63pLOzE4CRa6R/AKNGjaKzs9PbK6enfahVtpPblqSetqVSnr+3rirty1rtI9y21DAQbUuRHotzSBPWfDEiVgNIGgH8KFu2daFIXmnD7H5RVfmi3LINgSfzCyNilaTFVXUeqrGOyrJns/ue3qeWrwPHVxfOmDGD0aNH13zBzJkze1idnbrnhPRg30tZsGABCxYsaGxAQ1CtfWjp0lpnaDYlty1J3W0LuH3pzekHvAcOeI/blm6U2bYUSSw2B/arfPEBImK1pNPpeqpYqzuZrr9ExgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYqqdG5bkj63LeD2pTeV9uWIi65n4bQfuW2pMhBtS5HE4hbS8c97q8onkgZLleWJ7H48kB+8NR64NVdng/yLJK1BOj3tiVyd8VXrHp9b1lOdJ+hGRKwgN2lP5Thue3t7t1/unpYNZ21taQzxilXB8lXBsmXLaGtr87aqodY+1ELbyW0LxdqWviwfrirty/KO1W5belBm29Kns0KyU6q2kbQN8APgLElfk/Tu7PY10jz/ZxSKoraHSF++3XNxjCMd35yTFc0B1pW0fe51u5E+1025OrtIym+hycC92THQSp3d6Wpy7n3MbAC4bTFrPX3tsbgVCCA/vPq0GvUuIR0j7ZPsnPDNc0WbZqOqF0fEo5LOBI6VdD+pMfg28DjplC0i4m5JfwLOlXQw0A6cDfwyG7Vdiel40hUSTwW2Io3UPjz3vmcBf5F0JHAV8HFgB+ALmNlAuhW3LWYtpa+JxaYD9P470HWq3spxxQuBA0kNzNqkU7fWJU2cMzUilude80nSF/4a0ojty0kjyYGXRntPIQ3+mgs8DZwYET/N1blB0ieAk4D/IV306IPZhD1mNnDctpi1mD4lFhHxyEC8eURcR9dfKtXLAzguu3VXZzHwiV7e53bgPb3U+TXw657qmFm53LaYtZ6iE2RtBLybNLipyziNiPhBCXGZ2TDktsWs+RWZIOtA4H+BlcAzpOOjFUEagGVmVhe3LWatoUiPxbeBE4GTI6Kz5HjMbPhy22LWAopchGw0aWS0v/hmVia3LWYtoEhicR6wf9mBmNmw57bFrAUUORTydeCPkqYCdwBdrlISEUeUEZiZDTtuW8xaQNHEYg9enna3eoCVmVkRblvMWkCRxOJI4KCIuKDkWMxseHPbYtYCioyxWAH8rexAzGzYc9ti1gKKJBZnAV8uOxAzG/bctpi1gCKHQt4B7CZpH+CfvHKA1YfLCMzMhh23LWYtoEhi8Rzw25LjMDN7DrctZk2v7sQiIj4zEIGY2fDmtsWsNRQZY2FmZmZWU5GLkD1ED+eUR8Qb+xWRmQ1LblvMWkORMRZnVj1vB7YDpgLf7W9AZjZsnVn13G2LWRMqMsbirFrlkg4Bduh3RGY2LLltMWsNZY6xmAZ8pMT1mZmB2xazplJmYrEfsLjE9ZmZgdsWs6ZSZPDmPLoOsBKwIfAa4EslxWVmw4zbFrPWUGTw5hVVzzuBp4DrIuKefkdkZsPVFVXP3baYNaEigze/NRCBDBXZQLH/Iv1Sug34ckT8vbFRmbU+ty1mrcETZOVI+hhwOvAt4G2kL/90SRs0NDAza2puW2w46XNiIalT0upebqsGMthBcARwbkScHxF3AQcDS4GDGhuWWety22LWWuo5FPKhHpbtCHyFJu4BkbQmsD1wcqUsIjolzSJ9vur6I4GRuaKxAIsXL6ajo8tFGeno6GDp0qVcf/31tLW10dbWRmdn50v3wCvKelrWavXvvfdexowZgxY/gjpWs9ZaazF37lxefPHF0uIZ6tugt2WdnZ0sXbqUZ555hvb29i771wsvvFC9ezYbty1d6/e5bYGu7csaa6zR8H11qNW///77GTNmDCNeXNSntqUR8Tdymw1I2xIRhW/AFsDvgFXAhcDG/VlfI2/ARqQR6TtWlZ8G3FSj/glZfd98Gyq31zX6e1Ti99Fti2++DZ1bXW1LkbNCkLQR6Vjhp4HpwLYRcWeRdTWxk0nHTPPWp/b59mOB+cDrgab/eTkAvH1619s2Ggs8PqgRDQC3LUB9bQv4+9Mbb5+eld621JVYSFoH+AbwZeBWYPeIuL6edQxhTwOrgfFV5eOBJ6orR8QKYEVV8ZJaK5ZUefhCRNSsM5x5+/SuD9uoqbeb25aX1dO2gL8/vfH26dlAtC31DN48CvgXsA/wHxGxUwt98YmIlcBcYPdKmaS27PmcRsVl1urctpi1FmXH9HqvKHUCy4BZpOy7poj4cDmhDb7slLALgf8E/g4cBnwUeEtELOrHescBzwPrOGN+JW+f3rXyNnLbUrxtydbdsvtGGbx9ejYQ26eeQyEXkQZxtKyIuEzSa4ATSZPY3ApM7e8Xn9St+S1e2b1pibdP71p5G7lt6Z9W3jfK4O3Ts9K3T597LMzMzMx607TnhpuZmdnQ48TCzMzMSuPEwszMzErjxMLMzMxK48RigEhaX9LFkpZIek7SeZLG9PKa6yRF1e0ngxXzQJJ0iKSHJS2XdJOkd/RSf39J92T175C012DF2ij1bCNJB9bYV5YPZrzWGG5bXsntS88Gu21xYjFwLga2BCaTJv7ZBfhpH153LvDa3O2ogQpwsNR7yWhJOwGXAucB2wFXAFdI2mpQAm6AgpfVXkLXfWXjgY7ThgS3LTluX3rWkLal0RfoacUbMJF0Xv4OubKpQCewUQ+vuw44s9HxD8D2uAk4O/e8DVgAHNNN/cuAP1aV3Qj8pNGfZQhtowOB5xodt2+Dvp+4bXnlZ3P7Uu726Xfb4h6LgbEj6Q9zc65sFunL/85eXvtJSU9LulPSyZJGD1iUgyB3yehZlbKI6Myev+KS0Zkd8/Uz03uo39QKbiOAMZIekfSYpCslbTnAoVrjuW3JcfvSs0a1LYWubmq92hB4Ml8QEaskLc6WdecS4BHSleS2AU4lXT66aacyBl4NjACqZxhcBLylm9ds2E39nrZdMyuyje4FDgJuB9YBvgbcIGnLiJg/UIFaw7lt6crtS88a0rY4saiDpFOAo3upNrHo+iMif5z0DkkLgWskbRYRDxZdr7WeiJhD7gJWkm4A7iZdi+KbjYrLinHbYkNFGW2LE4v6fB+4oJc6/yJdCrnLwBhJawDrU+MyyT24KbvfHGjWL39dl4zOPFFn/WZXZBt1EREdkuaR9hVrPm5binH70rOGtC0eY1GHiHgqIu7p5baSlO2tK2n73Mt3I23vm2quvLZts/uF5XyCwRfFLhk9J18/M7mH+k2t4DbqQtIIYGuaeF8Zzty2FOP2pWcNa1saPWK1VW/ANOAW4B3AzsB9wCW55a8D7gHekT3fjNTNtD2wCfAB0i+JvzT6s5SwLT4GLAc+TerO/V/gWWB8tvwi4ORc/Z2ADuBI0nHAE4CVwFaN/ixDaBsdB0wB3kg6hexS0qXH39roz+LbgO8rblu6bg+3L+Vun363LQ3/0K16I3VNXgK8QLrW/c+BMbnlm5BOG9s1e/4G4C/AM9lOcD9wGjCu0Z+lpO1xKGnw2ArSL6t35pZdB1xQVX9/0iCiFcCdwF6N/gxDaRsBZ+TqPgFcBWzX6M/g26DsJ25bXrlN3L6UtH3KaFt82XQzMzMrjcdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFhYw0l6WNJhjY7DzFqL25bGcGJhZmZmpXFiYWZmZqVxYmH9IukLkh7PLsWbL79S0s8lbZY9XiTpRUn/kPT+Hta3iaSQtG2ubN2sbNdc2VaSpmXrXCTpF5JePQAf0cwawG1L83JiYf31a+BVwPsqBZLWB6YCFwNjgKuB3YHtgD8Bf5A0oegbSloXuBaYB+yQvdd44FdF12lmQ47blia1RqMDsOYWEc9KmgZ8ArgmK94PeBr4c0R0ArflXvJNSR8CPgCcXfBtDwXmRcQ3KgWSDgIek/TmiLiv4HrNbIhw29K83GNhZbgY+IikkdnzTwK/jIhOSWMkfU/S3ZKek/QiMBEo/KsCmAS8L+uqfDFb5z3Zss36sV4zG1rctjQh91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GY2ZLltaUJOLKzfImK5pN+Sfk1sDtwbEbdki3cGLoiI3wFIGgNs0sPqnsruX0s6zgmwbVWdW4CPAA9HxKp+fwAzG5LctjQnHwqxslwM7A0clD2uuB/4sKRtJU0CLqGH/S4ilgE3AsdImijpvcBJVdXOAdYHLpX09mx0+B6Szpc0osTPZGaN57alyTixsLJcCywGtiB9wSuOAJ4FbiB1MU4n/SroyUGk3rS5wJnAsfmFEfE46dfKCGAGcEdW7zle7u40s9bgtqXJKCIaHYOZmZm1CPdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFjYoJN0oKSQtEmjYzEzs3I5sTAzM7PSKCIaHYMNM5JGAO3AivAOaGbWUpxYmJmZWWl8KMQGXX6MhaQLJT0tqb1GvRmS7m1EjGZmVowTC2u0XwCvAvbIF0raENgN+L9GBGVmZsU4sbBGuxaYD3yqqvw/SPunEwszsybixMIaKiI6gYuBD0gam1v0SeCGiHioMZGZmVkRTixsKLgIGAV8CEDSFsD2pMMkZmbWRJxYWMNFxF3AXF4+HPIpYCXwq4YFZWZmhTixsKHiImA3Sa8FPgFcFRHPNjgmMzOrkxMLGyouBQI4C3gjHrRpZtaUnFjYkBARTwF/AvYHngOuamhAZmZWiBMLG0ouyu5/FRErGhqJmZkV4sTCBl1EXBARioiHqxatzO59GMTMrEn5WiE2ZEj6IzAR2NwXJzMza05rNDoAM0kfB7YB9ga+6qTCzKx5ucfCGk5SAC8ClwEHR8SqBodkZmYF1Z1YSJoKvBgRf82eHwJ8HrgLOMRzD5iZmQ1fRQZvfhcYByBpa+D7wNXApsDp5YVmZmZmzabIGItNSb0TAB8B/hgR35D0NlKCYWZmZsNUkcRiJTA6e/x+Xp57YDFZT8ZwJEnARsALjY7FhqWxwOMe+GpmjVYksfgrcLqkvwHvAD6Wlb8ZmF9WYE1oI4b357fGez2woNFBmNnwViSxOBT4EbAf8MWIqDRke5KmZB6uXgB47LHHGDeua8dNR0cHM2bMYMqUKbS3tzckuKHM26d3PW2jJUuW8IY3vAHcW2ZmQ0DdiUVEPArsU6P88FIianLjxo2rmViMHj2acePG+R9nDd4+vfM2MrNmUWiCLEltwObABlSdWRIRs0uIy8zMzJpQ3YmFpHcBlwAbA6paHMCIEuIyMzOzJlSkx+InwM2k6ZcXkpIJs3677bbbaGtr49WvfjUTJkxodDhmZlZAkcTiTcB+EfFA2cHY8DR/fjqZZpdddmHZsmWsNWo0995zt5MLM7MmVGTmzZtI4yvMSvHMM88AsP7UL/OqfY5k+bKlPP300w2OyszMiijSY/FD4PuSNgTuADryCyPi9jICs+Gnff3XsXqVj6yZmTWzIj0WlwMTgZ8D/wBuBebl7guRdIykkHRmrmwtSedIekbSi5IulzS+6nUTJF0laamkJyV9V9IaVXV2lXSLpBWSHpB0YI33P0TSw5KWS7pJ0juKfhYzM7Phqui1Qkol6e3AfwLVvR1nkAaJ7g88D5wN/BbYOXvdCOAq4AlgJ+C1pCnGO4BvZHU2zer8BPgksDvwM0kLI2J6VudjpAuoHUw61HMYMF3SFhHxZNmf18zMrFUVmSDrkTIDkDQGuJh06fVjc+XrAJ8FPhER12ZlnwHulvSuiLgRmAK8FXh/RCwCbpX0TeBUSSdExEpSsvBQRByZrfpuSe8GDgemZ2VHAOdGxPnZ+xxMSmgOAk4p8/OamZm1sqITZG1G+lU/MSu6CzgrIh4ssLpzgKsiYpakY3Pl2wPtwKxKQUTcI+lRYEfgxuz+jiypqJgO/BjYknRoZsf8OnJ1zsw+y5rZe52ce59OSbOy19YkaSQwMlc0FtIMiR0dXYadvPS8utySzs5OAEaukaZFGTVqFJ2dnd5eOT3tQ95OZjaUFJkgaw/g96QxFX/LincG/ilp34iYWce6Pg68DXh7jcUbAisj4rmq8kXZskqdRTWW04c64ySNAtYjTepVq85begj/68Dx1YUzZsxg9OjRNarDzJl93jTD0ql7ZqeX7nspCxYsYMECX0+rWq19aOnSpQ2IxMystiI9FqcAZ0TEMflCSacApwJ9+u8p6Q3AWcDkiFheII5GO5k0LqNiLDB/ypQpNa8VMnPmTCZPnuzrPNQwb948Fi5cyNHTHmXFqmDRJccwe/ZsJk2a1OjQhoye9qElS5Y0KCozs1cqklhMBD5ao/znpMMjfbU96Vojt0gvzQw+AthF0qHAHsCaktat6rUYTxqsSXZfffbG+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXleeUztLe3d5s89LRsOGtrSycnrVgVLF8VLFu2jLa2Nm+rGmrtQ95OZjaUFDnd9Clg2xrl2wL1nEFxDbB19rrK7WbSQM7K4w7SWRwASNoCmADMyYrmAFtL2iC33snAEtK4j0qd3elqcmUd2QDPuVXv05Y9n4OZmZn1WZEei3OBn0p6I3BDVrYzcDRdDw30KCJeAO7Ml0n6N/BMRNyZPT8POF3SYlKy8ENgTnZGCMAMUgLxC0lHkcZTnASck/UoQDrN9FBJp5F6VXYj9bjsnXvr04ELJd0M/J3U87I2cH5fP4+ZmZkVSyy+DbwAHMnLZ1I8DpwA/KCcsF5yONBJmpRrJOlsji9VFkbEakn7kM4CmQP8G7gQOC5X5yFJe5PmxPgqMB/4XGUOi6zOZZJeA5xISk5uBaZWnW1iZmZmvSgyj0WQ/kmfIWlsVvZCGcFExK5Vz5cDh2S37l7zCLBXL+u9DtiulzpnkybgMjMzs4IKzWNRUVZCYWZmZq2hT4mFpFuA3SPiWUnzgG6vFBURbysrODMzM2sufe2xuJKXT628kh4SCzMzMxu++pRYRMS3co9PGLBozMzMrKnVPY+FpH9JelWN8nUl/aucsMzMzKwZFZkgaxPSDJnVRgKv71c0ZmZm1tT6fFaIpA/knu4h6fnc8xGkmSofKiswMzMzaz71nG56RXYfpEmo8jqAh0mTZpmZmdkw1efEIiLaACQ9BLw9Ip4esKjMzMysKRWZeXPTgQjEzMzMml9fJ8j6CvDTiFiePe5WRJR9vRAzMzNrEn3tsTicdDnz5dnj7gTlX4jMzMzMmkRfJ8jatNZjMzMzs7wiE2QdJ2l0jfJRko6r9RozMzMbHopMkHU8MKZG+ehsmZmZmQ1TRRILUfsiZJOAxf0Lx8zMzJpZPTNvPktKKAK4T1I+uRhB6sX4SbnhmZmZWTOpZx6Lw0i9FT8nHfLIT+m9Eng4IuaUF5qZmZk1m3pm3rwQXpp5828RsWrAojIzM7OmVPcYi4j4C7CxpJMkXSppAwBJe0rasvQIzczMrGkUOd30vcAdwDuBD/PyGSKTgG+VF5qZmZk1myJnhZwCHBsRk0ljKyquBd5Vz4okfVHS7ZKWZLc5kvbMLV9L0jmSnpH0oqTLJY2vWscESVdJWirpSUnflbRGVZ1dJd0iaYWkByQdWCOWQyQ9LGm5pJskvaOez2JmZmbFEoutgd/VKH8SeHWd65oPHANsD+xASk6uzB1SOQPYF9gfeC+wEfDbyosljQCuAtYEdgI+DRwInJirs2lW58/AtsCZwM8k7ZGr8zHgdFKPy9uA24DplcM8ZmZm1jdFEovngNfWKN8OWFDPiiLiDxFxdUTcHxH3RcR/Ay8C75K0DvBZ4IiIuDYi5gKfAXaSVOkZmQK8FfhURNwaEdOAbwKHSFozq3Mw8FBEHBkRd0fE2cBv6HrNkyOAcyPi/Ii4K3vNUuCgej6PmZnZcFf3ZdOBXwKnStqfNKdFm6Sdge8BFxUNJOt92B9YG5hD6sVoB2ZV6kTEPZIeBXYEbszu74iIRblVTQd+DGwJzMvqzKKr6aSeC7IEZHvg5Nz7dEqalb22u3hHAiNzRWMBOjo66Ojo6FK38ry63JLOzk4ARq4hAEaNGkVnZ6e3V05P+5C3k5kNJUUSi28A5wCPkSbGuiu7vwQ4qd6VSdqalEisReqt+FBE3CVpW2BlRDxX9ZJFwIbZ4w2z59XL6UOdcZJGAetl8deq85YeQv86NaYwnzFjBqNHv+JSKgDMnDmzh9XZqXtOSA/2vZQFCxawYEFdHWDDQq19aOnSpQ2IxMystroTi4hYCXxe0reBrUhnhcyLiPsLxnAvaezDOsB+wIXZmSdD3cmkcRkVY4H5U6ZMYdy4cV0qdnR0MHPmTCZPnkx7e/tgxtgU5s2bx8KFCzl62qOsWBUsuuQYZs+ezaRJkxod2pDR0z60ZMmSBkVlZvZKRXosAIiIRyU9lj2ude2Qvq5nJfBA9nSupLcDXwUuA9aUtG5Vr8V44Ins8RNA9dkb43PLKvfja9RZEhHLJK0GVndT5wm6ERErgBWV51Lqxm9vb+82eehp2XDW1paG+qxYFSxfFSxbtoy2tjZvqxpq7UPeTmY2lBQZvImkz0q6E1gOLJd0p6TPlRjTSGAu0AHsnnvfLYAJpEMnZPdbV529MRlYQjpEU6mzO11NrqwjS2zmVr1PW/bcU5SbmZnVoe4eC0knks6i+CEv/+PdEThD0oSIOK6OdZ0MTAMeJR1K+ASwK7BHRDwv6TzgdEmLScnCD4E5EXFjtooZpATiF5KOIo2nOAk4J+tRgHRhtEMlnUa6zsluwEeBvXOhnE46BHMz8HfSdVHWBs7v62cxMzOzYodCvgh8PiIuzZX9XtLtpH/8fU4sgA1IZ5K8lnRRs9tJSUVlhNrhQCdwOakXYzrwpcqLI2K1pH1IZ4HMAf4NXJiPISIekrQ3aU6Mr5LmzvhcREzP1blM0mtI819sCNwKTK0628TMzMx6USSxaAdurlE+t971RcRne1m+HDgku3VX5xFgr17Wcx1pno2e6pwNnN1THTMzM+tZkTEWvyD1WlT7AnBx/8IxMzOzZlb0rJDPSppCmqQK0gXJJgAXSXrpFMyIOKKf8ZmZmVkTKZJYbAXckj3eLLt/OrttlatX+BRUMzMza05FJsh630AEYmZmZs2v0DwWAJI2l7RHNi02qswQZWZmZsNW3YmFpFdJuga4D7ial690ep6k75cZnJmZmTWXIj0WZ5BmxJxAurR4xWXA1DKCMjMzs+ZUZPDmFNIkVvOrjn7cD2xcSlRmZmbWlIr0WKxN156KivXJXZTLzMzMhp8iicX1wAG555FdtOso4M+lRGVmZmZNqcihkKOAayTtAKwJnAZsSeqx2LnE2MzMzKzJ1N1jERF3Am8G/gpcSTo08ltgu4h4sNzwzMzMrJnU1WMhqR34E3BwRHxnYEIyMzOzZlVXj0VEdADbDFAsZmZm1uSKDN78P6DHy52bmZnZ8FRk8OYawEGS3g/MBf6dX+grmpqZmQ1f/b266ZurlvmKpmZmZsOYr25qZmZmpSl8dVMzMzOzak4szMzMrDROLMzMzKw0DU0sJH1d0j8kvSDpSUlXSNqiqs5aks6R9IykFyVdLml8VZ0Jkq6StDRbz3clrVFVZ1dJt0haIekBSQfWiOcQSQ9LWi7pJknvGJAPbmZm1qL6lFhk/5DXyx4fJ2l0Se//XuAc4F3AZKAdmCFp7VydM4B9gf2z+huRphCvxDYCuIp03ZKdgE8DBwIn5upsmtX5M7AtcCbwM0l75Op8DDgd+BbwNuA2YLqkDUr6rGZmZi2vrz0WE0nXBAE4HhhTxptHxNSIuCAi/hkRt5ESggnA9gCS1iFNxnVERFwbEXOBzwA7SXpXtpopwFuBT0XErRExDfgmcIikNbM6BwMPRcSREXF3RJwN/AY4PBfOEcC5EXF+RNyVvWYpcFAZn9XMzGw46OvpprcC50v6KyDga5JerFUxIk6sVd5H62T3i7P77Um9GLNy679H0qPAjsCN2f0dEbEot57pwI9JV12dl9WZRVfTST0XZAnI9sDJuffplDQre+0rSBoJjMwVjQXo6Oigo6OjS93K8+pySzo7OwEYuYYAGDVqFJ2dnd5eOT3tQ95OZjaU9DWxOJB0iGAf0iRYewKratQLcocg6iGpjfSP/m/ZFVQBNgRWRsRzVdUXZcsqdRbVWE4f6oyTNApYDxjRTZ23dBPy10m9N13MmDGD0aNrHymaOXNmN6sygFP3nJAe7HspCxYsYMGCBY0NaAiqtQ8tXbq0AZGYmdXWp8QiIu4FPg4gqRPYPSKeLDmWc0izer675PUOlJNJYzIqxgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYrKzOyVisy8WfqZJJLOJvWG7BIR83OLngDWlLRuVa/F+GxZpU712Rvjc8sq9+Nr1FkSEcskrQZWd1PnCWqIiBXAitxnAKC9vb3b5KGnZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219iFvJzMbSgolCZI2k/RDSbOy2w8kbVZgPcqSig8Bu0XEQ1VV5gIdwO6512xBGuA5JyuaA2xddfbGZGAJcFeuzu50NbmyjohYmb1X/n3asudzMDMzsz6pO7HITtG8i9RLcHt2eyfwT0mT61zdOcCngE8AL0jaMLuNAoiI54HzgNMlvU/S9sD5wJyIuDFbx4wsnl9ImpTFdxJwTtarAPAT4I2STpP0FklfAj5KOpW14nTg85I+LWkiafDn2tn7mZmZWR8UubrpKcAZEXFMvlDSKcCpQD0jFL+Y3V9XVf4Z4ILs8eFAJ3A56SyM6cCXKhUjYrWkfUiJwBzSZdwvBI7L1XlI0t6kROKrwHzgcxExPVfnMkmvIQ0+3ZB0JszUqrNNzMzMrAdFEouJpF/71X4OHFbPiiJCfaizHDgku3VX5xFgr17Wcx2wXS91zgbO7i0mMzMzq63IGIunSLNXVtsWKPtMETMzM2siRXoszgV+KumNwA1Z2c7A0XQ9/dLMzMyGmSKJxbeBF4AjeXmmyseBE4AflBOWmZmZNaMi81gEaRDkGZLGZmUvlB2YmZmZNZ8iPRYvcUJhZmZmeaXPomlmZmbDlxMLMzMzK40TCzMzMytNXYmFpHZJ10h600AFZGZmZs2rrsQiIjqAbQYoFjMzM2tyRQ6F/B/w2bIDMTMzs+ZX5HTTNYCDJL2fdKnxf+cXRsQRZQRmZmZmzadIYrEVcEv2+M1Vy6J/4ZiZmVkzKzLz5vsGIhAzMzNrfoVPN5W0uaQ9JI3Knvd6CXQzMzNrbXUnFpJeJeka4D7gauC12aLzJH2/zODMzMysuRTpsTgD6AAmAEtz5ZcBU8sIyszMzJpTkcGbU4A9ImJ+1dGP+4GNS4nKzMzMmlKRHou16dpTUbE+sKJ/4ZiZmVkzK5JYXA8ckHsektqAo4A/lxKVmZmZNaUih0KOAq6RtAOwJnAasCWpx2LnEmMzMzOzJlN3j0VE3EmaGOuvwJWkQyO/BbaLiAfrWZekXST9QdLjkkLSB6uWS9KJkhZKWiZpVvUF0CStL+liSUskPSfpPEljqupsI+l6ScslPSbpqBqx7C/pnqzOHZL2quezmJmZWcF5LCLi+Yj4TkR8NCL2iohjI2JhgVWtDdwGHNLN8qOArwAHA+8kTR8+XdJauToXk3pMJgP7ALsAP60slDQOmAE8AmwP/BdwgqQv5OrsBFwKnAdsB1wBXCFpqwKfyczMbNgqcigESeuRLkQ2MSu6Czg/IhbXs56ImAZMy9ZZ/R4CDgNOiogrs7IDgEXAB4FfSppIOsX17RFxc1bny8DVkr4WEY8DnyQdsjkoIlYC/5S0LXAELycgXwX+FBHfzZ5/U9Jk4FBSUmNmZmZ9UGSCrF2Ah0k9Cetlt68AD2XLyrIpsCEwq1IQEc8DNwE7ZkU7As9VkorMLKCT1MNRqTM7SyoqpgNbZAlSpc4supqeex8zMzPrgyI9FueQJsP6YkSsBpA0AvhRtmzrkmLbMLtfVFW+KLdsQ+DJ/MKIWCVpcVWdh2qso7Ls2ey+p/d5BUkjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9dIvVajRo2is7PT2yunp33I28nMhpIiicXmwH6VpAIgIlZLOp2up6G2uq8Dx1cXzpgxg9GjR9d8wcyZMwc6pqZ26p4T0oN9L2XBggUsWLCgsQENQbX2oaVLa00rY2bWGEUSi1tIYyvurSqfSBqIWZYnsvvxQH5g6Hjg1lydDfIvkrQG6dTXJ3J1xlete3xuWU91nqB7JwOn556PBeZPmTKFcePGdanY0dHBzJkzmTx5Mu3t7T2scniaN28eCxcu5Ohpj7JiVbDokmOYPXs2kyZNanRoQ0ZP+9CSJUsaFJWZ2Sv1KbGQtE3u6Q+AsyRtDtyYlb2LdGbHMSXG9hDpH/vuZIlEdobHO4EfZ3XmAOtK2j4i5mZlu5HGjtyUq/MdSe0RUekzngzcGxHP5ursDpyZe//JWXlNEbGC3EyjlcGn7e3t3SYPPS0bztra0lCfFauC5auCZcuW0dbW5m1VQ619yNvJzIaSvvZY3AoEkD9147Qa9S4hjb/ok2y+ic1zRZtmZ2wsjohHJZ0JHCvpflKi8W3gcdLpoETE3ZL+BJwr6WCgHTgb+GV2RkglpuNJV189FdiKdBbI4bn3PQv4i6QjgauAjwM7AF/AzMzM+qyvicWmA/T+O9B1GvDKoYULgQNJycvapNNC1yVNyjU1IpbnXvNJUjJxDelskMtJZ6kA6UwSSVNIA0vnAk8DJ0bET3N1bpD0CeAk4H9IF1T7YDYZmJmZmfVRnxKLiHhkIN48Iq6jay9I9fIAjstu3dVZDHyil/e5HXhPL3V+Dfy6pzpmZmbWs6ITZG0EvJs0cLLLXBgR8YMS4jIzM7MmVHdiIelA4H+BlcAzpLEXFUEa3GlmZmbDUJEei28DJwInR0RnyfGYmZlZEytyEbLRpLMunFSYmZlZF0USi/OA/csOxMzMzJpfkUMhXwf+KGkqcAfQ5UIFEXFEGYGZmZlZ8ymaWOzBy1N6Vw/eNDMzs2GqSGJxJHBQRFxQcixmZmbW5IqMsVgB/K3sQMzMzKz5FUkszgK+XHYgZmZm1vyKHAp5B7CbpH2Af/LKwZsfLiMwMzMzaz5FEovngN+WHIeZmZm1gLoTi4j4zEAEYmZmZs2vyBgLMzMzs5qKXITsIXqYryIi3tiviMzMzKxpFRljcWbV83ZgO2Aq8N3+BmRmZmbNq8gYi7NqlUs6BNih3xGZmZlZ0ypzjMU04CMlrs/MzMyaTJmJxX7A4hLXZ2ZmZk2myODNeXQdvClgQ+A1wJdKisvMzMyaUJHBm1dUPe8EngKui4h7+h2RmZmZNa0igze/NRCBmJmZWfPzBFlVJB0i6WFJyyXdJOkdjY7JzMysWfQ5sZDUKWl1L7dVAxnsQJP0MeB04FvA24DbgOmSNmhoYGZmZk2inkMhH+ph2Y7AV2j+HpAjgHMj4nwASQcDewMHAac0MjAzM7Nm0OfEIiKurC6TtAXpH+6+wMXAceWFNrgkrQlsD5xcKYuITkmzSIlTdf2RwMhc0ViAxYsX09HR5UrydHR0sHTpUq6//nra2tpoa2ujs7PzpXvgFWU9LWu1+vfeey9jxoxBix9BHatZa621mDt3Li+++GJp8Qz1bdDbss7OTpYuXcozzzxDe3t7l/3rhRdeqN49zcwapshZIUjaiHS44NPAdGDbiLizzMAa4NXACGBRVfki4C016n8dOL66cNNNNy0/smHoC1/4QqNDaEZjgSWNDsLMhre6EgtJ6wDfAL4M3ArsHhHXD0BczeBk0niMvPWpPUnYWGA+8HrAPy9fydund71to7HA44MakZlZDX1OLCQdBRwNPAH8R61DI03uaWA1ML6qfDzpM3cRESuAFVXFNX8tSqo8fCEi/IuyirdP7/qwjbzdzGxIqKfH4hRgGfAA8GlJn65VKSI+XEZggy0iVkqaC+xONgmYpLbs+dkNDM3MzKxp1JNYXETXqbxb0enAhZJuBv4OHAasDZzfyKDMzMyaRT1nhRw4gHEMCRFxmaTXACeSrn9yKzA1IqoHdNZrBWmwa/WhE0u8fXrnbWRmTUERrd4JYWZmZoOl2Se0MjMzsyHEiYWZmZmVxomFmZmZlcaJhZmZmZXGicUAkbS+pIslLZH0nKTzJI3p5TXXSYqq208GK+aBVO/l6CXtL+merP4dkvYarFgbpZ5tJOnAGvvK8sGM18ysFicWA+diYEtgMrAPsAvw0z687lzgtbnbUQMV4GCp93L0knYCLgXOA7YjTVh2haStBiXgBqh3G2WW0HVf2Xig4zQz641PNx0AkiYCdwFvj4ibs7KpwNXA6yOi5jUdJF0H3BoRhw1SqINC0k3APyLi0Ox5G/AY8MOIeMXl6CVdBqwdEfvkym4kbZuDBynsQVVgGx0InBkR6w5mnGZmvXGPxcDYEXiuklRkZgGdwDt7ee0nJT0t6U5JJ0saPWBRDoLc5ehnVcoiojN7/orL0Wd2zNfPTO+hflMruI0Axkh6RNJjkq6UtOUAh2pm1qtCl023Xm0IPJkviIhVkhZny7pzCfAI6SqV2wCnAlsATXn9lUy9l6OHtI1q1e9p2zWzItvoXuAg4HZgHeBrwA2StoyI+QMVqJlZb5xY1EHSKaQrvPZkYtH1R0R+DMYdkhYC10jaLCIeLLpeaz0RMQeYU3ku6QbgbuA/gW82Ki4zMycW9fk+cEEvdf5Fusx6l0F3ktYA1qfGJdh7cFN2vznQrIlFXZejzzxRZ/1mV2QbdRERHZLmkfYVM7OG8RiLOkTEUxFxTy+3laRfkutK2j738t1I2/ummiuvbdvsfmE5n2DwZdujcjl6oMvl6Od087I5+fqZyT3Ub2oFt1EXkkYAW9PE+4qZtQb3WAyAiLhb0p+AcyUdDLQDZwO/rJwRIul1wDXAARHxd0mbAZ8gnTnyDGmMxRnA7Ii4vRGfo0Q9Xo5e0kXAgoj4elb/LOAvko4ErgI+DuwAfGGQ4x5MdW0jSccBNwIPAOsC/0U63fRngx24mVmeE4uB80lSMnEN6WyQy4Gv5Ja3kwZmVs76WAm8n5f/oTyWveakwQl34PThcvQTSNuoUv8GSZ8gffb/Ae4HPhgRdw5q4IOo3m0ErEea82RD4FlSj8dOEXHXoAVtZlaD57EwMzOz0niMhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYU1nKSHJR3W6DjMzKz/nFiYmZlZaZxYmJmZWWmcWFi/SPqCpMezq3Hmy6+U9HNJm2WPF0l6UdI/JL2/h/VtIikkbZsrWzcr2zVXtpWkadk6F0n6haRXD8BHNDOzOjixsP76NfAq4H2VAknrA1OBi4ExpCu27g5sB/wJ+IOkCUXfUNK6wLXAPNJVT6cC44FfFV2nmZmVw1c3tX6JiGclTSNd8v2arHg/4GngzxHRCdyWe8k3JX0I+ADp6q9FHArMi4hvVAokHQQ8JunNEXFfwfWamVk/ucfCynAx8BFJI7PnnwR+GRGdksZI+p6kuyU9J+lFYCLpMuBFTQLelx0GeTFb5z3Zss36sV4zM+sn91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GZmVh4nFtZvEbFc0m9JPRWbA/dGxC3Z4p2BCyLidwCSxgCb9LC6p7L715LGUABsW1XnFuAjwMMRsarfH8DMzErjQyFWlouBvYGDsscV9wMflrStpEnAJfSw30XEMuBG4BhJEyW9Fzipqto5wPrApZLenp15soek8yWNKPEzmZlZnZxYWFmuBRYDW5CSh4ojgGeBG0iHL6aTehx6chCpN20ucCZwbH5hRDxO6gkZAcwA7sjqPcfLh1LMzKwBFBGNjsHMzMxahHsszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNP8/ddAmq2tB48YAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdnUlEQVR4nO3deZxcVZn/8c+3kybpAAGCExDGAIoiogLiAuKwCEkQcUYUxQn+ZHMGHDcWB1wBcQE3NmF0UMQF4jKiYRQxyDa4IEZ2ZBEkbLKGQBJIJ+nQz++PcyvcVFd3V9263dVV/X2/XvdVVeeee+5zq26deuquigjMzMzMytTV6gDMzMys8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcGwtUg6SdKoXN5V0tWSrs693kNSSDpglOb/XUn3jca8qua7Zbach4z2vMcLSRMlfVnSg5L6Jc1rdUztLvf93KPVsVh7cILRwSQdknUIlWGFpIclzZf0EUnrlzSfzbLEZIcy2ivTWI7NRtRhwH8CPwUOBk5vbThm48/EVgdgo+IEYCHQDWwK7AGcARwj6Z8j4pZc3c8DpzbY/mbAicB9wE0NTDerwfkUMVRs/0Zrkuz7gR6grwXzHi/eDPw9Io5udSBm45UTjPHh0oj4c+71KZLeDPwS+F9J20ZEL0BErAZWj2QwkqZExPKIWDWS8xlORLTkBz7SHQZXtGLezZA0GVgVEf2tjqUO04Gny2pMUhewTkS03edm1ireRTJORcSVwOeALYD3VsprHYMhaaak30l6WtIzku6S9MVs3B7Agqzq+bndMYdk46+WdJuknSRdI2k58MXcuKtrhDdB0hclPSrpWUn/K+lFVTHdJ+m71RPm26wjtgHHYEhaV9LXsn33K7Nl/ZgkVdULSWdLenu2fCsl/UXSPjWWpzrGAcdgZLE8I2lzSfOy509I+qqkCXW0eZ+kX0qaJemmbHfY7ZLeUVVvWtbmrdk8lkq6VNL2VfUq+9vfI+nzkv4OLAemFmjj3ZJOlPR3Scsk/VTSBpImSTpD0uNZO+dLmlTVxqDr3lDvLbAnsF3uM98jG9/o53uQpL8AK4EhP1tJb5H0f9kyLpW0QNKcqjrvknS9pF5JiyRdIGnz3PiPZfPeokb7p0haJWmjoeLI6r42a+fgGuNmZ+P2y15vIem/sveiV9KTkv5H0pZ1zGfY72GubJKkz0q6J3vvH1Q6TmZS9fTWGbwFY3z7AenHfhbwrVoVJG1H2tJxC2lXy0pga2DXrModWfnJwLnAb7PyP+Sa2Ri4FPgRcAHw2DBxfQoI4Eukf6JHAZdL2qGypaVO9cS2RvYj87+kH6fzSLtUZgNfATYHqje3vwl4B/BfwDLgI8BFkmZExJMNxFkxAZgPXAd8DNgbOBb4G/CNOqZ/KfBj4JvA94BDgf+RtE9E/Car82Lg7cD/kHabbQIcAfyfpFdExMNVbX4GWAV8FZiUPX9Fg218Augl7XrbGvgwafdQP7ARcBKwM3BI1t7JUNe6V8sTwP8jrUPrZfMGuKPA5/tm4N3A2cAi0m62mpSSxe8AfwFOIW092ZGUlMzN1TmflPR+gvS+fRTYVdKOEfE08BPgy9l8v1I1m3cDl0XEU0MsPwAR8WdJ92bTfK9q9IHAU6R1DeB1wBtJ38+HgC2BDwBXZ5/n8uHmNxylLUD/S/rOnEv6br6K9J6/jLQ+WaeJCA8dOpA67ABeO0Sdp4Ebcq9PItuKn70+KmvjBUO08dqsziE1xl2djTtikHFX517vkdV9CFg/V/6urPwjubL7gO/W0eZQsX0XuC/3+l+yup+qqvc/pB/Dl+TKgvSDly97dVb+oWE+ly2rY8piCeAzVXVvAP5cx2d9Xzb9O3JlU4GHqz7fSUBXjXhW5Oed+yz+BvRU1W+0jVuB7lz53Oz9/FVVG3+o+jyGXfeGeD+uBm6rKmv0830OeEUd89oAWAr8EZhcNU7ZYzcpsb41Xwd4azavz1a9D3+uaud1Wb3/18B78EVSQrhRrmwdUnJxXq6sp8a0O1fPL/d57lHge/je7P18U1W9I7I239joZ+xh7A/eRWLPAEOdTfJ09vgv2b+QIlaS/rnV6/sRsSz3+qfAI8C+Bedfr31JneBZVeVfAwS8par88oj4W+VFpINll5K2EhT1zarXv22gvYeBn+fiWQp8H9hR0qZZ2crIjqGQNEHSxqR14C7gNTXa/F5UbTUq0Mb3Y+3jXa4jvZ/fqap3HfAiSZUtq09nj82se3mNfr7/FxG319HuTNJ36NSoOkYjIiq7G19L2hr3X/k6EXEJcCcp0aj4MbCTpJfkyg4kfY8uriOefDvdpK1sFbOADbNxlRjWfL6SurPP8x7S+1/r8yziXaStFndKekFlAK7Mxu9Z0nxsDHGCYeuRNu8P5sfA74FvA49J+lG2T72Rdefv0dgBnXfnX2Sd9D2kf8kjaQvg4arkBlLHWBmf90CNNp4ibfYvYkVEPNFEe/fkftAq/po9bglpU7WkoyXdTfrBWkTarfBq0j/xagurCwq0Uf0+LckeH6xR3pVro4x1L6/Rz3fAsg+ikgjcNsy8ISVh1e6smndli8qBsGbX3btIB2svrTMmIuLmrO0Dc8UHkj6vyg87knoknSzpQdb+PDek9udZxEuB7bJ280Nl/Zxe0nxsDPExGOOYpH8kdSD3DFYnInol7Ub6h/FW0j7lA4ErJc2KiOfqmFUjx03Ua7CLgU0g/UsdDYPNR4OUF22vTJ8kHdz7HdLxFYtJP2ZnUPsPR63PrtE2BluuId+/kta9ZozEejusiHhY0m9Jx098kbS7YgZwfIHmfgx8KttasAz4Z+CHkc4Wq/g66XidM4BrSYlekI7JGC6Zq/d72EXaPXTMIPWrk03rAE4wxrf/lz3OH6pStjn8imw4RtIngS+QOv7LGbyTKeql+RfZP7itSQf7VTxF+odVbQvg3tzrRmK7H9hb0vpV/3Jfnhs/lm0tSVVbMV6WPd6XPR4AXBURh+cnlLQh6Z9rPcpooy51rHuNGKnPt7Kb7JUMnqxX2t6G3NaDXFn1vH8M/JekbUhJ1XLgFwVi+zHpOjDvJB0DMpWUOOQdQNoVdmylQOmU5A3raL/e7+HfgO2BK2psZbMO5V0k45TSdTA+Q9oMfOEQ9abVKL4pe6ycXvZs9rhhSeG9T2tfZfQA4IWkM1Eq/gbsLGmdSkF22t1ap7M2GNuvSP+8PlRVfjQpUbl0wBRjy2bA/pUXkqYC7wNuiohHs+LnqNrCIuldpLMo6lVGG8Oqc91rxEh9vpeRtg58IvthXiNLjgH+DDwOHJk/LVPSW4BtgUuq2ryI9D7/K2n3yC8j4lkaFBF3kLYcHJgNjwDXVFUb8HmSzvQZ9vRo6v8e/oS0fvxbdQPZLpp165iXtRlvwRgf3iLp5aTPexPS6XczSf+a/rn6wLQqJ2SbqS/J6k8H/oN0psfvsjp/Ix0QdqSkZaQf9esiot592NUWA7+TdH4W71Gkf4b5U2m/TUo8fi3pJ6T94O/l+X+TFY3E9gvgKuAL2TUAbiYdFPcvwBn5AzrHqL8C50l6Henf6mGk9+/QXJ1fkj7T80lnK7wKOIi1/20Op4w26lHPuteIEfl8I2KppKNJ6+QCSXNJ/+y3B6YAB0dEn6TjSQc7/5+kH/L8aar3UXUp84h4XNJVpF0K65M7KLOAH5NO/V1BOnuk+kJpvwT+n6QlwO3ALqRTpOs51bre7+EPSLt8vilpT9KxNRNIW4/eTTpd+M9YZ2n1aSweRm7g+dNUK8NK0j+Yy0jXbFi/xjQnsfZpqm8G5gF/z6b/O+k0w5dWTffPpGsA9JE7BZMapwvmprma2qepvoe07/kx0qbhXwIzakx/DOnHZgXpB2en6jaHie275E6LzMrWA07LlnMV6Uf7Y2SnG+bqBXB2jZjuo8Zpe1V1tszHkYvlmeE+jyHavC97n2aRfjhXkA5ePKCq3iTSNS0ezt7b35H28Q/2WRxQY15NtcEgp09XlpXstFTqXPeGWLcGrHfNfr7DzPNtpB/O5aTjGK4D3lNV592kU49XkH7ALwA2H6S992dxLKXq9NcG49qa5/uAXWuM35B0PM0TpC0xvybttllrXabGaaoNfg+7geNIB8OuIP2R+DPpGidTiy6fh7E7VM7RNrM2pnRF0tsiYr9Wx2JmBj4Gw8zMzEaAj8EwM2sjknoY/voUi6PFNxM0c4JhZtZeDmT4K+PuSToOwqxlfAyGmVkbkfRC0lUxh3J91HFTNLOR5ATDzMzMSueDPM3MzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjCs5SSdJClyr++T9N0WhmRmHcB9S2s5wTAzM7PSTWx1AGY1bAP0tzoIM+s47ltGkRMMG3MiYmWrYzCzzuO+ZXR5F4mNKklvkrRA0gpJf5N0RI063k9qZg1x3zL2eAuGjRpJrwIuA54ATiKtf58FHmthWGbW5ty3jE1OMGw0nQwI+KeIeABA0kXArS2NyszanfuWMci7SGxUSJoAzAbmVToAgIi4A5jfssDMrK25bxm7nGDYaPkHoAe4u8a4u0Y5FjPrHO5bxignGGZmZlY6Jxg2Wp4AeoGX1hi3zSjHYmadw33LGOUEw0ZFRDxH2h/6dkkzKuWStiXtPzUza5j7lrHLCYaNphOzx99KOl7Sp4CrgL+0MCYza3/uW8YgJxg2aiLiFtI/iidIp5UdRuoYft7KuMysvblvGZsUEcPXMjMza3OSHgTmR8T7Wx3LeOAtGGZm1vEkdQMbA4taHct44St5mplZR5M0G3gP6XoZV7Q4nHHDu0jMzKyjSboK2Br4RkR8sdXxjBcN7yKRtI+kN+Vef1DSTZLmStqo3PDMbLxw32IjJSL2jIgXObkYXUWOwfgKMBXW3MHua8CvgK2A08oLzczGGfctZh2kyDEYWwG3Z8/fCfwyIj4p6TWkzsDMrAj3LWYdpEiCsQqYkj3fG/h+9nwx2b+PTiNJwGbAslbHYtaA9YGHo30OtBp3fQu4f7G2NWz/UiTB+B1wmqTfA68HDszKXwY8VKC9drAZnbts1tn+Efh7q4Oo03jsW8D9i7WvIfuXIgnGh4D/Ag4APhARlcbfAvy6QHvtYBnAgw8+yNSpY+OPVF9fH5dddhmzZs2iu7u71eEU0u7LMJbjX7p0KS960Yugvf4Vj8e+BcZY/zKW1+t6tfsyjPX46+1fGk4wIuIBYL8a5Uc32la7mTp16pjoACCtgFOmTGHq1KljcgWsR7svQ7vHP9aM574Fxk7/0gnrdbsvQ7vHX1HoQluSukjnFE+n6kyUiLimhLjMbBxy32LWORpOMCTtDMwFtgBUNTqACSXEZWbjjPsWs85SZAvGN4E/A28FHiF98ce9Bx54gEWL0iXuX/CCFzBjxoyWzL+V84bxt+wAN998M11dXaM2/1a/3yPIfUsNrf68Wzn/sbLs7luKKZJgvBQ4ICLuaWrOHeSBBx5gm5dvy4re5QBM7pnCXXfeMWorZH7+rZw3jK9lf+ihdOD/brvtRm9v76jMv9Xv9whz31Kl1Z93K+c/lpbdfUsxRa7keR1pH6llFi1axIre5Wy837FsvN+xrOhdviYLHM35b7DLgS2b93hc9ieffBKAaft8eNSWvdXv9whz31Kl1Z93K+c/VpbdfUtxRbZgfB34mqRNgVuBvvzIiLilqYjaWPfGL2rp/CdsML1l8x7Xyz5tc55bPbpb81v9fo8Q9y2DaPXn3cr5t3rZ3bcUVyTBuCh7/E6uLEgHZflALDMryn2LWQcpei8SM7OyuW8x6yBFLrR1/0gEYmbjm/sWs85S9EJbLwGOArbNim4HzoyIv5UUl5mNQ+5bzDpHw2eRSJpN+tK/HrglG94A/EXSzHLDM7Pxwn2LWWcpsgXjVOD0iPh4vlDSqcCXgN+UEZiZjTvuW8w6SJHrYGwLnFej/DvAK5oLx8zGMfctZh2kSILxBLBDjfIdgMebCcbMxjX3LWYdpMgukm8B50p6MfCHrGxX4HjgtLICM7Nxx32LWQcpkmB8DlgGHAuckpU9DJwEnFVOWGY2DrlvMesgRa6DEcDpwOmS1s/KlpUdmJmNL+5bzDpLoetgVPjLb2YjwX2LWfurK8GQdAOwV0Q8JelG0n0BaoqI15QVnJl1NvctZp2r3i0YFwMrc89H9/ZuZtap3LeYdai6EoyI+Gzu+UkjFo2ZjSvuW8w6V5FLhd8raeMa5RtKurdoIJI+LikknZErmyzpHElPSnpG0kWSNqmaboakSyQtl/S4pK9ImlhVZw9JN0haKekeSYcUjdPMRsZI9S1ZG+5fzEZZkQttbQlMqFE+CfjHIkFIeh1wBOneA3mnA28D3gXsDmwG/Cw33QTgEmAd4I3AwcAhwMm5Oltlda4iXbDnDODb2X0PzGzs2JKS+xZw/2LWKnWfRSLpn3MvZ0takns9AdgLWNhoAJLWAy4E/g34dK58A+BwYE5EXJmVHQrcIWnniPgjMIt0CeG9I+Ix4CZJnwG+JOmkiFgFHAksjIhjs6bvkPQm4GhgfqPxmlm5Rqpvydp2/2LWIo2cpjovewzge1Xj+oD7SBfIadQ5wCURcbmkT+fKdwK6gcsrBRFxp6QHgF2AP2aPt2Zf/or5wDeA7YAbszqXs7b5pH8aNUmaRPrXVLE+QF9fH319fQPq9/f309PTw+SJAqCnp4f+/v6adctSabuvr+/5+XdPGJV55zWz7PllaHr+LVp2gEmj+LnX+36P1ntQknnZY9l9C7R5/zJm+pZRnH+F+5ax2bdA/e+r0rVt6idpIfC6iFjU0IS123oP8KmsvRWSrgZuioijJM0Bzo+ISVXT/Am4KiKOl3QusEVEzM6NnwI8C+wbEZdK+mvWzim5OvuSNmtOiYjeGnGdBJxYXT537lymTJnS7GKbjbjly5czZ84cgA0iYmmr46lHmX1L1p77F7MRUG//UuRKnls1E1iFpBcBZwIzI2JFGW2W6BTWvvfB+sBDs2bNYurUqQMq33zzzey2225sMudUAB6b+3GuueYatt9++xELsK+vj9/85jfMnDmT22+/nd12242N9j6Cpy7/7xGfd14zy55fhu7u7qbm34plv/HGG3nkkUc4/tIHWLk6RuVzr/f9Xrq0LXKKtZTVt0Dn9C9jpW8ZzflXuG8Zm30L1N+/1HuhrY8A52b/Aj4yVN2IqPeeATsB04EbJFXKJgC7SfoQMBtYR9KGEfF0brpNgEez548Cr69qd5PcuMrjJjXqLK317yJbhpU8f24+lfi6u7trrqxdXV309vayYnXaGtTb20tXV1fhFbsR3d3da+bf0/fcqM4byln2wd7XRubfqmUHWLk6WLE6RmX+9b7fo/UeNGuE+hbokP5lrPQtrZi/+5ax2bdA/f1LvVswjiYdKLUiez6YoP6bEl0BvKqq7HzgTuBLwIOk/a97ARcBSNoGmAFcm9W/FviUpOkRUbmd80xgKXB7rs6+VfOZmWvDzFpnJPoWcP9i1nL1Xmhrq1rPm5Hda+C2fJmkZ4EnI+K27PV5wGmSFpO+1F8Hrs2O8Aa4jPRF/4Gk44BNgc8D52T/EgC+CXxI0peB7wBvBt4NvLWM5TCz4kaib8nacv9i1mJFLrR1QnagU3V5j6QTyglrjaOBX5L+YVxD2hz5jsrIiHgO2A94jvSP4QLg+8AJuToLSV/2mcDNpKPR3x8RPoXMbAwZ5b4F3L+Yjagid1M9kZS1L68qn5KNO3nAFHWKiD2qXq8APpgNg01zPwM3UVbXuRrYsWhcZjYqRqxvAfcvZqOtyJU8Re0bEm0PLG4uHDMbx9y3mHWQRq7k+RTpyx/AXyXlO4IJwHqkfx9mZnVz32LWmRrZRXIU6R/Gd0ibK/OX810F3BcRPnLazBp1FO5bzDpO3QlGRHwP1lxt7/cRsXrEojKzccN9i1lnavgYjIj4P2ALSZ+X9ENJ0wEkvUXSdqVHaGbjgvsWs85S5DTV3YFbgTeQTulaLxu1PfDZ8kIzs/HEfYtZZylyFsmpwKcjYiZp/2jFlcDOpURlZuOR+xazDlIkwXgV8PMa5Y8DL2guHDMbx9y3mHWQIgnG08ALa5TvCPy9qWjMbDx7GvctZh2jSILxI+BLkjYlnbfeJWlX4Kuky+iamRXhvsWsgxRJMD5JuiPhg6SDsG4nXcf/D6QbAZmZFeG+xayDNHwvkohYBfybpM8BryR1BDdGxN1lB2dm44f7FrPOUuRmZwBExAOSHsye17p/gJlZw9y3mHWGIrtIkHS4pNuAFcAKSbdJen+5oZnZeOO+xaxzNLwFQ9LJwDHA14HK/QF2AU6XNCMiTigxPjMbJ9y3mHWWIrtIPgD8W0T8MFf2v5JuIXUM7gTMrAj3LWYdpMgukm7gzzXKr6eJYzrMbNxz32LWQYokGD8g/dOo9u/AhY00JOkDkm6RtDQbrpX0ltz4yZLOkfSkpGckXSRpk6o2Zki6RNJySY9L+oqkiVV19pB0g6SVku6RdEgjcZrZqHDfYtZBiv4rOFzSLOCP2es3ADOA70s6rVIpIo4Zpp2HgI8DdwMCDgYulrRjRPwFOB14K/AuYAlwNvAzYFcASROAS4BHgTeSrgL4faCPdE49krbK6nwTOAjYC/i2pEciYn7B5TezkeG+xaxDFEkwXgnckD1/Sfa4KBtemas37OllEfGLqqJPSfoAsLOkh4DDgTkRcSWApEOBOyTtHBF/BGYBrwD2jojHgJskfYZ0NcCTsvPqjwQWRsSx2TzukPQm4GjAnYDZ2OG+xayDFLnQ1p4jEUj2j+FdwLqkI8h3Iu2TvTw37zslPUA6svyP2eOtWQdQMR/4BrAdcGNW53LWNh84Y4hYJgGTckXrA/T19dHX1zegfn9/Pz09PUyeKAB6enro7++vWbcslbb7+vqen3/3hFGZd14zy55fhqbn36JlB5g0ip97ve/3aL0HZRoPfUsWT939y5jpW0Zx/hXuW8Zm3wL1v68qeh0bSVuT/mVcExG9klTkojiSXkX60k8GniH9q/iVpDnA+RExqar+n4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy9p0+aUiOitEdNJwInV5XPnzmXKlCmNLqLZqFu+fDlz5swB2CAilrY6nkZ0ct+S1TkJ9y/WxurtX4pcB2Nj4CfAnqRNlS8F7gXOk/RUbnNhve4CdgA2AA4Avidp90bjKtkpwGm51+sDD82aNYupU6cOqHzzzTez2267scmcUwF4bO7Hueaaa9h+++1HLMC+vj5+85vfMHPmTG6//XZ22203Ntr7CJ66/L9HfN55zSx7fhm6u7ubmn8rlv3GG2/kkUce4fhLH2Dl6hiVz73e93vp0rbKKYBx07dAA/3LWOlbRnP+Fe5bxmbfAvX3L0WOwTiddKDTDOCOXPmPSV+ahjqBbF/mPdnL6yW9Dvho1t46kjaMiKdzk2xCOvCK7PH1VU1ukhtXedykRp2lg/3DiIiVwMrKayltMuru7q65snZ1ddHb28uK1elPVm9vL11dXYVX7EZ0d3evmX9P33OjOm8oZ9kHe18bmX+rlh1g5epgxeoYlfnX+36P1ntQso7vW7K46u5fxkrf0or5u28Zm30L1N+/FDlNdRZwfEQ8VFV+N7BFgfaqdZH2T15P6mz2qoyQtA2p86lc5e9a4FWSpuemnwksJd2JsVJnL9Y2M9eGmY0N7lvMOkiRLRjrAstrlE8jl5XXQ9IpwKXAA6TNhHOAPYDZEbFE0nnAaZIWk77YXweuzY7yBriM9GX/gaTjgE1Jt3U+J/uXAOkUsg9J+jLwHeDNwLtJp6iZ2djhvsWsgxTZgvFb4H251yGpCzgOuKrBtqaTzi2/C7gCeB2pA/hNNv5o4JfARcA1pE2S71gz44jngP2A50j/Gi7I2jshV2ch6Qs/E7iZtJn1/T5P3WzMcd9i1kGKbME4DrhC0muBdYAvk07bmkZ2kZp6RcThw4xfAXwwGwarcz+w7zDtXA3s2EhsZjbq3LeYdZCGt2BExG3Ay4DfAReTNmv+DNgxIv5WbnhmNl64bzHrLA1twZDUDfwaODIivjAyIZnZeOO+xazzNLQFIyL6gFePUCxmNk65bzHrPEUO8ryAdB1/M7MyuW8x6yBFDvKcCBwmaW/S+eTP5kfWcZdDM7Na3LeYdZBm76b6sqpxxW5sYmbmvsWso4yZu6ma2fjmvsWssxQ5BsPMzMxsSE4wzMzMrHROMMzMzKx0RQ7ytDrccUe62/TKlSuZNGnSmsfhyuqdpr+/H4Cbb76Zu+66a8h5j0Qclef33ntvzWWvp83KLX//9Kc/0dPTUyjOyrK2atnXW2+9Qste9HOvXl4bf+rpW4YbP9Q0le9lrb6lMv+yv0u1xg/Wt9SzbI32LbXGN9u3NPMZDNa3NNNmkb68WXUlGJJuAPaKiKcknQB8NSJq3fVw3HvumadA4r3vfW8qUBdE//OPw5XVOU1PTw8//OEP2W233ejt7U3z7l1We94jEUf18+plr6PNnsmT+OEPf8jMWbPpXf5s8ThbtOyV+Isse9HPvdO4b6lfQ33LcOPrWK/zfcuA+Y9EP1Jv31LHsjXctww2nib6lhI+gyLLXkZfXpZ6d5FsS7ovAMCJwHpD1B3X+lc+AxFsvN+xbPBP74XoZ71XzYToH7askWmmvvFAAKbt8+E0HohVvQPmPRJxDBhftez1tjltnw+nCZuNs1XLvt2ehZe9qTg7i/uWOtXbtzS93mfrdb5vyc9/xPqROvqWepetkb5luO9akb6lrM+gyLKX0ZeXpd5dJDcB50v6HSDgY5KeqVUxIk4uKba21r3xi9Y871pvWl1ljUwzYemE9Hza5kzse27QeY9EHLXG59Xd5rTNS4uzVtlIL7vW3WjA/Mt6P4cr6yA34b6lISOxPtVar2v1LUXbbCbOvLqXrYG+pd7v2kh/p4frW1rRlzer3gTjEOCzwH5AAG8BVteoF4A7ATOr1yG4bzHrSHUlGBFxF/AeAEn9pH2mj49kYGbW+dy3mHWuIlfyrPe4DTOzurlvMesshb7Qkl4i6euSLs+GsyS9pEA7n5C0QNIySY9Lmidpm6o6kyWdI+lJSc9IukjSJlV1Zki6RNLyrJ2vSJpYVWcPSTdIWinpHkmHFFl2Mxs57lvMOkfDCYak2cDtwOuBW7LhDcBfJDV6GOruwDnAzsBMoBu4TNK6uTqnA28D3pXV3wz4WS6eCcAlwDrAG4GDSft1T87V2SqrcxWwA3AG8O1sWcxsDHDfYtZZilxo61Tg9Ij4eL5Q0qnAl4Df1NtQROxT1cYhwOPATsA1kjYADgfmRMSVWZ1DgTsk7RwRfwRmAa8A9o6Ix4CbJH0G+JKkkyJiFXAksDAijs1mdYekNwFHA/MbW3wzGyHuW8w6SJFdJNsC59Uo/w7py9iMDbLHxdnjTqR/HpdXKkTEncADwC5Z0S7ArVkHUDEfmApsl6tzOWubn2vDzFrPfYtZBymyBeMJ0qbAu6vKdyD9QyhEUhdp8+LvI+K2rHhTYFVEPF1V/bFsXKXOYzXGU0edqZJ6IqI3P0LSJGBSrmh9gL6+Pvr6+gbE3t+frqw5eaKY0D1h4PN1JtJXT1mD0wBMmij6SmyzrmlKanPSRAGM+TiHGl/KZ1Awzsp719/fP2C9rLWetoGO71uyeOruXwr1LSWs91C1XrfL97NI3zJGl62Vn0HlvavVt1TW1XooIuqqmPtynEDa/Hcq8IeseFfgeOC0iPhcQw0+3+43SOfAvykiHsrK5gDnR8Skqrp/Aq6KiOMlnQtsERGzc+OnAM8C+0bEpZL+mrVzSq7OvqR9p1NqJBgnka4quJa5c+cyZcqUIotnNqqWL1/OnDlzADaIiKWtjqce46FvycafhPsXa2N19y8R0dBAutre0cBDQH82PAR8lCxhKdDm2cCDwFZV5W8mXWBnw6ry+4Gjs+cnAzdVjd8qm27H7PU1wBlVdQ4FlgwSzyTSZtDKsDkQixYtilWrVg0YFixYED09PbHl4WfG5vsfN+D59N0PqquskWle8u5PxLx582KbI84qrc16pymrzW2OOCvmzZsX06ZNG9NxDjZ+xsyDS/kMisa55eFnRk9PTyxYsGDAOrlo0aLIvgNTi3wnWzGMh76l0f6lSN/S7Hpfa71ul+9nkb5lLC5bqz+DofqWRvqXItfBCNLR16dLWj8rW9ZoOwCSBHwd2B/YIyIWVlW5HugD9gIuyqbZBpgBXJvVuRb4lKTp8fwFemYCS0lHpFfq7FvV9sxcG9XLuBJYmYsTgO7u7jV36cvr6uqit7eXFauDvr7nBjzvXrW6rrJGppmQXcJ35epgRUlt1jtNWW2uXJ22nvX29rLOGI5zsPErVq0u5TMoGmflvevq6hqwXtZaT8e68dC3ZMtUd/9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1aOp27UW//DnnAHOAfwGWSars11wSEb0RsUTSecBpkhaTvthfB66NdJQ3wGWkL/sPJB1H2if6eeCc7IsM8E3gQ5K+TDpg7M3Au4G3Nhm/mY0A9y1m7a/VV877AOno7quBR3LDgbk6RwO/JP3LuAZ4FHhHZWREPEe6j8FzpH8NFwDfB07I1VlI+sLPBG4GjgXeHxE+jcysM7lvMWuxprZgNCsiVEedFcAHs2GwOvczcDNldZ2rgR0bDNHM2pD7FrPWa/UWDDMzM+tADSUYkrolXSHppSMVkJmNP+5bzDpPQwlGRPQBrx6hWMxsnHLfYtZ5iuwiuYB0DX8zszK5bzHrIEUO8pwIHCZpb9K55M/mR0bEMWUEZmbjjvsWsw5SJMF4JXBD9vxlVeMau+64mdnz3LeYdZAiV/LccyQCMbPxzX2LWWcpfJqqpK0lzZbUk70e9rxzM7PhuG8x6wwNJxiSNpZ0BfBX4FfAC7NR50n6WpnBmdn44b7FrLMU2YJxOukmQTOA5bnyHwP7lBGUmY1L7lvMOkiRgzxnAbMj4qGqLZd3A1uUEpWZjUfuW8w6SJEtGOuy9r+LimnkbkFsZtYg9y1mHaRIgvFb4H251yGpCzgOuKqUqMxsPHLfYtZBiuwiOQ64QtJrgXWALwPbkf5l7FpibGY2vrhvMesgDW/BiIjbSBfB+R1wMWmz5s+AHSPib+WGZ2bjhfsWs85SZAsGEbEE+ELJsZjZOOe+xaxzFEowJG1EuinRtlnR7cD5EbG4rMDMbPxx32LWOYpcaGs34D7gI8BG2fARYGE2zsysYe5bzDpLkbNIziFd+GariHhHRLwDeDHwo2xc3STtJukXkh6WFJLeXjVekk6W9IikXkmXS3ppVZ1pki6UtFTS05LOk7ReVZ1XS/qtpBWSHpR0XIHlNrOR5b7FrIMUSTC2Br4WEc9VCrLnp2XjGrEucDPwwUHGH0f6B3Mk8AbS7ZvnS5qcq3Mh6UjzmcB+wG7AuZWRkqYClwH3AzsB/wmcJOnfG4zVzEaW+xazDlLkGIwbSPtH76oq35b0ha5bRFwKXApQfT+j7AZHRwGfj4iLs7L3AY8Bbwd+JGlb0iWEXxcRf87qfBj4laSPRcTDwEGkU94Oi4hVwF8k7QAcQ66zMLOWc99i1kHqSjAkvTr38izgTElbA3/MynYm/VP4eImxbQVsClxeKYiIJZKuA3YhbTbdBXi60gFkLgf6Sf9Kfp7VuSbrACrmA8dL2iginqqesaRJwKRc0foAfX199PX1DQi0v7+fnp4eJk8UE7onDHy+zkT66ilrcBqASRNFX4lt1jVNSW1Ompg6/rEe51DjS/kMCsZZee/6+/sHrJe11tOxaLz1LdBY/1KobylhvYeq9bpdvp9F+pYxumyt/Awq712tvqWyrtZDETF8JakfCGC42yZHREyoa84D5xHA/hExL3v9RuD3wGYR8Uiu3k+y+Rwo6ZPAwRGxTVVbjwMnRsQ3JF0GLIyII3LjXwH8BXhFRNxRI5aTgBOry+fOncuUKVOKLJ7ZqFq+fDlz5swB2CAilrY6nsGMt74lq3MS7l+sjdXdv0TEsAPpRkN1DfW0N8g8Anh77vUbs7IXVtX7CfDj7PkngbtqtPU48IHs+WXAf1eNf0XW9raDxDIJmJobNgdi0aJFsWrVqgHDggULoqenJ7Y8/MzYfP/jBjyfvvtBdZU1Ms1L3v2JmDdvXmxzxFmltVnvNGW1uc0RZ8W8efNi2rRpYzrOwcbPmHlwKZ9B0Ti3PPzM6OnpiQULFgxYJxctWhTZOj616HdyNIbx1rc02r8U6VuaXe9rrdft8v0s0reMxWVr9WcwVN/SSP9S1y6SiLi/nnolezR73AR4JFe+CXBTrs70/ESSJpIuLfxors4mVW1vkhs3QESsJHdzpco+3O7ubrq7uwfU7+rqore3lxWrg76+5wY87161uq6yRqaZ0JeOg1u5OlhRUpv1TlNWmytXp61nvb29rDOG4xxs/IpVq0v5DIrGWXnvurq6BqyXtdbTsWi89S3QWP9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1KHqhrc2AN5G+gGudiRIRZxVps4aFpC/pXmRf+uyo7TcA38jqXAtsKGmniLg+K3tzFtN1uTpfkNQdEZUdRzNJ/05q7iM1s9Zw32LWORpOMCQdAvw3sAp4krSZpCJIB2rV29Z6rH362VbZUdiLI+IBSWcAn5Z0N6lT+BzwMDAPICLukPRr4FuSjgS6gbOBH0U6yhtgLml/53mSvgS8EvgocHT9S21mI819i1lnKbIF43PAycApEdHf5Pxfy9q3YT4te/wecAjpborrkk752pB0E6R9ImJFbpqDSF/8K0hHeF9EOr8dWHN0+CzShXquBxYBJ0eETyMzG1vct5h1kCIJxhRSFt9sB0BEXM0QR49HOiLqhGwYrM5iYM4w87kF+KdiUZrZKHHfYtZBilzJ8zzgXWUHYmbjnvsWsw5SZAvGJ4BfStoHuBVY64obEXFMGYGZ2bjjvsWsgxRNMGbz/OV8qw/EMjMrwn2LWQcpkmAcS7r2/ndLjsXMxjf3LWYdpMgxGCtJl9k1MyuT+xazDlIkwTgT+HDZgZjZuOe+xayDFNlF8nrgzZL2I93Up/pArHeUEZiZjTvuW8w6SJEE42ngZyXHYWb2NO5bzDpGwwlGRBw6EoGY2fjmvsWssxQ5BsPMzMxsSEVudraQIc5Jj4gXNxWRmY1L7lvMOkuRYzDOqHrdDewI7AN8pdmAzGzcOqPqtfsWszZW5BiMM2uVS/og6Q6GZmYNc99i1lnKPAbjUuCdJbZnZgbuW8zaUpkJxgHA4hLbMzMD9y1mbanIQZ43svaBWAI2Bf4B+I+S4jKzccZ9i1lnKXKQ57yq1/3AE8DVEXFn0xGZ2Xg1r+q1+xazNlbkIM/PjkQgoyE7WOw/Sf+KbgY+HBF/am1UZgbuW8w6zbi50JakA4HTgM8CryF1AvMlTW9pYGbW1ty3mNVWd4IhqV/Sc8MMq0cy2CYdA3wrIs6PiNuBI4HlwGGtDctsfHPfYtaZGtlFsv8Q43YBPsIY3SIiaR1gJ+CUSllE9Eu6nBS7mbWO+xazDlR3ghERF1eXSdoGOBV4G3AhcEJ5oZXqBcAE4LGq8seAl1dXljQJmJQrWh9g8eLF9PX1VVdn6dKlTJ48GT25kK5lTwx43r1icV1lDU2z4imWL1+OFt9P17JHy2mzzmlKa3Px/Sxf/g9jP87BxveW8xkUjRNg8uTJLF26lCeffHKtdXLZsmVNfF1G13jqW6Cx/qVI39L0el9jvW6X72eRvmVMLluLPwMYvG+BBvqXiGh4ADYDvgWsAn4BvLJIO6M1ZPEGsEtV+ZeB62rUPymr78FDuw+bt/r7577F/YuHjh2G7F8aOotE0gbAJ4EPAzcBe0XEbxtpo0UWAc8Bm1SVbwI8WqP+KaSDtvKmMbYu9rM+8BDwj0D7/F1dW7svw1iPf33g4VYHUY9x1LfA2O9fxvp6XY92X4Z2iH/Y/qXuBEPSccDxpC/Nv0aNzZpjVUSsknQ9sBfZufaSurLXZ9eovxJYWVW8dITDbIikytNlETGmYqtXuy9DG8Q/FmMaYDz1Ldk0Y7p/aYP1eljtvgxtEv+wcSnbZDcsSf1AL3A5KWOvKSLeUW90oyk7lex7wBHAn4CjgHcDL4+I6v2nY56kqcASYIMxvAIOqd2Xod3jHyvct4wtnbBet/sytHv8FY3sIvk+aZ9LW4qIH0v6B+Bk0sVwbgL2accOwKzDuG8x60CNnEVyyAjGMSoi4mwG2WzZhlaSLuxTvam1nbT7MrR7/GOC+5YxpxPW63ZfhnaPH2hgF4mZmZlZvcbkxWvMzMysvTnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBaDOStpR0nqSFknol/U3SZ7ObLuXrvVrSbyWtkPRgdjGjMUPSByXdl8V3naTXtzqmWiR9QtICScskPS5pXnafjHydyZLOkfSkpGckXSSp+sqOZmOa+5bR1+n9ixOM9vNy0ud2BLAdcDTp9tBfrFTILtJyGXA/6U6P/wmcJOnfRz3aGrILE51GOg3rNcDNwHxJ01saWG27A+cAOwMzgW7gMknr5uqcTrop17uy+psBPxvlOM2a5b5l9HV2/9LqmwV5KOWGS/8J3Jt7/QHSfQ3WyZWdCtzZ6lizWK4Dzs697gL+Dny81bHVEfs/kC4KtVv2egPSjbkOyNV5eVZn51bH68FDM4P7llGPv6P6F2/B6AwbsPaNknYBromIVbmy+cA2kjYa1ciqZJtbdyJdFhqAiOjPXu/SqrgasEH2WHm/dyL968gvz53AA7TH8pgNxX3L6Oqo/sUJRpuTtDXpDpT/nSveFKi+TPFjuXGt9AJgArXja3VsQ8puYnUG8PuIuC0r3hRYFRFPV1Uf88tjNhT3LaOrE/sXJxhjhKRTJcUww8urptkc+DXwPxHxrdZEPq6cA7wSeE+rAzGrl/uWttFx/UsjNzuzkfU14LvD1Lm38kTSZsBVwB+A6gOsHgWqjzLeJDeulRaR7phZK75WxzYoSWcD+5H2jT6UG/UosI6kDav+ZYzp5bFxxX1L62MbUqf2L04wxoiIeAJ4op662b+Lq4DrgUOz/Yx51wJfkNQdEX1Z2Uzgroh4qqyYi4iIVZKuB/YC5sGaTYN7MQZvFiVJwNeB/YE9ImJhVZXrgT5S/Bdl02wDzCB9DmYt5b5lbPYt0Pn9i2921mayDuBq0mliB5MydgAi4tGszgbAXaTTyb5E2uz2HeDoiDh3lEMeIDuV7Huk0+H+BBwFvBt4eYyxW1xL+i9gDvAvpPe0YklE9GZ1vgHsCxwCLCV1GETEG0c1WLMmuG8ZfR3fv7T6NBYPjQ2klSxqDVX1Xg38FlgBPAQc3+rYq+L7EKkjW0k6tewNrY5pkDhrvtfAIbk6k0n7TxcDz5LOUd+01bF78NDI4L6lJbF2dP/iLRhmZmZWOp9FYmZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmEtI+k+SUe1Og4z6zzuX1rPCYaZmZmVzgmGmZmZlc4JhhUi6d8lPZzdrTBffrGk70h6Sfb8MUnPSFogae8h2ttSUkjaIVe2YVa2R67slZIuzdp8TNIPJL1gBBbRzFrE/UtncIJhRf0PsDGwZ6VA0jRgH+BCYD3gV6TbDO8I/Br4haQZRWcoaUPgSuBG4LXZvDYBflK0TTMbk9y/dICJrQ7A2lNEPCXpUtKthq/Iig8AFgFXRUQ/cHNuks9I2h/4Z+DsgrP9EHBjRHyyUiDpMOBBSS+LiL8WbNfMxhD3L53BWzCsGRcC75Q0KXt9EPCjiOiXtJ6kr0q6Q9LTkp4BtgUK/8MAtgf2zDZfPpO1eWc27iVNtGtmY4/7lzbnLRjWjF8AAt4qaQHwT8DR2bivAjOBjwH3AL3AT4F1BmmrP3tUrqy7qs562TyPrzH9I40Gb2ZjmvuXNucEwwqLiBWSfkb6Z7E1cFdE3JCN3hX4bkT8HEDSesCWQzT3RPb4QtI+UIAdqurcALwTuC8iVje9AGY2Zrl/aX/eRWLNuhB4K3BY9rzibuAdknaQtD0wlyHWt4joBf4IfFzStpJ2Bz5fVe0cYBrwQ0mvy44kny3pfEkTSlwmMxsb3L+0MScY1qwrgcXANqQvecUxwFPAH0ibHeeT/iEM5TDSVrXrgTOAT+dHRsTDpH8uE4DLgFuzek/z/CZQM+sc7l/amCKi1TGYmZlZh/EWDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMaxlJJ0mK3OuQdHYrYzIzs3I4wTAzM7PSOcEwMzOz0jnBMDMzs9I5wbBRIelNkhZIWiHpb5KOqHO6T0vql/ThkY7RzMzKM7HVAVjnk/Qq4DLgCeAk0nr3WeCxYab7PPBJ4IiI+NYIh2lmZiVygmGj4WRAwD9FxAMAki4Cbh1sAklfBY4GDo2I741KlGZmVhrvIrERJWkCMBuYV0kuACLiDmB+7Ul0NvBR4L1OLszM2pO3YNhI+wegB7i7xri7gH2ryt4HrAd8ICJ+OMKxmZnZCPEWDBtrfk86NuNDkqa1OhgzMyvGCYaNtCeAXuClNcZtU6PsHmAWsBnwa0nrj2BsZmY2Qpxg2IiKiOdIx1q8XdKMSrmkbUnHZtSa5hbSrpNtgV9I6hmNWM3MrDxOMGw0nJg9/lbS8ZI+BVwF/GWwCSLij8C/ADsDP5XUPfJhmplZWZxg2IjLtkjMJu0uORk4jJR0/HyY6a4E3k3aZfIDSV5fzczahCJi+FpmZmZmDfA/QjMzMyudEwwzMzMrnRMMMzMzK13DCYakfSS9Kff6g5JukjRX0kblhmdmZmbtqMgWjK8AU2HNXTK/BvwK2Ao4rbzQzMzMrF0VuRfJVsDt2fN3Ar+MiE9Keg0p0TAzM7NxrkiCsQqYkj3fG/h+9nwx2ZaNTiNJpEtXL2t1LGYNWB94OHwuupm1QJEE43fAaZJ+D7weODArfxnwUFmBjTGb0bnLZp3tH4G/tzoIMxt/iiQYHwL+CziAdEvtSuf1FuDXZQU2xiwDePDBB5k6deBGmr6+Pi677DJmzZpFd3d7XNHaMY+OVsW8dOlSXvSiF4G3uplZizScYETEA8B+NcqPLiWiMWzq1KmDJhhTpkxh6tSpbfXD55hHXjvGbGZWhiJbMMjuCbE1MJ2qM1Ei4poS4jIzM7M21nCCIWlnYC6wBaCq0QFMKCEuMzMza2NFtmB8E/gz8FbgEVJSYWZmZrZGkQTjpcABEXFP2cG0u5tvvpmuri5WrlzJpEmTAHjBC17AjBkzeOCBB1i0aNGgZUWmqZQBa8prtZMfny+rxNzX11f3NPUuR5FphlvOhx56aE3M06dPb2rZm5mmkWWvFXOzn/tgMZuZjSkR0dAAXAns0+h07TyQru8RS5YsiVruvffemDdvXvT09AQQqCs9QkzumRJ/+MMfYnLPlCHLikwzuWdK3H///XH//fc/X17VTvX4StlaMdc5zVrzGWY5ikwz3LJvNG3jNTE3s+xNT9PAslfHXMbnXivmakuWLKnUmdrq748HDx7G51DkUuFfB74m6RBJO0l6dX4o0F7be/LJJwGYts+H2eCf3gvRz8b7HcvG+x3Lit7l3HvvvazoXT5oWZFpKmWLFi1i0aJFrOhdznqvmjmgnfz4DXY5cE1ZJeb1ttuz7mkqZcMtR5Fp6l32yvvczLI3M02RZc/H3OznXmuaypYNM7OxpMgukouyx+/kyoJ0wOe4Psize9rmTOx7Lj3f+EUDxw9TVmSavK71pg05fsIG0weUad2NGp5muJiKTNPIcnZP23xAWZFlLzJNkWWHgTE3+7kPFrOZ2VhR9F4kZmZmZoMqcqGt+0ciEDMzM+scRS+09RLgKGDbrOh24MyI+FtJcZmZmVkba/ggT0mzSQnF64FbsuENwF8kzSwaiKSPSwpJZ+TKJks6R9KTkp6RdJGkTaqmmyHpEknLJT0u6SuSJlbV2UPSDZJWSrpH0iFF4zQzM7PhFdmCcSpwekR8PF8o6VTgS8BvGm1Q0uuAI0jJSt7ppAt6vQtYApwN/AzYNZtuAnAJ8CjwRuCFpNvH9wGfzOpsldX5JnAQsBfwbUmPRMT8RmM1MzOz4RU5TXVb4Lwa5d8BXtFoY5LWAy4E/g14Kle+AXA4cExEXBkR1wOHAm/MLlcOMCub53sj4qaIuBT4DPBBSetkdY4EFkbEsRFxR0ScDfwU6Pibs5mZmbVKkQTjCWCHGuU7AI8XaO8c4JKIuLyqfCegG1hTHhF3Ag8Au2RFuwC3RsRjuenmky6MtV2uTnXb83NtmJmZWcmK7CL5FnCupBcDf8jKdgWOB05rpCFJ7wFeA7yuxuhNgVUR8XRV+WPZuEqdx2qMp446UyX1RERvjbgmAZNyRetDuvV2X1/fgED7+/sBmDRR9HVPoKenh8kT033genp61jwOVjahwDSV55V59/T0MHmdifQNNT6bT39//5ryyetMHLrN3DR1L0eRaepc9sr73MyyNzVNgWXPx9zs515rmv7+/gHrZa311MxsNCmisXuVSRLpDJJjgc2y4oeBrwBnRZ0NSnoR6aZpMyPilqzsauCmiDhK0hzg/IiYVDXdn4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy/puIwpgyQYJwEnVpfPnTuXKVOm1LN4Zi21fPly5syZA7BBRCxtdTxmNg41c51x0j/79QtO+3bSlT9X54YA+rPne2WvN6ya7n7g6Oz5yaSEJD9+q2y6HbPX1wBnVNU5FFgyRGyTSLtZKsPmQCxatChWrVo1YLjuuuti3rx5sc0RZ8Xm+x8XPT09seXhZ8aWh58ZPT09ccEFFwxZVmSaStmCBQtiwYIF0dPTE9N3P2jI8Zu97ag1ZZWYZ8w8uO5pKmXDLUeRaepZ9mnTpq15n5tZ9mamaXTZq2Nu9nOvNc2CBQsGrJOLFi3yvUg8ePDQ0qHQdTByycmyJia/AnhVVdn5wJ2ks1EeJJ0NshfZ5cklbQPMAK7N6l8LfErS9IioHP8xE1hKOpW2UmffqvnMzLUxQESsBFZWXqeNNtDd3U13d/eA+l1d6VCWlauDFX3P0dvby4rVaUNOb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WiqK8GQdAOwV0Q8JelG0j+jmiLiNfW0mSUnt1XN51ngyYi4LXt9HnCapMWkpOHrwLUR8cdskstIicQPJB1HOt7i88A5WZIA6fTUD0n6MulMlzcD7yad/mpmZmYjoN4tGBfz/D/6ixkiwSjZ0aRdJheRdlvMB/6jMjIinpO0H/AN0haJZ4HvASfk6iyU9FbSNTU+CjwEvD98DQwzM7MRU1eCERGfzT0/aaSCiYg9ql6vAD6YDYNNcz8Dd4FU17ka2LH5CM3MzKweRS4Vfq+kjWuUbyjp3nLCMjMzs3ZW5EJbWwITapRPAv6xqWjMzMysI9R9Fomkf869nC1pSe71BNLZHgvLCszMzMzaVyOnqc7LHoN0IGVeH3Af6eJbZmZmNs7VnWBERBeApIXA6yJi0YhFZWZmZm2t4QttRcRWIxGImZmZdY56L7T1EeDciFiRPR9URJxVSmRmZmbWturdgnE0cCGwIns+mACcYJiZmY1z9V5oa6taz83MzMxqKXKhrROyW6JXl/dIOqHWNGZmZja+FLnQ1onAejXKp2TjzMzMbJwrkmCI2jc72x5Y3Fw4ZmZm1gkauZLnU6TEIoC/SsonGRNIWzW+WW54ZmZm1o4auQ7GUaStF98h7QrJXyp8FXBfRFxbXmhmZmbWrhq5kuf3YM2VPH8fEatHLCozMzNraw0fgxER/wdsIenzkn4oaTqApLdI2q70CM3MzKztFDlNdXfgVuANwDt4/oyS7YHPlheamZmZtasiZ5GcCnw6ImaSjr2ouBLYuZSozMzMrK0VSTBeBfy8RvnjwAuaC8fMzMw6QZEE42nghTXKdwT+3lQ0ZmZm1hGKJBg/Ar4kaVPSNTG6JO0KfBX4fiMNSfqApFskLc2GayW9JTd+sqRzJD0p6RlJF0napKqNGZIukbRc0uOSviJpYlWdPSTdIGmlpHskHVJguc3MzKxORRKMTwJ3Ag+SDvC8HbgG+APw+Qbbegj4OLAT8FrScRwX585GOR14G/AuYHdgM+BnlYklTQAuAdYB3ggcDBwCnJyrs1VW5ypgB+AM4NuSZjcYq5mZmdWpkQttARARq4B/k/Q54JWkJOPGiLi7QFu/qCr6lKQPADtLegg4HJgTEVcCSDoUuEPSzhHxR2AW8Apg74h4DLhJ0mdIW1hOymI9ElgYEcdm87hD0ptIt52f32jMZmZmNrwiWzAAiIgHgEuB/ymSXFSTNEHSe4B1gWtJWzW6gctz87wTeADYJSvaBbg1Sy4q5gNTge1ydS5nbfNzbZiZmVnJGt6CASDpcNIWgJdmr+8GzoiIbxdo61WkhGIy8Aywf0TcLmkHYFVEPF01yWPAptnzTbPX1eOpo85UST0R0VsjpknApFzR+gB9fX309fUNWIb+/n4AJk0Ufd0T6OnpYfJEAdDT07PmcbCyCQWmqTyvzLunp4fJ60ykb6jx2Xz6+/vXlE9eZ+LQbeamqXs5ikxT57JX3udmlr2paQosez7mZj/3WtP09/cPWC9rradmZqNJEbVujDrEBNLJwDHA10mJAaStAR8CTo+IExpsbx1gBrABcADwftLxFjsA50fEpKr6fwKuiojjJZ0LbBERs3PjpwDPAvtGxKWS/pq1c0quzr6k4zKmDJJgnESNW8/PnTuXKVOmNLJ4Zi2xfPly5syZA7BBRCxtdTxmNg5FREMD8ATwrzXK/xVY1Gh7Ndq5HPhv4M2ks1Q2rBp/P3B09vxk4Kaq8Vtl0+2Yvb6GtHUlX+dQYMkQMUwi7WapDJsDsWjRoli1atWA4brrrot58+bFNkecFZvvf1z09PTEloefGVsefmb09PTEBRdcMGRZkWkqZQsWLIgFCxZET09PTN/9oCHHb/a2o9aUVWKeMfPguqeplA23HEWmqWfZp02btuZ9bmbZm5mm0WWvjrnZz73WNAsWLBiwTi5atKhy5+OpzX4nPXjw4KHIUGQXSTfw5xrl11Nwl0uVLtIP/PVAH7AXcBGApG1IWzsqW06uJR0YOj0iHs/KZgJLSWe3VOrsWzWPmbk2BoiIlcDKymspbY7u7u6mu7t7YMBd6VCWlauDFX3P0dvby4rVactQb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WgqcpDnD4AP1Cj/d+DCRhqSdIqk3SRtKelVkk4B9gAujIglwHnAaZL2lLQTcD5wbaQzSAAuIyUSP5C0fXbq6eeBc7IkAeCbwIslfVnSyyX9B/Bu0imwZmZmNgKKbnE4XNIsoPJD/wbSloXvSzqtUikijhmmnemki3O9EFgC3ALMjojfZOOPBvpJWzAmkc7++I9c+89J2g/4BmmLxLPA94ATcnUWSnorKaH4KOnaG++PCJ+iamZmNkKKJBivBG7Inr8ke1yUDa/M1Rv26NGIOHyY8SuAD2bDYHXuZ+AukOo6V5MuZW5mZmajoMiFtvYciUDMzMyscxS+0JakrSXNltSTvVZ5YZmZmVk7azjBkLSxpCuAvwK/4vk7q54n6WtlBmdmZmbtqcgWjNNJp4/OAJbnyn8M7FNGUGZmZtbeihzkOYt0psdDVXtF7ga2KCUqMzMza2tFtmCsy9pbLiqmkbs4lZmZmY1fRRKM3wLvy70OSV3AccBVpURlZmZmba3ILpLjgCskvRZYB/gy6dbo04BdS4zNzMzM2lTDWzAi4jbgZcDvgItJu0x+Rrq52N/KDc/MzMzaUUNbMCR1A78GjoyIL4xMSGZmZtbuGtqCERF9wKtHKBYzMzPrEEUO8rwAGPIeImZmZja+FTnIcyJwmKS9getJdzBdo447qJqZmVmHa/Zuqi+rGjfsHVTNzMys8/luqmZmZla6wndTNTMzMxuMEwwzMzMrnRMMMzMzK50TDDMzMytdXQmGpBskbZQ9P0HSlJENy8zMzNpZvVswtiXdcwTgRGC9MmYu6ROSFkhaJulxSfMkbVNVZ7KkcyQ9KekZSRdJ2qSqzgxJl0hanrXzFUkTq+rskSVKKyXdI+mQMpbBzMzMBqr3NNWbgPMl/Q4Q8DFJz9SqGBEnNzD/3YFzgAVZLF8ELpP0ioioXMDrdOCtwLuAJcDZpJur7QogaQJwCfAo8EbghcD3gT7gk1mdrbI63wQOAvYCvi3pkYiY30C8ZmZmVod6E4xDgM8C+5EupvUWYHWNegHUnWBExD7519lWhceBnYBrJG1Auiz5nIi4MqtzKHCHpJ0j4o/ALOAVwN4R8Rhwk6TPAF+SdFJErAKOBBZGxLHZrO6Q9CbgaMAJhpmZWcnqSjAi4i7gPQCS+oG9IuLxEYhng+xxcfa4E9ANXJ6L5U5JDwC7AH/MHm/NkouK+cA3gO2AG7M6l7O2+cAZJcdvZmZmFLuS54iceSKpi/SD//uIuC0r3hRYFRFPV1V/LBtXqfNYjfHUUWeqpJ6I6K2KZRIwKVe0PkBfXx99fX0DYu/v7wdg0kTR1z2Bnp4eJk8UAD09PWseByubUGCayvPKvHt6epi8zkT6hhqfzae/v39N+eR1Jg7dZm6aupejyDR1LnvlfW5m2ZuapsCy52Nu9nOvNU1/f/+A9bLWempmNpoU0fjtQyS9BDiKdPAnwO3AmRHxt8KBSN8g7Xp5U0Q8lJXNAc6PiElVdf8EXBURx0s6F9giImbnxk8h3YRt34i4VNJfs3ZOydXZl3RcxpQaCcZJpINZ1zJ37lymTPEJNDb2LV++nDlz5gBsEBFLWx2PmY1DEdHQAMwGVgLXAadlw3XACmBmo+1lbZ4NPAhsVVX+ZtJxHRtWld8PHJ09Pxm4qWr8Vtl0O2avrwHOqKpzKLBkkHgmAVNzw+ZALFq0KFatWjVguO6662LevHmxzRFnxeb7Hxc9PT2x5eFnxpaHnxk9PT1xwQUXDFlWZJpK2YIFC2LBggXR09MT03c/aMjxm73tqDVllZhnzDy47mkqZcMtR5Fp6ln2adOmrXmfm1n2ZqZpdNmrY272c681zYIFCwask4sWLYrsOzC1yHfSgwcPHpoditxN9VTg9Ij4eL5Q0qnAl4Df1NuQJAFfB/YH9oiIhVVVriedDbIXcFE2zTbADODarM61wKckTY/njwuZCSwlbVmp1Nm3qu2ZuTbWEhErSUlUJU4Auru76e7uHlC/qyvtNVq5OljR9xy9vb2sWJ22DPX29q55HKysr8A0leeVeff29tK9avWQ43uy+VTKAFY0OE09y1FkmnqXvfI+N7vsRacpsuz5mJv93GtN09XVNWC9rLWempmNpiLHU2wLnFej/DukszkacQ7wXmAOsEzSptnQAxARS7J5nSZpT0k7AecD10Y6gwTgMlIi8QNJ20uaDXweOCdLFCCdnvpiSV+W9HJJ/wG8m3QKrJmZmZWsSILxBLBDjfIdSKeYNuIDpDNHrgYeyQ0H5uocDfyStAXjGtL1Lt5RGRkRz5FOn32OtEXiAtJ1ME7I1VlIupbGTOBm4Fjg/eFrYJiZmY2IIrtIvgWcK+nFwB+ysl2B40nHY9QtIlRHnRXAB7NhsDr3M3AXSHWdq4EdG4nPzMzMiimSYHwOWEbaClA5K+Nh4CTgrHLCMjMzs3ZW5DoYQTp24XRJ62dly8oOzMzMzNpXkS0YazixMDMzs1pG5KqcZmZmNr45wTAzM7PSOcEwMzOz0jWUYEjqlnSFpJeOVEBmZmbW/hpKMCKiD3j1CMViZmZmHaLILpILgMPLDsTMzMw6R5HTVCcCh0nam3QzsmfzIyPimDICMzMzs/ZVJMF4JXBD9vxlVeOiuXDMzMysExS5kueeIxGImZmZdY7Cp6lK2lrS7Mqt1SUNe+MyMzMzGx8aTjAkbSzpCuCvwK+AF2ajzpP0tTKDMzMzs/ZUZAvG6UAfMANYniv/MbBPGUGZmZlZeytykOcsYHZEPFS1V+RuYItSojIzM7O2VmQLxrqsveWiYhqwsrlwzMzMrBMUSTB+C7wv9zokdQHHAVeVEpWZmZm1tSK7SI4DrpD0WmAd4MvAdqQtGLuWGJuZmZm1qYa3YETEbaQLbP0OuJi0y+RnwI4R8bdywzMzM7N2VGQLBhGxBPhCybGYmZlZhyh0oS1JG0n6mKTzsuFYSdMKtLObpF9IelhSSHp71XhJOlnSI5J6JV1efat4SdMkXShpqaSns3jWq6rzakm/lbRC0oOSjiuy3GZmZlafIhfa2g24D/gIsFE2fARYmI1rxLrAzcAHBxl/XNb2kcAbSDdWmy9pcq7OhaRjQGYC+wG7Aefm4p0KXAbcD+wE/CdwkqR/bzBWMzMzq1ORXSTnkC6q9YGIeA5A0gTgv7Jxr6q3oYi4FLg0a2Otcdmlx48CPh8RF2dl7wMeA94O/EjStqSLe70uIv6c1fkw8CtJH4uIh4GDSAejHhYRq4C/SNoBOIZcImJmZmblKZJgbA0cUEkuACLiOUmnsfbpq83aCtgUuDw3nyWSrgN2AX6UPT5dSS4ylwP9pC0eP8/qXJMlFxXzgeMlbRQRT1XPWNIkYFKuaH2Avr4++vr6BgTa398PwKSJoq97Aj09PUyemBKmnp6eNY+DlU0oME3leWXePT09TF5nIn1Djc/m09/fv6Z88joTh24zN03dy1FkmjqXvfI+N7PsTU1TYNnzMTf7udeapr+/f8B6WWs9NTMbTYpo7A7rkn4PfCUi5lWVvx34eETsXCgQKYD9K+1KeiPwe2CziHgkV+8nQETEgZI+CRwcEdtUtfU4cGJEfEPSZcDCiDgiN/4VwF+AV0TEHTViOQk4sbp87ty5TJkypcjimY2q5cuXM2fOHIANImJpq+Mxs3EoIoYdgFfnhgNJxzN8DHhTNnwMWAgcWE97g8wjgLfnXr8xK3thVb2fAD/Onn8SuKtGW4+TduFAOv7iv6vGvyJre9tBYpkETM0NmwOxaNGiWLVq1YDhuuuui3nz5sU2R5wVm+9/XPT09MSWh58ZWx5+ZvT09MQFF1wwZFmRaSplCxYsiAULFkRPT09M3/2gIcdv9raj1pRVYp4x8+C6p6mUDbccRaapZ9mnTZu25n1uZtmbmabRZa+OudnPvdY0CxYsGLBOLlq0KLJ1fGrR76QHDx48NDPUu4vkpqyzyh8o8eUa9eaSjs8ow6PZ4ybAI7nyTbJ4KnWm5yeSNJF00a9Hc3U2qWp7k9y4ASJiJbnLnleOD+nu7qa7u3tA/a6udKzsytXBir7n6O3tZcXqtGWot7d3zeNgZX0Fpqk8r8y7t7eX7lWrhxzfk82nUgawosFp6lmOItPUu+yV97nZZS86TZFlz8fc7Odea5qurq4B62Wt9dTMbDTVm2BsNaJR1LaQlADsRZZQZGeEvAH4RlbnWmBDSTtFxPVZ2ZtJZ8dcl6vzBUndEVHZMT2TtOVjwPEXZmZm1ry6EoyIuH8kZp5dr2LrXNFW2RkeiyPiAUlnAJ+WdDcp4fgc8DAwL4vrDkm/Br4l6UigGzgb+FGkM0ggbVU5EThP0peAVwIfBY4eiWUyMzOzglfylLQZ6diL6VRdSyMizmqgqdey9g3STssevwccQtoNsy7pdNINSZcn3yciVuSmOYiUVFxBOnvkItK1MyrxLJE0i3QK7fXAIuDkiPApqmZmZiOk4QRD0iHAfwOrgCdJx2ZUBFB3ghERV7P2cR3V4wM4IRsGq7MYmDPMfG4B/qneuMzMzKw5RbZgfA44GTglIvpLjsfMzMw6QJF7kUwhHePg5MLMzMxqKpJgnAe8q+xAzMzMrHMU2UXyCeCXkvYBbgXWuiZxRBxTRmBmZmbWvoomGLOBu7LX1Qd5mpmZ2ThXJME4lnRn0u+WHIuZmZl1iCLHYKwk3YTMzMzMrKYiCcaZwIfLDsTMzMw6R5FdJK8H3ixpP9Itz6sP8nxHGYGZmZlZ+yqSYDwN/KzkOMzMzKyDNJxgRMShIxGImZmZdY4ix2CYmZmZDanIzc4WMsT1LiLixU1FZGZmZm2vyDEYZ1S97gZ2BPYBvtJsQGZmZtb+ihyDcWatckkfBF7bdERmZmbW9so8BuNS4J0ltmdmZmZtqswE4wBgcYntmZmZWZsqcpDnjax9kKeATYF/AP6jpLjMzMysjRU5yHNe1et+4Ang6oi4s+mIzMzMrO0VOcjzsyMRiJmZmXWOcXWhLUkflHSfpBWSrpP0+lbHZGZm1onqTjAk9Ut6bphh9UgG2wxJBwKnAZ8FXgPcDMyXNL2lgZmZmXWgRnaR7D/EuF2AjzC2t4gcA3wrIs4HkHQk8FbgMODUVgZmZmbWaepOMCLi4uoySduQfpzfBlwInFBeaOWRtA6wE3BKpSwi+iVdTkqOqutPAiblitYHWLx4MX19fdXVWbp0KcuXL0eL76dr2aNMnjwZPbkQgMmTJ3PXXXcNWda17ImGp6mUXX/99Wued69YPOT4CcseW6tsvfXWo7v3qYamqWc5ikxT77JX3udml73oNEWWPR9zs597rWmWLl3Kk08+udY6uWzZsgHrqZnZaFLEoLcVGXwiaTPSroaDgfnAJyLitpJjK00W79+BN0bEtbnyLwO7R8QbquqfBJw4qkGajYx/jIi/tzoIMxt/GjqLRNIGwCeBDwM3AXtFxG9HIK5WO4V0vEbeNAa/kNj6wEPAPwLt8tfRMY+OVsa8PvDwKM/TzAxoIMGQdBxwPPAo8K+1dpmMYYuA54BNqso3IS3PWiJiJbCyqnjpYI1LqjxdFhGD1htLHPPoaHHMbfEemVlnamQLxqlAL3APcLCkg2tVioh3lBFYmSJilaTrgb3ILhQmqSt7fXYLQzMzM+tIjSQY32ftS4S3m9OA70n6M/An4ChgXeD8VgZlZmbWiRo5i+SQEYxjxEXEjyX9A3Ay6d4pNwH7RMRjJTS/knTQa/VulbHMMY+OdozZzKxphc4iMTMzMxvKWL4wlpmZmbUpJxhmZmZWOicYZmZmVjonGGZmZlY6JxglGMu3gZe0m6RfSHpYUkh6e9V4STpZ0iOSeiVdLumlLQoXSZ+QtEDSMkmPS5qX3fMmX2eypHMkPSnpGUkXSaq+iNpoxvwBSbdIWpoN10p6y1iN18xsNDjBaFIb3AZ+XVJMHxxk/HGkO+EeCbwBeJYU/+TRCW+A3YFzgJ2BmUA3cJmkdXN1TifdYO9dWf3NgJ+Ncpx5DwEfJ91Q77XAlcDFkrbLxo+1eM3MRpxPU22SpOuABRHxoex1F/Ag8PWIGFO3gZcUwP4RMS97LdK9Kr4WEV/NyjYAHgMOiYgftSrWiuzaJY+Tbkp3TRbfE8CciPhpVuflwB3ALhHxx9ZF+zxJi4H/BH5KG8RrZlY2b8FoQu428JdXyiKiP3s94DbwY9BWpIuO5eNfAlzH2Il/g+yxcqO5nUhbNfIx3wk8wBiIWdIESe8hbTm6ljEer5nZSGnobqo2wAuACaR//HmPAS8f/XAatmn2WCv+TWmxbGvQGcDvI+K2rHhTYFVEPF1VvaUxS3oVKaGYDDxD2lJ0u6QdGIPxmpmNNCcYNpadA7wSeFOrA6nDXcAOpC0uB5Due7N7SyMyM2sh7yJpTkO3gR+DKjGOufglnQ3sB+wZEQ/lRj0KrCNpw6pJWhpzRKyKiHsi4vqI+ATpwNqPMkbjNTMbaU4wmhARq4DKbeCBtW4Df22r4mrAQtKPXD7+qaSzSVoSf3ba7NnA/sCbI2JhVZXrgT7WjnkbYAZj6z3vAibRPvGamZXKu0iaN6ZvAy9pPWDrXNFW2XEBiyPiAUlnAJ+WdDcp4fgc6cySeaMcasU5wBzgX4BlkirHKSyJiN6IWCLpPOC07EyNpcDXgWtbdUaGpFOAS0kHbq5Pin8PYPZYjNfMbDQ4wWjSCN8GvgyvBa7KvT4te/wecAjwZVJCdC6wIfA7UvwrRi/EtXwge7y6qvxQ4LvZ86OBfuAi0laC+cB/jEJsg5kOfB94IbAEuIWUXPwmGz/W4jUzG3G+DoaZmZmVzsdgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYFjLSLpP0lGtjsPMzMrnBMPMzMxK5wTDzMzMSucEwwqR9O+SHs7uHpsvv1jSdyS9JHv+mKRnJC2QtPcQ7W0pKbIbsVXKNszK9siVvVLSpVmbj0n6gaQXjMAimplZE5xgWFH/A2wM7FkpkDQN2Ae4EFgP+BXpNuU7Ar8GfiFpRtEZStoQuBK4kXQTt32ATYCfFG3TzMxGhu+maoVExFOSLiXdmvyKrPgAYBFwVUT0AzfnJvmMpP2BfwbOLjjbDwE3RsQnKwWSDgMelPSyiPhrwXbNzKxk3oJhzbgQeKekSdnrg4AfRUS/pPUkfVXSHZKelvQMsC1QeAsGsD2wZ7Z75JmszTuzcS9pol0zMyuZt2BYM34BCHirpAXAPwFHZ+O+CswEPgbcA/QCPwXWGaSt/uxRubLuqjrrZfM8vsb0jzQavJmZjRwnGFZYRKyQ9DPSloutgbsi4oZs9K7AdyPi5wCS1gO2HKK5J7LHF5KOsQDYoarODcA7gfsiYnXTC2BmZiPGu0isWRcCbwUOy55X3A28Q9IOkrYH5jLE+hYRvcAfgY9L2lbS7sDnq6qdA0wDfijpddmZKrMlnS9pQonLZGZmTXKCYc26ElgMbENKIiqOAZ4C/kDarTGftAViKIeRtqpdD5wBfDo/MiIeJm0ZmQBcBtya1Xua53exmJnZGKCIaHUMZmZm1mG8BcPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzEr3/wFHFetcmY/wCgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJcElEQVR4nO3deZxkVX3//9d7hgHZBkQFNIoiRMUNcMEFQ1QcQEXz1WjMV/NTxJhgRIOYLy5RRDTBFVDBGA0iGFFMNJqIOCyKoCKGVRBEREA22XEGZ6GHPr8/7m2tKap7um7f7p6qej0fj3pU1bmnbn3q9q3Tnzr33HNTSkGSJKkNC+Y7AEmSNDxMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDQnkhyWZE6meU1yVpKzOp4/N0lJ8oo5ev8vJLl2Lt6r630fVX/O/eb6vUdFkg2SfCTJ9UnGk3xjvmOS1jcmFupbkv3qf2ATt1VJbkqyNMlbk2ze0vs8rE5IdmljfW1an2PTrNof+H/AfwKvA46a33Dak+RxddJ0cZLlSW5OckqSp813bBosG8x3ABpohwLXAIuAbYHnAkcDByd5aSnlpx11Pwh8qM/1Pwx4H3AtcHEfr9urz/dpYqrY3sj8JO3XARsDY/Pw3qPi+cCNpZS3zXcgs+CvgTcAXwM+DWwB/C3w4yT7lFLOmM/gNDhMLDQTp5ZSzu94fkSS5wPfAv47yU6llJUApZQ1wJrZDCbJJqWUFaWUe2fzfdallDIv/9hLdUXBVfPx3jOR5AHAvaWU8fmOZRq2Bu5ua2VJFgAbllKm9XdLEuABE9+rln0ZOKyUck/H+30euAI4DDCx0LR4KEStKqV8F/gA8EjgrybKe42xSLIkyQ+S3J3kniRXJvnnetlzgf+tqx7fcdhlv3r5WUkuS/LUJGcnWQH8c8eys3qEtzDJPyf5TZLfJfnvJI/oiunaJF/ofmHnOqcR2/3GWCTZNMnH62Pzq+vP+g/1P4rOeiXJMUn+T/35Vif5WZJ9enye7hjvN8aijuWeJH+U5Bv149uSfCzJwmms89ok30qyV91FvirJ5Ule3lVvq3qdl9bvsSzJqUl27qo3Md7lL5N8MMmNwApgcYN1/EWS9yW5se66/88kWyTZKMnRSW6t13N8ko261jHpvjfVtgWeBzyh42/+3Hp5v3/f1yT5GbAamPRv27H9905yPrCSqheBJK9P8t36c66u/y5vmmIdz0nyk/pv+Kskr+2sV0q5oDOpqMvuAM4BdposRqmbPRaaDV+k+ie/F/C5XhWSPIGqZ+OnVIdUVgM7ArvXVa6oyw8HPkvVuAH8qGM1DwJOBb4C/Dtwyzri+kegAB+m+uV5EHBGkl36/AU4ndh+r/7n8t9U/5SOozp0sjfwUeCPgO5u9ecAL6fqjl4OvBX4WpLt6oa+XwuBpcB5wD8ALwDeDlwN/Ms0Xv/HwMnAZ4ATgNcD/5Gqe/z0us6jgf8D/AfV4bFtqP4Bfj/J40spN3Wt873AvcDHgI3qx4/vcx3vovpH+yGqfectVIeBxoEHUv3KfiawX72+w2Fa+14vtwH/H9U+tFn93gBXNPj7Ph/4C+AY4Haqw2lTeSxVb8K/Un2frqzL3wT8rH7vNcBLgE8nWVBKObZrHTtSjQs5jupvuD/whSQXlFJ+to7337aOU5qeUoo3b33dqBrqAjxtijp3Axd2PD+Mure+fn5QvY4HT7GOp9V19uux7Kx62d9OsuysjufPreveAGzeUf7KuvytHWXXAl+Yxjqniu0LwLUdz/+srvuPXfX+g+qf4A4dZYXqH11n2ZPr8gPX8Xd5VHdMdSwFeG9X3QuB86fxt762fv3LO8oWAzd1/X03Ahb0iGdV53t3/C2uBjbuqt/vOi4FFnWUn1Rvz293reNHXX+Pde57U2yPs4DLusr6/fveBzx+mu83sf337rFs4x5l3wGunmQdf9JR9pB6u35sHe//J/VnOLzfbeVtdG8eCtFsuQeY6uyQu+v7P0t1nLmJ1cDxfdQ/sZSyvOP5fwI3Ay9q+P7T9SKqfyaf7Cr/OBDghV3lZ5RSrp54UqpBsMuoegWa+kzX83P6WN9NwH91xLMMOBHYNcm2ddnqUo+RSLIwyYOo9oErgaf0WOcJpauXqME6Tixrj2c5j2p7fr6r3nnAI5JM9NDeXd/PZN/r1O/f9/ullMv7WP81pZSl3YWd268+BPRg4PvAo5Ns0VX98lLKOR2vvY1qu066DyTZmipZuwb4SB/xasSZWGi2bEbVjT+Zk4EfAv8G3JLkK/Ux8372yRtLfwM1r+p8UkopwC+pfhXPpkcCN3UlNVAdUplY3unXPdZxF1X3fhOr6n8kTdf3y3pbdfpFff8oqAYhJnlbkquoEr7bqQ4fPJnq7IJu13QXNFhH93b6bX1/fY/yBR3raGPf69Tv3/d+n30detZPsnuSM5L8jipZuo16nBH331597VNJNqU6XLQ58Gela+yFNBUTC7UuycOpGrZfTlan/rW1B9Xx/i9S/fM4GTg90xhUWJuNkfGTTeI13ZjacN8k5ZmkvOn62vRu4EjgbKpBu3sDS6jGAPRqZ3r97fpdx2Sfa8rt19K+NxP97rf3q59kB+BM4MHAwcCLqbbVxLwa3dtr2vtUkg2Br1Ntlz8rpVzWZ7wacQ7e1Gz4/+r7+3Xfdqq7vc+sbwcneTfwT1SD4M5g8n/yTf1x55N60N2OVIP4JtwFbNnjtY8EftXxvJ/YrgNekGTzrl+1j+tYvj7bMUm6ei0eU99fW9+/AvheKeUNnS9MsiXTH/jXxjqmZRr7Xj/m4+/7EqoxKS8tpfy+NyLJ82ay0rrX5kRgT+AvSinfn1GUGkn2WKhVqeaxeC9V9+2Xpqi3VY/ii+v7iVMDf1ffb9lSeK/N2rOCvgJ4KNWZJROuBp5Z/2oDIMm+wFqnpfYZ27epejwO7Cp/G1WCcur9XrF+eRjwsoknSRYDrwUuLqX8pi6+j65fv0leSXVWxHS1sY51mua+14/5+PtO9ED8fnvV4ypeP8P1fgp4FfB3pZSvz3BdGlH2WGgmXpjkcVT70TZUp9EtofqF9tIy9aQ/hybZAzilrr818HdUZ278oK5zNdWx4wOSLKf6Z35eKaXfY9QT7gR+kOT4Ot6DqA7XdJ4S+29UCcd3knwV2IGqW/7qtVfVV2z/A3wP+KckjwIuoToV98+AozsHaq6nfgEcl+TpVKf07k+1/Tr/iX2L6m96PNVZGE8CXsPavTzr0sY6pmM6+14/5uPvexrVKbr/k+RfqcY0vRG4lSpZ7luSg6i2w7nAiiR/1VXlv0opv7vfC6UuJhaaicPr+3up/mlfSvXP+vgeA9m6/TfVwL/9qY4T3041ov19pZTfQjWDZZLXAUdQndWwAdU/s6aJxT9THTd+F9WgtDOpfpmtmKhQSlma5O1Ux62PBs4H9qUa4U9HvWnHVkoZT/JSqu31qrretVTXnPh4d/310FVUc0R8lGpOhWuAV3WdqfDPwKbAq6k+44VUx/37mca9jXVMxzr3vX7Mx9+3lHJlqovqfZBqLpDfUM1Jchv3Pytmunap759V37ptzx966qRJ5f6DvSWpkmoG0ctKKfvOdyySBoNjLCRJUmtMLCRJUmtMLCRJUmscYyFJklpjj4UkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUaS7JfkpLkUeuod22SL8xNVJIGie3I8DGxkCRpCkn2TPL5JL9IsiLJr5L8W5KHznds66OUUuY7Bg2oJAuBRcDqMsWOlORa4KxSyn5zFJqkATEI7UiS84GtgP8ArgIeDRwIrAB2KaX8Zq5jWp9tMN8BaHCVUu4D7pvvOCQNrgFpRw4GflBKGZ8oSPId4PtUCcZ75iuw9ZGHQtRY97HRVN6T5Ia6u/B7SZ7Q43WHJbnfL5Nex1rr46rfSvLcJOcnWZnk0iTPrZe/vH6+KskFSXadrc8rqX2D0I6UUs7uTComyoA7gZ1mvhWGi4mF2nQ48AHgEuD/Ab8CTgM2neF6dwROAv4HeBfwQOB/krwGOAr4d+B9wA7AV5O4X0uDayDakSSbAZsBt88wrqHjoRC1IslDgEOAU4CXTBwrTfJPwLtnuPrHAs8upZxbr/NyYCnwOeBxpZRf1+V3Af8K7AGcNcP3lDTHBqwdOQjYEDh5hnENHX/ZqS0voPqSfaprANbRLaz78onGoHZeff/dicagq/zRLbynpLk3EO1Ikj2oeje+Wkr5bguxDRUTC7XlkfX9VZ2FpZTbgLtmuO7OLz2llN/WD6/vqjdR/sAZvp+k+bHetyNJHgf8F3AZ8NczjGkomVhoPkx2StnCSconGzE+WXn6C0fSAJrzdiTJI6jGe/wWeFEpZfmUEY4oEwu15br6/o87C+tjpt2Z/131si27yh+JpFG23rYjSR5ElVRsBOxdSrl5Nt5nGJhYqC1nAGPAW5J0ZvoH9ah7dX2/x0RBkk2B181adJIGwXrZjtTr/TbwR1Q9FVet4yUjzbNC1IpSym1JPkZ1Gte3knwb2BV4Ifc/Hes0quOdxyX5KFVX5P7AbcB2cxe1pPXJetyOfAnYDfg8sFOSzrkr7imlfKPl9xtoJhZq03uAVcABwPOoRlfvRXXq2O+VUsaSvAz4NNX56r+hGvV9F3D8HMYraf2zPrYju9T3+9e3TtcB32j5/Qaa1wqRJEmtcYyFJElqjYmFJElqjYmFJElqjYmFJElqTd+JRZJ9kjyn4/mbk1yc5KQkTqUsqRHbFmk4NOmx+CiwGCDJk4CPU00csj1wZHuhSRoxti3SEGgyj8X2wOX14z8HvlVKeXeSp1A1AiOpniXuYYBzx2s+bA7cVAb7/HHblh5sWzTP+m5bmiQW9wKb1I9fAJxYP76T+tfGiHoYcMN8B6GR9nDgxvkOYgZsW3qzbdF866ttaZJY/AA4MskPqaY4fVVd/hhGe+dfDnD99dezePHabeDY2BinnXYae+21F4sWLZqX4NZnbp+prWv7LFu2jEc84hEw+L9obVt6s22ZAbfR1KbaPk3bliaJxYFUU6i+AnhTKWUii3kh8J0G6xsqixcv7vnl32STTVi8eLE7dg9un6mN0PaxbZmCbUszbqOpzcb26TuxKKX8Gti3R/nbWolI0kiybZGGQ6OLkCVZAOwIbE3XmSWllLNbiEvSCLJtkQZf34lFkmcCJwGPBNK1uAALW4hL0oixbZGGQ5Mei88A5wMvBm6m+sJLM3bJJZewYMECHvzgB7PddtvNdziae7YtmjWXXHIJW2+9tW3LHGiSWPwx8IpSyi/bDkaj6YYbqgH/e+yxBytXruQBG2/ClT+/wgZg9Ni2qHWd7Ushti1zoMnMm+dRHQOVWnHHHXcAsNU+b+FB+76dVStXcPvtt89zVJoHti1q3UT7sni3l9u2zJEmPRafAj6eZFvgUmCsc2Ep5adtBKbRs2irP+K+NfZ+jzDbFs2ahYsfMt8hjIwmicXX6vvPd5QVqsFWDrCS1JRtizQEml4rRJLaZtsiDYEmE2RdNxuBSBptti3ScGg6QdYOwEHATnXR5cAnSilXtxSXpBFk2yINvr7PCkmyN9WXfTfgp/XtGcDPkixpNzxJo8K2RRoOTXosPgQcVUp5Z2dhkg8BHwZObyMwSSPHtkUaAk3msdgJOK5H+eeBx88sHEkjzLZFGgJNEovbgF16lO8C3DqTYCSNNNsWaQg0ORTyOeCzSR4N/Kgu2x14B3BkW4FJGjm2LdIQaJJYfABYDrwdOKIuuwk4DPhkO2FJGkG2LdIQaDKPRQGOAo5KsnldtrztwCSNFtsWaTg0msdigl96SbPBtkUaXNNKLJJcCOxZSrkryUVU8/b3VEp5SlvBSRputi3S8Jluj8U3gdUdj70EpaQ22LZIQ2ZaiUUp5f0djw+btWgkjRTbFmn4NJnS+1dJHtSjfMskv2onLEmjxrZFGg5NJsh6FLCwR/lGwMNnFI2kUfYobFukgTfts0KSvLTj6d5JftvxfCGwJ3BNW4FJGg22LdJw6ed002/U9wU4oWvZGHAt1cQ2ktSPb9T3ti3SEJh2YlFKWQCQ5Brg6aWU22ctKkkjw7ZFGi5NZt7cfjYCkTTabFuk4TDdCbLeCny2lLKqfjypUopz+kuaFtsWafhMt8fibcCXgFX148kUvFiQpOmzbZGGzHQnyNq+12NJmgnbFmn4NJkg69Akm/Qo3zjJoe2EJWnU2LZIw6HJBFnvAzbrUb5JvUySmrBtkYZAk8Qi9L5Q0M7AnTMLR9IIs22RhsC0E4skdyW5k+qL/4skd3bcfgucDny1aSBJ3pmkJDm6o+wBSY5NckeSe5J8Lck2Xa/bLskpSVYkuTXJR5Ns0FXnuUkuTLI6yS+T7Nfj/d+c5Nokq5Kcl2S3pp9F0vTZtkjDpZ95LA6i+kXxeapuyc5pd+8Fri2lnNskiCRPB/4W+GnXoqOAFwOvrN/vGODrwO716xYCpwC/AZ4NPBQ4kWq2vnfXdbav63wGeA3V9MD/luTmUsrSus6rgCOBA4Dz6s+6NMljSym3NvlMkqbtIGxbpKHRz8ybJ8DvZ8f7YSllTRsBJNmM6nSzNwLv6SjfAngD8OpSynfrstcDVyR5Zinlx8BewOOBF5RSbgEuTvJe4MNJDiul3Ev1hb6mlDIxJfAVSZ5DdWrb0rrsYOBzpZTj6/c5gKrR2R/4UBufU1Jvti3ScGky8+b3k+xQfxF3AP6+lHJrkhcCvy6l/KzPVR4LnFJKOSPJezrKnwosAs7oeO+fJ/k18Czgx/X9pfUXf8JS4F+AJwAX1XXOYG1LgaMBkmxYv9cRHe8znuSM+rU9JdmI6qqLEzYHGBsbY2xsbK26E8+7y1UZHx8HYKMNAsDGG2/M+Pi426u2rv1nWLaTbUvFtqVdE+3LAxYttG3pYap9qOl26juxSPKnwKnAD4E9gH8EbqUaYPUG4BV9rOsvgacAT++xeFvg3lLK3V3lt9TLJurc0mM506izOMnGwAOprqDYq87jpgj/XfQYqX7aaaexySb3O2MOgNNPP32K1enDL9yuevCSL3PjjTdy4403zm9A65nJ9p8VK1bMcSSzw7bl92xbZsGRr/0TeO2f2LZMotc+1LRt6TuxoOq+e08p5cgkyzvKvwscON2VJHkE8AlgSSllVYM45tsRVMdOJ2wO3LDXXnuxePHitSqOjY1x+umns2TJEhYtWjSXMQ6Eiy66iJtvvpl3nPprVq8p3HLSOzn77LPZeeed5zu09cK69p9ly5bNQ1SzwralYtvSoon25eATz+HmUz9t29Jlqn2oadvSJLF4EvDqHuW3Ag/uYz1PBbYGLkwyUbYQ2CPJgcDewIZJtuz6ZbEN1YAq6vvuEdbbdCybuN+mR51lpZSVSe4D7pukzm+YRCllNbB64vnEZ1i0aNGkX/Cplo2yBQuqk5NWrymsWlNYuXIlCxYscFt1mWz/GaLtZNuCbUvbJtqXVWP32bZModc+1HQ7NZnH4m6qEdLddgX66V86k6oh2aXjdj7VYKuJx2NUI60BSPJYYDtgYoT4ucCTkmzdsd4lwDLg8o46e7K2JRPrqAdhXdD1Pgvq541Goktq5G5sW6SB16TH4itUI6NfSXXe+YIkuwMfozoda1pKKcuByzrLkvwOuKOUcln9/DjgyPoc92XAp4Bz61HbAKdRfcm/mOQQqmOeHwSOrbN+qE4FOzDJR6hOZ3s+8BdUI7MnHAmckOR84CdUp4RtChw/3c8jacZsW6Qh0CSxeDfVaOvrqboXL6/vT6L64rXpbcA48DWqUdJLgb+bWFhKuS/JvlQjtc8FfgecABzaUeeaJC+mOm/974EbgL+eOM+8rnNykocAh1M1IBcD+3SNCJc0u2xbpCHQ5HTTe4E3JvkA8ESquf0vKqVcNdNgSinP7Xq+CnhzfZvsNdcBL1rHes+i6k6dqs4xVJPkSJoHti3ScGjSYwFAKeXXSa6vH/ea31+S+mbbIg22JoM3SfKGJJcBq4BVSS5L8tfthiZp1Ni2SIOvyQRZh1NNU/sp/jCy+VnAUUm2K6UcOumLJWkSti3ScGhyKORNwBtLKV/uKPvvJD+lahD88ktqwrZFGgJNDoUsojoPvNsFzGDMhqSRZ9siDYEmicUXqX5ZdPsbqgloJKkJ2xZpCDT9FfCGJHtRXQUQ4BlUs9admOT3c9yXUg6eYXySRottizTgmiQWTwQurB/vUN/fXt+e2FHP08Qk9cO2RRoCTSbIet5sBCJptNm2SMOh0TwWAEl2TLJ3ko3r51nXayRpXWxbpMHWd2KR5EFJzgR+AXybP1yN8LgkH28zOEmjw7ZFGg5NeiyOorrk8HbAio7yk4F92ghK0kiybZGGQJPBm3sBe5dSbujqobwKeGQrUUkaRbYt0hBo0mOxKWv/mpiwFbB6ZuFIGmG2LdIQaJJYnAO8tuN5SbIAOAT4XitRSRpFti3SEGhyKOQQ4MwkTwM2BD4CPIHqV8XuLcYmabTYtkhDoO8ei1LKZcBjgB8A36Tqvvw6sGsp5ep2w5M0KmxbpOHQV49FkkXAd4ADSin/NDshSRo1ti3S8Oirx6KUMgY8eZZikTSibFuk4dFk8Oa/A29oOxBJI8+2RRoCTQZvbgDsn+QFwAXA7zoXetVBSQ3ZtkhDYKZXN31M1zKvOiipKdsWaQh4dVNJ6wXbFmk4NL66qSRJUjcTC0mS1BoTC0mS1BoTC0mS1JppJRZJLkzywPrxoUk2md2wJI0C2xZp+Ey3x2Inqnn7Ad4HbDY74UgaMbYt0pCZ7ummFwPHJ/kBEOAfktzTq2Ip5fCWYpM0/C7GtkUaKtNNLPYD3g/sSzVRzQuBNT3qFcAvv6Tp2g/bFmmoTCuxKKVcCfwlQJJxYM9Syq2zGZik4WfbIg2fJjNveiaJpNbZtkjDocm1QkiyA3AQ1cArgMuBT5RSrm4pLkkjyLZFGnx9/0JIsjfVl3034Kf17RnAz5IsaTc8SaPCtkUaDk16LD4EHFVKeWdnYZIPAR8GTm8jMEkjx7ZFGgJNjmnuBBzXo/zzwONnFo6kEWbbIg2BJonFbcAuPcp3ARzNLakp2xZpCDQ5FPI54LNJHg38qC7bHXgHcGRbgUkaObYt0hBoklh8AFgOvB04oi67CTgM+GQ7YUkaQbYt0hDo+1BIqRxVSnk4sAWwRSnl4aWUT5RSSj/rSvKuJP+bZHmSW5N8I8lju+o8IMmxSe5Ick+SryXZpqvOdklOSbKiXs9Hk2zQVee59QWPVif5ZZL9esTz5iTXJlmV5Lwku/XzeSQ1Z9siDYcZTUhTSlleSlk+g1X8KXAs8ExgCbAIOC3Jph11jgJeAryyrv8w4OsTC5MsBE4BNgSeDbyOaprgwzvqbF/X+R7V8dqjgX+rT2+bqPMqqu7W9wNPAS4BlibZegafT1IDti3S4Go0QVZbSin7dD6vM/1bgacCZyfZAngD8OpSynfrOq8HrkjyzFLKj4G9qEaMv6CUcgtwcZL3Ah9Oclgp5V7gAOCaUsrb67e6IslzgLcBS+uyg4HPlVKOr9/nAODFwP5Up8FJGhC2LdL8mdfEooct6vs76/unUv3SOGOiQinl50l+DTwL+HF9f2n9xZ+wFPgX4AnARXWdM1jbUqpfFyTZsH6vieO6lFLGk5xRv/Z+kmwEbNRRtDnA2NgYY2Nja9WdeN5drsr4+DgAG20QADbeeGPGx8fdXrV17T9up2mxbRlRE+3LAxYttG3pYap9qOl2Wm8SiyQLqL6MPyylXFYXbwvcW0q5u6v6LfWyiTq39FjONOosTrIx8EBg4SR1HjdJyO8C3tddeNppp7HJJpv0fMHppzu/z1Q+/MLtqgcv+TI33ngjN9544/wGtJ6ZbP9ZsWLFHEcyWGxbBHDka/8EXvsnti2T6LUPNW1b+koskiwCvgMcUEq5qtE7Tu5Y4InAc1pe72w5grVPgdscuGGvvfZi8eLFa1UcGxvj9NNPZ8mSJSxatGguYxwIF110ETfffDPvOPXXrF5TuOWkd3L22Wez8847z3do64V17T/Lli2bh6jaZduyFtuWFk20LwefeA43n/pp25YuU+1DTduWvhKLUspYkic3eqcpJDkG2BfYo5RyQ8ei3wAbJtmy65fFNvWyiTrdI6y36Vg2cb9NjzrLSikrk9wH3DdJnd/QQyllNbC64zMAsGjRokm/4FMtG2ULFlRjiFevKaxaU1i5ciULFixwW3WZbP8Zhu1k2/IHti3tmmhfVo3dZ9syhV77UNPt1OSskH+nGvQ0Y6kcA7wMeH4p5ZquKhcAY8CeHa95LLAdcG5ddC7wpK4R1kuAZVQXNJqosydrWzKxjnoQ1gVd77Ogfn4ukuaCbYs0BJqMsdgA2D/JC6i+ML/rXFhKObiPdR0LvBr4M2B5konjlr8tpawspfw2yXHAkUnupPpCfwo4tx61DXAa1Zf8i0kOoTrm+UHg2DrzB/gMcGCSj1Bdd+D5wF9QjcyecCRwQpLzgZ9QXbp5U+D4Pj6PpOZsW6Qh0CSxeCJwYf34MV3L+prEBnhTfX9WV/nrgS/Uj98GjANfoxopvRT4u9+/YSn3JdmXaqT2uVSN0QnAoR11rknyYqrz1v8euAH461LK0o46Jyd5CNU56tsCFwP7dI0IlzR7bFukIdB3YlFKeV5bb15KyTTqrALeXN8mq3Md8KJ1rOcsYNd11DkGOGZdMUlqn22LNBwaz7yZZMcke9enVJGJEUaSNAO2LdJg6zuxSPKgJGcCvwC+DTy0XnRcko+3GZyk0WHbIg2HJj0WR1GNpt4O6Jw942Rgn56vkKR1s22RhkCTwZt7AXuXUm7o6qG8CnhkK1FJGkW2LdIQaNJjsSlr/5qYsBUdk7pIUp9sW6Qh0CSxOAd4bcfzUk/4cgjVpYMlqQnbFmkINDkUcghwZpKnARsCH6G60t9WwO4txiZptNi2SEOg7x6L+uqAjwF+AHyTqvvy68CupZSr2w1P0qiwbZGGQ6PLppdSfgv8U8uxSBpxti3S4GuUWCR5INXFgnaqiy4Hji+l3NlWYJJGj22LNPiaTJC1B3At8FbggfXtrcA19TJJ6pttizQcmvRYHEs1Yc2bSin3ASRZCHy6Xvak9sKTNEJsW6Qh0OR00x2Bj0988aG6CiDVpYF3bCswSSPHtkUaAk0Siwv5w/HPTjsBl8wsHEkjzLZFGgLTOhSS5MkdTz8JfCLJjsCP67JnUl16+J3thidpmNm2SMNnumMsLgYK0DmB/0d61DuJ6hipJE3Hxdi2SENluonF9rMahaRRZdsiDZlpJRallOtmOxBJo8e2RRo+TSfIehjwHGBrugaAllI+2UJckkaQbYs0+PpOLJLsB/wrcC9wB9Xx0QmFagCWJPXFtkUaDk16LD4AHA4cUUoZbzkeSaPLtkUaAk3msdgE+IpffEkts22RhkCTxOI44JVtByJp5Nm2SEOgyaGQdwHfSrIPcCkw1rmwlHJwG4FJGjm2LdIQaJpY7A1cWT/vHmAlSU3YtkhDoEli8XZg/1LKF1qORdJos22RhkCTMRargR+2HYikkWfbIg2BJonFJ4C3tB2IpJFn2yINgSaHQnYDnp9kX+Bn3H+A1cvbCEzSyLFtkYZAk8TibuDrLcchSXdj2yINvL4Ti1LK62cjEEmjzbZFGg5NxlhIkiT11OQiZNcwxTnlpZRHzygiSSPJtkUaDk3GWBzd9XwRsCuwD/DRmQYkaWQd3fXctkUaQE3GWHyiV3mSNwNPm3FEkkaSbYs0HNocY3Eq8Octrk+SwLZFGihtJhavAO5scX2SBLYt0kBpMnjzItYeYBVgW+AhwN+1FJekEWPbIg2HJoM3v9H1fBy4DTirlPLzGUckaVR9o+u5bYs0gJoM3nz/bASyPqgHif0/ql9JlwBvKaX8ZH6jkkbDMLctYPui0eEEWbUkrwKOBN4PPIXqi780ydbzGpikgWf7olEy7cQiyXiS+9ZxWzObwc6yg4HPlVKOL6VcDhwArAD2n9+wpOE2Am0L2L5ohPRzKORlUyx7FvBWBrQHJMmGwFOBIybKSinjSc6g+my9XrMRsFFH0eYAd955J2Nja12UkbGxMVasWME555zDggULWLBgAePj4/e7B6ZVNtv15/o9r7zySjbbbDNy53Vk7D4e8IAHcMEFF3DPPffM2zZYn+qvWbOGFStWcMcdd7Bo0aL77YvLly/vtYsOkqFtW6D/9qXNtgXW7317LupfddVVbLbZZiy855ZptS2D8JnarD8+Pj5p+9K4bSmlNL4BjwX+C1gDnAA8cibrm68b8DCq0ejP6ir/CHDeJK85rH6NN2/ry+2P5vu71OJ3cijalibtC7Yt3ta/W19tS5OzQkjyMKpjha8DlgK7lFIua7KuAXYE1THTTlvR+3z7zYEbgIcDA//zcha4faY2ne2zOXDTnEU0S2xbANuWtrmNprau7dN329JXYpFkC+DdwFuAi4E9Synn9LOO9dTtwH3ANl3l2wC/6fWCUspqYHVX8bJedZNMPFxeSulZZ5S5faY2ze0z0NttiNsW6LN9sW1pl9toatPYPn1vs34Gbx4C/ArYF/i/pZRnD8sXv5RyL3ABsOdEWZIF9fNz5ysuaRQMc9sCti8aPamP6a27YjIOrATOoMq+eyqlvLyd0OZWfTrYCcDfAj8BDgL+AnhcKeWWGa57MfBbYAsz5vtz+0xt2LfPsLctMHvty7DvG21wG01tNrZPP4dCTqQaxDGUSiknJ3kIcDjVBDYXA/vMNKmoraY6btzdvamK22dqw759hrptgVltX4Z932iD22hqrW+fafdYSJIkrcvAnhsuSZLWPyYWkiSpNSYWkiSpNSYWkiSpNSYWsyTJVkm+lGRZkruTHJdks3W85qwkpev2mbmKeTYleXOSa5OsSnJekt3WUf+VSX5e1780yYvmKtb50M/2SbJfj/1k1VzGq/lj27I225Z1m+v2xcRi9nwJeAKwhGrinz2Az07jdZ8DHtpxO2S2Apwr/V4yOsmzgS8DxwG7At8AvpHkiXMS8BxreEntZay9nzxytuPUesO2pWbbsm7z0r7M9wV6hvEG7ER1Xv7TOsr2AcaBh03xurOAo+c7/lnYHucBx3Q8XwDcCLxzkvonA9/qKvsx8Jn5/izryfbZD7h7vuP2Nvc325b7fS7blva30YzbF3ssZsezqP4w53eUnUH15X/GOl77miS3J7ksyRFJNpm1KOdAxyWjz5goK6WM1897XpK+Lj+jq2zpFPUHVsPtA7BZkuuSXJ/km0meMMuhav1g21KzbVm3+WpfGl3dVOu0LXBrZ0EpZU2SO+tlkzkJuI7qSnJPBj5MdfnogZ3KGHgwsBDonmHwFuBxk7xm20nqT7XtBlWT7XMlsD/wU2AL4B+AHyV5QinlhtkKVOsF25Y/sG1Zt3lpX0ws+pDkQ8A71lFtp6brL6V0Hie9NMnNwJlJdiilXN10vRoupZRz6bh4VZIfAVdQXYfivfMVl5qzbdH6oo32xcSiPx8HvrCOOr+iuhTyWgNjkmwAbMUkl2GfxHn1/Y7AoH75+74kfV3eT/1B1mT7rKWUMpbkIqr9RIPJtqV/ti3rNi/ti2Ms+lBKua2U8vN13O6lyva2TPLUjpc/n2p7n9dz5b3tUt/f3M4nmHul2SWjz+2sX1syRf2B1XD7rCXJQuBJDPB+MupsW/pn27Ju89a+zPeI1WG9AacCFwK7AbsDvwBO6lj+R8DPgd3q5ztQdTM9FXgU8FKqXxLfn+/P0sK2eBWwCngdVXfuvwJ3AdvUy08Ejuio/2xgDHg71XHAw4B7gSfO92dZT7bPocBewKOpTh/7MtVlxx8/35/F25zsL7Ytf/isti3tb6MZty/z/qGH9UbVNXkSsJzqWvefBzbrWP4oqtPGnls/fwTwfeCOeie4CvgIsHi+P0tL2+NAqsFjq6l+WT2jY9lZwBe66r+SahDRauAy4EXz/RnWl+0DHNVR9zfAKcCu8/0ZvM3ZvmLbsvb2sG1pcRu10b542XRJktQax1hIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFho3iW5NslB8x2HpOFi2zI/TCwkSVJrTCwkSVJrTCw0I0n+JslN9aV4O8u/meTzSXaoH9+S5J4k/5vkBVOs71FJSpJdOsq2rMue21H2xCSn1uu8JckXkzx4Fj6ipHlg2zK4TCw0U/8BPAh43kRBkq2AfYAvAZsB3wb2BHYFvgP8T5Ltmr5hki2B7wIXAU+r32sb4KtN1ylpvWPbMqA2mO8ANNhKKXclORV4NXBmXfwK4Hbge6WUceCSjpe8N8nLgJcCxzR82wOBi0op754oSLI/cH2Sx5RSftFwvZLWE7Ytg8seC7XhS8CfJ9mofv4a4CullPEkmyX5WJIrktyd5B5gJ6DxrwpgZ+B5dVflPfU6f14v22EG65W0frFtGUD2WKgN/wMEeHGS/wX+BHhbvexjwBLgH4BfAiuB/wQ2nGRd4/V9OsoWddXZrH7Pd/R4/c39Bi9pvWXbMoBMLDRjpZRVSb5O9WtiR+DKUsqF9eLdgS+UUv4LIMlmwKOmWN1t9f1DqY5zAuzSVedC4M+Ba0spa2b8ASStl2xbBpOHQtSWLwEvBvavH0+4Cnh5kl2S7AycxBT7XSllJfBj4J1Jdkryp8AHu6odC2wFfDnJ0+vR4XsnOT7JwhY/k6T5Z9syYEws1JbvAncCj6X6gk84GLgL+BFVF+NSql8FU9mfqjftAuBo4D2dC0spN1H9WlkInAZcWte7mz90d0oaDrYtAyallPmOQZIkDQl7LCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDTnkuyXpCR51HzHIklql4mFJElqTUop8x2DRkyShcAiYHVxB5SkoWJiIUmSWuOhEM25zjEWSU5IcnuSRT3qnZbkyvmIUZLUjImF5tsXgQcBe3cWJtkWeD7w7/MRlCSpGRMLzbfvAjcAf9VV/n+p9k8TC0kaICYWmlellHHgS8BLk2zeseg1wI9KKdfMT2SSpCZMLLQ+OBHYGHgZQJLHAk+lOkwiSRogJhaad6WUy4EL+MPhkL8C7gW+Om9BSZIaMbHQ+uJE4PlJHgq8GjillHLXPMckSeqTiYXWF18GCvAJ4NE4aFOSBpKJhdYLpZTbgO8ArwTuBk6Z14AkSY2YWGh9cmJ9/9VSyup5jUSS1IiJheZcKeULpZSUUq7tWnRvfe9hEEkaUF4rROuNJN8CdgJ29OJkkjSYNpjvAKQkfwk8GXgx8PcmFZI0uOyx0LxLUoB7gJOBA0opa+Y5JElSQ30nFkn2Ae4ppfygfv5m4I3A5cCbnXtAkqTR1WTw5keBxQBJngR8HPg2sD1wZHuhSZKkQdNkjMX2VL0TAH8OfKuU8u4kT6FKMCRJ0ohqkljcC2xSP34Bf5h74E7qnoxRlCTAw4Dl8x2LRtLmwE0OfJU035okFj8AjkzyQ2A34FV1+WOAG9oKbAA9jNH+/Jp/DwdunO8gJI22JonFgcCngVcAbyqlTDRkL6SaknlULQe4/vrrWbx47Y6bsbExTjvtNPbaay8WLVo0L8Gtz9w+U1vX9lm2bBmPeMQjwN4ySeuBvhOLUsqvgX17lL+tlYgG3OLFi3smFptssgmLFy/2H2cPbp+puX0kDZJGE2QlWQDsCGxN15klpZSzW4hLkiQNoL4TiyTPBE4CHgmka3EBFrYQlyRJGkBNeiw+A5xPNf3yzVTJhDRjl1xyCQsWLODBD34w22233XyHI0lqoEli8cfAK0opv2w7GI2mG26oTqbZY489WLlyJQ/YeBOu/PkVJheSNICazLx5HtX4CqkVd9xxBwBb7fMWHrTv21m1cgW33377PEclSWqiSY/Fp4CPJ9kWuBQY61xYSvlpG4Fp9Cza6o+4b41H1iRpkDVJLL5W33++o6xQDeR08KYkSSOs6bVCJEmS7qfJBFnXzUYgkiRp8DWdIGsH4CBgp7rocuATpZSrW4pLkiQNoL7PCkmyN1UisRvw0/r2DOBnSZa0G54kSRokTXosPgQcVUp5Z2dhkg8BHwZObyMwSZI0eJrMY7ETcFyP8s8Dj59ZOJIkaZA1SSxuA3bpUb4LcOtMgpEkSYOtyaGQzwGfTfJo4Ed12e7AO4Aj2wpMkiQNniaJxQeA5cDbgSPqspuAw4BPthOWJEkaRE3msSjAUcBRSTavy5a3HZgkSRo8jeaxmGBCIUmSOk0rsUhyIbBnKeWuJBdRXROkp1LKU9oKTpIkDZbp9lh8E1jd8dhLUEqSpPuZVmJRSnl/x+PDZi0aSZI00JpM6f2rJA/qUb5lkl+1E5YkSRpETSbIehSwsEf5RsDDZxSNJEkaaNM+KyTJSzue7p3ktx3PFwJ7Ate0FZgkSRo8/Zxu+o36vgAndC0bA66lmjRLkiSNqGknFqWUBQBJrgGeXkq5fdaikiRJA6nJzJvbz0YgkiRp8E13gqy3Ap8tpayqH0+qlOL1QiRJGlHT7bF4G/AlYFX9eDIFL0QmSdLImu4EWdv3eixJktSpyQRZhybZpEf5xkkObScsSZI0iJpMkPU+YLMe5ZvUyyRJ0ohqkliE3hch2xm4c2bhSJKkQTbtxCLJXUnupEoqfpHkzo7bb4HTga82DSTJO5OUJEd3lD0gybFJ7khyT5KvJdmm63XbJTklyYoktyb5aJINuuo8N8mFSVYn+WWS/Xq8/5uTXJtkVZLzkuzW9LNIkjSq+pnH4iCq3orPUx3y6JzS+17g2lLKuU2CSPJ04G+Bn3YtOgp4MfDK+v2OAb4O7F6/biFwCvAb4NnAQ4ETqWYCfXddZ/u6zmeA11BNPf5vSW4upSyt67wKOBI4ADiv/qxLkzy2lHJrk88kSdIo6mfmzRPg9zNv/rCUsqaNAJJsRnUq6xuB93SUbwG8AXh1KeW7ddnrgSuSPLOU8mNgL+DxwAtKKbcAFyd5L/DhJIeVUu6lShauKaVMTDd+RZLnUJ02u7QuOxj4XCnl+Pp9DqBKaPYHPtTG55QkaRT0PcailPJ94JFJPpjky0m2BkjywiRPaBDDscAppZQzusqfCiwCfl9eSvk58GvgWXXRs4BL66RiwlJgMfCEjjrd6146sY4kG9bv1fk+4/XzZyFJkqat7ym9k/wpcCrwQ2AP4B+BW6kGb74BeEUf6/pL4CnA03ss3ha4t5Ryd1f5LfWyiTq39FjONOosTrIx8ECqq7P2qvO4KWLfiOpS8RM2BxgbG2NsbGytuhPPu8tVGR8fB2CjDQLAxhtvzPj4uNurtq79x+0kaX3Sd2JBdWjgPaWUI5Ms7yj/LnDgdFeS5BHAJ4AlpZRVDeKYb++ix+m1p512Gptscr9pPgA4/fTTZzumgfbhF25XPXjJl7nxxhu58cYb5zeg9cxk+8+KFSvmOBJJmlyTxOJJwKt7lN8KPLiP9TwV2Bq4MMlE2UJgjyQHAnsDGybZsqvXYhuqwZrU991nb2zTsWzifpsedZaVUlYmuQ+4b5I6v2FyR1AN+JywOXDDXnvtxeLFi9eqODY2xumnn86SJUtYtGjRFKscTRdddBE333wz7zj116xeU7jlpHdy9tlns/POO893aOuFde0/y5Ytm4eoJKm3JonF3VRnX1zTVb4r0M9PzDOpkpROxwM/Bz4MXE91dseewNcAkjwW2A6YOPvkXOAfk2zdcfbGEmAZcHlHnRd1vc+SiXWUUu5NckH9Pt+o32dB/fyYyYIvpawGVk88n0iOFi1aNGnyMNWyUbZgQTXUZ/Wawqo1hZUrV7JgwQK3VZfJ9h+3k6T1SZPE4itUZ128kmpOiwVJdgc+RnWq57SUUpYDl3WWJfkdcEcp5bL6+XHAkfX8GcuATwHn1meEAJxGlUB8MckhVOMpPggcW//jh+o00wOTfITqVNnnA39BddbHhCOBE5KcD/yE6nTTTakSHUmSNE1NEot3U53JcT3VoYvL6/uTqP6pt+ltwDhVj8VGVGdz/N3EwlLKfUn2Bf6Fqgfid8AJwKEdda5J8mKqOTH+HrgB+OuJOSzqOicneQhwOFVycjGwT9fZJpIkaR36TizquSHemOQDwBOprhtyUSnlqpkGU0p5btfzVcCb69tkr7mO+x/q6K5zFtWhmqnqHMMUhz4kSdK6NemxAKCU8usk19ePe107RJIkjZgmFyEjyRuSXAasAlYluSzJX7cbmiRJGjRNJsg6nGoK7E/xh7MzngUclWS7Usqhk75YkiQNtSaHQt4EvLGU8uWOsv9O8lOqZMPEQpKkEdXkUMgi4Pwe5RcwgzEbkiRp8DVJLL5I1WvR7W+orlIqSZJGVNMehjck2QuYmKjqGVQzYp6Y5PfTXJdSDp5hfJIkaYA0SSyeCFxYP96hvr+9vj2xo56noEqSNGKaTJD1vNkIRJIkDb5G81gAJNkxyd5JNq6fZ12vkSRJw63vxCLJg5KcCfwC+DbVlU4Bjkvy8TaDkyRJg6VJj8VRVJcz3w5Y0VF+MrBPG0FJkqTB1GTw5l7A3qWUG7qOflwFPLKVqCRJ0kBq0mOxKWv3VEzYClg9s3AkSdIga5JYnAO8tuN5SbIAOAT4XitRSZKkgdTkUMghwJlJngZsCHwEeAJVj8XuLcYmSZIGTN89FqWUy4DHAD8Avkl1aOTrwK6llKvbDU+SJA2SvnoskiwCvgMcUEr5p9kJSZIkDaq+eixKKWPAk2cpFkmSNOCaDN78d+ANbQciSZIGX5PBmxsA+yd5AXAB8LvOhV7RVJKk0TXTq5s+pmuZVzSVJGmEeXVTSZLUmsZXN5UkSepmYiFJklpjYiFJklpjYiFJklozrcQiyYVJHlg/PjTJJrMbliRJGkTT7bHYieqaIADvAzabnXAkSdIgm+7pphcDxyf5ARDgH5Lc06tiKeXwlmKTJEkDZrqJxX7A+4F9qSbBeiGwpke9AphYSJI0oqaVWJRSrgT+EiDJOLBnKeXW2QxMkiQNniYzb3omiSRJ6qnJtUJIsgNwENWgToDLgU+UUq5uKS5JkjSA+u59SLI3VSKxG/DT+vYM4GdJlrQbniRJGiRNeiw+BBxVSnlnZ2GSDwEfBk5vIzBJkjR4moyX2Ak4rkf554HHzywcSZI0yJokFrcBu/Qo3wXwTBFJkkZYk0MhnwM+m+TRwI/qst2BdwBHthWYJEkaPE0Siw8Ay4G3A0fUZTcBhwGfbCcsSZI0iPo+FFIqR5VSHg5sAWxRSnl4KeUTpZTSz7qSvCvJ/yZZnuTWJN9I8tiuOg9IcmySO5Lck+RrSbbpqrNdklOSrKjX89EkG3TVeW59MbXVSX6ZZL8e8bw5ybVJViU5L8lu/XweSZJG3YwmuyqlLC+lLJ/BKv4UOBZ4JrAEWASclmTTjjpHAS8BXlnXfxjw9YmFSRYCpwAbAs8GXkc1BfnhHXW2r+t8j2osyNHAv9Wnzk7UeRXVoZz3A08BLgGWJtl6Bp9PkqSR0miCrLaUUvbpfF73ItwKPBU4O8kWwBuAV5dSvlvXeT1wRZJnllJ+DOxFdTbKC0optwAXJ3kv8OEkh5VS7gUOAK4ppby9fqsrkjwHeBuwtC47GPhcKeX4+n0OAF4M7E91iq0kSVqHeU0setiivr+zvn8qVS/GGRMVSik/T/Jr4FnAj+v7S+ukYsJS4F+AJwAX1XXOYG1LqXouSLJh/V4TY0YopYwnOaN+7f0k2QjYqKNoc4CxsTHGxsbWqjvxvLtclfHxcQA22iAAbLzxxoyPj7u9auvaf9xOktYn601ikWQB1T/6H5ZSLquLtwXuLaXc3VX9lnrZRJ1beixnGnUWJ9kYeCCwcJI6j5sk5HcB7+suPO2009hkk016vuD00507bCoffuF21YOXfJkbb7yRG2+8cX4DWs9Mtv+sWLFijiORpMn1lVgkWQR8BziglHJVy7EcCzwReE7L650tR7D26bWbAzfstddeLF68eK2KY2NjnH766SxZsoRFixbNZYwD4aKLLuLmm2/mHaf+mtVrCrec9E7OPvtsdt555/kObb2wrv1n2bJl8xCVJPXWV2JRShlL8uS2g0hyDLAvsEcp5YaORb8BNkyyZVevxTb1sok63WdvbNOxbOJ+mx51lpVSVia5D7hvkjq/oYdSympgdcdnAGDRokWTJg9TLRtlCxZUY4hXrymsWlNYuXIlCxYscFt1mWz/cTtJWp80OSvk36kGVM5YKscALwOeX0q5pqvKBcAYsGfHax4LbAecWxedCzyp6+yNJcAyqoulTdTZk7UtmVhHPcDzgq73WVA/PxdJkjQtTcZYbADsn+QFVP+Mf9e5sJRycB/rOhZ4NfBnwPIkE2MifltKWVlK+W2S44Ajk9xJlSx8Cji3PiME4DSqBOKLSQ6hGk/xQeDYulcB4DPAgUk+QnVNk+cDf0F11seEI4ETkpwP/ITqsvCbAsf38XkkSRppTRKLJwIX1o8f07WsrwmygDfV92d1lb8e+EL9+G3AOPA1qrMwlgJ/9/s3LOW+JPtSnQVyLlWicwJwaEeda5K8mGpOjL8HbgD+upSytKPOyUkeQjX/xbbAxcA+XWebSJKkKfSdWJRSntfWm5dSMo06q4A317fJ6lwHvGgd6zkL2HUddY4BjllXTJIkqbfGM28m2THJ3vXpmmRi9KIkSRpZfScWSR6U5EzgF8C3gYfWi45L8vE2g5MkSYOlSY/FUVRnamwHdM7MczKwT89XSJKkkdBk8OZewN6llBu6jn5cBTyylagkSdJAatJjsSlr91RM2IqOCaMkSdLoaZJYnAO8tuN5qSeTOoTqsuSSJGlENTkUcghwZpKnARsCH6G6iuhWwO4txiZJkgZM3z0W9ZVHHwP8APgm1aGRrwO7llKubjc8SZI0SBpdNr2U8lvgn1qORZIkDbhGiUWSB1JdiGynuuhy4PhSyp1tBSZJkgZPkwmy9gCuBd4KPLC+vRW4pl4mSZJGVJMei2OpJsN6UynlPoAkC4FP18ue1F54kiRpkDQ53XRH4OMTSQVUVxiluuz4jm0FJkmSBk+TxOJC/jC2otNOwCUzC0eSJA2yaR0KSfLkjqefBD6RZEfgx3XZM6kua/7OdsOTJEmDZLpjLC4GCtB5cZCP9Kh3EtX4C0mSNIKmm1hsP6tRSJKkoTCtxKKUct1sByJJkgZf0wmyHgY8B9iargGgpZRPthCXJEkaQH0nFkn2A/4VuBe4g2rsxYRCNbhTkiSNoCY9Fh8ADgeOKKWMtxyPJEkaYE3msdgE+IpJhSRJ6tYksTgOeGXbgUiSpMHX5FDIu4BvJdkHuBQY61xYSjm4jcAkSdLgaZpY7A1cWT/vHrwpSZJGVJPE4u3A/qWUL7QciyRJGnBNxlisBn7YdiCSJGnwNUksPgG8pe1AJEnS4GtyKGQ34PlJ9gV+xv0Hb768jcAkSdLgaZJY3A18veU4JEnSEOg7sSilvH42ApEkSYOvyRgLSZKknppchOwappivopTy6BlFJEmSBlaTMRZHdz1fBOwK7AN8dKYBSZKkwdVkjMUnepUneTPwtBlHJEmSBlabYyxOBf68xfVJkqQB02Zi8QrgzhbXJ0mSBkyTwZsXsfbgzQDbAg8B/q6luCRJ0gBqMnjzG13Px4HbgLNKKT+fcUSSJGlgNRm8+f7ZCESSJA0+J8jqkOTNSa5NsirJeUl2m++YJEkaJNNOLJKMJ7lvHbc1sxnsbEryKuBI4P3AU4BLgKVJtp7XwCRJGiD9HAp52RTLngW8lcHuATkY+Fwp5XiAJAcALwb2Bz40n4FJkjQopp1YlFK+2V2W5LFU/3RfAnwJOLS90OZOkg2BpwJHTJSVUsaTnEGVNPV6zUbARh1FmwPceeedjI2tdSV5xsbGWLFiBeeccw4LFixgwYIFjI+P3+8emFbZbNef6/e88sor2Wyzzcid15Gx+3jAAx7ABRdcwD333DNv22B9qr9mzRpWrFjBHXfcwaJFi+63Ly5fvrzXLipJ86LJWSEkeRjVIYPXAUuBXUopl7UZ2Bx7MLAQuKWr/BbgcZO85l3A+7oLt99++3YjG1F/8zd/M98hDKLNgWXzHYSk0dZXYpFkC+DdwFuAi4E9SynnzEJcg+AIqjEZnbai9yRhmwM3AA8H/Hl5f26fqU1n+2wO3DRnEUnSJKadWCQ5BHgH8Bvg//Y6NDLAbgfuA7bpKt+G6vPeTyllNbC6q7jnr8UkEw+Xl1L8RdnF7TO1aW4ft5uk9UI/PRYfAlYCvwRel+R1vSqVUl7eRmBzqZRyb5ILgD2pJwBLsqB+fsw8hiZJ0kDpJ7E4kbWn8h42RwInJDkf+AlwELApcPx8BiVJ0iDp56yQ/WYxjnlXSjk5yUOAw6mufXIxsE8ppXtAZxOrqQa7dh86UcXtMzW3j6SBkVKGuRNCkiTNpUGe0EqSJK1nTCwkSVJrTCwkSVJrTCwkSVJrTCxmSZKtknwpybIkdyc5Lslm63jNWUlK1+0zcxXzbOr3kvRJXpnk53X9S5O8aK5inQ/9bJ8k+/XYT1bNZbySNBkTi9nzJeAJwBJgX2AP4LPTeN3ngId23A6ZrQDnSr+XpE/ybODLwHHArlSTln0jyRPnJOA51u/2qS1j7f3kkbMdpyRNh6ebzoIkOwGXA08vpZxfl+0DfBt4eCml5zUdkpwFXFxKOWiOQp0TSc4D/reUcmD9fAFwPfCpUsr9Lkmf5GRg01LKvh1lP6baNgfMUdhzpsH22Q84upSy5VzGKUnTYY/F7HgWcPdEUlE7AxgHnrGO174mye1JLktyRJJNZi3KOdBxSfozJspKKeP1856XpK/Lz+gqWzpF/YHVcPsAbJbkuiTXJ/lmkifMcqiSNC2NLpuuddoWuLWzoJSyJsmd9bLJnARcR3WVyicDHwYeCwzc9Vc6NLkk/baT1J9q2w2qJtvnSmB/4KfAFsA/AD9K8oRSyg2zFagkTYeJRR+SfIjqCq9T2anp+kspnWMwLk1yM3Bmkh1KKVc3Xa+GSynlXODciedJfgRcAfwt8N75ikuSwMSiXx8HvrCOOr+iutT6WgPvkmwAbMUkl2GfxHn1/Y7AoCYWfV+Svi7vp/4ga7J91lJKGUtyEdV+IknzyjEWfSil3FZK+fk6bvdS/ZrcMslTO17+fKrtfV7Plfe2S31/czufYO7V22PikvTAWpekP3eSl53bWb+2ZIr6A6vh9llLkoXAkxjg/UTS8LDHYhaUUq5I8h3gc0kOABYBxwBfmTgjJMkfAWcCry2l/CTJDsCrqc4cuYNqjMVRwNmllJ/Ox+do0ZSXpE9yInBjKeVddf1PAN9P8nbgFOAvgacBfzPHcc+VvrZPkkOBHwO/BLYE/h/V6ab/NteBS1I3E4vZ8xqqZOJMqrNBvga8tWP5IqqBmRNnfdwLvIA//FO5vn7NB+cm3NkzjUvSb0e1jSbq/yjJq6k++z8DVwH/p5Ry2ZwGPkf63T7AA6nmO9kWuIuqx+PZpZTL5yxoSZqE81hIkqTWOMZCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRC8y7JtUkOmu84JEkzZ2IhSZJaY2IhSZJaY2KhGUnyN0luqq/I2Vn+zSSfT7JD/fiWJPck+d8kL5hifY9KUpLs0lG2ZV323I6yJyY5tV7nLUm+mOTBs/ARJUl9MLHQTP0H8CDgeRMFSbYC9gG+BGxGdcXWPYFdge8A/5Nku6ZvmGRL4LvARVRXPd0H2Ab4atN1SpLa4dVNNSOllLuSnEp1yfcz6+JXALcD3yuljAOXdLzkvUleBryU6uqvTRwIXFRKefdEQZL9geuTPKaU8ouG65UkzZA9FmrDl4A/T7JR/fw1wFdKKeNJNkvysSRXJLk7yT3ATlSXAm9qZ+B59WGQe+p1/rxetsMM1itJmiF7LNSG/wECvDjJ/wJ/ArytXvYxYAnwD8AvgZXAfwIbTrKu8fo+HWWLuupsVr/nO3q8/uZ+g5cktcfEQjNWSlmV5OtUPRU7AleWUi6sF+8OfKGU8l8ASTYDHjXF6m6r7x9KNYYCYJeuOhcCfw5cW0pZM+MPIElqjYdC1JYvAS8G9q8fT7gKeHmSXZLsDJzEFPtdKWUl8GPgnUl2SvKnwAe7qh0LbAV8OcnT6zNP9k5yfJKFLX4mSVKfTCzUlu8CdwKPpUoeJhwM3AX8iOrwxVKqHoep7E/Vm3YBcDTwns6FpZSbqHpCFgKnAZfW9e7mD4dSJEnzIKWU+Y5BkiQNCXssJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa/5/Gcm/YuSzxLYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_64-aa', 'log_64-ab'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TODO\n",
"\n",
"- Completar analisis de memoria y cpu\n",
"- Investigar mas el tema de llamadas a funciones repetidas (gasdev, cov_value, ran2)\n",
"- Escribir conclusiones (proximos pasos y cosas que no se consideran importantes)\n",
"- Conseguir ayuda en tupac para poder correrlo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}