You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/fftma_module/gen/analysis.ipynb

10371 lines
1.0 MiB

{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Análisis de la etapa de generación de medios"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import matplotlib.pyplot as plt\n",
"import numpy as np \n",
"import plotly.express as px"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Armado del dataset\n",
"\n",
"En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU. Con esto buscamos identificar:\n",
"- Qué funciones son las que consumen mayor cantidad de memoria\n",
"- Qué funciones son las que tienen un mayor tiempo de procesamiento\n",
"- Qué funciones son las que son invocadas una mayor cantidad de veces\n",
"\n",
"Una vez identificados estos puntos de análisis podemos proponer soluciones para mejorar estas estadísticas."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"def get_function_name(function_name):\n",
" return function_name[10:].rsplit(\".c\")[0]"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [],
"source": [
"relations = {\n",
" \"Py_kgeneration\": ['generate', 'fftma2'],\n",
" \"generate\": [\"gasdev\"],\n",
" \"gasdev\": [\"ran2\"],\n",
" \"fftma2\": [\"covariance\", \"fourt\", \"prebuild_gwn\"]\n",
"}\n",
"functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n",
"overall_time = {}\n",
"overall_memory = {}"
]
},
{
"cell_type": "code",
"execution_count": 98,
"metadata": {},
"outputs": [],
"source": [
"def get_data(file_name):\n",
" data = []\n",
" row = {}\n",
"\n",
" with open(file_name) as log_file:\n",
" lines = log_file.readlines()\n",
" for line in lines:\n",
" split_line = line.split()\n",
" \n",
" if \"USED\" not in split_line and \"ELAPSED\" not in split_line and \"CPU\" not in split_line: continue\n",
" \n",
" if \"CPU\" in split_line:\n",
" idx_cpu = split_line.index(\"CPU\") + 1\n",
" idx_per = idx_cpu + 1\n",
" row[\"cpu\"] = row.get('cpu', [])\n",
" row[\"cpu\"].append(float(split_line[idx_per].rsplit(\"%\")[0]))\n",
" continue\n",
" \n",
" idx_used_mem = split_line.index(\"USED\") + 4\n",
" idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
" \n",
" function_name = get_function_name(split_line[2])\n",
" \n",
" used_virtual_mem = float(split_line[idx_used_mem])\n",
" elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n",
"\n",
" row[\"function\"] = function_name\n",
" row[\"memory\"] = used_virtual_mem \n",
" row[\"time\"] = elapsed\n",
" if \"cpu\" in row:\n",
" if row[\"function\"] == \"generate\": print(row[\"cpu\"])\n",
" row[\"cpu\"] = sum(row[\"cpu\"]) / len(row[\"cpu\"])\n",
" data.append(row)\n",
" row = {}\n",
" \n",
" return data"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"def create_df(file_name):\n",
" data = get_data(file_name)\n",
" df = pd.DataFrame(data)\n",
" return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median'], 'cpu': ['min', 'max', 'mean']})"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"def analyze(file_name):\n",
" df_grouped = create_df(file_name)\n",
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False) "
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [],
"source": [
"def merge_dfs(dfs):\n",
" df_final = pd.concat(dfs, join='inner').sort_values(by=('time', 'sum'), ascending=False) \n",
"\n",
" memory_min, memory_max, memory_median = [], [], []\n",
" time_min, time_max, time_mean, time_sum, time_count = [], [], [], [], []\n",
" cpu_min, cpu_max, cpu_mean = [], [], []\n",
"\n",
" for function in functions:\n",
" memory_min.append(df_final.loc[function, ('memory', 'min')].min())\n",
" time_min.append(df_final.loc[function, ('time', 'min')].min())\n",
" cpu_min.append(df_final.loc[function, ('cpu', 'min')].min())\n",
" memory_max.append(df_final.loc[function, ('memory', 'max')].max())\n",
" time_max.append(df_final.loc[function, ('time', 'max')].max())\n",
" cpu_max.append(df_final.loc[function, ('cpu', 'max')].max())\n",
" time_mean.append(df_final.loc[function, ('time', 'mean')].mean())\n",
" cpu_mean.append(df_final.loc[function, ('cpu', 'mean')].mean())\n",
" time_sum.append(df_final.loc[function, ('time', 'sum')].sum())\n",
" time_count.append(df_final.loc[function, ('time', 'count')].sum())\n",
" try:\n",
" memory_median.append(df_final.loc[function, ('memory', 'median')].median())\n",
" except:\n",
" memory_median.append(df_final.loc[function, ('memory', 'median')])\n",
" \n",
" df = pd.DataFrame({('memory', 'min'): memory_min, ('memory', 'max'): memory_max, ('memory', 'median'): memory_median, ('time', 'min'): time_min, ('time', 'max'): time_max, ('time', 'mean'): time_mean, ('time', 'sum'): time_sum, ('time', 'count'): time_count, ('cpu', 'min'): cpu_min, ('cpu', 'max'): cpu_max, ('cpu', 'mean'): cpu_mean})\n",
"\n",
" df.index = functions\n",
" df.index.name = 'function'\n",
" return df"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"def analyze(file_names):\n",
" if len(file_names) == 1:\n",
" df_grouped = create_df(file_names[0])\n",
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False)\n",
" else:\n",
" dfs = []\n",
" for file_name in file_names:\n",
" print(\"Executing file {}\".format(file_name))\n",
" df = create_df(file_name)\n",
" dfs.append(df)\n",
" return merge_dfs(dfs)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"def plot_pie(df, function, plt, column):\n",
" \n",
" labels = relations[function][:]\n",
" total = abs(df.loc[function][column])\n",
" sizes = []\n",
" explode = []\n",
"\n",
" rest = total\n",
"\n",
" for func in labels:\n",
" func_duration = abs(df.loc[func][column])\n",
" rest -= func_duration\n",
" value = func_duration/ total\n",
" sizes.append(value)\n",
" explode.append(0 if value > 0.01 else 0.1)\n",
"\n",
" \n",
" if rest > 0:\n",
" labels.append(\"other\")\n",
" sizes.append(rest/total)\n",
" explode.append(0 if rest/total > 0.01 else 0.1)\n",
" sizes = np.array(sizes)\n",
" porcent = 100.*sizes/sizes.sum()\n",
" \n",
"\n",
" if not np.isnan(sizes).all():\n",
" \n",
" plt.set_title(function)\n",
"\n",
" patches, texts = plt.pie(sizes, startangle=90, radius=1.2)\n",
" labels_formated = ['{0} - {1:1.2f} %'.format(i,j) for i,j in zip(labels, porcent)]\n",
"\n",
" sort_legend = True\n",
" if sort_legend:\n",
" patches, labels_formated, dummy = zip(*sorted(zip(patches, labels_formated, sizes),\n",
" key=lambda x: x[2],\n",
" reverse=True))\n",
"\n",
" plt.legend(patches, labels_formated, loc='upper left', bbox_to_anchor=(-0.1, 1.),\n",
" fontsize=8)\n",
"\n",
" plt.axis('equal')\n",
"\n",
"def plot_pie_charts(df, title, column):\n",
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
" fig.suptitle(title)\n",
" functions = list(relations.keys())\n",
" for i in range(2):\n",
" for j in range(2):\n",
" plot_pie(df,functions[2*i + j], axs[i, j], column)\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 77,
"metadata": {},
"outputs": [],
"source": [
"parents = {\n",
" \"Py_kgeneration\": \"\",\n",
" \"generate\": \"Py_kgeneration\",\n",
" \"gasdev\": \"generate\",\n",
" \"fftma2\": \"Py_kgeneration\",\n",
" \"covariance\": \"fftma2\",\n",
" \"fourt\": \"fftma2\",\n",
" \"prebuild_gwn\": \"fftma2\",\n",
" \"ran2\": \"gasdev\",\n",
" \"cov_value\": \"covariance\",\n",
"}\n",
"\n",
"def plot_treemap(df, column, name, title):\n",
" df[\"parent\"] = [parents.get(item, \"\") for item in df.index]\n",
" df2 = df.reset_index()\n",
" df2[name] = df2[[column]]\n",
" df2 = df2[[\"function\", \"parent\", name]]\n",
" fig3 = px.treemap(df2, names='function', parents='parent',values=name, color=\"parent\", title=title)\n",
" fig3.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 8"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": 100,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[32.388401, 20.1, 100.1, 5.228205, 5.363158, 5.1, 12.295122, 100.1]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>1.2</td>\n",
" <td>1.2</td>\n",
" <td>1.2</td>\n",
" <td>34.560105</td>\n",
" <td>34.560105</td>\n",
" <td>34.560105</td>\n",
" <td>0.633546</td>\n",
" <td>0.633546</td>\n",
" <td>0.633546</td>\n",
" <td>0.633546</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>1.3</td>\n",
" <td>1.3</td>\n",
" <td>1.3</td>\n",
" <td>35.084361</td>\n",
" <td>35.084361</td>\n",
" <td>35.084361</td>\n",
" <td>0.397899</td>\n",
" <td>0.397899</td>\n",
" <td>0.397899</td>\n",
" <td>0.397899</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>-0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>62.562500</td>\n",
" <td>2.701072</td>\n",
" <td>0.000106</td>\n",
" <td>0.007636</td>\n",
" <td>0.000579</td>\n",
" <td>0.296354</td>\n",
" <td>512</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>32.746141</td>\n",
" <td>32.746141</td>\n",
" <td>32.746141</td>\n",
" <td>0.234361</td>\n",
" <td>0.234361</td>\n",
" <td>0.234361</td>\n",
" <td>0.234361</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>-0.1</td>\n",
" <td>33.296729</td>\n",
" <td>33.296729</td>\n",
" <td>33.296729</td>\n",
" <td>0.224350</td>\n",
" <td>0.224350</td>\n",
" <td>0.224350</td>\n",
" <td>0.224350</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>-0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>37.537500</td>\n",
" <td>0.925280</td>\n",
" <td>0.000103</td>\n",
" <td>0.000966</td>\n",
" <td>0.000134</td>\n",
" <td>0.093502</td>\n",
" <td>700</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>-0.2</td>\n",
" <td>0.2</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>25.037500</td>\n",
" <td>0.699745</td>\n",
" <td>0.000101</td>\n",
" <td>0.000583</td>\n",
" <td>0.000133</td>\n",
" <td>0.093435</td>\n",
" <td>702</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.012500</td>\n",
" <td>0.004167</td>\n",
" <td>0.000553</td>\n",
" <td>0.000795</td>\n",
" <td>0.000664</td>\n",
" <td>0.001993</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.001623</td>\n",
" <td>0.001623</td>\n",
" <td>0.001623</td>\n",
" <td>0.001623</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000355</td>\n",
" <td>0.000359</td>\n",
" <td>0.000358</td>\n",
" <td>0.001073</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000463</td>\n",
" <td>0.000463</td>\n",
" <td>0.000463</td>\n",
" <td>0.000463</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>25.025000</td>\n",
" <td>25.025000</td>\n",
" <td>25.025000</td>\n",
" <td>0.000454</td>\n",
" <td>0.000454</td>\n",
" <td>0.000454</td>\n",
" <td>0.000454</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000410</td>\n",
" <td>0.000410</td>\n",
" <td>0.000410</td>\n",
" <td>0.000410</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000105</td>\n",
" <td>0.000106</td>\n",
" <td>0.000105</td>\n",
" <td>0.000316</td>\n",
" <td>3</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory cpu time \\\n",
" min max median min max mean min \n",
"function \n",
"Py_kgeneration 1.2 1.2 1.2 34.560105 34.560105 34.560105 0.633546 \n",
"generate 1.3 1.3 1.3 35.084361 35.084361 35.084361 0.397899 \n",
"gasdev -0.2 0.2 0.0 0.000000 62.562500 2.701072 0.000106 \n",
"fftma2 -0.1 -0.1 -0.1 32.746141 32.746141 32.746141 0.234361 \n",
"covariance -0.1 -0.1 -0.1 33.296729 33.296729 33.296729 0.224350 \n",
"cov_value -0.2 0.2 0.0 0.000000 37.537500 0.925280 0.000103 \n",
"ran2 -0.2 0.2 0.0 0.000000 25.037500 0.699745 0.000101 \n",
"fourt 0.0 0.0 0.0 0.000000 0.012500 0.004167 0.000553 \n",
"cgrid 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.001623 \n",
"length 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000355 \n",
"clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000463 \n",
"prebuild_gwn 0.0 0.0 0.0 25.025000 25.025000 25.025000 0.000454 \n",
"build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000410 \n",
"maxfactor 0.0 0.0 0.0 0.000000 0.000000 0.000000 0.000105 \n",
"\n",
" \n",
" max mean sum count \n",
"function \n",
"Py_kgeneration 0.633546 0.633546 0.633546 1 \n",
"generate 0.397899 0.397899 0.397899 1 \n",
"gasdev 0.007636 0.000579 0.296354 512 \n",
"fftma2 0.234361 0.234361 0.234361 1 \n",
"covariance 0.224350 0.224350 0.224350 1 \n",
"cov_value 0.000966 0.000134 0.093502 700 \n",
"ran2 0.000583 0.000133 0.093435 702 \n",
"fourt 0.000795 0.000664 0.001993 3 \n",
"cgrid 0.001623 0.001623 0.001623 1 \n",
"length 0.000359 0.000358 0.001073 3 \n",
"clean_real 0.000463 0.000463 0.000463 1 \n",
"prebuild_gwn 0.000454 0.000454 0.000454 1 \n",
"build_real 0.000410 0.000410 0.000410 1 \n",
"maxfactor 0.000106 0.000105 0.000316 3 "
]
},
"execution_count": 100,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_8-aa'])\n",
"overall_time[\"8\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"8\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempos\n",
"\n",
"Una vez reconocidas qué funciones llaman a otras, se muestra en los siguientes gráficos cuánto tiempo consume cada función respecto del total que insume la función invocante."
]
},
{
"cell_type": "code",
"execution_count": 101,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8FMX7wPHPc5dOOUKHUEILIYD8MAJKkSaggAVpIioIKoJYQAXsp6Jix/JVQUVsKFgQASsoCFgQFJSOQADpLf2SXJnfH3uJR0hIAbJ3l3m/XveC25vbfTbJ7rMzO7MjSik0TdM0TQsuFrMD0DRN0zTt7NMJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV4LeiISKyJKREaaHYsGIrJMRJaZHYemBbsQswPQtNIQkeI+Y7k7kHQOQ9E0TfNLop9FrwUiEbku36IbgF7A9fmWfw8cBsIBp1LKXQbhaachImEASqkcs2PRtGCmE7wWFETkVeA2pZSYHYtWMBGJUkplmh2HppUX+h68FvQKugcvIrNFJF1EGojIIu//94nIbd7PW4vIDyKSISK7ReTaAtZbRUSmi8heEckWkX9EZLKIFOu4EpHLRGS5iKSJSKqI/J5/OyIyWETWiohDRI6KyAciEpOvzBnti4iM9P58LhaRGSJyzBvPeyISna/slSKyWET2e/d5h4g8JCLWfOWWicgGEUkUkZ9EJBN40uezZfnK3y4iG0UkU0ROiMiaAuJsKyJfe2NLF5GlInJhIfvSSUReEJEj3v2eLyI18pW9QES+9f5cHSKyS0RmFf2b07TAoBO8Vp5Zga+BvcAkjHv1r3ovBL4B1gCTgTTgPRFplPtFEYkClgPXAe8BdwCrgKeAF4rasHcbi4Gq3u9MAdYBl+YrMw9wA/cBbwJXAytFpMrZ2hcfrwItALt3n4YDX4iIb6vISCDdu493AmuBx4BpBayvmjemdcBdwI+F/CxuBl4GNnnLPeL9TgefMi2BFUAb4BngcaARsExEOuRfJ/CKt+yjwOvA5d79y11fTeA7INYb++3Ah8CF+VekaQFLKaVf+hXwL4yTtyrks1hAASN9ls32LrvPZ1kVIBPwAEN9ljf3lrX7LHsQI9E1y7etpwAXUP80sdqAVOBXICLfZ7m3zUKBQ8DfvmWAft5YHj2L+zLSu2wNEOqz/F7v8it8lkUWsD9vABlAuM+yZd7vjimg/DJgmc/7L4ANRfx+5wPZQGOfZXW8P8flBezL97k/S+/yF7y/F5v3/VXecheY/berX/p1rl66Bq+Vd2/l/kcplQxsxUhW83yWbwWSgcY+3xuMUaM8ISLVc1/AEoza9MWn2WYvoBIwTSmV5fuBUiq3U8wFQE3gNd8ySqnFwBaMRH+29iXXTKWU0+f96xhJsa/P9x25/xeRSt59XgFEAfH51pcNvFPAdvJLBuqJSLuCPvQ2//cGvlBK7fSJ5QAwB+gsIpUL2BffDkYrMH4vDX22CdBfREKLEaOmBRyd4LXyLEspdSTfshTg33zJIXe57/3oZhjN6UfyvZZ4P695mu028f674TRlchPR1gI+2+Lzea4z2Zdc233fKKXSgQMYLSCA0VTuvZ+dglF7PgJ84P3Ylm99+1Txeso/jdEaslpEtovI/0Skk8/nNTAuIAr6WWzGOI/Vz7d8T773J7z/5u73cuAzjNsBR0VkgYjcKCLhxYhX0wKCHgevlWeFDZkrbLnvvWgLRjPwM4WU3VbaoErpTPalWLz3/ZdjJPaHgR1AFnA+RpLOX2FwUAxKqc0i0hzoj3HRNBAYJyKPKaUeKWmcXqfdb+9FzyBvJ73LgT7ALOBuEbnQe3GjaQFNJ3hNK50dQEWl1JIiSxb8XYBWwD+FlNnt/bc58EO+z5r7fH42NcOnI5yIVMS4z/2Vd1E3jI5zVyulfvIpV1CHvRJRSmUAc4G5YoyT/xx4QESewmglyMTY7/ziMfoZ7C3ldn/F6AvxgLfX/ofANfjc7tC0QKWb6DWtdOYBF4lIn/wfeIfPne7i+TuM3uz3iUhEvu/m1qzXYDyg51bfZmMRuQyjp/viM4y/ILfkux89FqMS8LX3fW6tOK/2703G485koyJSzfe9t1l/k3c7ocp4ONF3wJUiEuvzvVrAtcBKpVRqCbcZnW90ABg998F4KJKmBTxdg9e00nkWuAJYJCKzMYaLVQBaA4Mw7lsfLeiLSqlUEZmAUUv8XUTmYNwjboNxr3mEUsopIpMxOqktF5GPgFoYQ9OSgBfPwT6FAUtFZB5GbXkcsBL40vv5z9443xWRlzF6oV9PKZr78/lORA5iDDM8hHEBMx5YrJRK85Z5EKNz4koReQ2j898YjGQ8qRTbHIFxG2A+RotKJeBmjNsPX53ui5oWKHSC17RSUEplikhX4H6MHvU3YCSHbRgdt1KK+P7bInIYY/z7Q4ATo/Pciz5lZnsfEDMF4x53BsZwscneXvJn23iMse+PYQzT+wi4I7eTnlLqmIj0B54HpmIk+w+ApcC3Z7DdGd7tTgQqAv9ijIufmltAKbVRRLpgDEO8D6P18TfgOqXUb6XY5nKgPUZzfC2M39dqYLhSalfpd0XT/Id+VK2mlXPeh+G8A7RTSq0xORxN084SfQ9e0zRN04KQTvCapmmaFoR0gtc0TdO0IKTvwWuapmlaENI1eE3TNE0LQjrBa5qmaVoQ0gle0zRN04KQTvCapmmaFoR0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8FqRRCRWRJSIjDQ7Fk0LdD7H0z1mx+LvRKSb92fVzexYApFO8JqmlXsiMtKbSHJfWSKyTUReFZFaZscX7ERknK5AnH0hZgegaZrmRx4GdgERQGdgLNBXRFoppTJNjSy4jQOOArPzLf8JiARyyjqgYKATvKZp2n++Vkqt8f7/LRE5BkwErgQ+Mi+swCEiAkQopRxnui6llAfIOvOoyifdRO/nvPeg1nibDHeIyBgRsYuI8ilzo4j8ICKHRSRbRDaJyNgC1nWBiHwrIkdFxCEiu0RkVr4yVURktoikiEiyiLwLVCkktngR+VREjnvjWyMiV+TbnhKREQV8t4/3s/5n9APStHPrB++/jbx/rxPyFxCRjt7PhpV2I2KYKSI5InK1z/LzRGS593j9V0Qe9B7vSkRi863jMhFZISIZIpImIotFpGW+MrNFJF1EYkTkC+//j4jIcyJizVfWIiJ3ichG7/F9SERmiEh0vnJJIrLIe0yvARzAGO9nRZ6bRCQJaAl09blFssz7WYH34EVksIis9f5cjorIByISU9p9DVa6Bu/HRKQt8A1wAHgEsGI0IR7JV3QssBH4EnABlwOviYhFKfU/77pqAt95vzsNSAZiAd+TiQALMJom3wA2AwOAdwuIrSWwCtjnXV8GMAT4QkQGKqXmK6XWiMhO7/L86xgKnAC+LenPRdPKUBPvv8cw/t6HAy/mKzMcSMM4dkrMm2xmYRwTA5RSi73LY4AfAQU8hXGM3QRkF7CO6zGOsW+ByUAUxnlhpYi0VUol+RS3esv9BtwDXALcDewAXvcpNwMYCbwDvAw0AsYDbUWkk1LK6VO2OUYLxwzgTWCrd3mR5ybgLuAVIB14wrvs0Gl+Xrkx/Q7cB9QC7gQ6efc1uRT7GpyUUvrlpy+MgyIDqOuzrCngNH51ecsiC/juN8AOn/dXYZwoLjjN9q70lrnXZ5kV4z6YAkb6LF8C/AWE+ywTjJPgNp9lT2LcP4v2WRaGkdzfNvtnrF/6pZQCI5EpoCdQHaiHkXCPAplADHCLt0y8z/dCMS6aZ5dgW7He9dyDUcn62LuN3vnKvQx4gP/zWVYV42JDAbHeZRW9x9PMfN+vhXEhP9Nn2Wzvdx/KV/YPYI3P+87ectfmK9cn/3IgybusTwH7WuS5ybtsA7CsgLLdvOvu5vPzPgT8jXEbILdcP2+5R0u6r8H80k30fsp7VX8J8IVSan/ucqXUP8DXvmWVz70uEbGJSHVgOdBYRGzej3KvavuLSGghm+2LcZWdd2WrlHJjXF37xlYV6AHMAyqJSHXvNqthXC0382kum4txUF7ts4reGM3+c0/7Q9C0srcEI2HvxUi86Ri16n0Yf+9ZGDX2XH0wLgg+KMW2woBPgP5AX6XUd/k+vxT4RSm1LneBUuo48GG+cr0wjqePco9F7/Hoxqi5di9g22/ke78CaOzzfjCQAnyfb51rMX4m+de5Syl1SmtcMc9NJXEBUBN4TSmVd29eGa0eWzASfX5F7WvQ0k30/qsmRu/Rfwr47KRlItIJeBS4CKNpzpcN40BdDnyG0dQ/wXuP6wtgjlIqt8mvIXBAKZWebx1b871vilFbf9z7Kiz+fUqp9SKyBaM29Lb3s9ya0Q+FfFfTzHIbsA3jQvcQsFUZHb1QSiWLyELgWuAhb/nhGLepSvO3fB9G7fsypdSyAj5vCPxSwPL854Rm3n8LiyE13/sspVT+23wnAN97680wzh2HC1lnzXzvdxVUqJjnppJo6P03/zkJjATfOd+y4uxr0NIJPsCJSBNgKcYf90SMmkcORm18At6OlMpomxokIhdi3Afrg3Hf724RubCApH46uS0/z1H4PXTfk9Bc4AHv1XsacAXwkVLKVYJtalpZWK3+60VfkPeAwSLSEaOZ+AqM2qSnFNv6FqOWPklElvnWSEso93i8HjhYwOf5jzN3Mdd5mJNbK3zlT5qn9Jgv7rnpHCvOvgYtneD912GM5sCmBXzmu+xyIBy4Qim1J3ehiBTULIdS6lfgV4yEey1Gc981wFvAbqCniFTMl/Cb51vNTu+/TqXUkmLsy1yMloOBGLWiyhjNn5oWaL7BSG7DMZq/o4D3S7muXzGajxcBn4jIgHwXvbsp+vgHo8MYwOFiHo/FsQPjFuEqVfrhbiU5N6kClhVkt/ff5pzaYtHc53MNPUzOb3nvfS8BrhKRurnLRaQpcJlP0dwrVPEpYwNu9F2fiER7e8n7yr23F+799yuMi76xPt+zArfni+0wsAwYIyJ18scuIjXyld+MUdsZ6n0dwOi4p2kBxZuAP8IYGTIS+Fsp9dcZrG8JxgX2pcD7IuJ7Tv4WuEhE/i93gbf/S/5a9bcYzfD3F9S/Jv/xWEzzMDrYPpT/AxEJEZECh87mU6xzk1cGhQzHzWcNRuXnVhHJPW8hIpcBLYDFxVhHuaFr8P7NjtEhbZWIvI5xwI3H6HGae9B/h9HstVBEZmDc07sZ4yDwTb4jgHEiMh/j6rySt1wqRmIHWIjRC36ad4ztJozOcQV1hrkNWAn8LSJvYtTqa2Hca6sHtMlXfi7wGEarxNulbNLUNH/wHnAHRkezyWe6MqXUFyJyo3e9qXjHkAPPANdhdHR7hf+Gye3B6E2vvN9P9Y4tfx/4Q0Q+xmhlaIDR6WwVxnmjJDEt955P7vNeYHyHMXqnGUYHvDuBT4tYTXHPTWB03hsrIg9i3N47rJQ6pU+BUsopIpMxhsktF5GP+G+YXBKnDmEs38zuxq9fp39h9Fb/A2Ps6z/AaIx73w6fMpcD6zHug+0CJmFcJfsOpWkLzMFowsrCaCpfCCTm215VjBNNCkbP+/cwLiZOGibnLdsYY+ztAYwD+V/vOgcWsB9NvetQQCezf676pV++L/4bJlfoMNJ85Tdg1FBjSrGtWO+27sm3fKx3+bM+y/4Po7UrC+Me9hSMFjUF1Mr3/W4YtxCSveeCfzASYaJPmdlAegEx2fEZeuuz/GaMWnMmxsXHX8DTQB2fMknAokL2tchzk7dcLYxbFanez5b57FPeMDmf8kO858UsjGGDH+T/XZR0X4PxJd4d1gKIiHwBtFRKNSuysKZpZ52I/AkcV0r1NGHb0zFq+RWVcStP0wqk78H7ORGJzPe+GUYv1GWmBKRp5ZyIXIBRs36vDLaV//ivhtFbfqVO7lpRdA3ez4nIAYympp0YY0DHYnSKa6uU2m5iaJpWrohIKyAR41Gn1YHGymdom7dDalEd2tJVCYakisg6jIv5zRjN2KOBukBPpZTuqKqdlu5k5/++AYYBtTHuw/8C3K+Tu6aVuUEYc0FsBYapU8et16eQB774eBTjHnBxfeXdbu5jcv8ARuvkrhWHrsFrmqadBSKSO4f86exUSu0sooymnRU6wWuapmlaENKd7DRN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8JqmaZoWhEr0oJu1a9dWxHiKkr4wKB88wP7ExMRiP3lLCz76uNfOkD6PmKTY4+DXrl17ocViecNisdjwmd9XC2rK4/GkeDyeWxMTE381Oxit7OnjXjsL9HnEJMVK8GvXrq1osVhWVqlSpVbNmjWPi4h+Ok4AUkrh9KgQl1uFKqUsylgmSokAEinZKlQ5BeOtUuA5ciKtYnLy8SO1N711Se0d8w5gT9G/+3JCH/fa2aCUksOHD1dNTk4+5PF4OuuafNkpbhN9XYvFYqtZs+bxChUqOM5pRFqpKaXIcXtCc1ye8ByXJyzHbfzrdKtwp9sT5nKrMIUqoBZmnLebhmWkR7lOVPT9xBKicOQkV69y8Od9gBu7LQXYjzH5zQ6ff3cASdhTcs7pTmplSR/3Acjp9oRkuzxhuecBp9sT7nR7wjwKi1JKlHH1LgpliQh3OEIk01Iv2xGGGB8hFjcWqwtriAtLqBNLiAtLiBNrqIuQ8GysYa6SxlSzZs3jqampNo/HUxfYdg52WytAcRO8BRB9Be8/lFJk5rgj07NdlTKyXZWyXZ7IwhN46Ymc9B8rUNX7alVAcSd229/AGu/rd2AD9pQSnxA0v6CPez+V5XSHZ+a4o3JcnvAc939J3OVWYR6lit1XIjTM7QKXBXd2ZNGlvcTixhqeRUi4g5DwLEIiswiNdBASnvPfCSPfV4y/IUH34yhTeja5AKGUwuF0R6ZlGQnd4XRXcnuU1ey48gkFzve+bvEuy8Ju+xP4AfgW+EUnfE0rmSynOzz32M/McVdyeTyhZ2/tJbyAUx4rLkcFXI4KJ6/G6iI0Mp2wCumEV0onrEImYtEXhyYqfYK32xLPYhz51p2y9ky+vnXr1rAFCxbYJk2adCR3WUxMTOtPPvnkn44dO5ZpU+P27dvDxowZ02Dnzp0RVqtVjRo16sgDDzxwGOCBBx6o/fHHH1cLDQ1V4eHhnunTp+/p3r17Zu53HTmuiLQsV6WMHHelzBxXpYyMzJBh/boTGhrKvG9XAPDF3A+ZM+uNvO0dOrCf8zt05MU33z8llhnTn+WbhZ9ToUJFnnntberWawDAQxPGcfW1N9C0U/y5+BFEABd5Xw8AqdhtPwLfAd9iT9lxLjaqnRuxUxafk+M+aVq/Mzrm/cGiRYsqZWVlyaBBg1LPdF1ZTndYerarUro3oe/dszvsyQfvZffOHVitVgZfP4prb7yF7Zs38uSD93L82FGsViut/i+R+6c+S0TkqRXyLIeDx++bwOa/1wNQr0Esz7z6tNSqGUXS3v2MnPAIf27YSqP6dVn3/ceFxjZm0lR+XvsXNapWYf7bz2OrXAmlFH2vGxvy6tTJVZrE1q9C+iFAPIRGZhJWIQ0iMgtdoXbOBGVzyfbt28NnzZpV42yv1+l0lqi8x+PhqquuanLdddcdS0pK2rBjx46NN9xww3GAn3/+OfKdd96p8ccff2zesmXLpjFjxhy+4447GmY53eH7TmTGbNqfet72w+ktD6ZmNUjLcka7PSpk+lN2/u+CDidt46qhw5n37Yq8V7UaNek3YPApsaSnpbJ4/jw+/W4lQ28YzUfvvAnALz/9SERkJG3bXVjaH0tJVQauBP4H/IPdtg67bRJ2W4OyCkDTSqOo4/+HH36o9NVXX9lKs26PUnI8Iyd697GM2M0HUltvO5TWen+yIzbV4azmdLnDJtx8PZcPvIYvl//O/B9+pU//qwAIi4jgvqnPsGDZaj75biWOzEzeef2lArfx6YezyXI4+GzJz3y+9Beq1ajJjJf/FwZQuWIFpk4ax5xXnzhtnBu2/MP2XXv4e+k8unW8gPc/WwzAW3Pm073jBTSJre9TWllwZlYk40gdS8qeJqGOI/XiVt31IHbbJdhtuvW4DAR0gv/ss88qJyQktIiLi0to165d87Vr10YA3H777Q2SkpIi4uPjE3r06NE0t/y8efOi/+///i8+Jiam9aRJk+rkLt+zZ09I3759G7du3bpFXFxcwh133FE397OYmJjWY8eOjWndunWLgQMHNipJfF9++WWlsLAwNWrUqBO5y+rXr+8CEBFcLpekpqZaPB4lh0+kVK4V0yBs26G0Vscycmrnb4L7dcUyDh88QN8Ckneuv/5cw/FjR+na67JTPrNYrXjcblxOJ47MDEJDQ3E4Mpn50rPced8jJdmts60N8DSQhN22ArttHHbbWb8404LDBx98UKVx48YtmzdvnjB27NiY6OjoNlu3bg0D+Pvvv8O7devWtFWrVi3i4uISnnzyyby/IxFJnDJlSu3WrVu3iImJaf3SSy9Vy/2sqO9NmDChbqtWrVqMHz++3urVqyMTExObJyQktGjSpEnL3PPIzz//HPnee+/VmD9/ftX4+PiEe+65pw4Y56jExMTmLVu2bNG6desWCxcurOS7P5k5roh/T2TW33wg9bx/T2Q2TnE4qzndnjDfMr+tXE5YWBi9vUkdoFqNmgA0bNSEuBZGdxir1UqrNm3Zv3dPgT87ESHLkYnL6cTlcpGZkU7tunU8AlSNttG5fVsqRJ3+VnxoSAjZOU48Hg8ZmQ7CQkM5cOgIH33xDRNvue603xXltobmnBgOfA8cxm77ALutL3ZbQOchfxawV1H79u0LGT16dOPvvvtua/v27R2vv/561SFDhjTZvn37xldeeWXPPffcU3/Lli2bfL+TnJxsXbdu3ZYDBw6ExMXFtRo7duzRRo0aOa+99tpG991334F+/fqlO51OevTo0WzWrFnRuYn5+PHjIevXr99ssZTs73DDhg2RVatWdfbv37/xjh07IurVq5f90ksv7U1ISMi56KKLHDfdcuuJuLi4NpWrRBMWFs6sTxcXuJ7UlBRefPIRXnv/U3Zu31ro9r74+AP6Xz2U0NBTb89FRVXg+pvHcf2VvahWoxZTX3yN1557ihtuGU/FSpVLtF/niACdva+XsNvmA69gT1lhbliav9i3b1/I+PHjY3/88cctbdu2zXrppZeqJScnhwC4XC6GDRvW+P3339/Vtm3brLS0NEtiYmJ8p06dMrp27ZoJEB4erv7+++/Nf/75Z0Tnzp1bjBs37piIFPk9q9WqNmzYsBngxIkTlpUrV26LjIxU6enp0q5duxZ9+vRJ7dmzZ8YNN9xwJDk52Tpr1qy9AJs2bQp7/PHH6/7www/bqlat6tmwYUN49+7dm+9K2r3R4bFGn8jMqZ7ldFcobH9z7di+leiq1Zk0bhRJO/+hbr0G3PPQVOo1jD2pXGZmBp9//D53TH64wPUMGj6SdWtW071tMywWK63bJjJyzE1OIavYv4PmTWPp3vECzu9zLc0aNeCRibcwauKjPPvQXYSElCidRAPDva+92G2zgLexp+wtyUq00wvYK6fly5dXiIuLc7Rv394BMHbs2OOHDx8O3bVrV6GdT66//vrjAHXq1HHVq1cvZ9u2beGpqamWX3/9tfLdd9/dID4+PqF169YJu3fvDt+yZUtE7vdGjRp1rKTJHcDlcsmvv/5a2W6379+8efOmXr16pQ4eMqTp4dSsGkt++6vl4q+/qblwxR98//smrrt5LJNuG1Xgep566F5uGj+RatULr9hmZmbwzZefM+Cawq+ih464iXnfruD1Dz7l0IH9HDqwj07devLkA/dwz60jeeWNt89ix50zEgIMBn7yNuGPxm4rfi9fLSgtW7asQvPmzTPbtm2bBTB+/PhjoaGhCmD9+vUR//zzT+SwYcMax8fHJ7Rr1y4+IyPD+tdff+X93YwePfoYQNu2bbOsVqvas2dPaHG+N3bs2KO5/8/MzLQMGzYsNi4uLiExMbHF/v37w9auXRtVULxffvmlbffu3eEdO3aMj4+PTxg0eHAzsVqty//YfN6BFEfD4iR3ALfLxeqfV3DLnfcy75uf6Ni1B/eOvfGkMs6cHCaNG8VFF3en52X9C1zPLz/9gFIelq7dytK1W6hU2cbzU6eFFVj4NKZOvo1133/MJzOf4fuffqN+3VrE1qvLjRMeYeDN9zB3wbclXWV94BGMVryvsNsG6Cb8s6Nc/RAjIyM9uf+3Wq3K6XTmPejnjz/+2BwVFVVgj89KlSq5C1q+du3aiOHDhzcGaNeuXfr7779/UttYw4YNc1q0aJF5wQUXZDmc7vD+14yoMGXKlMi9x9IafL1wAc3iE6hZ27hTcOWQ4Ux7aDLOnBxCw04+5tb9/ivrfv+VF6Y+RHZ2NinJJ7iiazu+XP57XpnvFy2gSVw8TeKK7ijncrl4fupDPP3qWyyaP4/oatW5/4nnGDe4T8jgXu1p3LBekesoQ22At4BnsNveBF7AnnLY5Jg0P6OUonLlyq78rXa+fI9vq9WqXC6XFOd7Npst77wxceLEmGrVqrk2bty4KTQ0lN69ezfJysoqcGyYUorOnbukvfnBvIzkzJzqOW5PeEHldmzbwn233wzA/13QgfufeO6kz+vE1CO+ZWuaNm8BQP+BQ3nygXtwOp2EhobidDq5d9woatSszeRHpxW2G3w65136XjmI8Aij7tJ3wGDefvWZEOGuUj27IjUtnefeeI9v5/yPp155h64XJnLdwL606XUNV/TuSmRkRNErOZkFuMz72ofd9hwwE3uK7qBXSgFbg+/WrVvGtm3bIn///fcIgJkzZ0bXqlXL2ahRI2eVKlXcaWlpxRpCZrPZPO3bt0998MEH8+7JJyUlhe4siT4kAAAgAElEQVTYsaPI2mxiYmLWli1bNm3ZsmVT/uQOMHDgwJSDBw+F/fLX1sb/HEpr9dVXX1dr1Kw5oaGhxDSM5c81v5GZYTzU6acl39KwcdNTkjvA17/8lfd6+n9v06RZ85OSO8D8j98/be3d13szX6XvVYOoXrMWjsxMxDt2VUTIyPTb55lUBSYDu7DbnsFuq252QFrZ6tatW8bWrVuj1q9fHw7w+uuvV3M6nQLQpk2brIoVK7p9761v2LAh/NChQ6c9D5T0e8nJySH16tXLCQ0NZf369eGrVq3Ku79VuXJld2pqqhXA5fZYO13SN2LVL79Er1y9pl6O2xMB8Pefpw4WaBIXn9dJNn9yB+jU/RIOHdzPoQP7AVj5w/fknkdcLheTbxuNrUo0Dz89Pe9YLki9BrH88tOPKKVQSrFi6Xc0i29eYOWlOKY8+QoPT7iFqMhIMjIdiAgigtPpIqeEHZILEAO8iFGrvw+7zS/uIwaagK3B161b1/XWW2/tHDFiRCOXyyU2m809d+7cHRaLhQ4dOmTGxcU5mjVr1rJ+/frZP/zwwz+nW9cnn3yya9y4cfWbNWvWUkRUZGSk54033tjdpEmTUv+VZrvcocmukDoPPf1y6I3DBkUrpahYqTLPvPoWAD0v7c/G9X8wrF8PwsLCiIyKYtorb+Z9/7YbBjPu7vtp2aZtkdtK2rGdrZs20OfyAUWW3Zu0izW/rOR/730CQP8BQ5hw83V8t+gLOl9wnqd1i2b+NrY+vyjgXmAsdtvLwHPYU04U8R0tCMTExLhefvnlpAEDBjQNCwtTXbt2TY2KivJUq1bNHRoaysKFC/+5/fbb6//vf/+r5fF4JDo62jVv3rydQKFJrKTfe/jhh/ePHDmy8UcffVStYcOG2RdeeGHekLhrrrnmxIABA6rFJ7Q8r+dlV1jHTJhsmfbKmzw+ZSJZjkycTifxLVszzXsOKK6oqAo8+OQL3D5yKPnPI98u/JylXy8krkVLhl56MXByK4DveWTshCk8NuUurr6kIwCNmjTjyelP5AiQ6XAQ13kA2Tk5pKSlUy/xUq4f1I+n7ru9wJhW/b4OR1YWvS42Rt/cNnIIw267n6dfm831A/thq1ypwO+VQg3gSWASdturwHTsKcfO1sqDXXGfRR8fEhLyTbNmzdKjoqKK3yOjHHJ5PJZDKdl1jmfm1FLq7D5V7lxrGpZ8yqNqs1yKXfuO0GjV3USk+2X/l1TgOYxE77fND4HIH4/7EydOWKKjoz0A77//fpVHHnkkZufOnRvNjsujlBxOy655LD27ttujAqbiVCEqMz1CMolxpFUsunTpncXzSBpGwn8Re0r22YkueAVsE72/UUpxJC27+taDaa2PZWTXDrTkHsAqA48BW7DbhpgdjHZuPf300zWbN2+e0KxZs5YvvPBC7ffee2+X2TEdz8ipsvVgWsvDqVn1Aim55wqwE1Ul4ClgE3bbQLOD8XcB98foj1IczkoHU7LqZ7vcuqe3eRoAc7HbbgXGYU/ZYnZA2tk3bdq0g9OmTTtodhwA6dmuqAPJjvoOp/uc1n61AjUGPsVuWwbchT1lvcnx+CVdgz8Dbo+y7D6WEbv7WEacTu5+ozuwHrvtCey2Enfj1bSiuD3KsudYRsOdR9JbBENyD7AafH7dgD+w297AbivVUwSDmU7wpZSe7YradigtIcXhrFZ0aa2MhQH3A2ux2843OxgteKRnuSpsO5SWkOxwBs0oDsmdLzpwWYAxwEbstn5mB+NPdIIvIaUUB1IcdXYdyYh3FjKuVfMbCcCv2G0PYrf5++gAzY8ppTiQ7Kiz62hGc33c+60YYBF227u6Nm/QCb4Esl3usH8Opzc/kpZd92zPu66dM6HA48BK7LZmZgejBZ4sp/e4Tw/O415UoLfSn+IG4C/stu5mB2K2UneyO1fTRoJ/Th15PCMnen+yo6FH+d0c7FrxXAisw24bjz3lHbODCVjnaproM5wi+lw5lp5d9UBKVoMgP+4DvYm+IA2ApdhtzwL3Y08p9QN9ApmuwWPM+ta6desWTZo0adm0adOWt956az232/h7yO1I9++JzMZFHeT/7tnNNX27MaRPF67ueRH33DqS1ORkADIz0rl1+EC6nteEzi0bnjae11+YRrc2TRnSpwtD+nTJe4wlwMez32TgJR3ztvHhrBkFriM1OZnRQy5n4CUdeeL+u/OWHz92lNGD+5d46tsgEQXMwm57HbvNX567r5VA7mxy8fHxCatXr47M/37ixIl1MzMzz7hG6nJ7rElHMxrtS3Y08ihlfWjibVx+8QUM7t2ZEQP6sGHdH6Va7ytPP553/A7p04WvF3x20udz332Lq7p3YOAlHRncuzPZWQU/fmDhZx8zuHdnru55ETdfcyUH9v03tnzVj0sY1rc7g3p14rorerF1098FrmPj+j/p1+WSqM4X9qnw7ryFect/WLmaMZOmlmr//IwAk4DvyusMlaV+0I2/1eBzn8tcGqtWrYqMjo52JyQk5GRmZkqXLl3iRowYcXTULeOy9p7IbFTce2452dl4PB4iIo0O9U8/MgWAyY9OIyc7mz/X/IatSjQ3DenPyo27C13P6y9MIy01hUn2p075LC01hUqVjdtL6WmpDLykI9PfnkOLVuedVO6j2TNJSU7m1rsmcdPQK5j86DSaxSdw/51juGbETZx3frtT1h2gD7oprVXAIOwpfjHkyh8V+KAbk2vwF198cbPhw4cfGzNmzPGC3otI4pEjR9ZVr1691DW2VIez4r5kRyPfaVuXffcVnXv0JiQkhOVLvmHaQ5P4+pe/Sr7ulBQqe28PHzqwnwE9LmTxqj+JrlqNH7/9itlvvMSr786jUmUbx48dxVYlGqv15HrFrn+2MXrI5cz9ejk1atVm0edz+WbBZ7z67jxSk5Pp3+V8Zn26mKbNW/DHbz8z9f67+XzpL6fEcveYEYwcc72jY9s4d8/OfSvu/GUhDkcWfYbfxpfvTKeK7aw9jc4fziN7MY731WZs3CwBXYMv7lzNABMnTqzbr1+/xj169GjapEmTlhdeeGFc7vOmO3Xq5EhISMgBY0KKli1bOnbs2mPbdaxkHWrCwsPzkrvb7T7pOe9h4eF06HRxXnIuLd/vOzIzcblcBZYLCQkly5GJx+PBmZNNaFgYq35cQmVblQKTeznUCaOX/UVmB6IVz8iRI+uvWbOm4mOPPRbTtm3b+Pzvr7322gYAHTt2bB4fH5+wb9++kIEDB8YOGzasYceOHeNiYmJaDx48OPbHH3+Mat++ffN69eq1vummm/JmVrLb7bVandemdfsLzm8++NJuYevX/pcLuvXumzcd6nnnt+PwwQOFHnunU9nme/xmoJTC4zHmspk942XG3DU57xivWq36Kckd4J+tm2kW35IatWoD0KV7b1b+uITkE8fZu3sXtuiqeRPTnN+hIwf372Pz36cOEw8JCcGR6SA7Kwurd7ZM+wszuHP0tWc1ufuJ+hizU95cZMkgEtAJHv6bq3nGjBn/NmvWLHvlypXbNm3atHn9+vWbFi5cGL106dK8KRnXrVtXYc6cObt27NixsXr16q7p06ef0myzZ8+ekK++/rrqRZf0iy7N0+icOTkM6dOFrm2asGfXDsZOnFKq/fpu0QIG9+7MTUOvYPXPJ0+J/v3iBQzoeRGXdWzDDbeMP6X2DtDv6iHsTdrF0EsvpkPnbtSsXYc3X3me2yc9WKp4glRdYBl22wizA9GKNnv27L2tWrXKnDZt2t4///xzS/73c+bM2QPw888/b92yZcummJgYF8DmzZsjlyxZsn3Hjh0bfvvtt4pPPvlknRUrVmzbtGnTxvnz51dbs2ZNBMCAa0eGzPlqedi8b1cw5fGnefju8QXG8eHbb9C5e6+Szn/+3/dnzeCKru0Yelk3Hp72Yt400Du3bWXTX38yYkAfhvXtXujtt7iEVmzZsJ6kncYUG4vmzzN6+f+7lwaNGpNy4jjr1vwGGC0PGelp7Pv3lLmwGHPXJN6Y/krY4IEjo5596C7WbdjKzt37GNivZ6n2KwCEAzOx294sL9PRBvxO5p+r+cYbb6y/adOmSBHh4MGDYWvXro3q2bNnBkDXrl1Tateu7Qbo0KFD+oYNG056OM3x48ctfftf3mLk2LusCcWY5KUgoWFhzPt2Bc6cHJ56eBKffjibG8feWaJ1DL7uRm66/W5CQ0P58/dfmXDz9cxZtJS69RoA0KvflfTqdyX79u5hws3X0fWSPsQ2ObmDeFRUBZ6f8W7e+2ft93PjuDvZk7SLt199AYCb77ib5gmtS7WfQSQMmI3dVgt7yjNmB6OdfX379k3OnSq2efPmjl69eqWGh4er8PBw1bRpU8emTZsiajVOqPnL73/UeOuV50k+cZyQkBCSdmwny+HIa5UDWPT5XL5b9AXvfLq41PEMHzWG4aPGsHXT39x/xxgu6tqDKtFVcbvd7Nu7h1mffkVqSjKjBvenXoOGdL3k0pO+37BREx586gUevGssbpeLLj17U8lmwxpipVJlG8/NeJeXpz1GZmYG553fjsZx8YQU0BLQuFlz5n71hcNGJtEZyRV7DxvH+y9P5aMvvuHTxUuoXLECLzxyN9FVgm4it5uAuthtg4N9KtqAr8EXNlfz1q1bN3Xo0CHNd67miIiIU+aDzn1/4sQJS49Lerfq1ufysBtuua3Abe3YtiWvc8yTD9xz2rhCw8K4ashwFn02t8T7VL1mrbz+BG3bXUh8y/PY9Ne6U8rF1G9A67aJLF/y7WnX9/efazl+7AhdL7mUpx+ezIQHHuOu+x/l6YdL17oQpJ7GbnsWuy3YhgyVexEREXnnCKvVqnzfW6xWkrM9tQ4np9eYeMsNTHzwcT5f+guzvAk8J+e/qdK/+fJzZrz4DDPmfE61GjUL3Na0hyfnnSO2bz79HDjNE1pTs3Zd1vyyEoDadWO49MqBWK1WoqtWo0v3S/j7jzUFfrdXvyv54Mvv+eirHxly/Siys7KoH9sYgPYduzDr08V8/NUy7nloKkcOHaBxs/hC4xAU09+cw+D+vahiq8jj099k7uvTuPjC85n+1oen3YcA1hdYgt0WbXYg51LAJ3hfp5uruYjvWXr06t26Y4/eobfcWXjiLmre5v3/7sHhMC4IPR4P3y1aQFyLliXej0MH9uX9f/euHWzd9DdN4xMA4yIj1/FjR1m9asVpt+F0Opn+lJ17Hn4CAIcjExGwWITMzIwSxxbk7sGozQd8y1Z5VaFCBc/x48eLNaTN7VEWZQmJcnqkYnZ2Fk5nDnVijFvyH70z86Sy3y6cz/+efYIZH82nTkz9Qtc55bGn884RzQo4Ln2P371Ju9iy8S8aN2sOQN+rBvHzsiUAZDkcrPllFXEJrQrczpFDRt9Qt9vN9KfsDL3hJiIjo076DGDmS8/SvuPFNGjUuNCYk5L2yPcrfmXM9QNxOl24XG5EBItYSM8I6gkaLwJWYLfFmB3IuVLqE5k/jlU/3VzNhfF4lNiffLbFhvXrQhyOLH742hgu0qvfldx8x+lr6flt27yRV5+Z6l2vhxat2zD5safzPh/UqxMnjh8jPS2NXu1a0q5jZ558ybjPNqRPF159dx41a9fhlWemsumvdYSEhGCxWrl/6rPENm4KwIez3uDP1b8SGhqKUorrRt/KRRcX/jyHd994mcsHXpNX4xh3933cNmIoABMfeLRE+1dO3ABUw24bhD3FL6ZI9St+Ol4915gxYw727t07LiIiwrN06dJthZVzuj0hu45mNEMsVoCKlSoz/t4HGH55T6pUrcalV1x9Uvn777iFajVqctfo4XnLZn68gCrRVUsU34tPPsK+vXsIDQnBag3hvsefyUvw1998G4/fN4EBPS4EES657HJ6978KgHnvz+LIoYPcds/9ADxyz3gO7PuXnOxsuvTszR2TH8rbxmvPP8Ufq3/B7XJxXmI77M++ctqY7psyNeLlR+9BRLBVrsS1Ay6ldc8hVKwQxdzXp5Vo/wJQS+Bn7Lbe2FO2mh3M2Vau54N3uT3WXccymjpyAn/CiLOhnA2TK8pXwADsKTlFlgxSwXrcZzvdYbuOZsTl6EfOUiEqMz1aZVA1Oz1Q5oM/V44C3bCnnP6+SoAJqib6knC6PSE7jmQ018ldK0RfYI5+hn1wycxxRew4khGvk/t/JCgfZFdi1YHvsduamB3I2VQuE7zHo2TX0YxmeopXrQgDgXex28rlcRJssl3usKSjGXEuj0c/xdCH7lWapw7G423rFVkyQBT3xOUBY0alQKeUYvfxzEZZTneU2bEEgrxfeRD87ktpOPCG2UFoZ8bl8ViSjmY0dXmUTu6n0jn+Pw0xetcXPEwiwBQ3wScrpVw5OTlhRRf1b/uTs2LSspxBPTTibMrxAB4XVmea2aGY6WbstqeLLqb5I6UUu49mNsl2eXSLXQF0dj9Fc4zm+oDPE8XtRX/U4/EsP3ToUL/Q0FCnxWIJyOpcssNZ5Whadm2z4/BX2eKyWNz//Wo9Co6kZBF1+A9CcoockBDsJmG3bcWeMsvsQLSS2XvC0SAjxxV0T2s5a8pv69zpnAcsxG7rEcgdbYuV4BMTEz1r16592OFwtN6xY0cNAvCiL8etIlKyPLX0n3LhlDXDGu7xfbCTwuI4ToOts3VHHMPr2G3/YE/5yexAtOI5lJpVKzkzp1zOJFZcAXcyLzudgNeB0WYHUlrFHgefmJi4b+3atZ09Hk+DknzPHyzclhG7ZJfjo2DoQ3AuPRc+6694Nv03E43HTZjjMBZV8kk1glQY8Bl2WwfsKTvNDsYMrd9tfU5mk/t7xN9nNL5+69atYQsWLLBNmjTpSO6ymJh6bV6c9VFIfMuyfRzz8iXf8MLUh/G43TSNT+DxF/5HxUqnNiB8OGsGn304GxFBRBg59g76Xz007/OZLz3HgnnGk+QuveJqbvcZ657L6XRy760j2bd3N/UaNuLZ198hJCSE7Kwsbh1+NS+9PYfKVaoUFbLO8YUbhd32F/aUl8wOpDRKlKgTExNzgH/OUSznROyUxVWBhUCRf+Xlncramxlh9csxqv6kOkbTXUfsKSlmB6MZtm/fHj5r1qwauQk+I9sVhcVyxhURl8tVokllMjPSsd97B7M+WUSjpnE8+eC9zHzpWSY++PgpZZvGxfPu/G+oVNnGwf3/MvTSrrQ5vz31Yxux9tdVfP3lZ3zy/UpCrCGMGHApbS5oz8U9+5y0jp+XL6VylWimv/0hD989nlXLltD1kkuZ+dKzXDPy5uIkd53di/Y8dtsm7Cnfmx1ISQX18J/YKYvDgPlAU7Nj0YJKAvC+2UGUR5999lnlhISEFnFxcQnt2rVrvnbt2giA22+/vUFSUlJEfHx8Qo+ePZvtPpbZFGDp1wu5/sreXNaxDTNf+u/x0kcPH+LesTdybf+eDLykY94TKAEuu+g8XnzyEa7t35OHJowtUXwrf1xCfMvzaNQ0DoChN4zm6wWfF1i2Q+eueVPD1q5bj2o1anLQ+5jqbxfOp//VQ4iKqkBYeDhXDR3O1ws+O2UdudNCA2Q5MgkNDWPb5g3s2rGdPpcPKFbMols2i2IF5mK3BVweCeoED8wALjY7CC0oXY7ddrvZQZQn+/btCxk9enTj2bNnJ23btm3TqFGjjgwZMqSJx+PhlVde2RMbG5u1cdPmLa9/+EVo7lj3tNQU3l/wHXMW/cC7M17m0IH9ADw4YRxDb7iJOYuWMvebn9j41zq+W/RF3rZSTpzgw4VLeOqVN0sU44F9/1Kn3n/DqOvWb8DRwweLnDv+1xXLSE1JoaV3FssD+/+lrs8z7+vWb8DBff+e8r2LLu5OhYqVGNy7MxUrV6Z9p4t57rEHmfzoUyUJW1fiixYNLMBuC6jh1QF1L70kYqcsvg4YaXYcWlB7FrttBfaUU6f608665cuXV4iLi3O0b9/eATB27NjjkyZNarBr1668se37TmTW932AVd+rBgEQXbUaMQ1i2bd3N5VsNlavWs7xo4fz1p2ZkUHSjv/uPl4xeBgiZZP3tm/eyMN338Yzr71NVFSFEn3XYrHwyDP/3R7+4K3X6d6nLy6XmynjbyInJ4ehI26iQ6fC6zk6uxdbAvACcKvZgRRXUCb42CmL6wGnn2FB085cOPAxdlsi9hQ9NZ/ZxGJNdjir+y4KC4/I+7/VYsXtducNC3t/wfeER0RQkKgKBT/Bese2Ldx3+80A/N8FHU6ZVbJOTD1+XbEs7/3+vXuoXrN2offxd2zbwu03XsOjz73K+e0v+m89deuxf99//WH2791D7ZjTP2Bt/797WPHD97z+wac8OGEsA4ePJKF1G667sjfzl/5ymm/qJvoSGIPdthh7ykKzAymOoGuij52yWIBZ6E51Wtlojr6YLBPdunXL2LZtW+Tvv/8eATBz5szoWrVqORs1auSsZLORlpFRrAdxRVWoSLuOXZj12vS8ZYcPHjhpmubCFDVldKduPdm8YT27/jEmspv73tunzEyXa+f2rYwfMYSHpk0/ZUbIXv2vYtHn88jMzCAnO5sv5n5Y6HpyPfPIfdz7yBNYLBYcmZkIglgsZBUxLbToSnxJvY3dVsvsIIoj6BI8MA7oZXYQWrlyI3bbILODCHZ169Z1vfXWWztHjBjRKC4uLuHNN9+sOXfu3B0Wi4U6TVvVbBIXz9U9L+KOG4cVua4nX57JnqSdXN3zIgZe0pGJt9xA8onjZxxjhYqVsD/zEnfddB39O5/P4QP7ueXO/6adHtKnC4cPHgDg6UemkJaWyktP2RnSpwtD+nRh1bKlALS7qDN9Lh/AoF6duKpHBy68uBtdL7m00O1+Nf8T4hJa0bR5CwBGjbuLpx+ZzLX9enDznfeeNmbdya7EagBvmx1EcRRruthAETtlcVNgPRBQHSH8xZzQqcs7Wjd1NTuOAHUQaIE9JdnsQM6WQJku9mh6drX9yY5Ys+MIRBWiMtPrupJDIl3ZBd+rOEsCYLrY0rgNe8prZgdxOsFWg5+BTu6aOWoD08wOorxxuj0hh1Kz6hddUiuMbqIvtWex2xqYHcTpBE2Cj52y+Aagh9lxaOXaLdhtncwOojzZd8JR3+1RVrPjCGzB04pbxqKA6UWWMlFQJPjYKYurAc+bHYdW7gkwE7st4GddDAQpDmfl1CxnVbPjCHSidA3+DAzAbiu8c4TJgiLBA89hPEJU08yWAEwyO4izxAMopZTfJQC3R1n2Jzsamh1HcDj3Nfi8rl5B1OfLxyvYbeFmB1GQgB8HHztl8cXoB9po/uU+7LZ3sKcUPe7Kv+33eDwphw8frlWzZs3jIuI3Z+fDadk1c7KduqXkDLlznJZsl0eU59z9apWCIxluJDuV0Kyj52w7JmoK3AtMLapgWQv4BA88YXYAmpZPFMbBfqPZgZyJxMTE9LVr196anJz8Rmpqqg0/6YzlUViPOdzVg7MyWLbCQrOs2e5MS4hyn9PtSHYq9dY9j9Xtt4MxztT92G0fYE9JMjsQXwGd4GOnLO4OdDY7Dk0rwA3YbdOxp6w3O5AzkZiY+Kt3mui6+MktvUeWHb/nRJY7YOfo9ieVan//11upPzSq7naeu1ucShGadTSYkztAJMZF/XVmB+IroBM88LDZAWhaISwYrUv9zQ7kTCUmJqYD28yOAyB2yuIawDVmxxEsIiodyYxIT1IRbo/ZoQSDYdhtU7GnbDE7kFx+cUVeGrFTFncGupkdh6adRj89bO6suxso2Yws2mlZVcBX9PyFBXjE7CB8BWyCR9fetcDgdx1vApV3OOxtZscRbKyoQM4D/mYIdltLs4PIFZC/2NgpizugnzevBYZu2G3tzQ4iSNwNFDzNm1ZqVoV+UNDZ41e1+IBM8OjauxZY7im6iHY6sVMWVwXGmx1HMLIGfl8sfzMIu6212UFAACb42CmLE4G+ZsehaSVwNXZbY7ODCHATgUpmBxGMrEo/6vcsE+A+s4OAAEzwwENmB6BpJWQFJpgdRKCKnbI4Grjd7DiClRXdRH8ODMJuq2t2EAGV4GOnLG4DXGF2HJpWCqOw26qZHUSAmgBUNjuIoKREWQIsDwSIUGCc2UEE2i92In7yNC1NK6Eo4Gazgwg0sVMWhwC3mh1HsLIE6cPh/cQtZk88FTAJPnbK4khggNlxaNoZCOhH15qkF1DD7CCClUX5z/wCQagGMNDMAAImwQP90J1stMAWh93W0ewgAsy1ZgcQzCy6QfRcG2PmxgMpwevHU2rBQNfii8nbaneV2XEEM1FlMFds+dYVuy3OrI0HRIKPnbK4EkYNXtMC3RDstiizgwgQl6MfbHNOWXV6LwtDzdpwQCR4jKv4CLOD0LSzoDJwtdlBBAjdPH+OWdE1+DIwxKwNB0qCH2Z2AJp2FvnVlJL+KHbK4irAZWbHEewsuom+LLTCbmthxob9PsF7J5i4xOw4NO0s6o7dpjuMnt4gwNQhRuWB7mRXZgabsVG/T/AYB3qo2UFo2lkUBvQ2Owg/p5vny0CIHgZfVkxppg+EBK97z2vBSD+RsRCxUxbXBbqaHUd5oMfBl5mW2G0JZb1Rv07w3gP9YrPj0LRzoC92m18ffyYaip+fm4KFfgh9mepf1hv094PoSvw/Rk0rjerARWYH4af0bJFlxKr72JWlHmW9QX9PnvqpX1ow04ksn9gpiwVoZ3Yc5UWIzu9lqTN2W5n2J/P3BN/e7AA07RzqYnYAfqgFYDM7iPLCqofJlaUKlHFO89sE7x0H28zsODTtHGpn9mxTfuhCswMoT/Q9+DLXvSw35rcJHuNKRw/S1IJZBHC+2UH4GZ3gy1CIUvocW7bK9D68vyd4TQt2ncwOwM/oBF+GQnQTfVm7CLstvKw2phO8pplLJ3iv2CmLKwItzY6jPNG96MtcBGX4N64TvKaZS48U+U87/PucFHT0PXhTnFdWG/LLgyl2yuKGQFtXsfMAACAASURBVC2z49C0MlALu6262UH4Cd08X8b0o2pNUb4TPLr2rpUvZf4ISz+lE3wZ0+PgTdG6rDakE7ymmc+UqST9UAezAyhvQvQ9eDPoGrzZAWhaGSr3CT52yuIY9G25MmfVTfRmqIndViZ/6/6a4JubHYCmlaFyn+CBhmYHUB6F6XHwZimTnvR+l+BjpywOBWqaHYemlSGd4KG+2QGUR/oevGnK5O/d7xI8UAf9BDutfInBbivvI5bqmR1AeaTvwZsmpiw24o8Jvkx2XNP8iAXdaqVr8CYIwWN2COVVuU3w+kpeK49qmx2AyXSCN4F+Fr1pym2Cr2t2AJpmgvKe4OuYHUB5VKaTk2u+ym2Cr2F2AJpmgvI+RKyq2QGURyFKN9GbpNwm+CpmB6BpJijvNXid4E2gh8mZpkz63Phjgo82OwBNM0F5fx69Pu5NEIJO8CaxYreFneuN+GOC1zV4rTwqszmi/U3slMWVgRCz4yiP9GQzpoo41xvQCV7T/MM5v5r3Y7p53iShOsGbKfJcb8AfE7zN7AA0zQTltgZP+b64MVUobt1Eb55yWYPX3Tq18qg8J7ksswMor0KVfmqoicplgs80O4Dyyir62spEOsFrZU5h1QnePOWyiV4n+DLWx7L6z1Xht69uL1u6mB1LOaYTvFbmHnPd0P6oqvyH2XGUU+f84sofe67qBF8GwsnJui3kizU3W7+qFSk5bc2OR8NldgAmcpgdQHnlIDyqY/YrLZeFT1hdV463Nzuecuac/93rGnw5U5ejB94MfW7Z5vAbM+4I+aJzpOQ0MzsmDSjHtdikaf2cgNvsOMqrHELDL86e3jbJU+sXs2MpZ855rtM1+HKio2XDxsdC3klpIgfaiejnfvuhcpvgvbKBKLODKK9chIT2yHm+/Tdhk1fFWfZ1MjueckIneK30rLhdI63frr4r5DNbJXG0NDse7bQyzA7AZFnoBG8qDxZrn5ynL1oQ9tCK8yy7dH+cc08neK3kokk9/lDoB39dafm5uVU8Hc2ORyuWVLMDMJm+D+8HFBbLFTlTO88Ne3x5B8uWrmbHE8QU+h68VhKtZef2L8MeWPFH+K2RV1tXdrOKRzfFB47ynuDL+y0KPyIyNOfhrj+62ywzO5Ig5sCecs4fI6gTfIATPJ7B1mWr14Tf+sfC8AebnWfZ1UXk3I+v1M6642YHYDKd4P3Mjc7J3Ra5OywzO44gdbQsNqKb6ANUBRxp94bM/XO4dWnDUHHr4S2B71+zAzCZPu790Hjnnd0y1IxlQ0OWdzM7liCztyw24o8JPsXsAPxZY9m/+4mQt5MutGxuK8LFZsejnTVlcsD7sSSgndlBaKea7BrTLZ2o5aOsX18soh9te5aUyQW9Pyb47WYH4I/6WFb/+XDo+866HLtAhIZmx6OddeW9Br/F7AC0wj3uur5rJuErxlu/6CTil7d2A025rcFvMjsAfxFOTta4kAW/32JdXFs/bS6opWNPSTY7CJPpBO/nnncN6ZKuIldNCfnoQhGsZscT4MokwfvdlVjStH7JwAGz4zBTHY4dfDP0+eWbw2/MuDNkfhf9tLmgt8/sAPyATvABYIb78k4Pu0b+rhROs2MJcOW2Bg9GLb7cDfEynjY3O6WJ7G8ngh6DWn7sNjsAP7AVY2ywvsfr5953974wU0X8/lzoG+eJEG52PAGqfNbgvcpNM70Vt2u09auf/w4fvXFO2JMtm1r2dxQh1Oy4tDK10ewAzJY0rV8Guh9CwPjMc3G725x3blRKj34opW1lsRGd4E0STerx50NfX7Y1fMSRh0I/6KgfJVuu/WV2AH5is9kBaMX3lafD+aOc925XijSzYwkwu7GnlMmDrXSCL2O+T5sbaF3RLUQ/bU6Dv80OwE/o+/AB5kdP2zbDnA/s8SjKeyfRkthQVhvy13vwQdVkKXg8g6w/rZkc8nFIdUk9H9Cd5rRcboLs7/0M6AQfgH71tGw5MOfRrZ+F2d0WUdXMjicArC+rDfllDT5pWr9jwBGz4zhTFXCkPRLy7vKt4SP2Phs6s703uWuar+3YU/RjWg06wQeoP1Wz5v1znkh2K/l/9u47vonyD+D458noBFL2FKPsLbKXgKgoRWQIKCKKKIriFqmIEHBQJ6j8BFERBBVRREZlKMhQhoioCLIpm7LTkWbe/f64tJTSQgttL0mf9+uVV+nl8tw3oU++d/esE3rHEgQ2F9WBAjLB+wXtbfrrxNGDX5tfW/Nv+BB1sGlZxzDhkxPTSLkpsrP5ICATfBDbrlpr3O5+0+FVDUf1jiXAyQRPECb4roZNf/0W/uTvK8NeqNbGuP0mISild0xSwFuvdwCBIjE+9hjFfA6MYLdbrWbt4n5H8ajGg3rHEqBOYrMX2bDYQE7wG/QOIC/CcTufNX279r/wB3d/HDbxhqridEs5laOUD6v0DiDALNU7AOnqHFArVevommh2qab9escSgFYV5cECOREtARS9g8iNnG1OKgBnkEPksluidwDS1TtKucrtXB+USFfD5NoiF1pRlAcL2ASfGB97Evhd7ziya23Ytu3nsBfWrQt/suytxs0dZa9R6SqswWZX9Q4iwPwEePUOQrp6p4gp38b1Ybk0NULOb3Dez0V5sIBN8H4JegcA52eb+yd8yL9zwl6Xs81JBWW13gEEGv9aFLJfQog4R8nSrV0fVrGrUXKuB0jEZt9blAeUCf4Sss82V0qkN9QzHinkrNI7gAAlb9OHkBSiLW1ck68/rZbconcsOivS2/MQ4Ak+MT52CzqstNVA7N8jZ5uTCtlR5BC53MgEH2IcRES3c31QN0mN+UPvWHQkE3wOfiyaw6hqX+OqTX+EP/ZnQvjLNRsb9ncQgsiiObZUDP0g299zlhgf+xfaCZAUQpyER7Z3fdD4kFJuo96x6MCL1r+kSAVDgi/U2/QZs83tCh908G3ztBZytjmpiMzTO4AAJ4fLhSAPprBO7onN9imV1+kdSxFbic1+qqgPGgwJ/mfAVdCFytnmJB2dRnawuxx5mz5E+TCaurjfbr1dqf6r3rEUoW/0OGjAJ3j/OtGrCqo8OducFAAWYLP79A4iwMnhciFMxWDo5p7QbrNSa43esRQBN/C9HgcO+ATvd1W36bPMNrdLzjYnBQBdKnswSYyPtSPvcoQ4Ifq4x930m69BqP8/L8Nm12U53WBJcgu4glntKnP6+DTzu6uyzDZXuxBik6T8OIkOnW2C1Gd6ByAVvvs8L3dc7mu2Su84CtEcvQ4cFAk+MT72ILAsr/tnnW3uNuPmTnK2OSmAzMRmd+sdRJD4HijyjklS0Rvqeb7TfF+7ULySdwAL9Tp4UCR4vymXetI/29x6OducFOA+0TuAYJEYH+sCZuodh1Q0nvU80XGW95ZQS/JfYbOn6nVwk14HvgIJwEGgetaNpUk+M9r85T93GX6rYxJKG31Ck6Q8WY3NvkvvIILMNOB5vYOQisYr3oc6phGx5lHj4g5CIPSOpwB8qOfBg+YKPjE+VkGr7IA229yCsNFytjkpmEy7/C5SVonxsbuAX/SOQyo68d4BN73r7fubqhLsI03WYLPrulpkMF3BA3zay7C2+8vmL8PLieSmQE29A5KkPDqNnNzmSn0AdNY7CKnoTPb1au8gYt0rplkthQi6PJXhA70DCJoreIDE+NikiWFT9viTuyQFk4+x2Qt8wqZiYiGwR+8gpKI13XdH25e8D29WVYKxU+oh4Ae9gwiqBO/3rt4BSFI+OYBJegcRrPzNcxP1jkMqenN8N7d6yjP8H1UlXe9Y8mlKIExmFXwJ3mb/Cx1W5ZGkq/AJNvtJvYMIcjPQmjmkYmaR0rb5o55nd6gquvVGzyc78LHeQUAwJnjNeL0DkKQ8cgPv6B1EsEuMj3VwmaGyUuharrRoOsgTt19VsesdSx5MxGY/o3cQEKwJ3mZfAyzXOwxJyoNZ2OyH9Q4iRHwAQfEFLxWCtUrjRv3cY44qKmf1juUSThNAzUnBmeA1o/UOQJIuwwfE6x1EqEiMjz0JvKp3HJJ+Nql16/V0v3pKUUWgNnm9jc2erHcQGYI3wdvsm9DmqJekQPUpNrvs/V2wPgB26h2EpJ9/1Bq17nBPSPWphmN6x5JNEjpPbJNd8CZ4zSuAqncQkpSDZGCM3kGEmsT4WA/wrN5xSPraqVa/7hb3Wx6vagik5q8J2OwOvYPIKrgTvM2+FfhK7zAkKQcTsNlP6B1EKEqMj10C/Kh3HJK+9qtVqndyTzS4VeMBvWMB9gJT9Q4iu+BO8JoXgRS9g5CkLBIJoI42IepZwKN3EJK+Dqvlq9zkej/CqZr36hzK8ECcyCr4E7zNfhQYq3cYkpTFS4FY2UOJf4563acClfR3nDIV27k+sDjUcL36ZszDZl+q07EvKfgTvOZDYKveQUgS8Cs2+xy9gygmxqN1bJKKudNYyrVxfVgxRY3cVsSHTgWeKeJj5lloJHib3Qs8juxwJ+nLBQzVO4jiIjE+Nhl4We84pMBgp0RMa9fk6ufU6L+L8LC2QJ7nIjQSPIDN/ivwhd5hSMXaG9js/+kdRDHzObBZ7yCkwJBGZMk2rsm1Tqml/iyCw20F3i+C41yx0EnwmueAo3oHIRVL/wAT9A6iuPEvRPMYssOd5JdOeFQ71wf1j6llNhXiYTzAQ/67xwErtBK8Nv/vYOSteqloeYAHsdllktFBYnzsH8AIveOQAoeLsIgOrkk3HFAqbCikQ7yCzf5HIZVdYEIrwQPY7MsJsNmEpJD3Ojb7Fr2DKM4S42PfB+bpHYcUOLyYzJ3d77XYpVT9rYCL/gV4u4DLLBShl+A1I4Gi7k0pFU+rgdf0DkIC4CG0CUckCQAFg7Gr+802WxXr2gIq8gxwPza7UkDlFarQTPA2uxMYiLZUpyQVlhPAvdjsPr0DkTJ71fcFnHrHIgUOFYPhTvfr7X9X6qwugOIewWY/UgDlFInQTPAANvtfwAt6hyGFLAUYgM0eaAteFGuJ8bFbgKf1jkMKNEL0c4/tuNrXeNVVFPIJNvv3BRVRUQjdBA9gs38IzNA7DCkkjcdmX6F3ENLFEuNjpwGz9Y5DCjwPeOI6JfharbqCl/4GDC/gcApdaCd4zWPA73oHIYWUn5Hrkge6xwA5J4F0kSc8T3ea671pVT5ecgDohc0edE2+QlWLwYgym6Uq8AdQSe9QpKC3E2jrH5IpBTBrXEJ9YBMQpXcsUuAZY/pi9WDj0puEQFxit1S0+h6UU6EXhyt4/J0ieiM73UlX5yTQTSb34JAYH7sdeAQ5L4aUg/HeQR3/57vrV1Ultx7xCnBfsCZ3KC4JHsBmXw8MQVZ26cqkAz2w2ffpHYiUd4nxsV8RhG2nUtF4x9u/w5vee9arKjmNhHkZm31hkQdVgIpPggew2WcTwCv/SAFLAQZisxfWrFhSIUqMj/0Ibf14SbrIVF+PdmO9D/yuqhdMdzwZmz1et6AKSPFK8AA2+wfIDlJS/rwQbMNjpAslxsdOAuL0jkMKTF/4urYZ4X10i6riQlu07Cm9YyoIxaOTXU5slv+hLTErSZcyGpv9db2DkAqGNS5hDDBO7zikwBRrWP+//4V9+HSoTF5V/K7gz3sS+FrvIKSA9opM7qElMT52PCD/T6WcfJ+gtHkmVJI7FOcEr80lPAg5IYaUMxs2u5xjPgQlxseOBt7ROw4poMwD+ifGxwb08q/5VXwTPOBfy3cQMEXvUKSAMg6bXd7GDWGJ8bEjgA/0jkMKCPOAe0ItuUNxboPPzmaJR1uFTiq+VLShMRP0DkQqGta4hClos95JxdMc4P5QTO4AJr0DCBg2exw2SzKyfa648gAP+YdSSsXH40ASMFbvQKQipQKvJMbHhvT3vbyCz85mGQpMBsx6hyIVGTvQG5t9pd6BSPqwxiX0Bz4HIvWORSp0ycDAxPjYRXoHUthkgs+JzdIJ+A4oq3MkUuE7DNyBzf6v3oFI+rLGJbQAFgCV9Y5FKjS7gLsS42N36B1IUSjenexyY7OvAloC23SORCpcm4HWMrlLAInxsZuAFmh/F1LoWQK0LC7JHWSCz50253gbYLHeoUiFYirQzr8QkSQBkBgfewRoB0zTOxapQL0JdE+Mj7XrHUhRkrfoL8dmMaDNfDUKeUIUChzAo7IznXQ51riEjCG0crnZ4JUOPJQYHztH70D0IBN8XtksXdAmxZFrygevnUAfbHbZ9CLliTUuoSHaOOnaesci5dtBoGdifOwWvQPRi7wizSubfQXQBHnLPljNBFrI5C7lR2J87L9Ac7QmndzWDZcCiwJ8BDQuzskd5BX8lbFZHgPeRd66CwZHgaHY7Al6ByIFN2tcQiu0RH+D3rFIufobGJoYH/u73oEEAnkFfyVs9qlAY+AnvUORLmkm0EAmd6kgJMbHbkS7mn8WSNE5HOlCacAIoLlM7ufJK/irZbPcC0wEKuodipTpCFpHOpnYpUJhjUuoCkwC7tY7FokE4InE+NgDegcSaGSCLwg2SwzwBvAo8q6InpxoJ1tvYLOn6h2MFPqscQl3oM18eb3esRRDR4GnEuNj5+kdSKCSCb4g2Syt0M7qW+sdSjH0HTACmz1R70Ck4sUalxAJvIx2izhM53CKg4xOdC8nxscm6x1MIJMJvjDYLD3RFq2pr3coxcAW4Bls9jV6ByIVb9a4hLqADe22vVHfaEKSF/gGeDMxPnar3sEEA5ngC4s2Qc4gtAp/rb7BhKQdwKvAHGx2OXxJChjWuITr0DriPQRE6xxOKHAAnwLvyXb2/JEJvrDZLGFobfPPIxN9QdiO1t/ha5nYpUBmjUsoAwwDnkR2wr0Sp4EPgcmJ8bGn9Q4mGMkEX1RsFiParbvn0BaykfJnIzABWIjNLv9opaBhjUuIAO4HXkDOiJcXB9DmGfksMT7WoXcwwUwmeD3YLO3Rruh7IHvdX4oDmANMxWbfpHcwknQ1rHEJAq3Ovwi01TmcQLQVbVGYbxLjY716BxMKZILXk81iRWunHwTU0DeYgLIN+Bj4Apu9WK3+JBUP1riElkBfoBfFu+4fA74F5iTGx67XO5hQIxN8oLBZ2gEPAP0Ai87R6OE4MB/4Cpv9V72DkaSiYo1LaAT0REv2TXUOpyicRlvAZw6wOjE+VvalKSQywQcamyUC6A7cCdwBlNc3oEJ1BPgebQz7r7LTnFTcWeMSruV8sm9P6Ay3+w9toa5FwLrE+FifzvEUCzLBBzJtqF1LtIQfS/AvcuEBfgdWAkuB9bLDnCTlzBqXUA7tRP8uoB1QTt+I8uUQ2hwVvwCLEuNj9+ocT7EkE3wwsVmqoFX0Nv7HjQT2zFlezlfylWhX6Wn6hiRJwcl/dd/C/2gONEP/5jwfsBOtnv+V8VMOawsMMsEHM5slHK2StwEaAXX8j9I6RGMH/kGr5H+hLdv4Lza7S4dYJKlY8C96Uw9t1sz6/n9fh5b4SwKiAA7jBc75HyfQertv8T+2JsbHphfAMaRCIBN8KLJZKqAl+rpoi2BUBir5H2X9j8g8luZBWxozBa2CHwIOZvl5EDiAzX6oAN+BJElXyRqXYEBL8pYsj1LZfrcAbuAsWv2+6GdifKxcuClIyQRfXGmd+cIBE2DO9jMjqafKK3BJkqTgJBO8JEmSJIUgOYuaJEmSJIUgmeAlSZIkKQTJBC9JkiRJIUgmeEmSJEkKQTLBS5IkSVIIkglekiRJkkKQTPCSJEmSFIJkgpckSZKkECQTvCRJkiSFIJngJUmSJCkEyQQvSZIkSSFIJnhJkiRJCkEywUuSJElSCJIJXpIkSZJCkEzwkiRJkhSCZIKXJEmSpBAkE7wkSZIkhSCZ4CVJkiQpBMkEL0mSJEkhSCZ4SZIkSQpBMsFLkiRJUgiSCV6SJEmSQpBM8JIkSZIUgmSClyRJkqQQJBO8JEmSJIUgmeAlSZIkKQTJBC9JkhSghBAthBDrhBBpQghVCHGDEOJ2IcRfQginf1uM3nFKgcmkdwBS8SCEGAVsV1X1B71jkaRgIIQwA98CTuBZwAEcAtYA24AnABeQJoQYAFRQVXWSTrEagEFAb6ApUAbYD8wB3lFV1alHXMWdUFVV7xikYkAIkQp8p6rqg3rHIknBQAhRF/gPeERV1U/9224HlgC3qqr6c5Z9FwMNVVW16hRrCSAF2AAsBk4AbYAH0E5IblZlsily8gpeyjf/2XqYPCuXpEJVwf/z3GW2BQI30E5V1XVZtn0ihEgExgFdgJ9zeqFUeGQbfAAQQnQSQvzhb1PbK4R4VAhhE0Ko2fYbKITYLIRIF0KcEULMEUJck22fVUKIf4UQ9YUQvwghHEKII0KIF3M4brgQYpwQYo8QwiWEOCSEeEsIEZ5tP1UIMVkIcZ8QYhvabcHb/c+94G8jPO2Pa7MQ4u7srweigQf8ZalCiBlZnq8qhJguhEjyx7FNCPHQVX6skhS0/PVjtf/Xb/11ZhUw079tU0Y98m+PBa7NUr8S/eV08v/eTwgx1v9dkCKE+E4IYfF/B0wSQpwQQqQKIT7Pof4PFkKs9O/jEkJsF0IMy7qPqqrubMk9w3z/z3oF8blI+SOv4HUmhGgKLAWOAWMBIzAGOJltv5eBV4G5wKdAeeBJYI0QoqmqqlnP6Ev7y/zev//dwJtCiK2qqi7xl2cAFgLtgWlotwIbobX11QZ6Zgv1ZqAfMBk4BST6tz/tL+dLIAy4B+0Lqbuqqgn+fe73x/y7/1gAe/1xVES7raf6yz4J3AF8JoQopVeboiTp7GPgCDAK+ADYBCQBO4GhaN8R+9HqUQnAAlRDq78AqdnKewlIB+KBmmjfHR5AQfu+sAGtgQf95Y7P8tphaG3+CwEvcCfwkRDCoKrq/y7zPir5f57Ky5uWCpiqqvKh4wOt0qQBVbJsq4lW+TKara5Fq1ijsr22oX+/UVm2rUJLlvdn2RaGdgLxXZZtAwEf0D5bmY/6X982yzbVv2/9HOKPzPa7GdgKrMi2PRWYkcPrPwWOAmWzbf8a7TZkZPbXyId8FIcH0Mlf9+7Osu1B/7bm2fZdDCReooytgDnL9q/QkvuP2fZfl72cnOog2gXE3jy8h58AOxCj9+dZHB/yFr2OhBBG4BbgB1VVj2ZsV1V1D1pHmgy90ZpT5gohymU8gOPAbqBztqJTgdlZynOjXT1fn2WfvmhX7TuylbnS/3z2Mlerqro9+3tQVTU9y/spjXYlsRa4MQ/vXwB9gEX+X7PGscxf1mXLkSTpsr5QVdWT5feNgACmZ9tvI3CNECLz7m62Om7x18/VwPVCCEtuB/SPnLkFiFMvvMMoFRF5i15fFYBIYE8Oz2XdVgutMu7OpRxPtt8Pq/7T5yzOAo2zlVmPbE0B2WLLan9OOwkhugOjgRuArG13eekxWx6IQbvlODSPcUiSlH8Hs/1u9/88lMN2A9rJ9WkAIUQ7tI5ybYCobPtbspSVSQjRH3gN+ExV1SlXFbl0xWSCDw4GtIR5B9qt8uyyt7fltA9oJwlZy9wKPJfLvtkrfnr2HYQQHdCaGNYAj6M1A3iAwcCAXMrNKuMO0mzOdx7K7p88lCNJ0qXl9p1wye8KIUQNYAWwA+274hBaj/luaO39F90FFkLcCnwBJACPXVXU0lWRCV5fJ9AmsaiZw3NZt+1Fq3D7VVXdVUDH3gs0QWsrv9LxqX3Q4u+qqqorY6MQYnAO++Z0jJNoY2eNapYxvZIk5VthjTG/E+3OXA9VVTPvAgghsjfhZWxvhdZz/g+gn6qq3kKKS8oD2QavI1VVfWhjQ3sKIapkbBdC1ES7Ws/wPdqZ9lh/uzVZ9hVCiLJXcPi5QFXgkexPCCEihRDReSjDh/bFYszyWisX98AHrSPhBVNq+t//PKCPEKJhDnGUz0MMkiRp9SvX9vCrkHGFn/m94293v+gkXghRD+2qPRHonrXtXtKHvILXnw24DfhNCDEFLVkOB/5Fa9dGVdW9QojRwATAKoT4Ae3K9zqgF9rQs3fyedxZaMPepvrPxn/zH7uuf3tXtLPwS0lAu223VAjxFVp7+RNo/QcaZ9t3M3CLEOI5tF7z+1VV3QjEoXXo2yiE+ATYjjbN5Y1oHXTK5PN9SVJxtBnoL4R4D21IXaqqqosKoNzlaLfkFwkhPkYbkvcI2t3Hyhk7CSFKonWMLQ28DcRmuxbZq6rq+gKIR8oHmeB1pqrqZiHEHWgJ+lW0Nq4xaB3g6mbZL14IsQut3Wusf/MhtAq48AqOqwghevrLG4R2ouAA9gHvA5dtClBVdaUQYghakp6E1hFvJGDl4gT/HNqJyGtoHQtnAhtVVU0SQrT0v+feaG35p9HG3Y7M7/uSpGLqI7QLgsFodfoA2uiUq6Kq6k7/xFWvoX1HHQemoDWvZe2BXxbImHQrPoeiZgIywRcxORd9gPJfpTdQVbWW3rFIkiRJwUe2wQcAIURktt9rofVSXaVLQJIkSVLQk1fwAUAIcQyYgXZ7/Fq0qSHDgaaqquY29l2SJEmSciXb4APDUuBetHmbXWhtVaNkcpckSZKulLyClyRJkqQQJNvgJUmSJCkEyQQvSZIkSSFIJnhJkiRJCkEywUuSJElSCJIJXpIkSZJCkEzwkiRJkhSCZIKXJEmSpBCUr4luNm/eXAKogjwxkC6kAOeAU82aNVP0DkYqWLLeSwFAfsdcgTxPdLN58+bWBoNhqsFgsJBlbWBJAlBV1asoympVVcc0a9bsiN7xSAVD1nspUMjvmPzLU4LfvHlzCYPB8GtMTEzFChUqnBFCyOnvgpSqqvhU1aAomLyKavQpikEFgaot3lxKpAkQKgJV+ylAGL0YzV6E0Ye4+DteVVXcbndYUlJSqfT09IOKorRv1qyZu8jfnFSgZL0PHYqiCq+imr2KagRVqCpCBYSqEul1odVzAaCCUITJqGA0eoXRGBBXy/I75srk9RZ9FYPBYKlQocKZ6Ojo9EKNFX7YtQAAIABJREFUSLoqPkU1OD2+cJdXiXB5feFurxLh9irhPkU1+1TV5FNUY86vVBFAJcPxS5QuVAxGDwazB6Mp46cbg9kTHRnuMletfHbvvsTyiqJUB/YUwtuTipas90FAUVWR7vZFpnt8kR6fYvb6VLNXUc1en2L2KqrZp6hmRVVzbF6JQPGUOHfCnGvhQqhCS/QeTCa3MJu1R1iY2xAW5hKRkenCYCiSE7/o6Gin2Wz27N27V37H5FFeE7wBEPIMPrB4fYoxzeWNTnP7SqS7fdEurxLpVZTcK+tVUwWKNwzFG4b34mdNXhWz86ynxobR77Jo+0rgD2ALNruj8GKSCpGs9wHG61OMDi2ZRzk9viinR4lye5UIFbVwmk9UVaher1n1es24XFEX7yBUEWZ2GcLDHSIiwuGKiUqLMkc5DIbCufI3aCcTArlQWp7IDymIOD2+sBSnt5TD7Y1O9/hKuL1KhN4xZScUr9nkSekB9PBv8mGz/IeW7DcCCdjsh3QLUJKCiMenmOzpHkuq01sq3eOL9viUcL1jupAqVLc7wud2R5CWZjlgPGWs7VM9BmHwYo5OIbxECuGlUjCafXpHWhxdcYK3xiU0K8hAskqMj91cWGXn1aZNmyJ69uxZ68iRI1uL4nj3339/9U2bNpXI+H3//v0Ro0ePPvzMiLi05HRvTIrLE5OckhZxb2xnzGYzc5etvWR5+3bv5N5unelz3wO8aJsAwJnTpxj7wnCOHT6E1+ul4Q03MvqN94iIjLzgtR6Ph76PjmT/wSPUsFZj7tQ3MZlMOJ0ubhvwOAumT6R0TKm8vjUj0ND/eBAAm+VPYAGwAJv977wWJOmvsOp9INT5y6lbt2799evX7yhdunShtUurqkqayxed7PRYUl1ei9Pjy+GqOXf//vUnb497CUdaGkIInh/zOq3a3QTAK88+zvq1qyhTtiwArTt0YtTocReXsWsXQ0aNyvzdnpJCSmoqR377DYA7hw4l6dQphMFAyeho3omL44Z69VDDzS6jwWc2u9PNgPnHZSsiX3z9/QoAz4+Z4Li9W/dzpSLN9mkffRiZlJRkjo+Pv1R7oFQA5BV8gJg1a9ZB0NrT/tudWKZZ43rWDnf2r7z/VFrm/9GkCTZuaN6KbX//ecmyPB4P40c+w823x16w/dMP36W6tQYffj4Hn8/H8Af6s2Dul/R/4OEL9lu2aj1lYkrxw/T3eOg5G0t/WUf3W2/i1UmfMPzB/vlJ7rm50f8Yh82SSEayhzXY7PJMXwooHo8Hs9nMjh07thdG+T5FNZxLd1tSnN6YNJe3lE9Rr+h7WVVVnn3kfl5973+07tCJxH17ePTenixYtSnzJP7Bx55k4MPDsrzq4nOVhrVrs/G77zJ/f/b11xFZOtfOeucdYkpp3wELVqzg0dGj2ThvHu4wgy9Sa84xA4x5Zwo/zvoAnyHM1X3wiKhmN90atWP/oSpffztPnfP94tMpTk+JkhHm1Ct5r1LeBPW41tmzZ8dcf/31DerUqVN/2LBhVUuXLt1k586dYQBDhw6t1rBhw3p169at37x58zp///13OEBqaqqIjY29vkaNGg3q1KlTv127drUyynvuueeqXHvttQ0bNGhQb9asWWWyHmvevHmlmjVrVqdBgwb1GjVqVG/RokUlAdq2bVvr888/L52x3+LFi0vWq1evfn7fS5rLG3XojKP6f0eTm3wyY6a1bcculClXIbOib1i7ihPHj9GtV9/LlvXxpLe4tXtPql9X44LtAoEjLRVFUfC43TjTHVSsXOWi15vNJhzpTgAc6U7Cwsz8s30XO/Ym0q/Hbfl9a5djBZ4GVgInsFlmYLPcVNAHkULDzz//HN2sWbM6derUqV+7du36s2fPjgFYs2ZNVNOmTevWrl27fqNGjeotX748GuCee+65dsyYMRUzXr9jx46wcuXKNXG5XGLBggUlb7jhhrr16tWrX7NmzQYTJ04sl7Ffnz59rH379rU2b968Tu3atRsACCGanTp1ygi5f79k7BcXF1epUaNG9apWrdro/fffL5vx3J9//hnRvn37WrVr165fu07dhrb4d+v+dyy5yd87E69/9MGBZfp3u9nU55a2TH7rtXx/NufOnuHsmVO07tAJAOv1NSlZysKvq37Od1kZnC4X3yQk8EDv3pnbMpI7QHJKSkbve5xm1RClktlfw2zSvkdOO1SvOUzrGvT2uFE8/dI4keql3P5TaXX+O5bc8Jg9vZLL6yvEvkPFV9BewR85csQ0fPhw6y+//LKjadOmzvfff7/suXPnMt+PzWY7XqVKlcMA06ZNKz18+PDqa9eu3f39999b7Ha7ce/evdsAkpKSjABz5syxLFy4sPSWLVu2x8TEKL169bouo6zt27eHvfrqq1VWrly5q0yZMsq///4b3rlz5zoHDx7cOmjQoNNffPFF2cGDB58FmD59etmBAweeyst78PoU4+k0d9lzDk85l9eXeZ/8h2++5LnR4zP3S7bbmfjGWD6a9R37du+8ZJn/bPmDf/7cxMdfzWfqxDcveG7o0yN47tFB3HxjHVxOJ3f07EOn27pdVMatN7Xmu4QVNLmlP61vbMTN7Vpw+33DmTHx4tt5BawM8ADwADbLdmAaMBOb/VxhH1gKfElJScb+/fvX/PLLL/fefvvtqT6fj1OnThmdTqfo379/jcmTJx/o06dP8rJly0oMGDCg5t69e7cOGTLk1OOPP24dP358EsDHH39crlevXqfDw8PVtm3bOv74448dJpOJpKQkY9OmTev36NHDXqNGDQ/AP//8E7Vhw4Ycb8nn9v2S8Xx4eLi6devW/7Zs2RLRvn37eo8//vhpgN69e9d69sWX027r1T/C41PCzp45Ha6oKqOffZyHhz9H8zbt8Hq9PPngPSxf/AO3de+Z58+ndJmylK9QkWWL5tP1zl78+9efJO7bw9FDBzP3+XL6VH74ZjaVqlZj+IjR3NCgwSXLXPDzz1irVaNJ3boXbH941ChW//47APM/+giAVKM3rLJPzex++9bop3ngmbG4VFPkc2PjWf3zUsqWq0CjpudbeTw+JfxkiqvqyRRX1egwU3Lp6LBTMVHmcwbZsbNABG2CX7VqVXSdOnUcTZs2dQIMHz789IgRI67NeH7hwoWlpk6dWiEtLc2oKAp2u90E0Lx5c8fIkSMjBg4cWL1jx44pd999tx3g559/LnnXXXedKVOmjAIwbNiwk0OGDCnhL8ty4MCB8LZt22b+lQsh2LNnT9jAgQPPvvTSS9ccOHDAHBMT41u5cmXMRx99dMlOZA63N+JEiqtSitNbRlUv7P3658Z1OFJT6XDz+SvlCa+M4OHhz1G2XPlLJvj0dAdvvPwC70ydecEttQxLF86jRq06TPv6B5zpDp56aADff/0Fve8ddMF+BoOBT95+JfP3SZ98Sc/bO+H1+RjwxChcbjdPPNCPm9u3vNTbvFr1gUnABGyWL4GJ2OyFcotUCg6//PJLieuuu855++23pwIYjUYqVqzo+/333yMNBgN9+vRJBujatWtq2bJlPRs2bIjq2rVrqtfrZfXq1VEdOnRwzJ07t+wPP/ywGyApKcl03333Wffv3x9hNBrVc+fOmbZs2RKZkeDvuuuus7m1t+f2/ZJhyJAhpwGaNm3qNBqN6o49iaUPnzxTzuXxhnXu0TfM49OKLV2mLA5HGr//tpozp05kvt6Rlkbi3vyPApv02ZdMemMcn/1vIjVq16Vpi9YYTVpow18cTfmKlTAYDKxYspgnBvVl+ZrfL1nezPnzL7h6z/DpG28AMHvBAkZPnMgP06Z5XcJnivR4Mofhdmh1IxsWz1K2qVaRkpLCE4P68dHs75j96RT++mMjZcqVZ8SY1zGHhQGQ5vaWSnN7Sx07J3ylIs1nypUMT4o0G135/hCkTEGb4C9l9+7dYSNHjqy+bt26/xo0aODauHFj5C233FIHoH79+u4dO3ZsW7x4ccmffvqp1NixY6v9/fffFyWOrAlSVVXat2+fvGjRov05Ha9bt25nP/nkkzLly5f3tmnTJrlSpUoXtSOPGjWq0vfz55dDGM1PjxpnaNepS46xz58zmzv73oPReH64+l+bNvDXpg2899oruFwu7OfO0qNjCxau3nTBaw8n7uf4kcM80v9OAFKS7SiKSrL9HK9NnMI3X3zGmDcnYTQaiS5Rklu79WDTurUXJfisDhw+yo8rf2Ppl5N54OkxDL2vN80a16P1nQ+w7Zfvcn1dAYoEHgaGYLMsR0v0y4riwFLwylp/BwwYcPqTTz4pl5ycfLZ06dLeFi1aOAGGDh167W233WZfunTpXoPBQP369eulp6dnNluWKFEix/4gl/p+yRAVFaUCnE1zxxhNZuPhc+nXp3ty6Zvnn2xs1oKfCI+49MCY5x99gEOJ+wCYNmcBMaUvaEmkTv1GTJl9vl727NyKmrW165KszXFd7ujO+/Hj2Ldnt6h7bUVyknj4ML//8w9fvfdervEMvOsunnr1VU6mpbrCK1qMBtV9wRvwmqKcipuoD958lUeefJ7TJ07wy/If+WzuIj56dwIJ87+lZ//7LijTp6rGsw53+XMOd/mSEeYzFUtFHIsMMzov+cFIOQraNvhOnTql7dy5Myqj7WvKlCllPR6PADh79qzRZDKp1atX9yiKwqRJkypkvG7v3r1mIQT33XefferUqYdVVWXfvn1ht956a8rChQvLnD171qAoClOnTs1sj7vzzjuTf/vtt1IbN27MvI3+yy+/ZPZuffjhh0999dVX5WbPnl1u8ODBF9yeV1WVcw63ZfDTL1nm/rQ+fO7yX3NN7qkpyfz040J69h94wfYl6//JfLz5v8+oUavORckdoFa9Bqz6e0/mvvcNGUbP/vfx2sQpAFSrbuW3VSsArePQutUrqVmn3iU/56fHvMNE2/MYDAbS0tMRQmj/dhT5vCcC6AosxWbZgs1S4J0BpMDWpUuX1AMHDoQvXbq0BIDP5yMpKcnYuHFjp6IozJ8/vxTATz/9FH3q1Clz69atHQCPPPLI6YSEhNJTp04tf//992fWT7vdbrRarS6DwcCSJUtK7Ny5M0891i/1/ZIh2ekptet4Sr1DZx2ZHWGsNWoRERnFkh/OJ+CzZ04TFV2CFm07MP2jSZnbTxw/RtKxi2djfffjmcxdtpa5y9ZelNwBTiad75g+76uZREZG0dLfiz5ref/8uQn72TNce931ud4Knzl/Pj1uvvmCNvdzyckcPXH+TsPCFSsoY7FQokJpNVIYLpodI40o5Z8/N5Gakky7zreQnp6WefJlMBhwONJyOzwqkOz0lNl9IqXB/lNp1zvc3shcd5ZyFLRX8FWrVvV+8MEHib169aoZFhamduzYMTkqKkopW7asr06dOu4ePXqcqVu3boPSpUt7u3XrltmGu3nz5sgxY8ZUU1UVn88n7r777jOtWrVKb9WqVfrGjRujb7jhhvolSpTwdenSxf67v42pYcOGrunTp+979NFHr01PTzd4PB7RoEEDR+fOnfcDdO7c2WE0Gjlw4EB47969kzOOlZzuKXnM7qzm8uZtqMvShd9Tv1ETrs3WOe5SThw/xvAH+l122BzAi+Piee2l5+hzS1sURaHxjS0Y+PDjue7/1fwlNKlfiwZ1tHjinhjMIyNexe3x8Mozj+Q5xkJwA7AMm+UnYIQcalc8lC9f3jdnzpy9I0aMuOapp54yGAwGxowZc2TAgAH2b775Zu/TTz9dfeTIkdXCw8PVL7/8cq/FYlEArFarp0mTJmkrVqyImTlz5oGM8l577bUjzzzzTPX4+PgqDRo0cDRu3Dj3bJNFy5Yt03P7fjnncJcCOGp3X1/KcuENAJPJxPuffcmEV0by6eT3MBgM9Bs0hL4DB/PGB9N4Z/zL9O7SBiEEkVHRvBL/HhUrV83XZzTvq5kkzP8WVJXratZm4qezMhPqK889wemTJzAajYRHRPL21BmUKmWBc2l8Mncux06cYMzw4QAoisLsBQsyb8VnSE5N5b7nn8fpdGIwGChXujTz/vc/nGEYohTlolsUJ5xG86Q3bLzz8UwAatdrSLXqVnp3aUPpMmWZ+MnsPL2vFKendIrTUzrS4Ev2Kmqe/p+kvM9FX9dkMi2tVatWalRUVMDcKjl79qwho41s1qxZMWPHjq26b9++bXrHle72hR+zp1+T6vJa9I4lPwTQyJBjK0SeOL0q+4+c5LrfnicitcjmslGA2cBoOYFOwQrUeh+I7OmeUieSnVXSPb5ovWPJjwgUzzXnjl51D/ZDFY3eaxWfEu7zhGVsUw0mz1bvNQXaO171ujlx9DBvrj21as9Zz+OJ8bH/FWT5oSZor+AB3nzzzQrz588voyiKKFGihO+LL7648uxUADw+xXTc7qxyzuEpV2hTR0rZGYBBQD9slg+AN7DZ7TrHJBUTTo8v/PDZ9OoOt/eqJ4cIWiaTx2dQDeGe88kdwGWIduEfE1/Q0r1KJ+Bva1zCu8D4xPhYuVZCDoK2DR4gPj7++M6dO7fv3r1725YtW3a0b99elznPVVUlKdlZYefxlIZnHe7yMrnrIgJ4EdiLzfI0Nksui+pI0tVTVZVj9vRKu0+k1i/WyR1Qwk3uSIPpot7uyUQW9vegGYgDtlvjEroX8rGCUlAn+ECQ5vJG7j6RWi8p2XmNoua2UptUhMqiDa9bi81SU+9gpNCT6vRG70pKrX8yxVVVzWWVtuLEZRZqpCouaH9XgTOeywwJKDhWYJE1LuEHa1zCNUV0zKBQ7P84r5SiquLIufQq+06m1cvvfNFSkWgD/I3N8gQ2i7yjIl01n6IaDp1xXLPvVGrdrBNTFXfpZsUQpXgvyCWKMcLpVkVRX/DcBfxnjUt40RqXIGfGQyb4K5Lm8kbuTkqtdzrVVVnejg9oUcBktKF1+euOLElZnHW4Lf4muIuGxBV3qUZveJTHdcEqd+kiKocFpYtENPAm8Ic1LiHfU4aHGpng80FVVY7bnRX3nUyrJ8/gg8ptwL/YLAMvu6ckZaGoqjh4xlH90BlHTa+iyKvC7Mxmt8Fg8BpV5YKr9XNKpN7NlY3RkvyjOsehqyvvRW+zFNpysdjsAbd0pNenGA+ecVhTXd4YvWORrkgMMAub5S5gGDZ7ntYLkC70X916hVLv6+34L+DqvMvjCztwxlFDNsHlzhdmdPu70mVewavC4DvrDSuq9vdLiQSmWuMSbgUeToyPLXZrWoTkFfzOnTvD3nrrrfJZt1WtWrXRunXrruiqO6MjXX6T++7/tjG4Tzfu6tSS3l3aMOb54TjTz4/maHJNafrc0pZ+XTvQr2sH/ty4LsdyFsz9inb1q2fuN6TfnZnPLVkwj35dO9C7Sxt6d2nDzI8n5xrP+Lhn6HNLWx7u34OUZG0kmaqqPH7/3RxK1HWEYVG6G61t/ka9A5EKTkHXebvDXWrPydT6+U3uhw8e4J5unTLr5AuPPUjyuZzzypfTP6Z3lzb0uaUtd9/ajsXff5P53Ioli7n71nb069qBXje35sM3XyWnOUs8Hg/PDLmPvre159lH7sfr1e6Mu5xOBvfpluuxC4orTBCVLS6vMcqpatNqBIo+wJ/WuIQb9A6kqIVkgt+9e3f49OnTy19+z8s7leoqu+9UWl2PTwnPqDx5FRYRwUuvvcWCVb/z7fJfSXc4+HzK+xfs8/m8JZlTT97Yqm2uZbVo0yFzv8/mLsrcXqlKVT6a9R3fr1jPzPlL+XbWdDat//Wi1+/esZ2D+/cx7+d1NG/TPvPL5Puvv6BF2w5cY73uoteEsCpovex76R2IVDAKqs6rqsrRc+lVDpxx1PIpqjG/db5CxUrM8Nfp71esp3zFSkyZGJ/jvjVr12Xm/KXM+3kdk2d+w9u2UZkn2q07dMys73OXrmH92lWsXJpwURnrVq+gVExpvl3+KyVLWfjNvzTstPff5p4HH6FUTOHecHSYFGOk13NB00UqUYG4Etx1wHprXMJgvQMpSkGd4OfNm1eqfv369WrXrl2/RYsWdTZv3hwB8OSTT1ZPTEyMqFu3bv2bb745c6jU3LlzS99www11q1at2ujFF1+snLH94MGDpm7dul3fqFGjerVr167/1FNPVcloe2tSr5b1vdfHGAZ078Irzw7LV3zXXleD2vUaAtrKVw2bNL1g6caC0LRFa8pV0BaLKFnKgrVmrRyPYTab8bhdKIpCuiMNszmMk0nHWbJgHvc/8kSBxhQkooB52Cwj9Q5EyrvCrPMen2LcdzKtVotGdSpPfGMsV1Lnw8LDiYjUbhr4fD7SHY4cV3YEaNW+IyVLaZNdVqpSjbLlK3DcP198dImSGAza17PL5cTjduVYjslkxpmuTf/hTHdgNoex679/2b93N13vLPzzV4fRa47wXtjB7owvIiy3/XUWAUy3xiV8bI1LCOpJ3vIqaBP8kSNHTEOGDLl+xowZibt27dr+0EMPnezXr18NRVH48MMPD1qtVueOHTu2r1y5MnPNxXPnzhn/+uuvHX/88cd/U6ZMqbh//34zwIABA6574oknTmzduvW/bdu2bd+yZUv0B9Nm1j3ncJcHsJ89y5eLfmbCh59ccbwORxrfz5l10frrQ++9i763teftcS9fcuGFLZs20K9rBwb1vI3li3/IcZ+9u3bwz+ZNtO7Q8aLnrDVq0aJNB+65oyNHDh4gtnc/3h43iudeHo/JVCz+1nMigHhslunYLLIDVYAr1Dr/118lP/z0i4Zp/klrrqbOe9xu+nXtQMcmNTi4fy/Dnou77Gs2rF1Fst1OgyZNM7f99cdG+tzSls5Na9Oy7U107trtote1uakz0SVK0ve29pQoVYqW7W7infGjGTluQr7jzrcws8tsNHmynnaoBrM7zWcM1ASfYSiw0BqXEPJ9K4I2wa9evTq6du3a6S1btkwHGDZs2JkTJ06YMypwTu6///4zAJUrV/ZWq1bNvWvXrvDk5GTDhg0bSj3//PPV69atW79Ro0YNDhw6XHLPnj2Z//k9+t6b61l4Xnjcbl58/CHa3NSZLnecn3Bp6YZ/mPPjKmb+sIyzZ04x8bUxOb7+plu6snTjVuYuW4vt7Q95Z/zL/PPnhavJJR07wjND7mP0hNwXqBj+4mjmLlvLO1NnsGHNKipVqUqVa6rzynNP8NzQQSxd+P0Vv8cgNxj4CZulrN6BSLkrtDrfuHHDAwcPl9i3Z0/mme7V1HlzWBhzl63llz93Ya1Zi+++nHHJ/Xf/t40xzz/BWx99RlTU+ansb2jeink/r2PZxn/ZvvWvHPvoGAwGxr71Pt8u/5Ux8ZOYM+MTOnfthtfrI274wzw3dBAbf1tzRe/jcrxhJk8U4oI2DKcx2l0oByt4dwArrHEJFy/JF0KK1aVbZGRk5mxLRqNR9Xg8mYvt/Pnnn/8ZzOFh+0+l1fL4lAtqdlR0iRzL27trBy89qa2qdkPzVox6/Z2L9vF4PIx4/CHKV6jEyHEXtsVVrqpNuhQVFU3/QUMYP/KZHI9Tusz5vHN9rTq0v/lWtmzaSOMbWwDainJD7+3FI0+9wG3de17mU9CWpZ358YdM+XIen02eSPPW7Yjt3Y9+XTswvOt0IiMDoQNskesIbMBm6Y7NvlPvYKSCcbk671JNlsPn0q/P3oHtaup8BnNYGD373ce4F59m8LCncy3vycH3MO6dydzYsk2O+5QpW472N9/K8oQFNGvdLtfjHT18kLUrf2LK7O8Y/eww+tz3IPUbNWHgXbcxf8X6XF93pVxhEOXzXXCRmKwU+vS0Bak18Ks1LqFrYnxsSC5UFbRX8J06dUrbtWtX5KZNmyIApk2bVrpixYqe6667zhMTE+NLSUnJ0zhMi8WitGzZMvmll1+pvvdkal2PTwnPbS3m7GrUrpvZESaniu71ehn5xBAsMaUZ8+akC64Iks+dI93fdqYoCssWzaduw8Y5Hifp2NHMf58+eYJNv63N3Pdk0nGG3tuTwcOepkffe/Pylnl/wjgefeZFIiOjMtsIhRB4PR7cHk+eyghRNYH12Cwt9A5EulhB1/m4l8fUOHTWUUNVVVFQdf7o4YMX1OvlixdQu16DHMvat3snwx/oxyvxk2hzU+cLntu/ZxcZq6+mpaawdsXyXMvJ8NbYlxgx9nUMBoNWrxEIgwHnJZr+robD5DNFZWl/V0E97Q0PtquDesA6a1xCPb0DKQxXMQ5e37HqVapU8X766af7Hnjggeu8Xq+wWCy+b775Zq/BYKBVq1aO2rVrp9eqVavBNddc48raJpeTGV9+feK550fUuKtza3E1azFnt2zR96xYsoja9RrQ//abgPNn/fv37uLVuGe1xOrzUa9hY0bazl/hPzGoL48/P4oGTZryzcxP+eWnJZhNJhRFYeDDw2jVTivvo3cncOzIYb6aPpWvpk8FYMBDj9Gz/305xrRl0wacTmfmF8o9DzzMyOEP8/mU9+neuz+WUiWv6j2HgNLAcmyW27DZN11272JGz/HqBVnnP57xVUpc3ItVr3b99ex2/beNyW+9BmgJvl6jJowc/2bm8/26dmDyzLlUqFSZN8fGkZKSzPsTbLw/wQbA0y/ZaNepC8sWzWfZovmYTCZ8Ph+3xt5F73sH5XrcH+d/S+36DalZR8tTDz3+DONHPo3H4+GRp0dc1XvKkRCqy6gKk9eXmUMUY6TT6xHBOAFYNbQr+djE+NgNegdTkIJ6PfiCkOr0RieeTqutyEUjgnU9+MJyDijWST5U6/1xu7PiiRRnNb3jCARXvB58eJjzZDmDr3p6SmangRRz2ZT9rsK9QshYD972ywmOpPgKungH0CsxPnZ5QResl2Kd1NJc3sjE02m1ZHKXchCDdiVfeDM2SkXumD29kkzuV88bZvRGZbs6POuLDPaRKFHAfGtcQs6dIYJQsU1s6W5vhP/KXe85k6XAFQMsw2YJyfa54uZkiqvcyRQO23WXAAAgAElEQVSXXHSoADjNEOXzZt6eV4XBZ/eag639PSdRwOJQWagmrwleAXKcKjEYOT2+8P2n0mr7FLVYjSIobJl/HiHyd+JXFm0InVXvQKQrd87hthy3O6vrHUeocJh8pogsK8h5jNHOEKr1ZYBlobC2fF4T/DlVVb1utzvQJzC4LLdXMe0/lVbbq6jBfjsp4Dg8gM+N2Xla71AKWlXgZ2yWSnoHIuVfqssbdfhs+vVyaecCIoTiMwnVkOXzTCEyhPI7oHW8W2aNSwjquTHyegV7SlGU1UlJSbFms9ljMBiC8j9TUVQOnUu/zu1Vgv5EpbA4r+C/VlW15H7izDliDizB6Eu//IuCTw1gMTZLe2z2kOlwFuqcHl/YAdnPpkCp4WZXhBAX9HA7440Mz23/IFYP7Xb9LYnxsYUz1rCQ5SnBN2vWTNm8efOY9PT0Rnv37i1PYK0UlGd2l1LO5VVDfnrCKyVQMYsrXEXV5ybmwBIq7f6qYIMKLM2AKWgz30kBzuNTTImyKa7AecOMvijFl5kDFEOYK91rCMUED9pkON9Z4xJ6JMbHBt0kIXn+w2/WrNmRzZs3t1cUpXp+XhcoXl1zZuhJh+9ZveMIZAYU30/hL+a/06GqYnaeDtUr9+wexGb5HZt9it6B6KKwRhXkcV6N2bNnx4wZM6ZqWFiY+sUXX+zPmLY2O0VRxf5TaTXdPiVPiWfT+l9xO52063xLfqLO9M+WP3h15DM4nU4qVq7C65OmUrFylYv2c6an8+pLz/Lf1r8BqFbdiu2dDylTthyb1v/KE/f3xVojc60cvvhheebiNVmNj3uGv//4ndJlyzHxk1mULGVBVVWeGNSXl159u1BXh3SaETHe8821TkOUhyzrwYeg24H/oc1hH1TylaibNWvmBi45gUQgssYl9AJyngdWymTER4Qn6MevF4X3sVn+wmYv+Pk/pUuaNm1a+ZEjRx579NFHz1xqvwNnHNc5Pb7oS+2Twev18sf6X0lJtl9RglcUhVFPDmXMW+/Tsm0HZk79kLfHjeKdqTMu2ve7L2fgTE9n3s/rEEIw7sWnmTn1A559eTwA1ho1mbts7SWPl3Xp56mT3mLx999w74NDi2zp53STYqjgOb9ErF2NKg7NH49Y4xLWJMbHztY7kPwI+f8Ya1xCI2AWQdqsIAUkM/Cd7HRXtB588MFr/vjjjxLjx4+v2rRp07qQ8/KxJ1Nc5Vb+8kvpfl07ZL52947t3NFGm975yKGDtG9wLRPfGEv/OzoyZ8YnfDv7c36c/y39unZg6qS38hXX9n/+wmgy0bKtdry7Bz7I6p+X4nJe3FVDCIEz3YHX48Hr9eJIS6VCPmfP03XpZ4PBh0lkzu+vItQz3rBQGB6XF1OtcQl19Q4iP0I6wVvjEiKBb4A8nclLUj5UAb6Vy8wWnRkzZhxq2LChIz4+/tCWLVt25Lx8bP+ax+zplx3elJKcTM3a9fhmyWoGPjyMvgMH061XX+YuW8tjz7yYr7iOHz2cuXAUaGu5R5coycmk4xfte/d9DxIVXZLOTWtxc9PapKYkc++Dj2Q+f+hAIv3v6MiA2Jv5ZuanOR5Pz6Wf1XCzK1IlsyeuzxSZ7lNFSOeRLKKBb/15JSiE+n/Mu2g9ISWpMLRH+xuTdJB9+dhHH33s7MmTJ8OTjh257PeayWwmtne/wg8ym/VrVqKqCis272TF5h2ULGXho3feAKBew8Ys//1fvlmymomfzuLb2Z+zbNH8HMvRa+lnT5jBF+XzZvbTcRClXGr/ENQQmKx3EHkVsgneGpfQAximdxxSyHsSmyVvy/hJherwufRrMhrijEYjPt/5kVxul+uCfSMjIzEY8vb1l2y3069rB/p17cAzDw+86PlKVapx7Mj5vitpqSmkpiRTvuLFLTjffTWTm7vGEh4RgTksjG69+rJpvdbmXqJkKUqWsgBQsXJV7rirD3/+fuluHhlLPw97/iVmfzqF5q3b8dZH0/n4/bdxphd8p1enSTVkXUHujBL009NeiYescQm5r/wTQEIywVvjEioDn+kdh1RsfIjNUl7vIIqbrMvHnk1zx3z99dfly1eqQoVKVahW3cqxI4c5c1ob9rn4+28uWVZ0iZKkJCfn+FwpiyVzidhJn17cx6p+4xvwejz8vk5L1N/NnkHHW24nPOLipulq1a2sX/MLqqqiqiprVyynhn8FuJNJxy9YInbNimXUbZDzEtIZLrX0s8fjvuRrr4TbDAZVMQCowuhN9ppCuff8pUwJhulsQy7BW+MSBDATKKd3LFKxURaYpHcQxU2W5WNrtGretMa3s6bzzpTPEUJQoVJlHnzsKe67swsDe9yKJab0Jcu6+fbu7Ny+9Yo62RkMBt744GPeGhvHnTc1Z82KZYwY+3rm808M6su2v7cAMOzZOByONHrf0pbet7Tl9KmTPPniKwD8vGQhfW5tR9/b2jPwrtto3aFzrss+Q85LP8+Z+Sl339qO7r37Z94NKDBGo9dgPN/+7jZGF+cJn6KAuda4hICeNC1Py8UGE2tcwuNoYxalfDLi8+2NuF8uvnPlumGzL9E7iIISDMvFqqrKnhOpddI9vhJ6xxKM8rNcrBIV7nBbUEq7UksAnDJVSj3qjizSz72Ql4u9EuMS42NtegeRm5C6grfGJVQE3tA7DqnYmorNIhNNETqd5i4rk3vR8JgNvkiv2wza9NSnveHFZXjcpbxkjUsI2I7cIZXg0Xo0F/B9KUnKs+rAa3oHUVx4fYoxKVmu7V5UXGZEuM8dDqCawl0uxRB0M5oWgjBgmr9pOOCETIK3xiV0AnJvsJKkovEkNktLvYMoDo7ZnVXkPPNFx2s+P1tYuiG64HvwBa/2wBC9g8hJSCR4a1yCGfhI7zgkCa1OfSonwClcDrc38pzDXUHvOIoNk8ljEuf7a9mVSNlX50ITrHEJl+7JqYOQSPDAC8gJbaTA0Qh4Tu8gQtmRs+nVQ6t7cGBTwkzuKMWnDY9DKGe8YUEzm1sRKQe8qncQ2QV9gvd3rHtZ7zgkKZs4bBbZH6QQnE51lZEd64qWO0wokR5tghuvKcqpqHJtjxw8Zo1LaKJ3EFmFQvvVS8i55qXAEwM8C9h0jqNANZrZqFCWi936wNY8LRfrU1RDUrJLdqwrYh6zwOTzGQHSit/0tHllBN4CuuodSIagvoK3xiVUAx7TOw5JysUz2CwxegcRSo4nOyt5FUX2byhiPvP5BpGzvgj5+efuNmtcQiu9g8gQ1Ake7dZ8cZ0qUQp8FuB5vYMIFV6fYjybVjAd66a8F89btpfy/bpVy3/kbdsoADat/5WsS9Jm5UhLpck1AdfnKld7Dhyg88CBNO7enfb33MP2PXvOP2kyucNQBMC+w0mefr17hrerX/2i964oCu+++gq9u7Thrk4tGfvCk3jcOXe2/3jS2/Tq0oaBPW7l6OGDmdtfefZxtmzaUAjvsEi9oncAGYI2wVvjEqwE6NAEScriaWyWMnoHEQpOpLgqKqqap97bXq+3UGLodFs3RthCby6tJ8eP56G77+afxYt5/qGHGDp6dOZzvnCTJ8rrMQGElyrvemLEy0z48JOLypg/Zxb//fs33yxZzQ+/bMRgMPDl9KkX7ZeakkzC/Ll8t/xX+g8awtefa2WtX/MLEZGRNG3RurDeZlGJtcYl3Kh3EBDECR4YA8hbRVKgK4k2ykO6Cl6fYjyT5q7Q5JrSTH7rNfrdfhN33tSchPlzM/dpck1pPnp3AgNib+aD+HEAzJz6IQO6d6H/HR0ZNvDuC64Wjx89wsP9e3BXp5Y8Ofgezp09A1x8df/1jGm88uzjACyY+xXPDMl5uo1vZ3/OnR2a0e/2m5j1yZTLviePx8Pro57nzpuaM7DHrbwzfjRD+nYHIG74w/w4/1sAvpn5Kc2ur4DDkQbAw/17sHnDbxw5dJD2Da7lo3cncE+3TnRvfyNrVy7P82ea4cTp0/y5bRv/b+/O46QoD/yPf3pmeoaZERC5REXbAxVRQ2QVPAh4xWiJwSMY7yu66ma9Nolt4kFiEmtzrL/EKxpX/Wk8gne0vQ8UFXAXs1E3agxYCojc90zftX9UBbnP7nrq+L5fr3mhzFHfGab7W0/1U89zyrHesUcfeSQzvviCqZ95P6tSc0O1i7+DXHqb7VL7HXAgrW1rTnv66K/vM+yQEaSbm0mlUhx86BE8/eiam/w0NDZSrVQol0p0diwnnU7T2dnBHb/5JZdedd0m5w+pa00HgIgWfCab2xmIxHZ9IniL32jzoy0wd1mhz4rReyrFuOde57b7HsG+5kpmTv+ytBsaG3kg9wpXXH09zzz+MM60v3Pfky/wx2df45jjT+LnP/ryXOudtydi3/R7nhz/Ntv2257f2j/Z7Hwff/hXbvsPm7seyTHuudcp5De8Veuj99/DZ840Hnt5Inc/+gwff/i/K9439JCRTHrjNQAmThjPoH0HM2XSm3R2dvC3v77PvkO8tZSWLlnC7gMH8dAz47nq+l/wyx9v+g1FM774gm1796apyZtznUql6N+vH9NnzQKgksZNQcoFFpTWskWeb699BjP+xedYtnQJpVKJF556nM9nTF/j49ra2jnj/Is545tH8uoLz3LaeRdy669u4MwLvstWXbttcv6QOi6Tza1/K8AARLLggUvwZiyKRMFWwPdNh4iqatVNLVjptfcTTjkDgB12yjBk6EG8M/mtFR97/Eq7r736wjNMemM8pxwzkjFHDeee237LrJkzVrx/+GFfp1efvgCceNrZTHpj/GZnfPutCRw88ogVe8CPOfPcDX7O5Ddfxzp+DOl0mnQ6zaiTvr3ifcOGj+DtN1+jUqkw7eOPOOP8f2HShNd4Z/JE9h68H+m0d/GypaULhx89CoB9h+zPjE8/2ezvYV2qTW4KoNrYJV90U+t83v3mmFM5eOThnPutYznvWxY77bIbjY1r//CTz/oO456fwG1/eITZsz5n9qyZHDzycH7+o+/xvQvP5v67bq/59xGwFCF4LT5yBZ/J5rqh194lei7SRjSbZ/7yYs/1Lkm70h3ZrW1f/ohd1+W8f7l8xV7uj770Fo++9NZavsA/voz3hRobm6hUvtyprJgvbHLmVGrTbxNf+XP6bd+fdHMLzzz+MHvt8xWGHjyC/5o4gclvjGfowSNWfFxzS/OKz2tsbFwl98rOHP11xhw1nNNGHbHG+3bYdlu+mDt3xbwF13WZPmsW/fv1g+Z0oaVabgDoTLWtd2JDKpXioiuyjHvude594gV2GbAHu+6+53q/53K5zK9/eg0/GHsDTz8+jh49e/Gr393DK889zYxPnfV+bgScmMnmBpkMEMX74M/Be11TJEq64u2VEOmhycber14rrusyf1mh78p/9+S4B7joiiwzp3/GO29P5Ptjb1jr5x561DHce8ctHHnMN+neowelUom/f/QBA/f2rpy+8eqLzJ87h569+/DYg/cydLhXnP0zOzPhlReoVCoUiwVeevYpMrvstt6cBxw0nLtuuZF5c2bTq09fHr7v7g1+bwccPJxnnniEo0efBMBTj6z6evWwQ0Zw669/zgWX/oBuW29NU1OaF3NPcuOd92/wa6/u3ifW/dp8n549GTxwIA8+/TRnjB7NEy++yPZ9+7LrjjtSaW4qtZU7ugAs2sDytIV8nkI+T7ett2bhgvncfev/4+Lv/XD9ue64mWNGn0SvPn3p7OhYcbKSSqXo9OccRFgKby2M75gKEMWCv8h0AJHNdCERL/igLe4sdStWqqu87lupVBjzja/R2dHBlT+x2b7/jmv9XOv4MSxauJDvnOxdwi5XKowec9qKgt/vgAPJ/uv5zPliFjvuvAvX/4e3ncURR4/ixdyTjD50KH37bceeg/Yh37n+19QH7LkXF15+JeeceAyt7e0c/o1RG/zeTjrtHD7+8K+ccNgwunbfmkH7Dmbu7C9WvH/o8JGMu+8uhvknHsMOGcFjD97LHnvtvcGvvaluuvZaLrj6an555510bW/n9uu9VVdLzanqZVdc23Ts10dUdz3i7C6dnR0c97X9KRULLF26hCP3H8SxJ47h0ux1LFu6hPPGjCLV0IBbrXLquf/MyCOPXucxpzuf8N8T3+CWe73JhMceP4bLzz+dF55+gsH7D2XAQKOD31oZk8nmLnFsq8PEwVOuG50VnTPZ3GHAy6ZzxFUjlcrULmdobkN9DWXs4rdNh9gYU6ZM2bOpqem5AQMGLGtra8ubyPDJvOW7LM2XVtxQ/pX+PZjwvkO3mKwCvHzZUtq36kqpVOKHl1zAwH2+wrkXXxbY8btQLfVf9Pk670bq6NO2uGd5cfdS01bLPyj2Nr5iqFsuMufzGYx9dQ4zl6795YgQOsuxrXtNHDhqI3itWidRdwEQiYI3rVytNiwrlGO9EuAFpxxPqVigUCjw1f2Hceo5/2w60kpSLo3VBsqwjLbojATD5xxABb8+mWyuO3Cc6RwiW2gMY7v/K2MXb/g+qoRbtLzUw3XdVWar/WX6QlNxNsv8eXO56LQT1vj7YcNHcsXV13P/Uy8ZSLWRmtOFLlVvgZsFlS7NpuNE2IhMNrezY1u1v8VhAyJT8MA30bK0En1dgeOBB0wH2QhV8Ca6mbCos9TTyIFrqGev3ox7foLpGJul3NJYbi91tLsN6eLycmM4Ct51AZdqtK4npPBG8YEvfhOl2+RONh1ApEaiskjTItd1y8ViMfAn90K50txRLOtuGYOq6VSlATeVb2xf+4LyBrjlIqWKy8J85Da0OyuTzQXet5EYwWeyuW2AI03nEKmRIxjbvR9jF88yHWQD5lWr1ddmz55tpdPpUkNDQ2DjpnnLCr3ccimowyVWhSqF6trLsuBWGloqLvOrTQ1u2XDHuy5uucjCBfN4edoy8uVoDeGBHYHDgEBfk4lEweNd0tS68xIXjcAo4A7TQdZnyJAh1SlTplzb2dm5z9SpU3uzypIy9TW/s7JNJXKDtOhJU20odS5e27vcUr6xeUGlyCzcLhU3sH/6dXApVVxenraMxz6I7P3xZ6KCXytdnpe4OYqQFzzAkCFDZk6ZMuWQarW6IwE9Xzzw3tJBk2bmHwniWEnXJ7943k/fuL3v6n/f2Z7+uPuR87bqVu6y9Dv5a/YwkW1lVRcW5qtRHLmv7BuZbC7l2FZg30ToCz6TzfXAu7QhEieHMbZ7I2MXh/5m3iFDhhSBv2/wA2vkxIdzY4I6VtJVlhfKDbPWfKVo9vbujH9aOOuwJysHjZ9Zqhgv+JjoDewHBLYaZBQm2R2KNpaR+NkaOMB0iJA63HSApFver9IB8GDl0D4b+ljZJF8P8mBRKHiN3iWuAn2wR0Emm2sDhpnOkXTl/sV01WXh5OrA9e8WI5vqqCAPFoWC19m8xJUKfk2HAOG45zqhXFjSd+tCb8fd9kOXhih0RJQclMnmAttVMtT/eJlsbjtAZ5ASVwcwNiaLqteOTugNW9rK1APy+d2eqh4Y+vkhEZTGe9k5EKEueHR5XuKtCRXa6vSYN2xxz+q8rq7bbVx55K6ms8RUYFfuVPAiZukyvc+/Y2Y/0zmSrrRdqVBw01Nn0ruf6SwxFdjr8GEv+INNBxCps0NMBwiRkYT/OSn2GvsXt3qnOmCm6RwxNiCTzQVy8hTaB5M/m3Y30zlE6mx3xnbXKo2er5kOkHRVmL9je36HP1ZGtpnOEnOBXKkKbcED+xDufCK1kAYGmA4REvuYDpB0y9rdaXsUSts/X91/L9NZYu6rQRwkzAX6FdMBRAKyt+kAITHQdICkK/SszF9Itw86adEIvr4SP4JXwUtSDDIdwLRMNtcd2M50jsTbrui+XNlvqekYCTA4iIOo4EXMS3zBA7okHAItOxS2eahyqGbP11/Gn2dWV6Es+Ew2l0Kvx0ly6BK9Ls8bV0kxa8fmco8/u7tpTkj9pYC6b+ITyoIH+gDdTIcQCchujO3eYjqEYRrBG5Zvd50l5b5zIWV68/ekqPtJbVgLfgfTAUQC1EgAZ/Mhp4I3rVdp8eMVLcsQIBW8SEIkfc8FXaI3rGm7YtNjleG7m86RIJl6H0AFLxIOvU0HMCWTzaWBnUznSLqOfs2pOfRI7O+hAXX/WavgRcKhh+kABvXGm3QkhlQa3M8WN/TXv0GwetX7ACp4kXBIesGLQdX26vQnKyOS/DtoQmJH8NubDiASsG1MBzBIBW9ar8qSV6pf1UTHYCV2BN/ddACRgCV59KSCN2z6tr2KRdJJv1UzaG31XuwmrAXfajqASMCSPILf2nSAJHOh+ue+e2jteTPqOopXwYuEQ5JH8F1NB0gyt8H95M3UsF1M50ioul69CmvB62xSkkYFL0YUt2qa/oG7066mcyRUIgteI3hJmiRfolfBG/Rhz/4dpjMkWF3nPajgRcKh2XQAgzS5y6DX+w3Wvh/mVOr5xZvq+cU3RyabaySEuZKgSirlVPtOak6VG5spNaappBupNDVRSTdSbW6g2pzC7ZLynpC7pFJanKSGyqYDGFQ0HSCpyqmG1ISeg3V7nDnJKnjHtiqZbM5FK1sFzqWhYWTxxmEb+/HNlIotFPOtFAutqUKxlWKxlUKxPZUvtZEvtZOvtKUKlXby5fZUp9tGodpO3m1L5WmlQBtFWlOFVBeKqS4UG5spNXonF+WmJspNTVTTjVSaG70Ti+YG3H+cWMRxtKuCl8DNa+vRDz3XmlTXx33oCt7XiSbahV6RdHORdPNS2sFd6R3uOj+lJlJUq10oFVoo5tsoFLqk/BML8qXWVKHcTqHUnuqstJEvb0W+2pYqVNvIV9vJ05Yq0ErBbaPQ0CVVTHWhmGqh2NiSKq04sUhTaWpccdXCO7FIfXly0VinbyvJBV8wHSDBVO5mJWsE71PByzq5NDR00tLaSUvrIroGenLRRLncQqmzlUKh1TuxKLRRKLWmCiuuWrSn8pU2CuV2Oqvtqbx/1aJAGwW3lUJq5asWLZQamlPlxgaq+b71jR5mKnhJqkQWfAfQ03QIkdWVaWoq09R1Oa1da3xiMcPZ4i8RWSp4Saq6XrkL6yx63bYhSbPMdACDVPCSVHUdwYe14DtNBxAJmApeJHkSWfBJfrKTZFpkOoBBKnhJqgX1/OJhLfjZpgOIBGym6QAGLTYdQMSQuj7uw1rwM0wHEAlYkgv+M9MBRAyY79hWvp4HCGvBTzcdQCRgSS74T00HEDGg7o/5sBa8RvCSNIkteMe25qI7ZyR56t5zKniRcEj677wu00vSJLbgdYlekiaxI3ifLtNL0iT2Ev3n1Pn+QJEQ6QDmmA5hmApekiaZI3jHtsrAx6ZziATkPce2qqZDGKaCl6RJ7Age4H3TAUQC8q7pACGggpek+aDeBwhzwb9nOoBIQFTwATzZiYTIAse26j6xNMwF/z+mA4gE5C+mA4TAu2gPCkmOQB7zYS74KaYDiAQk8SN4f96NHvOSFIEMYENb8I5tzURr0kv8ferYltZi90wyHUAkIIGczIa24H1vmw4gUmcqtS9NNh1AJCCBPO7DXvCvmg4gUmevmA4QIjrZkSSY69jW1CAOFPaCf9l0AJE6U8H7HNuagVb0k/gL7EQ27AX/HlrhS+LrM8e2/m46RMhoFC9x91ZQBwp1wTu25aIRjsSXXoJa00TTAUTq7NmgDhTqgvfpMr3ElU5e1/Si6QAidfSpY1uBrXsRhYJ/yXQAkTrRyetqHNt6F20dK/H1VJAHC33BO7bloGUsJX7+y1/rQdYU6JOgSIBU8GvxR9MBRGpMv9PrpoKXOFoCjA/ygFEp+IdMBxCpIRd42HSIEHsV0Op+EjfPO7ZVDPKAkSh4x7Y+QpvPSHxMDmInqajynwSfNJ1DpMb+FPQBI1HwPo3iJS50eX7DxpkOIFJDZSAX9EFV8CLB0uX5jfMCsMh0CJEaedmxrYVBHzQyBe/Y1qdoEQyJvvGaPb9hjm2VgEdM5xCpkd+ZOGhkCt53u+kAIlvoFtMBIkQ/K4mDGRi6MyRqBf8QMNd0CJHNNANNHttojm39D/CG6RwiW+gOx7YqJg4cqYJ3bKsA/N50DpHNdLtjW2XTISLmJtMBRLZAGbjT1MEjVfC+2/B+aCJRUgTuMB0igh5DW8hKdD3h2NYsUwePXMH7e0Y/bjqHyCZ6xLEtbX28ifwrHkYmKInUwG0mDx65gvfpsp1EjX5nN98dQMF0CJFN9JFjW0Z3jIxkwTu2NQHdMifR8aJjW5NMh4gq/8qHFr6RqDF+F0gkC953jekAIhvpWtMBYuC3pgOIbILphGDOTWQL3rGtl/E2pRAJs2c1et9yjm39N7rFUKLjev+uL6MiW/A+jeIl7DR6r52rACP3E4tsgo+Bu02HgIgXvGNbbwLPmc4hsg5/8keeUgOObX0A3GU6h8gGXBuW9S4iXfC+q00HEFkLF7jOdIgYug7oMB1CZB3+Qoh2i4x8wTu2NYUQ/UBFfP/pL7UqNeQvGnKj6Rwi63C1Y1uu6RD/EPmC910BLDUdQsQ3H8iaDhFjvwDmmQ4hspq3HNt62nSIlcWi4B3b+hxNuJPwuMqxrfmmQ8SVY1tLgOtN5xBZiQtcaTrE6mJR8L6bgT+bDiGJNxmDm0skyO/wZiuLhMHdjm2FbufD2BS8vx3fRXhnUiImVIGLw/QaXFw5tlUEzsX7mYuYNAf4vukQaxObggdwbGsy2k5WzLnNsa13TIdICn/EpBXuxLTLHdtaYDrE2sSq4H1X4i0TKBKkaWhinQk/BP5mOoQk1rOObT1gOsS6xK7gHdtaBJyOLt1JcKrAmY5tLTMdJGkc2+oEzkGPdwneIuB80yHWJ3YFD+DY1uvADaZzSGL8wl9VUQxwbOstdG+8BO9Sx7Zmmg6xPrEseN9YvBnNIvX0NlpvPgyuBj4yHUIS40+Obd1rOsSGxLbg/bWAT0UL4Ej9LAFOcWyrZDpI0jm2lQfORpfqpf4+A+r+wawAAAejSURBVM4zHWJjxLbgARzbmgZcbDqHxNYF/u+YhIC/La8WvJJ6ygPHO7YViZUUY13wAI5t/QHdSiO193PHtrQHQvjcADxhOoTE1oVRuhU29gXvuwJtKyu18wTaxTCU/EWGzkSvx0vt3ezY1v83HWJTJKLg/VXuvg18YDqLRN67wBlarS68HNtaCozGmyMhUgsTgMtNh9hUiSh4AMe2FgOj8Hb6Etkcc4HjdL97+Dm29SFwMlAxnUUibybwLX/idqQkpuABHNuaCpwIaNazbKoicIJjW5+aDiIbx7Gt54jgqEtCpQic6NjWbNNBNkeiCh7Asa3X8Dap0CVW2Vhl4OQw7hYl6+fY1k3ALaZzSCRVgNP8PU4iKXEFDytm1n/XdA6JhH8sQ6uZ2dF1KfCg6RASKVXgbMe2HjEdZEsksuABHNu6FW0OIuvnAuc7tqVyiDB/ku0ZwDjTWSQyLvQHgpGW2IIHcGzr39HCGLJulzi2dZfpELLl/JI/DYj0iEwCcZljW7HYdjzRBQ/g2NZP8datF1lZ1rGtm02HkNrxZ0GfAjxuOouE1g8d2/qN6RC1knJdzTUDyGRzPwBsIGU6ixhVxdslSuUeU5lsLo03kj/OdBYJlZ85thWrBaxU8CvJZHOnA3cBadNZxIgCcHrUJ9bIhmWyuWbgUeBY01kkFGzHtq4yHaLWVPCryWRzR+I98LuaziKBWgyMdmxrvOkgEoxMNtcC3I+3NoYkUwX4rmNbvzMdpB5U8GuRyea+CjwDbGs6iwRiFvANx7beNR1EgpXJ5lLA9cCPTGeRwC0FxvgLIsWSCn4dMtlcBm+Dmj0MR5H6eh8Y5diWYzqImJPJ5k4D/hNoMZ1FAjEDsOJ+Up/4WfTr4j/hHwA8ZjiK1M/9wFCVuzi2dT9wKDDHdBapuz/jPe5jXe6gEfxGyWRzVwD/DjSZziI1UQIud2xLS5jKKjLZ3E7AU8A+prNIXeSAbydlwygV/EbKZHMH462EtZ3pLLJFZuDtDDXJdBAJp0w21xV4AM2wjxMX+BVwlb/oUSKo4DdBJpvrg7em9WGms8hmeQk41bGtuaaDSLhlsrkG4Ergx+i22aibi7efRGwn062LCn4T+Q/8y/Fm3rYajiMbZznwA+A2x7b0Cy8bLZPNDQb+AAwynUU2yyt4a1vMMh3EBBX8ZspkcwPwZt0ON51F1utV4DzHtj4xHUSiyb9f/md4J/aamBwNBbxbH290bKtqOowpKvgt4N9D+13gBqDdcBxZ1TK8S6watUtNZLK5EcA9QMZsEtmAd/Auyf+v6SCmqeBrIJPN7Qz8HjjcdBYB4Hm87R4d00EkXvwJeL8BzjGdRdaQx7vb6WeObZVMhwkDFXwNZbK544FfALuZzpJQHwD/5tjWs6aDSLxlsrmj8Yp+gOksAnibB31fJ/WrUsHXmL9T1cXAtcA2huMkxXzgOuB2f0tQkbrzN6y5BLgG6GY4TlL9BW/3x9dMBwkjFXydZLK5HsDVeK/RNxuOE1dF4Gbgese2FpkOI8mUyeb64t1Vcy7QaDhOUszFO7H6fZIn0W2ICr7OMtncLniTvc5C61zXSgdwJ/Brx7Y+Mx1GBCCTze2JN+F2tOksMVbCO6n/sWNbi02HCTsVfEAy2dy2wGXARehy3uZaBNwC/EaL1UhYZbK5A4GfAEeYzhIjy/FuS75Rr7NvPBV8wDLZXDe8kr8MbUe7sb4AbsS75W2p6TAiGyOTze2L9zg/FV2921xzgJuAWx3bWmA6TNSo4A3xF884Ee91u8OAlNlEoePiLVJzB/C4Y1tFw3lENov/Gv1F/lsfw3Gi4m/Ar4F7HdvKmw4TVSr4EPB3sDoLOBvY2Wwa46YD9wH3OLb1sekwIrXin9Sfjjeq39twnDBygTfwrtY9qclzW04FHyL+yngjgTPxdrLqZTRQcL4AngYeAl7VA1viLpPNjQS+DZwA9Dabxrh38Tbxekivr9eWCj6k/E1tDsQr+lHEb7OL94A/4e29/baWk5UkymRzjXgn9d8iWWU/Da/UH9SSsvWjgo+ITDaXwSv7o4CDiN4iOrOAicB44CmdqYusaqWyH4NX9nG7gjcN74T+Qce2JpsOkwQq+AjyL+UPBA4GDvDfBhGeRTbKeCtMTQTeAiaq0EU2nl/2++E9xg/x/4zaXTez8SbKvgy8pOeA4KngYyKTzbUBe+Ktjb36W71GAgvwZrv+DfhopT8/1sxXkdrKZHO7smrhDyQ8d9+U8B77bwFvAm86tjXVbCRRwSdAJpvbGuiHd1l/9bceeEvpuiu9sdJ/L8Zb633ean/O1fKwIub4y2HvBewO7OG/7QrsRH0W03KBGXx5Ur/y2yeObVXqcEzZAip4EZGYyWRz3fGKfge8sm/z39rX8t8teMs/LwGW+n8uWe3/FwLTHNvqCPQbkS2ighcREYmhBtMBREREpPZU8CIiIjGkghcREYkhFbyIiEgMqeBFRERiSAUvIiISQyp4ERGRGFLBi4iIxJAKXkREJIZU8CIiIjGkghcREYkhFbyIiEgMqeBFRERiSAUvIiISQyp4ERGRGFLBi4iIxJAKXkREJIZU8CIiIjGkghcREYkhFbyIiEgM/R9qKgk7PHkAUwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 102,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"cov_value",
"ran2",
"fourt",
"cgrid",
"length",
"clean_real",
"prebuild_gwn",
"build_real",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"covariance",
"gasdev",
"fftma2",
"",
"",
"",
"fftma2",
"",
""
],
"type": "treemap",
"values": [
0.633546,
0.397899,
0.2963540000000001,
0.234361,
0.22435,
0.09350199999999986,
0.09343499999999917,
0.001993,
0.001623,
0.001073,
0.000463,
0.000454,
0.00041,
0.000316
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"text/html": [
"<div> <div id=\"0e5bbd06-c5f9-4e89-9a57-6c0df8b70b9e\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"0e5bbd06-c5f9-4e89-9a57-6c0df8b70b9e\")) { Plotly.newPlot( \"0e5bbd06-c5f9-4e89-9a57-6c0df8b70b9e\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"cov_value\", \"ran2\", \"fourt\", \"cgrid\", \"length\", \"clean_real\", \"prebuild_gwn\", \"build_real\", \"maxfactor\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"covariance\", \"gasdev\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [0.633546, 0.397899, 0.2963540000000001, 0.234361, 0.22435, 0.09350199999999986, 0.09343499999999917, 0.001993, 0.001623, 0.001073, 0.000463, 0.000454, 0.00041, 0.000316]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('0e5bbd06-c5f9-4e89-9a57-6c0df8b70b9e');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria\n",
"\n",
"Una vez reconocidas qué funciones llaman a otras, se muestra en los siguientes gráficos cuánta memoria consume cada función respecto del total que insume la función invocante."
]
},
{
"cell_type": "code",
"execution_count": 103,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecU1X6x/HPM4UOAyKgUgxYANuCqGtdsZeov7W3XcW6YNm1G91VEVeNu2tde19FsTccFSsuYlvZFQt2jSBSROlMz/n9cW8wZjKVSW4m+b5fr/uCnJx7z5MMTJ6ce4o55xARERFJVhR0ACIiIpJ7lCCIiIhIPUoQREREpB4lCCIiIlKPEgQRERGpRwmCiIiI1KMEQUREROpRgiAiIiL1KEEQERGRepQgiEjeM7MxZubMLBR0LCLthRIEyQtJHwDOzHZM87yZ2Rz/+WeDiFFEpD1RgiD5phI4Kk35zsAAoCq74UiOuB/oDHwbdCAi7YUSBMk3zwGHmllJSvlRwAxgfvZDWnNm1jXoGNqjxPvmnKtzzlU67U4n0mxKECTfTAJ6A3skCsysA3AI8GC6E8ysyMzOMLOPzazSzBaY2W1m1iulXszMnjWz0Wb2nplVmNmHZjbaf/4g/3Glmc0ws5Fp2trVzKaZ2UozW2JmT5vZ8JQ64/1bIZuY2YNmthh4w8yO88vTXfdCM6szs/6NvTlm1t/M7jKz782sysy+MbNb/PcoUWeImT1qZj+Z2Soze9vMwinXGe3HcpiZXWJmc81suZk9ZmZlZtbRzK4zs4VmtsLM7jGzjinXcGZ2o5kdbWafJb1vv0mpt76Z3ezXqTCzH/34Qin1EreZdvbrLwS+S3kulFR/KzObYmaL/Ot+Y2Z3p1yzq5ld7d+eqvJjOMfMrIHX8lsz+8iv+7GZ7Z1Sr7v/vsT8OgvN7CUz27Kxn5tIEFK/ZYm0dzHgLeBI4Hm/bB+gDHgI+GOac24DxgD3ADcAg4HTgJFmtoNzriap7oZ4icZtwETgHGCymY0FrgBu9utdADxiZkOdc3EAM9vdj+lrYDxel/fpwHQz29I5F0uJ61HgC+BCwIDHgJuAo4H/pdQ9GpjqnJvb0BtjZusB7wI9gduBT4H+eMlTF6DazPoBb/qPbwB+BI4FnjGzQ5xzT6Zc9gKgAoj6783pQA0QB3r5r3NbvPf3G2BCyvk7A4f7bVUBpwAvmNk2zrmP/DpbA9vj/fy+A0LAOGCqmW3inFuVcs2bgR/8ttL2vJhZX+BFv14UWOJf96CkOgY8A+wC3AW8D+wF/N1/385MueyO/vk3A8vx/q09bmaDnHM/+nVuxXu/bwRm4SWzOwLDgf+mi1UkMM45HTra/YH3AeSArYBTgWVAZ/+5R4BX/b/HgGeTztvRP++olOvtlVrun+uA7ZLK9vTLVgGDkspP9stHJ5X9D1gArJVUtgVQB/wrqWy8f+6DaV7ng8BcoCipbKRff0wT79G//La2SvOc+X9e619rx6TnuuElNd8k2gVG+/U+BEpT4osDz6Vc/00gllLm/GNUUtkgvITjiaSyzmni3dY/9/dp/g1MA4ob+PcR8h//NvHvpZH36//8On9OKX/Uf40bpLyWqpSyLfzy05LKlgA3Bv3/RYeO5hy6xSD56BG8b+f7mVl3YD8auL0AHAosBV4ys7UTB954hRV43x6TzXLOvZX0+B3/z1edc7PTlA8BMLN1gRHAvc65nxKVnHMfAC8B+6aJ7dY0ZfcB66XEdTTeh+rjDbxGzKwI70NxsnPuvdTnnXOJe/P7Au86595Iem4FXo9DCNgkNR73yx6Wd/B6O+5OqfcOMNDqjw15yzk3I6mt2cDTwF5mVuyXVSS9jlIz6w18ifdhm65r/g7nXF2a8mRL/D/3M7PSBursi5dQ3ZBSfjXea9wnpfxl59xXSa/lA7xEdUhKu7/2e3NEcpoSBMk7zrkfgJfxBiYeBBTjdc+nsxHe7YeFeN3NyUc3oG9K/eQkAOfcUv+vc1LqJcoT4xjW9//8LE0MnwBrW/2BiN+kqfsSMA8vKUh88B8JPO2cW56mfkIfoAfwUSN1EnE2FGPi+WSzUx439n4U4b3Xyb5I09bneLc4+gCYWWczm2Bmc/C+pS/C+/n0THM9SP++pXodL6G6BFjkjwU5LmWcxPrA92ne1+a+FwCL+fnfAMB5wGbAHDN71x9vMiTNeSKB0xgEyVcPAncA6wDPO+eWNFCvCC85OLqB539IedzQN9OGyq2B8uaoSC1wztWZ2YPASWZ2CrADXo/CxDVoZ01k4/34J3AccB3e+JKleF33D5H+S0699y2V32NyiJltC+yPd0vpbuBsM9vW7zVpqSZfs3PuETObBhyId3vqXOB8MzvIOfd8A+eLBEIJguSrJ/EGEm6LNwiuIV8BuwPTk7uyMyAx/35omueGAYuccyubea37gLPxPtj2wUtipjRxzg943d2bNSPOhmJMPN+WNkpTtjHemI5EcnYI3hiNsxMVzKwTXg/CGnHOvQ28DfzZzI4CHgCOAO7Ee627m1n3lF6ENXovnHPz8AYy3uwPlvwv8Gd+HlQrkhN0i0Hykv8NcBzegL/JjVR9BO8WxEWpT5hZiZmt8YeQH888vFHwxyZf08w2w/sm+VwLrvUB8AFwInAw8JBzrraJc+LAU8D+ZrZV6vNJ0/aeA7Yxs+2SnuuKN+gyhjfyvi1tlzzFz8wG4g0OfDFpHEEd9XseTsf7ubWKmfVKnaqI9/MBSNxmeM5v47SUemfi9WC06APdzIrN7Be3RJxzC4Hvk9oUyRnqQZC85Zz7VzPqvG5mtwEXmNkIvKlvNXjfbA8F/kTD4xda6ly8D5W3zOwufp7muBQvkWmJ+4B/+H9v7u2FC/GSkdfN7Ha8e+nr4r3OHfEG0EXxp4ia2Q3AT3jTHAcDB/uJRlv6CJjit5WY5gje2ICEZ4Hfm9lSvARlO7xenx9pvWOBU8zsSbxepO7ASXi9LIlkbTLwGnC5v37CTLz37/+A65IHJDZTd+A7M3vMv9YK/3VsjdcjJJJTlCBIwXPOjTWzGcAf8NYyqMX7tjwRmN6G7bzsL5xzKd4c/Rq8wXLnO+eaM7Au2QPAVcBXzrl3m9n+XDP7NXAZ3piLHnhTJp/H69LHObfAzLb3r3060Amvt2J/51x5C2NsjtfxxhVcgjfFcRbedM0Pkur8Ca8X4Wg/nul4H6xN3VZpqt1t8G4n9MNL0t4Fjk78LJxzcTM7AO9ndTjeOIgYXqJ3dSvaXIV3a2FPvMGzRXizMU5xzt2yBq9FJCMSc59FpB3xp2LOAyY45y4LOp7WMDMH3OScS+3CF5EcoDEIIu3TGLz74/cHHIeI5CndYhBpR8xsV7zFiv4MPOXqL88sItImlCCItC8X4+1LMB1vjICISEZoDIKIiIjUozEIIiIiUo8SBBEREalHCYKIiIjUowRBRERE6lGCICIiIvUoQRAREZF6lCCIiIhIPUoQREREpB4lCCIiIlKPEgQRERGpRwmCiIiI1KMEQUREROpRgiAiIiL1KEEQERGRepQgiIiISD1KEERERKQeJQgiIiJSjxIEERERqUcJgoiIiNSjBEFEpB0xs5CZOTM7J+hYcp2Zjfbfq9FBx9IeKUEQEVlDZjbG/yBKHJVm9rmZ3Whm/YKOL9+Z2SlmNiboOPJNSdABiIjkkYuBb4BOwI7AOGBfM9vMObcq0Mjy2ynAIuDelPJ/A52B6mwHlA+UIIiItJ3nnXPv+X+/08x+BM4C/g+YFFxY7YeZGdDJOVexptdyzsWByjWPqjDpFoOISOa86v852L/1cGZqBTPb3n/uyNY2Yp7bzazazA5KKt/CzF43swoz+87M/mJmx/nthVKusY+ZTTOzlWa23MzKzWzTlDr3mtkKM+tvZk/5f//BzP5hZsUpdYvM7Awz+9i/5bLAzG4zs14p9WJm9qyZ7WVm7wEVwB/8544zs1fNbKGZVZnZLDMbl3o+sCmwc9Itnqn+c2nHIJjZoWY2w39fFpnZRDPr39rXmq/UgyAikjkb+H/+CEwHjgauTalzNLAceLo1DfgfVncDhwMHOufK/fL+wGuAA64EVgInAlVprvF74F/AFOB8oAve7ZE3zGykcy6WVL3Yr/cOcA6wO3A28BVwS1K924AxwD3ADcBg4DRgpJnt4JyrSao7FK+H5TbgDuAzv3wc8DHwDFAL7A/cbGZFzrmb/DpnAP8EVgCX+2ULGnm/EjH9B7gA6Af8CdjBf61LWvFa85NzTocOHTp0rMGB90HogN2AtYEBeB/Yi4BVQH/gZL/OsKTzSoEfgHtb0FbIv845eF/yHvLb2DOl3g1AHBiRVLYWXrLigJBf1g1YDNyecn4/YElyOd49fgdclFL3v8B7SY939OsdlVJvr9RyIOaX7ZXmtXZOU/YC8FVK2UfA1DR1R/vXHp30fi8APsS7jZGoF/brXdrS15rPh24xiIi0nZfxPvDn4H1wr8D7Vj8XeATvfvjRSfX3wksoJrairQ7Ao8B+wL7OuRdTnt8beMs5936iwDn3E/BASr09gJ7AJDNbO3EAdXjfnHdJ0/atKY+nAUOSHh8KLAVeSrnmDLz3JPWa3zjnpqQ24pLGIZhZmX+N14EhZlaWJq6mbAX0BW52zq0em+C8XpdP8RKFVE291rylWwwiIm3nVOBzvO7wBcBnzhsoh3NuiZlNBo4CLvLrHw3M5eexCi1xAd63/32cc1PTPL8+8Faa8i9THm/k/9lQDMtSHlc6535IKVsMJI8t2AgoAxY2cM2+KY+/SVfJzHYALgW2w7vtkawMLwlpifX9Pz9L89yneD0fyZrzWvOWEgQRkbbzrvt5FkM69wGHmtn2eN3cB+B9m423oq0peL0E55nZ1ORvxC2U6En+PTA/zfO1KY/rmnnNhfyytyRZ6oduvRkLZrYB8AreB/dZeL0y1cC+wJlkZ5B9c15r3lKCICKSPS/gfTgejdd93wW4v5XXehuv+/tZ4FEzO9A5l/xh/i2wYZrzUsu+8v9c6Jx7uZWxpPoKb0DfdNf66Yr7Ax2BA5xzsxOFZpbulodr5jW/9f8cSv0ek6FJzwua5igikjX+B/gk4DC8gY0fOuc+WIPrvQwcgdeTcL+ZJf9OnwJsZ2YjEgVmthb1v9VPwbuNcKGZlaa2YWZ9WhHaI3gzAC5KfcLMSsysZzOukfj2bknnlgHHpam7Em8cRVPew+vZGGtmHZOuuw8wHChvxjUKhnoQRESy6z7gj3gD9c5f04s5554ys+P86y7DX0MA+BvwO7yBgv/k52mOs/FmMzj//GX+2gL3A/81s4fwejkG4Q3am443PbElMb1uZrcBF/gJyotADd7YhEPxphU+1sRlXsS7pTDZv1Y34CS8D/h1U+rOAMaZ2V/wxlgsdM7VG1PhnKsxs/Pxpjm+bmaT+HmaY4z6U1ALmhIEEZEscs7NMLOP8b6xps4oaO01J5pZd7w1ApY55851zs3xu+NvAC7E+9C/CS9RuIGkFQadcw+a2fdABDgXr2t/Lt6I/XtaGdNYM5uBl7BcgTeWIYY3Y2N6M87/zMwOAf4K/ANvfMQt/uu4O6X6BLwBiOcB3fFmOqQddOmcu9fMVuG91qvw3o8ngfPdL9dAKHjmz+sUEZEsMbP/AT8553YLoO3r8D60uznnCnoQnjROYxBERLLIzLYCRuDdEsh0W51THvfGm63whpIDaYp6EEREssDMNgNG4S3VuzYwJHlqor9kclMDAlc451a0oM33ganAJ3j32k8A1gN2c879u0UvQApOi3sQzOw3ZjbZzL73N8H4bTPOGW1m//U32/jStG+3iBSeQ/Du55cCR6ZZt2AgMK+J45wWtvkc3roB1+INiJyNt7CSkgNpUot7EPzpIDvgjRp9Am8Z0acaqT8Yb53sW4E78dYqvw4Ip1taU0SkEJlZJ+qv5Jfqa+fc19mIR2SNbjGYmaPpBOEqvGRgs6Syh4Cezrm9W924iIiIZEw2Biluh7eBSbIpfrmIiIjkoGysg7AO9ffmXgD0MLPO6Zbh9Fe46phSvBbwU2ZCFCko3YHvnUYoi0gjcnWhpAuAS4IOQiSPDcBbCEdEJK1sJAjz8abXJOsHLGtkE48rgWuSHncHvpszZw49evTIQIgihWHZsmUMHDgQYHnQsYhIbstGgvAW3jSbZHuQfp9yAJxzVUBV4rGZt1dHjx49lCCIiIhkQWvWQehmZiOSdggb7D8e5D9/pZklrxB2KzDEzP5mZsPM7BS8ncy0KYaIiEiOak0PwlbAa0mPE7cC/oW3fem6eLuAAeCc+8bMwngJwZ+A74ATtQaCSGGYMWNGN7zV+7S0u7RGHFgCLBo1alQ86GAKSbtYatnMegBLly5dqlsMImtg2bJllJWVAZQ555Zlur0ZM2ZsW1RUdGtRUVEZYJluT/KTc642Ho+/7py7eNSoURpcmyVKEEQKSDYThBkzZnQrKip6o2fPnv369u37k7+wmrQjzjlq4664ts6V1DlXUht3pXHnDIcB5hz0LFoZL3F1RZg5MO8ZLO6KSmopLq2hqEMNRUWt/tk756iuru6wYMGCHhUVFbPj8fiOo0aNqm6zFykNytVpjiLS/q1XVFRU1rdv35+6du3a0IwlCVhVbV1pRXVdl4qaus5VtfFOtXWutC7uSmvj8dK6uGvyM2K90uUVxXUVnRutZEV1FJVWU5x8dKihuEM1JZ0qKelY09jpXbt2rSwtLa356quv+sTj8UHAly17ldIaShBEJFOKAFPPQW6IO2cV1XWdKmrqulTW1HWprIl3rqqt61IXd8UZb9zFi6mr6kxdVfpEwoprKe28ktIuK+nQZSUduq2kuPQX21EXeb0Qhj63skZvtIhInqqoqeu4rKKmbEVVbY+K6rrucedyc6CoqyuhekUZ1SvKWOmXFXeopEO35XTstpyO3bVuRwCUIIhI1oQi5aMycd1YNDwjE9fNpmeffbZ7ZWWlHXLIIa0eG1IXd0XLKmt6LK+s7bGyqraspi7eAeDeW2/gmUcn4Zxj/SEbMuHqm+hRVsbC+fO4+OzT+P672XTo0IFBgzfgL1dew1q916537Xg8ztWXXcSbr79CcXExZb3W4pKrrmfTjbsAMHvuPE69MMrnX8+muLiIccccyunHH1HvOpddewcPPTOF7l278PCtUdYfsB4AY864hJOOPpAdtvZn0NdVd6Lip05U/NQHwOIlVcU1yyt7f/XMYEaN+rS175E0X25mkyIieaamptHb7Lz66qvdn3vuubKWXre2Ll78w/Kqtb9cuGLjWd8vGzHnp1UbLFlV3SeRHLz179d4+pEHuf/pF3ny1bfZZPMR3Pi3ywAoLi7m5D+dwzOv/4fHXprOgEHrc+1fL07bztQXn+f9997hkSnTeOyl6fx6h535p38d5xwHnnA2xxyyH59Ne5JZUx/nsP33qHeNZctXMPGJ5/jg5Yc55djD+OfdDwPw0r/fpkvnTj8nB2lYvKZjcc3KsrXnPPcc48v+x/iy8xhfNrCl75c0nxIEESkYEydO7DlkyJBNhw4dusm4ceP69+rV61efffZZB4APP/yw4+jRozfcbLPNhm+88cabXHHFFX0S55nZqEgkss7mm28+vH///ptff/31vRPPNXXemWeeud5mm202/LTTThvw7rvvdh41atTQTTbZZPgGG2yw6XnnnbcuwJtvvtn5vvvu6/Pkk0+uNWzYsE3OOeecdQEef/zxHqNGjRq66aabDt98882HT548uTt4H8iLV1WXfbNo5ZBP5i//1bylFeuvqq7t7nD1ppJ+PusjRm69LV27dQdgp1334NknHgGgd5++bLnNzxvrbj5yK77/bnba987MqKmuorqqEuccK1cso+863rf/V6a9S8cOHTg0KSno16d3vWsUFxdTF6+jpqaWlasq6FBawqqKCi677g6iF57e5M8vyQjgKuBbxpdNY3zZOMaX1e/2kDWiWwwiUhDmzp1bctppp4Vee+21T0eOHFl5/fXX916yZEkJQG1tLUceeeSQ+++//5uRI0dWLl++vGjUqFHDdthhh5U777zzKoCOHTu6Dz/88JP//e9/nXbcccfhp5xyyo9m1uR5xcXF7qOPPvoEYPHixUVvvPHG5507d3YrVqywrbfeevhee+21bLfddlt5zDHH/LBkyZLiu+++ew7ArFmzOlx22WXrvfrqq5+vtdZa8Y8++qjjLrvsMuydDz5fVOmKetfGXWlzXvfwLUbw8P13sWjhAnr36Uv5k4+ycsVyli5eTFmvXqvr1dXV8dC9dzB6z9SV8T0777E3/3lrGrtuOYyu3brRd511ufvRZ4EVzPria/r07sUR4yJ89tW3hAaux9UXn8mQ9Qf84hpdu3TmrJN+x7b7H8s6fXvzr+smcPHfb+XsP/yeHt27tfRHCt6gxR394wbGl70EPAg8xvilla25oPxMCYKIFISpU6d2HTp06KqRI0dWApx22mk/nnvuuesDzJw5s9OXX37Z+cgjjxySqL9y5criDz74oHPig/6EE074EWDkyJGVxcXFbvbs2aVLliwpbuq8cePGLUo8t2rVqqLjjjtu4KxZszqbGfPnz+8wY8aMLrvttltiaN5qzzzzTNm3337bcfvttx+GFRVhRaVWXFr08Zdfr7P+4A2a/bq32X4njj35NE4fcwRFxcXsuncYgOKSnycvOOe4/M9n072sJ0efMDbtdT6e+T++/OwTXvrPLLp17871V47nsgvO4plbJlBbW8er0//D25P/xaZDN+DW+x7jsLHn897zD9S7ziljDuOUMYcBMOODWXw3bwF7j96eUy+8koWLFrPTr0fyxxOObPbrS1IC7OMf/2B82T+Bmxm/dHFrLiZKEEREcM7Ro0eP2k8//XRWQ3W6dOmyerpmcXGxq62tteacV1ZWtnp54LPOOqt/7969az/++ONZpaWl7LnnnhtUVlamXWHSOccOO/2m4po7JhZV1tQ1uM7AV59/ygWnnwTAiK1+zYWX/6NencOPPZHDjz0RgA/++x/6rbse3br/vOhc9OLzWfD9XK678wGKitLfeZ78+ENss/1O9PAW2mL/Q45k7NEHAzCo/zqM3Gwomw71EpffHxLmlAuvpKamhtLS9B0dtbW1nDPhOibdfAUTn3iOPr17cdMVF7DLISez3+471et9aKF+wF+BCOPL7gKuZfzSb9fkgoVIYxBEpCCMHj165WeffdZl5syZHQFuueWW3jU1NQbwq1/9qrJbt251yWMLPvroo44LFixodI2Alp63ZMmSkgEDBlSXlpYyc+bMjtOnT1/9Kd2jR4+6ZcuWFfvjC3qOGr13nzfffLP7Bx/M7Jqo8+H/6k/W2GDjYTwyZRqPTJmWNjkA+GHBfAAqKlZx0z+uZMy4P61+Lnrx+cyJfc21d0yktEOHBl/rgEEh3n1zGjXV3iKG/35lChsOHQ7APrvuwHfzFjJ33kIAnnvlDYZvNLjB5ADg6tsmctSBe7NO37VZuapi9a69ZrByVZutq9UN+NOTdTvcHYqU3xWKlA9uqwsXAvUgiEhB6N+/f+0NN9wQO/DAAzfs0KGD23nnnZd16dIl3rt377rS0lImT5785emnnz7wpptu6hePx61Xr161jzzyyNdAXUPXbOl5F1988fdjxowZMmnSpN7rr79+1bbbbrt6SuPhhx+++OFHHu07fNPNt9x13wNs7BnnEf3nHVwWOYvKilXU1NQwbNPNid54Z4tf+9ijDyLuHLXV1YQPPpwjx3g9Dv/7z9tMuud2Bm+4Mb87YHcA1hu4PtfdORGA8ef+kdF77M3oPffliGNP5JsvP+fQvXaipKSE3n36cdGV3l59Xbt05tbohYSP+SPOOcp6dOOhm69sMJ6vYnOY+tZ7PHf/PwH43UH7cuCJZ/Posy+zw1a/YvPhG7X4NTbEOZZeVHPcVsCuwDGhSPl9wF9j0fA3bdZIntJeDCIFJMt7MQwrKSl5YaONNlrRpUuXnBgwtnjx4qJevXrFAe6///6el1xySf+vv/7646DjWlZR033e0oqBVbXxxpcszkGbls5veqnlNlBZ6/hm7g8Mnn42nVbMafZ5L9RtPXVszZmjU4qrgavxEoVVbRhmXlEPgogUjKuuuqrvk08+uVY8Hrdu3brV3XfffYF+i6yujZd8v6Ri4LLKmrWCjCNfOcfKC2pO2CLNUx2AC4CjQ5Hys2LR8ONZDq1dUIIgIgUjGo3Oj0aj84OOwznHD8ur+i5cXrVe3GVhL4QC9UZ88/cW02PnRqoMAh4LRcpfBE6PRcOfZym0dkGDFEVEsmhFZW3XzxesGD5/WeVAJQeZ4xyV59b8YVgzq+8JfBiKlF8ZipR3yWRc7YkSBBGRLKitixfP/mnV+l8vWjGsqrZOH0IZNsNt/O581urXglM6ABHg01CkfK8MhdWuKEEQEcmwFZW1Xb9YuGKTJauqtRxwFjhH7Vk144Y0XTOtgcDzoUj530OR8matVpmvlCCIiGSIc475Syv7fbNo5dDE5kmSebPc+m/Pdv3WZKUlA84Bpoci5c1ftjLPaJCiiGTP+LKMbPfM+KU5t91zTV28ZPZPq0Irq2pbvEOjtJ5zxM+sOaV/G11ua+C/oUj52Fg0PKmNrtluqAdBRApGYjfHYcOGbfLuu+92Tn181llnrbdq1aq0Sx+3xLKKmm5fLFixSSI5uOisU9n/N1tx6J47cuyBe/HR+/9t1XXPOPF3HLbXTquPEYPWYuqLz6WtG734fPbZbgt+NbAXn378Ydo6Tz38AL8a2ItXXyhP+/zHM//HYXvtxIG7bsszj/78+fjO9H8zIXJGq15Dpn3j1n37czewLVdM7AE8GIqU3x2KlHdtsnYeUYIgIgXj9ttv73P++efP+/TTT2dts802FamPr7322nVXrVrV6t+LzjnmLalY99sfVw6tjcdX37/ebe8wT776No+++AbHn3om544b06rrX3fnxNXLKl/ytxso69mLHUbvnrbuHvsewL1PPM96AwamfX7unNk8MelfbLHl1g22d/fN13H+pVEeePYVbr3uKgAqKyq49ZooZ1xwaateQyY5hzuzZlymxnkcB7wXipRvkqHr5xzX7sTcAAAgAElEQVQlCCJSEMaMGTPwvffe6zZhwoT+I0eOHJb6+KijjhoEsP322w8dNmzYJnPnzi05+OCDQ0ceeeT622+//cb9+/ff/NBDDw299tprXbbZZpuhAwYM2PzEE09cfZ/7kkvGr7P5iJEjdtlhm/WODO/KzBnvrm579J77UlLi3dHdYsutWTh/HrW1tWv0ep586H7CBx3W4P4Jo7bdgX7rpu9pj8fjXHreH4lM+BsdGtl/oaSkhMqKCqqrqigu8mZk3nJtlKNPGLt606Zc8j29/zPTbbhxBpsYhjcuobG1FfKGxiCISEG4995758yaNavL6aefvuD3v//9EoDUx5MmTerz5ptvfrb22muv3kfhk08+6fzmm29+VlRUxMYbb7zpkiVLiqdNm/Z5VVWVDR48ePOxY8cu2mLElrV7H3ZMr4NPOqMYvB0TLzrrVJ6e+m69OB6461Z23GWP1QlDa1RWVPDCM49zz2Ppby805f7bb2LEVr9mky1GNFrvD2ecx2WRM6moWMWZf57Apx9/yNzZ33LmhbnXewBwds3YbNwC6AlMCUXKj41Fww9nob3AKEEQEWnEvvvuuySx1fPQoUMr9thjj2UdO3Z0HTt2dBtuuGHFhx9/0r1r/43Xmfn++x3u/OfVLFn8EyUlJcS++oLKigo6df55m4Jnn3iYF599inseS3/Pv7leeu5pBg3ekI2Gb9ric7/4dBYvPz+Zu5sRw5CNhnLP414SUldXx9ijD+Ly627l+ace46XnnqFrt+7cedkf6dM9+Akai1yP/74d33TLLDXXEZgUipQPikXDf89Sm1mnBEFEpBGdOnWKJ/5eXFzskh8XFZcUL66MD1hVUVl01snHcOfDz7DZiC1ZsXwZO2yyPtXV1asThBeeeYLbrv0btz/0FL379E3bVvTi8/nvO28CcPl1tzaYADz10EQOPOJ3rXo9/3v3Lb7/bjYH/MabULLoh4V8FTmDRQvnc9gxJzR43sQ7b2GP8P/RvayM22/4B4+++AbPPv4w1916b+nl557cqljaUqTmxGyvSmnA30KR8kHAn2LRcLypE9obJQgiIr6uXbvGf/rpp+LkWwwNWbKquocrLu3igKqqSmpqqlm3vzckYdI9t/+i7pTJT3LT3y/ntklPsm7/9IMGASITrmoyxtnffM3HH7zP9Xc/2GTddA475oRfJAInHLofR58wjl33Djd4znezv+XtaVO5+f5HWbF8GbW1tZgZRUVFrFgZ/GaIS12XD16Ob/WrgJo/DRgQipQfFYuGKwKKISOUIIhI9uTgegXJ/vCHP8zfc889N+7UqVP8lVdeaXDjnh9XVvX6fnHl6ql03br34LRz/8zR++9Gz7V6s/cBB/2i/oV/PJneffpyxglHry67/aGn6dmr5Zs4PvXwRHbfd3+6de/xi/KpLz7H1JdeYPzfbwBgQuQMpr3yEj/+sIBxvzuYrl278ewbrZte+bdLIpw3/grMjO49ytj3t4dwyB470LlLV568PVpLwJ8ll9SMqQ6yfeC3wEuhSPnesWh4RcCxtBlzzgUdQ5PMrAewdOnSpfTo0aPJ+iKS3rJlyyjzRp+XOeeWZbKtGTNmDCspKXlho402WtGlS5fKTLaVTYtXVvf8bvGqDXL/N2d2bFo6v6K4rqJz0zXXTGWt45u5PzB4+tl0WjFndflK1/GTTavuGZ7p9ptpGrB3LBoOvlulDWiao4hIMy2tqOn+3ZKKIUoOcseVtUctDTqGJDsBk0OR8ownTNmgBEFEpBlWVNZ2nfPTqg2dc2u80qK0jUpX+tXEut1/HXQcKXYFnsiHjZ5alSCY2almFjOzSjN7x8y2aaL+GWb2mZlVmNkcM7vWzDq1LmQRaSfi4K0u2N6tqq7t9O1PKzeKO6cvVQFZ/c8o6d/TdbUHzwfLxYRtb+C+UKS8Xf97aXHwZnY4cA1wKbAlMBOYYmZp5+2Y2VFA1K8/HDgBOBy4opUxi0j7sMQ5V1tdXR38JPk1UFlT1yG2aNXGdXGX7Wl0kmRVDVBXTWnljwDUuOLZt9ftt22wUTXqCOCGoINYE60ZeXoWcIdz7h4AMxsLhIHj8RKBVNsD051ziTk5MTObBORat5CItK1F8Xj89QULFoRLS0trioqK2l1XQk1dvOS7xZWDk/dVkF+qJG7F8cz9aJ3zkoOFPy2h57fPU1znzSS8rW6/b+MUDcpYw23j1FCkfGEsGp4QdCCt0aJZDGbWAVgFHOKceyqp/F9AT+fc/6U55yjgZmBP59y7ZjYEKAfud86l7UUws454K1UldAe+0ywGkTWTzVkMADNmzOhfVFT0ZFFRUR+8hWXaDQe2uKJundo47boHJNPWLV5SUxyvyWwCVVdNz2+fZ50vHsRw1LqiecOr7u1dQ0l7+Nk44MBYNPx00IG0VEt7ENYGioEFKeUL8DaxqMc596CZrQ28YWbmt3lrQ8mB7wLgkhbGJiI5ZtSoUXNnzJixYzweH0Q7W3flwld/vGJFdfzAoOPIdY93+utXPd2StL//24RzlFb+uLrnAGBi3e5f1FCybsbabFuGNx5h61g03ODaGrko4/9hzWw0cCFwCvAOsCFwvZld5Jy7rIHTrsQb55DQHfguk3GKSGaMGjWqGvgy6DhaIhQpPwlQctAMHau/qepk2VsbKO7sh2jtkQ3vUZ2beuDNbPh1LBpeGXQwzdXSQYqLgDqgX0p5P2B+A+dchnc74U7n3IfOuSfxEoYLzCxt+865KufcssQBLG9hnCIirRKKlI8C/hl0HJLeE/GdPq6kY3tcZ2BT4O6gg2iJFiUIzrlqYAawW6LM/5DfDXirgdO64E93SpJY57xd3ZMUkfwWipSvBTzGL8dASY5wjqXja47J1o6NmXBYKFJ+dtBBNFdr5mheA5xkZsea2XDgFqArkJjVcJ+ZXZlUfzIwzsyOMLPBZrYHXq/CZOdckxuiiIhkQyhSbsBEIBRwKNKAF+Jbv7+CLu19pPpVoUj56KCDaI4Wj0Fwzj1sZn2ACcA6wPvA3s65xMDFQfyyx+CveKM4/wr0B37ASxr+vAZxi4i0tYuAfYIOQtJzjhUX1Jy4RdBxtIFi4OFQpHyLWDScOuA/p7RqkKJz7kbgxgaeG53yuBZvkaRLW9OWiEimhSLlv0Yzp3LatPjmM5bQfeeg42gjfYGbgEOCDqQx7XoZSBGRNeWvmX8n+n2Ys5yj8tyaP+TKjo1t5eBQpPygpqsFR/8hRKTQnQdsFnQQ0rD33MbvLmCttMv5t3M3hiLlPYMOoiFKEESkYIUi5UPxxh5IjnKOmrNqTtkg6DgyZF3g6qCDaIgSBBEpSP6shdvRlMacNsut/84c17d/0HFk0PGhSPluTVfLPiUIIlKoTgJ+E3QQ0jDniJ9Rc+qAoOPIgjtCkfIuQQeRSgmCiBScUKR8XeBvQcchjfvarfv2F25AKOg4smAw3lIAOUUJgogUomuAsqCDkIY5hzuz5pQ+QceRRaeHIuUbBh1EMiUIIlJQQpHyrYDDg45DGjeXtf/zgdtgo6DjyKISvAUIc4YSBBEpNFG0D0zOO7t6bLegYwjAEaFIec6sFqkEQUQKRihSvgdJm81JbvrBlc14x22ySdBxBMCAy4MOIkEJgogUkiuCDkCaFqk5sTjoGAK0XyhSvn3QQYASBBEpEKFI+X7AVkHHIY1b4rp+8Ep81Iig4whYTiSyShBEpFBoM6Z24JKaMdVBx5ADdg5FyvcMOgglCCKS90KR8jDqPch5K12nT56O76CfkyfwdRGUIIhIITgv6ACkaVfUHrUs6BhyyNahSPmOQQagBEFE8looUr4JWlI551W60i8fqNttm6DjyDF/CrJxJQgiku/GBh2ANO3a2kMWgGl9il/6bShSPjCoxpUgiEje8jfA+X3QcUjjalzxt3fUhbcNOo4cVAKcElTjShBEJJ8dAfQMOghp3K11+8+OU1TIax805vhQpLw0iIaVIIhIPtPthRxX64rm3VB70K+DjiOH9QX+L4iGlSCISF4KRcq3BLYOOg5p3P11e3xeQ0mHoOPIcScF0agSBBHJV+o9yHFxZz9cVXuEZi40bY9QpHz9bDeqBEFE8k4oUt4Rb/yB5LDH6nb6uJKOnYOOox0w4MBsN6oEQUTy0S5A96CDkIbFHUsurT12VNBxtCO/zXaDShBEJB/tH3QA0rgX4tvMXElnJXHNt2MoUt47mw0qQRCRfKQEIYc5x4oLa07YIug42pliYL9sNqgEQUTySihSPgIIbPU5adq/41u8t4TuvYKOox3K6m0GJQgikm8OCDoAaZhzVJ5Xc/ImQcfRTu0ZipRnbVCnEgQRyTdKEHLYe27ouwtYq2/QcbRTXYA9stWYEgQRyRuhSPl6wJZBxyHpOUfNmTWnbBh0HO1c1lZVbFWCYGanmlnMzCrN7B0za3ShCzPraWY3mdk8M6sys8/NbN/WhSwi0qB98OaMSw762IXe/s71WS/oONq5XbLVUIsTBDM7HLgGuBQvU58JTDGztF1GZtYBeAkIAYcAQ/GWjZzbupBFRBq0XdABSHrOUXdmzSkaPLrmBoci5X2y0VBrehDOAu5wzt3jnJuFt5zpKuD4BuofD6wF/NY5N905F3POve6cm9m6kEVEGqS9F3LUV269d75wA0JBx5EnsrK5VYsSBL83YBTwcqLMORf3HzeUuR8AvAXcZGYLzOwjM7vQzBrc2tPMOppZj8SBVkQTkSaEIuVdgE2DjkPqcw53Zs0pWfnWWyCysn9FS3sQ1sZbrGFBSvkCYJ0GzhmCd2uhGNgXuAw4G/hLI+1cACxNOr5rYZwiUnhG4v2ekRwzl7Xf/dAN2SjoOPJI7vUgrEEbC4GTnXMznHMPA5fT+E5rVwJlSceAjEcpIu2dbi/kqLOrx6oXuG1tHYqUZ3wwbkkL6y8C6oB+KeX9gPkNnDMPqHHO1SWVfQKsY2YdnHPVqSc456qAqsRjMw1KFpEmKUHIQQtd2Yx33CbalKlt9QI2Aj7PZCMt6kHwP8xnALslysysyH/8VgOnTQc29OslbAzMS5cciIi0khKEHBSpOamlX0SleTJ+m6E1txiuAU4ys2PNbDhwC9AVuAfAzO4zsyuT6t+CN4vhejPb2MzCwIXATWsWuoiIJxQp7wloAZ4cs8R1nflqfMtfBR1Hnsp4r0yLMzvn3MNm1geYgDcw8X1gb+dcYuDiICCeVH+Ome0FXAt8gLf+wfXAVWsYu4hIwqZogaScc1HNcTVBx5DHQpluoFVdP865G4EbG3hudJqyt4BtW9OWiEgzDA46APmlFa7TrMnx7bcKOo48tn6mG9BeDCKSD5Qg5Jgrao9aHnQMeU4JgohIM4SCDkB+VulKv3iwbresLOZTwHqFIuXdMtmAEgQRyQcZ/zYlzXdN7aELQfPTsyCj/+6VIIhIPtAOgTmixhV/e2fdvhpzlh1KEEREmrBu0AGI55a6/efEKdKS19kxKJMXV4IgIu1aKFLeCegZdBwCta7o+xtqD8rKPgECqAdBRKRRDW0UJ1l2X92eX9RSUhp0HAWkbyYvrgRBRNq7rkEHIFDn7Ie/1R6umQvZldF/+0oQRKS96xB0AAKP1f3m40o6dg46jgKjBEFEpBHq0g5Y3LFkQu0x2rEx+7QOgohII5QgBOz5+K/fX0nn7kHHUYC6ZPLiShBEpL3TLYYAVdCh6s81x2vHxmBkdCttJQgi0t6pByFAf6853JbQvVfQcRSojK43oQRBRNo79SAE6Mn4TlsHHUMBU4IgItII9SBIoVKCICLSCP0ek0K1KpMX138sEWnvlgYdgEhAlmTy4koQRKS9+ynoAEQCsjiTF1eCICLtnRIEKVTqQRARaYQSBClUShBERBoSi4aXAbVBxyESACUIIiJNyOi9WJEcpQRBRKQJus0ghUiDFEVEmqAEQQrRj5m8uBIEEckHc4MOQCQAX2Ty4koQRCQffBJ0ACJZVgnEMtmAEgQRyQezgg5AJMu+jEXD8Uw2oARBRPKBEgQpNJ9mugElCCKSDz4H6oIOQiSLlCCIiDQlFg1XAt8EHYdIFuVmgmBmp5pZzMwqzewdM9ummecdYWbOzJ5qTbsiIo3QQEUpJLmXIJjZ4cA1wKXAlsBMYIqZ9W3ivBDwD2Bai6MUEWmaxiFIIfks0w20pgfhLOAO59w9zrlZwFhgFXB8QyeYWTHwAHAJ8HVrAhURacLHQQcgkiVfxKLhFZlupEUJgpl1AEYBLyfKnHNx//F2jZx6MbDQOXdXM9vpaGY9EgfQvSVxikhBejvoAESyZGo2GmlpD8LaQDGwIKV8AbBOuhPMbEfgBOCkFrRzAbA06fiuhXGKSIGJRcNfAPOCjkMkC6Zmo5GMzmIws+7A/cBJzrlFLTj1SqAs6RiQgfBEJP9ojJMUgtey0UhJC+svwptr3C+lvB8wP039DYAQMNnMEmVFAGZWCwx1zn2VepJzrgqoSjxOOldEpDH/Bg4LOgiRDPo8Fg1npaesRT0IzrlqYAawW6LMzIr8x2+lOeVTYHNgRNLxDF72MwKY06qoRUTSezXoAEQybGq2GmrNLYZrgJPM7FgzGw7cAnQF7gEws/vM7EoA51ylc+6j5ANYAiz3H1e30esQESEWDX+CvnhIfpuarYZaeosB59zDZtYHmIA3MPF9YG/nXGLg4iAgoxtIiIg04kW8gdEi+WhqthpqcYIA4Jy7EbixgedGN3HumNa0KSLSTEoQJF99kq3xB6C9GEQk/0whaZCzSB55IpuNKUEQkbwSi4aXAuVBxyGSAY9mszElCCKSjx4IOgCRNvZ5LBqemc0GlSCISD4qx5sxJZIvstp7AEoQRCQPxaLhKuCxoOMQaUMTs92gEgQRyVdZ/4UqkiH/iUXDn2a7USUIIpKv/o0WTZL8cF8QjSpBEJG8FIuGHfBg0HGIrKFq4KEgGlaCICL57F7ABR2EyBqYFIuGW7IbcptRgiAiecu/b6s1EaQ9+0dQDStBEJF8d1XQAYi00vOxaPijoBpXgiAieS0WDb8BvBl0HCKt8PcgG1eCICKFQL0I0t7MiEXDrwUZgBIEESkEk4FZQQch0gKBjT1IUIIgInnPn/IYaHetSAvECGBp5VRKEESkUDwAfBd0ECLNcE0sGq4LOgglCCJSEGLRcA1wZdBxiDThS+C2oIMAJQgiUlhuAwKbNibSDOfGouHqoIMAJQgiUkD8btszgo5DpAGvxqLhp4IOIkEJgogUlFg0/AqQM7+ERXxx4Mygg0imBEFECtHZQFXQQYgkuSsWDX8QdBDJlCCISMGJRcNfA9cEHYeIbxnwl6CDSKUEQUQK1RXA90EHIQL8NRYNLww6iFRKEESkIMWi4RXA+UHHIQXvI+D6oINIRwmCiBSsWDQ8EXgu6DikYFUDR+fKtMZUShBEpNCdAPwYdBBSkP6SawMTkylBEJGCFouG5wPjgo5DCs7rwNVBB9EYJQgiUvBi0fCjwMSg45CCsRQ4JhYNx4MOpDFKEEREPKfgrYMvkmmnxaLh2UEH0RQlCCIiQCwaXg4cgTdwTCRTHvEHx+a8ViUIZnaqmcXMrNLM3jGzbRqpe5KZTTOzxf7xcmP1RUSCEouGZwCRoOOQvBUDxgYdRHO1OEEws8PxViC7FNgSmAlMMbO+DZwyGpgE7AJsB8wBXjSz/q0JWEQkk2LR8LXAA0HHIXlnBXBALBpeHHQgzdWaHoSzgDucc/c452bhZUOrgOPTVXbOHe2cu9k5975z7lPgRL/d3VobtIhIhh0PTAs6CMkbDm9Q4odBB9ISLUoQzKwDMAp4OVHmnIv7j7dr5mW6AKXAT42009HMeiQOoHtL4hQRWRP+wjUHokGL0jbGx6LhJ4MOoqVa2oOwNlAMLEgpXwCs08xrXIW3/vnLjdS5AG8aSOL4rmVhioismVg0/COwL418mRFphvtj0fCEoINojazOYjCzCN4o4QOdc5WNVL0SKEs6BmQhPBGRX4hFw1/g9SRoZoO0xmt4K3W2Sy1NEBYBdUC/lPJ+wPzGTjSzc/BGB+/pnGt0aUnnXJVzblniAJa3ME4RkTYRi4b/jTd2SqQlZgEHxaLhmqADaa0WJQjOuWpgBkkDDM0sMeDwrYbOM7PzgIuAvZ1z77UuVBGRYMSi4fvxfoeJNMcXwF6xaHhJ0IGsidbcYrgGOMnMjjWz4cAtQFfgHgAzu8/MrkxUNrPzgcvwRgXHzGwd/+i25uGLiGRHLBr+K0oSpGmfAaNj0XC7HzvX4gTBOfcwcA4wAXgfGIHXM5AYuDgIWDfplHFAB+AxYF7ScU7rwxYRyT4/STgv6DgkZ32Clxx8H3QgbcGcc0HH0CR/quPSpUuX0qNHj6DDEWm3li1bRllZGUCZP75HWiEUKf8jcH3QcUhO+RjYNRYNLww6kLaivRhERFooFg3fgLdIXO5/w5Js+BDYJZ+SA1CCICLSKrFo+Da8KWw5vWWvZNz7eMnBD0EH0taUIIiItFIsGr4H+B1aJ6FQvYp3W+HHoAPJBCUIIiJrIBYNJzaja3QtGMk7N+JNZWw3my+1lBIEEZE1FIuG3wS2At4NOhbJuBrg5Fg0fHosGq4NOphMUoIgItIGYtHwXOA3wL+CjkUy5gdgt1g0fEfQgWSDEgQRkTYSi4arYtHwGOAMIK+/XRagmcDWsWi4YLYBV4IgItLGYtHw9cBeQF4OXitAjwI7xKLhb4MOJJuUIIiIZEAsGn4V2BJvRz9pn5YAx8Si4cNi0fDKoIPJNiUIIiIZEouGZ+NtZncm0NgW95J7XgA28zfqKkhaalmkgGip5eCEIuXD8QYwbh10LNKoFcDZsWj49qADCZp6EEREsiAWDX8CbAecC1QEHI6kNxXYQsmBRwmCiEiWxKLhulg0/A9gczQ2IZcsA/6EtyriN0EHkyt0i0GkgOgWQ24JRcoPAq4ENg46lgIVB+4C/pJvGy21BfUgiIgEJBYNPwFsCoxDSzVn22vAlrFo+GQlB+mpB0GkgKgHIXeFIuVdgbPxxih0CzicfPY+cEEsGn4h6EBynRIEkQKiBCH3hSLlfYFLgJOBkoDDySdfAhcDD8Wi4dz/4MsBShBECogShPYjFCkfDJwGHA/0DDic9mwqcB0wORYNxwOOpV1RgiBSQJQgtD/+rYdjgdOBYQGH015UA5OA62LR8PtBB9NeKUEQKSBKENqvUKTcgD3wpuPtA1iwEeWkhcCtwM2xaHhB0MG0d0oQRAqIEoT8EIqUbwSMBQ4FBgYcTtCqgReBh4DHYtFwVcDx5A0lCCIFRAlCfvF7FbYBDgEOBgYHG1HWJJKCR4GnY9Hw0oDjyUtKEEQKiBKE/BaKlG/Jz8lCvi2+VA28BDyCkoKsUIIgUkCUIBSOUKR8M2B3YGdgJ6B3sBG1WCXwLvCGf0yPRcP6N5tFShBECogShMLk34rYFNgB75bENsAm5NZquouB6cA0vITgvVg0XB1sSIVNCYJIAVGCIAmhSHk3YAtgA/8YknSsm6Fm48D3wDfA58CnwCf+n19rAaPcogRBpIAoQZDmCEXKu+ANeBwCrA10AbomHcmPO+HdDlgOrGjgz5+Ab4HZsWi4JpuvRVpPCYJIAVGCICLNlUv3n0RERCRHKEEQERGRelqVIJjZqWYWM7NKM3vHzLZpov6hZvapX/9DM9u3deGKiIhINrQ4QTCzw4FrgEuBLYGZwBQz69tA/e3xNs24CxgJPAU8ZWabtTZoERERyawWD1I0s3eA/zjnTvMfFwFzgH8656Jp6j8MdHXO7ZdU9jbwvnNubDPb1CBFkTagQYoi0lwlLalsZh2AUcCViTLnXNzMXga2a+C07fB6HJJNAX7bSDsdgY5JRd3B++UmIq2n/0Mi0lwtShDw5sMWA6nbaC6g4X3K12mg/jqNtHMBcElq4cCBhb5pmUibWQtQtiAiDWppgpAtV/LLXofuwHfAALxFN3KV4mx77SXW9hbnT0EHIiK5raUJwiKgDuiXUt4PmN/AOfNbWB/nXBWwek9vM0v8dXku3zdVnG2vvcTaDuMUEWlUi2YxOOeqgRnAbokyf5DibsBbDZz2VnJ93x6N1BcREZGAteYWwzXAv8zsPbytOM/AW4/7HgAzuw+Y65y7wK9/PfC6mZ0NlANHAFsBJ69h7CIiIpIhLU4QnHMPm1kfYALeQMP3gb2dc4mBiIPwduxK1H/TzI4C/gpcAXwB/NY591ELmq3CW3ehqqmKAVOcba+9xKo4RSSvtIvNmkRERCS7tBeDiIiI1KMEQUREROpRgiAiIiL1KEEQERGRepQgiIiISD05kyCY2almFjOzSjN7x8y2aaL+oWb2qV//QzPbN9fiNLOTzGyamS32j5ebel1BxJly3hFm5szsqUzH6LfX0p97TzO7yczmmVmVmX2eiz97v/4ZZvaZmVWY2Rwzu9bMOmU4xt+Y2WQz+97/OTa4KVrSOaPN7L/++/mlmY3JZIwi0j7kRIJgZofjLcB0KbAlMBOYYmZ9G6i/PTAJuAsYCTwFPGVmm+VSnMBoP85d8Ha1nAO8aGb9cyzOxHkh4B/AtEzGl9ReS3/uHYCXgBBwCDAUOAmYm4OxHgVE/frDgROAw/HWAsmkrn5spzanspkNxlvA7DVgBHAdcKeZ7ZWxCEWkfXDOBX4A7wA3Jj0uwvulH2mg/sPAsyllbwO35lKcac4vxttB75hci9OPbTreB9m9wFM5+HMfC3wFlGY6tjaI9UbglZSyq4E3shizw1uUrLE6VwEfpZQ9BLyQ7fdYhw4duXUE3oPgfyscBbycKHPOxf3H2zVw2nbJ9X1TGqm/xloZZ6ouQCkZ3ElvDeK8GFjonLsrU7Ela2WcB+Dt4XGTmS0ws4/M7EIzK87BWN8ERiVuQ5jZEGBf4LlMxtoKWf+/JCLtQy5s97w23rfXBSnlC4BhDZyzTgP112nb0H6hNXGmugr4nvq/kHNBIugAACAASURBVNtSi+M0sx3xeg5GZDCuVK15P4cAuwIP4H3YbgjcjJd0XZqZMIFWxOqce9DM1gbeMG8LxRK8Hq5M32JoqYb+L/Uws87OuYoAYhKRHBB4D0KhMLMI3kZVBzrnKoOOJ8HMugP3Ayc55xYFHU8TioCFwMnOuRnOuYeBy/FuPeQUMxsNXAicgjdm4SAgbGYXBRmXiEhz5UIPwiKgDuiXUt4PmN/AOfNbWL8ttCZOAMzsHCAC7O6c+yAz4a3W0jg3wBv0N9n7ogv4iaOZ1QJDnXNf5UCcAPOAGudcXVLZJ8A6ZtbBeduRZ0JrYr0MuN85d6f/+EMz6wrcbmaX+7cockFD/5eWqfdApLAF3oPg/1KfAeyWKDOzIv/xWw2c9lZyfd8ejdRfY62MEzM7D7gIb8fL9zIV3xrE+SmwOd7thcTxDD+Pap+TI3GCN4hyQ79ewsbAvAwmB62NtQtJu5r6EomNkTuy/n9JRNqJoEdJOufAm/71/+3deXgTVdvH8e+kC7QsYd8KGAQKlEWxggugqGwSRQEBHxBFUXxwQcVXqYgQcYuKqLigyKMoLuwIUkRABRFFpO6yWghbgVKW0L1Z5v1j0lLbQltoM0nm/lxXLmlmkvwSZyZ3zpw5Jwe4A+2SsHeBE0BD3/KPgBcKrX8l4AIeRTsHbAPygA4BlnMC2rS6g9HO9ebfqgdSzhIePwf/XMVQ3s+zGdpVIG+gFQZWtPPlTwZgVpsv661AC7Qv3X+A+ZWcszqnCz0VeMT37+a+5S8AHxVavwWQCbzk25fuA9xA38r+TOVW+TegC1qH2Uzf9nAx0A/4zbc9q0AtvXPKLTBvugcoCAIPAHt9X6g/AZcVWrYOmFNk/SHADt/6fwH9Ay0n4PDtgEVvtkDKWcJj/VIglCcn2vn8m9F612/yHdySffeHBVJW39/hwBRfUZAN7APequyDMdrYGyVtc/mf4xxgXQmP+dX3vpKBUf74POVWuTe0zrsOtFbCMcBtQF20wvVHtI7Jt/nWGw48rGNWEzAKrfVyP1pB8xcwCaiq92dp1Jvi+58jREBTFCUDWKSq6ii9swgRDBRFaYvWR+ce1dcXRlGUfsCXQG9VVdcWWncFWgusRaes1YF0tOJ/BVpn5CvQWuy+A65V5cvK7wKhk6IwGN/5+0g1gK7mECIE5Y/yebKU+wJBHtBNVdUfCt33nqIoDrRLmK+jci8PFyXQvZOiOH++sfS3+OYISFYU5V5FUWyKoqhF1rtNUZQk39wAxxVFmacoSrMi66zzDUAUpyjKt4qiZCmKctDX2bLo61ZRFOVp3/j9ub75Bl5SFKVKkfVURVHeVBRlhKIof6M1ZffzLfs/RVF+UBTlmC9XkqIotxR9PNoQwnf4nktVFGVOoeUxiqK87xs8KVdRlL8VRbnrPD9WIYKWb/9Y7/tzoW+fWQd86Lvv5/z9yHe/Fbig0P7l8D1PT9/fQxVFmeI7FqQrirJIURSz7xjwmqIoqYqiZCiK8kEJ+/+diqJ841snV1GUrYqijC28jqqqeUWKg3xLff9tVxGfiygfaUEIcoqidAZWoV0COAVtQJ/JwNEi6z2JdundAmA2UB94EPhOUZTOqqoW/kVR2/ecS3zr3wK8qCjKn6qqful7PhPa+cLuwCy0psyOaJ3iYtH6CxR2LTAUbQjiNLRzowAP+Z7nEyASrVPfQkVRblBVNdG3zkhf5s2+1wLtXDmKojREa5ZUfc99FLge+J+iKDVVVX2tDB+jEKHmXbShwCcCM4Cf0Tr07kDrjzAZ2IO2H1UHzEBTtP0XIKPI8z2B1pfGjjZA2YNoHcW9aMcLG3A5Wj+CPcDUQo8dC/yNtp+7gRuBtxVFMamq+lYp7yN/8LtAH6MlNOndCUJu53dD2+kygSaF7muFtvPmn7a7AG3HnFjksR18600sdN86tC/bkYXui0QrQBYVuu82tMv2uhd5znt9j7+y0H2qb924EvJHFfk7AviT4vMYZFBCx0q0wiEFqFvk/s/QmlGjij5GbnIzwo3THVZvKXTfKN99lxZZdwXgOMtz/EmhOVCAT9GKg5VF1v+h6POUtA+i/QBJLsN7WAM4kSstdLnJKYYg5puDoBfaFQcp+ferqvoPWkekfIPQTictUBSlXv4NbZCcXWizTRaWAXxc6Pny0H69X1honSForQbbizznN77lRZ9zvaqqW4u+B7XQYDyKotRG+yWzAW30wdLev4J2CekXvj8L5/jK91ylPo8QolQfqarqKvT3T2jjebxfZL2fgGaKohS0ThfZx82+/XM9cKGiKOYzvaCiKBPRjm8J6r9bOIWfyCmG4NYAiEK7lK6owve1RtuZd53heVxF/j6g+sr3Qk4AnYo8ZzuKnMookq2wPSWtpCjKDWiXMl0MFD53WZYey/WBWmhNpmPKmEMIUX77ivzt9P236EBqTrQfI2bgGICiKN3QOhpegTaAWGHmQs9VQNGmV38W+J+qqjPPK7k4Z1IgGIMJ7Qv3ek6P5ldY0fONJa0D/x4B0ITW7Dj+DOsWPXAUG7ZXUZQeaKdIvkMboOcQWrFyJ9p12aXJbwH7mNOdr4qq7KGthTCCMx0TznqsUBSlJfA12lgM49GOC3lok609Qgkd5RVF6Y028FgiATjPipFIgRDcUtEGDGpVwrLC9yWj7bB7VFXdWUGvnQxchNZX4FyvTx6Mlr+vqqq5+XcqinJnCeuW9BpH0a6dDlMLXdMthCi3yhpj4Ea0lsEBqqoWtEIoilL0FGT+/ZehXbmwBRiqqqq7knKJMpA+CEFM1SYtWgvcrChKk/z7FUVphdZakG8JWqU/xXfenkLrKoqi1D2Hl18AxAD3FF2gKEqUok1MVBoP2oEprNBjLRS/AgK0jpi1Ct/he/+LgcGKonQoIUf9MmQQQmj71xn7A5yHYvOP+PodFPsRoChKO7RWAwdwgyqThelOWhCCnw3oA2xUFGUm2pftA2jDlF4MoKpqsqIok9DG4bcoivI52i/vFsBAtEsHp5XzdeeiXbb4ju/XwEbfa7f13d8X7VfA2SSiNTuuUhTlU7T+Avej9Z/oVGTdJKCXoijj0a5a2KOq6k9os2ReA/ykKMp7wFagDlrnxF6+fwshzi4JGKYoynS0SyIzVFX9ogKedzXaKYUvFEV5F+2SynvQWj8b56+kaNPOf4V2yeTLaFOjF36eZFVVZQIxP5MCIcipqpqkKMr1aF/wz6Cd45uM1oGwbaH17Iqi7EQ77zfFd/d+tB14+Tm8rldRlJt9z3c7WqGRBewGXgdKPZWhquo3iqKMRvuSfw2tI+MEtOmnixYI49EKmWfROmZ+CPykquoRRVG6+t7zILS+DMfQrrueUN73JYRBvY32g+JOtH16L9rVQedFVdUdvoHPnkU7Rh0GZqKdHix8BURdtMnYQBtroagPkRlG/U7mYghRvlaC9qqqttY7ixBCiOAjfRBCgKIoUUX+bo3WS3idLoGEEEIEPWlBCAGKohxCm8Z3N9qoiWPReg53VlX1TGMfCCGEEGckfRBCwyrgP2jjlueinaubKMWBEEKIcyUtCEIIIYQoRvogCCGEEKIYKRCEEEIIUYwUCEIIIYQoRgoEIYQQQhQjBYIQQgghipECQQghhBDFSIEghBBCiGL8OlBSUlJSdaAJUpgYnRc4CaTFx8d79Q4jKpfs9yIAyDHnHPhtoKSkpKTLTSbTOyaTyUyhucGFMamq6vZ6vetVVZ0cHx9/UO88onLIfi8ChRxzys8vBUJSUlJ1k8n0fa1atRo2aNDguKIoMnxjsPF6FbyuCLzucDyucEX1hKN6TaiqQsGBX83/p4qCCgooJo9qCncTFuHGFO7GFO5SUcjLy4s8cuRIzezs7H1er7d7fHx8nn5vTlQG2e+Dm6qqeFQ1zO1Rw91eNdztVSM8XjVMVVUFFUVVKPgfqgCKqu33CooaZlI84SZcYSaTOyJccYcpikdR9KsPVVWVY8458NcphiYmk8ncoEGD49WqVcv202uK8lBVcGVVJS+rGu7sKDyuCLzu0zfVG1Zhr6WEuauZwl2RNRSP49Spds03PfkqX/y5DkjC5txdYa8j9Cb7fYDzeFVTZp47OjvPE53r9lZ1e7wRvkIgwu1RI1TUEr7Vy/JFn186eHyPUNQwk+IOD1Nc4SYlLzzM5IoMM+VGR4ZlRUeGZYWHmTwV9qbOoFq1ajkRERGu5OTk+l6vtznwT2W/ZrDzV4FgAhT5BREgtGIgirzMaFzZ0biyq+HOiQLVP+eIVU84Hk94mEfF5MkhIu/kfcB9ANjMJ4BfgKSCm82Z7JdcoqLJfh9A3F6vKSvXE53t8lTLzvNE57g80Xkeb1V/vLaKqri9aoTbSwQQXXR5RJgpt2pEWFZURFhmVGRYVrVKKhpMJlN+M6dMVFgG8iEZgapCXkY1ck7WIjezhl+LgfKrDVznu2ls5pNoxcJqYDk253Z9ogkRPDxe1eTMdpnTc1zm7DxP9TyPt4remc7E5fFWcXm8VdJzXLXz74sIM+VGRYRl1qga7jRHRTj90cog/k3fAsFmjq+c53Umnc/Dd+zYEbls2TLz448/fjT/vpiYmI4LFy7858orr/RbU6nT6TRZrdaWf//9d7Tb7VbS09N/K7z8s88+M0+cOLGp1+tV2rRpkz1v3rw9derU8QLM+/TTWpMmPdlc9XpMndq1Mn342tNKzRrVi72G1+vlockvs/KbjSgKPHz3cB6489ZSlxV24uQpBt39f6SdOEmPrp15+4UnADh67ARD7n2cNZ+9TURExPl8FLU4XTS8iM28C/jCd9uAzSkHjiBhSUislH3eYbee1z7vD23bto378ccft9euXbvSetHnuj0RzixXrfQcd60sl6eGqpZ0iuDMZr/xCssXzWPfnmSmz5rLtf2sBcuOpR1l0sNjObB3DxGRkTz53DTiL+9W6rKi1q9dxfRnJ+P1eGjVNo5npr9F9Ro1S1pW5Znpb1WpXqNmnZSTOWpUZFhGjarhJ81REc6nJibUWbp0aZ1q1ap5Fi5cuDs2NjYPYPDgwZZ77733aJ8+fTLP7RMUhQXqr0hd7dq1q8r7779fv6Kf1+VylWv9yMhI9fHHHz+cmJi4s+gyp9NpeuCBByxLlixJ3rt371+NGjVyTXwioSkZR+qlO35r9dBDD7ZcMeeViOQfloXFNKqvPPPaeyW+xseLV7J15252bljK5hVzeXnmR/y9I7nUZYV9snQl13S7lD+/XsD2f/bw13bt1N542yvYn3jwfIuDkrQGxgPfAqnYzB9jMw/DZq5Z0S8kxPnK3++3b9++taKLA1VVych1R6eczG6y43B63I7D6Z0On8ppnpnnrlne4gDgsu49efujhcRfdmWxZa+/8DSdLrmULzYkMfWVt0h4cEzBezvbssKyMjOwPTaO12Z/zBcbkqjfsBGzXn+51GUqqpKV565x5FROs1/+Odhh4ZKljb/58deTd959z6lp06Y1AFi6dGnNqKgorxQHFcfQBcLixYtrxsXFtYuNjY3r0qVLm6SkpKoADz74YHOHw1G1bdu2cddee22r/PUXLFhQ++KLL24bExPT8fHHH2+cf/++ffvC+/fvf2HHjh3bxcbGxo0bN65J/rKYmJiOY8eOjenYsWO7wYMHtyhPvqioKHXAgAHpdevWLfYLefHixea4uLiszhdflEtmWp3H7x4SvWL5svqcSrlg1VerzZ07tKFtK+3l7rtjKJ99/lWJrzF/+WruGTGIsLAw6tQ2M2xAHz77fFWpywqLCA8nKzsHr9dLbp6LyIgIVn27kdq1anJ5fKfyvOVzUQcYAcwDjmIzL8Rm7o3NLJfUiWLWrl1bLT4+vk2bNm3iYmNj4z7++ONaAN999110586d28bGxsZ17Nix3erVq6sB3HrrrRdMnjy5Yf7jt2/fHlmvXr2LcnNzlWXLltW4+OKL27Zr1y6uVatW7V999dV6+esNHjzYMmTIEMull17aJjY2tj2AoijxaWlpYQBjxoxp2qFDh3Zt27aNu/TSS9v8/vvvBc3/iqLEJyQkNOrYsWO7mJiYjq+//nrd/GW//PJL1e7du7eObdOmfWzbdhdNefHVi3YfzWi3ffe+xuPuuT1q+A3XMbjXlbz50rPn9Pl07BxP0wssJS5bveJzhtx2JwAdLr6E+g0bkbRpY6nLCvv+27W0bd+JFq1iARh2+2i+XLak1GWFmcLC8Hq8yhFnZqO09NzGamT1+rsOpMU899zzTWbMmHHgnN64KJFhC4SDBw+Gjx49+sI5c+Y4du7cufWuu+46OnTo0JZer5c33nhjn8Viydm+ffvWb775pqCn68mTJ8N+++237Vu2bNk2c+bMhnv27IkAGD58eIv7778/9c8//9z2999/b/3111+rvf/++wXn0o4fPx7++++/b1u+fPmeisq/37E7ulXzxhEc/qsTzv0tLoypW+1Qahput5t9Bw9zQUxB/YKlWWPylxW1L+UwF8Q0Or1u0ybsO3i41GWF3TbYyj979tO5z3/o1aMrMY0b8NyM//HchPsr6u2WVSRwC1pfhWRs5iexmRuV8hhhEEeOHAkbNmxYq+eee+7gjh07tm7btm1r796903NycpRhw4a1nDRpUsrOnTu3Tps2bf/w4cNbOZ1O0+jRo9M+++yzgi/+d999t97AgQOPValSRb3yyiuztmzZsn3btm1bN27cuP3ll19unJycXNBc9scff0SvWbNm1549e/4umsVmsx3+66+/tm3fvn3rmDFjUh944IHmhZdXqVJF/fPPP7etWLFi18SJE5u7XC7y8vIYNGhw7MDhd4Qv/vqnqovW/hh+Xf+bwgEmPXIfw26/m09XfM38Vd/x9x+/sXrF5xX22Z08cRy320W9BgW1EjHNmnPo4IGzLivq0MEDNG7atODvJs2ak5Z6GLfbfdZlhUVHV2PkPfcx8qbefLv6S4aP/q/p2WeebjRy7CPVjrsjWx7PzKvtPYfWE1GcYTsprl+/vlpsbGx2165dswHGjh17/PHHH2+e/6VfkpEjRx4HaNy4sbtp06Z5O3furFK3bl3Ppk2baj766KMRjz76KABZWVmm7du3F/QOvuuuu46ZTBVQi6kq5Jw0k3m0QXWyakYqHlD1P/1eLTqKRe+9XPD3I1OmMeG+Ufzj2M/zM94HYNJDd3NR+1h/xmoBPAtMxmZeALyOzbnFnwFEYPn222+rt2jRIqdfv34ZAGFhYTRs2NCzefPmKJPJxODBg08B9O3bN6Nu3bquTZs2Rfft2zfD7Xazfv366B49emQtWLCg7ueff74L4MiRI+EjRoyw7Nmzp2pYWJh68uTJ8F9//TWqZcuWLoCbbrrpxJlOKSxfvrzmO++80yAzMzPM6/XidDr/dSwePXr0MYDOnTvnhIWFqb/v2N0k5eiJerkuV0TvAUMi8i8LqV2nLllZmWzeuJ7jaakFj8/KzMSRHLpX8Q27426G3XE3AFv/+I0jhw7Sred1THrs4ZrHj6XVjO96hWfcQ+MO16teJS0izFT8l5EoE8MWCOciKiqqYGcPCwtTXS5XwUBTv/zyy7bo6OgSL+eqUaNGid/iSUlJVUeMGHEhQJcuXTLmzp27r8QXVr2KScFE6tYOePKqADSPacSaDZsKVnHsP0TjBvUIDw8/67KimjdpxN6Dh7ni0ou0dQ+k0NzXanC2ZWey+de/SD12ght6X0WPgXcxd8azqKrKqEemsH7x7LM+tpJEArcBt2Ez/wi8AizB5pRL78QZFR7UZ/jw4cfee++9eqdOnTpRu3Ztd5cuXXIAxowZc0GfPn2cq1atSjaZTMTFxbXLzs4u+CVQvXr1Evf7Xbt2RU6YMKH5Dz/8sK19+/a5P/30U1SvXr3aFF4nOjpazXV5IlPTcxuFhUeEHU3Pbez2nmGT9R2D5i5bQ5WqZ79q8dF772C/QxtqZNa8ZdSqXaf0DwOoVbsOYWHhpKUeKWgpOLh/H41jmp51WVGNY5qyacO6gr9T9u+jXoNGhIeHn3XZmbjdbl559ilefHM2K5YuoHbdekx8bhqjh94Y1uO6vjHNLC2a1KwafrxBjaqHoyLDcsr0ZkUBw55i6NmzZ+bOnTujfv7556oAs2bNqt2wYUNXixYtXLVq1fKkp6eXaWAgs9ns7dq166lJkyYVtOk7HI6Iwk2NZxIfH5+zffv2rdu3b99aYnGgqpCRWjfy1N5YRUHJLw4A+l1zJb/8uZ3t/2hnLd7+cAG33tS31GVFDbmhF+99sgSPx8PxE07mL1/NsAF9Sl1WEpfLxYTnZjB9yngAMrNyUBQwmRQyMrNK+zj84QpgEfAzNnNvvcMI/7ruuusy9u7dW2XVqlXVATweD0eOHAnr1KlTjtfrZenSpTUB1qxZUy0tLS3i8ssvzwK45557jiUmJtZ+55136o8cOTIt//mcTmeYxWLJNZlMfPnll9V37NhR7Pr+kpw4cSIsPDxcbd68ucvr9fLaa681KLrOIWduzM4jGR1OZOUVdJa2tGxN1ahovvx80ennOn6M6GrV6XJlD95/+7WC+1MPH+LIoeKjCb/y7ocs+GoDC77aUObiIF8f600s/PgDAP767RdSDx8quFLhbMsK69bzOrb99Tt7/tH6Xc//6H/0GzCo1GVn8tGsN+l/8y3Ua9CQ7KysgsJOURSyszJRVVVxZrvq/pOa3n7vscwL8jxe+VFcDoYtEJo0aeKePXv27jvuuKNFbGxs3Hvvvddg/vz5ySaTicsuuywrNjY2u3Xr1u0Ld1I8k4ULF+5JTk6u0rp16/axsbFxN910U8vU1NTz2xCzjptJ3dq+U9dulitvHBl5Kj2TpvH9GPngJABqVK/G7GmTufmuR2nVbQAHDqXy1MN3l7oM4OLet5JyWLuCc+QtVtq2stC6+810sY5k/Jjb6NiudanLSvLyzI+4fYiVhvW1PlVT/++/9B85jv4jx/HMY/ed18dRweKB1djMa7GZL9U7jPCP+vXre+bNm5c8ceLEprGxsXHt27eP+/rrr6tXrVpVnT9/fvLUqVObxMbGxo0fP775J598kmw2m70AFovFddFFF2V+/fXXtUaPHn08//meffbZg1OmTGnatm3buNmzZ9fr1KlTmXrPd+3aNXvAgAHH27Zt275Tp07tmjVrlgfauAUpJ7ObADhz3PWLjmIYHh7O6//7hM8XfMrgXlcypE931q5cDsDzM2axz7GbQdddweBeVzJ+zO2cPHG82GuXZtbr0+jdpT2///IzTz8+jt5d2nP8mFYTPTzRxm9bNnNjj3ieevR+np/xbsEVSmdb9ta051kwVzvVWK16DWwvvc7Dd9/GDd0vIfVQCmMe+r9Sl5Vkv2MPW378nkH/uR2AGwYOZfPG7xh03RU0b3Ehrdu1L1hXBZzZrnr7jmfHZuR5a/92ONdc7g/HgPw1F0Pb8PDwVa1bt86Ijo6WZp6zyTlVnfSUGFzZxQctCDE5bpU9B4/SYuOjVM3Yr1cMFVgMPInNWexyUnHuZL8vG6+qKkfTc+unZeQ29nhV+YVbiVR3HqkpB3h6XeqpA6c8duA1h90qw4CfgWFbEAJOXmYUabtacTy5jRGKgwCioF358Dc287vYzE1Ke4AQFUFVVY5l5NbZcTi9w5FTOc2kOPAfVaUm8DzwjyUh8V5LQqJ89iWQAkFvXo+JE3ubkbYzjrwMafbSTzgwBtiFzfwwNrPsG6LSZOW5q+5KzWh38GR2C5fHG6l3HgNrArwD/GZJSOyid5hAIwdBPeWcqs7RbXFkHy/WSUnoJhp4FViHzdxS7zAitKiqyiFndqPko5lxOS5PmTo1Cr9oD/xoSUh83pKQKAWbjxQIeshvNTie3AaPK2AnUDG4HsAf2MzjZFRGURGyfa0GR9NzY85lGGRR6cKAJ4BfLAmJ0nkZKRD8T1oNgkk08DrSmiDOg6qqHHZmN/pHWg2CRX5rwnNGb02QAsFfvB6Fk/uaSqtBULoKrTXhQWlNEOWRneepuis1o22qtBoEm3BgIpBUWTOQBgNde24aZurXvKyqnNjTqvBARyLoRAMzgIHazJHOo6U9QJQgQKd4rwyp6Tn1j5zKbSaFQVDrAGyyJCROcditz+sdxt+kBaGS/Pzzz1VjYmI6knXczLFd7Sq7OPB6vTw46UVaXjmAVt0G8OYH88647q7d+7hywChiu99Ml/63/WsK57MtK2zl19/T4dohdLh2CF+t+6Hg/vfnfc7zM/5XcW8s8FyDNhLjRXoHEeX38ccf17rwwgvbt23bNm7z5s1RFfW8K1asqLFo0aKaoI1rsO94VvPDzpzmZS0O/vh1C0P6dOfGqy7l7mEDOHIo5Yzrznp9GtZunbF268wbLz5T5mX5XC4XD48ewZA+3XnknpEFkyHl5uRw5+D+nDp5smxv2jjCgecsCYnzLAmJFbbNBAMpECqRSVHDOLm3Faq30j/njxevZOvO3ezcsJTNK+by8syPzvjlfu+EZxkzYhA7v/+cCfeNYtQjU8q0rLDJ02aycu4MVs6dwZMvvgXAkaPHmLtoJY/fd0fFv8HAcgGwEZv57OPAioAza9as+hMmTDi0ffv2rfkTtZ0vl8vFN998U2PlypVml8cbnnw0I/ZkoSGSS+P1epn44Bges73AF99tocc1vXn56Yklrpu0aSNfLl/MwjXfs/SbTfyw/hu++/qrUpcV9sP6r6lZqzYLV39PjZpmNq5bC8Cs11/m1lH3ULNWrXP5GIxgGPC9JSGx+CQTIcrQBUL+r4k2bdrEjR07NqZ27doX7dixIxLOPF97RkaGYrVaL2zZsmX7Nm3axHXr1q1g7OHx48c3ueCCCzq0bx/XbtHc2ReGKRTM5/DVuh/ofvNdxPcbTlfrSL7d+DMAvW8dy6IVawsyrfthC537/Kfc72X+8tXcM2IQYWFh1KltZtiAPnz2+api66WmHWfLH9u4bXB/FLdGEgAAIABJREFUAAZbr2N/yhH+2bPvrMuKiggPJys7h8ysbCJ9Q6o+YnuFF58cd9bJVUJINWARNrNN+iUEh1GjRjXbsmVL9alTp8Z07ty5LcDixYtrxsXFtYuNjY3r0qVLm6SkpKqgtQi0bds2Lv+xBS2CwI4dOyJr1Khx8dixY2Pi4uLavfDCCw0++uij+ks//7xux04XdXr1pRfKNdDZ1j9+Iyw8nK5X9gDglttGsX7tKnJzig8++dUXS7lh0FCio6sRWaUKNw8bwZfLFpe6rLDw8AhysrW5UXKys4iIiGTntr/Yk7yLvjcOLE90I7oE2GJJSLxC7yD+YNgC4eDBg+EPPPCAZfHixck7duzY2rZt25yTJ08WfLOdab72JUuWmJ1OZ1hycvLfO3bs2LpkyZLdAPPmzTMvX7689m9bftr15zeLOHhwf0FT1O69B7C98i4r584gadWnfPrmcwx/4Elyc/O4c9gA5ixYXpDrg/nLuevWm8r9fvalHOaCQjMtWpo2Yd/Bw8XW259y+F8zOyqKQvOYRuw7ePisy4p6adJD3PHwFEY9YmPaU4+wYs13NKxXh66dO5Q7exBTgCnAQmzmanqHEWc3Z86c/R06dMiy2+37f/311+0HDx4MHz169IVz5sxx7Ny5c+tdd911dOjQoS293hJnaP6XjIyMsPbt2+ds3bp12+TJk1NHjByVbh00zLTgqw3Kfx9+vFy5DqccoHFMs4K/q1WvQbXqNTh6pPh+dyjlAE0KrdukWXMOHzxQ6rLCrrjqGqpVr8GQPt2pXrMmXbtdxbSpk5jw9Avlym1gDYF1loTEO/UOUtkM8VOvJOvWravWpk2brM6dO+cAPPDAA8cee+yxC/KXn2m+9ksvvTRrwoQJVW+77bbmV199dfott9ziBFi7dm2NQTfdkFHbk9oGryfi3tsG8/3m3wBY9e0P/OPYz1WDTk+YZDIp7Dt4mIH9rmHcUy9z6MhRalSvxoq1GwpmQwxkPS67hJ9WfARAekYm/Uc+yKpP3uK19z5h48+/07B+HaZPeZTIyFIntQwFg4FW2Mw3YXPu1TuMKJv169dXi42Nzc4/1TB27Njjjz/+ePM9e/aUutGGh4erY8eOPaYNfJTTOE8Jr135iSuGyWRiykuvF/z98eyZXNO3P263h4QH7iYvL49hd9zNZd2u0jFlwIsE3rckJHYC/s9ht5Y4tXewM2wLwtnkz9f+ySef7Nm1a9ffn3766e7c3FwFIC4uLm/79u1/X3/99c6NGzdWb9++ffujR4+GRSieqtHk1MXriYB/zyevotL7qsv5bc28gtvBpK9ofWFzoqKqMuSGXsxdnMjCFWu4tlsX6tYpfg7Q/uYHXNz7Vi7ufeu/OgXma96kEXsL/dJ3HEiheaEWhXzNmjTiUGpaQcckVVXZd/AwzWManXXZ2Uy0v8mT40ZzODWNZV+tZ+Gsl6hb28wnS1eW/mGHjovQOi9eoncQcf4iIiLUwi0J2dnZ/zpWVq1a1Wsymdh7LKtFWkbuWefvOOV0MrRvD4b27cHDd99WbHmjJk05dPD0ZGWZGelkpJ+ifsPi+13jJk1JKbRuyv59NIppWuqyM0k5sI8N36xh2O1389a05xg8YhTPTH8L++QJZ32cKPAw8EWodl40bIHQs2fPzB07dkTn9y2YOXNmXZfLpcDZ52tPTk6OUBSFESNGON95550Dqqqyd/tv9W+86hLzosS1SnpGJqqqMuvjJQWv1ffqK1i74Sf+2Hp6ssDNv/5V8O87hw3gg/nLmbPgizOeXkh44M6C4qJvzyuLLR9yQy/e+2QJHo+H4yeczF++mmED+hRbr0G9OlzSsS0fL9a+vBcnfk3Txg1o1aL5WZedyaakP3CeyqDfNd3IzMomvy4ymUxkZBpukrT6wNfYzJfrHUSUrmfPnpk7d+6M+vnnn6sCzJo1q3bDhg1dLVq0cLVp0yY3JSWlSkpKSjjABx98ULfo4/ekZbY8leOqA9ppgfRTp0p8nZpmMwu+2sCCrzbw2uyPiy2P63QxbpeLzT9sAGDRx3O4ulc/qlStWmzd3jfczIolC8jKyiQvN5fP539CvwGDSl12Ji9NeYLHpjyHyWQiOysLBQXFZCInq0wzVwvN9UCiJSEx5E4z6nqKQc/xCmJiYtwzZsxwDBw4sFVkZKR69dVXn4qOjvbWrVvX06ZNm7z8+dpr167t7t+/f8F1P0lJSVGTJ09uqqoqHo9HGX7LTdmXtqwXQ8vubP7tLy7pO5yaNapx/TXdCl6rVYvmfPrm89w74TmysnPIc7no3KEtn76lXVbbtXMHwsLC+Mexnz5Xn9t3y8hbrPz8+9+07n4ziqIwfsxtdGyn9Z9cvno9y1evZ/a0yQC8a3+SUY9M4fk33qdmjWp8MN1W8DxnW1aUy+ViwvMzWDTrZQA6xcVy4QVN6XDtEOrVqcXS2a+c03sJcrWA1djMVmzODXqHCTgBNF5BkyZN3LNnz959xx13tHC73YrZbPbMnz8/2WQyYbFYXPfdd9/hLl26tKtXr56rV69ezvzHeb2qgmIKy8h1FzT1XdvvBlYsmc/Qvj249vobKU8/BJPJxPMz3uWZhEfIzc2lQcNGPPf6OwXL7799CPc9OpH2F3WmyxXd6XvjQG7prR1f+t44kKt79QM467KSrFy6kNi4DrRq0w6Au+57mKkTHsLlcnHPQ4+VOb8AtMufV1sSEq932K0lV4pBSFFVtdJfJFDnhT9x4oSpdu3aXoC5c+fWmjJlSszu3bv/LvMTpB+uT/qhM/+8FmeV41bZc/AoLTY+StWM/aU/ILhkAQOwOb/WO4heAnW/Px9er6rsTstsnZXnrqF3FlF+qjuP1JQD2L5N5WB6pXQb+Bno47BbQ2IwCcOeYgB48cUXG7Rp0yaudevW7adPn97oo48+2lPmB2ccqSfFgTiLaGA5NnMPvYOIiuFVVWV3WmYrKQ7EWXQBVlkSEkNiGzF0gWC32w/v2LFj665du/7+9ddft3fv3j2rTA/MPFqXUykXlL6iMLhoIFH6JAQ/r6oqe9IyW2bluWvqnUUEvMvQ+iQE/cRc/ioQvKD1ig96mWm1cR6w6B0jFBRsDqGwXZxZDeBLuboheKmqyt5jmRdm5rrNemcRQaMHsNySkFi8p2kQ8VeBcFJVVXdeXl5wT52Z46yOc38LvWOEiiwX4MkjIueY3lEqWy20IqFZqWuKgLP/RHbz9By3jD8syus64EO9Q5wPf13FkOb1etcfOXLEGhER4TKZTMH3k9GTF6Gc2HuhgszMdr5UVSsOUo+fpNbeLwnzGOJyyAbAMmzm7ticZTuVJXSXmp5TvzzzKghRxFBLQuKfDrv1Wb2DnAu/FAjx8fHepKSkydnZ2R2Tk5Prow1RG0RUU0TOsUaK123YkScrnCePWnu/pNGuT/VO4k+dgTnAUJ1ziDI4le2qccSZK60+4nxNtSQk/uWwWz/XO0h5+e0LLz4+/mBSUlJ3r9fb3J+ve74Ur5s2G8fNCHNnyoGioqgqETnHjNJyUNQQbOansDlLnos3xHX8sGN8ZTzvn3f8WaHjK+S4PJH7T2RdqEqLoTh/CjDXkpB4hcNu/avUtQOIX7+o4+Pj84B//Pma581mngr01juGCClPYzP/ic0ZdL8ojMDjVU17j2W18njVMx4fZ063k37KyeO28k1wtG71Sn7+4Xsesz3Pzz9+z8u2J1jwVfHxtLIyM7iibTN+33+i/G9AB3v3JPPUI2M5cfw4NWrUZOr0twoGYCpqyby5fPDWa3i9Xrp2u4qJz00jwjcj7NmWFTY14WF+37KZ2nXr8ep7c6lR04yqqtx/+xCeeOZlmlkCrqtYdbROi10cdmvQdLoy9GWOpbKZhwCT9I4hQo4CzMVm7qh3EPFvvisWWmTm5FbK2Po9+/TnMdvzlfHUunom4REGDx/FF99t4c77HmLy+PtLXO/Avr28/fLzfLB4JSu+/4VjR1NZ/MmcUpcVtmv7Vvbt2c3itT9w6RXdWbFkPgBLPvuILlf2CMTiIF8LYJElITFoWtClQDgTm/litPPF0sQoKkN1tIGU6ukdxEgURYkfN25ck3bt2sVZLJYOM2fOrFN42YPjH2szoNdVtWbYnwbgw3feYPgN1zHs+qsZe9stpBzYV/Bch1MOcvewAdzUsysP3nkrJ08cB7TWhZdsTxSs99mcWTz1yH0ALFvwKQ+PHlFitoUff8CNPeIZ2u8q5r43s9T34nK5eG7io9x41aXcNqA306ZOYvSQGwBIeOBuVi5dCMD8D2cTf2EDsnzzK9w9bABJmzZycP8+ure/gLdfeYFb+/fkhu6XsOGb1WX/MH2OpR1l6x+/YR2kda3p1X8Ahw8dZN+e3cXWXbtyGVf36Ue9Bg1RFIUhI+/ky+WLS11WWEREBK68XLxeL9lZmURERHL0yGG+XLaYkfeUXJgEkJ7ADL1DlJUUCCWxmWsCn6MNdCNEZbEAn2IzSxHqR4qisG3btq0rV67cmZCQ0HzHjh0Fl197wyKrf5r4DeMnPcPKpQtx7P6HuctWM//L9fQfeAvPP/l/Bc/zy+Yfsb/xHsvWbaZR4xhm2Keec6Zd27cyc7qd9xclsmDVd+TmlN4/Z/Enc9jn2M2Sr3/kg8Ur2bX99Cjxl3Xvyabv1wPw44Z1tO90MUmbNpKdncXOrX/RKb4rAOmnThHbrj3zVq7jiWde4uWnnyx39iMpB6nXoCHh4doPY0VRtBkqUw4UW/fQwQM0iTndnatJ0+YcPnig1GWFWVq2pssVPbj1+qs5uG8v1kFDefnpiYx/cmpBhgA31pKQeLveIcpCCoSSvQLISInCH3oD9+odwkjuv//+NNCmbu/SpUv6mjVrarg93jCAgcNO/7r/dvVKNn2/jv/078nQvj2YM3MGhwp9YfW4tg/1GjQEYPCIUWz6ft05Z9r8wwa69exVMMXz0NvvKvUxP238DuvAoURERBAREcGNt9xasOzyHlezeeN6PB4Pu3ftYOQ997Npw3p++elHOlx8ScF5/SpVqnLd9TcC0Cm+Cwf2ln20eT098PgkFny1gWnvzGHTd+to1CSGJs2a89T4+xk/5nZWLV9S+pPoa4YlITFG7xClCYpyy69s5r7A3XrHEIbyMjbzKmxOh95BjEhRFPXAyezmAFHR1QvuV1WV0fc/wi0jRpXteXxnI8PCwvF4Tk8ElJeTey6ZzusxjWOaERFZhZVLFxLX8SIu63Y1773xCmFhJi7rdnXBepFVIgseFxYW9q/chd1+cx9ysrOJiKzCJ1+s/deyhk1iSEs9gtvtJjw8HFVVOZxygMZNmhZ7nsYxTdlfqAhJObCPRjFNS112Jhnpp/jw3TeY+cli/vfmq1x6eTesg4YypG8Peva+nqpRldKVpCKYgfeA/noHORtpQShMO7Xwnt4xhOFUB/4npxr845133qkHsGPHjsgtW7bUuKzHNcqpbFedoutd07c/Cz/+AOcJ7UoCl8vFtr/+KFj+/bdrOHY0FdA6yF3WQ/vibWZpwdY/fsPj8ZCdncXaL78oNVPXK3vww/qvSUs9AsDCuR+U/phuPVj5+SJcLhcul4svFs3/1/LLu1/N2688z2Xde1KzVi3CwyNYk7iMy3r0LPW5i/ro89Us+GpDseIAoG69+rTr0InEJQsAWLtyOQ0bNaF5iwuLrdvr+gGsX72KtNQjqKrKwrkf0G/AoFKXncnrLzzNvQ8/TlRUNNlZWSiKgqIouF0uXK68cr9PP7vekpB4p94hzkZaEP5tOiDjHQg9XAv8Fyi9d1oQq+jxCs6Fx+OhXbt2cdnZ2abnn3/hQHS9mBi3t/jgrtaBQzl54gR3D9Oa4N0eDzcPHUG7Dp0AuKTrFSQ8eA+phw/RvMWFPDP9bQB6XX8jaxKXcfM1l9GwcRPatu9ITvbZ+xS0bhvHfx+ZwJ2D+xNVrRrX9bux1Pdxy4g72bV9K4OuvZwa5lq073QxR48cLlh+WY+eLJj7Ppf7CpfLu1/Nks8+ok1ch7J9UOXwlP1Vnhp/P7PfnE716jWY+sqbBctsj42jZ+9+9OzTn6YXWBj7aAJ3DOwHwKVXdOeWEdp35NmWleTXnzeRk5PDFVddA8Ctd9zNhAfu5oOZr3PDoGHUqBkUU2e8aklIXOOwW4t3tggASkhMoFQRbOZ+wJd6xxCGlgF0DJVTDUlJSW3Dw8NXtW7dOiM6OjpH7zygXalw9OjR3+rVq+cBcKRltjiVU7z1IFhkZqRTrXoNXC4XE8eNoV3Hi7jrvof1jhWwVHceqSkHsH2bysH0kk+n6GCVw269Xu8QJZFTDCCnFkSgqA68L6ca/ONEVl6tYC4OAMb8ZyBD+/bglt7dqFa9BsPvlP6uQaifJSGx9F6pOpBTDJrpwNl7wwjhH9cAY4G39Q4SilRVTQJwe7xhh3wdEwPZsbSjjB1R/Dz85T16Mn7SMyX2CRBBabolIXF1oJ1qkALBZu4GjNY7hhCFvIjNvAibM1XvIKEqxZkT4/aqxcfwDTB169UvcShmEXLMwGvALXoHKUxOMcCLegcQoojqhMYQ315AVdXAmvAo2+Wp4sxyyQiWRqSqgIrHq3eQEg22JCR21TtEYcZuQbCZbwS66R1DiBLci838KjZncIxcU7IUr9frTE1NbdigQYPjiqIERI/olJM5Tb1ud0AVLaLyqR432adOcCLLTVpWwHRQLMqOdkVTQDDuVQw2swn4Haj4a36EqBifYHPepneI85GUlHS5yWR6x2QymQmAeU1cXrXKyWxvI4Me9QzN4/Xyx+Ec5v2VzvGcwGxC8OnnsFu/0jsEGLtAuB34UO8YQpyFF+iMzflHqWsGsKSkpOpAEwLglOZja9P+l+tWr9Q7h/AvrwqZeV7S81SC4BvvVyDeYbfqHtWYpxhs5irAuc+sIoR/mIAXAKveQc5HfHx8BrBT7xyWhMRegBQHItB1BoYB8/QOontFr5OxyGRMIjj0x2a+Su8Qwc6SkKignd8VIhg8a0lI1P0qG+MVCNqgSOWf01QI/ciVNudvCBCvdwghyqglcI/eIYxXIMDDgFziJILJ5djMN+gdIlhZEhJNwDN65xCinJ6yJCRW0TOAsQoEmzkSuE/vGEKcg0f0DhDErECs3iGEKKdGwH/0DGCsAgFuBRrqHUKIc3AtNnNHvUMEqYf0DiDEOdJ12zVagSAHChHMxukdINhYEhI7ANfpnUOIc3SxJSFRt07KxikQtDkXLtE7hhDnYQQ2c129QwSZB/UOIMR50u2HrXEKBO3SRiGCWRRwh94hgoUlIbEGMELvHEKcpwGWhMTGerywMQoEm7k2MFjvGEJUAN0vfQoiw4FqeocQ4jyFA3fq8cLGKBBgJFBV7xBCVIC22Mzd9Q4RJKSYEqFitG+wL78ySoEgBwoRSsboHSDQWRISOyMDI4nQcSHQy98vGvoFgs3cGZmxUYSWwdjMUXqHCHAj9Q4gRAXz+zYd+gUCDNA7gBAVLBodfk0EGdnvRajpb0lIDPPnC0qBIERwku36DCwJiXFoY9kLEUrqAt38+YKhXSDYzDHI2AciNN2Azez3TktBQoonEapu9OeLhXaB4OcPUwg/agR00TtEgJL9XoQqvxa/oV4gyC8JEcrki7AIS0JifeByvXMIUUliLQmJfpt4LHQLBJu5GnCt3jGEqERSABd3A6F8XBPCj/t9KO9IfQBd59IWopJ1wmZurneIACOtKiLU+W0bD+UCQX5dCSOQ7dzHkpBYBe2HgRChrJslIbGOP14olAsEuU5cGEFvvQMEkCuQuRdE6AvDT6fPQ7NAsJkbAk31jiGEH8hwwqddqncAIfzEL/t9aBYIctAUxhHjK4iF7PfCOKRAOA9yoBBGItu7Rj4HYRRSIJwHOVAIIzH89m5JSKwJtNI7hxB+UseSkGip7BeRAkGI4Cfbuzakugw9LYyk0vf70CsQbOYGSAdFYSxSIMhnIIxHCoRzIAcKYTRNfYWxkcl+L4xGCoRzIAcKYURG3+6N/v6F8UiBcA466R1ACB1cpHcAvVgSEqOA1nrnEMLP6loSEmMq8wVCsUCQ/gfCiIy83TdBOigKY6rU/T4UC4TGegcQQgdG3u6N/N6FsVXqti8FghChoYneAXRk5PcujK1St/3QKhBs5jrIFM/CmIxcGBv5vQtjkxaEcpADhTCqRnoH0JHs98KopEAoBzlQCKOq4mtBMyLZ74VRSYFQDnIuUhiZUbd/o75vIaQPQjnILwlhZEbd/o36voWQFoRyMPJ5WCGM+kUp+70wqvqWhMSwynryUCsQqusdQAgdVdM7gE5kvxdGZQKiKvPJQ0mE3gGE0FG43gF0Ivu9MLJK2+9DrUAw6gFSCDDg9m9JSFQIveOYEOUhBUIZGe4AKUQhRtz+jfiehShMCoQyqrTOGkIEASNu/0Z8z0IUJp0Uy8ijdwAhdOTVO4AOZJ8XRldp+32oFQhuvQMIoSMjbv9GfM9CFFZp+4AUCEKEDsNt/w67VcWYLSdC5JMCoYwMd4AUohCjbv9Gfd9CgBQIZZapdwAhdJSldwCdyH4vjEoFsivryUOtQDisdwAhdHRI7wA6kf1eGFWaw26VFoQyMuoBUggw7vZv1PctRKVu+1IgCBE6jLr9G/V9CyEFQjmk6B1ACJ24gDS9Q+hE9nthVJW67YdagSC/JIRRHcbmVPUOoRPZ74VRSQtCORxD+yUlhNEY+UvSyO9dGJsUCGWm/YKSHs3CiIz8JWnk9y6MTQqEcpLzkcKIjLzdG/m9C2OTPgjldFDvAELowMhfkkZ+78LYpEAopz/1DiCEDv7QO4BeHHZrJrBb7xxC+JkT2FeZLxCKBUKS3gGE0IHRt3ujv39hPL/4JiurNFIgCBH8jmBzGv3Umuz3wmgqfZsPvQLB5kxBrmQQxiJfjvIZCOORAuEc/aJ3ACH8SL4cZZ8XxiMFwjmSA6YwEsNv7w679Tjg0DuHEH5yCvinsl9ECgQhgp9s7xr5HIRRVHoHRZACQYhgl4rNeUDvEAFC9nthFH7Z1kOzQNAOmEf0jiGEH8iX4mnyWQijkALhPH2jdwAh/OBrvQMEkI1Ajt4hhKhkKn76fgvlAmG53gGE8APZzn18IyrKDwMR6jY77Fa/tJCHcoGwCpn6WYS2Hdicu/QOEWC+0DuAEJXMb9t46BYINudJYIPeMYSoRNJ6UNwXaE2wQoQqv+33oVsgaOQAKkKZ/FouwmG3HkQGTRKhy+GwW/02IWGoFwhyABWh6hjwg94hApTs9yJU+XXbDu0CwebcDfytdwwhKsFKbE6P3iEClLQcilAlBUIFk4OFCEWyXZ+Bw279Fdivdw4hKtgpYJ0/X1AKBCGCTx7wld4hApycZhChZpXDbvXrlXlGKBB+ApL1DiFEBVqOzZmud4gA94neAYSoYH7fpkO/QLA5VWC23jGEqEDv6R0g0Dns1h+ArXrnEKKCpACJ/n7R0C8QNB8ggyaJ0LAHWKN3iCAhhZQIFe877Fa/d0o2RoFgcx5BzkmK0PA/X6uYKN1cIFfvEEKcJxX4nx4vbIwCQfOO3gGEOE8u4H29QwQLh916DFiodw4hztNXDrvVoccLG6dAsDnXANv0jiHEeViIzXlI7xBBZobeAYQ4T6/r9cLGKRA0crAQwUy3A0WwctitPwM/6p1DiHO0Ax0vaTZagfARcELvEEKcg03YnJv1DhGkpLASwWqGw27Vrc+RsQoEmzMLmKV3DCHOwWt6Bwhii4F9eocQopxOAB/qGcBYBYJmGtqQlUIEiz+QznbnzGG3uoGpeucQopxedNitmXoGMF6BYHOmoRUJQgSLidicXr1DBLk5SCdlETwOEgB95oxXIGimA0f0DiFEGWzA5vT7CGqhxjfIzJN65xCijJ522K3ZeocwZoFgc2YCz+gdQ4gymKB3gFDhsFuXApv0ziFEKXYQIOOdGLNA0MxCJnESgW0ZNqdcolexEvQOIEQpntRjWOWSGLdAsDldwFN6xxDiDDzARL1DhBqH3boe+FLvHEKcwWaH3bpY7xD5jFsgaOYBv+kdQogSzMXmlNkIK8cTaOPbCxFoAqqFy9gFgjbpzRN6xxCiiFxgit4hQpXDbv0d+EzvHEIUsdpht36rd4jCjF0gANicq9AGUhEiUEzF5pSBfSrXY8BJvUMI4ZMNPKh3iKKkQNDcB6TpHUIIYAvwot4hQp3Dbk0BHtI7hxA+kxx26069QxQlBQKAzZkK3K93DGF4ucAobM6A6MEc6hx260fACr1zCMPbSIAOpS4FQj6bcwGwSO8YwtCexub8W+8QBjMGmcBN6CcbuNNhtwbkSKlSIPzbfcBRvUMIQ/oZeEnvEEbjsFsPIacahH6edNitu/QOcSZSIBRmcx5FTjUI/5NTCzpy2K1zgS/0ziEM53sCfCpyKRCKsjkXIjPnCf+aImMe6O5e5FSD8J8sAvjUQj4pEEp2H5CqdwhhCD8hs4vqzneqIeAuMxMh6wmH3fqP3iFKIwVCSbQpoYcALr2jiJB2BBgipxYCg8Nu/QSYqXcOEfLmOexW3adyLgspEM7E5vwOeEDvGCJk5QGDsDn36x1E/Ms4IKBGsxMh5RfgLr1DlJUUCGdjc84C3tY7hghJ/8Xm/EHvEOLfHHarG631cI/eWUTIOQLc5LBbs/UOUlZSIJTuIeQXhahYr2NzfqB3CFEyh916DBgAZOidRYSMPGCgw249oHeQ8pACoTQ2Z/4vit16RxEhYQ3wqN4hxNk57Na/gNuQWR9Fxfivw279Ue8Q5SUFQlnYnPm/KNL1jiKC2i5gmHRKDA4Ou3UZMFnvHCLoveawW4OyxVAKhLLShsCVXxTiXJ0CBmBzyrX2QcRhtz4LLNA7hwhaq4H/0zvEuZICoTxszuXIlQ2i/LKBm7E5t+sdRJyTUUg/JFF+W4ChDrs1aFsMpUAoL5vzbeQcsii7XGBOX8IOAAAGuElEQVQgNqd8wQQpX6/zG9Fm3ROiLP4A+jrsVqfeQc6HFAjnwuacDkzSO4YIeC5gKDbnV3oHEefHYbdmAv3RJtUS4my2Ab0cdutxvYOcLykQzpXN+RwwVe8YImC5geG+01IiBDjs1lNAXyBJ7ywiYO0ArnPYrSExK7AUCOfD5pyCtCSI4vKAW7A5F+kdRFQsh916ArgO2KR3FhFw/gau9s3rERIUVZVO+efNZh4PvKJ3DBEQctCGUP5S7yCi8lgSEmsAiUAPvbOIgPAr0Mdht6bpHaQiSQtCRdD6JNwPBPTUnaLSZQBWKQ5Cn8NuTQf6oQ18JYztJ7TTCiFVHIAUCBVHu7rhJmQwJaNyAFdic36jdxDhHw67NQut46LMAGlcnwHX+E49hRw5xVDRbOY4YDnQUu8owm/Wo/U5CLlfEKJsLAmJY4HXgQi9swi/8AKTHHbrC3oHqUxSIFQGm7kO2uhr1+kdRVS6d4Bx2JwuvYMIfVkSEnsCC4F6OkcRlSsdGOGwW7/QO0hlkwKhstjM4cB04EG9o4hK4UYrDKR5WRSwJCS2AJYBHfXOIipFMjDAYbdu1TuIP0iBUNls5ruBt4BIvaOICnMM7ZTCOr2DiMBjSUisDswFbtY7i6hQ3wBDQmEApLKSToqVzeacjXaq4bDeUUSF+B3oIsWBOBOH3ZoBDEIbSE2ubAoNM9CGTjZMcQDSguA/Wr+EN4DhekcR58QNvAhMxebM0zuMCA6WhMRuwAdAa72ziHOyH7jHYbcacrh0KRD8zWYeiHZZVEO9o4gy+wsYhc0pQ+yKcrMkJEYBzwPjkFbbYDIbeNQ3xLYhSYGgB5u5Llprwn/0jiLOyoPWavC0tBqI82VJSOwOvI+0JgS6A2itBqv0DqI3KRD0pLUmvAM00DuKKOZvtFaDLXoHEaFDWhMC3vvA+GCfprmiSIGgN6014U3gVr2jCEBrNXgJrdUgV+8wIjRZEhJ7oH0ZtdI7iwCk1aBEUiAECpv5GsAOdNU7ioF9DjyJzWmIa5yFviwJiVXR5nB5AqircxyjOgVMA6Y77NZMvcMEGikQAo3NPAitCbKN3lEM5DsgAZvzR72DCOOxJCSagceAR4BoneMYRS5aZ/HnQnGSpYoiBUIgspnDgDsBGxCjb5iQ9jvwhMy+KAKBJSGxETAZuAcI1zlOqPKiDWI1xWG37tU7TKCTAiGQ2cxRaEM1JwC1dU4TSvYATwGfYnPKDiACiiUhsRXwDDAMUHSOE0q+ACY67Na/9A4SLKRACAY2cy205sexQH2d0wSzXcBrwGy5bFEEOktC4iVoPw4GAWE6xwlWKpAIvOiwW7/XO0ywkQIhmNjMVdDGTngIuFjnNMFkDdpUvCulxUAEG0tCYjO0zoz3AHV0jhMs0tFGsHzDYbf+o3eYYCUFQrCymXsA/wUGA1V0ThOITqCda3xXrkoQocCSkBiNNlT7PcjVTmfyB/Ae8JGRR0CsKFIgBDttjoeRaAeN9jqnCQTr0Q4Qi7E5c/QOI0RlsCQkdgLGACOAWjrH0VsmMA+Y5bBbN+sdJpRIgRBKbOZOwADf7VKM0cHJhVYULAe+wOZ06BtHCP/xjaVwHXCj79ZE30R+cxStb8FyYLWMYVA5pEAIVTZzY+AGtGLhOiBK30AV6gSwEu3gsAqbU5oSheFZEhIVIB5tn7+R0OuntBXtSoTlwCaH3SpTaVcyKRCMwGaOBnqhHTiuBVroG6jcPMA2YDXawWEjNqdb30hCBDZLQmJztELhBuBygu9URDqwGV9LgcNuTdY5j+FIgWBENnNt4BK0Xxv5t5a6ZjrNg/ZLIanQ7XdszixdUwkRxHytCxfy733+EgJnfJVTwK/8e7/f6bBb5QtKR1IgCI021kJ+0dABbQTHxr5bRR9EVLRziId8twPAb5wuBrIr+PWEECWwJCS24HTB0JrT+3xjoGoFv1wep/f5Q0Ayp4uBf6QYCDxSIIjS2cxV+feBI/8WhTYkbDgQgTZ9rQdwo3UedAMZaAeDFE4fGA7LKQIhApslIbE2/97fmwD10Pb1CE7v+6Dt6/k3F3CMf+/zhxx26zF/5hfnTwoEIYQQQhRj0juAEEIIIQKPFAhCCCGEKEYKBCGEEEIUIwWCEEIIIYqRAkEIIYQQxUiBIIQQQohipEAQQgghRDFSIAghhBCiGCkQhBBCCFGMFAhCCCGEKEYKBCGEEEIUIwWCEEIIIYqRAkEIIYQQxUiBIIQQQohipEAQQgghRDFSIAghhBCiGCkQhBBCCFGMFAhCCCGEKEYKBCGEEEIU8/+1xuRyxqtvGAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU\n",
"\n",
"Se busca en los siguientes gráficos mostrar cómo evoluciona el uso de la CPU a lo largo de las distintas configuraciones.\n",
"\n",
"El gráfico se hizo en base al promedio de uso en la CPU de todos los cores disponibles (8 en nuestras computadoras)."
]
},
{
"cell_type": "code",
"execution_count": 105,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"cov_value",
"ran2",
"fourt",
"cgrid",
"length",
"clean_real",
"prebuild_gwn",
"build_real",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"covariance",
"gasdev",
"fftma2",
"",
"",
"",
"fftma2",
"",
""
],
"type": "treemap",
"values": [
34.56010549999999,
35.08436075,
2.7010718935546953,
32.746140625,
33.296728625,
0.9252797619642867,
0.699744776887463,
0.004166666666666667,
0,
0,
0,
25.025,
0,
0
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "CPU treemap"
}
}
},
"text/html": [
"<div> <div id=\"44cd7534-cf2c-4517-ad3e-59b0438190b7\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"44cd7534-cf2c-4517-ad3e-59b0438190b7\")) { Plotly.newPlot( \"44cd7534-cf2c-4517-ad3e-59b0438190b7\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"cov_value\", \"ran2\", \"fourt\", \"cgrid\", \"length\", \"clean_real\", \"prebuild_gwn\", \"build_real\", \"maxfactor\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"covariance\", \"gasdev\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [34.56010549999999, 35.08436075, 2.7010718935546953, 32.746140625, 33.296728625, 0.9252797619642867, 0.699744776887463, 0.004166666666666667, 0.0, 0.0, 0.0, 25.025, 0.0, 0.0]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"CPU treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('44cd7534-cf2c-4517-ad3e-59b0438190b7');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 16"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": 106,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[37.258909, 28.809677, 18.546602, 56.649521, 38.561538, 36.02233, 59.715385, 41.633546]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>-21.2</td>\n",
" <td>-21.2</td>\n",
" <td>-21.2</td>\n",
" <td>36.171001</td>\n",
" <td>36.171001</td>\n",
" <td>36.171001</td>\n",
" <td>4.518677</td>\n",
" <td>4.518677</td>\n",
" <td>4.518677</td>\n",
" <td>4.518677</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>-20.0</td>\n",
" <td>-20.0</td>\n",
" <td>-20.0</td>\n",
" <td>39.649689</td>\n",
" <td>39.649689</td>\n",
" <td>39.649689</td>\n",
" <td>3.283041</td>\n",
" <td>3.283041</td>\n",
" <td>3.283041</td>\n",
" <td>3.283041</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>-23.9</td>\n",
" <td>3.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>100.100000</td>\n",
" <td>3.056432</td>\n",
" <td>0.000099</td>\n",
" <td>0.121965</td>\n",
" <td>0.000595</td>\n",
" <td>2.437584</td>\n",
" <td>4096</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>-1.2</td>\n",
" <td>-1.2</td>\n",
" <td>-1.2</td>\n",
" <td>27.218459</td>\n",
" <td>27.218459</td>\n",
" <td>27.218459</td>\n",
" <td>1.231253</td>\n",
" <td>1.231253</td>\n",
" <td>1.231253</td>\n",
" <td>1.231253</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>-1.2</td>\n",
" <td>-1.2</td>\n",
" <td>-1.2</td>\n",
" <td>26.980180</td>\n",
" <td>26.980180</td>\n",
" <td>26.980180</td>\n",
" <td>1.223604</td>\n",
" <td>1.223604</td>\n",
" <td>1.223604</td>\n",
" <td>1.223604</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>-9.1</td>\n",
" <td>1.3</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>50.050000</td>\n",
" <td>0.782603</td>\n",
" <td>0.000095</td>\n",
" <td>0.001958</td>\n",
" <td>0.000135</td>\n",
" <td>0.710129</td>\n",
" <td>5268</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>-3.8</td>\n",
" <td>0.9</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>43.800000</td>\n",
" <td>0.578152</td>\n",
" <td>0.000101</td>\n",
" <td>0.001366</td>\n",
" <td>0.000137</td>\n",
" <td>0.488994</td>\n",
" <td>3564</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>50.050000</td>\n",
" <td>16.687500</td>\n",
" <td>0.000824</td>\n",
" <td>0.001123</td>\n",
" <td>0.000944</td>\n",
" <td>0.002831</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>0.001635</td>\n",
" <td>0.001635</td>\n",
" <td>0.001635</td>\n",
" <td>0.001635</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.012500</td>\n",
" <td>0.008333</td>\n",
" <td>0.000352</td>\n",
" <td>0.000360</td>\n",
" <td>0.000356</td>\n",
" <td>0.001069</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.012500</td>\n",
" <td>0.004167</td>\n",
" <td>0.000103</td>\n",
" <td>0.000112</td>\n",
" <td>0.000106</td>\n",
" <td>0.000318</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000274</td>\n",
" <td>0.000274</td>\n",
" <td>0.000274</td>\n",
" <td>0.000274</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000267</td>\n",
" <td>0.000267</td>\n",
" <td>0.000267</td>\n",
" <td>0.000267</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000000</td>\n",
" <td>0.000217</td>\n",
" <td>0.000217</td>\n",
" <td>0.000217</td>\n",
" <td>0.000217</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory cpu \\\n",
" min max median min max mean \n",
"function \n",
"Py_kgeneration -21.2 -21.2 -21.2 36.171001 36.171001 36.171001 \n",
"generate -20.0 -20.0 -20.0 39.649689 39.649689 39.649689 \n",
"gasdev -23.9 3.0 0.0 0.000000 100.100000 3.056432 \n",
"fftma2 -1.2 -1.2 -1.2 27.218459 27.218459 27.218459 \n",
"covariance -1.2 -1.2 -1.2 26.980180 26.980180 26.980180 \n",
"ran2 -9.1 1.3 0.0 0.000000 50.050000 0.782603 \n",
"cov_value -3.8 0.9 0.0 0.000000 43.800000 0.578152 \n",
"fourt 0.0 0.0 0.0 0.000000 50.050000 16.687500 \n",
"cgrid 0.0 0.0 0.0 0.025000 0.025000 0.025000 \n",
"length 0.0 0.0 0.0 0.000000 0.012500 0.008333 \n",
"maxfactor 0.0 0.0 0.0 0.000000 0.012500 0.004167 \n",
"build_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
"prebuild_gwn 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
"clean_real 0.0 0.0 0.0 0.000000 0.000000 0.000000 \n",
"\n",
" time \n",
" min max mean sum count \n",
"function \n",
"Py_kgeneration 4.518677 4.518677 4.518677 4.518677 1 \n",
"generate 3.283041 3.283041 3.283041 3.283041 1 \n",
"gasdev 0.000099 0.121965 0.000595 2.437584 4096 \n",
"fftma2 1.231253 1.231253 1.231253 1.231253 1 \n",
"covariance 1.223604 1.223604 1.223604 1.223604 1 \n",
"ran2 0.000095 0.001958 0.000135 0.710129 5268 \n",
"cov_value 0.000101 0.001366 0.000137 0.488994 3564 \n",
"fourt 0.000824 0.001123 0.000944 0.002831 3 \n",
"cgrid 0.001635 0.001635 0.001635 0.001635 1 \n",
"length 0.000352 0.000360 0.000356 0.001069 3 \n",
"maxfactor 0.000103 0.000112 0.000106 0.000318 3 \n",
"build_real 0.000274 0.000274 0.000274 0.000274 1 \n",
"prebuild_gwn 0.000267 0.000267 0.000267 0.000267 1 \n",
"clean_real 0.000217 0.000217 0.000217 0.000217 1 "
]
},
"execution_count": 106,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_16-aa'])\n",
"overall_time[\"16\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"16\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempos"
]
},
{
"cell_type": "code",
"execution_count": 107,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FNUawOHft5tOYIFAKAkQWgiBiIigIAqKgGKn2sUuiF5EBWy412vB3guoiA3FhopRQUFQ7KCidAi9hpa+Sbac+8ds4pJCCklmd3Pe59kHdubMzDdJZr6Zc87MEaUUmqZpmqYFF4vZAWiapmmaVvN0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXgp6IJIiIEpGxZseigYgsEZElZsehacEuxOwANK06RKSy71g+Hdhai6Fomqb5JdHvotcCkYhcXmLSlcBg4IoS078B0oFwwKmUctdBeNpRiEgYgFKq0OxYNC2Y6QSvBQUReQG4WSklZseilU1EopRSeWbHoWn1hW6D14JeWW3wIjJbRHJEpK2IfOH9/y4Rudk7P0VEFotIrohsE5FLy1hvYxF5RkR2iEiBiGwSkSkiUqnjSkTOFpGlIpItIlki8nvJ7YjIKBFZISIOETkgIu+ISFyJMse0LyIy1vvzOU1EZojIQW88b4lIkxJlLxCRVBHZ7d3nNBG5T0SsJcotEZFVItJLRL4XkTzgYZ95S0qUv0VEVotInogcFpHlZcTZU0S+8saWIyKLROTkcvblFBF5SkT2e/d7nog0L1H2RBFZ4P25OkRki4jMqvg3p2mBQSd4rT6zAl8BO4DJGG31L3gvBL4GlgNTgGzgLRFpX7SgiEQBS4HLgbeAW4EfgUeApyrasHcbqUBT7zJTgb+As0qU+QBwA3cBrwLDgWUi0rim9sXHC0BXwO7dp8uAT0XEt1ZkLJDj3cf/ACuAB4DpZawvxhvTX8BE4LtyfhbXA88Ba7zl7vcuc5JPmW7AD0AP4DHgf0B7YImInFRyncDz3rL/BV4GzvPuX9H6YoGFQII39luAd4GTS65I0wKWUkp/9CfgPxgnb1XOvARAAWN9ps32TrvLZ1pjIA/wAGN8pnfxlrX7TLsXI9F1LrGtRwAX0OYosdqALOAXIKLEvKJms1BgH/CPbxngHG8s/63BfRnrnbYcCPWZfqd3+vk+0yLL2J9XgFwg3GfaEu+yN5ZRfgmwxOf7p8CqCn6/84ACoIPPtFben+PSMvblm6KfpXf6U97fi837/UJvuRPN/tvVH/2prY++g9fqu9eK/qOUygDWYySrD3ymrwcygA4+y43CuKM8LCLNij7Atxh306cdZZuDgYbAdKVUvu8MpVRRp5gTgVjgJd8ySqlUYB1Goq+pfSkyUynl9Pn+MkZSHOazvKPo/yLS0LvPPwBRQFKJ9RUAb5SxnZIygHgR6V3WTG/1/xDgU6XUZp9Y9gBzgP4i0qiMffHtYPQDxu+lnc82Ac4VkdBKxKhpAUcneK0+y1dK7S8xLRPYWSI5FE33bY/ujFGdvr/E51vv/NijbLej999VRylTlIjWlzFvnc/8IseyL0U2+n5RSuUAezBqQACjqtzbnp2Jcfe8H3jHO9tWYn27VOV6yj+KURvym4hsFJEXReQUn/nNMS4gyvpZrMU4j7UpMX17ie+Hvf8W7fdS4GOM5oADIvKZiFwtIuGViFfTAoJ+Dl6rz8p7ZK686b5t0RaMauDHyim7obpBVdOx7EuleNv9l2Ik9mlAGpAPnICRpEveMDioBKXUWhHpApyLcdE0AhgvIg8ope6vapxeR91v70XPSG8nvfOAocAs4HYROdl7caNpAU0neE2rnjQgWin1bYUly14WoDuwqZwy27z/dgEWl5jXxWd+TeqMT0c4EYnGaOf+0jtpIEbHueFKqe99ypXVYa9KlFK5wFxgrhjPyX8C3CMij2DUEuRh7HdJSRj9DHZUc7u/YPSFuMfba/9d4GJ8mjs0LVDpKnpNq54PgL4iMrTkDO/jc0e7eF6I0Zv9LhGJKLFs0Z31cowX9NzkW20sImdj9HRPPcb4y3JDifbocRg3AV95vxfdFRff/XuT8fhj2aiIxPh+91brr/FuJ1QZLydaCFwgIgk+y7UALgWWKaWyqrjNJiWeDgCj5z4YL0XStICn7+A1rXoeB84HvhCR2RiPizUAUoCRGO3WB8paUCmVJSK3Ydwl/i4iczDaiHtgtDVfpZRyisgUjE5qS0XkPaAFxqNpW4Gna2GfwoBFIvIBxt3yeGAZ8Ll3/k/eON8UkecweqFfQTWq+0tYKCJ7MR4z3IdxATMBSFVKZXvL3IvROXGZiLyE0fnvRoxkPLka27wKoxlgHkaNSkPgeozmhy+PtqCmBQqd4DWtGpRSeSIyALgbo0f9lRjJYQNGx63MCpZ/XUTSMZ5/vw9wYnSee9qnzGzvC2KmYrRx52I8LjbF20u+pk3AePb9AYzH9N4Dbi3qpKeUOigi5wJPAg9iJPt3gEXAgmPY7gzvdicB0cBOjOfiHywqoJRaLSKnYjyGeBdG7eOvwOVKqV+rsc2lQB+M6vgWGL+v34DLlFJbqr8rmuY/9KtqNa2e874M5w2gt1JqucnhaJpWQ3QbvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIt8FrmqZpWhDSd/CapmmaFoR0gtc0TdO0IKQTvKZpmqYFIZ3gNU3TNC0I6QSvaZqmaUFIJ3hN0zRNC0I6wWuapmlaENIJXtM0TdOCkE7wmqZpmhaEdILXNE3TtCCkE7ymaZqmBSGd4DVN0zQtCOkEr2mapmlBSCd4TdM0TQtCOsFrmqZpWhDSCV7TNE3TgpBO8JqmaZoWhHSC1zRN07QgpBO8pmmapgUhneC1ColIgogoERlrdiyaFuh8jqc7zI7F34nIQO/PaqDZsQQineA1Tav3RGSsN5EUffJFZIOIvCAiLcyOL9iJyHh9A1HzQswOQNM0zY9MA7YAEUB/YBwwTES6K6XyTI0suI0HDgCzS0z/HogECus6oGCgE7ymadq/vlJKLff+/zUROQhMAi4A3jMvrMAhIgJEKKUcx7oupZQHyD/2qOonXUXv57xtUMu9VYZpInKjiNhFRPmUuVpEFotIuogUiMgaERlXxrpOFJEFInJARBwiskVEZpUo01hEZotIpohkiMibQONyYksSkY9E5JA3vuUicn6J7SkRuaqMZYd65517TD8gTatdi73/tvf+vd5WsoCI9PPOu6S6GxHDTBEpFJHhPtOPE5Gl3uN1p4jc6z3elYgklFjH2SLyg4jkiki2iKSKSLcSZWaLSI6IxInIp97/7xeRJ0TEWqKsRUQmishq7/G9T0RmiEiTEuW2isgX3mN6OeAAbvTOq/DcJCJbgW7AAJ8mkiXeeWW2wYvIKBFZ4f25HBCRd0Qkrrr7Gqz0HbwfE5GewNfAHuB+wIpRhbi/RNFxwGrgc8AFnAe8JCIWpdSL3nXFAgu9y04HMoAEwPdkIsBnGFWTrwBrgYuAN8uIrRvwI7DLu75cYDTwqYiMUErNU0otF5HN3ukl1zEGOAwsqOrPRdPqUEfvvwcx/t4vA54uUeYyIBvj2Kkyb7KZhXFMXKSUSvVOjwO+AxTwCMYxdh1QUMY6rsA4xhYAU4AojPPCMhHpqZTa6lPc6i33K3AHcCZwO5AGvOxTbgYwFngDeA5oD0wAeorIKUopp0/ZLhg1HDOAV4H13ukVnpuAicDzQA7wkHfavqP8vIpi+h24C2gB/Ac4xbuvGdXY1+CklNIfP/1gHBS5QGufaZ0Ap/GrK54WWcayXwNpPt8vxDhRnHiU7V3gLXOnzzQrRjuYAsb6TP8W+BsI95kmGCfBDT7THsZoP2viMy0MI7m/bvbPWH/0RykFRiJTwCCgGRCPkXAPAHlAHHCDt0ySz3KhGBfNs6uwrQTveu7AuMl637uNISXKPQd4gON9pjXFuNhQQIJ3WrT3eJpZYvkWGBfyM32mzfYue1+Jsn8Ay32+9/eWu7REuaElpwNbvdOGlrGvFZ6bvNNWAUvKKDvQu+6BPj/vfcA/GM0AReXO8Zb7b1X3NZg/uoreT3mv6s8EPlVK7S6arpTaBHzlW1b5tHWJiE1EmgFLgQ4iYvPOKrqqPVdEQsvZ7DCMq+ziK1ullBvj6to3tqbAGcAHQEMRaebdZgzG1XJnn+qyuRgH5XCfVQzBqPafe9QfgqbVvW8xEvYOjMSbg3FXvQvj7z0f4469yFCMC4J3qrGtMOBD4FxgmFJqYYn5ZwE/K6X+KpqglDoEvFui3GCM4+m9omPRezy6Me5cTy9j26+U+P4D0MHn+yggE/imxDpXYPxMSq5zi1KqVG1cJc9NVXEiEAu8pJQqbptXRq3HOoxEX1JF+xq0dBW9/4rF6D26qYx5R0wTkVOA/wJ9MarmfNkwDtSlwMcYVf23edu4PgXmKKWKqvzaAXuUUjkl1rG+xPdOGHfr//N+yot/l1JqpYisw7gbet07r+jOaHE5y2qaWW4GNmBc6O4D1iujoxdKqQwRmQ9cCtznLX8ZRjNVdf6W78K4+z5bKbWkjPntgJ/LmF7ynNDZ+295MWSV+J6vlCrZzHcY8G1b74xx7kgvZ52xJb5vKatQJc9NVdHO+2/JcxIYCb5/iWmV2degpRN8gBORjsAijD/uSRh3HoUYd+O34e1IqYy6qZEicjJGO9hQjHa/20Xk5DKS+tEU1fw8Qflt6L4nobnAPd6r92zgfOA9pZSrCtvUtLrwm/q3F31Z3gJGiUg/jGri8zHuJj3V2NYCjLv0ySKyxPeOtIqKjscrgL1lzC95nLkruc50jqyt8FUyaZbqMV/Zc1Mtq8y+Bi2d4P1XOkZ1YKcy5vlOOw8IB85XSm0vmigiZVXLoZT6BfgFI+FeilHddzHwGrANGCQi0SUSfpcSq9ns/deplPq2EvsyF6PmYATGXVEjjOpPTQs0X2Mkt8swqr+jgLerua5fMKqPvwA+FJGLSlz0bqPi4x+MDmMA6ZU8HisjDaOJ8EdV/cfdqnJuUmVMK8s2779dKF1j0cVnvoZ+TM5vedu+vwUuFJHWRdNFpBNwtk/RoitU8SljA672XZ+INPH2kvdV1LYX7v33S4yLvnE+y1mBW0rElg4sAW4UkVYlYxeR5iXKr8W42xnj/ezB6LinaQHFm4Dfw3gyZCzwj1Lq72NY37cYF9hnAW+LiO85eQHQV0SOL5rg7f9S8q56AUY1/N1l9a8peTxW0gcYHWzvKzlDREJEpMxHZ0uo1LnJK5dyHsctYTnGzc9NIlJ03kJEzga6AqmVWEe9oe/g/Zsdo0PajyLyMsYBNwGjx2nRQb8Qo9prvojMwGjTux7jIPBNvlcB40VkHsbVeUNvuSyMxA4wH6MX/HTvM7ZrMDrHldUZ5mZgGfCPiLyKcVffAqOtLR7oUaL8XOABjFqJ16tZpalp/uAt4FaMjmZTjnVlSqlPReRq73qz8D5DDjwGXI7R0e15/n1MbjtGb3rlXT7L+2z528AfIvI+Ri1DW4xOZz9inDeqEtNS7/nkLu8FxkKMp3c6Y3TA+w/wUQWrqey5CYzOe+NE5F6M5r10pVSpPgVKKaeITMF4TG6piLzHv4/JbaX0I4z1m9nd+PXn6B+M3up/YDz7ugm4FqPt2+FT5jxgJUY72BZgMsZVsu+jND2BORhVWPkYVeXzgV4lttcU40STidHz/i2Mi4kjHpPzlu2A8eztHowDead3nSPK2I9O3nUo4BSzf676oz++H/59TK7cx0hLlF+FcYcaV41tJXi3dUeJ6eO80x/3mXY8Rm1XPkYb9lSMGjUFtCix/ECMJoQM77lgE0Yi7OVTZjaQU0ZMdnwevfWZfj3GXXMexsXH38CjQCufMluBL8rZ1wrPTd5yLTCaKrK885b47FPxY3I+5Ud7z4v5GI8NvlPyd1HVfQ3Gj3h3WAsgIvIp0E0p1bnCwpqm1TgR+RM4pJQaZMK2n8G4y49WRlOeppVJt8H7ORGJLPG9M0Yv1CWmBKRp9ZyInIhxZ/1WHWyr5PEfg9FbfplO7lpF9B28nxORPRhVTZsxngEdh9EprqdSaqOJoWlavSIi3YFeGK86bQZ0UD6Ptnk7pFbUoS1HVeGRVBH5C+Nifi1GNfa1QGtgkFJKd1TVjkp3svN/XwOXAC0x2uF/Bu7WyV3T6txIjLEg1gOXqNLPrbehnBe++PgvRhtwZX3p3W7Ra3L/AK7VyV2rDH0Hr2maVgNEpGgM+aPZrJTaXEEZTasROsFrmqZpWhDSnew0TdM0LQjpBK9pmqZpQUgneE3TNE0LQjrBa5qmaVoQ0gle0zRN04KQTvCapmmaFoSq9KKbFStWRGO8RUlfGNQPHmB3r169Kv3mLS346ONeO0b6PGKSSj8Hv2LFipMtFssrFovFhs/4vlpQUx6PJ9Pj8dzUq1evX8wORqt7+rjXaoA+j5ikUgl+xYoV0RaLZVnjxo1bxMbGHhIR/XacAOXxKHG6VagHZVEKASVKIQpoQD6C91crFqUQz/5DmQ0PZ2Ts8yj66Svw+kUf91pNUEpJenp604yMjH0ej6e/Po/UncpW0be2WCy22NjYQw0aNHDUakRatXmUkkKXJ7TQ5Qlzuj1hhW5PmNOtwpxuT5jL+69HKWt5y6eE7HOKxxXqO81iVTgKDsS2X3b7AebvOAQcAnYBaRjjTRd90rBnFtTi7ml1Tx/3AabQ5QkpcLkjClyecKfLE+byqBC3Ula3R4W4PSrE4/2uFBaFcT1va3A4u60joyEiCsTj/VdhsbqwhhZiCS3EGlaINbSQkHDv/8OcSOUrdGJjYw9lZWXZPB5Pa2BD7f0ENF+VTfAWQPQVvH9xFLojcgpc0XmFrmhHoTu60O0Jr+ltFB/DQjjQyvvpVkZRD3bbDmAF8Jv38zv2TH21Hrj0ce+nCl2ekFzjuI8qcHkinC5PeKHbE360C/ijU4JSAliKKvHwOMNw5UeVtwCWEKeR9CMchDbIJTw6h9DIMi/yvX9Dxvq1OqNHkwsQHqUkt8AVlVvgNhK60x3t9ih/+v1ZMIazbQcM907zYLetxUj2S4CvsWemmxOepgUmj1KSV+COyi10NcgrdEfnO90NnG5PmMlhCR5XGB5XGE5HNI7DxjC5YnURGplLWIMcwhrkEhadi8XqMTnWeqv6CcJu61WDcZRYd+aKY1l8/fr1YZ999plt8uTJ+4umxcXFpXz44Yeb+vXrV2dVjR9//HGje+65J77o+6FDh0KaNWvmXLNmzVqAxYsXNxg3bly7goICS8uWLQvfe++9Le3bt3cWlc8tcEVmOJxNDmZkN7znjluj1/6zEoD4tgnYn3iepjHN+HTuu8yZ9UrxNvft2c0JJ/Xj6VffLhXPjGce5+v5n9CgQTSPvfQ6rePbAnDfbeMZfumVpPSNq+kfgQXjbr8bcDWgsNv+AL7CGAbzV+yZ+uAPIAlTU2vluN86/ZxjOub9wRdffNEwPz9fRo4cmXWs6yp0eUIzHU5bdr7TtnDhgkbPPGwvvvM9dOAAMbGxzP1qKel79zDt9gns3rmdsLAw2rbvyL2PPEXTmGZlrnfj2tVMnzaFgweMU+OEyfcyauSpLPlpOWdfcQtdOrQrLvvz57OJjIwotY4bJz/ITyv+pnnTxsx7/UlsjRqilGLYFbfwwoNTQjomtLFRmGPzFleEhDtEhTss7gK3tTCnmjUMWnUEZXXJxo0bw2fNmtW8ptfrdDorLuRjxIgRWevWrVtT9OnWrVveqFGjDgG43W7Gjh3b/oknntixdevWVUOGDMkcP358mwKnO2xPpqPlur1Z3dL25yQfzClo9c7s16PzHQ4+/vYnPln0MzHNY3nzlecAuHDMZXyw4IfiT0zzWM65aFSpWHKys0id9wEfLVzGmCuv5b03XgXg5++/IyIykp69Tz7WH09lCNALuBf4CdiP3fY2dttZ2G36wNf8WkXH/+LFixt++eWXtqMWOoqcAlfU7gxH6/V7s7uu25t13J5MR7ucAlfjfgMGWXyP8aSU4xh2oXGMW61WbvjPHXy+9Hc++uZH4tu24+kHp5W5focjj/9cdxk333kPn373Kx9/+xMn9OlbPL9Lh3b89c37xZ+ykvuqdZvYuGU7/yz6gIH9TuTtj1MBeG3OPE7vdyIdE9qUXERwFURJQWZMSMHh2C4/TlyG3TYTu22QPuZrX0An+I8//rhRcnJy18TExOTevXt3WbFiRQTALbfc0nbr1q0RSUlJyWeccUanovIffPBBk+OPPz4pLi4uZfLkya2Kpm/fvj1k2LBhHVJSUromJiYm33rrra2L5sXFxaWMGzcuLiUlpeuIESPaVzfWrVu3hv7888+NbrjhhoMAy5Yti7Jareq8887Ldrk91qtunOBZvPi7Jn9v25+yP7sgrtDlKT66RIR8Rx4upxOXy0Vebg6xrUrfbf/953IOHTzAgMFnl5pnsVrxuN24nE4cebmEhobicOQx89nH+c9d91d3t45VU+ByjDv6ndhtT2O3nWBWMJr/e+eddxp36NChW5cuXZLHjRsX16RJkx7r168PA/jnn3/CBw4c2Kl79+5dExMTkx9++OHii3wR6TV16tSWKSkpXePi4lKeffbZmKJ5FS132223te7evXvXCRMmxP/222+RvXr16pKcnNy1Y8eO3YrOIz/99FPkW2+91XzevHlNk5KSku+4445WYJyjevXq1aVbt25dU1JSus6fP7+h7/4UON1hezIcrdbuyeq+eX9O1wM5Ba0KXO7y2r1J37uH35Z9z7kjxgAQ0zz2iCSd0vNEdu/cXuayX336Ecf1PLG4vNVqLfdOvzyhISEUFDrxeDzk5jkICw1lz779vPfp10y64fIKlxc8jYHrgW+B3dhtL2G3DcBuC+hc5K/8qQ23Snbt2hVy7bXXdli4cOH6Pn36OF5++eWmo0eP7rhx48bVzz///PY77rijzbp169b4LpORkWH966+/1u3ZsyckMTGx+7hx4w60b9/eeemll7a/66679pxzzjk5TqeTM844o/OsWbOaXHPNNYfBqFpfuXLlWoul+n+Dr7zySsyAAQMy4+LiXACbN28Obx3fRm3en9Mxt8BtU4RJg4YN2b9vL/HtEo5YduRlY/lr+W+c3rMzFouVlJ69uGTs9aW28en773Du8DGEhoaWmhcV1YArrh/PFRcMJqZ5Cx58+iVeeuIRrrxhAtENG1V7v2pQS2AiMBG7bQ3wJvAa9sxD5oal+Ytdu3aFTJgwIeG7775b17Nnz/xnn302JiMjIwTA5XJxySWXdHj77be39OzZMz87O9vSq1evpFNOOSV3wIABeQDh4eHqn3/+Wfvnn39G9O/fv+v48eMPikiFy1mtVrVq1aq1AIcPH7YsW7ZsQ2RkpMrJyZHevXt3HTp0aNagQYNyr7zyyv0ZGRnWWbNm7QBYs2ZN2P/+97/Wixcv3tC0aVPPqlWrwk8//fQuW7ZuW52vrI0z8pwxeYWuhuXtb1k+/3AO/c8YTEyz0hWUbreb92e/ysAhw8pcNm3DekLDwpkwdgzpe3bTuWs3br/vQZo0MNJA2radnDD0UqxWC1ePPp/xY0eXWkeXTgmc3u9EThh6KZ3bt+X+STdwzaT/8vh9EwkJqXI6iQXGeT+7sds+At7FnvlbVVeklS1gr5qWLl3aIDEx0dGnTx8HwLhx4w6lp6eHbtmypXR287riiisOAbRq1coVHx9fuGHDhvCsrCzLL7/80uj2229vm5SUlJySkpK8bdu28HXr1hXfQV9zzTUHjyW5ezwe5syZ0+yaa645UOjyhO48nBd/2GlNUJbQyJwCV2OFOurzJj9/vxilPCxasZ5FK9bRsJGNl554+IgyeXm5fP35J1x0cflX0WOuuo4PFvzAy+98xL49u9m3ZxenDBzEw/fcwR03jeXZV9/xl7+HZOBRYAd228vYbYlmB6SZb8mSJQ26dOmS17Nnz3yACRMmHAwNDVUAK1eujNi0aVPkJZdc0iEpKSm5d+/eSbm5uda///47smj5a6+99iBAz549861Wq9q+fXtoZZYbN27cgaL/5+XlWS655JKExMTE5F69enXdvXt32IoVK8q84/78889t27ZtC+/Xr19SUlJS8siRozqJ1Wpd+sfa43ZnOBKqmtyVUnw6990yj3GlFA/dczsNbY257Nqbylze7Xbx67Il3PfI08z9+ntiW7biobtvR4ATUpLYufwr/lgwh3mvPckr73zEB58vLHM9D065mb++eZ8PZz7GN9//SpvWLUiIb83Vt93PiOvvYO5nC6qyW0VaA7cCv2K3/YzdNlpX4R+7gL2Dr47IyMjiDl1Wq1U5nc7iF/388ccfa6Oiosp8HKhhw4busqavWLEi4rLLLusA0Lt375y33367zLqxL7/8smFBQaG198CzGq/fm91RoaRl63j27NpRXCY3J5uc7Cyat2hZavmP5rzJsAtGEh5hXHMMu2gUr7/w1BFlvvniMzomJtExMemoPwMw7naefPA+Hn3hNb6Y9wFNYppx90NPcOvowZbzz+xPh3bxFa6jjkQBNwE3Yrd9CTyFPXOxyTFpfkgpRaNGjVwla+18+R7fVqtVuVwuqcxyNput+LwxadKkuJiYGNfq1avXhIaGMmTIkI75+fllXqArpejfv3/Wex/OS9+fk98yO9/VuKxyaRvWcdctRo3c8SeexN0PPVFmHMt/+ZGCggL6DRhUat70aVPYt3sXz7z2LuXdjLRqHU/vfqfSopXRAnnORaMZd/lIABo1jC4uF9+6BZdccBY//PYno88fUua6ALKyc3jilbdYMOdFHnn+DQac3IvLRwyjx+CLOX/IgDLb8CvpZGAusB277XlgJvbMY+64WB/5yx1blQ0cODB3w4YNkb///nsEwMyZM5u0aNHC2b59e2fjxo3d2dnZlbr6s9lsnj59+mTde++9xW3yW7duDU1LSyu3JqBIr1698os60JWX3PMKXZEzZr2ZcMGYy0NynKpZ0d168nHH43I6+e2nHwD46J3ZDDjzrOIk7ivpGP1lAAAgAElEQVS+bQI/f/8dSimUUvywaCEdu3Q9osy8998+6t27r7dmvsCwC0fSLLYFjrw8xPuwu4iQm+eX7zMR4BxgEXbbH9ht55gdkFb3Bg4cmLt+/fqolStXhgO8/PLLMU6nUwB69OiRHx0d7fZtW1+1alX4vn37jnoeqOpyGRkZIfHx8YWhoaGsXLky/Mcffyxu32rUqJE7KyvLCkZyP33oOerHn39u8vUPvyQVJfd//iz9sEDHxKTiDnTlJXcwjvELRl2C1XpkaNOnTWHH1s08/eo7hIaV//TckPMuZPXKP8nJNnLlsu++oUuy8UqLPfv24/EY1zHZObl88e0P9Ozepdx1AUx9+Hmm3XYDUZGR5OY5EBFEBKfTRWEVOySXoy3wOLANu+0B7LamNbHS+iRgE3zr1q1dr7322uarrrqqfWJiYvKrr74aO3fu3DSLxcJJJ52Ul5iY6OjcuXM330525fnwww+3pKWlhXfu3LlbYmJi8gUXXNAxPT39mGo3HIXu8C0Hcjv8uWlX8rdffxl24Zgjk6/FYuHh52bw2P1TOe+0E/l+0QLuvP+h4vk3XzmK1Sv/BGDcbVPJy8tl+Jn9GH5mPw4e2M8tk+8rLrs1bSPr16xi6HkXVRjXjq1bWP7zMoZfciUA5140mt9+/J7hg/rSqX1bldK187Hsdl3oCXyB3fYDdlt/s4PR6k5cXJzrueee23rRRRd1SkpKSv7nn38io6KiPDExMe7Q0FDmz5+/6bPPPmuSmJiY3KlTp25XX311Ql5e3lHPcVVdbtq0abvnzJnTLDExMfmOO+6IP/nkk4vvLC+++OLDq1evjkrqmtz9ljvvPi4qtm276c+/Jv+bOolRQ/pz4ekn8e7rL1dr37OzMln01ReUPI/8+fsvvPfGTHbv3MHl55/J6KGnMvG6f8vY77yVJQu/BKBVXBuunXAbV144lJGDT+G3H7/n3keMmsCPv1xEyqDR9DhzDCefdxWDTzuJq8dcUG48P/7+F478fAafZjx9c/PY0bz45gekDBrNFSPOwdaoSq0PFWkM3IeR6B/DbmtRkysPZpV9F31SSEjI1507d86JiorKr4O4Ala+0x22Lyu/dZbDGRNor/9KCdlR6lW1+S7Fll37af/j7UTk7ChvUTN9CdyNPXOl2YEEG3887g8fPmxp0qSJB+Dtt99ufP/998dt3rx5tdlxgfHeij2Z+fF5hS6/6LVaWTENMrLiHIdrNeYaPo/kAg8CT2LPrJGqgmBVr9rga5NHKdmXld/yQE5hK6WO3mlOq1HDgLOx294BJmPP3Gt2QFrtefTRR2PnzZvX1OPxSHR0tPutt97aYnZMxrsr8uOy8p26CrluNAAeAa7CbrsFe+a3Zgfkr3SCrwE5Ba6oXYcdCQUud2TFpbVaIMAVwPnYbdOAF7FnltkxUgts06dP3zt9+nS/uIjzeJTsycpvdSi3sGVgX9QH7FgDScA32G0fArdhz9xldkD+JmDb4P2B26MsOw/nxW/Zn9NVJ3e/YAOeBX7DbutpdjBa8Mp0OBuu35fd7WBOQRDU2AV6/IwC1mG3TcZuq7BzdH2iE3w1ZTqcDTfsy04+lFvYIlAvf4PYCRhJ/lHstmo/q6NpJbncHuu2g7kJ2w7mJjprYfRGM0jg3sH7isZ4d8ZK7LYzzA7GX+gEX0XBeIAHqRBgMvA7dlt3s4PRAl9GXqFtw76cbpkOZ0zFpQNJMOT3Yl0xHqd9A7utgdnBmE0n+Co4lFvYeP2+7O7Bd4AHte4YSX682YFogcmjlGw/lNd2+6G8Ti6PR1cBB4axGLV4yWYHYqZqd7KrrWEjwf+GjlRKsfOwo83hvMJYs2PRqiUCeBG7bQhwLfbMg2YHFLBqa5joYxwiurbkO93h2w7mdTjaADCa30rGSPI3Yc98x+xgzKDv4IHPP/+8YUpKSteOHTt269SpU7ebbrop3u02OmG73B5r2v7czpVJ7hvXrubqEcO4YGAfhg/qy7TbJ5Dv+PfNcPM/fp9RQ/ozfFBfrr/4giNeVetr147tXDvqXE5JbsvooaceMW/lit8YPfRURg89lYsG9eWBqRMpLCgocz0PTJ3IiDP7cd2Y88nOygSMi5XxV4xkx1bTny4ywwUYbXQDzA5Eq56i0eSSkpKSf/vtt8iS3ydNmtQ6Ly+vRjqNHcotbLIpPSe5wOWOum/SzZx32omMGtKfqy4ayqq//qjWOp+b/gAXDOzDqCH9uWTY6fy4ZFHxvIfvuaP42B499FR6d2rJu7NmlLmeo8Vz323jOfPE5OL1PPXgfWWuY+f2bVx23pkMOOnMhg8/93rx9LUbN3P+2InV2j8/1AB4G7vt1frYHydoEnxVx2r3FRMT45o7d25aWlra6r///nvN77//3uDFF1+McRS6Izam53St7IsrwiIiuOvBx/hsyW98uHAZjrw83nj5WQC2bNrA0w/dz0tvf8Qni37mgtGX8tDdt5e5nujohtx85z088vyrpeYlJnfn3S8W88GCH/j4mx85dOAAc996vVS5jevWsH3LZj7+9idO7NufLz6ZC8An771F736n0iah2iPfBro4jEdrbjA7EK3qZs6c2XzKlCl71q1bt6ZPnz6Okt+ffvrpVhW9va4iHo9RJb/zcF4Hj1IWgEFnncO8xb/w4cJlXHPzbdw5bmy11n3CSX2Z+9VSPly4DPsTzzF5/NXk5eUCcPdDTxS/svaltz9CEIaee2GZ66konrE33VK8rkn3/q/Mdcx98zUuvuo6vvtpYfabH35Bdk4uSikm3v8Ezz5wZ7X2z49dB/yC3eb3r+qsSQH9HLyI9Jo4ceKeb775xnbKKadkX3vttQfHjRvX1uFwWAoKCiwjRow49Nhjj+0BmDRpUuv169dHOBwOy7Zt28KbN2/u/Oyzz9JatGjhPuWUU4pvs6OiolS3bt0caVu2NUrbn9PGo1SlRzRq175j8f+tVivde/Rk0/q1AGxav5bOSd2KB5M59fQh3DtxHBmHD9G4yZHvx7A1acIJffry+8/LSm0jMvLfmkJnYSEF+fnF75L3FRoairOwAI/HgyMvl2bNY9m/by9fffYxr7z7SWV3KViFAjOw27oBk/Qz84Fh7NixbZYvXx6dlpYW8corr8T26NEj1/d7165d8wD69evXxWKxsGjRog233nprfFhYmNq2bVu4d2S37PHjx6dPmTKlze7du8POOuusw6+99tpOALvd3uKjjz+OcblVeEhomGXKA9Pp0asPwBFDsB53Qm/S9+7B5XJVeYjU/qcPLv5/56RuKAWHDx4kKurI/mCff/Qe/QacQbPYst/KWhPxhISG4HDk4XQW4vF4sFgsvPLWRww5rS/t28ZVab8CRA9gOXbbddgzPzQ7mLoQ8HfwRWM1z5gxY2fnzp0Lli1btmHNmjVrV65cuWb+/PlNFi1aVHzk/PXXXw3mzJmzJS0tbXWzZs1czzzzTKlBlbdv3x7y5VdfxZx85rlNq5LcS8rLy+WT998uPhATk7uzbtVKtm7eBMAX8z5AKcWenVV/beOuHdsZNaQ/A3p0IrphI8ZceW2pMgkdO9O776lcfPYAdm3fxjnDR/P4f+9m0j0PVGfc5mB1K8Z77QPq1aL11ezZs3d07949b/r06Tv+/PPPdSW/z5kzZzvATz/9tH7dunVr4uLiXABr166N/PbbbzempaWt+vXXX6MffvjhVj/88MOGNWvWrJ43b17M8uXLIwCuvPq67A8X/mj5YOEyy9T/Pcq02yeUGce7r79C/9MHH/Nx9OkH7xLfth2t49uUnjf3XS6s5OBRZcXz7qxXGDn4FCaMHcO61f+UudylV9/I4q9TOWfwRdF33HQFmVk5fJT6LROvv7R6OxQYGgEfYLc9gd0W6M//Vyjgz/Qlx2q++uqr26xZsyZSRNi7d2/YihUrogYNGpQLMGDAgMyWLVu6AU466aScVatWHfFymgMHDlqHnXt+97HjJlq69aj+e1KchYVMHn8NfU87nUFnnwsYd/f3PvIU904ch9vl4tRBQ2hos2ENqfo1RFybtny4cBl5uTncfeuNfPvVfM6+YESpchMm38uEyfcC8N2CL2nZOo7Wbdpy36Sbyc3JZsi5F3LW+cOrvZ9B4izgZ+y287BnbjY7GK3mDRs2LKNoqNguXbo4Bg8enBUeHq7Cw8NVp06dHGvXro1I7N4j5Ntlv3We+fyTlozDhwgJCWFr2kbyHQ4iIv89TXzxyVwWfvEpb3yUekwx/bpsKTOefpQZc+aVqoH749efyMvJ4dQzyh+q9WjxTJh8L81btMRisbDoqy+4+cpRzP9+OVENoo9YtnmLlrzy7sfENsjIaek4bBt1w2SenDaJ735czstvf0h4WBiP3DWBdvGtj2lf/dTtQFPstuuDuQYv4O/gyxuref369WtOOumkbN+xmiMiIkqNB130Pf3AobAzh5513MCh51qvvOHmMreVtmFdcceVh++5o8wyTqeTO8dfQ/PYlkz57/Qj5g0+5wLe+fwb3vvyO0ZfcQ0F+fm0SehQ7X2PahDN0POH8+WnR69tysnO4s0ZzzPu9rt457WXOfHkU3jspVnMePbxIzoB1mPJwE/6efngFBERUXyOsFqtqsR3cgpcDTftzkiceMOVlkn3/o9PFv3MLG/CLCwsLF7P159/woynH2PGnE+IaV52n9vp06YUnyM2ri17DJzlP//ItNtv5rk33iOhY+km4Xnvv8N5oy4uNSxsSeXF06JV6+Ix4QedfS4NohuyNW3TUdf1ceoiOibEc3z3Ltxy36PMfvq/XH/pRUx7/JWjLhfgrgbex24rf4zdABfwd/C+MjIyQpKSknJ8x2ru379/dkXLHTh0OGzoWWd363f6YMsN/yk7ccO/4zaXx+VyMeXma7E1bsK0R58pdWW+f99emrdoidvt5plH7Iy58roj2tQrY/uWzbSKb+NtYy9k8depJCZ1O+oyzz7yX26cOJnIyKji8d9FBJfTidNZeMQdSj3WAliC3TYEe2b1ukhrpmvQoIHn0KFD1mbNmlXqrkyJJSzPbWmYX+DA6SykVVw8AO+9MfOIcgvmz+PFxx9ixnvzaBVXukq9yNQHHj3q9lb88iP3TLyRZ16fQ5fklFLzc7Kz+ObLz5n79dKjrudo8ezbs4sWrYw29L//+J3Mw4eO2qk2IyNTnn19DgvefRGAPEc+FosFi8VCTl7eUeMIAiOBaOy24dgzg+5up9oJ3t+eVQdjrOaxY8d2eO+992LatWtX4DtWc3mcbo/1f9OfTFq18g+Lw5HH4q/mA8bd9vW3lp/sy7Jg/ics+mo+iV27Meas0wA4/sSTuPuhJwC4/44J7Nm1k8KCAk4dNIRbp/z7+Ir9zlsZOPgsBg4ZhsORx/mn9cZZWEB2dhaDe3fj3BGj+c/U+/ntp++ZM2sGVqsVl9vNSaecxg3/Kb/H65+//0J+fj59TzsdgIuvuo4pE67jjZef5dzhY2jYyFalfQxyMcBi7LazsWf+bHYwfslPn1cvcuONN+4dMmRIYkREhGfRokUbjlZ2b6ajpbKEhANEN2zEhDvv4bLzBtG4aUyppqu7b72BmOaxTLz2suJpM9//rFQH2YrY77yVwsJC7r/931rCh555hc5djYv0rz//hOSUHkd02AVYvfJPXnryYV5868MK47lv0s0c3J+O1WolPCKSx1+ZfdTj/IFpD0fYJ91IZKTxFNm9/7mOE8++jLDQUF5/8v4q7V+AOgtYgN12LvbMCnNGIKnX48G73B7r5v25ifn6JRZAwI4HXxtygHOxZx79NirIBetxD0ZyT88uCMqu4lXVokFGZgvH4Vq90g+Q88gK4CzsmQcqLBkgAr4NvrrcHmXZfCC3s07uWhmiga+w2waZHYhW83Ry18rRC/geuy1o/jbqZYJ3e5Rl8/6czvlOd70fjEArVyQwr9ZezaqZQid3rQJdgR+w21qZHUhNqGyC94DxmtNA5/Eo2XIgt5PD6Y6uuLRW/CsPgt99NTQEvsRu62R2INqxS8/Kb66Te2lBMVhszWqPcdw3NDuQY1XZBJ+hlHIVFhYG9OMEHqVky8HcjnmFroD/xdWVQg/gcWF1VvgwQrCKxeiA09LsQLTqO5xXaNubld/W7Di0gHE88DF2W0CPHljZXvQHPB7P0n379p0TGhrqtFgsAXfNp5Rid2Z+m7xCt35rWTnylUJ87tQ9CvZn5hOV/gchhUHVubSqOmC0yQ8Itl629UFOgStq12FH9V84odVXg4HXgSvNDqS6KpXge/Xq5VmxYsU0h8ORkpaW1hwIuFf85RR6Guc5lU7uRxFqOWQR5fv4sMLiOETb9bMRAu6arqYdD3yC3TY0mN98FWwKnO6wbQdzOxcNGqOVFnAn87p1BXbbZuyZdrMDqY5KPwffq1evXStWrOjv8XjaVmU5f/DcbxlnbjrkfM7sOPzd1+F3HQjF+e/oFh43YY50LMplYlR+ZRAwHQi6obYqK+XNlFrpdPjPVf8c0/P169evD/vss89skydP3l80rXVcXMoLs99Xnbqm1On5aum3X/PUg9PwuN10Skrmf0+9SHTD0vcW3y9awEtPPsKm9WsZfcU1TLY/UjzP4/Hw6P1TWbb4G0SEy667iUvGlh4AMSsjg9tuuIKMQwc5oU9f7nn4SQAOHTzAnTeN5ZU58wgNDehaZn8wDbttdSAOUFOlP/xevXoVAkd/56GfSZiamgw8gr5QrVBk4VZXiHgqLli/3YHd9lsgHuzBbOPGjeGzZs1qXpTglVKIWEJdnmM77qs6Qltebg72O29l1odf0L5TIg/feyczn328zCFb27bvyH+feJ5vvviseMjYIqmffMDmjev5/Pvl5GRlMebs0+jd91Q6del6ZLlPP6B3v1O5aeJkrhtzPhvXraFzUjJPPHAP/7nrfp3ca4YAs7Hb0gLtLZdBXW2VMDXVBnyK8VyzptWUWdhtyWYHUR99/PHHjZKTk7smJiYm9+7du8uKFSsiAG655Za2W7dujUhKSko+44wzOu3NzG+FiCz6aj5XXDCEs/v1YOazTxSv50D6Pu4cdzWXnjuIEWf244XHHiyed3bf43j64fu59NxB3HfbuCrFt+y7b0nqdhztOyUCMObKa/nqs7KHZ07o0IkuySlYy7iAWDD/E4ZfciVWqxVbkyYMPe8ivv7s41LlQkJCyXfk4fF4cBYWEBoWxo/ffUsjW2OOO6F3lWLXjioK+CzQOtsGdYIHXgNKj+agaccmGqM9XvfpqEO7du0KufbaazvMnj1764YNG9Zcc801+0ePHt3R4/Hw/PPPb09ISMhft27dmk9TF+w7kFPQGiA7K5O3P1vInC8W8+aM59i3ZzcA9942njFXXsecLxYx9+vvWf33Xyz84tPibWUePsy787/lkedfrVKMe3btpFV8fPH31m3aciB9Ly5X1Zq59uzaecQwsq3j27Jn985S5c4ZPpodW7cw5qzTOKn/QGJbtuLV55/kFu8okpWhqzYrLR54N5CGmQ2otvSqSJiaehPGQAKaVhu6AG8Apcfp1WrF0qVLGyQmJjr69OnjABg3btyhyZMnt92yZUtxPbTT7QnZedjRvqhL6LALjVNAk6YxxLVNYNeObTS02fjtx6UcOpBevO683NwjRlw7f9QlpQaL8kdRUQ14csabxd8ft9/N1eP/w/atW3j9hacAuP7W28sc2EarljOAW4CA6NMVlAk+YWrqccDTZsehBb3h2G1jsWfONjsQzbDtYF57l8dTnPDDwiOK51ktVtxud/FLm97+7BvCIyJKrwRKjZ1eJG3DOu665XrgyIGkirSKi+eXH5YUf9+9YzvNYltWqR2/aD27d+6gR68+xnp2bqdV6/ijLvPPnys4dHA/A848i7HDz+ahZ2eglGLapPHFw99qNWI6dtsC7JnrzQ6kIkFXRZ8wNbUBMBco+8jVtJr1DHZb+eOHajVm4MCBuRs2bIj8/fffIwBmzpzZpEWLFs727ds7Gzdu7M7OyQ3LK3RV2GwS1SCa3v1OZdZLzxRPS9+7h317dlUYQ9GQ0R8s+KFUcgc4ZeAg1q5ayZZNxkB2c996vdTIdJUx+JwL+eS9t3C73WQePsyC+fMYet5F5ZZ3Op0884idO6Y9BIDDkYcIWCxSqgOfdswigbex2/z+BtnvA6yGR4Aks4PQ6g0b8Lr3+fh6/7KA2tS6dWvXa6+9tvmqq65q73K5xGazuefOnZtmsVhI6dnL0ykp2Tp8UF/i2ybw3BvvHXVdDz83kyceuIfhg/oiIkRGNeC+6U8Vj6NeXQ2iG2J/7FkmXnc5bpeLTl268r+nXyqeP3roqbzw5gfEtmzFr8uWcu9t48nNyUYpxTepn3PPQ48zcMgwzh0xhtUr/+C803ohCFdcf3PxkLJlefOV5zhvxMXENI8FYPztd3HzVWMAmHTPf48as37HRbX0Bu4GHjA7kKOp1HCxgSJhaurxwHLAanYsgWhT+OW7QsSj39VdPTdjz3yp4mKBI1CGi1VKsTE9J0kPHlU9cVGHM2PyM/RwsVXnBE7250fngqaKPmFqqgAvopO7Zo7HsNs6mh1EfZSeXRCrk7tmglCMqnq/bQ4OmgQPXAX0MzsIrd5qALxsdhD1TYHTHbZfjxB3TPz/WQG/lgw8ZHYQ5QmKBJ8wNbUx8KjZcWj13mDstgvMDqI+2XnY0U6/Z14z2UTstpPNDqIswXJgPIgxrKemme0p7LZws4OoIR5AKaX88ibvYG5Bk9xK9JrXKlTrv9/irl5B1OfLhwV4zOwgyhLwvegTpqb2BG4yOw5N8+oATMJ4miPQ7fZ4PJnp6ektYmNjD4mI35ydPUqx96CjjfLosROOlbPAbcl31d6vVinYn+tGCrIIzT9Qa9sx2anYbedhz5xvdiC+AroXvbdj3Y9AX7NjCQa6F32NyQG6YM/cbXYgx2rFihUnWyyWVywWiw0/aq7Nc3oa5RSqJmbHEQwah+bkR7sctdpRTAqyiP/rSaIz1tbmZsy2GjgOe6bfXHUG+h38WHRy1/xPNEafkCvMDuRY9erV6xfvMNGt8ZMmvVXpBQ1f/TN7YSDfnPiTG2JeWD4mZ2v/WtuAUoTmH8Dq9tsnLWtKN4zO3m+YHUiRgL2D976xbjO67b3G6Dv4GuUBemDPXGV2IMEmYWrqY8CdZscRLKY2nbLgprwdQ82OI0jsABKxZ/rF1YxfXJFX07Xo5K75LwtgNzuIYJMwNbUdcKvZcQQTi36TXU1qgzEYjV8IyASfMDXVCtxmdhyaVoHh2G09zA4iyEwDguUpBb8QkEnAv92F3dbY7CAgcH+3I4EEs4PQtAoIxvuqtRqQMDW1DUHQr8HfBGoS8GNNgLvMDgIC93d7h9kBaFoljcRuSzQ7iCBxO8brQbUaZNE19LXhFuy2ZmYHEXAJPmFq6kDgRLPj0LRKsgBTzA4i0CVMTW0KXG92HMHIgn++yCjARQJXmx1EwCV49N27FnguxW5ranYQAe5GIMrsIIJRICaBAHEDdpupF08B9btNmJqaDAwzOw5Nq6II/OBqPlAlTE0NBSaYHUewsvjpq4iDQCdgsJkBBFSCx2iD03+MWiC60eyr+QA2EmhtdhDByqqr6GuTqa9RD5gEnzA1tSVwudlxaFo1dQYGmR1EgLrG7ACCmaAfhK9F52G3mfbysIBJ8MANQJjZQWjaMRhndgCBxvto3BlmxxHMdBV9rQoBrjNr44GU4EeZHYCmHaPzsdt0VXPVXElgnacCjtXsAILf9dhtpvyYA+LASZia2hnobnYcmnaMQoAxZgcRYK4yO4BgZ9H9mmpbHHCeGRsOiAQPjDA7AE2rISPNDiBQJExN7YfRd0GrRfpFN3XClM52OsFrWt3qq6vpK03fvdcB/aKbOjEIu61JXW/U7xN8wtTUtug312nBQ9AXrBVKmJoqwIVmx1Ef6Cr6OhGCCe9w8fsEDww3OwBNq2G6w2jF+qCHg64Tuoq+zlxQ1xsMhASv73a0YHMKdltLs4Pwc+eYHUB9YRFdRV9HzsJuq9NHvf06wXtfbtPP7Dg0rYZZ0K9crsi5ZgdQX/h1EgguDYGBdblBf//dXoj/x6hp1XG62QH4q4Spqa2BnmbHUV/oF93UqaF1uTF/T54XmR2AptUSneDLp6vn65C/J4EgU6eDz/jt7zZhaqoVOMXsODStlsRht+lnvMs2xOwA6hP9mFydSqnL/jd+m+CBFKCB2UFoWi3Sd/Fl62t2APWJVfeir2tn1tWG/DnB64NcC3Y6wZeQMDU1HuPVnlodEZQ/54FgVGeDJ/nzL/ZkswPQtFp2mtkB+CF93NcxPdhMnetRVxvSCV7TzNMau02/zOVI+rivYxY9HHxdS66r0eX8MsEnTE1thB5kQqsfjjM7AD+jE3wd04/J1bkIoFNdbMgvEzxGBzv9R6fVB3VWXefvEqamhgAnmB1HfaOr6E1RJ8Of+2uC13c1Wn2h/9b/1RGINDuI+kZ3sjNFSl1sxF9/sfquRqsv9N/6v3SznAn0Y3KmqNcJXt/VaPVFV+y2ULOD8BM6wZtAdHOoGep1gk8yOwBNqyNhQFuzg/ATOsGbQL/JzhQdsduiansjfpfgE6amhgFNzI5D0+pQvNkB+Amd4E3gd0mgfrAAyXWxEX/TzOwANK2O6QRv0AneBPoxOdN0re0N+GOC1y/+0OqbNmYHYLaEqamh6J+DKSy6Dd4sMbW9AX9M8M3NDkDT6pi+gzdq7vzxfBT0dII3Ta03RfvjAaXv4LX6Rid4aGp2APWVflWtaeplgtd38Fp909rsAPxArVdXamWzKP2iG5PoBK9p9UBDswPwAzrBm8SCvoU3Sb1M8LqKXqtvav152ACgE7xJLPpVtWaplwle38Fr9Y1O8DrBm8ai/DIP1Ac6wWtaPdDA7AD8gG6mMIlVV9GbpV4meH2y0+qbCOy2+v6oknrz9HYAACAASURBVD+ei+oFPZqcaeplgi8wOwBNq2OCHiZVM4l+Dt404dht4bW5AX9M8PlmB1DfCB5Pb1m3zoKKMDuWesxqdgAm00nGJIdVwxylKDQ7jnqqVn/uIbW58mrSCb4OdJDd20dav982zPJraFtJT7SI0iP4mUvXXGmmOL3w6b4WPO4E2bv9ONmcfrxlU153y1bayb7oJmS3sOJpLaIvwGqBA3tmrfZ/0Am+nmhK5sELrT9tuNC6zNVVtieEirstephSf6GwZ9b3OyidQEzkwWLdrFq33axat/3U0/+IeREUOBJl584els0Hj7dsKkiS7dZ42W9riKO1RZR++qH68mp7AzrBB6kIChyDLSvWjLR+n9Pbsr5lJAWJIvQ1Oy6tTPruXfNb+YRH/q06dv7b3bHz2+7BR8yzkZORbNm263jZlNHDkuZKlJ1hLeVw00gK4kV0h+kK6ASvVY4Fj/sky9p1o61LDgyw/G1rQnZXEXqZHZdWKTrBg8PsALSqyyS68c+ebo1/phu4j5zXmgN7u1u27j3esik7RTZ7Olr2RDUjs1korngRQs2J2K/k1vYGdIIPYF1k+5aR1u93nGX5PTxe9ieJ0M3smLRq0X/zcNjsALSatZtmLXd7mrVc6DnxiOlW3K72smfbcbI5vadlU143y1ZLW0mPbkxOSyuelvWovV/fwWv/iuXw/ousyzaeb/3J00V2dAgRT3ugvdlxacdM/83DIbMD0OqGG2vIJhXfbpOKb/eJ57Qj5kVSkNdFduzsYUk75G3vD4mTA7ZoHHEWqf3nxuuYTvD1WQMcOUMtv68daf0+r6dlY+tIcXZGv+kvGOnkpn8GGuAgPOov1SnxL3cn3nQPPWJeE7IOdzPa+zN7WDa7OsvO8BZyuGkEhfEiAfm653qZ4OttW5wVt+sUy6q1o61LD/W3/NPERm5XEXqbHZdW6/aZHYAf0AleO6rDNGqyzJPSZBkpJdr7lYqXA3u6y5a9PS2bclJks6e9ZU9UDFmxobjjRPwyz0E9bYNPNzuAutRNtqSNsi7dNcS6IrIVB5NESDE7Jq3O1au/+XLoNnitmkR2quatdqrmrb729DliTgguZ0fZveU4y+YDx8umvG6WbZa2kt7QRm5Lq3hamhRwkXqZ4DeYHUBtas2BPcOtP2w+z/oznWRXJ6uojkBHs+PSTLXH7AD8wEGzA9CCj4uQ0PWqbfv17rbtP2TgEfMa4MjpIjt2HW9JO9TDsqkwSXaEtJaDjaNxxItgq4Pwdtb2BvwxwW80O4CaFE1e1jnWX9aNsP6Q30PS4sPF1QFoZXZcml/ZYXYAZts6/ZwDCVNTHeh38mt1JJfI6D9UYpc/3ImlHvGLIfNgN8vW3d72fncn2RUeK4djInC2EaGmXum9uYbWUy5/TPA7MDraBeR70UNxFZ5mWbl2lHVpRj/L6piGOLqK0KfiJbV6rNav5APEVqCr2UFo2kFsMd97esR8T48jkr/g8bSR/btSZMu+4y2bclIsW2gve6Kakh0bYrT3V2VMiS01HngJfpfgt04/x5MwNTUNAuWZbqWOl7SNo6xL9pxp/aNBLBldRehhdlRaQNlqdgB+YjM6wWt+TGGxbFct4rarFnGpnpOPmBeKq7CT7Np2nCXtQE9JcyRbtlrayP5GjchtZRUVW8bq6l+C99qIHyf4NpK+a6R16ZZzLL9YOsjezhZRiUCi2XFpAckNrDM7CD+xyewANK26nISErVXtOqx1t+swlzOOmNcAR3aybNtlPN+f5kyS7dZOlt3bazsmf07wfsNGTsb51p/XXWT9wdldtrQNE3c7IM7suLSgsAl7pn5VrWG92QFoWm3IJbLh7yop6Xd3UlGV/8at089x1vZ2/TXBm9qTPgxnwRmWP9eMsi7NOsmytnkD8pNEOLniJTWtylaZHYAf0Qleqy/W1sVG/DXB1/EdvFInyoZ1o61L0k+3/tWwGZldRehZtzFo9dRqswPwI2vMDkDT6ohO8LWpvezZMdL6/dZhll9D2sm+LhZRXdEdfP7P3n2HN1W2Dxz/PmlDByOUPQSi7C2CoAICoqBUEWQpAoooLl4HDgoqRFx5wVdxgqhs/DEUFCwCIoIgU8SJIBTCEsoq6W4zzu+Pk9ZSWmih7UnS+3NdudqenHNyp+2T+5xnipInd/A+Dnv0cWtM7BHgCqNjEaKY/VISL+KXCd5hj/7HGhObBJQvqnNGkXjmzpBNe/qGbHQ3UwetZuWpA9QpqvMLcYkkwZ9rK5LgRfDbXBIv4pcJ3mcrcPOlHhxORtrNpp//6h+yPula057qkWQ0VorrizA+IS7XWaTdObetQD+jgxCiGB1z2KMPlsQL+XOCX08hErzC6+1g+mv3wJD1J7uYfrVUIqmpUlxTjPEJcbk2YnN6jQ7Cz2wxOgAhilmJ3L2Dfyf4Hy62QyN12NE/5IdDt5q2hdVRJ5soRbOSCEyIInLR//FSaAfgxr8/m4S4HJLg0avqzpmytgpnT94VsnHvnSE/ehurw1eGKq8VsBoUnxCXSxJ8Lg57dKo1JvZ3kFEsImhJgnfYozNaxixed7NpR5X+IT+kXGPaWyuczAZKUdXo2IQoAinod6vifOuRBC+CUyYlWO79NsED/B7+4CZgotFxCFEMNmNzuo0Owk+tAJ4yOgghisE6hz06vaRezFRSL3SJVhkdgBDFZI3RAfix9UCy0UEIUQy+LskX8/cE/xNw2ugghCgGS40OwF857NGZwHdGxyFEMVheki/m3wleH0K0wugwhChiu7A5DV1vIQDEGh2AEEXsT4c92lGSL+jfCV630OgAhChiS4wOIADIhb0INiV69w6BkeBXAwlGByFEEZLq+Ytw2KOPAjuNjkOIIlSi7e8QCAne5nQhdzwieDiwOX82OogAMd/oAIQoIkcpwfHvWfw/wesWGB2AEEVELlYLbj76rHZCBLo5Dnt0iU9LHSgJ/nvghNFBCFEEPjU6gEDhsEcfR4bKiuAw04gXDYwEb3N6kM52IvBtwubcZXQQAWa20QEIcZk2OezRe4144cBI8LqpRgcgxGWabnQAAWgZ0slWBDZD7t4hkBK8zfkXsNboMIS4RE5gsdFBBBqHPToDqb0TgSsVA/9/AyfB6943OgAhLtF8bM5Uo4MIUB8YHYAQl2iRwx6dZNSLB1qCXwYcMjoIIS7BR0YHEKgc9ug/kM52IjD9z8gXD6wEr3e2m2Z0GEIU0ipszt+MDiLAvWl0AEIU0grfxalhAivB6z4G0owOQohCeM3oAAKdwx69BvjF6DiEKIRJRgcQeAne5jyF9KgXgWMjNucGo4MIEnIXLwLFVoc9er3RQQRegtf9F0gxOgghCkDu3ovOQuCw0UEIUQCTjQ4AAjXB25wnkJ61wv/9jM250ugggoXDHu0G3jA6DiEuYg9+sqBUYCZ43WQg2egghLiAV40OIAh9DPxtdBBCXMBYI+adz0vgJni9Lf49o8MQIh8bsTn94io+mPju4scaHYcQ+djosEf7TbkP3ASvexM4Y3QQQuSiAU8bHUSwctijl2DA0ptCFMBzRgeQU2AneJvzDPCS0WEIkctcbM6fjA4iyD1vdABC5LLYYY/eYnQQOQV2gtdNA3YaHYQQPqnAOKODCHYOe/RG9JkthfAHmfhh01HgJ3ib0wuMQq8WFcJok7A5jxodRCkxGpn0SviH9x326Dijg8gt8BM8gM25CZhjdBii1DuAn4x/LQ18H6g2o+MQpd4BYLzRQeQlOBK8bgz6kpxCGEEDRsiKcSXuf0gTnTDWSIc92i8nXgueBG9zxgPPGh2GKLWmYXN+b3QQpY3DHu0BHgQ8RsciSqWZvnUS/FLwJHgAm/MTYLnRYYhSx4H06jaMwx79M/C20XGIUucYej8QvxVcCV73IHDS6CBEqZFVNS+zKhprAuB3nZxEUHvcYY8+a3QQFxJ8CV6fp/4ho8MQpcZ0bM61RgdR2jns0anA3ejDlYQobnP9aca6/ARfggewOb8CZhgdhgh6u/DzKrrSxGGP/glpKhHF7y/gUaODKIjgTPC6J4G9RgchglYqMEB6zfsXhz36HeAro+MQQSsVGOCvveZzC94Er7eJ9gGSjA5FBKVHsTl3GR2EyNNw4KDRQYig9LjDHv2n0UEUVPAmeMD3ATwMmeVOFK2p2JwysZKfctijE9Db411GxyKCyiyHPXqW0UEURnAneACb80tkXW5RdDYDTxkdhLgw36If8ncSReU34HGjgyis4E/wugnI+Hhx+Q4C/bA5pad2AHDYoz8E3jc6DhHwjgN3+EZqBJTSkeBtTg0Ygt7rWYhLcQa4FZvzmNGBiEJ5ClhpdBAiYKWiJ/dDRgdyKUpHggewOROBnkBA/qGEodKB3ticu40ORBSObyrbAch89aLwPMBg3/DLgFR6EjyAzXkEuAWZ6U4UnBe4F5vzR6MDEZfGYY9OBnohPetF4TzusEcH9JDL0pXgAWzOv4FbgUSjQxEB4SlsziVGByEuj8MefRy9Bu+40bGIgDDRYY/+yOggLlfpS/AANufPQG/0qlch8vMSNud7RgchiobDHr0H6IYkeXFhrzvs0ROMDqIolM4ED2BzrgcGInNXi7zFYHPK8Mog47BH7wZuAuKNjkX4pVcd9ugXjA6iqChNK+VzwNgstwFLgHCjQxF+YzQ2pyw/GsSsMbFNge+B6kbHIvzGxGC5c88iCR7AZrkJWAaUNToUYbgnpFq+dLDGxDZDT/LVjI5FGM7msEe/bHQQRU0SfBabpT2wAqhsdCjCEF7gcWzOaUYHIkqONSa2EfANcJXRsQhDaMA4hz3abnQgxUESfE42S1NgNXCF0aGIEpUCDMbmXGZ0IKLkWWNiq6LX4F1ndCyiRGUAwx326P8zOpDiIgk+N5ulNrAUuNboUESJOArcgc0pE6GUYtaY2AhgHnCX0bGIEnEauNNhjw7q+S1Kby/6/NicR4EbgflGhyKK3S9AB0nuwmGPTkOf8U46Vwa/vcB1wZ7cQe7gL8xmeQ6wIxdCwWg5cA82Z4rRgQj/Yo2JfQyYApiNjkUUuR+Avg579BmjAykJkrguxOacDNwOOI0ORRQZD/Ai0EeSu8iLbxW6ToDD4FBE0dGASUD30pLcQe7gC8ZmaQR8BrQ1OhRxWY6g37VvNDoQ4f+sMbFRwEzgTqNjEZflJDDMYY8udasKSoIvKJvFDLwMjEFqPgLRcmA4NudpowMRgcUaEzsavalOquwDz3r0FeH+MToQI0iCLyybpTMwF6hndCiiQDKBMdicU4wORAQua0zsdejlvoHRsYgC8QCvoc9O5zE6GKNIgr8UNosF+AC41+hQxAVtAh7C5txldCAi8PmG0r0MjAZCDA5H5O9X4MFAXse9qEiCvxw2S2/gHcBqcCTiXIlADDANm1P+wUWRssbEtgU+BVobHYs4Rzr6BdibDnu02+hg/IEk+Mtls0Sg98p+FihjcDQCvkKfcvao0YGI4GWNiQ0FngPGIwtV+YO1wMMOe/Q+owPxJ5Lgi4rN0hh4H7jZ6FBKqTjgeWzOJUYHIkoPa0xsQ/ThV32MjqWUOga84LBHzzQ6EH8kCb6o2SwD0Tt3SGecknESeAW9Ot5ldDCidLLGxHYC3gQ6GB1LKZEITAbectijU40Oxl9Jgi8ONksocD/wElDX2GCCVir6tKKTsDkTjQ5GCABrTOwA4A2gvtGxBKlMYBrwisMefcroYPydJPjiZLOUAUYC44CaBkcTLNKBWcAr2Jylcmyr8G/WmNiscv8ccoFfVDzAQuAlhz16v9HBBApJ8CVB74j3CPAkMn7+Up0BPgTew+Y8YXQwQlyMryPe3eiJvpXB4QSqZGAG8LbDHu0wOJaAIwm+JNksIUBv9ETfxeBoAsUB9Kr4GTJ3vAhU1pjYnsDzwE1GxxIgjgHvAdMc9ugEo4MJVJLgjWKztAaeAAYjw2xy8wJrgI+BpdicpXYmKhFcrDGx1wAPod/ZVzQ4HH+0Cb3cf+awR2caHUygkwRvNJulEvo61IOBzoAyNiBDxQHzgJnYnAeNDkaI4mKNiQ1HH1p3P3ALpXt9Cwf6NMBzZBx70ZIE709slivQr+wHA20Mjqak/AN8CczH5txkdDBClDRrTGxtYBh62S8tbfVOYAkwG/jBYY+WRFQMJMH7K5ulCfpa9D3Q7+yDpRpfA7YDXwNfY3PuNDgeIfyGNSb2SvR+Or3R16QPptkxD6CX+2XAeoc9WuatKGaS4AOB3gv/RvRk3wNoYWxAhbYf2Ax8B6zA5ow3OB4h/J41JrYceqe8nkBH9HIfSIvcnEZvU18NrHLYo/caHE+pIwk+ENksVYH2OR5tgOqGxvSvNOAn9IS+CdgiCV2Iy+dL+NcC1wHX+75WNTSof2UAO4GtwDZgq8MeHWdsSEISfLCwWWoAVwMNgStzPSoU8at5gaPAHuDvXF8PYnN6i/j1hBB58LXfN0Iv91lfG6LPpFfU1fsaep+ZOGBfjsdeYJf0evc/kuBLA5slCqgDWPJ5hKLPFOVBT95Z32eiTzBzEjjl+3oSSJAkLoT/ssbEmoDK+Tyi0Mu8yvHA99UDJPgeZ3J9f1zmfQ8skuCFEEKIIFSax14KIYQQQUsSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBCCBGEJMELIYQQQUgSvBBC+Cml1LVKqU1KqRSllKaUulopdatS6helVLpvW0Wj4xT+KdToAETpoJQaB+zSNO1Lo2MRIhAopczAYiAdeBpIBQ4DPwB/Ao8DGUCKUmowUE3TtCkGxWoChgF3AW2ASsABYAHwpqZp6UbEVdopTdOMjkGUAkqpZOBzTdPuNzoWIQKBUqoJ8BfwkKZpn/i23Qp8A9yiadqaHPt+DbTQNM1qUKzlgCRgC/A1cAK4HrgP/YLkJk2STYmTO3hRaL6r9TJyVS5Esarm+3r2Itv8QSbQUdO0TTm2fayUcgAvA92BNXkdKIqPtMH7AaVUV6XUT742tTil1MNKKZtSSsu13xCl1A6lVJpS6oxSaoFSqk6ufdYppf5QSjVTSn2vlEpVSh1VSj2fx+uGKaVeVkrtU0plKKUOK6UmKaXCcu2nKaXeV0rdq5T6E71a8Fbfc8/62ghP++LaoZTqn/t4oCxwn+9cmlJqVo7nayulZiil4n1x/KmUeuAyf61CBCxf+Vjv+3Gxr8ysA2b7tm3PKke+7dFAvRzly+E7T1ffzwOVUhN8nwVJSqnPlVIW32fAFKXUCaVUslJqZh7lf7hSaq1vnwyl1C6l1KM599E0LTNXcs+y1Pe1aVH8XkThyB28wZRSbYCVwDFgAhACjAdO5trvBeAVYBHwCVAV+A/wg1KqjaZpOa/oo3znXOLbvz/wX6XU75qmfeM7nwlYBnQCpqNXBbZEb+trBPTJFepNwEDgfeAU4PBtf9J3nvlAGeBu9A+k2zVNi/XtM9QX8zbfawHE+eKojl6tp/nOfRK4DfhUKVXBqDZFIQz2EXAUGAe8C2wH4oE9wEj0z4gD6OWoHGABrkAvvwDJuc43FkgD7EAD9M8OF+BF/7ywAdcB9/vOOzHHsY+it/kvA9zAHcCHSimTpmkfXOR91PB9PVWQNy2KmKZp8jDwgV5oUoBaObY1QC98Wc1W9dAL1rhcx7bw7Tcux7Z16MlyaI5tZdAvID7PsW0I4AE65Trnw77jb8ixTfPt2yyP+CNy/WwGfge+y7U9GZiVx/GfAP8AlXNt/z/0asiI3MfIQx6l4QF09ZW9/jm23e/b1i7Xvl8Djguc43fAnGP7Z+jJfUWu/TflPk9eZRD9BiKuAO/hW8AJVDT691kaH1JFbyClVAhwM/Clpmn/ZG3XNG0fekeaLHehN6csUkpVyXoAx4G9QLdcp04G5uU4Xyb63fNVOfYZgH7XvjvXOdf6ns99zvWapu3K/R40TUvL8X6i0O8kNgDXFOD9K6AfsNz3Y844VvnOddHzCCEuao6maa4cP28FFDAj135bgTpKqeza3Vxl3OIrn+uBq5RSlvxe0Ddy5mYgRju3hlGUEKmiN1Y1IALYl8dzObc1RC+Me/M5jyvXz0c03+VzDglAq1znbEqupoBcseV0IK+dlFK3Ay8CVwM52+4K0mO2KlARvcpxZAHjEEIU3qFcPzt9Xw/nsd2EfnF9GkAp1RG9o9z1QGSu/S05zpVNKTUIeBX4VNO0qZcVubhkkuADgwk9Yd6GXlWeW+72trz2Af0iIec5fwdG57Nv7oKflnsHpVRn9CaGH4DH0JsBXMBwYHA+580pqwZpHv92HsrttwKcRwhxYfl9Jlzws0IpVR/4DtiN/llxGL3HfC/09v7zaoGVUrcAc4BY4JHLilpcFknwxjqBPolFgzyey7ktDr3AHdA07e8ieu04oDV6W/mljk/thx5/T03TMrI2KqWG57FvXq9xEn3sbIiWY0yvEKLQimuM+R3oNXO9NU3LrgVQSuVuwsva3gG95/xPwEBN09zFFJcoAGmDN5CmaR70saF9lFK1srYrpRqg361nWYJ+pT3B125Njn2VUqryJbz8IqA28FDuJ5RSEUqpsgU4hwf9gyUkx7FWzu+BD3pHwnOm1PS9/y+AfkqpFnnEUbUAMQgh9PKVb3v4Zci6w8/+3PG1u593Ea+Uaop+1+4Abs/Zdi+MIXfwxrMBPYAflVJT0ZPlKOAP9HZtNE2LU0q9CLwBWJVSX6Lf+V4J9EUfevZmIV93Lvqwt2m+q/Effa/dxLe9J/pV+IXEolfbrVRKfYbeXv44ev+BVrn23QHcrJQajd5r/oCmaVuBGPQOfVuVUh8Du9CnubwGvYNOpUK+LyFKox3AIKXUW+hD6pI1TVteBOddjV4lv1wp9RH6kLyH0Gsfa2btpJQqj94xNgqYDETnuheJ0zRtcxHEIwpBErzBNE3boZS6DT1Bv4LexjUevQNckxz72ZVSf6O3e03wbT6MXgCXXcLrepVSfXznG4Z+oZAK7AfeAS7aFKBp2lql1Aj0JD0FvSPeGMDK+Ql+NPqFyKvoHQtnA1s1TYtXSrX3vee70NvyT6OPux1T2PclRCn1IfoNwXD0Mn0QfXTKZdE0bY9v4qpX0T+jjgNT0ZvXcvbArwxkTbplz+NUswFJ8CVM5qL3U7679OaapjU0OhYhhBCBR9rg/YBSKiLXzw3Re6muMyQgIYQQAU/u4P2AUuoYMAu9erwe+tSQYUAbTdPyG/suhBBC5Eva4P3DSuAe9HmbM9DbqsZJchdCCHGp5A5eCCGECELSBi+EEEIEIUnwQgghRBCSBC+EEEIEIUnwQgghRBCSBC+EEEIEIUnwQgghRBCSBC+EEEIEoUJNdLNjx45yQC3kwkCcywucBU61bdvWa3QwomhJuRd+QD5jLkGBJ7rZsWPHdSaTaZrJZLKQY21gIQA0TXN7vd71mqaNb9u27VGj4xFFQ8q98BfyGVN4BUrwO3bsKGcymTZWrFixerVq1c4opWT6uwCmaRoeTTN5vIR6NM2EpikNlEIjkgwFyou+lrMGSsMU6sEU6kbl/fmuaRqZmZll4uPjK6SlpR3yer2d2rZtm1mib0oUOSn3gU/TNNxeLcTt0ULdXm+oVyNUA6Vp+sVaqObRIjPTFChUOF6PKuNNx6yZTMprQnlCTMobalJuk8nYv718xlyaglbR1zKZTJZq1aqdKVu2bFqxRiQui6ZpZHq8ZdJd3rAMtyc80+0Nz3R7w9xeLdTj1UK9mhbq8WoheR0bZvK6q3A0//8JU6jL98gkxOzCZHYRYnYRYs4sWy4swxxa+3Tc/v1VvV5vXWBfcb1HUWKk3Ps5TdNIc3kiUjM9kb5ybnZ7vGb9q2b2eLVQDS3fmpcKeNMrnE0IBwipiitDVciIz6xQDs7N5yEm5S4TYsowh5oyyoSYMsJCTellQk0Z4eaQDHOIyV3MbxOAsmXLppvNZldcXJx8xhRQQRO8CVByBe9fvJqmUjM8kSmZ7rKpmZ5ymW5PeKZHC9M0rXjaSr1uM163GYjM6+kQt/Ka0xNcV22zjWX5L6uB7dic+4slFlESpNz7Ea+mqbRMT3hqpqdsussTmebyRGa4vRFFUt6V0pTmRcunls7j1ULTvJ7QNJenbO7nTEp5y4Sa0iPMIcllw0KTy4WFJpUJLZ6kbzKZNPSmIlkorQDklxRAXB5vaFK6u3xqprtsWqanXLrbG6lp+V+dlzSF16S8mWHmjNMPAA8AYLOcAX7yPbYCa7E5k42LUojA4NU0lZTuLp+Y5rKkuTzlfMm8mMq70pSmmTyX0M3Cq2mmdJcnMt3liUxIzawGUCbElBFRJiTJl/CTw80hGUUesrioS07w1pjYtkUZSE4Oe/SO4jp3QW3fvj28T58+DY8ePfp7Sbze0KFD627fvr1c1s8HDhwIf+mll46Mfj4m0Znmqpic7q6YkJhc9p7obpjNZhat2pDned61T+S7lV9TpkwZQkPNjHr+RTp27Q7A1LfsLJz9CdVq1ASgfqMmvPHex+edI+FsInc9+CynEs7SuX0bPnxjLAAnTycw4OHn+fb/PsRsNhf0rVUCevgeABnYLGuAL4Fl2JwnCnoiYbziKvf+UOYvpkmTJs02b968Oyoqqth6cbs83lBnmsuSlO6qmJLhqeAt5N35H7/8zOSXx5KakoJSimfGv0aHjjcCcPBAHK+/8CxnTp3E7fHw8JPPMbB3b/1AhabQlNc3UOLhwXdx+mQ8JpOJyLLlGDPxvzRt0QqADWtXMv1q1AAAIABJREFU8/7k19C8XtxuN/c/8gS9B9xzThyZHm/Yzi07wl5+/okqLpeLBx590nPv0GHOChHmhA1rVnoXLlwQ9dlnnx283N+XuDC5g/cTc+fOPQR6m9pfcY6K17RoWv/G2wdW33ciuU7WPlPesHF1uw78+evP+Z7nmg7XM/LJ5wiPiGDPrt95oH803/70F5GRes1ar74DeN72xgVjmb90Bd06tmP80yO5acBI/ti9jxZNGjDa9j/sY/9TmOSelzAg2vf4CJtlM3qyX4rNGXc5JxaiOLhcLsxmM7t3795VHOdPzXSHJ6a5KialuyvmVQVeUJqm8fRDQ3nlrQ+4rnNXHPv38fA9ffhq3XbCIyIYP/ox7hx4L3fdM4wzp08xOLobna9tR/UIk6+KXjNl9a6dPHUmFSwWAL775mvGj36Mxas3omka4554mE8XL6dR0xYcPXyIPt3a0/222ylbrvw58cz4cApjXrbTtNXV9L+lY8gdA+6pdCIhsdLE1+3M+GxRwtnUTEuFCHOiSZqAik1Aj2udN29exauuuqp548aNmz366KO1o6KiWu/Zs6cMwMiRI69o0aJF0yZNmjRr165d419//TUMIDk5WUVHR19Vv3795o0bN27WsWPHhlnnGz16dK169eq1aN68edO5c+dWyvlaX3zxRYW2bds2bt68edOWLVs2Xb58eXmAG264oeHMmTOjsvb7+uuvyzdt2rRZYd9LussTdjQhrfZfx5JaTZ8xu/4NXbpTsUq1MlnPb9mwjhPHj9Gr74ALnqdTt1sIj4gAoGGT5mgaJJw+XahYzKGhpKal4/V6ych0UcZsZuX3PxJVsQLXtW1V2Ld2ISagIzAZ2IfN8js2y0RslgZF+SIieKxZs6Zs27ZtGzdu3LhZo0aNms2bN68iwA8//BDZpk2bJo0aNWrWsmXLpqtXry4LcPfdd9cbP3589azjd+/eXaZKlSqtMzIy1FdffVX+6quvbtK0adNmDRo0aP72229XydqvX79+1gEDBljbtWvXuFGjRs0BlFJtT506FQL5f75k7RcTE1OjZcuWTWvXrt3ynXfeqZz13M8//xzeqVOnho0aN27eqEnTVuPfeKvVvhPJzXfFHao96sFhZQff3p1+N9/A+5NeLfTv5mzCGRLOnOK6zl0BsF7VgPIVLGxctwaAPbv+pFO3WwCoVLkKjZq2YPlXS0N9QWsKTXl8LQBZyR0gOSkRlaNtXilFktMJQEpyIpaKlShTJvvtZwsNDSU9LY3MjAxCTHq/3qlv27l3xCOosHJRh86kNvjrWGLrQ6dT6jnTXOULOmRbFFzA3sEfPXo0dNSoUdbvv/9+d5s2bdLfeeedymfPns1+Pzab7XitWrWOAEyfPj1q1KhRdTds2LB3yZIlFqfTGRIXF/cnQHx8fAjAggULLMuWLYvauXPnrooVK3r79u17Zda5du3aVeaVV16ptXbt2r8rVark/eOPP8K6devW+NChQ78PGzbs9Jw5cyoPHz48AWDGjBmVhwwZcqog78Hj1UwJqZlRCSmZVdJcnuzq+S8Xzmf0ixOz90t0Onn79Ql8OPdz9u/dU+Df0ZeL5nNF3XrUuiK7EoDVX3/F9k0bsERVYuSTz9H+hs7nHTekXzT3PTmeNj3uoc+tXaldsxojnn2ZFXPfK/BrX6IWvseLvmr8aejV+CXSS1f4t/j4+JBBgwY1mD9/ftytt96a7PF4OHXqVEh6eroaNGhQ/ffff/9gv379EletWlVu8ODBDeLi4n4fMWLEqccee8w6ceLEeICPPvqoSt++fU+HhYVpN9xwQ+pPP/20OzQ0lPj4+JA2bdo06927t7N+/fougN9++y1yy5YteVbJ5/f5kvV8WFiY9vvvv/+1c+fO8E6dOjV97LHHTmuaxl139Wv0xPPjMm/pPTBMQ1MJZ/SL7xeffowHR42m3fUdcbvd/Of+u1n99Zf0uL1PgX8/UZUqU7VadVYtX0rPO/ryxy8/49i/j38OHwKgWcvWxC5dxPBHn+TIQQe/7thG3dq1sjK3pgBvjrGwLzz1CNs36U2BH8xeBOjJfdKHMxg9chgRkZEkOp28NX0O5jJlyO3hp57nlZinSUtL5ekXJrL7z985euggT497OXsfj1cLOZvmqnI2zVUl1KRcFSLMZ6qUCzsRbg6RIXBFIGAT/Lp168o2btw4tU2bNukAo0aNOv3cc8/Vy3p+2bJlFaZNm1YtJSUlxOv14nQ6QwHatWuXOmbMmPAhQ4bU7dKlS1L//v2dAGvWrCl/5513nqlUqZIX4NFHHz05YsSIcr5zWQ4ePBh2ww03NMk6v1KKffv2lRkyZEjC2LFj6xw8eNBcsWJFz9q1ayt++OGHhy8Ue7rLU+ZkUkYNZ5qrcu42tp+3biI1OZnON/XI3vbGS8/x4KjRVK5StcAJfuvG9Xz09n/56LOl2VffA4YM58H/PIPZbGbn9i08/dBQPvv6O2pdUfecY8tGRvD5x5Ozf356wpuMeex+9jkO8/q7MwB48ckHad28UYFiuQQKuMX3+Aeb5SNgKjbnyeJ6QeH/vv/++3JXXnll+q233poMEBISQvXq1T3btm2LMJlM9OvXLxGgZ8+eyZUrV3Zt2bIlsmfPnslut5v169dHdu7cOXXRokWVv/zyy70A8fHxoffee6/1wIED4SEhIdrZs2dDd+7cGZGV4O+8886E/Nrb8/t8yTJixIjTAG3atEkPCQnRft2zv+Y/JxOqZLhc5pt7DzBrvmFoUZUqk5qawrYf13Pm1L/dUVJTUnDEFX4U2JRP5zPl9Zf59IO3qd+oCW2uvY6QUD20V96eyv9eeZGBPTtTs3Yd2nfsQmhoqB6Ir5rck6Mb/WtTpunvdfH/MeUNGx/MWYzb7ebjd9/krelzaHtdR/745WeeHDGYz7/9kahKlc+J5aqGjZn5xQoAPB4Pj9x7F69NmcY3X37OtyuWUbZceZ4b/xoVKlYEwO3VzGdSMqufScmsXi4s9GyVcmHxFSLM0iH3MgRsgr+QvXv3lhkzZkzdTZs2/dW8efOMrVu3Rtx8882NAZo1a5a5e/fuP7/++uvy3377bYUJEyZc8euvv57XtpazSkrTNDp16pS4fPnyA3m9Xq9evRI+/vjjSlWrVnVff/31iTVq1PDk3mfcuHE1lixZWhmTyfzUuIkhN/g6vuW2dME87hhwNyEh/w5V/2X7Fn7ZvoW3Xn2JjIwMnGcT6N3lWpat357nOX7a/CPjn3mcd2f+H9b62S0QVKmWXVNJm2uvo0nzVuz67ZfzEnxO23b+wYnTCdx+y4107vsAc999FU3TuP/pCaz/4pN8jytCtYCXgbHYLHOAt7A5C16NIUqlnOV38ODBpz/++OMqiYmJCVFRUe5rr702HWDkyJH1evTo4Vy5cmWcyWSiWbNmTdPS0rIvuMuVK3deOYYLf75kiYyM1DLcHvOJxIwaIaHmkJNJGbXc3nyqoH1V03O/+paw8PALvq9nHr6Pww595On0BV9RMeqclkQaN2vJ1HmfZ//cp1sHGjTS70tq16nLW9PnZD/36JD+NOzcWdN/X/oVhwfTec22vQfcw6tjR3M24QxHDx3kRPxx2l7XEYAWV19D9Rq12P3Hb1x/Y7d84573yVRuib6T8hYL0999k8WrN/L1FwuZ9+lUHntm7Hn7J2e4KyZnuCuGh4akVikfdjwq0pyg8hnCJ/IXsG3wXbt2TdmzZ09kVtvX1KlTK7tcLgWQkJAQEhoaqtWtW9fl9XqZMmVKtazj4uLizEop7r33Xue0adOOaJrG/v37y9xyyy1Jy5Ytq5SQkGDyer1MmzYtuz3ujjvuSPzxxx8rbN26NSJr2/fff589FvzBBx889dlnn1WZN29eleHDh59XPZ+Y5io/4ulx5Ret2Ry+aPWP+Sb35KREvl2xjD6Dhpyz/ZvNv2U//vvBp9Rv2Djf5L5jy4+88NTDTPn0Mxo3a3nOc/HH/p3d8eCBOPbs+p0GTfLvLuByuRjz2ru8NWE0ACmp6SgFJpMiOSU13+OKSTgwEvgLm+UrbJYWJR2AMFb37t2TDx48GLZy5cpyoN8VxsfHh7Rq1Srd6/WydOnSCgDffvtt2VOnTpmvu+66VICHHnrodGxsbNS0adOqDh06NLt8Op3OEKvVmmEymfjmm2/K7dmzJ8/5HXK70OdLluOJGbX+jk9umTVsDMBavyHhEZF88+W/CTjhzGkiy5bj2hs6M+PDKdnbTxw/dk55zfK/j2azaNUGFq3acF5yBzgZfzz7+y8+m01ERCTtfb3oT588gderV0j8uO479u/dTZ++/T1A9vh3r6ZUotPJiePHss+zdmUslqhKWCpGUaNWbU6diM+uSTx0YD+HDx7AWj//bjNHDh1ky4Z1DBgyHLfLhdvtRimFyWQiNSUl3+MA0t2eyCMJqVftOZ7U4lRSRmWvtNMXSsDewdeuXdv97rvvOvr27dugTJkyWpcuXRIjIyO9lStX9jRu3Dizd+/eZ5o0adI8KirK3atXr7NZx+3YsSNi/PjxV2iahsfjUf379z/ToUOHtA4dOqRt3bq17NVXX92sXLlynu7duzu3bdsGQIsWLTJmzJix/+GHH66XlpZmcrlcqnnz5qndunU7ANCtW7fUkJAQDh48GHbXXXclZr1Wcrq77DFn2hU529cvZOWyJTRr2Zp6V9Yv8O/hxPFjjLpvYPawOdtzT5CZmcmEZx7P3ue1KdNo2LQ57016lV2//UJoaCimkBDGvToZ61X5F8zJU+cwbEA01avqVW8Tn32EXkOf0J978akCx1jEFNAbiMZmmQW8hM157MKHiGBQtWpVz4IFC+Kee+65Ok888YTJZDIxfvz4o4MHD3YuXLgw7sknn6w7ZsyYK8LCwrT58+fHWSwWL4DVanW1bt065bvvvqs4e/bs7KFZr7766tGnnnqqrt1ur9W8efPUVq1aXTjb+LRv3z4tr88Xj1cznUhMrw5wNs1drUKZc5NRaGgo73w6nzdeGsMn77+FyWRi4LARDBgynNffnc6bE1/gru7Xo5QiIrIsL9nfonrN2oX6HX3x2Wxily4GTePKBo14+5O52bUZ69esZMYHUzCFhFC1eg3en72IiIgIyHCy/Ns1ptUbv2XMm5+q5CQnzz4ynIz0NEwmE1GVq/DerAUopahctRrj7W/z3KPDMZlMeL1exr4yiZq16+Qb06QJMTxvex2lFOUrWOjVpz/9b+lIRGRZJn04o0DvK9PjDfvHmWYN8bpd6W4tkfxqQ8Q5CjoXfZPQ0NCVDRs2TI6MjEwvgbgKJCEhwZTVRjZ37tyKEyZMqL1///4/jY4rw+Upc8yZXjsx3XX+JbYfCzN53Y05eMkXfelujQNHT3Llj88QnnzBbghFKQX4HzAJm7NAH9CiYPy13Psbr6apk0kZVU8lZ9T0eLWAummqgDu9+tnj4So8LDU8Mjlyt2b1ZGoqz6ms/YHmzuTEP0d4/YeTvxw46x7psEfnXZUpgAC+gwf473//W23p0qWVvF6vKleunGfOnDl5tpGXFLfXa4p3ZtQ8k5pZ3Z9mmAtyZYHxwEhslvHADGzOPNtOhShKmqZxOiWz8smkjFouj/f8buSBxPdp5QmQZttMj3Y1sNUaEzsLGOuwR8cbHJJfCugEb7fbj9vt9uMX37N4aZrGqeTMKieS0msH2hV8EKkBTAeexGZ5HptzhdEBieCVlukOP5yQZk2/jIlp/IpSmsa5vegDgAKGA/2sMbGvAO847NEug2PyKwFxtebP0jI9YftOJDc+5kyrJ8ndLzQHYrFZFmOzVL7o3kIUgqZpHHOm1dh3MqVZ0CT3bKrYpuAtZhXQJ8v6wxoT28voYPyJJPhL9G9BT25e0E50okT1B37HZrnV6EBEcEjNdEfsPZHc9GRSRu2ga4JTaChToCb4LI2AWGtM7DxrTGz5i+5dCkiCvwRpmZ7wvSeSmwRlQQ8uNYFvsFmmYrMUaAiUELlpmsaxs2k1406kNE13eYL3/yh45oS/F/jFGhPbwehAjCYJvpBOJKZX3XcyOQir54LaI8Av2CylvsCLwknJcEf8HZ/c9GRyRi2NIL6YV0rTCPg7+JyuAjZaY2JfsMbElto8d+ltxjZLsS0Xi83pd0tHerya6fCZ1HqBNvRNZGsI/IjN8jowUea3vzR/NWlaLOW+6e6//K7Mn0hMrxqfmFEnqBN7FgWaMgXLHXyWUOBV4BZrTOwQhz36iNEBlbSgvLLZs2dPmUmTJlXNua127dotN23aFJHfMReiV8knNS1sct/7158M79eLO7u2567u1zP+mVGkp6VlP9+6ThT9br6BgT07M7BnZ37euinP83z87pvZ+wzs2ZkbmtZl8ssvALB980baN6h5zvM5XyOniTFP0e/mG3hwUG+SEvXVoDRN47Gh/TnsMHSEYUkJAV4CNmOz1LvYziJwFGWZ92qaOng6pd7xxPS6l5Lc169ZyZ1d23NH57Y8/dBQkpMS89xvwayPs8v/Xd2vZ/6Mj7Kfe/2FZ88p09c2qHHO81lcLhdPjbiXAT068fRDQ3G79evWjPR0hvfrReLZs+cdk7+gqaLPrQvwqzUmtq/RgZS0oEzwe/fuDZsxY0bVi+95cadTMqLiTiY3zXR7w7MKT0GVCQ9n7KuT+GrdNhav3khaaiozp75zzj4zv/gme+rJazrckOd5Hnri2ex95i1bQ2hoKNE5lo211m+Q/fyiVRuyl4vNae/uXRw6sJ8v1myi3fWd+HrJQgCW/N8crr2hM3WsV553TBBrB2zFZrnW6EBE0SiqMp/p9obGnUhu7ExzVQEobJlPTUnG9twTTPlkHss37KBq9RpMf2dynvtG3zWQL9ZsYtGqDcz5chVzPnqPv/74DYBxr72ZXZ4/nPs5CkXPPFaW27T+OypUjGLx6o2Ur2DhR9/SsNPfmczd9z+UvZDLRSm0ILyDz6kSsMQaE/uBNSa21Ix2CugE/8UXX1Ro1qxZ00aNGjW79tprG+/YsSMc4D//+U9dh8MR3qRJk2Y33XRT9lysixYtirr66qub1K5du+Xzzz9fM2v7oUOHQnv16nVVy5YtmzZq1KjZE088UUvTNA6fSa3TqknDq/732njT4Nu789LTjxYqvnpX1qdRU33K9JCQEFq0bpO9dOOlWrsqlhq1atOs1dWFOs5sNuPKzMDr9ZKWmoLZXIaT8cf55qsvGPrQ4xc/QfCpDqzHZrnL6EBEwRVnmU/OcEfuO5HcrGu75mXffn0Cl1LmN36/hibNW3FlA32lxUHDRvDNV0vy3Ld8hX/XXE9LTc33YmLZ5//HDV1uOmexqCyhoWbS0/R1IdLTUjGby/D3X39wIG4vPe8o+A2rArTgvYPP6TFgmTUmtlSMfArYBH/06NHQESNGXDVr1izH33//veuBBx44OXDgwPper5f33nvvkNVqTd+9e/eutWvXZq+5ePbs2ZBffvll908//fTX1KlTqx84cMAMMHjw4Csff/zxE7///vtff/75566dO3eWfXf6rKZZC0U4ExKYv3wNb7z38SXHm5qawpIFc+na49xhmiPvuZMBPTox+eUXSE29+EyrSxfMo8/dQ8/Zdvigg0G3dWFw9E0snJ33Cm/W+g259vrO3H1bF44eOkj0XQOZ/PI4Rr8wkdDQUnNBm1sE8Dk2y3NGByIurjjL/M+//Fpx2sx5TdxerxkuvcwfO3qEmldckf1zrTp1OXXieL7J+9vYr+jb/Xpuu6E1w0aOommLVuft8+XC+fS5e0geR8P1N3ajbLnyDOjRiXIVKtC+4428OfFFxrz8RqHiRoGX4O9q4HMbsN4aE1vD6ECKW8Am+PXr15dt1KhRWvv27dMAHn300TMnTpwwZxXgvAwdOvQMQM2aNd1XXHFF5t9//x2WmJho2rJlS4VnnnmmbpMmTZq1bNmy2cHDR8rv3ReXPRym94B7uJylCl2ZmTz/2ANcf2M3ut92e/b2lVt+Y8GKdcz+chUJZ07x9qvjL3ief44c4pftW4ju82/1fNMWrVi97Q8WfrOetz+Zy+J5M1m1fGmex496/kUWrdrAm9NmseWHddSoVZtadery0ujHGT1yGLFfLSk1JTwHBUzCZvkIm6XUXukEgmIr862vbn3o0OEIR9y+7P//yy3zBXVL9J0s/W4zX63bTuzSRTji9p7z/M9bN5GanEznm3rkebzJZGLCpHdYvHoj4+1TWDDrY7r17IXb7SFm1IOMHjmMrT/+UKBYNIK6ij63a4DN1pjYJkYHUpxK1QdaRERE9jCQkJAQzeVyZS+28/PPP/8VYg4zHziV0jDT4z2nZEeWzbs2J+7v3Yz9z0MAXN2uA+Nee/O8fVwuF8899gBVq9VgzMv2c57LWoEpMrIsg4aNYOKYC6/Q9tWiz+ja4zYsUVHZ28qVr5D9ffWatbntzn78vG3zBavnkpMSmf3Re0yd/wWfvv827a7rSPRdAxnYo1PIoz1mEhFx4TWpg9RIwIrNMgCbM+9eUSLgXKjM/7Rjx+6TadqVSenu8zqtXGqZr1n7CrZsWJf98z+HD1GlWo2L1pLVrlOXlm3asn7NKqz1G2ZvX7pgHncMuJuQkIuv//LPkUNsWPstU+d9zotPP0q/e++nWcvWDLmzB0u/23yRozW8gXu/d6mswI/WmNg7HfbojUYHUxwC9i/atWvXlL///jti+/bt4QDTp0+Pql69uuvKK690VaxY0ZOUlFSgFZEsFou3ffv2iWNfeLFO3MmUJpkeb3h+azHnVr9Rk+yOMHkld7fbzZjHR2CpGMX4/045544g8exZ0nxtZ16vl1XLl9Ikj+q5LF6vl68Wzadvrur5k/HHs9d4TklO4ofvVtGkef7nAXjnjZd5+KnniYiIJC01FaUUSincbheZrlI9lXMPYBM2S/5rXwrDFHGZTxrz0svNktLdFSH/9ddzu1iZ79i1O3/98SsH9v0NwMI5n3Jr77y7ecT9vTv7+zOnT7Htxw00ato8e1tyUiLfrlhGn0F5V8/nNmnCWJ6b8Bomk0kv1yiUyUR6AZr+UKAFbjq4HJWANdaY2P5GB1IcLmMcvLFj1WvVquX+5JNP9t93331Xut1uZbFYPAsXLowzmUx06NAhtVGjRmkNGzZsXqdOnYycbXJ5mT1/QfzTzzzboHe3Dupy1mLObdXyJXz3zXIaNW3OoFtvBP696j8Q9zevxDytJ1aPh6YtWjHG9u8d/uPDBvDYM+No3roNAFs2rEOZTHTo1OWc11jzzTIWzZ1JaEgIbo+HHtF30mfQvfnGtHP7FtLT07n+xm4A3H3fg4wZ9SAzp75D734DvZYK5UtlKc+hObAOm6UrNmeJrXkbKIwcr15UZd7j1UxvTZ+nXhkfE3a566/nVrZceWyT3uGpB4fgcbtp0Lgpr7z9YfbzA3t25v3Zi6hWoybzZ0xj57YtmM1mNE1jyIhHssslwMplS2jWsjX1rqx/0dddsXQxjZq1oEHjpgA88NhTTBzzJC6Xi4eeLFgXk1LUBp9bGLDIGhP7tMMe/c5F9w4gAb0efFFIyXBHHDiV0tiraX67BnJJCdD14ItLHNAFm/Pit3VBKhjLvcermfafTG6UJjNRAv+uB2+KCk9KN4erg5nl/Lp3edZ68LbvT3A0qVhWhX7CYY9+rzhObIRSfbeWmukOd5xOaSTJXeShPvA9NkstowMRRcOX3BtKcj+folTfwef0jjUm9iGjgygqpTbBp2V6wg+cSmksS7yKC2gIfIfNUsXoQMTl8Xo1deBUSgNZ+TE/Gh5J8KBf60yzxsQOveieAaCgCd4L+rSmwSDd5Qk7cCqlkST3opX97xEk/yc+TdBXpJPEEKC8mp7cUzPdsoRofhR4MUmG15mAmdaY2N5GB3K5Cprgz2qa5s7MzCxTrNGUAJfHG3rgVEqjrAktRNFJdQGeTMzpp40Opai1A77EZgkzOhBReIfPpNZNyXRXuPiepZryaCUw8D9whAALrDGxHY0O5HIU9A72lNfrXR8fHx9tNptdJlNgTojg1TSOJKRdmen2BvyFSnHwmrykU/g/rabpyf3EmbNUPPgNIZ68F7sJcN2B+b5x8gH5/18axSemV8+aV15ciIYXSfC5RADLrTGxnR326D+NDuZSFCjBt23b1rtjx47xaWlpLePi4qpCYDbWJGZ4q6S7tciL71k6hSqvCS7x7tuTScWD31Bj72dFG5R/6Ye+Gt1EowMRF3c2NbPCicT0Ky6+pwBN7uDzFgWstMbEtnfYo48ZHUxhFbgNum3btkd37NjRyev11i3Mcf7i1Q1nHjyR4nnG6Dj8WRWVeHZhmYmFX+9e0zCnnw7WO/fcJmCzbMXmXGV0IIawWYplPfiCzqsxb968iuPHj69dpkwZbc6cOQeypq3NLS3TE34kIe2qgla1bN+8kcz0dDp2u7nAIef0286feGXMU6Snp1O9Zi1emzKN6jXPH4DxzVdfMPPDKdlz09858F7ue3gUAL/u2MZr4/SPKJfbTZtrOxDz8n8pE3Z+y9DEmKf49adtRFWuwtsfz6V8BQuapvH4sAGMfWVy4VeHVCAJPl9XoFfX3+SwRxfL2LziUqhE3bZt20zggpPG+CNrTOydwNNGx+HvXGR4wsMDfvx6cTOhV9W3xeY8aHQwpc306dOrjhkz5tjDDz98Jr993B5viON0SoOCDn91u938tHkjSYnOS0rwXq+Xcf8ZyfhJ79D+hs7MnvYek18ex5vTZp23b41atflw7udUqVadpEQn9/TqRrNWV3Pt9Z1o1KwF879ei9lsxuv1MnrkMBbO+ZShDz12zjlyLv08bcokvl6ykHvuH3lZSz8rNOWRKvoLuRF4HRhjdCCFEfTD5Kwxsc2BeZSC9ypKTGX0Veik010Juv/+++v89NNP5SZOnFi7TZs2TeD85WN/2rEjwnE6tf6mjT+EDezZOfsf+SmQAAAgAElEQVTYvbt3cdv1+hTORw8folPzerz9+gQG3daFBbM+ZvG8maxYupiBPTszbcqkQsW167dfCAkNpf0N+uv1H3I/69esJCP9/LmB2lx7Xfayr+UrWLA2aJi9hHRERCRms97315WZSUZ6ep4L3hTT0s/Koyn5jLyw5wKtZ31Q/0GtMbHhwP8BMsRJFLV2wLtGB1GazJo163CLFi1S7Xb74Z07d+7Oa/nYQXff0zglw3XR4XBJiYk0aNSUhd+sZ8iDjzJgyHB69R3AolUbeOSp5wsV1/F/jmQvHAX6dLVly5XnZPzxCx4X9/duftuxnes6/zv99NHDhxjQoxNdWjegXPkKDBo24rzjimfpZw1J8BelgNnWmNjCV5EYJNj/oJOBlkYHIYLWSGyW+40OorTKvXzsoGEjvCdPxIecOP7PRY8NNZuJvmtgsceYn/hjR3lqxL28+Ma589/XrlOXxas3svbn3bgyM1jzzfI8j7/Y0s8rly0pZETSya6AKgKfW2NiA6L2LmgTvDUmNhoYZXQcIuh9iM1ytdFBlHYujzf0mDOtXtbPISEheDz/9ofKzMg4Z/+IiAhMpoJ9/CU6nQzs2ZmBPTvz1IPnr+xWo9YVHDv6b9+VlOQkkpMSqVq9Rp7nO3H8GCPv6ctDTzxLj9v75LlPZNly9Ox9Fyu+XHzB2LKWfn70mbHM+2Qq7a7ryKQPZ/DRO5NJTytcp1ctQEdHGeAaAqT2LigTvDUmtgYw0+g4RKkQASzGZgk3OpDSJufysYfPpNb7eunnoVVr1KJajVpcUdfKsaNHOHP6FABfL1l4wXOVLVeepMTEPJ+rYLFkLxE75ZN55z3frNXVuF0utm3aAMDn82bR5eZbCQs//1/iZPxxRt7Th+GPPknvAfec89yhA/tx+ZZrdmVmsnZlLI2aND/vHDnlu/Szy4XLlXnBY88hqb2wRgbCdLZBl+CtMbEKmANUNToWUWo0QB8fL0pQ9vKx9w9veOuNHSounjuDN6fORClFtRo1uf+RJ7j3ju4M6X0LlopRFzzXTbfezp5dv19SJzuTycTr737EpAkx3HFjO374bhXPTXgt+/nHhw3gz193AvDh/97g2NEjfDZjWnatwJcL5wOwbdMPDLr1Rgb06MTA27pQuWpVRl5gqde8ln5eMPsT+t/SkdvvGkT5CpaCvwmlZPKmwnvfGhNb0+ggLqRAy8UGEmtM7CPAVKPjCETVOHNyW/gouTC6NC6gDTZnQM54lZdAWC420+01741Pau6RFSEvSdZysaFVQ9P+ctWIMDqeiymB5WILa7HDHm1cZ46LCKo7eGtMbDXgDaPjEKWSGfgIm0UqO0vQ4YTUepLcL5+mLmGOagEwwBoTe5vRQeQnqBI88CZ6L0chjNARCJq1pP3dyaSMKikZ7kLUQ4u8KU1JI/zl+MAaE+uXtR9Bk+CtMbFdAb/v9CCCnh2bpbrRQQS7DLfHHC/zzBcNuXu/XFcC440OIi9BkeCtMbFlkHZ34R+igLeNDiLYHXem1y7oVLTiIpTSQDrZXaZnfLOm+pWgSPDAs0ATo4MQwucebJaeRgcRrFIz3RHONFdlo+MIGkppWtCkAsOYgY98o7j8RsD/VX0d68YZHYcQuXyAzRJwqy4GgmPO9NoX30sUlFJomtzBF4WOwPlzCxsoGD6AxgJljQ5CiFzqA8OAGUYHUpRazm5ZLMvF/n7f7wVaLjYxzVVeOtYVNaV5ZRr6ojLRGhM7z2GP9othpQH9V7XGxNYGHjE6DiHyMQ6bRdqJi4imaRyXjnVFTylN0/yqZjmQ1cSPRtIEdIJHnz1MpggV/qo+cK/RQQSLhFRXVLrLE1kU55r6lp1JtrGFPm7d6hVMtuktgts3byTnkrQ5paYk07rOhWfP8xsKbc++A2pYnx7ccWM7BkffxL49f+W7+5IFc7mjc1uiO7bh5eefzJ5ed+uPPzD49u70vek6+na/nrdfG4/X683zHB9NmUzf7tczpPct/HPkUPb2l55+jJ3btxTt+yt5Y/xlMZqATfC+JfseMDoOIS7iBbmLv3xeTVPxiQVve3e73cUSR9cevXjO9nqxnNswSvGfZ8eF9xt8P8t/+Inhjz3J+NF5ryt/5NBBPpz8OjO/WMHXG3/m9MkTfDF/FgAVLBWZ9MGnLF27hQWx3/PLjm0s/3zBeedITkokdukiPl+9kUHDRvB/Mz8GYPMP3xMeEUGba68rrndaUmrjJ7kpYBM8MAG956IQ/qwRcLfRQQS6U0kZVVweb1jrOlG8P+lVBt56I3fc2I7YpYuy92ldJ4oP//cGg6Nv4l37ywDMnvYeg2/vzqDbuvDokP7n3C0e/+coDw7qzZ1d2/Of4XdzNuEMcP7d/f/Nms5LTz8GwFeLPuOpEXlXyiyeN5M7Ordl4K03Mvfji4/adblcvDbuGe64sR1Det/CmxNfZMSA2wGIGfUgK5bqK8ktnP0Jba+qRmpqCgAPDurNji0/cvTwITo1r8eH/3uDu3t15fZO17Bh7eoC/06zxJ86pf36++8hWcvn3tyrN8ePHeXQgf3n7btmxVd06XErVapVRynFgKHD+WbZFwA0bdGKK+pZAQgLD6dxs5bn/L6zmEJC8Ho8uF0u0lJTMJvNpKWlMv2dyTw5dkKh4/dTY33Dtw0VkAned/d+/rqNQvinF7FZArKs+QNN0zidkvnv2qtKsWjlD0yd+zn2l8Zw9PC/ScQUEsJnsWsZ/eIrrFi6GMf+fcz9ajULv1lPr779ef2FZ7P3/XnbZuzvfcxX67ZRo2Zt3rVPvOQY9+7exdS37Mz4PJZFK38gI/3iS7V+MX8Whxz7WfLdZmZ+sYK9u/9dxqBDp65s2bgegM0b1tG81dXs2PIjaWmp/L3rD1q1bQ9AUmIijZo2Z8GKdYx9ZRKTX36h0LEfOXZcVataTQsN1ftcK6X0JXD/OXLevseOHqFW7TrZP9e6oi7Hj56/36kT8axZsYwbu58/WjQysixDH3qMoXfewverv+HeEY/w4ZtvMGzkKMqVr1Do+P1UHeB+o4MI1A+dJwCp9hSBogngtwtS+LuEVFeUy+PNvhu66x59wsor6llp2+EGft66KXvfvoP+vbv+fvUKtmxcxz29ujKwZ2dmTX2XYzmSUeebelClmj7pYL9772fLxnWXHOO2TRvo2PXm7DXgBw67eA3t1h9/ILrvQMxmM2azmTv6/1vRc13nLmz7cT0ej4f9e/cw9KHH2bJhPT9v3UyLq6/BbNYrL8PCwul+2x0AtGp7LUcOHih88EXcvy45KZEnht/D/Y88QfPWbfLcZ9B9D7Jo1Qamzvuc+GP/EH/sKB27duf1F57l2UfuZ/6Mj4o2KGOMtcbEGlrLHHDD5KwxsRXws7GGQhTAi9gsC7E5ZbxxIZ1Kzrjw1L85ElREZLns7zVNY8TjT9P/3vsL9DpZ87GHhITi8fy7UllmekbBg806lyp81sx5TM3adTCXCWPF0sU0a9maDh278PF7/yMkxESHjl2y9ysTVib7uJCQkHPizmlYnx6kp6VhLhPG/OVrznmuTq2a3hMnTyq3201oaKg+WuGfI9T8//buPEqOsl7j+Ld7ZpJJJpNJCAmEzQbFgCxyDLIJEoSwFTsxeEXxgoKCyCqXFsEb4OIpRcQFEBXh3iDIJotYyCKbrCJBlF22EgghG0nITPdM90z3/aMqELJOMtP1q+X5nDMn5wToeoDMPPW+9b5vbbD8hoXxG27Em0vdRLz91husv+EHf19X52JO+PIUJu29P0cdt+Ln+Evr7e3lov85hx9ccgV/vOUGRo9Zl7Mu+BFfnXogu++5z/tT/glVINgq+xurAIkreILFC+3WIUTW0FbA3sBd1kEGor/71QfL4u5qW3e170PnXNx2w7Ucf1qRmW++wVNPPMYZ01b8Ask99tmf6b+6lMn7H0zH6NFUq1VeeekFttx6WwAevv8e5s+dw5ix47j5d9PZcbegODcubMpD991NX18flUoPf/7T7RQ2+9gqc+6wy25ceenFzJszm3XHrceNV1+12n+3HT6zG3fcehP7HTIFgNtvuv5Df32nXXfnsou+z3En/xcjR42iubmFe7zbuPiKa1b72cuafuvKn82vN3Zsfautt655N9+QP3jqF/nzHX9gvfU3YJNNN1vu791rv4P4z8P24/hTi4wZO44br76KfQ86DAh2Dpzw5SnsMmkvjjv528v9syvM9atL2P+QKaw7bj3KpdL7Nyu5XI5yuOYg4c5ABd8/4TGAx1vnEFlLx5Lwgo/a/M7KuGV/r6+vj6n7fpZyqcSZ57lsuPEmK/xnnUOnsnDBAr52RDCF3dvXxyFTj3y/4D+1w84Uv3Usc96ZxSabbsb5P74MgL32O5B7vNs4ZI8dWW/8Bmyx1TZ0l1f9TH3zLT7BN049k6MP359hbW3sue+Bq/13m3Lk0bz84vMc9rmdaO8YxVbbbsfc2e+8/9d33G0SN1x9JTuFNx477bo7N/9uOhM+sfVqP3sN1d0f/qhy8imntl5xyY8ZMaKd8y665P2/OO2Mk5g0eV8m7b0/G32kwPGnF/nKofsCsP3OuzLlyKMBuOY3l/Ps009RLpW470+3AzDZOZhjT1px2b/pv86Tjz3MpdODxYQHHDqVU4/9Enf/8Va2+/SObL5l7I52XxsTCkVvd991HrS4eK5eT86MYaHoTQbWfJmo9Ms43p37ROuJY61zpFgV2Ihpi+ZYB+mPGTNmbNHc3Hzn5ptv3jl8+PDIT+aq9tWaX5y1eNs6H5zC8smNR/PQsz4jO9JxmF1X52LaRrRTrVY566Tj2HKbT3LMCadEdv2R9HaPry7sfWdYR/Oi3pbYnylS760w5+23mHb/HGYuXvHjiBi6xncdk0XhSVtk93XrACID0AJ8xTpEUszvrIxZutzT6Lj/OJSp++zGlMmfoW1EO1882uBHXA766muxaED66/BC0VvH4sKJmaIPF9cdYJ1DZIC+ClxoHSLu6vU6C0qV5WaT/vHmAos4a23+vLkcf+Rhy/3+TrtN4rSzz19uwZuReg0dRt9ArQTbun8W9YUTU/DAoUAsjv8TGYAJTOvYnmmLnrQO0g81CMo2aou7e9urfbXEf7+PWXcsN9z1kHWMVcrloDcpI/h6HahTS86T5SWOwqDgk3TXptPAJC2Scj79wnq93lupVCI/kWtRuToq6mtmWa2ejBF8vbdCta/Ogu4Vn3EfYxMLRW+LqC+aiBF8oeiNAfayziEySI5gWsfpTFsU959S82q12oOzZ892Wlpaqvl8PrJx06LO0uj6Sl5UIoOnl75cd60vX61X413w9Tr13goL3p3Hva910t2bvCE8wTT92VFeMBEFD0whOVlFVmc88DkgFg9gV2bixIm1GTNmfK9cLm/z6quvjmXQzzxbsWqtPmRBuab3TESglb58qVZqmpOP+57zOtW+Ove+1snNL8Q960odWSh65/iuE9ndSVJKU9PzkjYHE/OCB5g4ceLMGTNm7Fqr1TYhop8X5z747knvlvt03kUEtnhv5hunzb1h1rSPnrqrdZZVqdVhQXctqSP3JQrAJ4Gno7pg7Au+UPRGA5+1ziEyyPa0DtBfEydOrACvRHW9Z270Yl02aTJ6fqlSn+V3zhyXmD3lSTeZCAs+3s9dAnuQjJwia2JLpnVsYB0ibgpFbzNgG+scWdLb1KTFDtGZHOXFklCcWlwnafU56wAxdIh1gKzpzTer4KOzW6HoRXZiYBIKPjFTmSJrSH+2l6eCj1g135zoB9sJ0wpE9ggq1gVfKHobAx+3ziHSICr4pRSKXgewi3WOrKk0xX4pVtpENk0f64JHPwAl3TZmWsfm1iFiZHugyTpE1lTy2pEYMRV8SAUvaac/4x/4tHWALOrJR35QYdZtVyh6kby1M+4Fv6N1AJEGU8F/YAfrAFnU09ScjHPo0yNHRN/3sS34QtEbAXzUOodIg2nP9wc0gjfQ3aQRvIGdo7hIbAse2JZ45xMZDOszrWO0dQhrhaK3PrCRdY4sKjcN1Qg+eltFcZE4F+h21gFEIhL5W6ZiSKN3I91NQ7SwMXqfiOIiKngReyp4PX83U24aGuceSKvx4THsDRXn/7EqeMkKFbxG8GZK+dY490CaNXyaPpb/YwtFLwdsbZ1DJCIqePiUdYCsKjcN1RS9jWwWPLAeMMw6hEhEMl3whaI3DIhkX7Asr9Q0VCfd2Gj4c/i4FvzG1gFEIrQZ0zqy/ENWq+cNlfJDdVatjcyO4FXwkiXNwMesQxja0DpAlpVzw1TwNlTwIhkxwTqAIY3gDZWbhg61zpBR6xeKXlsjL6CCF4mHcdYBDKngDZXzQ7L8eMjaOo38cBW8SDy0WwcwpCl6I3WgnG9ttc6RYQ3dCx/Xgh9vHUAkYiOtAxjSCN5ILU+9BxW8oUyO4LM8mpFsynLBawRvJJevUWKotiTbyeQIfrh1AJGIqeAlenkoq+AtZXIEr4KXrMnyrFWWb25M1Zqa8hVa9L5YO5ks+IZuHRCJoSyXnLZpGSnnh+i/vS1N0YtkQCYLPnzvhLZpGdEeeHPZGsEXil4e3dFL9mSy4AFNDxvqzg/VCnpbHY388DgeUai7eSPdDBnydn3M31qptAyhOqSF3tYmasPy1IbnoC2Xi+Wfl7TI6kInFbyhcn6oZktTLI4/sCvWAbLqPUZ07NLz85W+l3sI1Uob5c6RuVK5nVK5I1fqGUlXZVSus9pBV29Hrquvg65aR66rPpKuXHuunG+ju2lYrqe5lUrL0PCmoZm+1vCmYUQupxu6UI91AMmean6IRvC2+hr54bEreN916oWi14Om6WOnQsuQCi3rLKiHs8n1gX9mC73VNspd7blyqZ1SeWSuq6eDUqUj11kZRVdvR66zbxSdtY5ciXZKtOdK+Ta688PpaW7NVVqGUhkyhN6hzfQNz1MflqPelssl8s9OVgu+Zh1AxFBvIz88dgUf6kYFnwlVmlsW0j5qYb19FDAoNw1N9PW2US61Uy6158rlkXR1d+S6esKZhuqoXGdfB121kbkuRlKiPVfOtVFuGk5P07BcT0sr1aEtwU1DaxO1JTcNjZ5C727w58eVCl6yLFsj+FA3DV58IOnVR1Pze4wY+R4jRr5/wzDAG4cctVob3V3BTUOp1EFXTzDb0FUZlQtmGj54PFGiPVdiBOXmNrqbWnOVllaqQ1qovn/TkKc+HBiey5ELL5HVgh+EWzqRxGroI+m4FnzZOoDI0urk850Mb+9kePus+pglvznQT6230d05gnJpRK789r0D/bhkqhCMYpqsg4gY6Grkh8dum1woq6MZyZRcrothI2azzrhX6xvmVv/3p4/vOjVgvnUOESOdjfzwuBb8IusAIhFbaB3A0GzrACJGMjmCf9s6gEjEVPAi2ZPJEfxM6wAiEXvLOoChOdYBRIy808gPV8GLxMO/rQMY0ghesspv5Ier4EXiIcsFrxG8ZNXrjfxwFbxIPGS54DWClyxa6LtOQ9fexLXgs/w8UrJnge86i61DGNIIXrLIb/QF4lrwb9DgI/xEYiTLo3fQjJ1kU0On5yGmBe+7TjfwmnUOkYg0/Bs95l6kwS/dEImhbBZ86DnrACIRedo6gKXwhv4l6xwiEfMbfQEVvIi9p6wDxECmb3IkkzI9gtc3vGSFCl7f75I9LzT6AnEueP3Qkyx4x3cdHc2sgpdsme27zquNvkhsC953ndfI9vnckg1/tw4QEyp4yZLHorhIbAs+FMl/BBFDmqkCfNeZh7bLSXY8EsVF4l7w91kHEGmwv1oHiBGN4iUrHo3iInEv+PutA4g0UBV4wDpEjGg2Q7KgB5gRxYXiXvB/BxZYhxBpkMczfkTtsv5sHUAkAjN81+mJ4kKxLnjfdWrAg9Y5RBrkbusAMfMoWlgr6RfJ83eIecGH9Bxe0uoe6wBx4rtOL7rpkfSL5Pk7JKPgNW0nabQA+Jt1iBi6wzqASAP1Ag9FdbHYF7zvOi8QvIxCJE3uDR9ByYf9CahbhxBpkPt915kf1cViX/ChG60DiAyyW6wDxJHvOnOAJ61ziDRIpF2WlIK/3jqAyCDqAm6zDhFjnnUAkQboJeIb+0QUvO86zwHPW+cQGSR/8F2nyzpEjOk5vKTR/eGJjZFJRMGHbrAOIDJIrrUOEHNPAu9YhxAZZJE/albBi0RrPnCXdYg4812njm6CJF0in56HBBV8uJpei28k6W70XadqHSIBrrQOIDKIIp+ehwQVfOgy6wAiA3S1dYAkCNfd6JwASQuTnWBJK/jfEUxxiiTRk77rRHaKVQpoFC9pUAJusrhwogred51u9E0vyfVT6wAJcy3QaR1CZICu8V3H5KVpiSr40GWATgCTpJmFFoquEd913gN+a51DZIB+bnXhxBW87zo+2icryfML33Uq1iES6BLrACID8KDvOs9YXTxxBR/6mXUAkTXQDVxuHSKJwsV2emW0JJXpY7lEFrzvOvcAj1vnEOmna33XmWsdIsEutg4gshb+hfGR1Iks+NB/WwcQ6YcqcIF1iCTzXec2dAaGJM+F1m+MTGzB+65zN/CwdQ6R1bjCd53XrEOkwDnWAUTWwNvAdOsQiS34kEbxEmcl4HzrEGngu86d6IZekuPiOCyqTXTB+65zH/CAdQ6RlbjEd51Z1iFS5LvWAUT64Q1isvsj0QUf+p51AJEVWAT8wDpEmviu8xfgbuscIqtxZngom7nEF7zvOg+hA0Qkfi70Xedd6xApdLZ1AJFVeNR3neusQyyR+IIPnYaOtJT4eA34sXWINPJd528Ybz0SWYk6cKp1iKWlouB915kJnGudQyR0gu86ZesQKXY20GcdQmQZ1/iu84R1iKWlouBDPwGesw4hmXed7zp3WYdIM991nkWH30i8lIDvWIdYVmoK3nedXuCb1jkk0xYSsym6FPse8Ip1CJHQhb7rvGUdYlmpKXgA33UeBK62ziGZ9R3fdd6xDpEF4SOQYwmee4pYegv4oXWIFUlVwYdOItiHKBKlx4FfWofIEt91HgB+bZ1DMq0OfM13nZJ1kBVJXcH7rrMQOAq9M16i0wUc5buORpPROwOYaR1CMuvncV5zk7qCh/en6i+0ziGZcYrvOi9bh8gi33XeA75hnUMy6TngTOsQq5LKgg+dAzxlHUJS72bfda6wDpFlvuv8EYjN4SKSCRXgyLicWLcyqS1433WqwJGA9iNLo7wOfNU6hADB2hud+y9R+a7vOv+wDrE6qS14AN91XkRb56QxqsAXwjUfYsx3nbnAFIKRlUgj3QdcZB2iP1Jd8AC+61wF/NQ6h6TOqXE7tSrrfNd5FDjZOoek2gLgK0lZUJv6gg+dDtxjHUJS41LfdS61DiHL813nckBrIqQRlmyJi92BNiuTiYL3XacPOALQSmcZqDvRKDHuTgT+ah1CUucs33Vutg6xJnL1eiJmGgZFoehNIPjG77DOIon0LPCZcGuWxFih6G0AzADWt84iqfBr33WOsw6xpjIxgl/Cd52XgC8AvdZZJHFmAweo3JPBd523gc8TLIYUGYi7gBOsQ6yNTBU8gO86dwLHoDOspf/KwCG+6/zbOoj0n+86DwOnWOeQRHsGmBq+zCxxMlfwAL7rXI2+8aV/ysCBvus8bh1E1pzvOpcB37fOIYk0C3CSPGuXyYIH8F3nZ8DZ1jkk1noIRu73WgeRtee7zneBS6xzSKJ0ETySe9M6yEBktuABfNe5ADjfOofEUgU4zHedu62DyKA4CZhuHUISoQoc4btO4o86z9Qq+pUpFL0LgLOsc0hsVIHDfde53TqIDJ5C0WsCrgWmWmeR2KoAn/dd5w/WQQaDCj5UKHqnE7yBLmedRUxVCI6gvcU6iAy+QtFrBq5BJS/L6yGYtbvDOshgUcEvpVD0vgRcCbRYZxETCwmeuT9oHUQaJxzJX0Nw+JUIQDfB935s3+2+NlTwyygUvX2Bm4A26ywSqTeA/XzXed46iDReWPJXAV+2ziLmFgEH+a7zF+sgg00FvwKForcD4AHrWmeRSPydYDuMXjeaMYWidw5wLno0l1WzgX1913naOkgjqOBXolD0Pg7cBmxhnUUa6i5giu86ndZBxEah6B0B/C/QahxFouUDk33XecU6SKNkepvcqviu8y9gB4LpekmnnxDsdVW5Z5jvOtcDkwhGc5INDwA7prncQSP4fikUvW8DLtBknUUGxSLgmKS9GUoaq1D0PgLcDmxjnUUa6kdAMXzLaKqp4PupUPQmAdcB6xlHkYF5imCf62vWQSR+CkWvneD7fH/rLDLoFgNH+67ze+sgUdEUfT/5rvMA8CkgdSstM+SXwC4qd1kZ33UWAwcBF6EXUqXJC8AOWSp30Ah+jRWKXo7g2MvvA8ON40j/zANODJ+1ivRLoejtSbCVbmPrLDIgNxI8ksvcWhsV/FoqFL2PEXzz72qdRVbpOuAk33XmWgeR5CkUvVEEL6o50jqLrLEq8B3fdS6yDmJFBT8AhaKXB04GLgCGGceRD5sJHK/z5GUwFIre54HLgXWss0i/PAYc67vOc9ZBLKngB0G4Z/4SYLJ1FqEOXAGc4bvOIuswkh6Fojee4Cjrfa2zyEq9R/DisF/4rlOzDmNNBT+ICkXvAIItGBOss2TU48C3fdd5xDqIpFeh6H2D4Ptcx1nHy23AN33XmWkdJC5U8IOsUPRagBOA/wZGG8fJilcJ9rXqUCKJRDiaPx84Gu1GsjYL+FbWVsj3hwq+QQpFbx2CM66/jt5O1yjzgfMIpuOq1mEkewpFbxuC0fze1lkyqI/gcdyZehy3Yir4BisUvY2BM4CvoYV4g2UBcBlwob6xJQ4KRW8fgqLf2jpLBtQIdsec57vOS9Zh4kwFH5FC0RsLnEowfd9hHCep3gAuBq7I4p5WibfwFbRHE8wqjTeOk0Y1gj3t5/qu84J1mCRQwUesUPQ6gLceTA4AAALKSURBVG8SHJajY2/75x/AhcD1vuv0WocRWZVC0Wsj2D6r7/HBUQd+D0zL+ra3NaWCN1Ioes3AgQRT9/ugF9ksq0rw4o9f+q5zt3UYkTVVKHpDgaOA09Brp9dGHbiFYMT+T+swSaSCj4FC0duQYGrvGGBT4zjWngH+D7jad5051mFEBio83toBTiRYjJezTRR7Cwh+BlyuZ+wDo4KPkfAHwR7A4QQvvNjINlFk/g3cAPxWd+qSZuER18cT3NBrG+2HPUbwQqjrfdfptg6TBir4GCsUve2Bg8OvNL2juhd4BPAAz3ed543ziESqUPSGEYzqDwMOANptE5l5A/gtMF2j9cGngk+IQtHblOAd1bsDnyV5i3deBx4iKPW7fddZaJxHJBbCZ/V78cHM3RjbRA33MnAncCtwv+86KqEGUcEnVHj+/c7AjsBOBPtv43KgzkLgCeCvS37V29xEVi9cfLs7wcj+UNKx3a4TuA+4C7jTd53XjPNkhgo+JcIfDJsSrNadsNSvE4CxDbhkleDZ+SsER8Uu+fUl4GXdlYsMTLgmZwuCG/glX1sR/x03NYLFsncRjNQf8V2nYhspm1TwGRBOAa4bfo1d5tdWglW9+aW+cuHXYoLR+IJlvt4F3vJdpy/SfxGRjAv32H+aD5e+5eO6uQRl/gzwz/DX53zXKRlmkpAKXkQkwcL3Xmyyiq/xrN0LcSrAvBV8vUpY6r7rvDPQ/NI4KngRkRQL33A5FhhO8D6MJV9L1uwsmbGDYMZuHjDPd533Io4qg0wFLyIikkJ6j7GIiEgKqeBFRERSSAUvIiKSQip4ERGRFFLBi4iIpJAKXkREJIVU8CIiIimkghcREUkhFbyIiEgKqeBFRERSSAUvIiKSQip4ERGRFFLBi4iIpJAKXkREJIVU8CIiIimkghcREUkhFbyIiEgKqeBFRERSSAUvIiKSQv8P+GVR2aIrjsIAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 108,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"build_real",
"prebuild_gwn",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"",
"fftma2",
""
],
"type": "treemap",
"values": [
4.518677,
3.283041,
2.4375840000000117,
1.231253,
1.223604,
0.7101290000000031,
0.48899400000001014,
0.002831,
0.001635,
0.001069,
0.000318,
0.000274,
0.000267,
0.000217
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"text/html": [
"<div> <div id=\"893fc6f4-85a9-465a-bf6f-c654d87b628b\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"893fc6f4-85a9-465a-bf6f-c654d87b628b\")) { Plotly.newPlot( \"893fc6f4-85a9-465a-bf6f-c654d87b628b\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"build_real\", \"prebuild_gwn\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"\", \"fftma2\", \"\"], \"type\": \"treemap\", \"values\": [4.518677, 3.283041, 2.4375840000000117, 1.231253, 1.223604, 0.7101290000000031, 0.48899400000001014, 0.002831, 0.001635, 0.001069, 0.000318, 0.000274, 0.000267, 0.000217]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('893fc6f4-85a9-465a-bf6f-c654d87b628b');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria"
]
},
{
"cell_type": "code",
"execution_count": 109,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3XecVNX5x/HPs4WlL0oVUEdUugpiRaMYGzqJv2jsJlFj7JgYRV2J3SSOib33AjY0seGqKLZYUOKqFGtERlG6lAW275zfH/cuDrN92dk7O/N9v173tTv3nnvPM7Nlnjn3FHPOISIiIhIvK+gAREREJPUoQRAREZFalCCIiIhILUoQREREpBYlCCIiIlKLEgQRERGpRQmCiIiI1KIEQURERGpRgiAiIiK1KEEQkbRnZieZmTOzUNCxiLQXShAkLcS9ATgz27uO42ZmC/3jLwQRo4hIe6IEQdJNGXB8Hfv3BQYC5W0bjqSIKUAn4NugAxFpL5QgSLp5ETjKzHIS9h8PFAFL2j6kTWdmXYKOoT2qed2cc9XOuTKn1elEmkwJgqSbx4GewIE1O8ysA3Ak8FhdJ5hZlpmda2afmlmZmS01s7vNbLOEclEze8HMxpnZh2ZWamZzzWycf/wI/3GZmRWZ2eg66vq5mb1tZuvNbLWZPWdmwxLKXOHfChluZo+Z2SrgHTM72d9f13UnmVm1mQ1o6MUxswFmdr+ZLTKzcjNbYGZ3+q9RTZlBZvaUma00sxIze9/MwgnXGefHcrSZXW5mP5jZWjP7l5nlm1memd1kZsvMbJ2ZPWhmeQnXcGZ2m5mdYGZfxr1u+ySU29rM7vDLlJrZj358oYRyNbeZ9vXLLwO+TzgWiiu/i5lNN7MV/nUXmNkDCdfsYmbX+7enyv0YJpqZ1fNcfmVm8/yyn5rZ+IRy3fzXJeqXWWZmr5rZzg393ESCkPgpS6S9iwIzgeOAl/x9hwD5wBPAH+s4527gJOBB4BZgG2ACMNrM9nLOVcaV3Q4v0bgbeASYCEwzszOAvwN3+OUuBp40syHOuRiAmR3gx/QNcAVek/c5wLtmtrNzLpoQ11PA/4BJgAH/Am4HTgA+Tih7AvCmc+6H+l4YM+sPzAJ6APcAXwAD8JKnzkCFmfUF3vMf3wL8CJwIPG9mRzrnnkm47MVAKRDxX5tzgEogBmzmP8898F7fBcBVCefvCxzj11UOnAW8bGa7Oefm+WV2Bcbi/fy+B0LAmcCbZjbcOVeScM07gOV+XXW2vJhZH+AVv1wEWO1f94i4MgY8D+wH3A98AhwM/NN/3f6ccNm9/fPvANbi/a7928y2cs796Je5C+/1vg34DC+Z3RsYBnxUV6wigXHOadPW7je8NyAH7AKcDRQDnfxjTwKv+99HgRfiztvbP+/4hOsdnLjfP9cBe8btO8jfVwJsFbf/NH//uLh9HwNLgc3j9u0IVAMPx+27wj/3sTqe52PAD0BW3L7RfvmTGnmNHvbr2qWOY+Z/vdG/1t5xx7riJTULauoFxvnl5gK5CfHFgBcTrv8eEE3Y5/xtTNy+rfASjqfj9nWqI949/HN/W8fvwNtAdj2/HyH/8a9qfl8aeL3+zy/zl4T9T/nPcduE51KesG9Hf/+EuH2rgduC/nvRpq0pm24xSDp6Eu/T+S/MrBvwC+q5vQAcBawBXjWzXjUbXn+FdXifHuN95pybGff4A//r68657+rYPwjAzLYARgEPOedW1hRyzs0BXgUOrSO2u+rYNxnonxDXCXhvqv+u5zliZll4b4rTnHMfJh53ztXcmz8UmOWceyfu2Dq8FocQMDwxHrdxC8sHeK0dDySU+wDY0mr3DZnpnCuKq+s74DngYDPL9veVxj2PXDPrCXyN92ZbV9P8vc656jr2x1vtf/2FmeXWU+ZQvITqloT91+M9x0MS9s9wzs2Pey5z8BLVQQn17u635oikNCUIknacc8uBGXgdE48AsvGa5+uyPd7th2V4zc3xW1egT0L5+CQA59wa/9uFCeVq9tf0Y9ja//plHTF8DvSy2h0RF9RR9lVgMV5SUPPGfxzwnHNubR3la/QGugPzGihTE2d9MdYcj/ddwuOGXo8svNc63v/qqOsrvFscvQHMrJOZXWVmC/E+pa/A+/n0qON6UPfrlugtvITqcmCF3xfk5IR+ElsDi+p4XZv6WgCs4qffAYALgZHAQjOb5fc3GVTHeSKBUx8ESVePAfcC/YCXnHOr6ymXhZccnFDP8eUJj+v7ZFrffqtnf1OUJu5wzlWb2WPAqWZ2FrAXXovCI5tQz6Zoi9fjVuBk4Ca8/iVr8Jrun6DuDzm1XrdEfovJkWa2B/BLvFtKDwDnm9kefqtJczX6nJ1zT5rZ28DheLenLgAuMrMjnHMv1XO+SCCUIEi6egavI+EeeJ3g6jMfOAB4N74pOwlqxt8PqePYUGCFc259E681GTgf743tELwkZnoj5yzHa+4e2YQ464ux5nhr2r6OfYPx+nTUJGdH4vXROL+mgJl1xGtB2CTOufeB94G/mNnxwKPAscB9eM/1ADPrltCKsEmvhXNuMV5Hxjv8zpIfAX/hp061IilBtxgkLfmfAM/E6/A3rYGiT+Ldgrg08YCZ5ZjZJr8J+fEsxusFf2L8Nc1sJN4nyRebca05wBzgD8CvgSecc1WNnBMDngV+aWa7JB6PG7b3IrCbme0Zd6wLXqfLKF7P+9a0Z/wQPzPbEq9z4Ctx/Qiqqd3ycA7ez61FzGyzxKGKeD8fgJrbDC/6dUxIKPdnvBaMZr2hm1m2mW10S8Q5twxYFFenSMpQC4KkLefcw00o85aZ3Q1cbGaj8Ia+VeJ9sj0K+BP1919orgvw3lRmmtn9/DTMcQ1eItMck4Hr/O+benthEl4y8paZ3YN3L30LvOe5N14Hugj+EFEzuwVYiTfMcRvg136i0ZrmAdP9umqGOYLXN6DGC8BvzWwNXoKyJ16rz4+03InAWWb2DF4rUjfgVLxWlppkbRrwBvA3f/6E2Xiv3/8BN8V3SGyibsD3ZvYv/1rr/OexK16LkEhKUYIgGc85d4aZFQGn481lUIX3afkR4N1WrGeGP3HOlXhj9CvxOstd5JxrSse6eI8C1wLznXOzmlj/D2a2O3A1Xp+L7nhDJl/Ca9LHObfUzMb61z4H6IjXWvFL51xhM2Nsirfw+hVcjjfE8TO84Zpz4sr8Ca8V4QQ/nnfx3lgbu63SWL274d1O6IuXpM0CTqj5WTjnYmZ2GN7P6hi8fhBRvETv+hbUWYJ3a+EgvM6zWXijMc5yzt25Cc9FJClqxj6LSDviD8VcDFzlnLs66HhawswccLtzLrEJX0RSgPogiLRPJ+HdH58ScBwikqZ0i0GkHTGzn+NNVvQX4FlXe3pmEZFWoQRBpH25DG9dgnfx+giIiCSF+iCIiIhILeqDICIiIrUoQRAREZFalCCIiIhILUoQREREpBYlCCIiIlKLEgQRERGpRQmCiIiI1KIEQURERGpRgiAiIiK1KEEQERGRWpQgiIiISC1KEERERKQWJQgiIiJSixIEERERqUUJgoiIiNSiBEFERERqUYIgIiIitShBEBERkVqUIIiIiEgtShBERNoRMwuZmTOziUHHkurMbJz/Wo0LOpb2SAmCiMgmMrOT/Deimq3MzL4ys9vMrG/Q8aU7MzvLzE4KOo50kxN0ACIiaeQyYAHQEdgbOBM41MxGOudKAo0svZ0FrAAeStj/H6ATUNHWAaUDJQgiIq3nJefch/7395nZj8B5wP8BjwcXVvthZgZ0dM6Vbuq1nHMxoGzTo8pMusUgIpI8r/tft/FvPfw5sYCZjfWPHdfSSsxzj5lVmNkRcft3NLO3zKzUzL43s0vM7GS/vlDCNQ4xs7fNbL2ZrTWzQjMbkVDmITNbZ2YDzOxZ//vlZnadmWUnlM0ys3PN7FP/lstSM7vbzDZLKBc1sxfM7GAz+xAoBU73j51sZq+b2TIzKzezz8zszMTzgRHAvnG3eN70j9XZB8HMjjKzIv91WWFmj5jZgJY+13SlFgQRkeTZ1v/6I/AucAJwY0KZE4C1wHMtqcB/s3oAOAY43DlX6O8fALwBOOAaYD3wB6C8jmv8FngYmA5cBHTGuz3yjpmNds5F44pn++U+ACYCBwDnA/OBO+PK3Q2cBDwI3AJsA0wARpvZXs65yriyQ/BaWO4G7gW+9PefCXwKPA9UAb8E7jCzLOfc7X6Zc4FbgXXA3/x9Sxt4vWpi+i9wMdAX+BOwl/9cV7fguaYn55w2bdq0aduEDe+N0AH7A72AgXhv2CuAEmAAcJpfZmjcebnAcuChZtQV8q8zEe9D3hN+HQcllLsFiAGj4vZtjpesOCDk7+sKrALuSTi/L7A6fj/ePX4HXJpQ9iPgw7jHe/vljk8od3DifiDq7zu4jufaqY59LwPzE/bNA96so+w4/9rj4l7vpcBcvNsYNeXCfrkrm/tc03nTLQYRkdYzA+8NfyHeG/c6vE/1PwBP4t0PPyGu/MF4CcUjLairA/AU8AvgUOfcKwnHxwMznXOf1Oxwzq0EHk0odyDQA3jczHrVbEA13ifn/eqo+66Ex28Dg+IeHwWsAV5NuGYR3muSeM0FzrnpiZW4uH4IZpbvX+MtYJCZ5dcRV2N2AfoAdzjnNvRNcF6ryxd4iUKixp5r2tItBhGR1nM28BVec/hS4EvndZTDObfazKYBxwOX+uVPAH7gp74KzXEx3qf/Q5xzb9ZxfGtgZh37v054vL3/tb4YihMelznnlifsWwXE9y3YHsgHltVzzT4JjxfUVcjM9gKuBPbEu+0RLx8vCWmOrf2vX9Zx7Au8lo94TXmuaUsJgohI65nlfhrFUJfJwFFmNhavmfswvE+zsRbUNR2vleBCM3sz/hNxM9W0JP8WWFLH8aqEx9VNvOYyNm4tiZf4pltrxIKZbQu8hvfGfR5eq0wFcCjwZ9qmk31TnmvaUoIgItJ2XsZ7czwBr/m+MzClhdd6H6/5+wXgKTM73DkX/2b+LbBdHecl7pvvf13mnJvRwlgSzcfr0Peua/lwxV8CecBhzrnvanaaWV23PFwTr/mt/3UItVtMhsQdFzTMUUSkzfhv4I8DR+N1bJzrnJuzCdebARyL15Iwxczi/6dPB/Y0s1E1O8xsc2p/qp+OdxthkpnlJtZhZr1bENqTeCMALk08YGY5ZtajCdeo+fRucefmAyfXUXY9Xj+KxnyI17JxhpnlxV33EGAYUNiEa2QMtSCIiLStycAf8TrqXbSpF3POPWtmJ/vXLcafQwD4B/AbvI6Ct/LTMMfv8EYzOP/8Yn9ugSnAR2b2BF4rx1Z4nfbexRue2JyY3jKzu4GL/QTlFaASr2/CUXjDCv/VyGVewbulMM2/VlfgVLw3+C0SyhYBZ5rZJXh9LJY552r1qXDOVZrZRXjDHN8ys8f5aZhjlNpDUDOaEgQRkTbknCsys0/xPrEmjiho6TUfMbNueHMEFDvnLnDOLfSb428BJuG96d+OlyjcQtwMg865x8xsEVAAXIDXtP8DXo/9B1sY0xlmVoSXsPwdry9DFG/ExrtNOP9LMzsS+CtwHV7/iDv95/FAQvGr8DogXgh0wxvpUGenS+fcQ2ZWgvdcr8V7PZ4BLnIbz4GQ8cwf1ykiIm3EzD4GVjrn9g+g7pvw3rS7OucyuhOeNEx9EERE2pCZ7QKMwrslkOy6OiU87ok3WuEdJQfSGLUgiIi0ATMbCYzBm6q3FzAofmiiP2VyYx0C1znn1jWjzk+AN4HP8e61nwL0B/Z3zv2nWU9AMk6zWxDMbB8zm2Zmi/xFMH7VhHPGmdlH/mIbX5vW7RaRzHMk3v38XOC4OuYt2BJY3Mg2sZl1vog3b8CNeB0iv8ObWEnJgTSq2S0I/nCQvfB6jT6NN43osw2U3wZvnuy7gPvw5iq/CQjXNbWmiEgmMrOO1J7JL9E3zrlv2iIekU26xWBmjsYThGvxkoGRcfueAHo458a3uHIRERFJmrbopLgn3gIm8ab7+0VERCQFtcU8CP2ovTb3UqC7mXWqaxpOf4arvITdmwMrkxOiSEbpBixy6qEsIg1I1YmSLgYuDzoIkTQ2EG8iHBGROrVFgrAEb3hNvL5AcQOLeFwD3BD3uBvw/cKFC+nevXsSQhTJDMXFxWy55ZYAa4OORURSW1skCDPxhtnEO5C61ykHwDlXDpTXPDbz1uro3r27EgQREZE20JJ5ELqa2ai4FcK28R9v5R+/xsziZwi7CxhkZv8ws6FmdhbeSmZaFENERCRFtaQFYRfgjbjHNbcCHsZbvnQLvFXAAHDOLTCzMF5C8Cfge+APmgNBJDMUFRV1xZu9T1O7S0vEgNXAijFjxsSCDiaTtIupls2sO7BmzZo1usUgsgmKi4vJz88HyHfOFSe7vqKioj2ysrLuysrKygcs2fVJenLOVcVisbecc5eNGTNGnWvbiBIEkQzSlglCUVFR16ysrHd69OjRt0+fPiv9idWknYrFnFXFXG7MOZzDMMw5rJOVOy/zMwc4LAuycirJym6Vn7dzjoqKig5Lly7tXlpa+l0sFtt7zJgxFa1xbWlYqg5zFJH2r39WVlZ+nz59Vnbp0qW+EUuSAiqqYjmlldWdK6piHSqrY7lVMZdbVR3LrY653KqYy62OuZyYc3XeItoha6GzOluHLEZWThVZ2ZVewpBTRXau931Ox3JyO5WSk1fZlPi6dOlSlpubWzl//vzesVhsK+DrTXrC0iRKEEQkWbIAU8tB6nDOUVYZ61hSWdWprCLWuayyunNZVXXn6phLwnuByyJW2YFYZYd6i1hWjOwOpeR0LCW3cwkdOq8nt0spWVm1fmeyvH2G3rfajF5oEZE05ZxjbVlV17VlVfnrK6q6VVTFOtXXEhAIF8uiqqwLVWVdKFu9YS85HUvI61ZMXvdi8rqtw9R9JQhKEESkzYQKCsck47rRSLgoGddtSy+88EK3srIyO/LIIzepb0hFVSx3TWll/rryyvz15dXdYs5lP3TXLTz/1OM459h60HZcdf3tdPf6omxwx/XXcPdN/2Dqy/9h6Igdal13dtEs/jbpfAAqq6oYvevuFFx5LXT6qYxzjv2PPp2P5n3B6s/rXlH66hvv5Ynnp9OtS2em3hVh64H9ATjp3Ms59YTD2WvXUbYhaVi/fAssK0Zu57VGx/UWq9qUl0aaKXUySRGRNFZZ2fDt9tdff73biy++mN9goTp4rQSVXX5YVTLgyyVrh3+xpHjHxWtKt15bVtUj5lz2zP+8wXNPPsaU517hmdffZ/gOo7jtH1dvdI25Hxfx6eyP6D9wy3rrGTx8JI++8DpPTn+bf7/6LitXrGDq5Ps3KnPjPY+ybaj+axSvXccjT7/InBlTOevEo7n1gakAvPqf9+ncqSN77Tqq9kkulkXFunwrWd4/t2xF/+FvnjKDK/Jv5Yp8LfiXZEoQRCRjPPLIIz0GDRo0YsiQIcPPPPPMAZttttlOX375ZQeAuXPn5o0bN267kSNHDhs8ePDwv//9771rzjOzMQUFBf122GGHYQMGDNjh5ptv7llzrLHz/vznP/cfOXLksAkTJgycNWtWpzFjxgwZPnz4sG233XbEhRdeuAXAe++912ny5Mm9n3nmmc2HDh06fOLEiVsA/Pvf/+4+ZsyYISNGjBi2ww47DJs2bVq3mmuXVVZ3WLS6dIsvlqwduWDF+qE/rq/oV15VHfd53vPVZ/MYvesedOnqnfqznx/IC08/ueF4aWkJ11x6IZdGGp67rlOnzuTm5gJQWVFBeVnZhlluAT79cj7PTn+DgrNPqvca2dnZVMeqqaysYn1JKR1ycygpLeXqm+4lMumcBuuvYa5qADABeI8r8udzRf5fL/jLBds16WRpFt1iEJGM8MMPP+RMmDAh9MYbb3wxevTosptvvrnn6tWrcwCqqqo47rjjBk2ZMmXB6NGjy9auXZs1ZsyYoXvttdf6fffdtwQgLy/PzZ079/OPP/6449577z3srLPO+tHMGj0vOzvbzZs373OAVatWZb3zzjtfderUya1bt8523XXXYQcffHDx/vvvv/53v/vd8tWrV2c/8MADCwE+++yzDldffXX/119//avNN988Nm/evLz99ttv6Ceff72wNJbVu6SiumtTnvewHUcxdcr9rFi2lJ69+1D4zFOsX7eWNatWkb/ZZtz4t8s5+re/p1//gY2/hgu/49xTjmfht1F+9vODOOZ3pwA/UFlZyakXXM39119GdnZ2ved36dyJ8079DXv88kT69enJwzddxWX/vIvzT/8t3bs16ekkGhRznPVs9V4Tnyoo/C9wH/BUNBIuacnFZGNqQRCRjPDmm292GTJkSMno0aPLACZMmPBjbm6uA5g9e3bHr7/+utNxxx03aOjQocN33XXXoevXr8+eM2fOhk/kp5xyyo8Ao0ePLsvOznbfffddblPOO/PMM1fUfF9SUpJ13HHHhQYPHjx8zJgxwxYtWtShqKioc13xPv/88/nffvtt3tixY4cOHTpsxJFHHzPUsnNyPvr8622amhwA7Db2Z5x42gTOOelYfnPYgWzW02v8yM7JZuZ/3mDxDwv51TEnNOlaA7bciqdeeYfXP/qCyopyZrw0DYArb7iHIw79OcO2H9ToNc466Wg+efUJXn70dr5fvJTvFy9l/LixnD3pGo467UJuuf/xpj41AIrc4LmV5OYBewMPAYtDBYW3hgoKt2r4TGmMWhBEJOM55+jevXvVF1988Vl9ZTp37rxh6F12drarqqqyppyXn5+/YXrg8847b0DPnj2rPv30089yc3M56KCDti0rK6uzi75zjr32/tn62x58vHptWeXm9Y0Vnf/VF1x8zqkAjNpldyb97bpaZY458Q8cc+IfAJjz0X/pu0V/unbrzqz3/sPnc+dwyJ47ArB08SIm/O5oLoncwLgDD6nvKdG5S1cOPuwIXnz2KS48fGfeer+I735Ywm0PTqWqqpritesJ7R7mvy8+Qu+em9V5jaqqKiZedROP3/F3Hnn6RXr33Izb/34x+x15Gr844GcM2rrxFg2A6yqP7pWwqzveLYjTQwWFjwDXRCPh/zXpYrIRtSCISEYYN27c+i+//LLz7Nmz8wDuvPPOnpWVlQaw0047lXXt2rU6vm/BvHnz8pYuXVp/e3kLzlu9enXOwIEDK3Jzc5k9e3beu+++u2Fq2O7du1cXFxdnA5RWVOftvt8h3d+bOTP/w48/3pAczP249mCNbQcP5cnpb/Pk9LfrTA4Ali9dAnj9DW6/7hpOOvNPAPyp4HJmfPgZL82cw0sz59B3i/7cNvnJOpOD7xZ8s6GjZWVFBa+/XMjgoSMAePuZB/h21otEPyjknWcfoHu3LkQ/KKw3OQC4/u5HOP7w8fTr04v1JaUb+jOYwfqSps2rVe5y53/ghg+v53AucDLwRaig8IlQQWHtoRnSICUIIpIRBgwYUHXLLbdEDz/88O2GDh06fO7cuZ06d+4c69mzZ3Vubi7Tpk37+rnnntts8ODBw7fbbrsRJ598cqikpKTB/5HNPe+yyy5b9Nhjj/UaPHjw8IkTJw7cY489NgxpPPbYY1d9+ulnXYYOHzHq/EmXjuw1MNQjcuu9XF1wHkcdtDe/2m93Hr3/zhY99zNOOILD99+Tow/6GaN324PjTjq1SeddccEfefOVFwGY9d5/OGb8Phx10N4cfci+9Ozdm9P+dEGL4pkfXcibMz/kD8cfDsBvjjiU19/9LyN/fhTbb7MVOwzbvknXea56z4VNKJYFHAPMDhUUPhcqKNytRUFnIK3FIJJB2ngthqE5OTkvb7/99us6d+5clsy6mmrVqlVZm222WQxgypQpPS6//PIB33zzzadBx1VaWZ23dE1Z/+Kyys2DjqW5dshaUM9Uy62rrMqx4IflbPPu+XRctxDniO1VfsvSRfTaogWXewE4NxoJz2/tONOJ+iCISMa49tpr+zzzzDObx2Ix69q1a/XkyZMXBBlPLOZs8Zqy/ivXV/R1OE0X2AzLyf94Eb1aOvHWL4ADQwWF/8Dro6C1QuqgBEFEMkYkElkSiUSWBB0HwOqSiu6L15RtXVkdq3+tAqnXfVXhTW2VygMuBX4TKig8NxoJP98KYaUV9UEQEWlDFVWx3AUr1g/6bmXJ9koOWsY5iidXH7hzK11uG+C5UEHhC6GCwsbHaWYQJQgiIm3AOcey4rLeXy1dO2JtWWX93fulUXPdNrPLyKs1a+QmCgOfhgoKrwgVFCpxQwmCiEjSlVZUd/zfsnXDlhSXbRVzrsGhk9K4G6qOavaaFU3UEbgceDdUULhtkupoN5QgiIgk0Y/ryjefv3zdsLLK6jpnTJTmqaDDojdjo3ZMcjW7AB+HCgqPS3I9KU2dFEWk7VyRn5TlnrliTcot9xyLOft+delWq0sqEmf6k03wHjt9D/Rvg6q6AY+FCgoPBCZk4voOakEQkYxRs5rj0KFDh8+aNatT4uPzzjuvf0lJySYPNyyrrM7737J1w2qSg0vPO5tf7rMLRx20NycefjDzPvmoRde99M9nccAuwzn64J9x9ME/44a/Xlpv2eLVq7n4nFP55T67cPj+e3LTNVc06Vi8Z554hMN/vgdHj9+Hz+fO3rD/9uv+zovPPNWi57BpjAcrD2jrNRZOBopCBYXJbrVIOWpBEJGMcc899/S+6KKLFp9++ukrASZOnDgw/vHuu+8+fNKkSUs7d+5c3dI6Vq6v2GzR6tKt4/sa7D8+zOX/uJmcnBzemvEyF5x5Ei/NnNOi6590xjn85g9nNlrusokTGL3L7lxz670ArFi2tEnH4t1zyz/594z3+HzOJ9x32w1cf/fDfP3l5/zv8085e+KkFsW/Kaqzciu+j/XsBy3+8bTUUOCDUEHh+dFI+I62rjwoShBEJCOcdNJJW3744Ydd58+f3/Guu+7qs9NOO62Pfzxs2LASgLFjxw7Jysritdde++qPf/zjwA4dOrhvv/02z19Zce1ZZ5217KKLLtpy0aJFHcaPH7/qvvvu+x7g8ssv7/vvZ57rV1VdnZOTk8tFV0XYaYw3q++4gw7dEMeOO+/KsiWLqaqqIicnOf/tYbXJAAAgAElEQVSCv1vwDZ/N+Zgb7pm8YV+vPn0bPZYoOyubivJySktLyM3NJRaL8c8r/8Ll/7gpKXE3ppQ8B+WB1I3XgfH2UEHhGOCMaCRcGVQgbUUJgohkhIceemjhZ5991vmcc85Z+tvf/nY1QOLjxx9/vPd77733Za9evTZ8RP388887vffee19mZWUxePDgEatXr85+++23vyovL7dtttlmhzPOOGPF6J3HVBx69In5vz71zzngrZh46Xln89ybs2rF8ej9d7H3fge2ODl49IG7eHbqI/QbMJAJF1zC0BG11yD65n9f0HeLAfx10nl8NucT8ntszrmTrmDYyB0bPJbo3L9cyenHH06XLl25NHIjUyffxz77H0T/gW2/krLDYmtjeakw/PD3wNahgsJfRyPhNUEHk0xKEEREGnDooYeurlnqeciQIaUHHnhgcV5ensvLy3Pbbbdd6bzPPu/SbeCQQR9/8kmn+269ntWrVpKTk0N0/v8oKy2lY6efhuu/8PRUXnnhWR78V2GLYplw4SX07tuPrKwsXnvpBc7+3VFM+8+HdO7SdaNyVdXVzPukiHMuupTLIjfxzhuvcs5Jx/LSzNkNHsvNzd3oOgcc8ksOOOSXACxZ9D1vvvISd0z5F7dErmLht1G2Cm3DPRf/pkXPpbkqsruUVbt1qTISZH/gvVBB4aHRSPjboINJFnVSFBFpQMeOHWM132dnZ7v4x1nZOVmrymID15WUdjrvtN9x3iVX8/RrM3nATwAqKio2XOfl55/m7hv/wd2PPU3P3n3qrCty2UUbOiD+7/Paa0j13aI/WVnev+39D/kFXbp2Izr/61rltug/kD79tmC3sT8DYO/9DqSqsoLF3y9s8FhDrr38YiZe+lc+nPkOy5cu4Z93PsDSJYt4493/Nnhea1ntOqfaWhXD8ZKEkUEHkixKEEREfF26dImtXLmySRMZrS+v6uyycjrHHDnl5WVUVlawxYCBADz+4D0blZ0+7Rlu/+ffuPvxZ9hiwJb1XrPgqmt5cvrbPDn9bbYfNqLW8aWLf9jw/ZyP/suaVSvZMrRNrXLDdxxFl67d+OrzeQDM/bgI5xz9+g9o8Fh9Xn7+aQZtN5jth42gtGQ9mPdebZbFuvXJH/3nsnIq11R1aO2ZE1tDf+A/oYLCvYIOJBl0i0FE2k4KzlcQ7/TTT19y0EEHDe7YsWPstdde+6q+cmvLKrt++2PJdpj3Ttm1W3cmXPAXTvjl/vTYvCfjDztio/KT/ngaPXv34dxTTtiw754nnqPHZs1b3fnS887mx+XLyM7OJq9jJ/5510N06+5NKvjklAdYvnQJZ0+chJnx1xvv5MoLz6W8rJQOHfK4/u7JdMjLA2jwWKLi1auZ+vB93PXo0wDsNe4Ann58CkceuBcDttya8fuNbdZzaIn12d3LHOQ2XjIQmwGvhgoKj4pGwi27d5SizDkXdAyNMrPuwJo1a9bQvXv3oMMRabeKi4vJz88HyHfOFSezrqKioqE5OTkvb7/99us6d+68qSvvpYw1pZXdF64s2TbmnFpggR2yFjiDpDb/f2NbVawtr+6wbNH3XPHGMn5Y2+bDHJuiAvhFNBJ+NehAWot+wUVEmmhtWWXX75QctKnq7I6l66qzU2H0QmM6AM+ECgr3DDqQ1qJfchGRJiipqOr43Y8l2zklB22q2LqnZHNBPboAheky62KLftHN7Gwzi5pZmZl9YGa7NVL+XDP70sxKzWyhmd1oZh1bFrKItBMx8JY5bu/Kq6o7RFeUDK7WSoxtymFuSWVnr3Oic4Ajlvq/TpsBr4QKCrcLOpBN1ewEwcyOAW4ArgR2BmYD082sznE7ZnY8EPHLDwNOAY4B/t7CmEWkfVjtnKuqqKhoD83D9aqsjmUvWLF++6pYLFU7yaWtypyuJZXOsgFcVQWV1Y5VZbHGTksFfYEZoYLCgUEHsilaMorhPOBe59yDAGZ2BhDGm10qUkf5scC7zrnH/MdRM3sc2L0FdYtI+7EiFou9tXTp0nBubm5lVlZW6n/2SxCLOVu4ujRUURVTi2c9yrJc0nooLo91zHKV5biqClatXMFr36yjrKrd/BptjTe64WfRSHhF0MG0RLNGMZhZB6AEONI592zc/oeBHs65/6vjnOOBO4CDnHOzzGwQUAhMcc7V2YpgZnlA/JibbsD3GsUgsmnachQDQFFR0YCsrKxnsrKyepPknu5JYKvLYn0qqp2SgwYMtBVA679pO8uKLYptnuWAymrHa9+s4+nP1yehpqSbBewTjYQDW0SipZrbgtALyAYSl/5airfaVS3OucfMrBfwjnljhnOAu+pLDnwXA5c3MzYRSTFjxoz5oaioaO9YLLYV7Wzelb+8/uNVaytiRwUdR6qb0eGCKjPX6j/bIkYUXV5+8q4xB6vKYu2p5SDRbsDNwBlBB9JcSf+DNbNxwCTgLOADYDvgZjO71Dl3dT2nXYPXz6FGN+D7ZMYpIskxZsyYCqD2fMApLFRQeCKg5KAJOuZ9VzOxYqu6tvy0Hj+49jSAoUGnhwoK34tGwpMbL5o6mttJcQXeQtyJa4P2BZbUc87VeLcT7nPOzXXOPYOXMFxsZnXW75wrd84V12zA2mbGKSLSIqGCwuF4t0UlICUu74s5btvtg46jld3V3oY/NitBcM5VAEV4K1kB4L/J7w/MrOe0zvjDneLUpIXt7Z6kiKSxUEFhZ+ApvP9bEpCnqvdNvI2dDjoB/w4VFOYHHUhTtWQehBuAU83sRDMbBtyJNzlEzaiGyWZ2TVz5acCZZnasmW1jZgfitSpMcy592o9EJC3cgbdKnwTEOSpvqTq89kpV6WE7YHKooLBdfDhudh8E59xUM+sNXAX0Az4BxjvnajK+rdi4xeCveF1c/woMAJbjJQ1/2YS4RURaVaig8GTgxKDjyHSL6Pnxj+Q3OPleO3cYcBF1TwuQUrRYk0gGaethju1FqKBwBN5wNN1aaKYFecdXmbVeh/dLKk9+/5HqA/doreulqGpg72gk/H7QgTREc4qLSEYLFRR2AJ5EyUHgYo5VU6v32znoONpANnBvqKAwpWfnVIIgIpnuItTvICUUucFzK8lp11NzN8NIvN+9lKUEQUQyVqigcFu8YdeSAq6rPLpX0DG0sUtCBYVDgg6iPkoQRCST3Q5oKuUUUO5y53/ghmdaS04ecE+qjmpQgiAiGSlUUHg0cHDQcYjnueqxmTpb7j7AH4IOoi5KEEQk44QKCrsDNwYdh3ico/rGqiNTtqm9DfwjVFDYL+ggEilBEJFMdDXQP+ggxLOcHh8vpmfKvUG2oR7ALUEHkUgJgohklFBB4Wjg7KDjkJ/cWxWuCDqGFHBUqKBwz6CDiKcEQUQyzfV449AlBThH8ZTqA0YHHUeKSKnZFZUgiEjGCBUU7gfsF3Qc8pO5bpvZZeR1CjqOFLFPqKDwkKCDqKEEQUQyydVBByAbu6HqqHazumEbuSZVhj0qQRCRjBAqKBwP7BV0HPKTSpf97ZuxUTsGHUeK2Qn4VdBBgBIEEckclwUdgGzs5diuC4KOIUWlxO+qEgQRSXuhgsJxQEr1EM90zuGuqzp6u6DjSFGjQgWFhwUdhBIEEckEWm8hxaym6+xvXb+BQceRwi4JOgAlCCKS1kIFhWOAA4OOQzb2YNXB64KOIcXtGioo3DXIAJQgiEi6mxB0ALIx51h/f/Who4KOox04PcjKlSCISNoKFRR2BY4KOg7Z2Fdu4Cfr6dQ16DjagWP9dUMCoQRBRNLZMUCXoIOQjd1Y9WtNjNQ0XYATgqpcCYKIpLPfBx2AbKzKZS2aHttVtxeaLrDbDEoQRCQthQoKhwJjg45DNvZGbNRXjiy99zTdTqGCwt2DqFg/JBFJV2o9SEH/rDpm66BjaIdOC6JSJQgiknZCBYU5wG+DjkM2Vuw6zfvKbblN0HG0Q4F0VlSCICLp6FCgX9BByMYeq95/ZdAxtFOd8X6n25QSBBFJR8cEHYBszDnK76w6TAsztdwv2rpCJQgiklZCBYVZwEFBxyEbi7p+H62ha4+g42jHxocKCrPbskIlCCKSbnYBegUdhGzslqrDc4KOoZ3rSRsvOKYEQUTSzSFBByAbq3a27LnYXjsHHUcaaNPbDEoQRCTdjA86ANnYe7GRn8fIatPm8TSlBEFEpCVCBYWbA4GugCe1/bPq6P5Bx5AmRoQKCkNtVVmLEgQzO9vMomZWZmYfmNlujZTvYWa3m9liMys3s6/MrM2HbIhI2jsQ0CfVFFLi8r6Y47bdPug40kibtSI0O0Ews2OAG4ArgZ2B2cB0M+tTT/kOwKtACDgSGAKcCvzQspBFROql2wsp5qnqfZcGHUOaOaCtKmpJr9LzgHudcw8CmNkZQBhvWtNIHeV/D2wOjHXOVfr7oi2oV0SkMQcGHYD8xDkqb6k6fETQcaSZXdqqoma1IPitAWOAGTX7nHMx/3F9wy8OA2YCt5vZUjObZ2aTzKzeZkAzyzOz7jUb0K05cYpI5gkVFPYDBgQdh/xkET0//pF8DTltXQNCBYV926Ki5t5i6IV3fy+xyWgp9U9rOgjv1kI23lSRVwPnA5c0UM/FwJq47ftmxikimWenoAOQjd1ZdVgs6BjS1Ji2qKQtRjFkAcuA05xzRc65qcDfgDMaOOcaID9uG5j0KEWkvVOCkEJizlZOrd5Pcx8kR5u8rs3tg7ACqAYSmzf6AkvqOWcxUOmcq47b9znQz8w6OOcqEk9wzpUD5TWPzayZYYpIBlKCkEI+dIPnVpKzb9BxpKnUa0Hw38yLgP1r9plZlv94Zj2nvQts55erMRhYXFdyICLSQkoQUsh1lUf3DjqGNJZ6CYLvBuBUMzvRzIYBdwJdgJpRDZPN7Jq48nfijWK42cwGm1kYmATcvmmhi4h4QgWFeXhDqCUFlLnc+bPcsOFBx5HGtgwVFCY9AWv2MEfn3FQz6w1chdcx8RNgvHOupuPiVkAsrvxCMzsYuBGYgzf/wc3AtZsYu4hIjRG0bNi2JMFz1WMXAtsGHUeaGwO8nMwKWvQH5Zy7DbitnmPj6tg3E9ijJXWJiDSBbi+kCOeovqnqyKFBx5EBhpDkBEFrMYhIOlBzdopYTo+PF9OzvmHv0nq2TnYFShBEJB1oKHSKuLcqrM7nbWOrZFegBEFE0oFWC0wBzlE8pfqA0UHHkSHUgiAi0gSaYjkFzHXbzC4jr1PQcWSILZNdgRIEEUkHakFIATdUHZUfdAwZpFeooDCp7+FKEESkXQsVFHYB9Kk1YJUu+9s3Y6N2DDqODJIN9ExmBUoQRKS9S+o/SWmal2K7LQg6hgyU1FUdlSCISHunBCFgzuGuqzp6u6DjyEB9knlxJQgi0t4pQQjYKrrN/s711VDTtpeXzIsrQRCR9q5z0AFkuoeqDl4XdAwZKjuZF1eCICIim2L9/dWHjAo6iAylBEFEpAEu6AAy2acuNGc9nboGHUeGUoIgItIAJQgBuqHqyO5Bx5DBlCCIiDRACUKAXo+N1twHwVGCICLSACUIgTILOoIMppkURUQaoARBMpVaEEREGqAEQTJVUltvlCCISHunBEEy1cpkXlwJgoi0d8VBByASkOXJvLgSBBFp75YEHYBIQJQgiIg0YHHQAYgERAmCiEh9opFwGbA66DhE2lh5NBJem8wKlCCISDpQK4JkmqS2HoASBBFJD+qHIJlGCYKISBOoBUEyjRIEEZEmUIIgmWZRsitQgiAi6SDp/yxFUsy8ZFegBEFE0sFnQQcg0sbmJrsCJQgikg4+DjoAkTamBEFEpDHRSHgp6ocgmePHaCSc9N/3FiUIZna2mUXNrMzMPjCz3Zp43rFm5szs2ZbUKyLSALUiSKZIeusBtCBBMLNjgBuAK4GdgdnAdDPr08h5IeA64O1mRyki0jglCJIpUjNBAM4D7nXOPeic+ww4AygBfl/fCWaWDTwKXA5805JARUQaoQRBMkXqJQhm1gEYA8yo2eeci/mP92zg1MuAZc65+5tYT56Zda/ZgG7NiVNEMpISBMkUqZcgAL2AbGBpwv6lQL+6TjCzvYFTgFObUc/FwJq47ftmxikimWcB3v8LkXRWjndrP+mSOorBzLoBU4BTnXMrmnHqNUB+3DYwCeGJSBqJRsIO+DDoOESS7P1oJFzaFhXlNLP8CqAa6Juwvy91L5ayLRACpplZzb4sADOrAoY45+YnnuScK8fLkvDLNjNMEclQM4D9gw5CJIleb6uKmtWC4JyrAIqI+wM0syz/8cw6TvkC2AEYFbc9D7zhf7+wRVGLiNTtlaADEEmyNksQmtuCAN4Qx4fN7ENgFnAu0AV4EMDMJgM/OOcuds6VkTBftJmtBnDOJX0eaRHJOB/jtXT2CjoQkSRYB3zQVpU1uw+Cc24qMBG4CvgEryVgvHOupuPiVsAWrRahiEgT+f0QXg06DpEkeTUaCVe2VWUtaUHAOXcbcFs9x8Y1cu5JLalTRKSJXgCOCzoIkSR4sS0r01oMIpJuXgSqgg5CJAmUIIiItFQ0El4N/CfoOERa2UfRSHhRW1aoBEFE0tFzQQcg0sqmtHWFShBEJB1NRbcZJH1U4q1n1KaUIIhI2olGwkuBaUHHIdJKXoxGwsvbulIlCCKSru4LOgCRVvJQEJUqQRCRdPUymq1V2r/lQGEQFStBEJG0FI2EY/gzvIq0Y4+15eRI8ZQgiEg6ux+IBR2EyCYILMlVgiAiaSsaCX+Hpl6W9uvjaCQ8O6jKlSCISLq7N+gARFrohiArV4IgIunuOWBB0EGINNN84PEgA1CCICJpLRoJVwF/CzoOkWaKRCPh6iADUIIgIpngYeCboIMQaaLv8H5nA6UEQUTSnt+K8Neg4xBpon8ENbQxnhIEEckUU/Du64qkssV4w3MDpwRBRDKC34pwddBxiDTi+mgkXBZ0EKAEQUQyyyPA/4IOQqQey4G7gg6ihhIEEckYfq9wtSJIqro4GgmvDzqIGkoQRCTTPAr8N+ggRBLMBB4IOoh4ShBEJKP4izidBlQFHYuIrxo4KxoJu6ADiacEQUQyTjQS/gS4Oeg4RHx3+L+TKUUJgohkqsuBb4MOQjLeEuDSoIOoixIEEclIfmews4OOQzLeBdFIeE3QQdRFCYKIZKxoJFwI/CvoOCRjvRWNhB8JOoj6KEEQkUz3R6A46CAk45QCZwYdREOUIIhIRotGwouBC4KOQzLO+dFI+POgg2iIEgQRyXjRSPgedKtB2s7z0Uj4zqCDaIwSBBERzx+ABUEHIWlvMXBK0EE0hRIEERHA70l+LBD4MruStqqB46KR8IqgA2mKFiUIZna2mUXNrMzMPjCz3Rooe6qZvW1mq/xtRkPlRUSCEo2EZwETg45D0tYl0Uj4raCDaKpmJwhmdgxwA3AlsDMwG5huZn3qOWUc8DiwH7AnsBB4xcwGtCRgEZFkikbCt+Ct1yDSmqYB1wYdRHO0pAXhPOBe59yDzrnPgDOAEuD3dRV2zp3gnLvDOfeJc+4LvPt8WcD+LQ1aRCTJTsP78CPSGr4CTky1tRYa06wEwcw6AGOAGTX7nHMx//GeTbxMZyAXWNlAPXlm1r1mA7o1J04RkU0RjYRLgCOA5UHHIu3eEuDgaCS8KuhAmqu5LQi9gGxgacL+pUC/Jl7jWmARcUlGHS4G1sRt3zcvTBGRTRONhL8BDgHWBh2LtFtrgUOikXA06EBaok1HMZhZAV4v4cOdc2UNFL0GyI/bBrZBeCIiG4lGwkXA/wHlQcci7U4lcEQqrtLYVM1NEFbgDdPom7C/L14zSr3MbCJQABzknJvTUFnnXLlzrrhmQxm8iAQkGgm/ARyH979PpCkccFI0Em6opTzlNStBcM5VAEXEdTA0s5oOhzPrO8/MLsRbznK8c+7DloUqIhKMaCT8DHB60HFIu3FhNBJ+LOggNlVLbjHcAJxqZiea2TDgTqAL8CCAmU02s2tqCpvZRcDVeKMcombWz9+6bnr4IiJtIxoJ34/XCirSkJuikfB1QQfRGpqdIDjnpuJNJHIV8AkwCq9loKbj4lbAFnGnnAl0wJvnfHHcpslIRKRdiUbC1wL/DDoOSVm34E0FkBbMudQflukPdVyzZs0aunfvHnQ4Iu1WcXEx+fn5APl+/x5pgVBB4d/xRluJ1LgiGglfGXQQrUlrMYiINFM0Ep4E/BGIBR2LBM4Bf0q35ACUIIiItEg0Er4Vb3RDRdCxSGCq8GZIvCXoQJJBCYKISAtFI+EngfGAbtdknjK8eQ6mBB1IsihBEBHZBP48Cfvgdb6WzFAMjI9GwtOCDiSZlCCIiGyiaCQ8GxiLtyiPpLcvgD3b07LNLaUEQUSkFfjz7e8G/DvgUCR5pgK7RiPhz4IOpC1omKNIBtEwx7YRKig8G7geyAs6FmkVlcD5fsfUjKEWBBGRVhaNhG/Hu+XwddCxyCb7Htgn05IDUIIgIpIU0Uj4I2AMXrO0tE+vAqOjkfD7QQcSBCUIIiJJEo2Ei6OR8LF4U843tMS9pJYK4BK8kQorgg4mKOqDIJJB1AchOKGCwpHAfcDuQcciDfoAOCUaCX8adCBBUwuCiEgbiEbC8/D6JZwDrA04HKmtBDgfGKvkwKMWBJEMohaE1BAqKBwA3Az8OuhYBIDn8NZT+DboQFKJEgSRDKIEIbWECgoPwFsieFjQsWSoKPDHdJ8RsaV0i0FEJCDRSHgGsBNe0/aagMPJJMuBC4DhSg7qpxYEkQyiFoTUFSoozMdbQvpcYPOAw0lXK4F/ArdGI+H1QQeT6pQgiGQQJQipL1RQ2A04GzgP6B1wOOliNXADcFM0ElYH0SZSgiCSQZQgtB+hgsLOePMnTAT6BRxOe1WM1xn0hmgkvDroYNobJQgiGUQJQvsTKijsCJwG/AkYFHA47cWnwL3A5GgkvCroYNorJQgiGUQJQvsVKig0YF/gZOBIoHOwEaWcUuBJ4J5oJPxe0MGkAyUIIhlECUJ68PspHA38Hm/ypUw2B7gHeFS3EVqXEgSRDKIEIf2ECgqHACcBJwBbBhtNm/kCKASejEbCs4IOJl0pQRDJIEoQ0luooHA4cLC/7QN0CjaiVlMOvIWXFBRGI+H5AceTEZQgiGQQJQiZw+/cuA8/JQwjgo2o2RYCL+MlBTM0b0HbU4IgkkGUIGQuf/2HPYCd47Y+gQb1kxXAJ8B/gVnAB9FIeHGwIYkSBJEMogRB4oUKCvsBw/1tBDAE2AIvcdgMsFaqKgYsAxYBi/2v/8PrYDhHyUBqUoIgkkGUIEhThQoKc4BeeMlC/NYDcHhv+vFb/L71bJwMLI1GwtVt/BRkEylBEMkgShBEpKm0mqOIiIjUogRBREREamlRgmBmZ5tZ1MzKzOwDM9utkfJHmdkXfvm5ZnZoy8IVERGRttDsBMHMjsFbNvNKvGEys4HpZlbncBkzGws8DtwPjAaeBZ41s5EtDVpERESSq9mdFM3sA+C/zrkJ/uMsvAktbnXOReooPxXo4pz7Rdy+94FPnHNnNLFOdVIUaQXqpCgiTZXTnMJm1gEYA1xTs885FzOzGcCe9Zy2J16LQ7zpwK8aqCcPyIvb1Q28f24i0nL6GxKRpmpWgoA3JjYbWJqwfykwtJ5z+tVTvl8D9VwMXJ64c8stM2UdEpGk2xxQtiAi9WpugtBWrmHjVoduwPfAQGBtIBE1jeJsfe0l1vYW58qgAxGR1NbcBGEFUA30TdjfF1hSzzlLmlke51w53updAJhtmO1zbSrfN1Wcra+9xNoO4xQRaVCzRjE45yqAImD/mn1+J8X9gZn1nDYzvrzvwAbKi4iISMBacovhBuBhM/sQb9Wtc4EuwIMAZjYZ+ME5d7Ff/mbgLTM7H2/ZzmOBXYDTNjF2ERERSZJmJwjOualm1hu4Cq+j4SfAeOdcTUfErfAW66gp/56ZHQ/8Ffg73gpev3LOzWtGteV48y6UN1YwYIqz9bWXWBWniKSVdrFYk4iIiLQtrcUgIiIitShBEBERkVqUIIiIiEgtShBERESkFiUIIiIiUkvKJAhmdraZRc2szMw+MLPdGil/lJl94Zefa2aHplqcZnaqmb1tZqv8bUZjzyuIOBPOO9bMnJk9m+wY/fqa+3PvYWa3m9liMys3s69S8Wfvlz/XzL40s1IzW2hmN5pZxyTHuI+ZTTOzRf7Psd5F0eLOGWdmH/mv59dmdlIyYxSR9iElEgQzOwZvAqYrgZ2B2cB0M+tTT/mxwOPA/cBo4FngWTMbmUpxAuP8OPfDW9VyIfCKmQ1IsThrzgsB1wFvJzO+uPqa+3PvALwKhIAjgSHAqcAPKRjr8UDELz8MOAU4Bm8ukGTq4sd2dlMKm9k2eBOYvQGMAm4C7jOzg5MWoYi0D865wDfgA+C2uMdZeP/0C+opPxV4IWHf+8BdqRRnHedn462g97tUi9OP7V28N7KHgGdT8Od+BjAfyE12bK0Q623Aawn7rgfeacOYHd6kZA2VuRaYl7DvCeDltn6NtWnTllpb4C0I/qfCMcCMmn3OuZj/eM96TtszvrxvegPlN1kL40zUGcgliSvpbUKclwHLnHP3Jyu2eC2M8zC8NTxuN7OlZjbPzCaZWXYKxvoeMKbmNoSZDQIOBV5MZqwt0OZ/SyLSPqTCcs+98D69Lk3YvxQYWs85/eop3691Q9tIS+JMdC2wiNr/kFtTs+M0s73xWg5GJTGuRC15PQcBPwcexXuz3Q64Ay/pujI5YQItiNU595iZ9QLeMW8JxRy8Fq5k32Jorvr+lrqbWSfnXGkAMYlICgi8BSFTmFkB3kJVhzvnyoKOp4aZdQOmAKc651YEHU8jsoBlwGnOuSLn3FTgb3i3HlKKmY0DJgFn4fVZOAIIm9mlQcYlItJUqdCCsAKoBvom7O8LLKnnnCXNLN8aWhInAGY2ESgADnDOzUlOeBs0N85t8Tr9TfM+6PW8OgEAACAASURBVAJ+4mhmVcAQ59z8FIgTYDFQ6Zyrjtv3OdDPzDo4bznyZGhJrFcDU5xz9/mP55pZF+AeM/ubf4siFdT3t1Ss1gORzBZ4C4L/T70I2L9mn5ll+Y9n1nPazPjyvgMbKL/JWhgnZnYhcCneipcfJiu+TYjzC2AHvNsLNdvz/NSrfWGKxAleJ8rt/HI1BgOLk5gctDTWzsStauqrSWyM1NHmf0si0k4E3UvSOQfe8K8y4ES8IWF3A6uAvv7xycA1ceXHApXA+Xj3gK8AKoCRKRbnRXjL6v4a715vzdY1leKs4/yHaJtRDM19PbfEGwVyK15iEMa7X/6XFIz1Cj/WY4Ft8N50vwamJjnOrvyU6Dngz/73W/nHrwEmx5XfBlgP/MP/WzoLqAIOTvZrqi35G7ArXofZ9f7vwyhgPPCJ//vsgB5Bx6ktNbfAA9gQCEwAvvXfUD8Ado879ibwUEL5o4Av/fLzgENTLU4g6v8BJm5XpFKcdZzbJglCc+LEu5//K7ze9e/7/9zm+/uzUylW/3EO/H97dx7eRLn2cfw76QItS9i3AgaBAmVRrOACKCqbRFFAwAOiKIoHF1R8lYoocY+KqLigyHHDBVkFCSKggogiUndZLYStQClL6N4s8/4xaaltoS20mSRzf66r15HMJPNLzszkzjPPPA9T/UVBDrAHeKOqT8ZoY2+Uts8VfI7vA2tKec6v/veVAowJxOcpf1X7h9Z514nWSjgOuAmoj1a4/ojWMfkm/3ojgft1zGoCxqC1Xu5FK2j+AqYA1fX+LI36p/j/zxEiqCmKkgksUFV1jN5ZhAgFiqK0R+ujc4fq7wujKMoA4Eugr6qqq4usuwytBdaiU9aaQAZa8b8MrTPyJWgtdt8BV6ryZRVwwdBJURiM//p9tBpEd3MIEYYKRvk8XsZjwSAf6KGq6g9FHntHURQn2i3MV1G1t4eLUujeSVGcPf9Y+pv8cwSkKIpyp6IoNkVR1GLr3aQoSrJ/boCjiqLMVRSlRbF11vgHIEpQFOVbRVGyFUXZ7+9sWXy71RRFecI/fn+ef76BFxRFqVZsPVVRlNcVRRmlKMrfaE3ZA/zL/k9RlB8URTniz5WsKMoNxZ+PNoTwLf7XUhVFeb/I8jhFUd71D56UpyjK34qi3HaWH6sQIct/fKz1/3O+/5hZA3zgf+znguPI/7gVOKfI8eX0v05v/7+HK4oy1X8uyFAUZYGiKGb/OeAVRVHSFEXJVBTlvVKO/1sVRfnGv06eoiibFUUZX3QdVVXzixUHBRb7/7dDZXwuomKkBSHEKYrSFViBdgvgVLQBfR4HDhdb71G0W+/mAbOBhsC9wHeKonRVVbXoL4q6/tdc5F//BuB5RVH+VFX1S//rmdCuF/YEZqE1ZXZG6xQXj9ZfoKgrgeFoQxCno10bBbjP/zofA9FonfrmK4pyjaqqDv86o/2ZN/q3Bdq1chRFaYzWLKn6X/swcDXwP0VRaquq+ko5PkYhws3baEOBTwZmAD+jdejdhtYf4XFgF9pxVBMwA83Rjl+AzGKv9whaXxo72gBl96J1FPehnS9swMVo/Qh2AU8Wee544G+049wDXAu8qSiKSVXVN8p4HwWD3wX7GC3hSe9OEPJ3dn9oB10W0KzIY23QDt6Cy3bnoB2Yk4s9t5N/vclFHluD9mU7ushj0WgFyIIij92Edttez2Kveaf/+ZcWeUz1r5tQSv6YYv+OAv6k5DwGmZTSsRKtcEgF6hd7/FO0ZtSY4s+RP/kzwh8nO6zeUOSxMf7HLiy27jLAeZrX+JMic6AAn6AVB8uLrf9D8dcp7RhE+wGSUo73sApwIXda6PInlxhCmH8Ogj5odxykFjyuquo/aB2RCgxBu5w0T1GUBgV/aIPk7ECbbbKoTOCjIq+Xj/br/dwi6wxDazXYWuw1v/EvL/6aa1VV3Vz8PahFBuNRFKUu2i+ZdWijD5b1/hW0W0i/8P+zaI6v/K9V5usIIcr0oaqq7iL//gltPI93i633E9BCUZTC1ulix7jZf3yuBc5VFMV8qg0qijIZ7fyWpP67hVMEiFxiCG2NgBi0W+mKK/pYW7SDeccpXsdd7N/7VH/5XsQxoEux1+xAsUsZxbIVtau0lRRFuQbtVqbzgaLXLsvTY7khUAetyXRcOXMIISpuT7F/u/z/W3wgNRfajxEzcARAUZQeaB0NL0EbQKwoc5HXKqRo06s/DfxPVdWZZ5VcnDEpEIzBhPaFezUnR/Mrqvj1xtLWgX+PAGhCa3aceIp1i584SgzbqyhKL7RLJN+hDdBzAK1YuRXtvuyyFLSAfcTJzlfFVfXQ1kIYwanOCac9VyiK0hr4Gm0sholo54V8tMnWHqCUjvKKovRFG3jMQRDOs2IkUiCEtjS0AYPalLKs6GMpaAfsLlVVt1fStlOA89D6Cpzp/clD0fL3V1U1r+BBRVFuLWXd0rZxGO3e6Qi1yD3dQogKq6oxBq5FaxkcpKpqYSuEoijFL0EWPH4R2p0Lm4Dhqqp6qiiXKAfpgxDCVG3SotXA9YqiNCt4XFGUNmitBQUWoVX6U/3X7SmyrqIoSv0z2Pw8IA64o/gCRVFiFG1iorJ40U5MEUWea6HkHRCgdcSsU/QB//tfCAxVFKVTKTkaliODEEI7vk7ZH+AslJh/xN/voMSPAEVROqC1GjiBa1SZLEx30oIQ+mxAP2C9oigz0b5s70EbpvR8AFVVUxRFmYI2Dr9FUZTP0X55twIGo906OK2C252DdtviW/5fA+v9227vf7w/2q+A03GgNTuuUBTlE7T+Anej9Z/oUmzdZKCPoigT0e5a2KWq6k9os2ReAfykKMo7wGagHlrnxD7+/xZCnF4yMEJRlOlot0Rmqqr6RSW87kq0SwpfKIryNtotlXegtX42LVhJ0aad/wrtlskX0aZGL/o6KaqqygRiASYFQohTVTVZUZSr0b7gn0K7xvc4WgfC9kXWsyuKsh3tut9U/8N70Q7gpWewXZ+iKNf7X+9mtEIjG9gJvAqUeSlDVdVvFEUZi/Yl/wpaR8ZJaNNPFy8QJqIVMk+jdcz8APhJVdVDiqJ097/nIWh9GY6g3Xc9qaLvSwiDehPtB8WtaMf0brS7g86Kqqrb/AOfPY12jjoIzES7PFj0Doj6aJOxgTbWQnEfIDOMBpzMxRCm/K0EHVVVbat3FiGEEKFH+iCEAUVRYor9uy1aL+E1ugQSQggR8qQFIQwoinIAbRrfnWijJo5H6zncVVXVU419IIQQQpyS9EEIDyuA/6CNW56Hdq1ushQHQgghzpS0IAghhBCiBOmDIIQQQogSpEAQQgghRAlSIAghhBCiBCkQhBBCCFGCFAhCCCGEKEEKBCGEEEKUIAWCEEIIIUoI6EBJycnJNYFmSGFidD7gOJCemJjo0zuMqFpy3IsgIOecMxCwgZKSk5MvNplMb5lMJjNF5gYXxqSqqsfn861VVfXxxMTE/XrnEVVDjnsRLOScU3EBKRCSk5Nrmkym7+vUqdO4UaNGRxVFkeEbQ43Pp+BzR+HzROJ1RyqqNxLVZ0JVFQpP/GrBf6ooqKCAYvKqpkgPEVEeTJEeTJFuFYX8/PzoQ4cO1c7Jydnj8/l6JiYm5uv35kRVkOM+tKmqildVIzxeNdLjUyM9PjXK61MjVFVVUFFUhcL/QxVAUbXjXkFRI0yKN9KEO8Jk8kRFKp4IRfEqin71oaqqcs45A4G6xNDMZDKZGzVqdLRGjRo5AdqmqAhVBXd2dfKza+DJicHrjsLnOfmn+iIqbVtKhKeGKdIdXUvxOk+c6NByw6Mv88Wfa4BkbK6dlbYdoTc57oOc16easvI9sTn53tg8j6+6x+uL8hcCUR6vGqWilvKtXp4v+oLSwet/hqJGmBRPZITijjQp+ZERJnd0hCkvNjoiOzY6IjsywuSttDd1CjVq1MiNiopyp6SkNPT5fC2Bf6p6m6EuUAWCCVDkF0SQ0IqBGPKzYnHnxOLOqYEnNwbUwFwjVr2ReL2REV4VkzeXqPzjdwF3AWAzHwN+AZIL/2yulIDkEpVNjvsg4vH5TNl53tgct7dGTr43Ntftjc33+qoHYtsqquLxqVEeH1FAbPHlURGmvOpREdkxURFZMdER2TWqqGgwmUwFzZwyUWE5yIdkBKoK+Zk1yD1eh7ysWgEtBiquLnCV/09jMx9HKxZWAkuxubbqE02I0OH1qSZXjtuckes25+R7a+Z7fdX0znQqbq+vmtvrq5aR665b8FhUhCkvJioiq1b1SJc5JsoViFYG8W/6Fgg2c2LVvK4r+Wyevm3btuglS5aYH3744cMFj8XFxXWeP3/+P5deemnAmkpdLpfJarW2/vvvv2M9Ho+SkZHxW9Hln376qXny5MnNfT6f0q5du5y5c+fuqlevng9g7ief1Jky5dGWqs9r6tKhjemDV55QateqWWIbPp+P+x5/keXfrEdR4P7bR3LPrTeWuayoY8dPMOT2/yP92HF6de/Km889AsDhI8cYdufDrPr0TaKios7mo6jDyaLheWzmHcAX/r912Fxy4ggRliRHlRzzTrv1rI75QGjfvn3Cjz/+uLVu3bpV1os+z+ONcmW762Tkeupku721VLW0SwSnNvu1l1i6YC57dqUwfdYcrhxgLVx2JP0wU+4fz77du4iKjubRZ6aReHGPMpcVt3b1CqY//Tg+r5c27RN4avob1KxVu7Rl1Z6a/ka1mrVq10s9nqvGREdk1qoeedwcE+V6bHJSvcWLF9erUaOGd/78+Tvj4+PzAYYOHWq58847D/fr1y/rzD5BUVSw/orU1Y4dO6q9++67DSv7dd1ud4XWj46OVh9++OGDDodje/FlLpfLdM8991gWLVqUsnv37r+aNGninvxIUnMyDzXIcP7W5r777m297P2XolJ+WBIR16Sh8tQr75S6jY8WLmfz9p1sX7eYjcvm8OLMD/l7W0qZy4r6ePFyruhxIX9+PY+t/+zir63apb2JtpewP3Lv2RYHpWkLTAS+BdKwmT/CZh6BzVy7sjckxNkqOO63bt26ubKLA1VVyczzxKYez2m27WBGwraDGV0OnshtmZXvqV3R4gDgop69efPD+SRedGmJZa8+9wRdLriQL9Yl8+RLb5B077jC93a6ZUVlZ2Vie2gCr8z+iC/WJdOwcRNmvfpimctUVCU731Pr0IncFr/8s7/T/EWLm37z46/Hb739jhPTpk1rBLB48eLaMTExPikOKo+hC4SFCxfWTkhI6BAfH5/QrVu3dsnJydUB7r333pZOp7N6+/btE6688so2BevPmzev7vnnn98+Li6u88MPP9y04PE9e/ZEDhw48NzOnTt3iI+PT5gwYUKzgmVxcXGdx48fH9e5c+cOQ4cObVWRfDExMeqgQYMy6tevX+IX8sKFC80JCQnZXc8/L4+s9HoP3z4sdtnSJQ05kXrOiq9Wmrt2akf7Ntrm7rplOJ9+/lWp2/hs6UruGDWEiIgI6tU1M2JQPz79fEWZy4qKiowkOycXn89HXr6b6KgoVny7nrp1anNxYpeKvOUzUQ8YBcwFDmMzz8dm7ovNLLfUiRJWr15dIzExsV27du0S4uPjEz766KM6AN99911s165d28fHxyd07ty5w8qVK2sA3Hjjjec8/vjjjQuev3Xr1ugGDRqcl5eXpyxZsqTW+eef375Dhw4Jbdq06fjyyy83KFhv6NChlmHDhlkuvPDCdvHx8R0BFEVJTE9PjwAYN25c806dOnVo3759woUXXtju999/L2z+VxQlMSkpqUnnzp07xMXFdX711VfrFyz75Zdfqvfs2bNtfLt2HePbdzhv6vMvn7fzcGaHrTv3NJ1wx80xI6+5iqF9LuX1F54+o8+nc9dEmp9jKXXZymWfM+ymWwHodP4FNGzchOQN68tcVtT3366mfccutGoTD8CIm8fy5ZJFZS4ryhQRgc/rUw65spqkZ+Q1VaNrNtyxLz3umWeebTZjxox9Z/TGRakMWyDs378/cuzYsee+//77zu3bt2++7bbbDg8fPry1z+fjtdde22OxWHK3bt26+Ztvvins6Xr8+PGI3377beumTZu2zJw5s/GuXbuiAEaOHNnq7rvvTvvzzz+3/P3335t//fXXGu+++27htbSjR49G/v7771uWLl26q7Ly73XujG3TsmkUB//qgmtvq3Pj6tc4kJaOx+Nhz/6DnBNXWL9gadGUgmXF7Uk9yDlxTU6u27wZe/YfLHNZUTcNtfLPrr107fcf+vTqTlzTRjwz4388M+nuynq75RUN3IDWVyEFm/lRbOYmZTxHGMShQ4ciRowY0eaZZ57Zv23bts1btmzZ3Ldv34zc3FxlxIgRradMmZK6ffv2zdOmTds7cuTINi6XyzR27Nj0Tz/9tPCL/+23324wePDgI9WqVVMvvfTS7E2bNm3dsmXL5vXr12998cUXm6akpBQ2l/3xxx+xq1at2rFr166/i2ex2WwH//rrry1bt27dPG7cuLR77rmnZdHl1apVU//8888ty5Yt2zF58uSWbreb/Px8hgwZGj945C2RC7/+qfqC1T9GXjXwukiAKQ/cxYibb+eTZV/z2Yrv+PuP31i57PNK++yOHzuKx+OmQaPCWom4Fi05sH/faZcVd2D/Ppo2b17472YtWpKedhCPx3PaZUXFxtZg9B13Mfq6vny78ktGjv2v6emnnmgyevwDNY56olsfzcqv6zuD1hNRkmE7Ka5du7ZGfHx8Tvfu3XMAxo8ff/Thhx9uWfClX5rRo0cfBWjatKmnefPm+du3b69Wv35974YNG2o/+OCDUQ8++CAA2dnZpq1btxb2Dr7tttuOmEyVUIupKuQeN5N1uFFNsmtHK15Q9b/8XiM2hgXvvFj47wemTmPSXWP4x7mXZ2e8C8CU+27nvI7xgYzVCngaeBybeR7wKjbXpkAGEMHl22+/rdmqVavcAQMGZAJERETQuHFj78aNG2NMJhNDhw49AdC/f//M+vXruzds2BDbv3//TI/Hw9q1a2N79eqVPW/evPqff/75DoBDhw5Fjho1yrJr167qERER6vHjxyN//fXXmNatW7sBrrvuumOnuqSwdOnS2m+99VajrKysCJ/Ph8vl+te5eOzYsUcAunbtmhsREaH+vm1ns9TDxxrkud1RfQcNiyq4LaRuvfpkZ2excf1ajqanFT4/OysLZ0r43sU34pbbGXHL7QBs/uM3Dh3YT4/eVzHloftrHz2SXjux+yXeCfdNONigZrX0qAhTyV9GolwMWyCciZiYmMKDPSIiQnW73YUDTf3yyy9bYmNjS72dq1atWqV+iycnJ1cfNWrUuQDdunXLnDNnzp5SN6z6FJOCibTNnfDmVwNoGdeEVes2FK7i3HuApo0aEBkZedplxbVs1oTd+w9yyYXnaevuS6Wlv9XgdMtOZeOvf5F25BjX9L2MXoNvY86Mp1FVlTEPTGXtwtmnfW4ViQZuAm7CZv4ReAlYhM0lt96JUyo6qM/IkSOPvPPOOw1OnDhxrG7dup5u3brlAowbN+6cfv36uVasWJFiMplISEjokJOTU/hLoGbNmqUe9zt27IieNGlSyx9++GFLx44d83766aeYPn36tCu6TmxsrJrn9kanZeQ1iYiMijickdfU4zvFLus/B81Zsopq1U9/1+KDd97CXqc21MisuUuoU7de2R8GUKduPSIiIklPO1TYUrB/7x6axjU/7bLimsY1Z8O6NYX/Tt27hwaNmhAZGXnaZafi8Xh46enHeP712SxbPI+69Rsw+ZlpjB1+bUSvq/rHtbC0ala7euTRRrWqH4yJjsgt15sVhQx7iaF3795Z27dvj/n555+rA8yaNatu48aN3a1atXLXqVPHm5GRUa6Bgcxms6979+4npkyZUtim73Q6o4o2NZ5KYmJi7tatWzdv3bp1c6nFgapCZlr96BO74xUFpaA4ABhwxaX88udWtv6jXbV484N53Hhd/zKXFTfsmj688/EivF4vR4+5+GzpSkYM6lfmstK43W4mPTOD6VMnApCVnYuigMmkkJmVXdbHEQiXAAuAn7GZ++odRgTWVVddlbl79+5qK1asqAng9Xo5dOhQRJcuXXJ9Ph+LFy+uDbBq1aoa6enpURdffHE2wB133HHE4XDUfeuttxqOHj06veD1XC5XhMViyTOZTHz55Zc1t23bVuL+/tIcO3YsIjIyUm3ZsqXb5/PxyiuvNCq+zgFXXtz2Q5mdjmXnF3aWtrRuS/WYWL78fMHJ1zp6hNgaNel2aS/effOVwsfTDh7g0IGSowm/9PYHzPtqHfO+Wlfu4qBAP+t1zP/oPQD++u0X0g4eKLxT4XTLiurR+yq2/PU7u/7R+l1/9uH/GDBoSJnLTuXDWa8z8PobaNCoMTnZ2YWFnaIo5GRnoaqq4spx1/8nLaPj7iNZ5+R7ffKjuAIMWyA0a9bMM3v27J233HJLq/j4+IR33nmn0WeffZZiMpm46KKLsuPj43Patm3bsWgnxVOZP3/+rpSUlGpt27btGB8fn3Dddde1TktLO7sdMfuombTNHbt072G59NrR0ScysmieOIDR904BoFbNGsye9jjX3/YgbXoMYt+BNB67//YylwGc3/dGUg9qd3COvsFK+zYW2va8nm7W0UwcdxOdO7Qtc1lpXpz5ITcPs9K4odan6sn/+y8DR09g4OgJPPXQXWf1cVSyRGAlNvNqbOYL9Q4jAqNhw4beuXPnpkyePLl5fHx8QseOHRO+/vrrmtWrV1c/++yzlCeffLJZfHx8wsSJE1t+/PHHKWaz2QdgsVjc5513XtbXX39dZ+zYsUcLXu/pp5/eP3Xq1Obt27dPmD17doMuXbqUq/d89+7dcwYNGnS0ffv2Hbt06dKhRYsW+aCNW5B6PKcZgCvX07D4KIaRkZG8+r+P+XzeJwztcynD+vVk9fKlADw7YxZ7nDsZctUlDO1zKRPH3czxY0dLbLsss16dRt9uHfn9l5954uEJ9O3WkaNHtJro/sk2ftu0kWt7JfLYg3fz7Iy3C+9QOt2yN6Y9y7w52qXGGjVrYXvhVe6//Sau6XkBaQdSGXff/5W5rDR7nbvY9OP3DPnPzQBcM3g4G9d/x5CrLqFlq3Np26Fj4boq4MpxN9hzNCc+M99X97eDeeYKfzgGFKi5GNpHRkauaNu2bWZsbKw085xO7omaZKTG4c4pOWhBmMn1qOzaf5hW6x+keuZevWKowELgUWyuEreTijMnx335+FRVOZyR1zA9M6+p16fKL9wqpHrySUvdxxNr0k7sO+G1A6847VYZBvwUDNuCEHTys2JI39GGoyntjFAcBBEF7c6Hv7GZ38ZmblbWE4SoDKqqciQzr962gxmdDp3IbSHFQeCoKrWBZ4F/LEmOOy1JDvnsSyEFgt58XhPHdrcgfXsC+ZnS7KWfSGAcsAOb+X5sZjk2RJXJzvdU35GW2WH/8ZxWbq8vWu88BtYMeAv4zZLk6KZ3mGAjJ0E95Z6oyeEtCeQcLdFJSegmFngZWIPN3FrvMCK8qKrKAVdOk5TDWQm5bm+5OjWKgOgI/GhJcjxrSXJIweYnBYIeCloNjqa0w+sO2glUDK4X8Ac28wQZlVFUhhx/q8HhjLy4MxkGWVS5COAR4BdLkkM6LyMFQuBJq0EoiQVeRVoTxFlQVZWDrpwm/0irQagoaE14xuitCVIgBIrPq3B8T3NpNQhJl6G1JtwrrQmiInLyvdV3pGW2T5NWg1ATCUwGkqtqBtJQoGvPTcNM/ZqfXZ1ju9oUHehIhJxYYAYwWJs50nW4rCeIUgTpFO9VIS0jt+GhE3ktpDAIaZ2ADZYkx1Sn3fqs3mECTVoQqsjPP/9cPS4urjPZR80c2dGhqosDn8/HvVOep/Wlg2jTYxCvvzf3lOvu2LmHSweNIb7n9XQbeNO/pnA+3bKiln/9PZ2uHEanK4fx1ZofCh9/d+7nPDvjf5X3xoLPFWgjMZ6ndxBRcR999FGdc889t2P79u0TNm7cGFNZr7ts2bJaCxYsqA3auAZ7jma3POjKbVne4uCPXzcxrF9Prr3sQm4fMYhDB1JPue6sV6dh7dEVa4+uvPb8U+VeVsDtdnP/2FEM69eTB+4YXTgZUl5uLrcOHciJ48fL96aNIxJ4xpLkmGtJclTaPhMKpECoQiZFjeD47jaovir/nD9auJzN23eyfd1iNi6bw4szPzzll/udk55m3KghbP/+cybdNYYxD0wt17KiHp82k+VzZrB8zgweff4NAA4dPsKcBct5+K5bKv8NBpdzgPXYzKcfB1YEnVmzZjWcNGnSga1bt24umKjtbLndbr755ptay5cvN7u9vsiUw5nxx4sMkVwWn8/H5HvH8ZDtOb74bhO9rujLi09MLnXd5A3r+XLpQuav+p7F32zgh7Xf8N3XX5W5rKgf1n5N7Tp1mb/ye2rVNrN+zWoAZr36IjeOuYPadeqcycdgBCOA7y1JjpKTTIQpQxcIBb8m2rVrlzB+/Pi4unXrnrdt27ZoOPV87ZmZmYrVaj23devWHdu1a5fQo0ePwrGHJ06c2Oycc87p1LFjQocFc2afG6FQOJ/DV2t+oOf1t5E4YCTdraP5dv3PAPS9cTwLlq0uzLTmh0107fefCr+Xz5au5I5RQ4iIiKBeXTMjBvXj089XlFgvLf0om/7Ywk1DBwIw1HoVe1MP8c+uPaddVlxUZCTZOblkZecQ7R9S9QHbSzz/6ITTTq4SRmoAC7CZbdIvITSMGTOmxaZNm2o++eSTcV27dm0PsHDhwtoJCQkd4uPjE7p169YuOTm5OmgtAu3bt08oeG5hiyCwbdu26Fq1ap0/fvz4uISEhA7PPfdcow8//LDh4s8/r9+5y3ldXn7huQoNdLb5j9+IiIyk+6W9ALjhpjGsXb2CvNySg09+9cVirhkynNjYGkRXq8b14aRW5AAAIABJREFUI0bx5ZKFZS4rKjIyitwcbW6U3JxsoqKi2b7lL3al7KD/tYMrEt2ILgA2WZIcl+gdJBAMWyDs378/8p577rEsXLgwZdu2bZvbt2+fe/z48cJvtlPN175o0SKzy+WKSElJ+Xvbtm2bFy1atBNg7ty55qVLl9b9bdNPO/78ZgH79+8tbIrauXsftpfeZvmcGSSv+IRPXn+Gkfc8Sl5ePreOGMT785YW5nrvs6XcduN1FX4/e1IPck6RmRYtzZuxZ//BEuvtTT34r5kdFUWhZVwT9uw/eNplxb0w5T5uuX8qYx6wMe2xB1i26jsaN6hH966dKpw9hCnAVGA+NnMNvcOI03v//ff3durUKdtut+/99ddft+7fvz9y7Nix577//vvO7du3b77tttsODx8+vLXPV+oMzf+SmZkZ0bFjx9zNmzdvefzxx9NGjR6TYR0ywjTvq3XKf+9/uEK5Dqbuo2lci8J/16hZixo1a3H4UMnj7kDqPpoVWbdZi5Yc3L+vzGVFXXLZFdSoWYth/XpSs3Ztuve4jGlPTmHSE89VKLeBNQbWWJIct+odpKoZ4qdeadasWVOjXbt22V27ds0FuOeee4489NBD5xQsP9V87RdeeGH2pEmTqt90000tL7/88owbbrjBBbB69epaQ667JrOuN60dPm/UnTcN5fuNvwGw4tsf+Me5l8uGnJwwyWRS2LP/IIMHXMGEx17kwKHD1KpZg2Wr1xXOhhjMel10AT8t+xCAjMwsBo6+lxUfv8Er73zM+p9/p3HDekyf+iDR0WVOahkOhgJtsJmvw+barXcYUT5r166tER8fn1NwqWH8+PFHH3744Za7du0qc6eNjIxUx48ff0Qb+Ci3ab4SWbfqE1cOk8nE1BdeLfz3R7NnckX/gXg8XpLuuZ38/HxG3HI7F/W4TMeUQS8aeNeS5OgC/J/Tbi11au9QZ9gWhNMpmK/9448/3rVjx46/P/nkk515eXkKQEJCQv7WrVv/vvrqq13r16+v2bFjx46HDx+OiFK81WPJrY/PGwX/nk9eRaXvZRfz26q5hX/7k7+i7bktiYmpzrBr+jBnoYP5y1ZxZY9u1K9X8hqg/fX3OL/vjZzf98Z/dQos0LJZE3YX+aXv3JdKyyItCgVaNGvCgbT0wo5JqqqyZ/9BWsY1Oe2y05lsf51HJ4zlYFo6S75ay/xZL1C/rpmPFy8v+8MOH+ehdV68QO8g4uxFRUWpRVsScnJy/nWurF69us9kMrH7SHar9My8087fccLlYnj/Xgzv34v7b7+pxPImzZpzYP/JycqyMjPIzDhBw8Ylj7umzZqTWmTd1L17aBLXvMxlp5K6bw/rvlnFiJtv541pzzB01Biemv4G9scnnfZ5otD9wBfh2nnRsAVC7969s7Zt2xZb0Ldg5syZ9d1utwKnn689JSUlSlEURo0a5Xrrrbf2qarK7q2/Nbz2sgvMCxyrlYzMLFRVZdZHiwq31f/yS1i97if+2HxyssCNv/5V+N+3jhjEe58t5f15X5zy8kLSPbcWFhf9e19aYvmwa/rwzseL8Hq9HD3m4rOlKxkxqF+J9Ro1qMcFndvz0ULty3uh42uaN21Em1YtT7vsVDYk/4HrRCYDruhBVnYOBXWRyWQiM8twk6Q1BL7GZr5Y7yCibL17987avn17zM8//1wdYNasWXUbN27sbtWqlbtdu3Z5qamp1VJTUyMB3nvvvfrFn78rPav1iVx3PdAuC2ScOFHqdmqbzcz7ah3zvlrHK7M/KrE8ocv5eNxuNv6wDoAFH73P5X0GUK169RLr9r3mepYtmkd2dhb5eXl8/tnHDBg0pMxlp/LC1Ed4aOozmEwmcrKzUVBQTCZys8s1c7XQXA04LEmOsLvMqOslBj3HK4iLi/PMmDHDOXjw4DbR0dHq5ZdffiI2NtZXv359b7t27fIL5muvW7euZ+DAgYX3/SQnJ8c8/vjjzVVVxev1KiNvuC7nwtYN4mjdk42//cUF/UdSu1YNrr6iR+G22rRqySevP8udk54hOyeXfLebrp3a88kb2m213bt2IiIign+ce+l3+Zl9t4y+wcrPv/9N257XoygKE8fdROcOWv/JpSvXsnTlWmZPexyAt+2PMuaBqTz72rvUrlWD96bbCl/ndMuKc7vdTHp2BgtmvQhAl4R4zj2nOZ2uHEaDenVYPPulM3ovIa4OsBKb2YrNtU7vMEEniMYraNasmWf27Nk7b7nlllYej0cxm83ezz77LMVkMmGxWNx33XXXwW7dunVo0KCBu0+fPq6C5/l8qoJiisjM8xQ29V054BqWLfqM4f17ceXV11KRfggmk4lnZ7zNU0kPkJeXR6PGTXjm1bcKl9998zDuenAyHc/rSrdLetL/2sHc0Fc7v/S/djCX9xkAcNplpVm+eD7xCZ1o064DALfddT9PTroPt9vNHfc9VO78AtBuf15pSXJc7bRbS68UQ5CiqmqVbyRY54U/duyYqW7duj6AOXPm1Jk6dWrczp07/y73C2QcbEjGgVP/vBanletR2bX/MK3WP0j1zL1lPyG0ZAODsLm+1juIXoL1uD8bPp+q7EzPapud76mldxZRcaonn7TUfdi+TWN/RpV0G/gZ6Oe0W8NiMAnDXmIAeP755xu1a9cuoW3bth2nT5/e5MMPP9xV7idnHmogxYE4jVhgKTZzL72DiMrhU1VlZ3pWGykOxGl0A1ZYkhxhsY8YukCw2+0Ht23btnnHjh1///rrr1t79uyZXa4nZh2uz4nUc8peURhcLOCQPgmhz6eqyq70rNbZ+Z7aemcRQe8itD4JIT8xV6AKBB9oveJDXlZ6XVz7LHrHCAeFu0M47BenVgv4Uu5uCF2qqrL7SNa5WXkes95ZRMjoBSy1JDlK9jQNIYEqEI6rqurJz88P7akzc101ce1tpXeMcJHtBrz5ROUe0TtKVauDViS0KHNNEXT2HstpmZHrkfGHRUVdBXygd4izEai7GNJ9Pt/aQ4cOWaOiotwmkyn0fjJ686OUY7vPVZCZ2c6WqmrFQdrR49TZ/SURXkPcDtkIWILN3BObq3yXsoTu0jJyG1ZkXgUhihluSXL86bRbn9Y7yJkISIGQmJjoS05OfjwnJ6dzSkpKQ7QhakOIaorKPdJE8XkMO/JkpfPmU2f3lzTZ8YneSQKpK/A+MFznHKIcTuS4ax1y5UmrjzhbT1qSHH857dbP9Q5SUQH7wktMTNyfnJzc0+fztQzkds+W4vPQbv2EGRGeLDlRVBZVJSr3iFFaDoobhs38GDZX6XPxhrnOH3ROrIrX/fOWPyt1fIVctzd677Hsc1VpMRRnTwHmWJIclzjt1r/KXDuIBPSLOjExMR/4J5DbPGs285NAX71jiLDyBDbzn9hcIfeLwgi8PtW0+0h2G69PPeX5ceZ0OxknXDxsq9gER2tWLufnH77nIduz/Pzj97xoe4R5X5UcTys7K5NL2rfg973HKv4GdLB7VwqPPTCeY0ePUqtWbZ6c/kbhAEzFLZo7h/feeAWfz0f3Hpcx+ZlpRPlnhD3dsqKeTLqf3zdtpG79Brz8zhxq1Tajqip33zyMR556kRaWoOsqVhOt02I3p90aMp2uDH2bY5ls5mHAFL1jiLCjAHOwmTvrHUT8m/+OhVZZuXlVMrZ+734Decj2bFW8tK6eSnqAoSPH8MV3m7j1rvt4fOLdpa63b89u3nzxWd5buJxl3//CkcNpLPz4/TKXFbVj62b27NrJwtU/cOElPVm26DMAFn36Id0u7RWMxUGBVsACS5IjZFrQpUA4FZv5fLTrxdLEKKpCTbSBlBroHcRIFEVJnDBhQrMOHTokWCyWTjNnzqxXdNm9Ex9qN6jPZXVm2J8A4IO3XmPkNVcx4urLGX/TDaTu21P4WgdT93P7iEFc17s79956I8ePHQW01oUXbI8Urvfp+7N47IG7AFgy7xPuHzuq1GzzP3qPa3slMnzAZcx5Z2aZ78XtdvPM5Ae59rILuWlQX6Y9OYWxw64BIOme21m+eD4An30wm8RzG5Htn1/h9hGDSN6wnv1799Cz4zm8+dJz3DiwN9f0vIB136ws/4fpdyT9MJv/+A3rEK1rTZ+Bgzh4YD97du0sse7q5Uu4vN8AGjRqjKIoDBt9K18uXVjmsqKioqJw5+fh8/nIyc4iKiqaw4cO8uWShYy+o/TCJIj0BmboHaK8pEAojc1cG/gcbaAbIaqKBfgEm1mK0ABSFIUtW7ZsXr58+fakpKSW27ZtK7z92hcRXfMTxzdMnPIUyxfPx7nzH+YsWclnX65l4OAbePbR/yt8nV82/oj9tXdYsmYjTZrGMcP+5Bln2rF1MzOn23l3gYN5K74jL7fs/jkLP36fPc6dLPr6R95buJwdW0+OEn9Rz95s+H4tAD+uW0PHLueTvGE9OTnZbN/8F10SuwOQceIE8R06Mnf5Gh556gVefOLRCmc/lLqfBo0aExmp/TBWFEWboTJ1X4l1D+zfR7O4k925mjVvycH9+8pcVpSldVu6XdKLG6++nP17dmMdMpwXn5jMxEefLMwQ5MZbkhw36x2iPKRAKN1LgIyUKAKhL3Cn3iGM5O67704Hber2bt26ZaxataqWx+uLABg84uSv+29XLmfD92v4z8DeDO/fi/dnzuBAkS+sXlf2o0GjxgAMHTWGDd+vOeNMG39YR4/efQqneB5+821lPuen9d9hHTycqKgooqKiuPaGGwuXXdzrcjauX4vX62Xnjm2MvuNuNqxbyy8//Uin8y8ovK5frVp1rrr6WgC6JHZj3+7yjzavp3sensK8r9Yx7a332fDdGpo0i6NZi5Y8NvFuJo67mRVLF5X9IvqaYUlyxOkdoiwhUW4FlM3cH7hd7xjCUF7EZl6BzeXUO4gRKYqi7jue0xIgJrZm4eOqqjL27ge4YdSY8r2O/2pkREQkXu/JiYDyc/POJNNZPadpXAuioquxfPF8Ejqfx0U9Lued114iIsLERT0uL1wvulp04fMiIiL+lbuom6/vR25ODlHR1fj4i9X/Wta4WRzpaYfweDxERkaiqioHU/fRtFnzEq/TNK45e4sUIan79tAkrnmZy04lM+MEH7z9GjM/Xsj/Xn+ZCy/ugXXIcIb170XvvldTPaZKupJUBjPwDjBQ7yCnIy0IRWmXFt7RO4YwnJrA/+RSQ2C89dZbDQC2bdsWvWnTploX9bpCOZHjrld8vSv6D2T+R+/hOqbdSeB2u9ny1x+Fy7//dhVHDqcBWge5i3ppX7wtLK3Y/MdveL1ecnKyWf3lF2Vm6n5pL35Y+zXpaYcAmD/nvbKf06MXyz9fgNvtxu1288WCz/61/OKel/PmS89yUc/e1K5Th8jIKFY5lnBRr95lvnZxH36+knlfrStRHADUb9CQDp264Fg0D4DVy5fSuEkzWrY6t8S6fa4exNqVK0hPO4Sqqsyf8x4DBg0pc9mpvPrcE9x5/8PExMSSk52NoigoioLH7cbtzq/w+wywqy1Jjlv1DnE60oLwb9MBGe9A6OFK4L9A2b3TQlhlj1dwJrxeLx06dEjIyckxPfvsc/tiG8TFeXwlB3e1Dh7O8WPHuH2E1gTv8Xq5fvgoOnTqAsAF3S8h6d47SDt4gJatzuWp6W8C0Ofqa1nlWML1V1xE46bNaN+xM7k5p+9T0LZ9Av99YBK3Dh1ITI0aXDXg2jLfxw2jbmXH1s0MufJiapnr0LHL+Rw+dLBw+UW9ejNvzrtc7C9cLu55OYs+/ZB2CZ3K90FVwGP2l3ls4t3Mfn06NWvW4smXXi9cZntoAr37DqB3v4E0P8fC+AeTuGXwAAAuvKQnN4zSviNPt6w0v/68gdzcXC657AoAbrzldibdczvvzXyVa4aMoFbtkJg642VLkmOV024t2dkiCChhMYFSZbCZBwBf6h1DGFom0DlcLjUkJye3j4yMXNG2bdvM2NjYXL3zgHanwuHDh39r0KCBF8CZntXqRG7J1oNQkZWZQY2atXC73UyeMI4Onc/jtrvu1ztW0FI9+aSl7sP2bRr7M0q/nKKDFU679Wq9Q5RGLjGAXFoQwaIm8K5cagiMY9n5dUK5OAAY95/BDO/fixv69qBGzVqMvFX6u4agAZYkR9m9UnUglxg004HT94YRIjCuAMYDb+odJBypqpoM4PH6Ig74OyYGsyPphxk/quR1+It79WbilKdK7RMgQtJ0S5JjZbBdapACwWbuAYzVO4YQRTyPzbwAmytN7yDhKtWVG+fxqSXH8A0y9Rs0LHUoZhF2zMArwA16BylKLjHA83oHEKKYmoTHEN8+QFXV4JrwKMftrebKdssIlkakqoCK16d3kFINtSQ5uusdoihjtyDYzNcCPfSOIUQp7sRmfhmbKzRGrildqs/nc6WlpTVu1KjRUUVRgqJHdOrx3OY+jyeoihZR9VSvh5wTxziW7SE9O2g6KBZnR7ujKSgY9y4Gm9kE/A5U/j0/QlSOj7G5btI7xNlITk6+2GQyvWUymcwEwbwmbp9a7XiOr4lBz3qG5vX5+ONgLnP/yuBobnA2IfgNcNqtX+kdAoxdINwMfKB3DCFOwwd0xeb6o8w1g1hycnJNoBlBcEnzodXp/8vzqJfqnUMElk+FrHwfGfkqIfCN9yuQ6LRbdY9qzEsMNnM14MxnVhEiMEzAc4BV7yBnIzExMRPYrncOS5KjDyDFgQh2XYERwFy9g+he0etkPDIZkwgNA7GZL9M7RKizJDkUtOu7QoSCpy1JDt3vsjFegaANilTxOU2F0I/caXP2hgGJeocQopxaA3foHcJ4BQLcD8gtTiKUXIzNfI3eIUKVJclhAp7SO4cQFfSYJclRTc8AxioQbOZo4C69YwhxBh7QO0AIswLxeocQooKaAP/RM4CxCgS4EWisdwghzsCV2Myd9Q4Rou7TO4AQZ0jXfddoBYKcKEQom6B3gFBjSXJ0Aq7SO4cQZ+h8S5JDt07KxikQtDkXLtA7hhBnYRQ2c329Q4SYe/UOIMRZ0u2HrXEKBO3WRiFCWQxwi94hQoUlyVELGKV3DiHO0iBLkqOpHhs2RoFgM9cFhuodQ4hKoPutTyFkJFBD7xBCnKVI4FY9NmyMAgFGA9X1DiFEJWiPzdxT7xAhQoopES7G+gf7CiijFAhyohDhZJzeAYKdJcnRFRkYSYSPc4E+gd5o+BcINnNXZMZGEV6GYjPH6B0iyI3WO4AQlSzg+3T4FwgwSO8AQlSyWHT4NRFi5LgX4WagJckREcgNSoEgRGiS/foULEmOBLSx7IUIJ/WBHoHcYHgXCDZzHDL2gQhP12AzB7zTUoiQ4kmEq2sDubHwLhAC/GEKEUBNgG56hwhSctyLcBXQ4jfcCwT5JSHCmXwRFmNJcjQELtY7hxBVJN6S5AjYxGPhWyDYzDWAK/WOIUQVkgK4pGsI5/OaEAE87sP5QOoH6DqXthBVrAs2c0u9QwQZaVUR4S5g+3g4Fwjy60oYgeznfpYkRzW0HwZChLMeliRHvUBsKJwLBLlPXBhBX70DBJFLkLkXRPiLIECXz8OzQLCZGwPN9Y4hRADIcMInXah3ACECJCDHfXgWCHLSFMYR5y+IhRz3wjikQDgLcqIQRiL7u0Y+B2EUUiCcBTlRCCMx/P5uSXLUBtronUOIAKlnSXJYqnojUiAIEfpkf9eGVJehp4WRVPlxH34Fgs3cCOmgKIxFCgT5DITxSIFwBuREIYymub8wNjI57oXRSIFwBuREIYzI6Pu90d+/MB4pEM5AF70DCKGD8/QOoBdLkiMGaKt3DiECrL4lyRFXlRsIxwJB+h8IIzLyft8M6aAojKlKj/twLBCa6h1ACB0Yeb838nsXxlal+74UCEKEh2Z6B9CRkd+7MLYq3ffDq0CwmeshUzwLYzJyYWzk9y6MTVoQKkBOFMKomugdQEdy3AujkgKhAuREIYyqmr8FzYjkuBdGJQVCBci1SGFkRt3/jfq+hZA+CBUgvySEkRl1/zfq+xZCWhAqwMjXYYUw6helHPfCqBpakhwRVfXi4VYg1NQ7gBA6qqF3AJ3IcS+MygTEVOWLh5MovQMIoaNIvQPoRI57YWRVdtyHW4Fg1BOkEGDA/d+S5FAIv/OYEBUhBUI5Ge4EKUQRRtz/jfiehShKCoRyqrLOGkKEACPu/0Z8z0IUJZ0Uy8mrdwAhdOTTO4AO5JgXRldlx324FQgevQMIoSMj7v9GfM9CFFVlx4AUCEKED8Pt/067VcWYLSdCFJACoZwMd4IUogij7v9Gfd9CgBQI5ZaldwAhdJStdwCdyHEvjEoFcqrqxcOtQDiodwAhdHRA7wA6keNeGFW6026VFoRyMuoJUggw7v5v1PctRJXu+1IgCBE+jLr/G/V9CyEFQgWk6h1ACJ24gXS9Q+hEjnthVFW674dbgSC/JIRRHcTmUvUOoRM57oVRSQtCBRxB+yUlhNEY+UvSyO9dGJsUCOWm/YKSHs3CiIz8JWnk9y6MTQqECpLrkcKIjLzfG/m9C2OTPggVtF/vAELowMhfkkZ+78LYpECooD/1DiCEDv7QO4BenHZrFrBT7xxCBJgL2FOVGwjHAiFZ7wBC6MDo+73R378wnl/8k5VVGSkQhAh9h7C5jH5pTY57YTRVvs+HX4Fgc6UidzIIY5EvR/kMhPFIgXCGftE7gBABJF+OcswL45EC4QzJCVMYieH3d6fdehRw6p1DiAA5AfxT1RuRAkGI0Cf7u0Y+B2EUVd5BEaRAECLUpWFz7dM7RJCQ414YRUD29fAsELQT5iG9YwgRAPKleJJ8FsIopEA4S9/oHUCIAPha7wBBZD2Qq3cIIaqYSoC+38K5QFiqdwAhAkD2cz//iIryw0CEu41OuzUgLeThXCCsQKZ+FuFtGzbXDr1DBJkv9A4gRBUL2D4evgWCzXUcWKd3DCGqkLQelPQFWhOsEOEqYMd9+BYIGjmBinAmv5aLcdqt+5FBk0T4cjrt1oBNSBjuBYKcQEW4OgL8oHeIICXHvQhXAd23w7tAsLl2An/rHUOIKrAcm8urd4ggJS2HIlxJgVDJ5GQhwpHs16fgtFt/BfbqnUOISnYCWBPIDUqBIEToyQe+0jtEkJPLDCLcrHDarQG9M88IBcJPQIreIYSoREuxuTL0DhHkPtY7gBCVLOD7dPgXCDaXCszWO4YQlegdvQMEO6fd+gOwWe8cQlSSVMAR6I2Gf4GgeQ8ZNEmEh13AKr1DhAgppES4eNdptwa8U7IxCgSb6xByTVKEh//5W8VE2eYAeXqHEOIsqcD/9NiwMQoEzVt6BxDiLLmBd/UOESqcdusRYL7eOYQ4S1857VanHhs2ToFgc60CtugdQ4izMB+b64DeIULMDL0DCHGWXtVrw8YpEDRyshChTLcTRahy2q0/Az/qnUOIM7QNHW9pNlqB8CFwTO8QQpyBDdhcG/UOEaKksBKhaobTbtWtz5GxCgSbKxuYpXcMIc7AK3oHCGELgT16hxCigo4BH+gZwFgFgmYa2pCVQoSKP5DOdmfMabd6gCf1ziFEBT3vtFuz9AxgvALB5kpHKxKECBWTsbl8eocIce8jnZRF6NhPEPSZM16BoJkOHNI7hBDlsA6bK+AjqIUb/yAzj+qdQ4hyesJpt+boHcKYBYLNlQU8pXcMIcphkt4BwoXTbl0MbNA7hxBl2EaQjHdizAJBMwuZxEkEtyXYXHKLXuVK0juAEGV4VI9hlUtj3ALB5nIDj+kdQ4hT8AKT9Q4Rbpx261rgS71zCHEKG51260K9QxQwboGgmQv8pncIIUoxB5tLZiOsGo+gjW8vRLAJqhYuYxcI2qQ3j+gdQ4hi8oCpeocIV0679XfgU71zCFHMSqfd+q3eIYoydoEAYHOtQBtIRYhg8SQ2lwzsU7UeAo7rHUIIvxzgXr1DFCcFguYuIF3vEEIAm4Dn9Q4R7px2aypwn945hPCb4rRbt+sdojgpEABsrjTgbr1jCMPLA8ZgcwVFD+Zw57RbPwSW6Z1DGN56gnQodSkQCthc84AFescQhvYENtffeocwmHHIBG5CPznArU67NShHSpUC4d/uAg7rHUIY0s/AC3qHMBqn3XoAudQg9POo027doXeIU5ECoSib6zByqUEEnlxa0JHTbp0DfKF3DmE43xPkU5FLgVCczTUfmTlPBNZUGfNAd3cilxpE4GQTxJcWCkiBULq7gDS9QwhD+AmZXVR3/ksNQXebmQhbjzjt1n/0DlEWKRBKo00JPQxw6x1FhLVDwDC5tBAcnHbrx8BMvXOIsDfXabfqPpVzeUiBcCo213fAPXrHEGErHxiCzbVX7yDiXyYAQTWanQgrvwC36R2ivKRAOB2baxbwpt4xRFj6LzbXD3qHEP/mtFs9aK2Hu/TOIsLOIeA6p92ao3eQ8pICoWz3Ib8oROV6FZvrPb1DiNI57dYjwCAgU+8sImzkA4Oddus+vYNUhBQIZbG5Cn5R7NQ7iggLq4AH9Q4hTs9pt/4F3ITM+igqx3+dduuPeoeoKCkQysPmKvhFkaF3FBHSdgAjpFNiaHDarUuAx/XOIULeK067NSRbDKVAKC9tCFz5RSHO1AlgEDaX3GsfQpx269PAPL1ziJC1Evg/vUOcKSkQKsLmWorc2SAqLge4Hptrq95BxBkZg/RDEhW3CRjutFtDtsVQCoSKsrneRK4hi/LLAwZjc8kXTIjy9zq/Fm3WPSHK4w+gv9Nudekd5GxIgXAmbK7pwBS9Y4ig5waGY3N9pXcQcXacdmsWMBBtUi0hTmcL0Mdptx7VO8jZkgLhTNlczwBP6h1DBC0PMNJ/WUqEAafdegLoDyTrnUUErW3AVU67NSxmBZYC4WzYXFORlgRRUj5wAzbXAr2DiMrltFuPAVcBG/TOIoLO38Dl/nk9woKiqtIp/6zZzBOBl/SOIYJCLtoQyl/qHURUHUuSoxbgAHpcAm+RAAAF9klEQVTpnUUEhV+Bfk67NV3vIJVJWhAqg9Yn4W4gqKfuFFUuE7BKcRD+nHZrBjAAbeArYWw/oV1WCKviAKRAqDza3Q3XIYMpGZUTuBSb6xu9g4jAcNqt2WgdF2UGSOP6FLjCf+kp7MglhspmMycAS4HWekcRAbMWrc9B2P2CEOVjSXKMB14FovTOIgLCB0xx2q3P6R2kKkmBUBVs5npoo69dpXcUUeXeAiZgc7n1DiL0ZUly9AbmAw10jiKqVgYwymm3fqF3kKomBUJVsZkjgenAvXpHEVXCg1YYSPOyKGRJcrQClgCd9c4iqkQKMMhpt27WO0ggSIFQ1Wzm24E3gGi9o4hKcwTtksIavYOI4GNJctQE5gDX651FVKpvgGHhMABSeUknxapmc81Gu9RwUO8oolL8DnST4kCcitNuzQSGoA2kJnc2hYcZaEMnG6Y4AGlBCBytX8JrwEi9o4gz4gGeB57E5srXO4wIDZYkRw/gPaCt3lnEGdkL3OG0Ww05XLoUCIFmMw9Guy2qsd5RRLn9BYzB5pIhdkWFWZIcMcCzwASk1TaUzAYe9A+xbUhSIOjBZq6P1prwH72jiNPyorUaPCGtBuJsWZIcPYF3kdaEYLcPrdVghd5B9CYFgp601oS3gEZ6RxEl/I3WarBJ7yAifEhrQtB7F5gY6tM0VxYpEPSmtSa8DtyodxQBaK0GL6C1GuTpHUaEJ0uSoxfal1EbvbMIQFoNSiUFQrCwma8A7EB3vaMY2OfAo9hchrjHWejLkuSojjaHyyNAfZ3jGNUJYBow3Wm3ZukdJthIgRBsbOYhaE2Q7fSOYiDfAUnYXD/qHUQYjyXJYQYeAh4AYnWOYxR5aJ3FnwnHSZYqixQIwchmjgBuBWxAnL5hwtrvwCMy+6IIBpYkRxPgceAOIFLnOOHKhzaI1VSn3bpb7zDBTgqEYGYzx6AN1ZwE1NU5TTjZBTwGfILNJQeACCqWJEcb4ClgBKDoHCecfAFMdtqtf+kdJFRIgRAKbOY6aM2P44GGOqcJZTuAV4DZctuiCHaWJMcFaD8OhgAROscJVSrgAJ532q3f6x0m1EiBEEps5mpoYyfcB5yvc5pQsgptKt7l0mIgQo0lydECrTPjHUA9neOEigy0ESxfc9qt/+gdJlRJgRCqbOZewH+BoUA1ndMEo2No1xrflrsSRDiwJDli0YZqvwO52+lU/gDeAT408giIlUUKhFCnzfEwGu2k0VHnNMFgLdoJYiE2V67eYYSoCpYkRxdgHDAKqKNzHL1lAXOBWU67daPeYcKJFAjhxGbuAgzy/12IMTo4udGKgqXAF9hcTn3jCBE4/rEUrgKu9f810zdRwBxG61uwFFgpYxhUDSkQwpXN3BS4Bq1YuAqI0TdQpToGLEc7OazA5pKmRGF4liSHAiSiHfPXEn79lDaj3YmwFNjgtFtlKu0qJgWCEdjMsUAftBPHlUArfQNVmBfYAqxEOzmsx+by6BtJiOBmSXK0RCsUrgEuJvQuRWQAG/G3FDjt1hSd8xiOFAhGZDPXBS5A+7VR8Nda10wnedF+KSQX+fsdmytb11RChDB/68K5/PuYv4DgGV/lBPAr/z7utzvtVvmC0pEUCEKjjbVQUDR0QhvBsan/r7JPIiraNcQD/r99wG+cLAZyKnl7QohSWJIcrThZMLTl5DHfFKheyZvL5+QxfwBI4WQx8I8UA8FHCgRRNpu5Ov8+cRT8xaANCRsJRKFNX+sFPGidBz1AJtrJIJWTJ4aDcolAiOBmSXLU5d/HezOgAdqxHsXJYx+0Y73gzw0c4d/H/AGn3XokkPnF2ZMCQQghhBAlmPQOIIQQQojgIwWCEEIIIUqQAkEIIYQQJUiBIIQQQogSpEAQQgghRAlSIAghhBCiBCkQhBBCCFGCFAhCCCGEKEEKBCGEEEKUIAWCEEIIIUqQAkEIIYQQJUiBIIQQQogSpEAQQgghRAlSIAghhBCiBCkQhBBCCFGCFAhCCCGEKEEKBCGEEEKUIAWCEEIIIUqQAkEIIYQQJfw/soX0i8VwfjMAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU"
]
},
{
"cell_type": "code",
"execution_count": 110,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"build_real",
"prebuild_gwn",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"",
"fftma2",
""
],
"type": "treemap",
"values": [
36.171001125000004,
39.64968850000001,
3.0564322340393244,
27.218459,
26.980179875,
0.7826032966495755,
0.5781518893097697,
16.6875,
0.025,
0.008333333333333333,
0.004166666666666667,
0,
0,
0
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "CPU treemap"
}
}
},
"text/html": [
"<div> <div id=\"9511d983-a952-4655-9128-c52e4d318617\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"9511d983-a952-4655-9128-c52e4d318617\")) { Plotly.newPlot( \"9511d983-a952-4655-9128-c52e4d318617\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"build_real\", \"prebuild_gwn\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"\", \"fftma2\", \"\"], \"type\": \"treemap\", \"values\": [36.171001125000004, 39.64968850000001, 3.0564322340393244, 27.218459, 26.980179875, 0.7826032966495755, 0.5781518893097697, 16.6875, 0.025, 0.008333333333333333, 0.004166666666666667, 0.0, 0.0, 0.0]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"CPU treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('9511d983-a952-4655-9128-c52e4d318617');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 32"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": 113,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[34.959155, 12.878561, 60.414342, 35.334899, 71.344033, 39.886457, 18.975958, 23.163878]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>sum</th>\n",
" <th>count</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>240.1</td>\n",
" <td>240.1</td>\n",
" <td>240.1</td>\n",
" <td>36.513030</td>\n",
" <td>36.513030</td>\n",
" <td>36.513030</td>\n",
" <td>47.638534</td>\n",
" <td>47.638534</td>\n",
" <td>47.638534</td>\n",
" <td>47.638534</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>197.0</td>\n",
" <td>197.0</td>\n",
" <td>197.0</td>\n",
" <td>37.119660</td>\n",
" <td>37.119660</td>\n",
" <td>37.119660</td>\n",
" <td>35.573628</td>\n",
" <td>35.573628</td>\n",
" <td>35.573628</td>\n",
" <td>35.573628</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>-14.9</td>\n",
" <td>6.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>75.087500</td>\n",
" <td>3.952230</td>\n",
" <td>0.000098</td>\n",
" <td>0.017469</td>\n",
" <td>0.000797</td>\n",
" <td>26.105193</td>\n",
" <td>32768</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>43.1</td>\n",
" <td>43.1</td>\n",
" <td>43.1</td>\n",
" <td>34.781175</td>\n",
" <td>34.781175</td>\n",
" <td>34.781175</td>\n",
" <td>12.060570</td>\n",
" <td>12.060570</td>\n",
" <td>12.060570</td>\n",
" <td>12.060570</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>42.6</td>\n",
" <td>42.6</td>\n",
" <td>42.6</td>\n",
" <td>34.788296</td>\n",
" <td>34.788296</td>\n",
" <td>34.788296</td>\n",
" <td>12.036319</td>\n",
" <td>12.036319</td>\n",
" <td>12.036319</td>\n",
" <td>12.036319</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>-7.1</td>\n",
" <td>2.6</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>62.562500</td>\n",
" <td>1.048878</td>\n",
" <td>0.000094</td>\n",
" <td>0.001763</td>\n",
" <td>0.000191</td>\n",
" <td>7.933390</td>\n",
" <td>41552</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>-4.1</td>\n",
" <td>2.5</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>62.562500</td>\n",
" <td>1.028264</td>\n",
" <td>0.000181</td>\n",
" <td>0.000461</td>\n",
" <td>0.000199</td>\n",
" <td>4.906137</td>\n",
" <td>24624</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>15.100000</td>\n",
" <td>30.062500</td>\n",
" <td>20.900000</td>\n",
" <td>0.004642</td>\n",
" <td>0.006769</td>\n",
" <td>0.005419</td>\n",
" <td>0.016257</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>29.216667</td>\n",
" <td>29.216667</td>\n",
" <td>29.216667</td>\n",
" <td>0.003691</td>\n",
" <td>0.003691</td>\n",
" <td>0.003691</td>\n",
" <td>0.003691</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>37.550000</td>\n",
" <td>12.520833</td>\n",
" <td>0.000633</td>\n",
" <td>0.001058</td>\n",
" <td>0.000914</td>\n",
" <td>0.002742</td>\n",
" <td>3</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.000000</td>\n",
" <td>25.025000</td>\n",
" <td>5.007500</td>\n",
" <td>0.000179</td>\n",
" <td>0.000185</td>\n",
" <td>0.000182</td>\n",
" <td>0.000910</td>\n",
" <td>5</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.5</td>\n",
" <td>0.5</td>\n",
" <td>0.5</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.000599</td>\n",
" <td>0.000599</td>\n",
" <td>0.000599</td>\n",
" <td>0.000599</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.000510</td>\n",
" <td>0.000510</td>\n",
" <td>0.000510</td>\n",
" <td>0.000510</td>\n",
" <td>1</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.000403</td>\n",
" <td>0.000403</td>\n",
" <td>0.000403</td>\n",
" <td>0.000403</td>\n",
" <td>1</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory cpu \\\n",
" min max median min max mean \n",
"function \n",
"Py_kgeneration 240.1 240.1 240.1 36.513030 36.513030 36.513030 \n",
"generate 197.0 197.0 197.0 37.119660 37.119660 37.119660 \n",
"gasdev -14.9 6.5 0.0 0.000000 75.087500 3.952230 \n",
"fftma2 43.1 43.1 43.1 34.781175 34.781175 34.781175 \n",
"covariance 42.6 42.6 42.6 34.788296 34.788296 34.788296 \n",
"ran2 -7.1 2.6 0.0 0.000000 62.562500 1.048878 \n",
"cov_value -4.1 2.5 0.0 0.000000 62.562500 1.028264 \n",
"fourt 0.0 0.0 0.0 15.100000 30.062500 20.900000 \n",
"cgrid 0.0 0.0 0.0 29.216667 29.216667 29.216667 \n",
"length 0.0 0.0 0.0 0.000000 37.550000 12.520833 \n",
"maxfactor 0.0 0.0 0.0 0.000000 25.025000 5.007500 \n",
"prebuild_gwn 0.5 0.5 0.5 0.012500 0.012500 0.012500 \n",
"build_real 0.0 0.0 0.0 0.012500 0.012500 0.012500 \n",
"clean_real 0.0 0.0 0.0 0.012500 0.012500 0.012500 \n",
"\n",
" time \n",
" min max mean sum count \n",
"function \n",
"Py_kgeneration 47.638534 47.638534 47.638534 47.638534 1 \n",
"generate 35.573628 35.573628 35.573628 35.573628 1 \n",
"gasdev 0.000098 0.017469 0.000797 26.105193 32768 \n",
"fftma2 12.060570 12.060570 12.060570 12.060570 1 \n",
"covariance 12.036319 12.036319 12.036319 12.036319 1 \n",
"ran2 0.000094 0.001763 0.000191 7.933390 41552 \n",
"cov_value 0.000181 0.000461 0.000199 4.906137 24624 \n",
"fourt 0.004642 0.006769 0.005419 0.016257 3 \n",
"cgrid 0.003691 0.003691 0.003691 0.003691 1 \n",
"length 0.000633 0.001058 0.000914 0.002742 3 \n",
"maxfactor 0.000179 0.000185 0.000182 0.000910 5 \n",
"prebuild_gwn 0.000599 0.000599 0.000599 0.000599 1 \n",
"build_real 0.000510 0.000510 0.000510 0.000510 1 \n",
"clean_real 0.000403 0.000403 0.000403 0.000403 1 "
]
},
"execution_count": 113,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_32-aa'])\n",
"overall_time[\"32\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"32\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempos"
]
},
{
"cell_type": "code",
"execution_count": 114,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FNX6wPHvu5tGXXovoYUQjIoBVLCgXlDBjqCIKHZBLFgwXtte9SpXvdZrV+wioIJKVBAVFNSfEgWlI11AehLSt5zfH7OJSwhpJJndzft5nn1gZ87MvLMw886cc2aOGGNQSimlVGRx2B2AUkoppaqfJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJnillFIqAmmCV0oppSKQJngV8UQkXkSMiIy1OxYFIjJfRObbHYdSkS7K7gCUqgoRqeg7lk8BNtZgKEopFZJE30WvwpGIXFpi0mXAYGBMielfAjuBWMBjjPHVQniqDCISA2CMKbQ7FqUimSZ4FRFE5H/ADcYYsTsWVToRqW+MybU7DqXqCm2DVxGvtDZ4EXlDRLJFpJOIzA78fauI3BCYnywiX4tIjohsEpFLSllvExF5SkS2iEiBiPwhIneKSIWOKxE5U0QWiMh+EckSkZ9LbkdERohIuojkichuEXlHRNqXKHNY+yIiYwO/z0ki8pKI7AnE85aINC1R9lwRSRORbYF9Xici94qIs0S5+SKyTERSRORbEckFHg6aN79E+RtFZLmI5IrIPhFZXEqcfUTk80Bs2SLylYgcd4h9GSgiT4jIrsB+zxSRliXK9hWROYHfNU9ENojIlPL/5ZQKD5rgVV3mBD4HtgCTsNrq/xe4EPgCWAzcCewH3hKRLkULikh9YAFwKfAWcBOwCHgEeKK8DQe2kQY0CyyTCiwBzihRZjrgA+4CXgEuABaKSJPq2pcg/wN6Ae7APo0GZolIcK3IWCA7sI83A+nAA8DkUtbXPBDTEuAW4JtD/BbXAM8AKwLl7g8sc2xQmd7Ad8BRwKPAg0AXYL6IHFtyncCzgbL/Al4Azg7sX9H6WgFzgfhA7DcC7wLHlVyRUmHLGKMf/YT9B+vkbQ4xLx4wwNigaW8Ept0VNK0JkAv4gYuCpvcMlHUHTbsHK9H1KLGtRwAv0LGMWF1AFvAjEFdiXlGzWTSwA/g9uAwwLBDLv6pxX8YGpi0GooOm3xGYfk7QtHql7M+LQA4QGzRtfmDZ60opPx+YH/R9FrCsnH/fmUAB0DVoWtvA77iglH35sui3DEx/IvDv4gp8Py9Qrq/d/3f1o5+a+ugdvKrrXi36izEmA1iNlaymB01fDWQAXYOWG4F1R7lPRFoUfYB5WHfTJ5WxzcFAI2CyMSY/eIYxpqhTTF+gFfB8cBljTBqwCivRV9e+FHnZGOMJ+v4CVlIcGrR8XtHfRaRRYJ+/A+oDiSXWVwC8Xsp2SsoAOohIv9JmBqr/hwCzjDHrg2LZDrwHnCAijUvZl+AORt9h/bt0DtomwFkiEl2BGJUKO5rgVV2Wb4zZVWJaJvBnieRQND24PboHVnX6rhKfeYH5rcrYbrfAn8vKKFOUiFaXMm9V0Pwih7MvRdYGfzHGZAPbsWpAAKuqPNCenYl197wLeCcw21VifVtNxXrK/werNuQnEVkrIs+JyMCg+S2xLiBK+y1WYp3HOpaYvrnE932BP4v2ewHwIVZzwG4R+VhErhCR2ArEq1RY0OfgVV12qEfmDjU9uC3agVUN/Oghyq6palBVdDj7UiGBdv8FWIn9PmAdkA8cg5WkS94w5FEBxpiVItITOAvromk4MF5EHjDG3F/ZOAPK3O/ARc+FgU56ZwOnA1OA20TkuMDFjVJhTRO8UlWzDmhojJlXbsnSlwU4AvjjEGU2Bf7sCXxdYl7PoPnVqQdBHeFEpCFWO/dngUmDsDrOXWCM+TaoXGkd9irFGJMDTAOmifWc/EfA3SLyCFYtQS7WfpeUiNXPYEsVt/sjVl+IuwO99t8FLiaouUOpcKVV9EpVzXTgeBE5veSMwONzZV08z8XqzX6XiMSVWLboznox1gt6rg+uNhaRM7F6uqcdZvylubZEe/Q4rJuAzwPfi+6Ki+/+A8l4/OFsVESaB38PVOuvCGwn2lgvJ5oLnCsi8UHLtQYuARYaY7Iquc2mJZ4OAKvnPlgvRVIq7OkdvFJV8xhwDjBbRN7AelysAZAMXIjVbr27tAWNMVkiMhHrLvFnEXkPq434KKy25suNMR4RuROrk9oCEZkKtMZ6NG0j8GQN7FMM8JWITMe6Wx4PLAQ+Ccz/PhDnmyLyDFYv9DFUobq/hLki8hfWY4Y7sC5gJgBpxpj9gTL3YHVOXCgiz2N1/rsOKxlPqsI2L8dqBpiJVaPSCLgGq/nhs7IWVCpcaIJXqgqMMbkicjLwT6we9ZdhJYc1WB23MstZ/jUR2Yn1/Pu9gAer89yTQWXeCLwgJhWrjTsH63GxOwO95KvbBKxn3x/AekxvKnBTUSc9Y8weETkL+C/wEFayfwf4CphzGNt9KbDdW4GGwJ9Yz8U/VFTAGLNcRE7EegzxLqzax/8DLjXG/F8VtrkA6I9VHd8a69/rJ2C0MWZD1XdFqdChr6pVqo4LvAzndaCfMWaxzeEopaqJtsErpZRSEUgTvFJKKRWBNMErpZRSEUjb4JVSSqkIpHfwSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK+UUkpFIE3wSimlVATSBK/KJSLxImJEZKzdsSgV7oKOp9vtjiXUicigwG81yO5YwpEmeKVUnSciYwOJpOiTLyJrROR/ItLa7vginYiM1xuI6hdldwBKKRVC7gM2AHHACcA4YKiIHGGMybU1ssg2HtgNvFFi+rdAPaCwtgOKBJrglVLqb58bYxYH/v6qiOwBbgXOBabaF1b4EBEB4owxeYe7LmOMH8g//KjqJq2iD3GBNqjFgSrDdSJynYi4RcQElblCRL4WkZ0iUiAiK0RkXCnr6isic0Rkt4jkicgGEZlSokwTEXlDRDJFJENE3gSaHCK2RBH5QET2BuJbLCLnlNieEZHLS1n29MC8sw7rB1KqZn0d+LNL4P/rxJIFRGRAYN6oqm5ELC+LSKGIXBA0/UgRWRA4Xv8UkXsCx7sRkfgS6zhTRL4TkRwR2S8iaSLSu0SZN0QkW0Tai8iswN93icjjIuIsUdYhIreIyPLA8b1DRF4SkaYlym0UkdmBY3oxkAdcF5hX7rlJRDYCvYGTg5pI5gfmldoGLyIjRCQ98LvsFpF3RKR9Vfc1UukdfAgTkT7AF8B24H7AiVWFuKtE0XHAcuATwAucDTwvIg5jzHOBdbUC5gaWnQxkAPFA8MlEgI+xqiZfBFYC5wNvlhJbb2ARsDWwvhxgJDBLRIYbY2YaYxaLyPrA9JLruAjYB8yp7O+iVC3qFvhzD9b/99HAkyXKjAb2Yx07lRZINlOwjonzjTFpgentgW8AAzyCdYxdDRSUso4xWMfYHOBOoD7WeWGhiPQxxmwMKu4MlPs/4HbgH8BtwDrghaByLwFjgdeBZ4AuwASgj4gMNMZ4gsr2xKrheAl4BVgdmF7uuQm4BXgWyAb+HZi2o4zfqyimn4G7gNbAzcDAwL5mVGFfI5MxRj8h+sE6KHKAdkHTugMe65+ueFq9Upb9AlgX9P08rBNF3zK2d26gzB1B05xY7WAGGBs0fR7wGxAbNE2wToJrgqY9jNV+1jRoWgxWcn/N7t9YP/oxxoCVyAxwGtAC6ICVcHcDuUB74NpAmcSg5aKxLprfqMS24gPruR3rJuv9wDaGlCj3DOAHjg6a1gzrYsMA8YFpDQPH08sllm+NdSH/ctC0NwLL3lui7C/A4qDvJwTKXVKi3OklpwMbA9NOL2Vfyz03BaYtA+aXUnZQYN2Dgn7vHcDvWM0AReWGBcr9q7L7GskfraIPUYGr+n8As4wx24qmG2P+AD4PLmuC2rpExCUiLYAFQFcRcQVmFV3VniUi0YfY7FCsq+ziK1tjjA/r6jo4tmbAqcB0oJGItAhssznW1XKPoOqyaVgH5QVBqxiCVe0/rcwfQanaNw8rYW/BSrzZWHfVW7H+v+dj3bEXOR3rguCdKmwrBpgBnAUMNcbMLTH/DOAHY8ySognGmL3AuyXKDcY6nqYWHYuB49GHded6SinbfrHE9++ArkHfRwCZwJcl1pmO9ZuUXOcGY8xBtXEVPDdVRl+gFfC8Maa4bd5YtR6rsBJ9SeXta8TSKvrQ1Qqr9+gfpcw7YJqIDAT+BRyPVTUXzIV1oC4APsSq6p8YaOOaBbxnjCmq8usMbDfGZJdYx+oS37tj3a0/GPgcKv6txpilIrIK627otcC8ojujrw+xrFJ2uQFYg3WhuwNYbayOXhhjMkTkU+AS4N5A+dFYzVRV+b98F9bd95nGmPmlzO8M/FDK9JLnhB6BPw8VQ1aJ7/nGmJLNfPuA4Lb1Hljnjp2HWGerEt83lFaoguemyugc+LPkOQmsBH9CiWkV2deIpQk+zIlIN+ArrP/ct2LdeRRi3Y1PJNCR0lh1UxeKyHFY7WCnY7X73SYix5WS1MtSVPPzOIduQw8+CU0D7g5cve8HzgGmGmO8ldimUrXhJ/N3L/rSvAWMEJEBWNXE52DdTfqrsK05WHfpk0RkfvAdaSUVHY9jgL9KmV/yOPNVcJ07ObC2IljJpHlQj/mKnptqWEX2NWJpgg9dO7GqA7uXMi942tlALHCOMWZz0UQRKa1aDmPMj8CPWAn3EqzqvouBV4FNwGki0rBEwu9ZYjXrA396jDHzKrAv07BqDoZj3RU1xqr+VCrcfIGV3EZjVX/XB96u4rp+xKo+ng3MEJHzS1z0bqL84x+sDmMAOyt4PFbEOqwmwkWm6o+7VebcZEqZVppNgT97cnCNRc+g+Qp9TC5kBdq+5wHniUi7ouki0h04M6ho0RWqBJVxAVcEr09EmgZ6yQcratuLDfz5GdZF37ig5ZzAjSVi2wnMB64TkbYlYxeRliXKr8S627ko8NmO1XFPqbASSMBTsZ4MGQv8boz57TDWNw/rAvsM4G0RCT4nzwGOF5GjiyYE+r+UvKueg1UN/8/S+teUPB4raDpWB9t7S84QkSgRKfXR2RIqdG4KyOEQj+OWsBjr5ud6ESk6byEiZwK9gLQKrKPO0Dv40ObG6pC2SERewDrgJmD1OC066OdiVXt9KiIvYbXpXYN1EAQn38uB8SIyE+vqvFGgXBZWYgf4FKsX/OTAM7YrsDrHldYZ5gZgIfC7iLyCdVffGqutrQNwVIny04AHsGolXqtilaZSoeAt4CasjmZ3Hu7KjDGzROSKwHqzCDxDDjwKXIrV0e1Z/n5MbjNWb3oTWD4r8Gz528AvIvI+Vi1DJ6xOZ4uwzhuViWlB4HxyV+ACYy7W0zs9sDrg3Qx8UM5qKnpuAqvz3jgRuQereW+nMeagPgXGGI+I3In1mNwCEZnK34/JbeTgRxjrNru78eun7A9Wb/VfsJ59/QO4CqvtOy+ozNnAUqx2sA3AJKyr5OBHafoA72FVYeVjVZV/CqSU2F4zrBNNJlbP+7ewLiYOeEwuULYr1rO327EO5D8D6xxeyn50D6zDAAPt/l31o5/gD38/JnfIx0hLlF+GdYfavgrbig9s6/YS08cFpj8WNO1orNqufKw27FSsGjUDtC6x/CCsJoSMwLngD6xEmBJU5g0gu5SY3AQ9ehs0/Rqsu+ZcrIuP34D/AG2DymwEZh9iX8s9NwXKtcZqqsgKzJsftE/Fj8kFlR8ZOC/mYz02+E7Jf4vK7mskfiSwwyqMiMgsoLcxpke5hZVS1U5EfgX2GmNOs2HbT2Hd5Tc0VlOeUqXSNvgQJyL1SnzvgdULdb4tASlVx4lIX6w767dqYVslj//mWL3lF2pyV+XRO/gQJyLbsaqa1mM9AzoOq1NcH2PMWhtDU6pOEZEjgBSsV522ALqaoEfbAh1Sy+vQlm0q8UiqiCzBuphfiVWNfRXQDjjNGKMdVVWZtJNd6PsCGAW0wWqH/wH4pyZ3pWrdhVhjQawGRpmDn1vvyCFe+BLkX1htwBX1WWC7Ra/J/QW4SpO7qgi9g1dKqWogIkVjyJdlvTFmfTlllKoWmuCVUkqpCKSd7JRSSqkIpAleKaWUikCa4JVSSqkIpAleKaWUikCa4JVSSqkIpAleKaWUikCVetFNenp6Q6y3KOmFQeTzYw1asTslJUVHfqvD9LhXh0nPJTap8HPw6enpxzkcjhcdDoeLoPF9VeQyxnj9fv8CY8x9KSkpW+2OR9U+Pe5VddBziT0qlODT09MbOhyOhU2aNGndqlWrvSKib8cJU36/wes3MT6/ESMIxogxOAwQh4covCACBlPg9Tt27t5bPzcvd7PfyICUlJRCu+NXtUeP+/Dn9xt8xkT5/Mbp85sonx+nzxin328cYMQAseLzNzbZTkQMiEGsj5EoL84oD44oL45oL1K16ztjDIWFhTE7duxonJeXt9nv95+g55LaUdEq+nYOh8PVqlWrvQ0aNMir0YjUYfH6/M4Crz+m0OePLfT6Yzw+f4zHZ2I8Pn+sx+eP8fnNIf/Ne8ZkZMd6sxoWfa8PxNY3bMrY3bLLwluz+XRrBrAXa/z3dUGfP4B1uDMza3bvVC3T4z4MFHr9UfleX1yBxx9X6PXFFnj9cYU+f5zXZ2L8xpTRrGIl7BYxvpx63n0Nyt2QOAMJP7oQR5QHZ7SHqLg8YhrkEhVXUNYFQIMGDfKjo6M969ata+n3+zthnTNUDatogncAolfwoaXQ64/en+9plFPoa5hX6Gvo8fljyz6gK88hAALiiMYaKasl0BMYdFBht2sXkA78HPj8hDtzR3XGo2qVHvchxuvzO7MLvA1yC30Ncwt9DfI9vgZ+Y5y1snHji8Lri4KCegfNE4ePqLhcouvnEF0vl5iGOUTHHXCX7nA4DNZVhQ5yVkv0hw4j+R5fTHaBt1FOgbdRbiCh2x1TCS2BMwIfi9u1BfgJa8jLObgzdRQ8pSqo0OuPysr3uHIKvA3zPL6GhV5/nN0xlcr4nXhyG+HJbVQ8TRw+ourlENMgm3pNMkAvFGtb1RO825VSjXGUWHdm+uEsvnr16piPP/7YNWnSpF1F09q3b588Y8aMPwYMGFCrVY1r166Nue666zqtX78+zul0miuvvHLX3XffvRPg3nvvbf3++++38Pv9dO3aNX/q1KkbW7Ro4StaNt/ji92fbyX0+fPnN378wXuj8vLzwBjcjz3DUSn9WbbkFx51p7J6+TKOP+kUnnrt3VLj8Hg83HH9WLZu2USHzl147IXXiYqKoiA/n+tHX8DTr70HrWrkJ+gY+AwHwO1aB8zBGgb3a9yZOTWyVVUj4lPTauS43zh52GEd86Fg9uzZjfLz8+XCCy/MOpz15BZ662XmeVz7871N8j2+Bovmf8XTj7iL5+/dvZvmrVox7fMFByz3/H8f4aWnHmXaF9+S2Du51HWvXbmcyffdyZ7d1qlxwqR7uPjcIbw+7WOefnVqcbk/t+/kpOP68NGr/z1oHQ8++QrvfzKHRg3qM+3FyXTu0A6AsbfczzWjz2dgv6OtgsbvxJPTGE9OY3J2thOf0xNVmJXfdvmr/fl01h+4M72H8zup8kXkHfzatWtjp0yZ0jI4wVcHj8dDdHR0hcv7/X7OO++8brfddttfV1555T6ALVu2RAHMnDmz8Xvvvddi8eLFK5s2beqfNGlS24kTJ7Z//Y03t+7NKWyWkedpke/x1QfY+dd27p44jufemkHXHj0pLCggP98airpl69bccf8jrFr+G4u+mXfIWL5f8BWNmzTlqdfe5b7bJrBo/jxO/scZvPz0Y1w89hoaN2kC7Kn6j1Nx3YDxgU8hbtdXwLvALE32KpSVd/x//fXXjTIyMpxVSfD78z0NM3I9TbMLvE08Pn9M8LyBg05j4KDTir9PGHsR/Y4/8YDlf/81neVLf6Fdh46H3EZeXi43Xz2ah558gWP6H4/P5yMzYx8AV1x0LldcdG5x2SNOHcHo84cetI6s/dm889FnrJj/Ae9+9DnPTpnG4/dN5Mtvf6R+vbi/k3spxHijHd7c6Ma7098EnsTt+gz4GPgCd2Z2Wb+Pqpqwfq71ww8/bJyUlNQrISEhqV+/fj3T09PjAG688cZOGzdujEtMTEw69dRTuxeVnz59etOjjz46sX379smTJk1qWzR98+bNUUOHDu2anJzcKyEhIemmm25qVzSvffv2yePGjWufnJzca/jw4V0qE98nn3zSKCYmxhQld4COHTt6AX799dd6/fv3z27atKnfGMPgM8/yzZw1q+XK7fuP+isrv1NRcgeY/tZrnHnuhXTt0ROAmNhYGrtcALRu257kPinExJRdWx8VFU1+Xi4A+Xm5REfHsGblMjasW8vpZ59fmd2qTjHAmcA7wA7crndxu4bidkXkhac6fO+8806Trl279u7Zs2fSuHHj2jdt2vSo1atXxwD8/vvvsYMGDep+xBFH9EpISEh6+OGHWxYtJyIpqampbZKTk3u1b98++emnn25eNK+85SZOnNjuiCOO6DVhwoQOP/30U72UlJSeSUlJvbp169a76Dzy/fff13vrrbdazpw5s1liYmLS7bff3hasc1RKSkrP3r1790pOTu716aefFldhF3r90dsz89qs2p51xIbdOT335Ra2KpncS9r513Z+WvgtZw2/qHhaXl4uj9w7iXsnP1nmb/f5rA84sk9fjul/PABOp5NmzVscVO7/fvmdnbv3cs6Qkw6a53Q68fl9eDxecnLziImOIjcvjwefeoXJ/7yxzO2X0Ay4FJgB7Mbt+gi36wzcrrDOSaEmbE+kW7dujbrqqqu6zp07d3X//v3zXnjhhWYjR47stnbt2uXPPvvs5ttvv73jqlWrVgQvk5GR4VyyZMmq7du3RyUkJBwxbty43V26dPFccsklXe66667tw4YNy/Z4PJx66qk9pkyZ0rQoMe/duzdq6dKlKx2Oyv3fW7ZsWb1mzZp5zjrrrK7r1q2L69ChQ8HTTz+9JSkpqbBfv365U15/vfXiFX90inO1aPr21OlROdnZZOzbK66mTQ9Yz7q1q2nXviPXjjqPjL176NP/eG6+637q1y+/42uR4086hXmffcKIISeQfExf+g88ifFjLuTBJ56r1D7VoAbAJYHPLtyud4BncWdusDcsFSq2bt0aNWHChPhvvvlmVZ8+ffKffvrp5hkZGVEAXq+XUaNGdX377bc39OnTJ3///v2OlJSUxIEDB+acfPLJuQCxsbHm999/X/nrr7/GnXDCCb3Gjx+/R0TKXc7pdJply5atBNi3b59j4cKFa+rVq2eys7OlX79+vU4//fSs0047Leeyyy7blZGR4ZwyZcoWgBUrVsQ8+OCD7b7++us1zZo18y9btiz2lFNOSVy6at2mPL+jRW6B11XZRulPZrzHCacOpnmL4msQnvz3/YwccyVt2nUoc9l1a1YTHRPLhLEXsXP7Nnr06s1t9z5Ei7aNDij32vuzGDN8WKm1FQ3q1+PWay7luLMvp02r5rz51APc99iL3HbdGBo3anhQ+QqKBc4PfDbidr0KvIY786+qrlBZwvZqacGCBQ0SEhLy+vfvnwcwbty4vTt37ozesGHDIevQxowZsxegbdu23g4dOhSuWbMmNisry/Hjjz82vu222zolJiYmJScnJ23atCl21apVxZ1Zrrzyyj2VTe4AXq9Xfvzxx8Zut3vbypUrVwwePDhrxMiR3Xdk5bdK6Deow+XX3xx9+cUjWo466x9RTZtbNxTOqIM7xPq8XtJ/+p7HX3iDd2d/TVZmBi/8d3KlYnE4HNz/6NPMmLuQ+yY/xftvvMIppw/F6/WROuFqbr32Mr5asKh2euOWryUwEfgDt2sWbtcpdgek7Dd//vwGPXv2zO3Tp08+wIQJE/ZER0cbgKVLl8b98ccf9UaNGtU1MTExqV+/fok5OTnO3377rbjH91VXXbUHoE+fPvlOp9Ns3rw5uiLLjRs3bnfR33Nzcx2jRo2KT0hISEpJSem1bdu2mPT09PqU4pNPPnFt2rQpdsCAAYmJiYlJF44Y2VOcUVHpK9Z2y6lCcjfGMGvau5x/8aXF03749hu2b93CeReNLnd5n8/L/y2cz72PPMm0L76lVZu2/Puftx1QJic3j/c/nstVo8475HrGjx3Jki/f54t3n+PP7Tv4c/sOzhg0gBv++Qgjrp3EM69NPeSyFRAPPARsxu16p0b7etUBYXsHXxX16tUrfk2i0+k0Ho+n+EU/v/zyy8r69euXesw1atTIV9r09PT0uNGjR3cF6NevX/bbb7+9OXh+586dC3v16pXbt2/ffI/PH3XeqCtiU1NT6/25Z3/H6OhoLrr8ai66/GoAfvvlZ1q3bUfDRo0P2k6b9h3o2Ts50E4OZ547nNeeK7s6rizb/tzMd19/yQvvfMA9E8cxfPRYkpKP4opzTokdOn9GlddbAxzAucC5uF2/Ac8A7+LOzLc3LBVqjDE0btzYW7LWLljw8e10Oo3X65WKLOdyuYrPG7feemv75s2be5cvX74iOjqaIUOGdMvPzy/1AXBjDCeccGL2i2+9n78v19PyUI+zrVuzirtuvAaAo/seyz///XipcSz+cREFBQUMOPnv9vifvv+Wlb//xpnHHwnAju3bmHDZSO6Z/ASDBp95wPJt23Wg34ATad3WaoEcdv5Ixl164QFlZnz6Jb0TupKU0PVQP0cxr9fL7Q88xdTnH+adjz6jZfOmPPfwXZxy4bWc9Y8T6dq57BqFckQDo4HRuF3fAU9i9dPRnviVELZ38IMGDcpZs2ZNvZ9//jkO4OWXX27aunVrT5cuXTxNmjTx7d+/v0J3oy6Xy9+/f/+se+65p7hNfuPGjdHr1q0rtzddSkpK/qpVq1asWrVqRckjKPmwAAAgAElEQVTkDjB8+PDMv/76K+b/fl/dafVf+5M/SUtr3aVHz+Kqr107rBqovLxcnnv8EcaOu7nU7Qw970J+/v47CgsKAFj4zTx69jqiIrtXqkfvv4s77v83DoeDvNxcBEEcDnJz80L5VaRHAq9i3dVfj9tV8d6OKiIMGjQoZ/Xq1fWXLl0aC/DCCy8093g8AnDUUUflN2zY0Bfctr5s2bLYHTt2lHkeqOxyGRkZUR06dCiMjo5m6dKlsYsWLSq+Im/cuLEvKyvLCdYTMMeddmbDRT/80OSHxb+0KUruv/968MMC3RISmT7nO6bP+e6QyR1g5vtvc+6IUTidf4d2c+r9zFu8gs9/+I3Pf/iN1m3b8b+3ph+U3AGGnH0ey5f+SvZ+qw/gwm++pGdS7wPKvPb+rDLv3oP996V3uOT8M2jTqgU5uXlI4EU3IlZNQDU6EfgISMftGlydK450YXsH365dO++rr766/vLLL+/i9XrF5XL5pk2bts7hcHDsscfmJiQk5PXo0aN3x44dC77++usy35o0Y8aMDePHj+/Yo0eP3iJi6tWr53/xxRc3devWzVPV+Lw+vzPLF9X23kefibr84gtbGmNo2Kgxj/7v1eIy14++AL8xeAsLGTb8IkaNvaZ43g2XjWD8bf+k91F9OLrvsQwaciYXnXkyDoeDbgmJ3POIdQe/cd1arrn4PPLzcinIz2dwv95cPWFicc1ASZ/NnEFC0hF079kLgCvH38IDd96Mx+Mh9ZbxhVjtYaGsPfACcAdu17+Ad3Bn6gAWdUD79u29zzzzzMbzzz+/e0xMjDn55JOz6tev72/evLkvOjqaTz/99I8bb7yx43PPPdfa7/dL06ZNvdOnT18PlFoDB1DZ5e67775tY8eO7Tp16tTmnTt3LjjuuOOKe8xffPHF+84///zmiUm9jz5t6LnO626ZxORnX+HB1FvJz8vF4/GQ2DuZyUHngIran5XJV5/P5sMvF1VqOfcdNzFo8BkMGjKUtu07ctWEiVx23uk4HA5atWnLff95qrjs6j82smT5Gj57e0i56123cQvzf1jMZ28/C8ClFwzl/KtvY8bseQzsexTJvXpUbgcrpg8wF7frS2AS7swlNbGRSFLRd9EnRkVFfdGjR4/s+vXra/VoGfx+Izv3F7Tak13Q1ldbb5iqJj1j9hzwqlqAfK9hw9ZddFl0G3HZW+wKrSwrgfuBD7T6rnqF4nG/b98+R9OmTf0Ab7/9dpP777+//fr165fbHZffGNmZld96d3Zh2+p+m2RNaxFTkNPOu63iPXarqJrPJQZ4D7gHd+bGww4uQoXtHXyoMcawJ6ew+c79Be285TzqoqpVL2A6sAi3a4Je1Ue2//znP61mzpzZzO/3S8OGDX1vvfWW7U9Z7MkpaLozq6BDeY+4qWolWG30F+J2PQ88hDtzr80xhRxN8NUgr9AXu2Vfbpd8j6/Gr4LVIQ3EaqN7Ebgbd2aG3QGp6jd58uS/Jk+eHBKPT+UUeOtty8jrnKfHvZ1isZ64uRK36x7gOa3J+1tYVSWFGmMMO7LyW/2xKztJk3tIcGC9IW8Vbtcou4NRkcnvN7J1X1779btyemlyDxku4FlgHm5XJ7uDCRWa4Kso3+OLWbcru+eOrPyOJsza3OqA1sB7uF2f4Xa1sTsYFTn253sarNmxP2lPTkEbgwnlp07qqlOB33G7rrI7kFCgiakKdu0vaPHHzuzeuYW+Kr+6SdWKM7EO9nPLLalUGfzGumvfuDsnsdAXoiO6qSKNgVdxu2bjdrUtt3QE0wRfCYVef/S6ndk9tmfmdQ63nrJ1WAtgFm7Xy7hdWp2qKi2v0Be7dkd2L+uuXYWRYcCyutxcV+VOdjU1bCSE5tCRe7ILmm3PzO90qLdRqZB3DTAIt2s07syf7Q4mbNXUq0MPc4jomrI3p7DJtoy8LnpBH7aaYTXXnQ9cgzsz0+6AapP+p8Ua9S05OblXt27denfv3r339ddf38Hns95x4fMbx4bdOV23Wgd5mcn9z82buHjoIEaefiIXnHY8t18/lqyMvztzL5j3BecO6s/ZJ6Yw8ZoxxW+UKun9N15h+D8GFK/n3SkvFc/bs2snE68Zw4WDB3LeKcfyzqsvlLoOj8fDLVeNZsSQE5h4zRi8Xmvo5YL8fK4YPvSAuOqQHliP011vdyCqaopGk0tMTEz66aef6pX8fuutt7bLzc097LZxYwx/7svt8Oe+3G5+Yxz33noDZ5/UlxFDTuDy809n2ZJfqrTeZyY/wLmD+jNiyAmMGnoKi+Z/VTzvhScmM+io7ow8/URGnn5i8etrS3PdJRdw4eCBjDz9RMZecCYrl/0GWMf3LVeNLo71ukvOZ/OG9aWuY/nSXxl5+omcPPCE+m9O/7R4+tcLf+K6SQ9Vaf9C2AjgR9yu7uWWjCARk+A9niq/dI7mzZt7p02btm7dunXLf/vttxU///xzg+eee655odcftW5Xds/9+Z6m5a8FWrVuwxsffs70Od/x0Vc/0LJ1G1540hoUJjcnG/cdN/HUq+/w6XfptGzdhpeffqzU9Qy7YCQfzvue6XO+461Zc3jrpWeLD+DHH7ibbj168sGXi3gv7Ws+mfFeqSebovHfZ8xdSKPGLhbNt8aKP3D89zopGngBt+tFfd1t+Hn55Zdb3nnnndtXrVq1on///nklvz/55JNtc3NzD+u8Vuj1R/2xK7vn3pzC1kXTTjtjGDO//pEZcxdy5Q0TuWPc2Cqt+5hjj2fa5wuYMXch7sefYdL4K8jNzSmeP/T8EcWvrX3k2VcOuZ7HXnidD75cxPQ53zHmmhu479bxxfOGj76cTxb8zIy5Cxk05Ez+NemmUtcx5fmnuPNfk/lszpzcfz35MgB5efm4n3iJ/9xd+muzw1wi8H+4XYPsDqS2hHWCr+hYzQC33npru2HDhnU99dRTu3fr1q33cccdl1D0vumBAwfmJSUlFYI1IEXv3r3z1m/Y2GDdruxeweOylycmNpa4etYgVD6fz3rPe+D9zAu/mUdi7yPp0j0BgIsuu4rPP/6o1PU0auwq/ntebm7x3TfA6hXLOOFU63XM9es34JhjBzD7o2kHrSNEx38PJdcBX+F2tSy3pAoJY8eO7bh48eKGDzzwQPs+ffoklvx+ySWXdAIYMGBAz8TExKStW7dGDR8+PH7UqFGdBwwYkNC+ffvkESNGxH/zzTf1+/fv37NDhw7JV199dfGIKG63u/URycm9jzzqqCPPH3xyw6XpPxVve9CQoURFWS2aRx7Tj51/bT/guKyoE04ZXHyO6JHYG2Ng3549lV5PY9ff54js/VnF55nYuDhOPHVI8fcj+/Rj258HDZMBQFRUFPl5eRQUFOAMjJbpfuIlbr7qEpq4GpW6TARohvW620NXj0SQsH/RTUXHagZYsmRJg/T09BVt2rTxnXXWWV2feuqplo888sgBL83YvHlz1Geffd7sf29Nx+PzV7q93VNYyOizT2Pb1i0kJPbm6SnvAbB965+07fD36ErtOnZi986/8Hq9xSeOYF+mfczzT0xmy8b13DjpXnodYY0WlXTk0Xw26wOOPKYfGfv28v2Cr4nvenCtUxiM/x4KTgQW43adq2/AC31vvPHGlhUrVtS/8cYbd4wZMyYDoOT3qVOntvz+++9Xt2jRovg98itXrqz3/fffr3Y4HCQkJPTOyMhwfvfdd2sKCgqkS5cuyddff/3uvn375l982ZWe4ddMjDXGyG+//My9t97Ax/N/OiiOd197kRNOGVzqcVsZs6a/S4dOnWnXoWPxtLmzP+bn77/D1bQZ1958B/0HnHjI5e++5Xp+/v47AJ57c3qpZd6d8iKDhgwtdd51t0ziwdSJPJe7v95j997CkmWrWb9pa6TevQeLBl7G7UoCbsedecixCsJd2Cf4kmM1X3HFFR1XrFhRT0T466+/YtLT0+sXJfiTTz45s02bNj6AY489NnvZsmX1gte1d+9ex9BhZyVeMf4WR9KRfarUjhcdE8P0Od/hKSzkkfsm8cG7b3DFIUaJK8vgYecyeNi5bN2ymYnXXMrJ/zid+G49uO3eh3jiwXu56IyTaNaiJX2PH1jqHUDR+O9F3nn1hQPGfy8sLOSiy6/m2IEnVWU3I0knrHb54bgzv7A7GFX9hg4dmlE0VGzPnj3zBg8enBUbG2tiY2NN9+7d81auXBnXuWdywwU/LO78yrP/JWPfXqKioti4bi35eXnFd9wAsz+axtzZs3j9g7TDiun/Fi7gpSf/w0vvzSy+2x5x6RVcfeNtREdH8+vPPzLxmjG8N/sr2nUo/b0t/37qRQA+mTGVpx5x89xbBw71/Oqz/2XLxg3c+37pQ0t37dGT1z/8jBbRBXmtC7c0GDJqPG8/8xBTZ33BB2nzaNywAU/cfxtNmxw8hHWEuAVIwO0ahTuz9A5RYS6sq+jh0GM1r169esWxxx67P3is5ri4uIPGgy76vm/fPsep/xjSe9AZ58SOufaGUpP7ujWrijvAPHz37WXGFR0Tw3kjRzP7Q6v6vG37Dmz/88/i+du2bKZFqzbl3gW079iJ5D4pLJg3B4CmzZrz4JPPM2PuwuKTQ7eExDLXUTT++0WXXc1zj/+b4aPH8uATzzH5vjvLXK4OqQ98gts1wu5AVPWLi4srPkc4nU5T4jtZ+b6mm3dldp547WXces+DfPTVD0wJJPDCwsLi9XzxyUe89OSjvPTeRzRv2arUbU2+787ic8TalaWPgbP4h0Xcd9sNPPP6VOK7/T3qWotWrYuHku7T7zgSex/Jit/Kr1g6Z8Qofv5+IRn7/n4V+5svPstXn8/mubdmUK9e+a2MT73yHiPOGkwTV0MefOoVpr0wmZOOO4anXn233GXD3FDgB9yuznYHUhPCPsEHK2us5rLsy8hwnjp4SPKAU4fEXHvzoRN3eeM2b/tzM3mBdm+/38/c2R+T0Msab3ngoNNYuWwpG/5YA8C0t17jjHMuKHU769asKv773j27+WnRd8Xrydi3t7hD4cplv/HNnM+46LKyX9p0qPHf84M69yiigfdxu0ofZ1eFhQYNGvj37t1boaY1Ywx+ccbl+6VZQUE+Hk8hbdtbzWhTX3/5gLJzPp3Jc4/9m5emzqRt+46lrQ6A1Af+U3yO6NGr90Hz039cxN23XMdTr71Hz6TkA+bt2L61+O+bNqxj9Yrf6Z6YdNA6sjIz2fnX9uLvX3+RhqtpM1xNrL7Ab738HJ9/8iEvvTfzgLb6Q9m0caN8+d2PXDdmOB6PF6/Xh4jgEAfZOdU6rnuoSgK+xe3qancg1a3KVfSh+Kx6WWM1H4rX73e4H36s17KlS6Ly8vL5+nPrcZHBw87lmpvKvksvac3K5fzvUevxEr/fT6/ko7jzgf8A0KBhI9yPPs0tV1+Kz+ule89ePPjk88XLjjz9RP735nRatWnLu1Ne5NeffiQ6OhpjDJdedT3Hn3QKAMuWpPOf+1JxRkVRv0FDHnt+Ci1bH/ptrGWN/37NzXdUav/qAAfwCm5XE9yZB1/BqZB9Xr3Idddd99eQIUMS4uLi/F999dWaQ5UzxrBxT25XHM5ogIaNGjPhjrsZffZpNGnW/KCL73/edC3NW7bilqtGF097+f2PadK0WaXic99xE4WFhdx/2w3F0/791Iv06NWbZx99iBW/LSEqKgqH08k/H3qsuH/N/LmfMf/LL3A/9gzZ+zO5/forKMjPw+Fw0LR5C559431EhB3bt/LfB++hQ6d4rr7obACiY2J599N5h4zp3nvuif3fv25HRHA1bsQl559B8mkjadigPtNemFyp/QtjnYD5uF2n4M5cZ3cw1aVOjwfvN0bW78pO0FfOWsJ0PPia8gDuzPvtDsJOkXrcG2PYvDc3PjPP09zuWEJBy+iCnLa+sBsPvqZsBU7BnbnW7kCqQ0RV0VeGMYZNe3K7aHJXh3AfbpdWcUSgLfvyOmlyV4fQHvgGt6uL3YFUhzqb4Lfsy+tU0RfYqDrr0bryvGxd8ee+3A4ZuYX67gNVlvZYw862szuQw1XRBO8H6643EmzPyGurB3nFFP+TR8i/fRW8iNs10u4g1OHblpHXLvjtdEqVoStWkm9hdyCHo6IJPsMY4y0sLIyp0Whqwa79BS12ZReE/ZVZbcn1AL5CovMr/7atCOEA3sHtOsPuQFTV7cjKb7U7u6BODx2qKq0XMCecR6GsaC/63X6/f8GOHTuGRUdHexwOR1jezmXleRvt3J/fKSyDrwX54nMYn/XrGGMl9517M2iy6XOcvjrxuMyhRAMf4nadjDtzsd3BqMrJyC1svCMr/9DPtil1aMcArwNhWYtXoQSfkpLiT09Pvy8vLy953bp1LYHDHq2pthX6TFxmgb9V3a1pLp849zuj/UGdpX2FNNn0OW3WvmdfUKGjPjATt6sv7swddgejKiav0Bf35768iHu+uVqF3dm81o3A7boTd+Z/7A6ksir8HHxKSsrW9PT0E/x+f6fKLBcKZqzI7rFwS947xuh/5bK8HPfs8i5m0zEAGEN0/p66fudeUgesO/lTcWcWlls6AiW/mVwj48H/fvnvh/V8/erVq2M+/vhj16RJk3YVTWvXvn3ys6+/T4+k5EqPKXE4Fsz7giceug+/z0f3xCQefOI5GjY6+J1bfr+f/9yfysKvv0REGH319Ywaey0A3341h+f/+wh/rF7JyDFXMsn9SKnbysrIYOK1Y8jYu4dj+h/P3Q//F7BekHXH9WN58b2ZxW/HU4flYdyuJbgz59gdSGVUKlGnpKQUAn/UUCw1Ij41rQXwJRCxL1SuLs6CTXlxjpB9PjVUDASeA7R3fQhZu3Zt7JQpU1oWJXhjDCKOaN9hXtQfajCoQykaFnrKjNl06Z7Aw/fcwctPP8at9zx4UNm0j6azfu1qPvl2MdlZWVx05kn0O/5EuvfsRacu3fjX48/y5eyPDxhO9qB1zJpOvwEncv0tk7j6onNYu2oFPRKTePyBu7n5rvs1uVcfBzAVt6tfOL0IJ6Ifk4tPTRPgTaw7L6Wqy9W4XTeUX0xVtw8//LBxUlJSr4SEhKR+/fr1TE9PjwO48cYbO23cuDEuMTEx6dRTT+3+5768TojIV59/yphzh3DmgKN4+em/X064e+cO7hh3BZecdRrD/zGg+A2UAGcefyRPPnw/l5x1GvdOHFep+CozLPScTz/iglGX4XQ6cTVtyulnn88XH38IQHzX7vRMSsZZzsVF0bDQfr8fT2EB0TExLPpmHo1dTTjymH6Vil2VqykwK5w63UV0ggduxRpMQKnq9hRu1wC7g6hLtm7dGnXVVVd1feONNzauWbNmxZVXXrlr5MiR3fx+P88+++zm+Pj4/FWrVq348NMvdu8LPAa7PyuTtz+ey3uzv+bNl55hx/ZtANwzcTwXXXY1783+imlffMvy35Ywd/as4m1l7tvHu5/O45FnX6lUjGUNC11a2eChYtt16MT2bX8eVK4swy4YyZaNG7jojJM49oRBtGrTllee/S83TrqnUutRFXYEVqe7sBBWbemVEZ+a1h8oveFKqcMXBbyN23U07sz9dgdTFyxYsKBBQkJCXv/+/fMAxo0bt3fSpEmdNmzYUFwPXej1R2/LzCseGWzoeRcC1iiM7TvFs3XLJhq5XPy0aAF7d+8sXnduTg4b1/3d+njOiFHFw7iGsvr1G/Dfl94s/v6Y+59cMf5mNm/cwGv/ewKAa2667aCBbdRhGYHblYo7M+Rf1B+RCT4+Na0x8D7W401K1ZSuwDPAFXYHoiyb9+bG+/ym+LwWExtXPM/pcOLz+Ypf2vT2x18SGxd38EqA+g1Kf4P1ujWruOtGq/vF0X2PPWhUybbtO/Djd/OLv5c1LHTb9h3Y9ucWjkrpb5X9czNt21W9NfH3X9PZu2cXJ//jDMZecCb/fvoljDHcd+v44uFvVbV5ELdrDu7MX+0OpCyRWkX/DBAR7xJWIW8sbteFdgdRFwwaNChnzZo19X7++ec4gJdffrlp69atPV26dPE0adLEtz87Jya30FtuZ9r6DRrSb8CJTHn+qeJpO//afsBwrYdS3pDRlRkWevCw8/ho6lv4fD4y9+1jzqczOf3s88uNoTQej4enHnFz+33/BiAvLxcRcDikzE56qsqigNdwu0L6Jjmkg6uK+NS0c4DL7Y5D1Skv4Xb9gDuz/Ayhqqxdu3beV199df3ll1/exev1isvl8k2bNm2dw+HgiKNTTPfEJOcFpx1Ph07xPPP61DLX9fAzL/P4A3dzwWnHIyLUq9+Aeyc/Qeu27Q8rxsoMC33W8ItYvvQXzj4pBUEYc80NxWPI/9/CBdwzcTw52fsxxvBl2ifc/e/HGDSk9C5Fb774DGcPv5jmLVsBMP62u7jh8osAuPXuf5UdtL4bpKr6AHcQwk3BFRouNlzEp6Y1B5YD+r7pKvgi5s5FiY4tA+2OI0zNw5052O4gqlO4DBfrN0bW7tjfq8Drr2d3LOFIh4s9LPnA0bgzV9sdSGkirYr+eTS5K3v8A7frUruDqIt2ZhW00uSubBKHVVUfkj0yIybBx6emXUCYvi9YRYzHcbtcdgdRlxR4fdG7dfAoZa+BQEi+FyMiEnx8alo08Kjdcag6rzXwULmlVLXZlpHf0W9MRJzHVFh7BLerc/nFalekHBjXA93sDkIpYBxuVx+7g6gmfsAYY0Ky+jEzz9N4f76nqd1xqIrxGwADfp/dodSEhsBLdgdRUtj3oo9PTWsE3Gt3HEoFOIEXcLuOx50Z7j1Yt/n9/sydO3e2btWq1V4RCZn98RvDn3vyOhu/3+5Qwp4Hj+T7a+6f1hgo9MOuzHwceXuJydtZ/kLh6XTcriG4M+faHUiRsE/wWI8ptLQ7CKWCHAtchjUOQthKSUnJTk9Pvz4jI+PFrKwsFyE0sGiux984u9DE2B1HJMh1Fkbl+DNrdiN+L/V3/UqnVa/jMAe/tjeCPASETIIP68fk4lPT2mCNbhc2L/8PZfqYXLXaBPTEnVlgdyCHKz09vSHQjhBp0luzp7D+c4uzvjLGNLE7lkgwODp9aapj6lE1tgFjcHr2E1WYhdSNh+7Pw535sd1BQPjfwd+PJncVmjoD44CnyisY6lJSUrKBNXbHUWR4atq9gCb3arLXmZEfFx0xz6WHggdwuz4JhSa6kLgir4r41LSewNV2x6FUGe7C7apvdxCRJD41rQnWKJFKhaojCZFHtsM2wQMPE/41ECqytSJEn48NY7eid+8q9Llxu5x2BxGWCT4+Ne04oPQRHJQKLXfgdmkzUjWIT01rBtxsdxyRRkLzKchwlwjY/mbLsEzw6MtEVPhoCVxldxAR4lag3NHiVOXUkY5vdrgPt8vWIcvDLsEH2t5PszsOpSphQqi+qzpcxKem1cPqtKhUuOgKjLIzgLBL8MA1dgegVCX1AEof51NV1Bigmd1BKFVJtvbBCasEH5+aFoOO9a7Ck7YdH56b7A5AqSroj9vV166Nh1WCB84HWtgdhFJVMBi3K8nuIMJRfGrayUBvu+NQqorG27XhcEvw19odgFKH4Ua7AwhT19sdgFKH4WLcLlsGRQqbBB+fmtYNOMXuOJQ6DKNxu+rZHUQ4iU9Na4k+ElvTtBt9zaqHTZ3twibBY3Wu057IKpw1As62O4gwczGgg8rUIEEfhK8FY+3YaFgk+PjUtGhs+oGUqmaj7Q4gzITEKz+VOkz97OiDExYJHjgHaG13EEpVgzPsao8LN/Gpae0AHd1QRYoranuD4ZLg9dl3FSligBF2BxEmRqDNcipyDK/tDYZ8gg+MHvUPu+NQqhppNX3FaPW8iiRdcLt61uYGQz7BY/Wct31UHqWq0Ym4XS3tDiKUxaemdQCOtzsOparZmbW5sXBI8PreeRVpBBhidxAhbjhaPa8ijyb4ErR6XkWi0+0OIMQNtjuAukL0Mqo2nYzbVb+2NhbSCT4+Na09UKttFkrVkiE6wlzp4lPTooCT7I5DqRoQSy2+sC2kEzx6964iV2vgaLuDCFF9sV4KpFQkqrVqek3wStlHq+lLp6+kVpFME3yAdrBTkUz/f5fuVLsDUKoGdcXtSqiNDYVsgo9PTUsC2todh1I1qJ+2wx8oPjUtBn17nYp8tdLHJGQTPFo9ryKfC+hhdxAhJgVr9C1VS0SfRrTDkbWxkVBO8Fp9qeqCfnYHEGK042EtEx0t1g51PsHriU/VBfr//EC1cuJTymZ1N8HHp6a50PZ3VTdogj+QJnhVFzTF7epY0xsJyQQP9LI7AKVqSR/crlA9DmtVfGqaAEfYHYdStaTGL2ZD9cSiCV7VFfWAGr+SDxPxQGO7g1CqlmiCV6oO6GZ3ACFCq+dVXVJnE3yi3QEoVYs0wVt03AkbCEafk7PHUTW9gVBN8F3sDkCpWqQJ3tLe7gCUqkUJNd3/JlQTfCe7A1CqFnW3O4AQoQle1SVOoFlNbiDkEnx8aloTtKONqlv0Dt6iCV7VNS1qcuUhl+DRu3dV92his+jvoOqaOpfgO9sdgFK1rKndAdgt8Ay8vtxK1TUta3LloZjgW9kdgFK1LAq3q6HdQdisFRBldxB1kQ42Y6s6dwcfY3cAStmgRjvbhIHmdgdQV+lgM7aqcwk+2u4AlLJBXa+m1yFiVV1U56roNcGruqiuJ/g4uwNQygZ6B69UHdDE7gBspgle1UU12jSlCV6p0BCKx2Jt0gSv6qIazXeheFLRBK9U3aMJXtVFNdrDMRQfSwnFmCJeHAV5TWV/rN1xqDpLE7xNlvm7NPvel7QgRrwSjfWJwifR+BxReB1R4nc48Tmi8Dud+BwOjNOJ3+nA73RgouTAT7RY5/BoIFokJG8iQ0mdS/B6B19LnPi8Zzt+WDIu6pOCBPnzKBH62h2TqrP0WS2bLDddul/iuadGxkNw4PdH4y2MwueJxuuNweONEZ8nGo83Bq8v1tU/QnwAACAASURBVPrTGyMef+C7PwaPN1Y8/hg8/jg8JgaPPxaPiRGPicVrYik0MXhMjHiJwUssHonBQzReosUnMXgkGp9EWRcqjmjxOaPwiRO/w2ldpAQuUMwBFykOjFMwUVgXKdH8fZFSky8K0ASvqpMxJzl+W3ZT1Mx9x8jaJIcYTeoqFOTaHYCqfn4cjgJi4gqCa2hKS2khfHnnwO+LweOJwldoXaR4vTHi9Ubj9cTg9cXg8cXi8cWI1xuDxxe4IPHHiidwweL1x1JoYiVwoWJdpBCDxxQSvf7SGoxdE3wd0Vs2/DEx6sOtJzuWdosWX7Ld8ShVQo7dAShVGj8OZz6xTmrmImVfXUvw+t7EatJRdm69yfnRH2c5f2xXTwp7oMOShrJ8uwOwmSZ4VRfl1eTKQzHB77Y7gHDWlKy910fNXn6R8xuXi5xkER2hK0xk2h2AzbSKXtVFdS7Bb7M7gHBTn/ycMc4vl46N+iK6DfuOFuFEu2NSlVbXE7zewau6KKMmVx6KCX673QGEgyi8nvOci5Zc7/zU0022HSXCALtjUoelRg/0MKAJXtVFf9XkykMxwesd/CEZc6rj199vjJqVeZSs6+0Q08/uiFS12WV3ADbbg9VNSfvgqLpEE3xdd7T8sebmqA+3nej4PSFK/EfaHY+qdtm4MwvsDsJOGycPK4hPTdsJtLY7FqVqUZ1L8DsAP6H5Gt1aEy/bt9wc9dH6Mx0/tY8TTwKQYHdMqsbstDuAELEFTfCqbqlbCX7j5GHe+NS0XdTBA705mbvHRX2yYqRzQbPGknsE0NHumFStWG93ACFiM+jbFFWdUqN9zkIuwQdso44k+Abk7R/rnPPbZVFz41qRcZQIJ9kdk6p16+wOIERssTsApWqRB9hbkxsI1QS/HehjdxA1JRpv4QXOb5dc55zt6yJ/HS3CQLtjUrb6w+4AQsRmuwNQqhat3zh5WJ17Fz1EYEc7we8f7PjltwlRM/cfIRuSHUJ/u2NSIUPv4C2a4FVdsrymNxCqCX6r3QFUl76yeuXNUR/uHOBYkeAU/9F2x6NCkt7BW9bYHYBStajOJvildgdwOLrJ1k03R3208XTHzx1jxdsL6GV3TCqk6R28ZSVWu6QOOKXqgjqb4H+wO4DKas3eneOiPlk13Pld80aS1xvobHdMKiysx52p72EHNk4e5olPTVsF6GiHqi5YVtMbCMkEv3HysL/iU9M2AvE2h1KmhuRmXen8/LcxUfPqtyBTe8CrqvjJ7gBCzFI0wavI56EWmqRCMsEH/EAIJvgYPAUjnfN/vcaZRifZebQIJ9gdkwprP9sdQIhJB2pyiGylQsHajZOHeWp6I6Gc4H8ERtkdBFg94M9w/Lx0QtSsnCTZlCzCcXbHpCKG3sEfaLHdAShVC2qlGTqUE7zt7fDHyooVt0R9tLu/Y2VPp5iIfS5f2cYH/GJ3ECHmF6zfxWl3IErVoAW1sZFQTvBLgHwgrjY3miBbNtwS9eHmfzh+6Rwj3qTa3Laqc5ZrB7sDbZw8LDc+NW0xcKzdsShVg+p2gg/0qF0MNd/G3ZY9f02Imrn6POei1g2kIBHoUtPbVAr43u4AQtSXaIJXkWvTxsnDauWlTiGb4AN+oIYSfGOyM6+O+uz30c6vGjZj/5EitKmJ7ShVhjl2BxCivgTusTsIpWpIrdy9Q3gk+GoTR0Hexc5vllwd9ZmzPbu1B7yykwf4yu4gQtQPQA7QwO5AlKoBmuADDjvBO/D7hjl+XDI+6uP8RNlypAjHV0dgSh2m73Fn7rc7iFAUaJ5bAAy1OxalasA3tbWhkE7wgRfe/EoVRpYb6Fi27OaoD/f2lTVJDjEpNRCeUofjC7sDCHHz0ASvIs9vGycP21BbGwvpBB8wgwom+F6yad0tUR/8eapjSZdo8R1Rw3EpdTg+tzuAEKf9E1Qk+rA2NxYOCf4D4OFDzewgu7bd6Jy59mzn923rS2EC0K32QlOqSrbizgzrAZX+n707j7Op/h84/vrcO3fGLFz7NugKY4wlvraIImWbZF+yRUrRQgpD4tLittNGKmXJLwqJW0gikZ0iWcK1M9Y7+8xdzu+Pc2eMWZhhZs7cO5/n43EfmnPP8r7TnPs+nz2/2SyRB0xR1v2AfFCXfIlM8OnZLJFHTFHWv4B7UreVJPbqcD/r/sf060uUJK6BEFTWMERJyq3FWgfgJf4PeEPrICQpjxyyWSLzfQW59Ap9gvf4PpDkWgP06/Y+4bfaUInLDYWgtdZBSdJt+kbrALzEt8gEL/mOAi29AwhFUQr6mrm2YFLPGgP16/YKQYjWsUjSHfoXs13OkJhDpijrVuSkN5JvaGyzRBbo1NS6grzY7Rr0+tKjQlCgVRuSlE9k6T13FmkdgCTlgUMFndzBSxK8x3ytA5CkO6QgE1ZuLUFdfEaSvNlsLS7qTQn+WyBR6yAk6Q5sxmwvsDGwvsBmiTyPHFIoebdEYJ4WF/aeBG+2X0FWb0re7ROtA/BSM7UOQJLuwBKbJfKqFhf2ngSv+lDrACTpNp1GndNByiWbJXIdyD44ktfSpHoevC3Bm+37KMB5fCUpD32K2e7UOggvJh/uJW+012aJ3KrVxb0rwavkjS55m0TgM62D8HILgCtaByFJufSplhf3xgT/IyA7KkneZKGnD4l0m2yWyETgc63jkKRcOI1GnetSeV+CN9vdwAdahyFJOaQAM7QOwkd8DKRoHYQk5ZDFZonU9O/V+xK8ag7q05EkFXaLMdsPaB2EL7BZIk8jS/GSdzgLfKF1EN6Z4M32ZOB1rcOQpFtwAVO0DsLHvA4kaB2EJN3CWzZLZLLWQXhnglfNBY5pHYQk3cQ8zPbDWgfhSzwT33ykdRySdBPnUGuZNee9Cd5sdwDTtA5DkrKRgvz7zC9vAXatg5CkbLxts0QmaR0EeHOCVy0EDmkdhCRl4XPM9hNaB+GLPLOCvat1HJKUhSNoPDQuPe9O8Ga7CxirdRiSlEEsso9IfpsBXNA6CEnKYLTWPefT8+4ED2C2rwRWaR2GJKUzGbP9vNZB+DKbJTIOeEnrOCQpnVU2S+RPWgeRnvcneNULyJXmpMLhL2QnsAJhs0R+A6zTOg5JApKB0VoHkZFvJHh1Cc7pWochFXkKMMLTdCQVjJGoX66SpKX3bJbIo1oHkZFvJHjV28B/WgchFWlzMdv/1DqIosRmiTyCfLiXtHUaeFPrILLiOwlenfzmWa3DkIqsy8B4rYMooiyAnG9A0spTNktkvNZBZMV3EjyA2b4WDdfelYq0ZzHbL2sdRFHkmTHsadQmEkkqSF/YLJGrtQ4iO76V4FUvIZ/mpYL1f5jti7UOoiizWSI3AO9oHYdUpJwAxmgdxM34XoI32xOAAYBT61CkIuE0smmosJgE7NA6CKlIcAEDbZbIWK0DuRnfS/AAZvtOYKrWYUg+zw0MxGy/qnUgEtgskQ7gMdSJhiQpP023WSL/0DqIW/HNBK+aDmzWOgjJp72J2b5R6yCk6zxDlUZoHYfk0/7ESwqQvpvg1bHI/ZDTWUr5YwNecpMXNZ4JcBZoHYfkk84BvWyWSK9oAvbdBA9gtp8GeqKu7CVJeeU40Auz3Stu8iJqJPC31kFIPiUZ6GGzRJ7VOpCc8u0ED2C2bwae1zoMyWfEAV3lkLjCzTNXfRdArgkg5ZURNkvkVq2DyA3fT/AAZvsc5Ph46c4pwGDM9n1aByLdms0SeRLoChSKtbklr/aRzRL5ldZB5FbRSPCqF4BNWgchebWpmO3LtQ5CyjmbJXI78DhyEhzp9v1GIR/vnp2ik+DNdgfQDTigdSiSV/oGmKZ1EFLu2SyRSwCz1nFIXmkfXtSpLiOhKEXswdZsDAX+AEwaRyJ5j5VAD9mpzruZoqzzgMFaxyF5jf+A1jZLpNf24yg6JfhUZvsZ4GHk8DkpZ34D+sjk7hOeAJZpHYTkFU4DD3lzcoeiWIJPZTbegzqWuaTGkUiF13agHWZ7nNaBSHnDFGX1B34AOmkdi1RoXUItuR/UOpA7VfRK8KnM9r+AR1CHPUlSRv8AnWRy9y02S2QK0ANYq3UsUqEUA3TwheQORTnBQ+oY+YcBOZe4lN5e4EHM9itaByLlPZslMgl1+NwarWORCpUrQHubJXK31oHklaKd4AHM9q1AG2SbvKT6A2iD2R6tdSBS/vEk+W6AVetYpELhNGq1/DatA8lLMsEDmO1/A61Q1/eViq6fgfaY7XatA5HyX7qS/OdaxyJp6hBwn80S6XNDqItuJ7usmI1VgV+A2lqHIhW4b1FnqXNoHYhU8ExR1knAa1rHIRW4XUAnmyXyotaB5AdZgk/PbD+FWpIv9Ov8SnnqQ2CATO5Fl80S+TrqjHfyb6DoWA+09dXkDrIEnzWz0R+Yg3rDS74rGRiB2e51c0xL+cMUZX0IWAqU0DoWKV99CLzkrTPU5ZRM8DdjNr4MWAC91qFIee4c6ux0XrU6lJT/TFHWusD3QLjWsUh5LhEYbrNELtQ6kIIgE/ytmI0PobbPltE6FCnPbENN7l6zrrNUsExR1hDgM6C/1rFIecaGup77Hq0DKSgyweeE2XgXsAhoqXUo0h2bA7yA2Z6sdSBS4WeKsj4NzAQCtI5FuiO/AP1slsgiNbeFTPA5ZTbqgVeAVwE/jaORcu8S8CRm+wqtA5G8iynK2gj4DqihdSxSrqUAU4G3bJZIl9bBFDSZ4HPLbLwXWIi82b3JamAoZrtXLxwhaccUZTWidsySq9F5j7+AwTZL5N9aB6IVmeBvh9kYAnwEDNE4EunmEoFxmO0fax2I5BtMUdaOqG3z1bSORcqWC3gLmOpZe6DIkgn+TpiNnYGPgepahyJl8hswErPdJxaNkAoPTwc8CzASEBqHI93oEGqpfbvWgRQGMsHfKbMxEJgIjAP8NY5GgvPAS5jti7QORPJtpihrK+AL5MyXhUE86kPXu54piCVkgs87ZmMY8CnQTutQiigXam3KZMz2GK2DkYoGU5Q1ABiF+pBv1DicokhBHeE03maJPKN1MIWNTPB5zWzsA7yJ7IRXkDYAozHb/9I6EKloMkVZy6COsBmBrMkrKDuAUTZL5J9aB1JYyQSfH8xGP+AJ1Bu+isbR+LKtwKuY7eu0DkSSAExR1ruB6UAfrWPxYcdRh77Nt1kiZQK7CZng85PZWAz1iX4CUE7jaHzJXtTEvkrrQCQpK6Yoa3NgCtBJ61h8yEHUh6dFvj6HfF6RCb4gqMPqngWeQ5bo78Qe1OaPpZjt8g9XKvRMUdb6wMvAY4BB43C81d/AG8D3NkukW+tgvIlM8AVJrbrvBYwGmmscjbdQACvwPmb7b1oHI0m3wxRlrYJ63w8HimscjrfYBLwLrJRV8bdHJnitqDPijQZ6Iqe+zcpVYC4wC7P9qNbBSFJe8MyI9wTqJFkNtI2mUIoBFgCzbJbIf7QOxtvJBK81s7EC0A8YCDTROBqtOYC1qMNelmO2J2ocjyTlG1OUtSHwODCAot1HRwE2oj7QL7VZIhM0jsdnyARfmJiNtVFv9gHA3RpHU1AUYDNqUv8Os/2SxvFIUoEyRVn9UDvjPe75N0jbiAqEG9gCLAeW2SyRNm3D8U0ywRdWZmMzoDPqDd8E0GkbUJ5KRH1iX4NaUj+hcTySVCiYoqzFgLao935nfOtBPwlYB/wA/GizRF7UOB6fJxO8NzAbywDtUZN9e6CCtgHdlv2oCX0NsAmzXU4nKUm3YIqyhqMm+o5ACyBE24hyJQXYBfzhea23WSLjtA2paJEJ3huZjTWAZulejYBATWO60UVgJ+pMU+rLbL+gbUiS5N1MUVY9UB9oiXrfNwbqAHot40rnArCb6wl9u5wXXlsywfsCdfhdPdReubU9r1qoq9zl15AcN3AaOAYc9fx7CNgpq9wlqWCYoqxBqEm/Jmp1fo10r0r5cMlk1Pv+X9SJZ/5N/W+bJfJqPlxPugMywfs6s7E0cBdQFiidxSt9yV+k+9cNXEMdrnYVuJLuv88ANsz25AL4BJIk3QZP8q8KlAJKZvEKRl2kye35N/0rCbUmLtrzughE2yyRciEnLyITvCRJkiT5IF/qmS1JkiRJkodM8JIkSZLkg2SClyRJkiQfJBO8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INkgpckSZIkHyQTvCRJkiT5IJngJUmSJMkHyQQvSZIkST5IJnhJkiRJ8kEywUuSJEmSD5IJXpIkSZJ8kEzwkiRJkuSDZIKXJEmSJB8kE7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg2SClyRJkiQfJBO8JElSISWEaCqE2CKEiBdCKEKIhkKIjkKIvUKIJM+2klrHKRVOfloHIBUNQoiJwAFFUX7QOhZJ8gZCCAPwHZAEvAgkAKeA34F/gGeBZCBeCNEfKK8oygyNYtUBg4EeQCOgNHAc+BZ4V1GUJC3iKuqEoihaxyAVAUKIOOB7RVGGaB2LJHkDIUQ48C/wlKIoX3i2dQR+Bh5WFGVdun1XAfUURTFpFGsIEAtsBVYB0UAL4HHUB5IHFZlsCpwswUu55nla95dP5ZKUr8p7/r12i22FQQpwn6IoW9Jt+1wIYQOmAu2AdVkdKOUf2QZfCAgh2gghdnra1I4KIZ4WQpiFEEqG/QYKIXYJIRKFEFeEEN8KIapm2GeDEGK/ECJCCPGbECJBCHFGCDEui+sGCCGmCiH+E0IkCyFOCSHeFkIEZNhPEUJ8LIQYIIT4B7VasKPnvZc9bYSXPXHtEkL0yng8EAw87jmXIoT4Ot37oUKIuUKIC544/hFCPHGHv1ZJ8lqe+2Oj58fvPPfMBmCeZ9uO1PvIsz0SuCvd/WXznKeN5+c+Qogpnu+CWCHE90IIo+c7YIYQIloIESeE+CqL+3+oEGK9Z59kIcQBIcSI9PsoipKSIbmnWu75t05e/F6k3JEleI0JIRoBq4FzwBRAD0wGLmbY7xXgNWAJ8AVQDnge+F0I0UhRlPRP9KU851zm2b8X8JYQYp+iKD97zqcDfgRaAXNQqwLro7b1hQHdMoT6INAH+Bi4BNg820d5zvMN4A/0Q/1CekRRFKtnn0GemLd7rgVw1BNHBdRqPcVz7otAJ+BLIUQJrdoUJUljnwFngInAh8AO4AJwCBiO+h1xHPU+CgGMQBXU+xcgLsP5JgCJgAWoifrd4QDcqN8XZuBeYIjnvNPSHTsCtc3/R8AJdAE+FULoFEX55Bafo6Ln30s5+dBSHlMURb40fKHeNPFA5XTbaqLefKnNVneh3lgTMxxbz7PfxHTbNqAmy0HptvmjPkB8n27bQMAFtMpwzqc9x7dMt03x7BuRRfyBGX42APuAXzNsjwO+zuL4L4CzQJkM2/8PtRoyMOMx8iVfReEFtPHce73SbRvi2dYkw76rANtNzrEPMKTbvgg1uf+UYf8tGc+T1T2IWoA4moPP8AtgB0pq/fssii9ZRa8hIYQeeAj4QVGUs6nbFUX5D7UjTaoeqM0pS4QQZVNfwHngCNA2w6njgIXpzpeCWnq+O90+vVFL7QcznHO95/2M59yoKMqBjJ9BUZTEdJ+nFGpJYhPwvxx8fgH0BFZ6fkwfxxrPuW55HkmSbmm+oiiOdD9vAwQwN8N+24CqQoi02t0M97jRc39uBO4WQhizu6Bn5MxDQJRyYw2jVEBkFb22ygOBwH9ZvJd+Wy3Um/FINudxZPj5tOJ5fE7nKtAgwznrkKEpIENs6R3PaichxCPAJKAhkL7tLic9ZssBJVGrHIfnMA5JknLvZIaf7Z5/T2WxXYf6cH0ZQAhxH2pHuRZAUIb9jenOlUYI0Rd4HfhSUZRZdxS5dNtkgvcOOtSE2Qm1qjyjjO1tWe0D6kNC+nPuA8Zks2/GGz8x4w5CiNaoTQy/AyNRmwEcwFCgfzbnTS+1Bmkh1zsPZfR3Ds4jSdLNZfedcNPvCiFEDeBX4CDqd8Up1B7znVHb+zPVAgshHgbmA1bgmTuKWrojMsFrKxp1EouaWbyXfttR1BvuuKIoh/Po2keBe1Dbym93fGpP1Pg7KIqSnLpRCDE0i32zusZF1LGzeiXdmF5JknItv8aYd0GtmXtUUZS0WgAhRMYmvNTtzVF7zu8E+iiK4synuKQckG3wGlIUxYU6NrSbEKJy6nYhRE3U0nqqZahP2lM87dak21cIIcrcxuWXAKHAUxnfEEIECiGCc3AOF+oXiz7dsSYy98AHtSPhDVNqej7/UqCnEKJeFnGUy0EMkiSp91e27eF3ILWEn/a942l3z/QQL4Sog1pqtwGPpG+7l7QhS/DaMwPtgc1CiFmoyfI5YD9quzaKohwVQkwCpgMmIcQPqCXf6kB31KFn7+byugtQh73N9jyNb/ZcO9yzvQPqU/jNWFGr7VYLIRahtpc/i9p/oEGGfXcBDwkhxqD2mj+uKMo2IAq1Q982IcTnwAHUaS7/h9pBp3QuP5ckFUW7gL5CiPdRh9TFKYqyMg/Ouxa1Sn6lEOIz1CF5T6HWPlZK3UkIURy1Y2wp4B0gMkNZ5KiiKH/mQTxSLsgErzFFUXYJITqhJujXUNu4JqN2gAtPt59FCHEYtd1rimfzKdQb8MfbuK5bCNHNc77BqA8KCcAxYCZwy6YARVHWCyGGoSbpGagd8cYDJjIn+DGoDyKvo3YsnAdsUxTlghCimecz90Bty7+MOu52fG4/lyQVUZ+iFgiGot7TJ1BHp9wRRVEOeSaueh31O+o8MAu1eS19D/wyQOqkW5YsTjUPkAm+gMm56AspTym9rqIotbSORZIkSfI+sg2+EBBCBGb4uRZqL9UNmgQkSZIkeT1Zgi8EhBDngK9Rq8fvQp0aMgBopChKdmPfJUmSJClbsg2+cFgNPIY6b3MyalvVRJncJUmSpNslS/CSJEmS5INkG7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg3I10c2uXbtCgMrIBwPpRm7gbOPGjeO0DkTKe/K+lwoB+R1zG3I80c2uXbvu1el0s3U6nZF0awNLEqC43W672+1+pnHjxlu1DkbKO/K+lwoJ+R1zG3KU4Hft2hWi0+n+KFmyZIXy5ctfEULI6e98kKIoZFjDOafHiejo6NLXrl274Ha7W8mnbN8g73vv53K7hdOFwel2G5xuxc/lVnSAUBSEgiL0iqKUFPHKVYIFQgcCt0CgE7j1OuE06HQOg144dDpt/9/L75jbk9Mq+so6nc5Yvnz5K8HBwYn5GpGUJ1xuRZfkcBVLcroCUpzuAJd6c9/4UhS9241eQREAFQxJ8RVc54IBBQQIoYBwo9M70RlS0Ps50Bkc6A0p6P3T/evvKF++/JWYmBij2+2uTA7Wkpe8grzvCzmXW9ElpDiDElJcQSlOd4DTrRicLrfB6VYMLrdicCvKTZpVBEEoKRV08c5YJSTAoaBXt6fmcgW1Zhx0QrgMepHip9c5DDpdikEvUgx+upQAP11SsL9fQkE8AMjvmNzLaYLXAUI+wRc+brci4lOcwfEpruBkh6tYitNdLMXlLuZyK3eykJAABRRFADpcLj9cKcVwZH+AzqV3+CVfdZh2vP40K3dYgR2Y7bF3EIOkPXnfFyIut6KLT3YGJTpcQYkpruAkpysoxekulhfnVm7R/OJWFH2yUwlMdroDM74nEIq/ny4p0F8fH2TQxwUF6OMDDfqk26kNvBnP36H6nSTliFxNzsskOVwB8cnO4IQUV0iiwxWc7HAHppbAtSQUp0HnSjYEJJ4fA4wB3JiNB4Htntc24G/MdqeWcUqSt3C63bqYRKcxNslhTExxhaS43AH5dCmhcPvZWEERyU5XYLLTFXgNygLohHAXM+gSihn08SEBfrElihlitK7mL4puO8GboqyN8zKQ9GyWyF35de6c2rFjR7Fu3brVOnPmzL6CuN6gQYOq7dixIyT15+PHjxd79dVXT0+c+MrFL+ctqPTOW9PL6/R+OofDIR7sEMlz4yZl2V7+6phn+XffXnQ6HX5+BkZNmELzVg8AsG/PLt6aEkVKSjIpycl07dOfoSNGZTrH8ZNn6DdyAnHxCQzo3omJLwwD4N8jxxj/xof8+PWMnHwkHRDheQ3xbEvCbNwMLAWWY7afz8WvSCoE8uu+Lwz3/K2Eh4dH/PnnnwdLlSrlzq9rJDlc/vZER8nYJGfJxBRXSG4f3vfv3c07UyeQEB+PEIKXJr9B8/vuB+DE8aO8+crLXLl0EafLxdOjxtLj0W4AZOyKtWn9Wj5+5w0Utxun08mQZ17g0d6PAXD50kUmjR7B6RPHMfj788ob79L43vtuON6tKLodO3aGTB33QojD4ajwxIhRSv9Bg6+VKOZ3bdOvq11LFi8uuWjRohO3+3uSckaW4AuJBQsWnEz976PHTwTWrVO7zkNd+xoPnIsJrdeirW7J2kfQ6XQ4UlJ4vEcnIho0ol2nRzKdZ+yUNylhNALw7/6/Gd6vKxv/PopOp+O1qNGMfGkCbdp3xn71Kl3bNuP+dh2oERZ+wzk++XoJzz7ehwE9OhHRphfPP9GPkOAgRk95l9mWV+7kYxYD2nleH2M2bkFN9ssw20/e9EhJ0ojD4cBgMHDw4MEDeX1uRVGIS3YGxyQ6S8YlO4xZVYHn5lwvPjWI197/hHtbt8F27D+efqwbKzbsoFhgIJPHjKRrnwH0eGwwVy5fon9kW1o2bYYp1O+GKnpFUZj4wtN8+d1KwurU48ypk3Rr24x2nR4hOKQ4M6dPpcH/mjBr4ffs37ubF58axE9b9mIwGG6IZ+6nMxg/1UKdBg3p9fB9okvvx0pdvBpT6rU33+LzBYtjomOTypUM9L/m76e7sIReYgAAIABJREFUSeOfdCe8ui1j4cKFJe++++66tWvXjhgxYkRoqVKl7jl06JA/wPDhw6vUq1evTnh4eESTJk1q//XXXwEAcXFxIjIy8u4aNWrUrV27dsR9991XK/V8Y8aMqXzXXXfVq1u3bp0FCxaUTn+tpUuXlmjcuHHtunXr1qlfv36dlStXFgdo2bJlra+++qpU6n6rVq0qXqdOnYjcfha3WxGX45JL/xcdV+ujz7+KaPlAOxFUqlwJt6LogkOKo9Op/6uSk5NwpCRn29s9NbkDxMXG3PimEMTGqNsSE+MxGPwxlixFRgaDHwmJSTgcTtxuNzqdjtnzv6f9/S2oXi00tx8tOzqgFfABcAKzcTtm43jMxpp5dQHJ96xbty64cePGtWvXrh0RFhYWsXDhwpIAv//+e1CjRo3Cw8LCIurXr19n7dq1wQD9+vW7a/LkyRVSjz948KB/2bJl70lOThYrVqwo3rBhw/A6depE1KxZs+4HH3xQNnW/nj17mnr37m1q0qRJ7bCwsLoAQojGly5d0kP23y+p+0VFRVWsX79+ndDQ0PozZ84sk/re7t27i7Vq1apWWO3adcPC69wzxfJBw+OX4sMPHT9Z8YWnHg/s/0g7ej7Uko/ffj3Xv5trV69w9col7m3dBgDT3TUpXsLIHxvWAXDowD+0avswAKXLlCWsTj1W/bhMD9e71aX7DMTa7QDEx8VgLFkaf3/1I65d9QO9Bw4FoF7D/1GuQkV2bd2cKR4/Pz+SEhNJSU5Gr1P77836wMKAYc/gF1S8xHl7UrWD52MaHLkQG34hJqm80+XW5/pDSzfltSX4M2fO+D333HOm33777WCjRo2SZs6cWebatWtpn8dsNp+vXLnyaYA5c+aUeu6556pt2rTpyLJly4x2u11/9OjRfwAuXLigB/j222+NP/74Y6k9e/YcKFmypLt79+7VU8914MAB/9dee63y+vXrD5cuXdq9f//+gLZt29Y+efLkvsGDB1+eP39+maFDh14FmDt3bpmBAwdeyunniEtyBl9JSCkbk+go5VYUPcAPi79hzKRpN+y3d+c2Xot6kZO2Y/QZ+ARtO3TO9pwzppv5ZdUKYuzXeG/O/LSHg2nvfcLoYf35+J3XuXr5Mq9aPqBs+QqZjn/hiX4MeXEKny1cysvPDMIeE8f31nWs/b9Pc/qxbkdTz8uC2bgX+AxYgNken58XlbzHhQsX9H379q35zTffHO3YsWOcy+Xi0qVL+qSkJNG3b98aH3/88YmePXvGrFmzJqR///41jx49um/YsGGXRo4caZo2bdoFgM8++6xs9+7dLwcEBCgtW7ZM2Llz50E/Pz8uXLigb9SoUcSjjz5qr1GjhgPg77//Dtq6dWuWVfLZfb+kvh8QEKDs27fv3z179hRr1apVnZEjR15WFIXuPXqGPT/2FWf7rr2KAVy9chmASS+O5MnnxtCkxX04nU6eH9KPtat+oP0j3XL8+ylVugzlyldgzcrldOjSnf17d2M79h9nT6mVYxH178G6fAlDR4zi9Akbf+3aTtXQKpAhvwshePvTuYwZPpjAoCBi7HbenzMfg78/165ewel03PC9EVq1GufOnM4Uz9Ojx/Fa1IskJibw4ivTOPjPPs6cPMGLE6fesF+iwxWc6HAFR8cmh5Yo5ne1TEhAdEiAX0KOP7iULa9N8Bs2bAiuXbt2QqNGjZIAnnvuuctjx469K/X9H3/8scTs2bPLx8fH691uN3a73Q+gSZMmCePHjy82cODAag888EBsr1697ADr1q0r3rVr1yulS5d2A4wYMeLisGHDQjznMp44cSKgZcuWaXXZQgj+++8//4EDB16dMGFC1RMnThhKlizpWr9+fclPP/301M1id7sVcSk+ueyV+JTyGXvB7t62hYS4OFo/2P6GYxo2ac7SdVu4cvkSLw0fzO5tWzK1e6UaPcHM6Almtm7awIw3pjBv+WoM/v7M/eQDXhg/mc7de3P6hI0nekcS0aBhpir6ShXKsWbR9WTee/g43ps8ht8272TWgu8I8Pdn+oTnuKtK5Zt9zDvREJgFTMds/Br4BLP9v/y6mOQdfvvtt5Dq1asndezYMQ5Ar9dToUIF1/bt2wN1Oh09e/aMAejQoUNcmTJlHFu3bg3q0KFDnNPpZOPGjUGtW7dOWLJkSZkffvjhCMCFCxf8BgwYYDp+/HgxvV6vXLt2zW/Pnj2BqQm+a9euV7Nrb8/u+yXVsGHDLgM0atQoSa/XK3sPHgs9e/Fq2RSHw699115pddmlSpchISGe7Zs3cuVSdNrxCfHx2I7m/k9+xpffMOPNqXz5yQfUCAunUdN70fupob32wSzee20SfTq0plJoVZrd9wB+fpkLzU6nk88/fJf358yn8b33sX/vbkYN68/3v2zO1TwZd9eqzVdLfwLA5XLxzIAevDFjNj//8D2//PQjwSHFGTv5DUqULAmAoig6e6KjjD3RUaaYQZ9QJtj/Qqlg/6s6OYrjtnltgr+ZI0eO+I8fP77ali1b/q1bt27ytm3bAh966KHaABERESkHDx78Z9WqVcV/+eWXElOmTKny119/ZWpbS/+HrCgKrVq1ilm5cuXxrK7XuXPnq59//nnpcuXKOVu0aBFTsWJFV8Z9Jk6cWHHZsmWlEXq/FydN07V4oF2W1VHLv11Il9790Ouzrq0qXaYsrR58mLXWFdkm+FT3tm7D9FfHceTgASpVqcr6NVbe/nQuAFXuMtHgf03Zu3NbpgSf3lLrr9QwVaFhvdrUeaAH260L2PnXASa/M5t5M6dle1weKQmMBkZhNq4C3sJsz1wXKEkZpL9/+/fvf/nzzz8vGxMTc7VUqVLOpk2bJgEMHz78rvbt29tXr159VKfTERERUScxMTGt2TIkJCTTfQw3/35JFRQUpCSmuIpFxyZV0PsZ9Jfikiu6sptUzLN9wYpfCCh281FvLz39OKdsxwCY8+0KSpa6oSWR2hH1mbXw+7Sfu7VtTk3P/R1atRrvz5mf9t6Igb2o2fr+TEEd+mcf0RfOp32/1Gv4PypUrMzB/X/T4v626PV+XIq+kFaKP3PqJJXUmoBsLfxiFg9HdqW40cicD9/lu7V/sGrpYhZ+OYuRL03ItH+SwxV05lpi9QsxyVVKB/tHlw3xv3jTC0hZ8to2+DZt2sQfOnQoKLXta9asWWUcDocAuHr1qt7Pz0+pVq2aw+12M2PGjPKpxx09etQghGDAgAH22bNnn1YUhWPHjvk//PDDsT/++GPpq1ev6txuN7Nnz05rj+vSpUvM5s2bS2zbti2tA8xvv/0WlPrfTz755KVFixaVXbhwYdmhQ4dmqp5Pdrj8R7w8yfD9r9sClvyy2ZBdco+LjeGXn36kW9+BN2w//t9h3G61IBEfF8umX9cSVqdupuMdDgcnjx9L+3nfnl1cuXSRKtVMlDCWJDAwiG2bfwfUqsF9e3ZSs3adbH/H1+yxzPxyEVNeHA5AQmISOp0OnU5HXEKB1qAJoAvwB2bjH5iNj2A2aj40UCpY7dq1iztx4kTA6tWrQ0AtFV64cEHfoEGDJLfbzfLly0sA/PLLL8GXLl0y3HvvvQkATz311GWr1Vpq9uzZ5QYNGpR2f9rtdr3JZErW6XT8/PPPIYcOHQrK+so3utn3S6oz9qSq/0XH1rUnOtK+R0w1alEsMIiff7iegK9euUxQcAhNW7Zm7qfXR6dEnz/HhXNnMl37vc/msWTNJpas2ZQpuQNcvHB9YMrSRfMIDAyimacX/eWL0WnfI5s3/MqxIwfp2r13phqKipVDuRR9gWNHDgFw8vgxTp04jqmG2j2mfWRXvlv4FaD22o8+f+6mhY3TJ0+wddMGeg8citPhwOl0IoRAp9OREH/zFjin222Ijk0KPXg+tsHFuOTyihfnLC14bQk+NDTU+eGHH9q6d+9e09/fX3nggQdigoKC3GXKlHHVrl075dFHH70SHh5et1SpUs7OnTtfSz1u165dgZMnT66iKAoul0v06tXrSvPmzRObN2+euG3btuCGDRtGhISEuNq1a2ffvn07APXq1UueO3fusaeffvquxMREncPhEHXr1k1o27btcYC2bdsm6PV6Tpw4EdCjR4+0nm0pTrfhnD2xckyis0xOhrus/nEZEfXv4a7qNW7YvmblctasXI6fnx8ul4uHI7vS47HBAPzz1x4+fe9NPpn/HU6ng1fHjCA2JgY/Pz8Cg4J497N5aVVg78z6ig/emIzL6cTpdDJg2Ajuadws23jGvzET85inCQxUSxWTRj1Jk04D8DcY+PK9KTn9X5XX7gNWAvswG8ditq/RKhCpYJUrV8717bffHh07dmzVF154QafT6Zg8efKZ/v372xcvXnx01KhR1caPH18lICBA+eabb44ajUY3gMlkctxzzz3xv/76a8l58+alDc16/fXXz4wePbqaxWKpXLdu3YQGDRrkqL9Hs2bNErP6fnG63PrzMUmVAGKTXGVKZBi17ufnx8wvv2H6q+P54uP30el09Bk8jN4Dh/Lmh3N4d9or9GjXAiEEgUHBvGp5nwqVctepdemieViXfweKQvWaYXzwxYK02oyN61Yz95MZ6PR6ylWoyMfzllAsMBBEnLJh7U9s+GU15nc+pEy58ky2fMDYEUPR6XS43W4mvPY2lUKrAjB6opmJo56hS+vG+Pn78+aHn2XqQZ/e21OiGGd+EyEExUsY6dytF70evo/AoOC0GsVbcSuK7lqCo9zlBJd79o6rj+34zvqazRIp59S4hZzORR/u5+e3ulatWnFBQUFJBRBXjly9elWX2ka2YMGCklOmTAk9duzYP1rH5XIrugsxSRWvxKdUuPlUkYVLuqlqcy3JqXD8zEWqb36JYnE37YKQ16zAGMx2OXVlHius931h43IruujYpPKX41IqpnaU9RZBuFNM+ouOA64Kt3XfFyTFmUL02dOYf4vmTKzrEBBls0T+oHVchZnXluAB3nrrrfLLly8v7Xa7RUhIiGv+/PlZtpEXFEVRuBSXUjY6Nin0DqeKlXIuEmiP2fgRMA2zZ2yPJOUzRVG4GJdc7lJsciWnW8m+CCvlh9rAclOUdRMw1maJ3KZ1QIWRVychi8Vy3mKxFIrZ0OyJjuLn7InV8mpuaClXDKjT4w7CbJwEfIHZnm+zjUlSXJIz+PS1BJNv3O9e3Z2lNbDVFGX9DjXRy9nx0vGa6uPCyuFy+9kux5tOXI4P842b3auVQx0/vwuz8QGtg5F8j1tRxJmrCaHHL8WF+8r9rmSe58Yb9Qb2maKsw7QOpDCRCf4OXI5LLn34QmzdmERHmVvvLRWghsAGzMZ5mI3FtQ5G8g1xSc7gwxdiIy7Hp1T0hYyYxqsL8DcoDnxhirKuNEVZK2odTGEgE/xtSHG6/Y5djKtx5lpiddnWXqgNBnZjNjbROhDJe/liqd3HPQLsN0VZe2sdiNZkgs+lawkpxiPRsXXjkp0ltY5FypGawBbMxnFy7LyUWz5bar+BT94WZYAlpijrIlOUNfOCG0XE7Zc+zcZ8Wy4Ws73QLR2pKApnryWFXo5PllU/3scAvAU8hNk4WC5Tewfy674vZPe8oiictydVuhSXXNl3E3uR8BhwvynKOsxmiSxyc2b4ZAn+0KFD/m+//Xa59NtCQ0Prb9my5baWYkxxug3/XYyrndvkfuTffxjaszNd2zSjR7sWTH7pOZISE9Pej7l2jQnPP0WX+5vQvV0LZkw3Z3uunX9upn/kg3Rv14LuD97LX7vUSXh+XrGUPh1a06NdC3q0a8G8zz7O9hzTokbT86GWPNn3UWJj1NFkiqIwclAvTtk0HWFYUB4G/sZszH6lHqlQS11BMjw8PGL79u23vbRqRqtWrSr+/ffflwB1XLvtcnyNi7lI7n/v2Unv9q3ocn8Tnuz7KBfOnc1yv/17dzO4W3ua16rM6GEDbnjv159X0evh++jToTXdH7yXj956jazmKXE4HIweNoDe7Vvx4lODcDrV+V6Sk5IY2rMzMdeuZTrmZhTfLMGnFwqsNkVZp5qirD7/YdPzyQR/5MiRgLlz55a79Z63Zk90FD8SHRuRmOIKSb2Rcsq/WDEmvP42KzZs57u1f5CYkMBXs2amvT/55ecIr9uAlb/vZPmvfzJw2IgszxN9/hyvjhnB6zNmsfzXP1n880aq11Snvq5YOZRPF3zPsl//ZN7y1Xy3YC47/vwj0zmOHDzAyePHWLpuC01atGLVssUALPu/+TRt2ZqqpuqZjvFR5YBVmI0zMBsDbrm3VKjMmTOn3Pjx488dPHjwQLNmzRJvfcStORwO1q9fX/ynn34yJjtc/v9Fx4XHJuW8Cc7tdjPx+eGMNU9n5e87ad32Yd6ZOjHLfctVqMDYKdN5ecobmd67t/UDadPQLln9O39u2sD61dZM+23Z+CslSpbiu7V/ULyEkc2e5WDnzHyHfkOeSpu5MheKSiXFZOD/TFHWPHswLOy8OsEvXbq0RERERJ2wsLCIpk2b1t61a1cxgOeff76azWYrFh4eHvHggw+mrS++ZMmSUg0bNgwPDQ2tP27cuEqp20+ePOnXuXPnu+vXr18nLCws4oUXXqgMcN6eVCEirEbYu69P9uv/SDtefTHrBJydu6rXIKxOPUBd+arePY3Slm48efwYB/7ew6Dhz6btn9XSrQBL5n9Jp669uLuWmtT9AwLS1n1v1PTetOOKlzBiqlkr7RrpGQwGHCnJuN1uEhPUteAvXjjPzyuWMuipZzPt7+MEMApYh9lYZNvnvM2QIUOq7ty5M2TatGmhjRo1CofsvwNWrVpVPDw8PCL12B07dhQLDQ2tD2oNX/HixRuOGDEiNCIios706dPLz58/v9zyH34oc0/DhvVnvjs9VwngwN970fv50axlawB6DRzCxnWrSU7KPPlfhUqh1G/UOG1t9fSCQ4qnLe2cnJyEIyU5y9Xb/PwMJCWqa0EkJSZgMPhz+N/9HD96hA5duucm9KKoL7ChqPSy99oEf+bMGb9hw4bd/fXXX9sOHz584IknnrjYp0+fGm63m48++uikyWRKOnjw4IH169enrbl47do1/d69ew/u3Lnz31mzZlU4fvy4AaB///7Vn3322eh9+/b9+88//xzYs2dP8IdzvqoVHZtUBcB+9SrfrFzH9I8+v+14ExLiWfbtAtq0V2uHjx05SIVKobw+cQz9Orfh6f49+Hf/31kee/TIIZKTkhj+WDf6dGjN9FfHkZCQedrso4cP8veuHdzbOvMQcFONWjRt0Zp+nR7gzMkTRPbowztTJzLmlWn4+RXZgQCtgE2YjTdfCksqFL7++utT9erVS7BYLKf27Nlz8GbfAbcSFxenr1u3btKBAwf+nTx5cvRjg4fER3bvq1+yZhPPjB6Xq7jOnz2dNk87qIk6OKT4DQu/5NTendvo+VBL2jYKo1nL+2nbIXNrUov72xIcUpze7VsRUqIEze67n3enTWL81Om5vl4R1QzYYYqyNtQ6kPzmtQl+48aNwWFhYYmp1XQjRoy4Eh0dbUhN2lkZNGjQFYBKlSo5q1SpknL48OGAmJgY3datW0u89NJL1cLDwyPq168fceLU6ZDDR46WSD3u0d6P5Wod5IwcKSmMG/kELe5vS7tOjwDgdLnYv3cXHR/tybc/bWDQUyN4fkg/HA5HpuNdTie7tm/h3Vlf882q9cTYrzHrPcsN+1w4d4bRwwYwaXr2C1Q8N24SS9Zs4t3ZX7P19w1UrBxK5arVeHXMs4wZPphly5YVxUxfF/gTszHz8nxSoXY73wGp/Pz8lBEjRlx2K4o4eSWhmhM/Y2Foim7YpDlL121hzbb9HNi3l93btmTaR6fTMeXtmXy39g8mW2bw7def07ZDZ5xOF1HPPcmY4YPTVo3MmULwwQteFeAPU5S1m9aB5Kci9YUeGBiY9miv1+sVh8ORttjO7t27/zUEFNMfvxRfK8nhuuHBJyg4JMvzHT18kAnPPwWoN+bEN97NtI/D4WDsyCcoV74i46deT8qVKlehfMVKadV6rdo+jNORwrnTp6hW/e4bzlExtAq169ZPa1vr1LUnX37yQdr70efPMfyx7jz1wsu0f+TWf69xsTHM++wjZn2zlC8//oAm995HZI8+9Gvf0jCkfaO01eOKkCqoJfmumO2btA5GunMGg0FJX5JPv847QLFixdwIne7YxfgaCSnOEplOkE6M3c6TfdQH88pV72LGFwtveL9i5SqcO3N9gaX4uFjiYmMoV+H2a4FLlylLqwcfZq11xU2XYj17+iSb1v/CrIXfM+nFEfQcMISI+vcwsGt7lv/6Z46udet1Ln1WMLDMFGWdYLNEvqV1MPnBa0vwbdq0iT98+HDgjh07igHMmTOnVIUKFRzVq1d3lCxZ0hUbG5ujVZ2MRqO7WbNmMRNfmVTlv+i48CSHKyi7tZgzqhEWntYpJqvk7nQ6Gf/sMIwlSzH5rRk31AJENGhIcEhxDv+7H1DXblcUhYqVM5e+O3frxY4tm0hJTgbgj9/WUdvTtn/xwnmGP9aNoSNG8Wjvx3LykZk5fSpPjx5HYGAQiQkJCCEQQuB0OkRKFjUIRUQpYC1mo2zE9BI3+w6oXbt28tmzZwPOnj3rB/DVV19lmm3y2MW4WqnJPTikOLExMRl3AaCE0Zh2n2dM7qDey06Hg+1b1GfD7xd+zQMPdSSgWO4elI//dzhtvfb4uFg2/bqWsDo3r1h6e8oExk55A51Op97LCIROR1IWTXhSlgRgMUVZP9Q6kPxwB+PgtR23WrlyZecXX3xx7PHHH6/udDqF0Wh0LV68+KhOp6N58+YJYWFhibVq1apbtWrV5PTt8FlZsGjxmVFjxtTu0qa57k7WYs5ozcpl/PrzSsLq1KVvx/uB6yV9IQSvfzCLqeNGk5yUiL9/AO99Nh//ALXzzbODezPypYnUvacRDZs0p037TvTt9AA6nY4aYeFMmq6W4D99bzrnzpxm0dzZLJo7G4D+TzxDt74Dsoxpz46tJCUl0eL+tgD0e/xJxj/3JF/NmkmPHj0dxhLF/e/oQ3u3YsD3mI3PYrbP1jqYQqkQjVe/2XeAyWRyjBw58nzTpk3rlC1b1vHQQw+lrTLocit6IXT6RIcrrWruwY6PsGrZYvp0aM2Dnbrkqh1ep9Px5oef8VrUiyQnJ1O+QkXemHn9zyf9vWw7eoSn+nUjKTGB5KQkHm5alyefe5G+jz/JmpXLWbNyOX5+frhcLh6O7EqPxwZne92fln9HWEQ9atauA8ATI0czbfwoHA4HT40am4vfpCgqvehv5nlTlFUHPG+zRPrM78Or14PPC0kOV8Cxi/G1nW53kV/u0UvXg88vZsz2qVoHoSVfvO+dLrf+6MX42slOV5EZKnUzQbhTqhiuJR12lL5pM0VhkGE9+Py6zCzgWV9J8l5bRZ8XZHKXbsKM2The6yCkvON0ufXHLsaHyeQu3cQI4FOtg8grRTbBJzlc/scuxYfJ5C7dhAWz8Wmtg5DunMut6I5diq+V5HQFaR1L4VN0e9ll4xlTlPUdrYPICzlN8G4gy2kTvVGy02U4fim+ttPlLsrtzXkq7U/DR/5G0vkUs7Gf1kFIt8/lVnTHLsbVSnK4bqv5ydf53B2bN142RVknax3Encppgr+mKIozJSXF6xOi0+3W2S4l1HLI5J6nUtyA24neEat1KHlNB8zHbGyvdSBS7imKwonL8dXTd6iTpByaaoqyjtY6iDuR0170l9xu98YLFy5EGgwGh06n88qHPkVROGNPuispRbbBZcWBQyS5c/+/1q3ARXsSQdG78UvJeqiRlzOg9q5vhdme9XSDUqF0zp5UWS7tfAuyhv5m3jNFWY/YLJGZFwXwAjlK8I0bN3bv2rVrcmJiYv2jR4+Ww0v/JGKT3aUTnYp8ks9Goj7FL9Ztv/WOmSjoEq9Q7dDXCN+t8CsO/ITZeC9m+2mtg5Fu7Up8SqlLccmVbr1n0aYU4ZluckAHfGOKsjazWSIPax1MbuV4HHzjxo3P7Nq1q5Xb7a6Wm+MKizf/uDr4fJxzgtZxFGaPGnYcHKVb3CDXB7pd+CdGo1Nyt9qeFwoFrJiNrTHbfbKq4lb+Da+TL+vB1zn47x2Nrz906JD/ihUrjOPGjbsIEJ/sDKoXXvPuGV98Q3jd+nkTZA5tXLea91+fjNvlomZ4BK+9/wkhxTOPQnO73bw1JYo/1v+CEIIBTz7DY0OGp72/7qcfmfW+Ja3v00dfLya0arUbzhFz7RovDh/EtSuX+V+zFrzy5nsAXLl8ibHPDGH2ouUYDLfoRyzz+60YgR9MUdbmNkukV7VB5ipRN27cOAW46aQxhZEpyvoIIIc83cI1/dWkYgafGMOenxoAXwK9tQ5Eui51iehx48ZdTHG6/U5cTqiZF3nL6XTmajGmhPg4zGNfYO53q6heM4w3J41lzsx3GDPptUz7Wpct4diRQ/z4+07iYmLo2+l+mrZoTc3adfh3/9989PbrfP7tCspXrER8XCw6febJOa0/LKFpy9Y8M3ocT/Z9lCMHD1ArPIJ3p73CqAlTbp3cpZyqAywwRVm7e9MYeZ8fJmeKslYHFlIEPqtUYHphNg6/9W5SXsvJEtHtO3Wulzr89defVzKoa3s6tbyHOTOvTyd9KfoCY0cMpf8j7ej5UEs+fvv1tPc6tWjAB29O4XaWiP7jt3WE121A9ZphAPQdPIyfVyzLct81K5fR47HB6PV6jKVK0aFLd1avWArA/DkfM+ipkZSvqLYwBIcUJzAw8wi/1KVj3W43jpRkDP7+bP5tHSWMJWnwv6Y5ilmRRfic6oq6przX8OmkZ4qyGoBvUatYJCkvzcBsjLj1blJeyckS0Ws270r48Ktv04q6sTF2FqxYy6JV65n32YdcOHcWgEkvjqTv4CdZtOpXFq/+nX/+3svaVT+kXet2l4g+d+Y0lar1yBZEAAAgAElEQVRcX324ctVqXIo+j9OZufnq3JnTVK5yfZnZylWqce6s2r3j2JFDnD9zmid6RdKn4/18/M4buFyZZ2+L7NGHU7bj9O14P81btaF8xUp8/tF7PD9uUq7ilnJsiinK+qjWQeSU17Wl59KbqGv/SlJeCwQWYzY2xWz3iWlcC7uslocdN25ctbTlYYXOz57ouGFRmc7degFQqnQZQquZOHPqBMWNRrZv3siVS9Fp+yXEx2M7er318U6XiL5TLqeTg//8zacLvsetuBn1RH+WLPjyhjZ6gKCgYN77bF7az++YJzJ05ChO2o7z5cfvA/DUCy9RO6Jg+yH4MIFaVd/cZok8qHUwt+KzCd4UZe0IvKR1HJJPqwe8D4zUOpCizuXGD50+U4Ozf8D1Fd30Or1aCvZ0Wluw4pdsV3y73SWiK4VWYeumDWk/nz11krLlK2bZjl8ptApnT5/insZqGeTs6ZNUqqyW/iuGVqFdxy4UC1RH9Lbr+Ah/7d6RKcGnt2/PLq5cvsgDD3VkSI9OvDHzMxRFYfKYkcz9PvtRXrKKPtdKAN+ZoqyNbZbIFK2DuRmfrKI3RVkrAfOR/UOl/DdCLjFbMLJbHtZkMjncxUpUiI3N2cCGoOAQmrZszdxPZ6Rty6slou9r045/9//F8f/UEVWL539Jx0d7ZHmuhyO7sez/5uNyubBfvcqalcvp0EX9U+rctRd//r4et9uN0+nkz99/o3ZEvWzjcjgczJhu5uXJbwCQmJiAEKDTCRLk0rH5oR4wUesgbsVXS/BfA+W0DkIqMr7EbNyJ2S6HIOSj7JaHvZzgKHdXWERwjbBwerRrQZVqJj786v9ueq43P5zDu9NeoUe7FuTlEtHBIcUxvz2T0U8OxOV0UrN2HV774PraJX06tObjeUsoX7ESj/Tsyz9/7abL/Y0RCAY99Sy1POu/d+zak3/3/02Pdi3Q6XT8r1kLBjzxTLbXnTf7Q7r07EeZcuUBGPnSBJ59vC8AY165+aKIXtMlvPCZaIqyLrVZIvdpHUh2crRcrDcxRVkHoZbepVx6TP/r9umGL2WfhdvzB9AGsz3f1rEsaN6wXGySw+X/X3RcXbei+GRtZH4Lwp1SwT8+6XhKFgP1C5kCWi42t3YC99oskYUmoPR86qYwRVnLoLaJSlJBa4Vsiy9QiqJw+mpCdZnc74xvFfEKXBNgjNZBZMfXboz3gLJaByEVWVMxG8vcejcpL0THJpdPSJGLyNwpmeDv2FRTlLWW1kFkxWcSvCnK+iDwuNZxSEVaKSDzlGVSnktyuAIuxibfWYO55CH7It+hQOBLU5S10P0ifSLBm6KsxYDPtI5DkoDhmI25n89fypWz1xKryqp5qRBpTSFsovOVG+QloKbWQUgSoAdmah2EL4tNcoTEJTvl7JR5RJFF+LzyhinKWkrrINLz+gTv6Vg3Tus4JCmdNpiNvbQOwledtydVufVeUs7J/J5HjBSyXOQL4+Anos4sJEmFyTuYjat8bRrb+vPq58tysfse35ej5WKvxqeUTHS4gvMjhqJKdrLLUy+YoqwzbJbIC1oHAl5egjdFWasCz2odhyRlwQS8rHUQvkRRFC7EJsmOdXlMJvg8FQS8onUQqbw6wQNTgQCtg5CkbEzAbKyodRC+4lJcStkUpzvryeNzadb7Ft42T8j1cRvW/sQ7ZnWG0h1//kGfDq2z3C8hPo57qhaq5tibEJw4fpTB3drT5f4m9I98kP8O/Zvt3su+XUCX1o2JvK8RU8eNwuFw5Oi99KZFjabnQy15su+jxMbYAfUBbuSgXpyyHc/bj1fwnjZFWatpHQR4cYI3RVnrAIO1jkOSbiIIeF7rIHyB262Ii7HJlXO6f1bLs+aFNu07M9b8Zr6cWysK8FrUi/TsP4SVv+9k6MhRTB6TdcXo6ZMn+PSdN/lq6U+s+mM3ly9Gs/Sbr2/5XnpHDh7g5PFjLF23hSYtWrFq2WIAlv3ffJq2bE1VU/V8+ZwFyB+YonUQ4MUJHvUXqL/lXpKkrWcwG4O0DsLbRccml3e63YZ7qpbi47dfp0/H++lyfxOsy5ek7XNP1VJ8+t50+kc+yIcWdf71ebM/ov8j7ejb6QFGDOzF2dMn0/Y/f/YMT/Z9lK5tmvH80H5cu3oFyFy6/7+v5/Dqi+oIqBVLFjF62IAsY/xu4Vd0ad2YPh3vZ8Hns275mRwOB29MfIku9zdh4KMP8+60SQzr/QgAUc89yU/LvwNg8bwvaHx3+bRFY57s+yi7tm7mzKmTtKp7F5++N51+ndvwSKv/sWn92hz/TlNFX7yoO/D3XiJ79AHgoc6Pcv7cGU4eP5Zp33U/reCB9h0pW74CQgh6DxrKzz8uveV76RkMBhwpybjdbhIT4jEY/Ll44Tw/r1jKoKd8psX1cVOUNUzrILwywZuirNUB2UtZ8galgSFaB+HNXG5Fdzk+uVLaBiFYsvp3Zi34Hsur4zlz6nrS1un1LLKuZ8yk1/hp+XfYjv3HghVrWfzzRjp378Wbr1zvFrF7+59YPvqcFRu2U7FSKB9apt12jEcOHmDW+xbmfm9lyerfSU5KvOUxS7/5mpO2Yyz79U++WvoTRw7+k/Ze81Zt2PrHRgD+3LSBug0asmvrZhITEzh8YD8NPEvMxsbEEFanLt/+tIEJr73NO1Nz3/x7+vRZUbZ8hbQlbYUQVKxchXNnT2fa99yZ01QOrZr2c+Uq1Th/5vQt30vPVKMWTVu0pl+nBzhz8gSRPfrwztSJjHllWpbL6nopPXD7f1B5xCsTPOq4d1l6l7zFi5iN3nqvae5yfHIZl1tJu997PDYIgCp3mWjcvCW7t21J27d73+ul69/W/sTWPzbwWOc29OnQmq9nfci5dAmn9YPtKVu+AgA9Bwxh6x8bbjvG7Vs2cV+bhyhXQe1y0WfwE7c8Ztvm34ns3geDwYDBYKBLr35p793b+gG2b96Iy+Xi2JFDDHrqWbZu2sjubX9Sr+H/MBgMAAQEFKNdpy4ANGjclNMnct9+rUUnu+fGTWLJmk28O/trtv6+gYqVQ6lctRqvjnmWMcMHs/rHZRpElef6eJqSNeN1j0umKGtpYKjWcUhSLtQEHgV+0DoQb6MoClfiU8rfdKd0w7gDg65PTa8oCsOefZFeA4bk6FrCcyK93g+X6/riYClJyTkPOPVcIvdjy9MfUym0Kgb/AH5a/h0R9e+h+X0P8PlH76HX62h+3wNp+/kH+Kcdp9frb4g7vcHd2pOUmIjBP4BvVq674b3QKqHKpegLOJ1O/Pz8UBSF82dPU6ly5ukGKoVW4VS6h4izp09SMbTKLd/LTlxsDPM++4hZ3yzly48/oMm99/1/e3ceZ0dZ53v8U51OyNodQjohIUsFhwsqmxMElN0rGqirLGIEcUZxA1wYxIUaB7TFcahxHUcERgUccESRYQSmBAYENeKoGBBZdQjUBUm6O52kk066O336nHP/qIo3hk46yzn1q+X7fr36hS9z0vVNOud863nqqafwzlzKW994HCeefAoTJ03a4e/POAf4EIZ3euWu4IH3Ei9eEsmTj1KAgt/Z+9UbZcNgpW3blfO33/JdLrzE58UXnufhX/83H++8ctTfe9IbT+XGb3ydk089jfa996ZSqfDM75/i5QfHOwn//IF7WbO6h306ZnHbzTdy1HFxcc53F7Hs/v+iWq0yPLyZ++66E3f/HW+UeeRrj+P6r3+F3p5uZs6azQ9uumHMP9uRxxzHj354K6ecHl9tvPPW7//Zrx997Alc/aV/4P1/8wnapk+ntXU894a385Vv/duY33tbN/5w+9fmOzo66i8/+FDC227htKVv574f3cHsfeeyYNH+L3nt6095M+868xQu/IjPPh2z+MFNN7DkzWeO+Wvb89UrP8P5F3+CSZMmMzgwgOM4OI7DSKVCpTKc94IH+CvXD/0o8PotDp6rgnf9cBwZ3O9XZCccS2f7q+lc/5B1kDzpHWX0Xq1WWbrkeAYHBrj0ioD95o9+R5J3xlL61q3jvW+Lp7BHqlVOX3runwr+L498Df6H30dP1yoWLNqfz375agBef8qbuDe8ndNPOorZc+Zy0CsPYWhwx9fUDzjoFVzwkUs57y2nMmnKFP73kjeN+Wc769zz+J+nn+TM1x3NtPbpvPLQw1nd3fWnXz/quBO55abrOTo58Tj62BO47eYbOfAVB4/5vXdFHce5PPgKl1/yQb511ZeZOnUaV3zpqj/9eufHL+LEk5dw4htOZd5Clws/6vPOM5YAcMRrjuWsc+MJ1R392mgeeeiXDA0N8ZrjTwLg7He+l0s/9F5uuOar/J8z38a0tkLsRjyN+CFoV431wmZw6vX8bHPg+uFpFGAUlFXnjPvxr68cf92R1jkK7Pt0rj977Jdlw/Llyw9qbW29+4ADDtg4efLk1Hfk21ypTvh9d/8hW/9/h83fm2WPR7S1F+LDn00b+5kydRqVSoVPXvR+Xn7IYbz7AxendvzJ1IanTRiudA9PzPzugPWRYXpW/pHOB3p4sX/0SxEZ9XQUeCbX4vO28Ef3vUuenUVn+/yxXyYAvZuGZ1pnaLb3n3MGS994HGedfAxTpk7j7eedn3qGHI3x8uog1w+PtThwbqbok6f0eNY5RPbAOOAc4PPWQbKuXq+zfqDykoJ/9IV1FnF225re1Vx47kuvQx993IlcctlnX7LgLW11J56iNw1RDu8Gfp72QXNT8MBb0ba0kn95KvgaxGWbtr7ByvSRWm186gdusH1mdnDLPcusYxRKLZ8zDm91/fCiKPA2pnnQPE3Rv8M6gEgDHE5n+4HWIXZSX71eHxkeHp6Q+oEHKjPSPmYZOeTnYTP16gjVWo1NwzXrKLtjKrA07YPmYgTv+uFCwOQahkgTnAN0WofYCb21Wu2n3d3d3vjx4ystLS2pdEGtXqd/00BbnhYA51XVqTqVeq2lPpLxWfp6ncEN6/hd1xD9w7n9d3E2cH2aB8xFwQNv58+2sxDJtbeRg4JfvHhxbfny5Z8aHBw8ZMWKFR2k9B4crtYn9Q3VtFNlCiZQdVpbauMGMn81pM66gRG+93h/bmYcRnGC64dT05ymz0vBn2EdQKSBDqKz/X/Ruf4P1kHGsnjx4heXL19+bK1WW0BKnxeffmDNZes310Z/oos01Jyhtd3zpq7d9NDIX5g/GGVHqjXoHagykuN2J37K3OtJ8VbvzBe864czgcXWOUQa7M3AF61D7IzFixcPA8+kdbwnfxCO/pB1abyBwUprdaDyYi1X95XnmUeKBZ+HRXZvIB85RXbFadYBssj1w8OB0bemk6ao1sfpckh6Tk3zYHkoziXWAUSa4LV0tndYh8igN1sHKBUHp0Kr1jelZ67rh69K62CZLnjXDx3iEbxI0bQAJ1qHyCAVfMqqtGS6BwootQ3bsv6DfRUw2zqESJMcZR0gS1w/3A+tt0ndCOOy3gNFk9o0fdZ/sK+3DiDSRCr4P3fC2C+RhnKgSouuwafrqGTxeNNlveD1AShFtpjO9szfyZKiI6wDlI0D9YpG8GlrAY5P60BZpje8FNkk4FDrEBmi6XkDVRW8hcPTOEhmf7CuH3ag22Wk+DRLBbh+2EK85kbS5OBU65qiN5DKv/XMFjzwausAIilQwccOBKZZhyijEXQfvIFyj+DR9LyUgwo+pul5I1pFb2Ke64f7NPsgWf7BquClDA6ks326dYgM0PvdglbRW2r6KD7LBX+IdQCRFDio3EB/ByYc6nVtdGOm6dfhM/mDdf2wFZhvnUMkJftbB7CULLBL5ZqkbMuhphG8ldKO4BcC+kcnZTHPOoCxhcAU6xCl5NSp0qK9GGyUtuAXWQcQSVHZC34/6wAl5mgVvZkDXT9s6t99Vgu+1FOWUjplL7i51gFKS4vsLLUCTd2yNqsFrxG8lEnZR/AqeEN1LbKzNKuZ3zyrP1gVvJSJCl5MaHreXFOflprVgm/qWY1IxrTR2T7VOoQhFbyRqqPRu7FSFny7dQCRlJV5FK+CN1LT9Lw1FbxICajgJXU1TdFbK+U1eBW8lM2+1gEMqeCNVB2toDemEbxICYy3DmDB9cOJ6ClyZnSLnLlyFbzrh5Mo6YedlJpjHcDIROsAZVbTCN5a6abodTYvUh46mTekEby5vZr5zbNY8GUdyUi5lfXfvQre0AjjtA+9raZ2cBYLvmodoKx66tMnVOrjnq/XGbTOUkIqeEmdpujNNbWDs3j2NmIdoKx+XFt8+AGbbwKgnY3r5zmre12ne/0iZ9XgopaukflOj7Mv6ybs7fRPm8TmvcdR63AcfUA3SFkLXgVjSNvUmitdwWsEnwHrmdq+vj61/Yl6smvwqD+Ven0m63vnO6vXuk7XhkUtq4Zcp7s631ndMstZt1c7m6ZNYvOMFuodjpPJ2aIsKWvB6/0u0iRZLHiN4HPDcXqZPrO3Pn3mI/UDoDb6q1qoVfdlbdd8p2et29K1cX+na/NCp6s2z+kd1+H0TWxjoG0vKvs41Gc4TmmLrqx/br3fpcyGm/nNs1jwOqMvmBot41Yyc9+V9Zn7/qr6iu2+bjwjw3OcNT0Lne6+RU7XxkXOquGFTnd9rrOmdaazfvI0BtsmUOlwHNpSjC/Npfe7lNnmZn7zLBZ8BahT3hFNaVVonfB8ffa85+uz5y3j0O2+bhKbB+Y6vb1bTgT2d1ZWFjg9zHHWjN/H6Z8yhcHp46l2OA6TU4y/p7Yz/1F4GsFLmZWr4KPAq7t+uA6YYZ1FsmmQvSavqO+3YEV9vwU7et00Nm2YF58IrF/krBpY5HSNLGjpYQ5r9trb2Th1MkNbFgpOSCv7DvRaBzCywTqAiKFyFXyiBxW87KF+prQ9VZ/S9lR94Q5fN4MNa+c7q9csdLo27N+yatB1uqrzndXObGfdXtPZOG0SwzNa4hOBZq74Xt3E751ZUeANu364Fr3fpZyaeoKb5YI/yDqElMNa2masrbfNeLT+su1OlDvUarPo61kQLxTsX+R0DblOV22es7qlw+mb2M5A20SGZzjUZ+7mQsGePfpD5NsqVPBSTn9s5jfPcsGLZEadlpZuZszqrs+Y9VB1++eerYxU5jhrVy9weta58ULBza7TXZ/r9LZ2OOsnTWOgbQKVmS0O07f5raUcwSe6gFdahxAx8GIzv7kKXqSBRmgd/0J91twX6rPmPsjB233dXgwPzXV6e1ynu+9lzsq+yz539boUY2ZNl3UAESMawYsUzWYmTHyuPnfBc/W5Cx7gVc9eZh3I1irrACJGmjqCz+ruYk39Q4tkzPPWAYxpBC9l1dQRfFYL/hnrACIpesE6gDEVvJRVKQv+D9YBRFL0tHUAY5qilzLqiwJvoJkHyGTBR4G3EthonUMkJY9ZBzAWWQcQMdDU0TtktOATT1kHEElJ2Qv+OWC9dQiRlP3fZh8gywX/uHUAkRT0k8IbPcuiwKsDv7XOIZKyh5t9ABW8iK3Hk4Iru6Z/2IlkzK+bfYAsF/xy6wAiKSj79PwWKngpm4eafYAsF/yvgWHrECJN9qh1gIxQwUuZvBAFXnezD5LZgo8CbxC96aX4llkHyIingabeMiSSIU2fnocMF3zi59YBRJqoF601ASAKvBqazZDyaPr0PKjgRSz9TAvs/oxm7KQsVPDAg4A+AKWoHrAOkDGpTFuKGKsDv0njQJku+CjwetE2nlJcP7EOkDH3oBN6Kb6no8DbkMaBMl3wiR9ZBxBpgtXAE9YhsiRZVaxRvBRdap2Wh4L/oXUAkSa4V9ffR/Wf1gFEmiy1TstDwf8C6LEOIdJgt1oHyKg7rQOINFEPcaelIvMFn9w+o7N6KZKNwF3WIbIoCrxHgResc4g0yZ1Jp6Ui8wWf0DS9FEkYBd6QdYgM0wm9FFWqXZaXgr8X2GQdQqRBND2/Y5qmlyLaSNxlqclFwSejHb3ppQgG0J0hY7kfndBL8dwdBd7mNA+Yi4JPfMs6gEgDhFHgac/1HUg+BO+xziHSYKlfas5Twd8PPGsdQmQPfdM6QE582zqASAMNA2HaB81NwSf3DF9nnUNkDzwD3GcdIid+BKy0DiHSILdFgdeX9kFzU/CJG4AR6xAiu+labW6zc6LAq6JRvBTHtRYHzVXBR4G3CoNpDpEGGCI+QZWddx3am17y76ko8H5qceBcFXziX6wDiOyG70eBt9Y6RJ5EgfcsWmwn+WfWWXks+LuBx6xDiOyia6wD5NQ/WwcQ2QMbMbzUlLuCT65hXmmdQ2QX/CwKvF9Zh8ipu4E/WIcQ2U3XR4G33urguSv4xC3EK5JF8uAz1gHyKjmhv8o6h8huqAFftQyQy4JPVtj+o3UOkZ2wLAq8+61D5NwNQK91CJFddHuyjsRMLgs+cSPwR+sQImPQ6H0PRYG3EfgH6xwiu8h8EJrbgo8Cbxj4gnUOkR34eRR4P7YOURBXA89bhxDZSf+ehXU3uS34xLXACusQItuh0XuDJPvT6+9T8qAC/K11CMh5wSej+E9Y5xAZxX9FgadtaRvrX4GnrEOIjOEbUeD9j3UIyHnBA0SBdxvwE+scIlupABdZhyiaZHHt5dY5RHagnwzNNOW+4BMfIb4lQSQLvhoF3u+tQxRRFHj/DjxknUNkO74QBd5q6xBbFKLgo8D7LdrnW7JhFXCFdYiC+6R1AJFRrAK+ZB1ia4Uo+MTfARusQ0jpXRoFXr91iCJL1jZoj3rJmk9HgTdgHWJrhSn4KPC6gUusc0ip/QL4jnWIkriAeJ9vkSx4HLjeOsS2ClPwAFHgXQfcZZ1DSmkQeI+e956OKPAi4FLrHCLACPDOZBFophSq4BPvA/qsQ0jp+FHgPW0domSuQXfQiL3PRYH3sHWI0RSu4KPAe5F4Vb1IWu4DvmYdomyS2ZL3AJuss0hpPQz8vXWI7SlcwQNEgfdtILTOIaXQB5ynqXkbycM8tKpeLGwG/joKvBHrINtTyIJPvA/osQ4hhffBKPD00CNbXwOWWYeQ0vlUFHhPWIfYkcIWfBR4q4CzgcwtfJDCuDkKvO9ahyi7ZPbk3cQLHUXS8Avgi9YhxlLYggeIAu8BNH0nzfEE8SyRZEAUeM8AH7POIaUwQLxqPvO7pxa64AGiwPs8cJt1DimUDcCZUeBpcVeGRIF3NXCddQ4pvIuSE8rMK3zBJ84DtDe4NEIN+Kso8P5gHURG9QHi6VORZvinZL+VXChFwUeBtwE4E+18JXvusijw7rAOIaNLHiH9FkALH6XR7iJnl4Gcer08d/e4frgEuBNotc4iufRvUeC9wzqEjM31wyOIV9ZPtM4ihfAk8JpksJgbpRjBbxEF3t3A+dY5JJfuJV6pLTkQBd5v0CJIaYw1wJvyVu5QsoIHiALveuBT1jkkV34JnJFM/0pORIH3HTL2+E7JnQrxgtpnrYPsjtIVPEAUeJ8F/tk6h+TCY8CpWjGfW5eiB1DJ7rswCryfWYfYXaUs+MTFwE3WISTTVgBviAJvnXUQ2T3JE77OQjvdya77Qp5WzI+mVIvstuX64TjiZ/j+tXUWyZyVwLFR4D1nHUT2nOuH04gfCnSkdRbJhauiwPuwdYg9VeYR/Jaz+3cRP3ZSZIvngONV7sURBV4/sAR41DqLZN61wEXWIRqh1CP4rbl++EXgo9Y5xNwTxNPyK62DSOO5fjiTeCR/mHUWyaRvAe8vytMhSz2C31oUeB8DPmudQ0z9injkrnIvqCjweoHXET/HW2Rr11CgcgeN4F/C9cOPAZ8HHOsskqr7gNO1Wr4cXD+cDtyDrslL7AtR4H3COkSjaQS/jSjwvki8ra0+6Mvje4Cnci+PKPD6gJOJT+yk3D5dxHIHjeC3y/XDw4DbgYXWWaRpasAno8D7R+sgYsP1w1bgn4APWmeR1FWAD0WB9w3rIM2igt8B1w87gP8AjrHOIg23DjgnCrx7rIOIPdcPLwC+hp5TURbdwFuiwHvQOkgzqeDH4PrhBOLFF9qHvDgeJ77evsI6iGSH64cnAbcCM6yzSFP9hnjr6cI/cVAFv5NcP3wX8Rn+VOMosmduBc6LAk+PDpaXcP3wZcAdwCuss0hT3ES8Un7IOkgaVPC7IHnzfxetvM2jfuDi5GFDItvl+mEbcDNwqnUWaZgq8PEo8L5iHSRNWkW/C5Ip3WOAzxEv0JJ8WAYcpnKXnZE8FvRNxPtijBjHkT23Fnhj2codNILfba4fHgd8B1hgnUW2axi4DPhSFHg6IZNd5vrhEcC/oin7vLqHeEr+eesgFlTwe8D1w6lAJ/A3aPVt1jwCvCsKvN9ZB5F8c/1wL+LR/EfRrGde9AGXRIF3g3UQSyr4BnD98BDilfa6nc7eGuDvgG9q1C6N5Prha4FvAwcYR5EduwO4IAq8VdZBrKngG8T1Q4f4yXSfB2bapimlKvAvwOVR4K21DiPF5PrhZOBK4MNoO+us6QUuigLvZusgWaGCbzDXD2cQT9ufD0ywTVMay4APR4GnR4FKKlw/PJH4saIHGkeR2C3Eu9Kttg6SJSr4JnH9cAFwOfGoXtfnm+O3wGeiwPuhdRApH9cPxwHvIT6hn2ObprQeA/42CrzQOkgWqeCbLLl3vhN4O1qg0ygPA1dEgXe7dRCRZNr+EuDjQJtxnLJYAXwK+J7W2myfCj4lrh++nHjx11JgvHGcvFpOPGK/0zqIyLZcP5xJPGt3Abo81ywrgSuA66LA0x4FY1DBp8z1wznEHwDnA7ON4+RBlXhV7DVR4N1rHUZkLK4f7g/8PXA2WojXKGuAALiqLNvMNoIK3kjyEJulxKtxtfXtS60Evkl8u9uL1mFEdpXrhwcDFwPnAhON4+RVL/B14MvJDoOyC1TwGZDslvUO4sIv82KdKnA/8erkOzQFJ0WQPHb6AuADwL7GcfJiOXAV8TV2jdh3kwo+Q1w/bAFOIJ7aewuwj22iVNSAB4HvA7dGgddtnEekKZJZu9OJL+AiN04AAAIrSURBVM+dhKbvtzVI/LTHa6PA+4V1mCJQwWeU64etwMnEHwhLKNae90PAA8B/EI/UVepSKq4fHgC8j3j6fq5xHGu/Aa4Dbo4Cb711mCJRwedEsgr/DcRn/scDe9sm2iVDwH8DPwV+AvwyCrzNpolEMiDZAfMI4LTk62DbRKmoAr8E/hO4Mwq8J4zzFJYKPoeSqfxDiT8YDgdeBRwGTLHMlagBzwKPE9+v/lPgVyp0kbEl+2ZsKftjgHG2iRqmD7gbCIG7osBbY5ynFFTwBZGU/l8Ql/0hwELiaf0FwH40/t77NcQr3V8EniQu9MeAJ6PAG2jwsURKJ7mv3gNeB7yaeFvcvGyWVSX+XLiHeKT+oBbNpk8FXwJJ+e9LXPaziUf6W39NTf7rAJuTr6Ft/ncvcaGvBLo0IhdJl+uH04C/JJ65e3Xy35eZhooNEZ/cP7LV1++iwBs0TSUqeBGRvHL9cG/ioj+YeKZu66+5NO7++w1AN9CV/PcF4mdBPAI8pdF5NqngRUQKKnm65ZbCnwNMIt5Gd8vXOOJ1M9Wtvvr5/0XeBXRrNJ5PKngREZECysuCDREREdkFKngREZECUsGLiIgUkApeRESkgFTwIiIiBaSCFxERKSAVvIiISAGp4EVERApIBS8iIlJAKngREZECUsGLiIgUkApeRESkgFTwIiIiBaSCFxERKSAVvIiISAGp4EVERApIBS8iIlJAKngREZECUsGLiIgU0P8DZwTsZ8dN+88AAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 115,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"prebuild_gwn",
"build_real",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"fftma2",
"",
""
],
"type": "treemap",
"values": [
47.638534,
35.573628,
26.105192999998817,
12.06057,
12.036319,
7.93339000000048,
4.906137000000049,
0.016257,
0.003691,
0.0027419999999999996,
0.00091,
0.000599,
0.00051,
0.000403
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"text/html": [
"<div> <div id=\"e7f38975-cd38-422b-a1d2-b880981d2a54\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"e7f38975-cd38-422b-a1d2-b880981d2a54\")) { Plotly.newPlot( \"e7f38975-cd38-422b-a1d2-b880981d2a54\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"prebuild_gwn\", \"build_real\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [47.638534, 35.573628, 26.105192999998817, 12.06057, 12.036319, 7.93339000000048, 4.906137000000049, 0.016257, 0.003691, 0.0027419999999999996, 0.00091, 0.000599, 0.00051, 0.000403]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('e7f38975-cd38-422b-a1d2-b880981d2a54');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria"
]
},
{
"cell_type": "code",
"execution_count": 116,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8VFX6x/HPk0LoQbqCELAAKiriWpBVXBWRqLv2wrqirg3LKhaiu2rs40/X3huKBXVdRTEodldRQVERLFiHKk1IqKlzfn/cGxwnhUzI5E4y3/frdV9hzpx7zzNDYJ4559xzzDmHiIiISLS0oAMQERGR5KMEQURERKpQgiAiIiJVKEEQERGRKpQgiIiISBVKEERERKQKJQgiIiJShRIEERERqUIJgoiIiFShBEFEmj0zG21mzsxygo5FpKlQgiDNQtQHgDOzodU8b2a2wH/+lSBiFBFpSpQgSHNTDJxYTfl+QE+gpHHDkSTxBNAKmBd0ICJNhRIEaW6mAMeYWUZM+YnATGBJ44e0+cysTdAxNEWV75tzrsI5V+y0O51InSlBkOZmItAJOKiywMxaAEcDT1d3gpmlmdkFZvaVmRWb2VIze8DMtoipFzazV8xsmJl9amYbzGy2mQ3znz/Sf1xsZjPNbFA1bf3JzN43s3VmVmhmL5nZgJg6+f5QyA5m9rSZrQI+MLNT/PLqrnu5mVWYWY/a3hwz62Fmj5jZYjMrMbOfzew+/z2qrNPXzP5jZivNbL2ZfWxmuTHXGebHcqyZXWVmi8xsjZk9b2bZZpZlZreb2TIzW2tm480sK+YazszuNrNRZjY36n3bN6ZebzO716+zwcx+9ePLialXOcy0n19/GbAw5rmcqPq7m9lUM1vhX/dnM3s05pptzOzf/vBUiR/DxWZmNbyWv5jZHL/uV2Y2IqZeO/99Cft1lpnZG2a2W21/byJBiP2WJdLUhYGPgBOAV/2yQ4Bs4Bng/GrOeQAYDYwH7gT6AOcCg8xsH+dcWVTdbfESjQeAJ4GLgclmdhZwA3CvX+8y4Dkz6+eciwCY2YF+TD8B+Xhd3ucB08xsN+dcOCau/wDfA5cDBjwP3AOMAj6PqTsKeNc5t6imN8bMtgJmAB2AB4FvgR54yVNroNTMugEf+o/vBH4FTgZeNrOjnXMvxlz2MmADEPLfm/OAMiACbOG/zr3w3t+fgWtizt8POM5vqwQYA7xmZns45+b4df4ADMH7+1sI5ABnA++a2Q7OufUx17wXWO63VW3Pi5l1BV7364WAQv+6R0bVMeBlYH/gEeAL4GDgZv99uzDmskP98+8F1uD9rv3XzHo5537169yP937fDXyNl8wOBQYAn1UXq0hgnHM6dDT5A+8DyAG7A+cAq4FW/nPPAW/7fw4Dr0SdN9Q/78SY6x0cW+6f64C9o8qG+2XrgV5R5Wf45cOiyj4HlgIdo8p2BiqAx6PK8v1zn67mdT4NLALSosoG+fVHb+I9etxva/dqnjP/523+tYZGPdcWL6n5ubJdYJhfbzaQGRNfBJgSc/0PgXBMmfOPwVFlvfASjheiylpVE+9e/rknVfM78D6QXsPvR47/+C+Vvy+1vF9/9uv8M6b8P/5r3CbmtZTElO3sl58bVVYI3B30vxcdOupyaIhBmqPn8L6dH2pm7YBDqWF4ATgGKALeMLPOlQfefIW1eN8eo33tnPso6vF0/+fbzrn51ZT3BTCzLYFdgceccysrKznnvgTeAEZWE9v91ZRNALaKiWsU3ofqf2t4jZhZGt6H4mTn3KexzzvnKsfmRwIznHMfRD23Fq/HIQfYITYe9/selul4vR2PxtSbDmxtVeeGfOScmxnV1nzgJeBgM0v3yzZEvY5MM+sE/ID3YVtd1/xDzrmKasqjFfo/DzWzzBrqjMRLqO6MKf833ms8JKb8Tefcj1Gv5Uu8RLVvTLt7+r05IklNCYI0O8655cCbeBMTjwTS8brnq7Md3vDDMrzu5uijLdA1pn50EoBzrsj/44KYepXllfMYevs/51YTwzdAZ6s6EfHnauq+AfyClxRUfvCfALzknFtTTf1KXYD2wJxa6lTGWVOMlc9Hmx/zuLb3Iw3vvY72fTVtfYc3xNEFwMxamdk1ZrYA71v6Cry/nw7VXA+qf99ivYeXUF0FrPDngpwSM0+iN7C4mve1ru8FwCp++x0AuBTYCVhgZjP8+SZ9qzlPJHCagyDN1dPAQ0B34FXnXGEN9dLwkoNRNTy/POZxTd9Mayq3GsrrYkNsgXOuwsyeBk43szHAPng9Ck9uRjubozHej7uAU4Db8eaXFOF13T9D9V9yqrxvsfwek6PNbC/gMLwhpUeBi8xsL7/XJF6bfM3OuefM7H3gCLzhqUuAcWZ2pHPu1RrOFwmEEgRprl7Em0i4F94kuJr8CBwITIvuyk6Ayvvv+1XzXH9ghXNuXR2vNQG4CO+D7RC8JGbqJs5ZjtfdvVMd4qwpxsrnG9J21ZRtjzenozI5OxpvjsZFlRXMrCVeD8Jmcc59DHwM/NPMTgSeAo4HHsZ7rQeaWbuYXoTNei+cc7/gTWS8158s+RnwT36bVCuSFDTEIM2S/w3wbLwJf5Nrqfoc3hDEFbFPmFmGmW32h5Afzy94s+BPjr6mme2E901yShzX+hL4Evg7cBTwjHOufBPnRIBJwGFmtnvs81G37U0B9jCzvaOea4M36TKMN/O+Ie0dfYufmW2NNznw9ah5BBVU7Xk4D+/vrV7MbIvYWxXx/n4AKocZpvhtnBtT70K8Hoy4PtDNLN3Mfjck4pxbBiyOalMkaagHQZot59zjdajznpk9AFxmZrvi3fpWhvfN9hjgH9Q8fyFel+B9qHxkZo/w222ORXiJTDwmALf4f67r8MLleMnIe2b2IN5Y+pZ4r3Mo3gS6EP4tomZ2J7AS7zbHPsBRfqLRkOYAU/22Km9zBG9uQKVXgJPMrAgvQdkbr9fnV+rvZGCMmb2I14vUDjgdr5elMlmbDLwDXO+vnzAL7/37M3B79ITEOmoHLDSz5/1rrfVfxx/weoREkooSBEl5zrmzzGwmcCbeWgbleN+WnwSmNWA7b/oL51yNd49+Gd5kuXHOubpMrIv2FHAT8KNzbkYd219kZnsC1+LNuWiPd8vkq3hd+jjnlprZEP/a5wEt8XorDnPOFcQZY128hzev4Cq8Wxy/xrtd88uoOv/A60UY5cczDe+DdVPDKptqdw+84YRueEnaDGBU5d+Fcy5iZofj/V0dhzcPIoyX6P27Hm2uxxtaGI43eTYN726MMc65+zbjtYgkROW9zyLShPi3Yv4CXOOcuzboeOrDzBxwj3MutgtfRJKA5iCINE2j8cbHnwg4DhFppjTEINKEmNmf8BYr+icwyVVdnllEpEEoQRBpWq7E25dgGt4cARGRhNAcBBEREalCcxBERESkCiUIIiIiUoUSBBEREalCCYKIiIhUoQRBREREqlCCICIiIlUoQRAREZEqlCCIiIhIFUoQREREpAolCCIiIlKFEgQRERGpQgmCiIiIVKEEQURERKpQgiAiIiJVKEEQERGRKpQgiIiISBVKEERERKQKJQgiIiJShRIEERERqUIJgohIE2JmOWbmzOzioGNJdmY2zH+vhgUdS1OkBEFEZDOZ2Wj/g6jyKDaz78zsbjPrFnR8zZ2ZjTGz0UHH0dxkBB2AiEgzciXwM9ASGAqcDYw0s52cc+sDjax5GwOsAB6LKf8f0AoobeyAmgMlCCIiDedV59yn/p8fNrNfgbHAn4GJwYXVdJiZAS2dcxs291rOuQhQvPlRpSYNMYiIJM7b/s8+/tDDhbEVzGyI/9wJ9W3EPA+aWamZHRlVvrOZvWdmG8xsoZn9y8xO8dvLibnGIWb2vpmtM7M1ZlZgZjvG1HnMzNaaWQ8zm+T/ebmZ3WJm6TF108zsAjP7yh9yWWpmD5jZFjH1wmb2ipkdbGafAhuAM/3nTjGzt81smZmVmNnXZnZ27PnAjsB+UUM87/rPVTsHwcyOMbOZ/vuywsyeNLMe9X2tzZV6EEREEmcb/+evwDRgFHBbTJ1RwBrgpfo04H9YPQocBxzhnCvwy3sA7wAOuBFYB/wdKKnmGicBjwNTgXFAa7zhkQ/MbJBzLhxVPd2vNx24GDgQuAj4Ebgvqt4DwGhgPHAn0Ac4FxhkZvs458qi6vbD62F5AHgImOuXnw18BbwMlAOHAfeaWZpz7h6/zgXAXcBa4Hq/bGkt71dlTJ8AlwHdgH8A+/ivtbAer7V5cs7p0KFDh47NOPA+CB1wANAZ6In3gb0CWA/0AM7w6/SPOi8TWA48FkdbOf51Lsb7kveM38bwmHp3AhFg16iyjnjJigNy/LK2wCrgwZjzuwGF0eV4Y/wOuCKm7mfAp1GPh/r1Toypd3BsORD2yw6u5rW2qqbsNeDHmLI5wLvV1B3mX3tY1Pu9FJiNN4xRWS/Xr3d1vK+1OR8aYhARaThv4n3gL8D74F6L961+EfAc3nj4qKj6B+MlFE/Wo60WwH+AQ4GRzrnXY54fAXzknPuissA5txJ4KqbeQUAHYKKZda48gAq8b877V9P2/TGP3wf6Rj0+BigC3oi55ky89yT2mj8756bGNuKi5iGYWbZ/jfeAvmaWXU1cm7I70BW41zm3cW6C83pdvsVLFGJt6rU2WxpiEBFpOOcA3+F1hy8F5jpvohzOuUIzmwycCFzh1x8FLOK3uQrxuAzv2/8hzrl3q3m+N/BRNeU/xDzezv9ZUwyrYx4XO+eWx5StAqLnFmwHZAPLarhm15jHP1dXycz2Aa4G9sYb9oiWjZeExKO3/3NuNc99i9fzEa0ur7XZUoIgItJwZrjf7mKozgTgGDMbgtfNfTjet9lIPdqaitdLcKmZvRv9jThOlT3JJwFLqnm+POZxRR2vuYzf95ZEi/3QrXLHgpltA7yF98E9Fq9XphQYCVxI40yyr8trbbaUIIiINJ7X8D4cR+F137cGnqjntT7G6/5+BfiPmR3hnIv+MJ8HbFvNebFlP/o/lznn3qxnLLF+xJvQN83V/3bFw4As4HDn3PzKQjOrbsjD1fGa8/yf/ajaY9Iv6nlBtzmKiDQa/wN8InAs3sTG2c65Lzfjem8Cx+P1JDxhZtH/p08F9jazXSsLzKwjVb/VT8UbRrjczDJj2zCzLvUI7Tm8OwCuiH3CzDLMrEMdrlH57d2izs0GTqmm7jq8eRSb8ilez8ZZZpYVdd1DgAFAQR2ukTLUgyAi0rgmAOfjTdQbt7kXc85NMrNT/Ouuxl9DAPg/4K94EwXv4rfbHOfj3c3g/PNX+2sLPAF8ZmbP4PVy9MKbtDcN7/bEeGJ6z8weAC7zE5TXgTK8uQnH4N1W+PwmLvM63pDCZP9abYHT8T7gt4ypOxM428z+hTfHYplzrsqcCudcmZmNw7vN8T0zm8hvtzmGqXoLakpTgiAi0oicczPN7Cu8b6yxdxTU95pPmlk7vDUCVjvnLnHOLfC74+8ELsf70L8HL1G4k6gVBp1zT5vZYiAPuASva38R3oz98fWM6Swzm4mXsNyAN5chjHfHxrQ6nD/XzI4GrgNuwZsfcZ//Oh6NqX4N3gTES4F2eHc6VDvp0jn3mJmtx3utN+G9Hy8C49zv10BIeebf1ykiIo3EzD4HVjrnDgig7dvxPrTbOudSehKe1E5zEEREGpGZ7Q7sijckkOi2WsU87oR3t8IHSg5kU9SDICLSCMxsJ2Aw3lK9nYG+0bcm+ksmb2pC4Frn3No42vwCeBf4Bm+s/TRgK+AA59z/4noBknLi7kEws33NbLKZLfY3wfhLHc4ZZmaf+Ztt/GDat1tEUs/ReOP5mcAJ1axbsDXwyyaOi+NscwreugG34U2InI+3sJKSA9mkuHsQ/NtB9sGbNfoC3jKik2qp3wdvnez7gYfx1iq/HcitbmlNEZFUZGYtqbqSX6yfnHM/NUY8Ips1xGBmjk0nCDfhJQM7RZU9A3Rwzo2od+MiIiKSMI0xSXFvvA1Mok31y0VERCQJNcY6CN2pujf3UqC9mbWqbhlOf4WrrJjijsDKxIQoklLaAYudZiiLSC2SdaGky4Crgg5CpBnribcQjohItRojQViCd3tNtG7A6lo28bgRuDXqcTtg4YIFC2jfvn0CQhRJDatXr2brrbcGWBN0LCKS3BojQfgI7zabaAdR/T7lADjnSoCSysdm3l4d7du3V4IgIiLSCOqzDkJbM9s1aoewPv7jXv7zN5pZ9Aph9wN9zez/zKy/mY3B28lMm2KIiIgkqfr0IOwOvBP1uHIo4HG87Uu3xNsFDADn3M9mlouXEPwDWAj8XWsgiKSGmTNntsVbvU9Lu0t9RIBCYMXgwYMjQQeTSprEUstm1h4oKioq0hCDyGZYvXo12dnZANnOudWJbm/mzJl7paWl3Z+WlpYNWKLbk+bJOVceiUTec85dOXjwYE2ubSRKEERSSGMmCDNnzmyblpb2QYcOHbp17dp1pb+wmjQhEeeoiLiMiohL936SXuFcusOBA8PR0dYa/iMM5yyjgrS0Ciy9grT0CiyjnLT6dx455ygtLW2xdOnS9hs2bJgfiUSGDh48uLThXqXUJFlvcxSRpm+rtLS07K5du65s06ZNTXcsSYCcc5SUR1oUl1W0Ki6LtCwpr2hVWh7JKo+4zIqIy4g4l17b+ZlGRQ9bUWsdjznSMkrJaFFCelYJGVnFZGSVkNGymIysUiyt1uSxTZs2xZmZmWU//vhjl0gk0gv4Ia4XKvWiBEFEEiUNMPUcJAfnHOtKK1qvLS5vV1xW0bqkPNKqtCKS5ZxrhLkhzoiUZVFalgXrqjxJRlYxma3Xktl6HS3ariOzVTH2+xGptLQ0hzdMpc+tRqI3WkSkGYo4Z+tKyluvLSlvt76kot2Gsoq2kUZJBuJmlJe0orykFRtWedtdW1oFGa3W0aL1Wlpmr6ZF2ypZhSSeEgQRaTQ5eQWDE3HdcCh3ZiKu25heeeWVdsXFxXb00UfXe25ISXlFZuH6si3WFJdnF0clBI/eezuTn3+GzMxMWmS1ZNzVIQYOGsyyJb9w5UXnsnjhfFq0aEGvPtvwrxtvpWOnztVe/4VnnmD8PbcTiUTYY599ueqGm6EFvPvhpxxy0nn069t7Y92PXn6MVq1aVrnGmZdex4czv6RLxw68+Mi/yW7fDuccI086j7uvG8c2OVuDi6RTtq49Zevas275Vlh6uVmrtWnlG8rbLf+yPSTk10hiJGM2KSLS7JSVldX6/Ntvv91uypQp2fFet6S8osWSouJu3y1dM2DukjU7L11dvPX60vL2lcnBt1/N5rkJj/DU5Dd5bur7HD/679x4xaUApKenc8Y/Lubl9z7h+Tem0bNXb2677spq21k4fx733nwD4/87hVc++Ixfly/juScf2zgO0K9vb75445mNR3XJwZxvf+D7n+cz+63nGDZkd574bwEADz/9IvsP2d1LDqrjKjKsdE2HjNKizlvPuetD8rPfJz/7HPKzO8b7fkndKUEQkZTx5JNPdujbt++O/fr12+Hss8/uscUWW+wyd+7cFgCzZ8/OGjZs2LY77bTTgO23336HG264oUvleWY2OC8vr/vAgQMH9OjRY+Add9zRqfK5TZ134YUXbrXTTjsNOPfcc3vOmDGj1eDBg/vtsMMOA7bZZpsdL7300i0BPvzww1YTJkzo8uKLL3bs37//DhdffPGWAP/973/bDx48uN+OO+44YODAgQMmT57cDqC8IpK+bE1xl++Xruk3d8magcvWFPcsLqtoXd1rNoPysnI2rF8PwJrVRXTbcisAOnXpym57/Lax7sBBu7N44fxq37s3p7zEfsNH0LlrN8yMY046hSkvvRDXZ0hmRgYlpWVEIhHWrd9Ai8xMflm6nImTXmPsGX+t0zUMlw4MBe4GfiE/+0Xys48gP7tFPLHIpmmIQURSwqJFizLOPffcnHfeeefbQYMGFd9xxx2dCgsLMwDKy8s54YQT+j7xxBM/Dxo0qHjNmjVpgwcP7r/PPvus22+//dYDZGVludmzZ3/z+eeftxw6dOiAMWPG/GpmmzwvPT3dzZkz5xuAVatWpX3wwQfftWrVyq1du9b+8Ic/DDj44INXH3DAAev+9re/LS8sLEx/9NFHFwB8/fXXLa699tqt3n777e86duwYmTNnTtb+++/f/8Mv5haWkN6xrvMJ+u0wkL+efjYjh+xK+w5b0KJFCx59vqBKvYqKCp557CGGDY9dGd/zy6KFbNXjt2/4W/XsxS+LF258/OO8hex28Imkp6dxyrGHM2b0sVVj2TaH/Yfszm4Hn8h2fXpx1dgzOHXs1dx8xQVkZNTr46gF8Bf/+JX87GeBB8gv+rI+F5PfU4IgIinh3XffbdOvX7/1gwYNKgY499xzf73kkkt6A8yaNavlDz/80OqEE07oW1l/3bp16V9++WWryg/600477VeAQYMGFaenp7v58+dnFhYWpm/qvLPPPntF5XPr169PO+WUU7b++uuvW5kZS5YsaTFz5szWBxxwQJVJeC+//HL2vHnzsoYMGdIfS0vH0jIsPTPt259+7ty7zzZ1ft0L58/jrVdfYfL7M+nafUsmPvYgl55zKo+/8NrGOs45rv/nRbTL7sCo086q+5vq221gfxZ++irZ7duxcPFSRv7tPDp37MCxhw+vUve6cedw3bhzAHhp6rtsvVU3cnpuxSkXXsXqtes49tCDOO7PB8cdA9AJGAOMIT/7TeAW8ou0Yu9mUIIgIinPOUf79u3Lv/32269rqtO6deuNt2ump6e78vJyq8t52dnZG5cHHjt2bI9OnTqVf/XVV19nZmYyfPjwbYqLi6tdYbIiEkkbsu+wspvvfzy9vCJSY/f5j999y2XnnQ7ArrvvyeXX3/K759+a8jLb9d+Brt23BODPx44idMU4ykpLyWzhXTZ05TiWLl7E7Q8/RVoNixpt2aMnC+b9vPHx4oXz2XKrngC0b9d2Y3nPrbpxwp9H8P6Mz6tNECqtXrOWW+6fwNSn7+HGu8az316D+etRI9nloOM5fPh+1c5hiMOBwIHkZ8/B2w7gKfKLtLhSnDQHQURSwrBhw9bNnTu39axZs7IA7rvvvk5lZWUGsMsuuxS3bdu2InpuwZw5c7KWLl1a6yJA8Z5XWFiY0bNnz9LMzExmzZqVNW3atI1Lw7Zv375i9erV6RURl/ZL0Ybuu+47YsuPpn3Q6us5X25MDmZ/XvVmjW22789zU9/nuanvV0kOAHr0zuHzT6ezft1aAP735lR69932d8nBgvBP3PbQkxvLqnPgIYfz3uuvsWLZUpxz/OeJ8Rxy+BERgF+WLicS8fKgNWvX8cqb7zNop361vXXk3XAXV154Bq1btWLd+g2YGWZGWVk5pZuY0BmHnYBHgXnkZ19MfvZmZR2pRj0IIpISevToUX7nnXeGjzjiiG1btGjh9ttvv9WtW7eOdOrUqSIzM5PJkyf/cN555219zz33dItEIrbFFluUP/fccz8BFTVdM97zrrzyysWjR4/uO3HixE69e/cu2WuvvTbe0njscccVPvvcf7rtOHDnQX865DDOuuBSQnc9xLV5YynesJ6ysjL67ziQ0N0Px/W6DxhxKF/N+owTcv9EixYtaNW6NaG7HgLg808+ZuL4B+mz7fb89fADAdhq697c/vCTAORfcj7DDhrBsOEj6dk7h7MvyuPkI0YAsPveQznupFMcLOK/U97ivgnPk5GeTnlFBccceiCnHPfnGmOa9skXbCgu5qB99wLgnNHHcsI5l3PTvY9x0lG5ZLdvF9drrIPuwM3A+eRnXwVMIL+oxr9X8WgvBpEU0sh7MfTPyMh4bbvttlvbunXr4kS2VVerVq1K22KLLSIATzzxRIerrrqqx08//fRVkDE55/h1bWmn5WtLtiqrZSghGWWaqxhg4Tostbz5issdPy9aTp9pF9Fy7YLNvdxXwOXkF73cAKE1W+pBEJGUcdNNN3V98cUXO0YiEWvbtm3FhAkTft70WYlTtKGs3S9FG3qVlkfU9d24dgReIj97GjCW/KIZQQeUjJQgiEjKCIVCS0Kh0JKg4yiriGQsKtyw9eoNZVroJ1j7AB+Rn/0gcBn5RYVBB5RMNElRRKQRrVhb0um7pWt2VHKQNNKAs4Bvyc8+LuhgkokSBBGRRlBcVpH1w7K12y8u3JBTEXHqvU0+3YBnyM+eRH72VkEHkwyUIIiIJJBzjiVFxd2+X7Z2h/Wl5Q0+PV8a3J+Br9WboARBRCRhSssjGT8tX7fdsjXFPV1ybrUs1cvG6014iPzsVkEHExR1c4lI48nPTsw+vflFSbfdc9GGsvYLV63vo+GEJu3vwN7kZx9HflGgt8MGQRmtiKSMyt0c+/fvv8OMGTNaxT4eO3bsVuvXr6926eO6cs6xuHDDlvN+XbddZXJwxdhzOGzf3Tlm+FBOPuJg5nzxWb2u/eIzT3LUgUPYLaczTz583++eu+Dvf+XYg/+48di1V0fefX1KtdeZ9s6bnDByf44+aB/+evhBzP169sbnTjvmUA4ZssvG6zzx0L3VXuOrWZ9zxPB903cYdhSPPzd5Y/nbH8zgzEuvq9frS1I7Ap+Qn3160IE0Ni2UJJJCAl8oKeAehH333Xe7UaNG/XrmmWeurO6xmQ1evnz5F507d67XKntlFZH0+b+u77uutPx3/1G9+/oUhv5pOBkZGbz35muErriUVz+Kf8PBuV/PJjOzBY/ccxsDdtqFv/797GrrfTXrc8acdDRvfvpNleWTVxcWcugfd+PR5wvYtt8APpv+IdddfhEvvPUR4CUIo047mz+NyK01lovOPJmTTj294qhdOqYPPOBYfvpoMhs2FHPwqHN4efztdMhu2OkWDbxQUn09Afw9VfZ1UNeXiKSE0aNHb/3pp5+2/fHHH1vef//9XXfZZZd10Y8HDBiwHmDIkCH90tLSeOutt747//zze7Zo0cLNmzcvy99Zcc2YMWOWjRs3buvFixe3GDFixKqHH354IcAVV+X3eHHSS93Ky8stIyOTcdeE2GXwHgC/20J5593+wLIlv1BeXh73Fsf9dhgIQJrV3vn74jNPkHvksdV/5E43AAAgAElEQVTurbBg3s9kb9GRbfsNAGC3PYewZPEivpk9iwEDd6lzLBkZGRRv2GDFxSWk+xs85d/6AP847cQGTw6SyElADvnZR5Bf9GvQwSSaEgQRSQmPPfbYgq+//rr1eeedt/Skk04qBIh9PHHixC4ffvjh3OgehG+++abVhx9+ODctLY3tt99+x8LCwvT333//u5KSEuvTp8/As846a0W/nXZJH37UXzsfc/oFBvDlZ59wxdhzeOndqgv0PfXI/Qzd/6C4k4O6Kt6wgdde/i/jn69+eKFXn74UrVrJF59OZ9fd9+Td16ewbu0aFi2cvzFBuCN0Nffccj19t+vPP/KupGfvnCrXOfOCS7ku74K0BzYUcvMVF/DFnLn8NG8RN/3zHwl5XUnkj8B08rNzyS+aG3QwiaQEQUSkFiNHjiys3Oq5X79+Gw466KDVWVlZLisry2277bYbvpjzTaesLbfr+tXsL9MevuvfFK5aSUZGBuEfv6d4wwZatvptEvwrLzzL669MYvzzBQmL940pL9Grz7ZsN2DHap9v1z6bWx54nDtD17B+/Tp23u0P9N2+Pxnp3pYK199xP9236olzjmcef4jzTjmeF9/+uMp1+m7XjydemFIxwMLpFRUVDD9hDE/ceR0TJ73G8wVv0r5tG2696iK26NAsh4W3wVuB8Sjyi94JOphE0SRFEZFatGzZMlL55/T0dBf9OC0jM7OoJNK9tKQkbewZf2Psv67lhbc+4lE/ASgt/W2o+rWXX+CB2/6PB55+gU5dulbbVujKcRsnB37/Tf0mzU965kmOOP6vtdbZY8gfefT5Ap6Z8i4XX3Edy5f+Qt/t+gPQfaueAJgZJ4w+g4XzwxSuWlnr9W5/6GmOOfQgOmS35drbH+LZ+0Lsu9du3P7wU/V6DU3EFsBU8rNPDjqQRFEPgoiIr02bNpGVK1emb2qSon+nQg+XltESoKSkmLKyUrbs4X24Thz/4O/qT538IvfcfD0PTHyRLXtsXeN18665abPin//zT3z15Rfc8ejTtdZbvnQJXbp1B+DBO25mjyH70qtPX8rLyylatXJjAvPmlJfp1LkLHbaoeVXon+cv4o33P+bVJ+9m9Zq1lJdXYGakWRpr123YrNfTBGQC48nPbkl+0QNBB9PQlCCISONJwvUKop155plLhg8fvn3Lli0jb7311nfV1XHOsWDl+t6FG8o6V5a1bdeecy/5J6MOO4AOHTsx4vAjf3fO5eefQacuXbngtFEbyx585qVaP3ir89JzT3P3zdezuqiQd14v4PEH7ubO8RMZsNPOAEx69kkOHHkYbdv9vlv/3den8O4br5F/850A3PvvG/lsxkdUlJez8+A/kH/zXQCUlpZw7snHUVpaQlpaGh06dtpksvGPK2/m9qsvxszIbt+OE48YwcADjqVtm9Y8e18ortfXRBlwH/nZGeQX3RN0MA1JtzmKpJDAb3NsBhasXL/1qvWl1Y8RpJhMcxUDLJzeGG0lyW2Om3Ih+UW3Bx1EQ9EcBBGROlq0an0PJQdSi9vIz74k6CAaihIEEZE6WFy4Yctf15V2DzoOSXr/R372hUEH0RDqlSCY2TlmFjazYjObbmZ7bKL+BWY218w2mNkCM7vNzFrWL2QRaSIi4I3ZN3VLioq7rVhboi2AA7Tx16hp/D79uznsBhl3gmBmxwG3AlcDuwGzgKlmVm23m5mdCIT8+gOA04DjgBvqGbOINA2Fzrny0tLSqsv5NSHL1hR3WbamuGfQcaS69WVARSmZxU1iAUMDHic/e7+gA9kc9bmLYSzwkHNuPICZnQXkAqfiJQKxhgDTnHOVU2HDZjYR2LMebYtI07EiEom8t3Tp0tzMzMyytLS0JvHVL9rakvI2S4qKezW5wBtJxBzFlth3xzkvOVi2spAO814lvaLJ3DqZBUwiP3toU90JMq67GMysBbAeONo5Nymq/HGgg3Puz9WccyJwLzDcOTfDzPoCBcATzrlqexHMLAvvza3UDliouxhENk9j3sUAMHPmzB5paWkvpqWldcH7VtVklEfILCyu6B5xmqtVk3SLRLbk18S/PxWldJj3Kt2/fxqjyaVrC4C9yS9aFHQg8Yq3B6EzkA4sjSlfCvSv7gTn3NNm1hn4wMzMb/P+mpID32XAVXHGJiJJZvDgwYtmzpw5NBKJ9KIJrbvy7YrSNg9+tvq58ohTclCLdqxfPynryrYJbcQ5Mot/bUo9B7G2BgrIz96b/KIm9SIS/g/WzIYBlwNjgOnAtsAdZnaFc+7aGk67EW+eQ6V2wMJExikiiTF48OBS4Ieg46irnLyCNGAy0DfoWJJde8oiLcuSdk2CZLILcB8wOuA44hJvdrwCqAC6xZR3A5bUcM61eMMJDzvnZjvnXsRLGC4zq37PUudciXNudeUBrIkzThGR+roBGLnJWiLxOZn87L8HHUQ84koQnHOlwEzggMoy/0P+AOCjGk5rjX+7U5TKdc6b1JikiDRvOXkFJwDjgo5Dmq27yM8eFHQQdVWf8bVbgdPN7GQzG4DXbdIGqLyrYYKZ3RhVfzJwtpkdb2Z9zOwgvF6Fyc65WjdEERFpLDl5BdsAzW7DHUkqLYHnyc/uEHQgdRH3HATn3LNm1gW4BugOfAGMcM5VTlzsxe97DK4DnP+zB7AcL2n452bELSLSYHLyCjKAJ/HmO4kkUl/gMeAvAcexSdqsSSSFNPZtjk1FTl7B1cCVQcfR1LRn7eovW56h/5TrZzT5RY8HHURtdAuPiKS0nLyC3VGPpjS+28jP3jLoIGqjBEFEUlZOXkEW8Dje+i4ijWkLknzOixIEEUll1wA7BB2EpKzDyM8eFXQQNVGCICIpKSevYGfgoqDjkJR3J/nZsWsLJQUlCCKSqm5HQwsSvI54v4tJRwmCiKScnLyCI4H9g45DxHc8+dl7Bx1ELCUIIpJS/ImJtwQdh0iM28jPTqrVhZUgiEiqGQv0CToIkRh7AscHHUQ0JQgikjJy8gq2xNssTiQZhcjPbhl0EJWUIIhIKrkBaBt0ECI16IXXw5UUlCCISErwN2M6Keg4RDYhj/zsjkEHAUoQRCR1jEO3NUryawf8I+ggQAmCiKSAnLyCrYCTg45DpI7OJz878E2wlCCISCq4CGgRdBAim+IcpbMjfeYcWnL9KUHHogRBRJq1nLyCjsAZQcchUhvnWDetYsf39im589fDSq8fOsf1yfPX7AhMRpCNi4g0gvPRnQuSpCKOwtcie3zxz7JTd15F+/2inuoO/BV4JKDQ1IMgIs1XTl5Ba+C8oOMQiVXhbOnT5X96b2DJIxljyi4Ytor21d25cHFOXkFgqyuqB0FEmrNj8DbDEUkKZS59/kMVufNuLz9qj1Iy99tE9f7AH4H/NUJoVShBEJHmLPCJXiIAG1yL728rP3r5wxUj94yQ1iuOU08hoARBQwwi0izl5BX0BfYNOg5Jbatd69kXl505Y0DJ+G0frDh0SIS0eNfiOCYnryCQOTTqQRCR5mo0kFS740nqWOayZ15W9vf0tyKDd93MS7XBGyob3wBhxUUJgog0Ozl5BWloYSRpZM4Rme+6zri47KzsT1z/wQ146VMIIEHQEIOINEcH4G18I5JwzlH2VaT3ByNKQ/P2K719r09c/wEN3MQfc/IKtm3ga26SehBEpDnS5ERJOOdYP90N+OTisrO2W+i6DE1wc6OBfyW4jd9RgiAizYq/+tzhQcchzZdzFL0RGfz5ZWV/3+lXsjd1q2JDOYZGThA0xCAizc0BeBO7RBpUhbPlz5Xv++7AkoftjLKLhv1KdudGbH57f8vyRqMeBBFpbtR7IA2qzKUvHF8x4qd/lx+zRwkthgUYykjgrsZqTAmCiDQ3hwYdgDQPxS7zxzvKj1zyYMWhe1aQ3jPoeFCCICJSPzl5BQOBHkHHIU3bGtfqqxvKT1w3seJPfwBr1G79TRiWk1fQKhzK3dAYjSlBEJHmZHjQAUjTtcK1/+xfZafaa5E9BgUdSw1aAn8CChqjsXpNUjSzc8wsbGbFZjbdzPbYRP0OZnaPmf1iZiVm9p2ZjaxfyCIiNTo46ACkaXEOtyDSZfpxJf/6eveS+3dL4uSgUqN9dsbdg2BmxwG3AmcB04ELgKlm1s85t6ya+i2AN4BlwNHAIqA3ULgZcYuI/E5OXkEGkOh70aWZcI7yuW7r6WPLzu7+tcvZM+h44nBQYzVUnyGGscBDzrnxAGZ2FpALnAqEqql/Kt52q0Occ2V+Wbge7YqI1GYg0CroICS5OUfxTLf9jIvKzuo7z3XfJ+h46mHbnLyCDuFQbsK/ZMc1xOD3BgwG3qwsc85F/Md713Da4cBHwD1mttTM5pjZ5WZW445WZpZlZu0rD6BdPHGKSEraPegAJHk5x+q3Kga9u2fJPWuOLs3fd57rngx3JdSH0Ui/6/H2IHQG0oGlMeVLgf41nNMXb1LFU3hjJ9sC9wKZwNU1nHMZcFWcsYlIalOCIFVEnK2YFNlnzlVlJw9aQ5thQcfTQHYn6ot6ojTGXQxpePMPznDOVQAzzawHcAk1Jwg34s1zqNQOWJjQKEWkqVOCIBuVu7RFEyqG//B/5cftUUzWsKDjaWBJ2YOwAqgAusWUdwOW1HDOL0CZnxxU+gbobmYtnHOlsSc450qAksrHZtrSXURq5u+/MDDoOCR4JS7jp3vK/7L43orD9ywno7muidEoCUJccxD8D/OZeGudA2Bmaf7jj2o4bRqwrV+v0vbAL9UlByIi9bAL3rClpKh1ruU3V5Sd8nH/ksdy7qw4cmg5Gc3596F3Tl5Bl0Q3Up8hhluBx83sU2AG3m2ObYDKuxomAIucc5f59e8DzgXuMLO7gO2Ay4E7NzN2EZFKg4MOQIKx0rX74sqy0ZFXInvvFnQsjWx34NVENhB3guCce9bMugDXAN2BL4ARzrnKiYu9gEhU/QVmdjBwG/Al3joIdwA3bWbsIiKV+gUdgDQe53CL6fTJuLIzWn0QGbhr0PEEpD/JliAAOOfuBu6u4blh1ZR9BOxVn7ZEROqgd9ABSOI5R8UPrsf0sWVnd5nt+ta6gm8KSPgeEdqLQUSag5ygA5DEcY6SL9y2M8aWndX7Z7fVkKDjSRJKEERE6kA9CM2Qc6z9X2TnmePKzui/hI5/DDqeJNM30Q0oQRCRJi0nr6AdsEXQcUjDiThb+Upkry+vKDtl1yLa7hd0PEkq4StB1ms3RxGRJKLeg2ai3KX9MqH8oPd2Knkk6/yy84YV0bZD0DElsdY5eQUdE9mAehBEpKlTgtDElbqM8H0Vhy28u/yIPcrIUI9B3fUAVibq4koQRKSpa6qb7qS89S5r7s3lx658rOLgPR1pOUHH0wRtBcxO1MWVIIhIU9c+6AAkPoWuzaz8spPLJkWGav+MzdM2kRdXgiAiTV3roAOQulnitvgkr+z0rHcju+4SdCzNRJtEXlwJgog0dUoQkphzRH52W358UdlZnT532/0h6HiamYT+7itBEJGmLqHfoqR+nKN0tusz/cKyMb1+dD20uFFiKEEQEamFehCSiHOsmxbZ6dNLy87YfjGdtbhRYmmIQUSkFkoQkkDEserVyJ6z/lV2ys6raK9bFRuHehBERGqhBCFAFc6WPFux/9zry0cNXkerYUHHk2KUIIiI1EL/jwVkDa3bDih5LKuUTPUYBCOhv/v6hyUiTV1p0AGkKkdaWilpWUHHkcLWJ/Li2otBRJo6JQiSqtYl8uJKEESkqSsJOgCRgKgHQUSkFgn9FiWSxJQgiIjUYk3QAYgEREMMIiK1UIIgqUo9CCIitSgKOgCRgKgHQUSkFkuCDkAkIEsTeXElCCLS1M0LOgCRgCT0d18Jgog0dUoQJBVtCIdylyWyASUIItLULUFrIUjqmZ/oBpQgiEiTFg7lOmBB0HGINLKE95wpQRCR5kDDDJJqlCCIiNRBOOgARBqZEgQRkTr4OegARBpZONENKEEQkebg86ADEGlkXya6gXolCGZ2jpmFzazYzKab2R51PO94M3NmNqk+7YqI1ODToAMQaUTFwDeJbiTuBMHMjgNuBa4GdgNmAVPNrOsmzssBbgHejztKEZFa+PeD604GSRVzwqHc8kQ3Up8ehLHAQ8658c65r4Gz8DaMOLWmE8wsHXgKuAr4qT6BiohswidBByDSSD5rjEbiShDMrAUwGHizssw5F/Ef713LqVcCy5xzj9SxnSwza195AO3iiVNEUpKGGSRVfNwYjcTbg9AZSKfqBhFLge7VnWBmQ4HTgNPjaOcyvB3aKo+FccYpIqlHCYKkiqRMEOJiZu2AJ4DTnXMr4jj1RiA76uiZgPBEpHlRgiCpoBD4tjEaijdBWAFUAN1iyrtR/Zar2wA5wGQzKzezcuBvwOH+422qa8Q5V+KcW115AGvijFNEUkw4lLsKmB10HCIJ9r6/vHjCxZUgOOdKgZnAAZVlZpbmP/6omlO+BQYCu0YdLwPv+H/WrGMRaUivBh2ASIJNaayGMupxzq3A42b2KTADuABoA4wHMLMJwCLn3GXOuWJgTvTJZlYI4Jz7XbmISAOYAlwadBAiCZS8CYJz7lkz6wJcgzcx8QtghHOucuJiLyDScCGKiNTZNLyJzdlBByKSAF+FQ7kJ3+a5Ur0mKTrn7nbO9XbOZTnn9nTOTY96bphzbnQt5452zv2lPu2KiNTGXzzmjaDjEEmQgsZsTHsxiEhz02hdsCKNrFF/t5UgiEhz8yrQKLO8RRpREd4QWqNRgiAizUo4lLsErYkgzc9rjbH/QjQlCCLSHD0VdAAiDezxxm5QCYKINEcTgUb9tiWSQIuB1xu7USUIItLs+Ns/Tw06DpEGMiEcyq1o7EaVIIhIc/VY0AGINJDxQTSqBEFEmquXgGVBByGymT4Mh3K/C6JhJQgi0iyFQ7llBDCxS6SBBdJ7AEoQRKR5ewitiSBN1zrguaAaV4IgIs1WOJT7Pd5Qg0hT9GA4lLs6qMaVIIhIc3dj0AGI1EMp8O8gA1CCICLNWjiUOwN4K+g4ROI0IRzKXRRkAEoQRCQVqBdBmpIK4Kagg1CCICLNXjiU+xYwI+g4ROro+XAo94egg1CCICKpQr0I0lQkxe+qEgQRSRUvAXOCDkJkEwrCodxZQQcBShBEJEWEQ7kOuCjoOERqUQHkBR1EJSUIIpIywqHc14FXgo5DpAaPhkO5SdPLpQRBRFLNWLx7zEWSyVrgiqCDiKYEQURSir+64p1BxyES47pwKHdp0EFEU4IgIqnoWrTToySPucBtQQcRSwmCiKQcf337fwYdh4jv/HAoN+mGvZQgiEiqehT4OOggJOU960+eTTpKEEQkJYVDuRHgb8D6oGORlPULMCboIGqiBEFEUpY/YfGSoOOQlHVqOJS7MuggaqIEQURSWjiUey8wNeg4JOXcHw7lvhZ0ELVRgiAiAqcCSftNTpqdH4CLgw5iU5QgiEjKC4dyFwPnBB2HpIQK4G/hUO66oAPZFCUIIiJAOJT7DPB00HFIsxcKh3I/CjqIuqhXgmBm55hZ2MyKzWy6me1RS93Tzex9M1vlH2/WVl9EJEBnoB0fJXFeA64MOoi6ijtBMLPjgFuBq4HdgFnAVDPrWsMpw4CJwP7A3sAC4HUz61GfgEVEEsXv9j0CKAw6Fml25gLH+7fXNgnmnIvvBLPpwCfOuXP9x2l4H/p3OedCdTg/HVgFnOucm1DHNtsDRUVFRbRv3z6ueEXkN6tXryY7Oxsg2zm3Ouh4klVOXsFIYDIahpWGUQTsGQ7lzg06kHjE9ctvZi2AwcCblWXOuYj/eO86XqY1kEktM4bNLMvM2lceQLt44hQR2RzhUO4UYFzQcUizEAFOaGrJAcSfHXcG0oHYHaeWAt3reI2bgMVEJRnVuAwv46o8FsYXpojI5gmHcm/BW45ZZHPkhUO5rwYdRH00aveZmeUBxwNHOOeKa6l6I5AddfRshPBERGKdBbwTdBDSZE0Ih3JvDjqI+oo3QViBdw9nt5jybsCS2k40s4uBPGC4c+7L2uo650qcc6srD2BNnHGKiGy2cCi3DDgcbeok8XsROC3oIDZHXAmCc64UmAkcUFnmT1I8AKjxvk4zuxS4AhjhnPu0fqGKiDS+cCh3LXAI8HnQsUiT8SreHQvlQQeyOeozxHArcLqZnWxmA4D7gDbAeAAzm2BmN1ZWNrNxwLV4S5mGzay7f7Td/PBFRBIvHMotBIYDXwUdiyS9t4Ejw6Hc0qAD2VxxJwjOuWfx1pC+BvgC2BWvZ6By4mIvYMuoU84GWgDP421tWXkk/TrUIiKVwqHcFcCBwPdBxyJJ60Pg8HAot7Y5dk1G3OsgBEHrIIg0DK2DsPly8gq2Bt4HegcdiySVmcAB4VBuUdCBNBQtAiIiEodwKHcB3gqxTe6+dkmYj4HhzSk5ACUIIiJxC4dyw8A+eF3Kktpexes5aHbbhStBEBGph3Ao91e8OQmTgo5FAvMk3pyD9UEHkghKEERE6ikcyt0AHAXcE3Qs0uiuA/7W1G9lrI0mKYqkEE1STJycvIJxeKvAWtCxSEKVAWeEQ7mPBR1IoqkHQUSkAYRDuTcBx6GVX5uzJXiTER8LOpDGoARBRKSBhEO5/8Hb8faLoGORBvcWsGs4lPtu0IE0FiUIIiINKBzK/R7YG3gg6FikQUSAfLyeg9idjJs1zUEQSSGag9C4cvIKTsBLFNoFHYvUyxJgVDiU+3bQgQRBPQgiIgkSDuVOBHYHZgUdi8TtbWBQqiYHoARBRCShwqHc74A98DatKws4HNm0ImAMcGA4lLsk6GCCpCEGkRSiIYZg5eQV7Aw8ijeRUZLPC8B54VDu4qADSQbqQRARaSThUO6XwJ7Aheh2yGSyEPhLOJR7lJKD3yhBEBFpROFQbkU4lHs7MAD4T9DxpLgIcDewQziU+1LQwSQbDTGIpBANMSSfnLyCffFWYBwSdCwppgD4ZziUqwmkNVCCIJJClCAkr5y8glzgemCXoGNp5t4DLg+HcrUT5yZoiEFEJAmEQ7kFwCDgBOD7gMNpjmYCI8Kh3GFKDupGCYKISJIIh3JdOJT7DLADcDrwQ8AhNQezgKOBP4RDuVODDqYp0RCDSArREEPTkpNXYMAI4HzgYLRTZF054BXgtnAo952gg2mqlCCIpBAlCE1XTl7B9sA5wGhA/xFWbyXwGHC/vyeGbAYlCCIpRAlC05eTV9AO+BtwKrBbwOEkgwgwDXgEeDYcyi0OOJ5mQwmCSApRgtC85OQVbAMc4x+plCxUJgXPAf8Nh3J/CTieZkkJgkgKUYLQfKVAslCZFPwHeF5JQeIpQRBJIUoQUkNOXkFv4AD/+BPQPdiI6sUBX+GtW/Ae8F44lLss2JBSixIEkRSiBCE15eQV9AOGAvv4x3Yk3x0RFcAcfksI/hcO5a4INqTUpgRBJIUoQRCAnLyC1kB/vPUWBkT93AbISHDzpcB3wDfA1/7xDfBdOJRbkuC2JQ5KEERSiBIEqU1OXkELoC/QFegCdPZ/dol63Jaaex8csBbvdsNV/rEMWOIfi4Cfw6Hc8sS9CmkoShBEUogSBBGpKy21LCIiIlUoQRAREZEq6pUgmNk5ZhY2s2Izm25me2yi/jFm9q1ff7aZjaxfuCIiItIY4k4QzOw44FbgarzFOGYBU82saw31hwAT8ZbBHARMAiaZ2U71DVpEREQSK+5JimY2HfjEOXeu/zgNWADc5ZwLVVP/WaCNc+7QqLKPgS+cc2fVsU1NUhRpAJqkKCJ1Fdf9rmbWAhgM3FhZ5pyLmNmbwN41nLY3Xo9DtKnAX2ppJwvIiipqB95/biJSf/o3JCJ1Fe+CGJ2BdGBpTPlSvEU3qtO9hvq1Lf15GXBVbOHWW29dtyhFZFM6AsoWRKRGiV4xq75u5Pe9Du2AhUBPYE0gEdWN4mx4TSXWphbnyqADEZHkFm+CsAJvvexuMeXd8FbJqs6SOOvjnCsBNi65abZx0a41yTxuqjgbXlOJtQnGKSJSq7juYnDOlQIz8XYIAzZOUjwA+KiG0z6Kru87qJb6IiIiErD6DDHcCjxuZp8CM4ALgDbAeAAzmwAscs5d5te/A3jPzC4CCoDjgd2BMzYzdhEREUmQuBME59yzZtYFuAZvouEXwAjnXOVExF5AJKr+h2Z2InAdcAPwPfAX59ycOJotwVt3Idl3+lKcDa+pxKo4RaRZaRKbNYmIiEjj0l4MIiIiUoUSBBEREalCCYKIiIhUoQRBREREqlCCICIiIlUkTYJgZueYWdjMis1supntsYn6x5jZt3792WY2MtniNLPTzex9M1vlH29u6nUFEWfMecebmTOzSYmO0W8v3r/3DmZ2j5n9YmYlZvZdMv7d+/UvMLO5ZrbBzBaY2W1m1jLBMe5rZpPNbLH/91jjpmhR5wwzs8/89/MHMxudyBhFpGlIigTBzI7DW4DpamA3YBYw1cy61lB/CDAReAQYBEwCJpnZTskUJzDMj3N/vF0tFwCvm1mPJIuz8rwc4Bbg/UTGF9VevH/vLYA3gBzgaKAfcDqwKAljPREI+fUHAKcBx+GtBZJIbfzYzqlLZTPrg7eA2TvArsDtwMNmdnDCIhSRpsE5F/gBTAfujnqchveffl4N9Z8FXokp+xi4P5nirOb8dLwd9P6WbHH6sU3D+yB7DJiUhH/vZwE/ApmJjq0BYr0beCum7N/AB40Ys8NblKy2OjcBc2LKngFea+z3WIcOHcl1BN6D4H8rHAy8WVnmnIv4j/eu4bS9o+v7ptZSf7PVM85YrYFMEriT3mbEeSWwzDn3SKJii1bPOA/H28PjHjNbamZzzOxyM0tPwlg/BAZXDkOYWV9gJDAlkbHWQ6P/WxKRpiEZtnvujPftdWlM+VKgfw3ndK+hfveGDe136hNnrJuAxVT9D7khxR2nmQ3F6znYNYFxxarP+9kX+Ly0eJwAACAASURBVBPwFN6H7bbAvXhJ19WJCROoR6zOuafNrDPwgXlbKGbg9XAleoghXjX9W2pvZq2ccxsCiElEkkDgPQipwszy8DaqOsI5Vxx0PJXMrB3wBHC6c25F0PFsQhqwDDjDOTfTOfcscD3e0ENSMbNhwOXAGLw5C0cCuWZ2RZBxiYjUVTL0IKwAKoBuMeXdgCU1nLMkzvoNoT5xAmBmFwN5wIHOuS8TE95G8ca5Dd6kv8neF13ATxzNrBzo55z7MQni5P/Zu+/4pqr/j+Ovkw7ogLA3GDYUUBBBRFBBllb5ogj4BQcKoigu/Al1Ydx1b8E9ABUQB1JEcTDEBVW/ilCKSADZM91txv39cdNSOigtNCfj83w88tDm3uS+E3JvPjn33HOAXYDLMAxPsfs2AE2UUtGGOR15dahK1oeA2YZhvOH7+0+lVBzwmlLqEd8pikBQ3r6UIa0HQoQ37S0IvoN6KnB+4X1KKYvv7x/LediPxdf3GXyM9U9YFXOilJoG3Ic54+Xa6sp3AjnTgG6YpxcKb4s40qt9e4DkBLMTZTvfeoU6ALuqsTioatZYis1q6lNY2CgCh9/3JSFEkNDdS9IwDDAv/8oDrsa8JOxV4BDQ2Lf8PeCxYuv3BVzAHZjngO1AAdA1wHJOx5xWdyTmud7CW3wg5Szj8e/gn6sYKvt+tsS8CuRFzMIgEfN8+T0BmNXuy3o50BrzS/dvYF4154znSKFnALf7/r+Vb/ljwHvF1m8NZANP+PalGwE3MLS631O5Vf8N6IXZYTbb93noDgwDfvd9ng2gju6ccgvMm/YARUFgCrDV94X6M3BmsWXLgXdKrD8K2Ohbfx1wYaDlBBy+HbDkzR5IOct4rF8KhMrkxDyfPwKzd/1PvoPbZt/9EYGU1fd3JHC/ryjIBbYBL1f3wRhz7I2yPnOF7+M7wPIyHvOb73VtBsb74/2UW/XeMDvvOjBbCScBVwD1MQvXHzE7Jl/hW28scJvGrBZgPGbr5XbMgmYdcC9QU/d7Ga435fvHESKgKaWygI8MwxivO4sQwUAp1Qmzj851hq8vjFJqGPAFMNgwjK+LrbsYswXWpilrPJCJWfwvxuyMfBZmi91KYKAhX1Z+FwidFEWY8Z2/jzYC6GoOIUJQ4Sifhyu4LxAUAGcbhvFDsfteV0o5MC9hPp/qvTxclEF7J0Vx4nxj6a/1zRGwWSl1vVLKrpQySqx3hVIq1Tc3wEGl1IdKqZYl1lnuG4AoQSn1nVIqRym1w9fZsuR2ayilHvCN35/vm2/gCaVUjRLrGUqpl5RS45RSf2E2ZQ/zLfs/pdQPSqkDvlypSqnLSj4ecwjhq33PZSil3im2vLlS6i3f4En5Sqm/lFLXnuDbKkTQ8u0fK3x/LvDtM8uBd333rSncj3z3JwKnFNu/HL7nOc/392il1P2+Y0GmUuojpZTVdwx4Tim1VymVpZR6u4z9/xql1Le+dfKVUuuVUpOLr2MYRkGJ4qDQJ77/dj4Z74uoHGlBCHJKqR7AUsxLAO/HHNBnBrCvxHr3YF56Nx94A2gI3AysVEr1MAyj+C+Kur7n/Ni3/mXA40qpPw3D+ML3fBbM84X9gNcwmzK7YXaK64DZX6C4gcBozCGI92OeGwW41fc8c4FozE59C5RSFxmGkeJb50pf5l982wLzXDlKqcaYzZKG77n3ARcAbyqlahuG8dxxvI1ChJpXMYcCvxt4AViD2aF3I2Z/hBnAFsz9KB6wAi0w91+ArBLPdxdmX5pkzAHKbsbsKO7FPF7YgT6Y/Qi2AA8We+xk4C/M/dwNXAy8opSyGIbxcgWvo3Dwu0AfoyU06e4EIbcTu2HudNlAs2L3tcPceQtP252CuWPeXeKxXX3r3V3svuWYX7ZXFrsvGrMA+ajYfVdgXrbXr8RzXu97fN9i9xm+dRPKyB9T4u8o4E9Kz2OQRRkdKzELh51A/RL3f4DZjBpT8jFyk1s43DjSYfWyYveN9913Rol1FwOOYzzHnxSbAwV4H7M4WFJi/R9KPk9Z+yDmD5DNx/EalgFO5EoLLTc5xRDEfHMQDMK84mBn4f2GYfyN2RGp0KWYp5PmK6UaFN4wB8nZhDnbZHFZwJxiz1eA+eu9TbF1RmG2GqSVeM5vfctLPucKwzDWl3wNRrHBeJRSdTF/yazCHH2wotevMC8h/dz3Z/EcX/qeq8LnEUJU6D3DMFzF/v4ZczyPt0qs9zPQUilV1DpdYh+3+vbPFUAbpZS1vA0qpe7GPL4lGUe3cAo/kVMMwa0REIN5KV1Jxe9rj7kzbyrneVwl/v7X8JXvxRwCTi3xnJ0pcSqjRLbitpS1klLqIsxLmboDxc9dHk+P5YZAHcwm00nHmUMIUXnbSvzt9P235EBqTswfI1bgAIBS6mzMjoZnYQ4gVpy12HMVUeb06g8DbxqGMfOEkosqkwIhPFgwv3Av4MhofsWVPN9Y1jpw9AiAFsxmx6nlrFvywFFq2F6lVH/MUyQrMQfo2YVZrFyDeV12RQpbwOZwpPNVSdU9tLUQ4aC8Y8IxjxVKqbbAN5hjMUzFPC4UYE62djtldJRXSg3GHHgshQCcZyWcSIEQ3PZiDhjUroxlxe/bjLnDbjEMI/0kbXszcBpmX4GqXp88EjP/UMMw8gvvVEpdU8a6ZW1jH+a10xFGsWu6hRCVVl1jDFyM2TI43DCMolYIpVTJU5CF95+JeeXCWmC0YRjuasoljoP0QQhihjlp0dfACKVUs8L7lVLtMFsLCn2MWenf7ztvT7F1lVKqfhU2Px9oDlxXcoFSKkaZExNVxIN5YIoo9lgbpa+AALMjZp3id/he/0JgpFKqaxk5Gh5HBiGEuX+V2x/gBJSaf8TX76DUjwClVGfMVgMHcJEhk4VpJy0Iwc8ODAFWK6VmYn7ZTsEcprQ7gGEYm5VS92KOw29TSn2K+cu7NXAJ5qWDT1Vyu7MxL1uc5fs1sNq37U6++4di/go4lhTMZselSqn3MfsL3ITZf+LUEuumAoOUUlMxr1rYYhjGz5izZA4AflZKvQ6sB+phdk4c5Pt/IcSxpQJjlFLPYF4SmWUYxucn4Xm/wjyl8LlS6lXMSyqvw2z9bFq4kjKnnf8S85LJJzGnRi/+PJsNw5AJxPxMCoQgZxhGqlLqAswv+Icwz/HNwOxA2KnYeslKqXTM8373++7ejrkDL6rCdr1KqRG+57sKs9DIAf4BngcqPJVhGMa3SqkJmF/yz2F2ZJyOOf10yQJhKmYh8zBmx8x3gZ8Nw9ijlOrte82XYvZlOIB53fX0yr4uIcLUK5g/KK7B3Ke3Yl4ddEIMw9joG/jsYcxj1G5gJubpweJXQNTHnIwNzLEWSnoXmWHU72QuhhDlayXoYhhGe91ZhBBCBB/pgxAClFIxJf5uj9lLeLmWQEIIIYKetCCEAKXULsxpfP/BHDVxMmbP4R6GYZQ39oEQQghRLumDEBqWAv/FHLc8H/Nc3d1SHAghhKgqaUEQQgghRCnSB0EIIYQQpUiBIIQQQohSpEAQQgghRClSIAghhBCiFCkQhBBCCFGKFAhCCCGEKEUKBCGEEEKU4teBklJTU+OBZkhhEu68wGFgf8+ePb26w4jqJfu9CAByzKkCvw2UlJqa2sdiscyyWCxWis0NLsKTYRhur9e7wjCMGT179tyhO4+oHrLfi0Ahx5zK80uBkJqaGm+xWL6vU6dO40aNGh1USsnwjcHG61V4XVF43ZF4XJHK8ERieC0YhqLowG8U/q+BwgAFyuIxLJFuIqLcWCLdWCJdBoqCgoLoPXv21M7Nzd3m9Xr79ezZs0DfixPVQfb70GAYBm6vEenyGpFerxFhGIYyDOXb770GEXkWwFAow6IsXt9/PRGWCE8EkR6LRf+/u2EYcsypAn+dYmhmsVisjRo1OhgXF5frp22KyjAMcOXUpCAnDnduDB5XFF73kZvhjThp21IR7jhLpCu6lvI4MjI6t/rpnmf5/M/lQCp25z8nbTtCN9nvg4DL443MKfDE5rs8NV0eI8rt9Ua5PUaU22v+v8drlPE9YX7nR0Z4XUbUgaiynjfKEp2Xl9OwpkUpb4RFuSItyh0ZYSmoEWnJqxkVkRsTZcmtGRWRp5R/Gpbi4uLyoqKiXJs3b27o9XpbAX/7ZcNBzF8FggVQ8gsiQJjFQAwF2bG4cmNx5cbhzosBwz/niA1PJB5PZITHwOLJI6rg8I3AjQDYrYeAX4HUopvdudkvucTJJvt9gClwe6NyCtyxOQWe2DyXJzbP5Y1ze71lfsGfKIuK8AJ4DcPi9Rg1XB5q4PLEZRZbR6GM6EhLXo1IS24Ns2DIjY2KyK0RFVEtv+4tFkthM6dMVHgc5E0KB4YBBVlx5B2uQ352Lb8WA5VXFzjfdzPZrYcxi4WvgEXYnWl6ogkRXHIK3DUzcl11sgs88fkuT6zba1RLMVA2S4WFoYGh8t2emHy3J4a8I/dHRVgK4qIjM+JrRmbUrhmZERlh8VRnUlE2vQWC3dqzep7XmXoiD9+4cWP0Z599Zp02bdq+wvuaN2/ebcGCBX/37dvXb02lTqfTkpiY2Pavv/6KdbvdKjMz8/fiyz/44APr3Xff3cLr9aqOHTvmfvjhh1vq1avnBfjw/ffr3HvvPa0Mr8dyaud2lnefe0DVrhVfahter5dbZzzJkm9XoxTcNnEsU665vMJlxR06nMGlE/+P/YcO0793D1557C4A9h04xKjrp7Hsg1eIijqh41IdjhQNj2O3bgI+991WYXfKwSNI2JJSqmWfdyQnntA+7w+dOnVK+PHHH9Pq1q1bbb3ovYahMvPctTJyXdasfHcdl8cbXZnHr/v9V5584C5ysrNRSnHHjEc48+xzANi6ZTMPTr+NTOdh8vPz6T9wCNPut5fZ83TlspW8+OhLMV6vBbfbzfgbbmH4qP8etc7Pq1dyw9hLuOO+h7li4uSjlrk83uh1Gzc1mH7ThAa5OdkkjhhZMP2uew7UqhmZkf7XH+4777yzxbfffiunCKpZoP6K1GrTpk013nrrrYYn+3ldLlel1o+OjjamTZu2OyUlJb3kMqfTaZkyZYrt448/3rx169Z1TZo0cd19V1ILsvY0yHT83u7WW29uu/idp6M2//BZRPMmDdVDz71e5jbmLFzC+vR/SF/1Cb8sns2TM9/jr42bK1xW3NxPljDg7DP485v5pP29hXVp5n471f40yXfdfKLFQVnaA1OB74C92K1zsFvHYLfWPtkbEuJEFe73aWlp66ujOHB5vJH7s/Lrb9mf1Xb9zozuWw9ktz+UU9CossWBYRjcft2VTJ56Fwu++p4nZr7NjKk3kpdr/iZ69uEZDBx2EfO/XMX8pSv5ceW3rPr261L1gWEYJN2YxOMvPZs7/8tVvPjOPB6663ays46cXMjMcPL8Yw/Qb+DgcvPMe/cNLr96Igu++p7PPpoXvXX3/qb/7MvqePPUOxNmPP6cOpRdUMdfV+GFq7AuEBYuXFg7ISGhc4cOHRJ69erVMTU1tSbAzTff3MrhcNTs1KlTwsCBA9sVrj9//vy63bt379S8efNu06ZNa1p4/7Zt2yIvvPDCNt26devcoUOHhFtuuaVZ4bLmzZt3mzx5cvNu3bp1HjlyZOvK5IuJiTGGDx+eWb9+/VK/kBcuXGhNSEjI6dH9tHyy99ebNnFU7OJFnzUkY+cpS7/8ytqja0c6tTM3d+PVo/ng0y/L3Ma8RV9x3bhLiYiIoF5dK2OGD+GDT5dWuKy4qMhIcnLz8Hq95Be4iI6KYul3q6lbpzZ9ep5amZdcFfWAccCHwD7s1gXYrYOxW+WSOlHK119/HdezZ8+OHTt2TOjQoUPCnDlz6gCsXLkytkePHp06dOiQ0K1bt85fffVVHMDll19+yowZMxoXPj4tLS26QYMGp+Xn56vPPvusVvfu3Tt17tw5oV27dl2effbZBoXrjRw50jZq1CjbGWec0bFDhw5dAJRSPffv3x8BMGnSpBZdu3bt3KlTp4Qzzjij4//+978ahY9VSvVMSkpq0q1bt87Nmzfv9vzzz9cvXPbrr7/W7NevX/sOHTokdOjYqdv9jz3dZcOujNP+SHfYbrjmyjqXJw60jBzUl5eeeLjS783hQwc5dHA/ffqfB4CtTTtq1bby/fKvC4ORlZEBQH5eHm63m4aNG5f5XEopMg5nWgCyszKw1qlHdHTRS+Sx+6Yx6ZY7qFOnXrl5IqMiyc3Nwe1yYXi9KIuFBbPf4qxzBqp6TVvV3n4op+36XRmn/Xsop0VOgbtmpV+wqFDYFgg7duyInDBhQpt33nnHkZ6evv7aa6/dN3r06LZer5cXX3xxm81my0tLS1tfvBnr8OHDEb///nva2rVrN8ycObPxli1bogDGjh3b+qabbtr7559/bvjrr7/W//bbb3FvvfVW3cLHHTx4MPJ///vfhkWLFm05Wfm3O/6JbdeqaRS7152Kc3vrNs3rx+3aux+32822Hbs5pXlR/YKtZVMKl5W0beduTmne5Mi6LZqxbcfuCpcVd8XIRP7esp0eQ/7LoP69ad60EY+88CaPTL/pZL3c4xUNXIbZV2Ezdus92K1NKniMCBN79uyJGDNmTLtHHnlkx8aNG9dv2LBh/eDBgzPz8vLUmDFj2t57770709PT1z/11FPbx44d287pdFomTJiw/4MPPij64n/11VcbXHLJJQdq1Khh9O3bN2ft2rVpGzZsWL969eq0J598sunmzZuLmsv++OOP2GXLlm3asmXLXyWz2O323evWrduQlpa2ftKkSXunTJnSqvjyGjVqGH/++eeGxYsXb7r77rtbuVwuXC4Xl156afuRY682Plm+Juqjb36KHpg4oibAvbffyJirJvL+4m+Yt3Qlf/3xO18t/rRS70/devVp2KgxX37+CWCebnD88zc7t28DYJr9UZalfMqgnp0ZdEZnLh45hoRup5X6Ca+U4qnXn2LKNdfVHNanG+MvvZCHn32FqGizQWNZymdYLBbOG3LhMfOMveZ6vl2awpUjhnDV9VPIyshg2ZJFR52O8HiNyIPZBY3/3pvVJX1PZue9mXkN3Z6TeMVVmAvbToorVqyI69ChQ27v3r1zASZPnnxw2rRprQq/9Mty5ZVXHgRo2rSpu0WLFgXp6ek16tev7/npp59q33HHHVF33HEHADk5OZa0tLSiivbaa689YLGchFrMMCDvsJXsfY3iyakdrTxg6D/9Hhcbw0evP1n09+33P8X0G8fzt2M7j77wFgD33jqR07p08Ges1sDDwAzs1vnA89ida/0ZQASW7777Lr5169Z5w4YNywKIiIigcePGnl9++SXGYrEwcuTIDIChQ4dm1a9f3/XTTz/FDh06NMvtdrNixYrY/v3758yfP7/+p59+uglgz549kePGjbNt2bKlZkREhHH48OHI3377LaZt27YugP/85z+HyjulsGjRotqzZs1qlJ2dHeH1enE6nUcdiydMmHAAoEePHnkRERHG+r+31P93z6GG+S539PnDR0V7vOb3ct169cnJyeaX1Ss4uH9v0eNzsrNxbK78Kfrn3pzLc48+wJsvP0vbDp3o0asPEZFmtHnvvckF/xnJhClTObB/HxPHDKdb9+6q7+BORz2H2+3m1Wde5cW33so/9Yzzaq77/VdunTCWj5atxuN28/oLT/HG/MUVZmnYuAmz5i4s+vv/bhjPHfc9zJofVjF/9ltER0dzS9IMmrUwa6s8lyd2t9PTak9GfotaNSIP14+P3lerZlRWpd8EUSRsC4SqiImJKdrZIyIiDJfLVTTQ1K+//rohNja2zBNitWrVKvNbPDU1tea4cePaAPTq1Str9uzZ28rcsOFVFoWFveu74imoAdCqeROWrfqpaBXH9l00bdSAyMjIYy4rqVWzJmzdsZuzzjjNXPffnbTytRoca1l5fvltHXsPHOKiwefQ/5Jrmf3CwxiGwfjb72fFwjeO+dhqEg1cAVyB3foj8DTwMXannLwU5Sp+bf7YsWMPvP766w0yMjIO1a1b192rV688gEmTJp0yZMgQ59KlSzdbLBYSEhI65+bmFv0SiI+PL3O/37RpU/T06dNb/fDDDxu6dOmS//PPP8cMGjSoY/F1YmNjDa/XUPuy8htGREZF7DycZ8v3lNN9wXcMmv3ZMmrUPHZL+x3XX812hznUyGsffkadukc38XdM6MbMOR8V/T1iwJm062AWAPPefZNFK9YAUL9BQ/oPGMSaH7+3lCwQ0talsW/3Pnr17Ud+AXTtfjqNmzQjbd0fuFwF7Nu7hzHD+gNw6OBBli/7gkMH9nPz9PvKzf31kkW0OMVGpy7dGDHgTOZ+/jV//fE7rzz9GA8/O7PE22FYMvJc9TLyXPVioiKyGtaqsbtObLTzmG+MKFPYnmI477zzstPT02PWrFlTE+C1116r27hxY1fr1q1dderU8WRmZh5XM5XVavX27t0749577y1q03c4HFHFmxrL07Nnz7y0tLT1aWlp68ssDgwDsvbWj87Y2kEpVGFxADBsQF9+/TONtL/NsxavvDufy/8ztMJlJY26aBCvz/0Yj8fDwUNO5i36ijHDh1S4rCwul4vpj7zAM/dPBSA7Jw+lwGJRZGXnVPR2+MNZwEfAGuzW8ntHiZB0/vnnZ23durXG0qVL4wE8Hg979uyJOPXUU/O8Xi+ffPJJbYBly5bF7d+/P6pPnz45ANddd92BlJSUurNmzWp45ZVX7i98PqfTGWGz2fItFgtffPFF/MaNG2OPJ8ehQ4ciIiMjjVatWrm8Xi/PPfdco5LrHMguqJ+2O7Pbnoy8loX32dq2p2ZMLF98euQL/NDBA8TGxdOrb3/eeuW5ovv37t7Fnl2lRxN++tV3zU6GX64qVRwA7Ntz5BTiwvffJSYmlt6+qxhatDqF1cu/ASAnJ5s1P3xPu46dSxXaTZo1Yd+efaSnbYoA2LblH7Zv3YKtbTvOOX8o3/2Wzhc//sEXP/7B4AuHc/1t045ZHGQ4ncx9cxY33DYdgLzcHJTFgkVZyMnOLvdxALkuT/y2gzntNu7OTDiYXVBXOjVWTti2IDRr1sz9xhtv/HP11Ve3drvdymq1eubNm7fZYrFw5pln5nTo0CG3ffv2XVq2bJlf0eU0CxYs2HLjjTe2bN++fRellBETE+OdNWvW1sKmxirJOWglc1eLUweMqLnvwGEyMrNp0XMYA/qewewXH6ZWfBxvPDWDEdfegdvjpmvHdrz73AMAx1wG0H3w5SyZ/SLNmjTkyssSWfO/v2jfbwRKKaZOuoJundsDHHNZWZ6c+R5XjUqkcUOzT9WD/3cDF155i7ns3tuq/FZUg57AV9it3wBJcuohPDRs2NDz4Ycfbr7zzjtb3nLLLRaLxcKMGTN2jB071jlv3rzNt956a6vp06e3qFGjhjF37tzNVqvVC2Cz2VynnXZa9jfffFPn3Xff3Vr4fA8//PCO2267rVVycnKzLl265Jx66qnH/rby6d27d+7w4cMPdurUqUvdunXdF1544WEwe/8fzC6oB7Avy9WytvXoFoPIyEief3Muj903nTdeegaLxcLoqyYw6oprePSF13jqwXu49PyzUEoRExvHfcnP0Lhp80q9Rwvff5eUTxaAYdC6XQeefWN2UWvKQ8/OJPm+O3n/rVm4XC7OHTyMxEtGemF3xHdLv+O7pd/x4HMP0qBRA+zP2Jk6aUKUxWLB6/Vy10NP0LR5ywq2XrbnHrufG6YmUTMmBoDrbvk/xiYOJCoqCvuTLx7Xc+S7PTH/HsppE2W48/I9RoZ0Ujg+/pqLoVNkZOTS9u3bZ8XGxuZV/IgwlpcRT+bO5rhySw9aEGLy3AZbduyj9eo7qJm1XVcMA1gI3IPdWepyUlF1st8fv8M5BdY9GfnN892eGN1ZKsMcanlXma2lnrzKFSf+YLgL2LvzXx5due/3LYfdUx3Jid/pzhTIwvYUQ8ApyI5h/6Z2HNzcMRyKgwCiMK98+Au79VXs1mYVPUCIkyUjzxW/aU9mp20Hc9oFW3FwLBYV2CMfFniM7sC3tqSU921JKWVfqymkQNDO67FwaGtL9qcnUJBl1R0njEUCk4BN2K23YbfKviGqjdvjjXAcyLY59md3zHV54nTnOdksKiKgC4Ri/gtssCWlTLIlpcjYKSXIQVCnvIx49m1IIPdgqU5KQptY4FlgOXZrW91hROg5lF1QJ31PZpeMXFf9itcOThYCuwWhhLrAq8D3tqSUrrrDBBIpEHQobDU4uLkjHleNih8gNOgP/IHdeouMyihOBpfHG7llf3ab7Ydy2vp30iT/UyoiGC8X6Av8aktKecyWlBIyp3tOhBQI/iatBsEkFngeaU0QJ+hAdn7d9D2ZXTLzXHUrXjv4KSzVNiFVNYsCkoB1tqSUQbrD6CYFgr94PYrD21pIq0FQOgezNeFmaU0QlVHg9kb+sy+r7Y5DuW08XiN8LisP2Nnkj1sb4EtbUsoDtqSUoH8xVaX1Axs2U78W5NTk0JZ2xQc6EkEnFngBuMScOdK5r6IHiNK6vdutWvb5P6/+M7D2eSAj1xW//VBO27AqDIqExHeqBZgB9LElpYxzJCfur+gBoSYk/hUD0Zo1a2o2b968GzkHrRzY1Lm6iwOv18vN9z5O277DaXf2cF56+8Ny1930zzb6Dh9Ph34j6HXhFUdN4XysZcUt+eZ7ug4cRdeBo/hy+Q9F97/14ac8+sKbJ++FBZ4BmCMxnqY7iAhcezPyGm49kNMhPIsDQqEFobghwG+2pJSzdAfxt5D6Vww0FmVEcHhrOwxvtb/PcxYuYX36P6Sv+oRfFs/myZnvlfvlfv30h5k07lLSv/+U6TeOZ/zt9x/XsuJmPDWTJbNfYMnsF7jn8ZcB2LPvALM/WsK0G68++S8wsJwCrMZuvVR3EKHH1KlTm1177bWlhgb0GobaeiD7lN0ZF8WpaAAAIABJREFUea0MjFKno5Z/tYQn7XcDsObH7xk9tH+Zz5+TncVpLYOnu8Kjdz3KkNOH0LVhV9L+TMMwLGWeituxfRsTRl3E2Qmtynztmzb8xYRRFzFiwJmMGHAmX3/xeZnbezDpNkYO6svEMcPJzDCnWTAMgxuvvIztjpM2aW5xLYAVtqSUW6vjyQNVWBcIc+bMqdOmTZsuHTt2TJg8eXLzunXrnrZx48ZoKH++9qysLJWYmNimbdu2XTp27Jhw9tlnF409PHXq1GannHJK1y5dEjp/NPuNNhGKohE9v1z+A/1GXEvPYWPpnXgl3602Jz0ZfPlkPlr8dVGm5T+spceQ/1b6tcxb9BXXjbuUiIgI6tW1Mmb4ED74dGmp9fbuP8jaPzZwxUhzqtWRieezfece/t6y7ZjLSoqKjCQnN4/snFyio8wO2bfbn+bxe24pc1KoEBQHfITdapd+CaHH5ar8KOkFbm/U33uzOjpzXQ3KW+e8IRdyp/3RE8oWiIZcPIT3Fr9Hs5bmOGPecgqE+Pha3HTnPTz24uulluXm5nDrxHHcdOc9fPrdzyz8+gdO7136R/umtPVs2/IPC7/+gTPO6sfij+cB8PEH79Grb39a2lqfzJdWXBTwnC0pZZ4tKaVWdW0kkIRtgbBjx47IKVOm2BYuXLh548aN6zt16pR3+PDhom+28uZr//jjj61OpzNi8+bNf23cuHH9xx9//A/Ahx9+aF20aFHd39f+vOnPbz9ix47tRZfJ/LP1X+xPv8qS2S+QuvR93n/pEcZOuYf8/AKuGTOcd+YvKsr19rxFXHv5fyr9erbt3M0pxWZatLVoxrYdu0utt33n7qNmdlRK0ap5E7bt2H3MZSU9ce+tXH3b/Yy/3c5T993O4mUradygHr17hNVlxAq4H1iA3Rpyg92EIqVUz1tuuaVZ586dE2w2W9eZM2fWK77s9ttvb9a1a9fOU6ZMaQEwY8aMxt26deuckJDQuX///u3T09OjC9ffsWNHdJ8+fTq0bt26y4CB53dck7a1c57LEzfzmWSesN9VtM0P3nmN+26/EYDP5r/PbRPGlZltwZy3ubh/T0YPO4fZr88sc53iXC4Xj9x9BxefcwZXDB/MUw/ey4RRFwGQNGUiSz5ZAMC8d9+gZ5tG5OSYU0VMHDOc1J9Ws2P7Nvp1OYVXnn6Myy88j4v6nc6qb7+q5DtqOqPvGTRpduT4Y3jLnt/eWrcup/c+i5jY0rvLF59+xKk9zigqCiIiIqhXv3StFRUVhasgH6/XS25ONlFR0ezbs5svPlvIldfdVKX8lTQa+MWWlHKKPzamU9gWCMuXL4/r2LFjTo8ePfIApkyZciAqKqro2t1FixbV7t69e6f27dt3efzxx5tt2LAhFuCMM87I2bx5c80rrrii1euvv143OjraAPj6669rXfqfi7LqevZ2tHjyY6+/YmTRtpZ+9wN/O7ZzzqUT6T74ci6bNA2LRbFtx24uGTaAn35dx649+8jKzmHx16sYO2KYn9+Nyut/5un8vPg9fl78Ht06t+PxV97h4ek38dzrcxk1aRpT7kmmoKDqc1UFmZGYpxxC/oARCpRSbNiwYf2SJUvSk5KSWhW2GoI5jfu6des2vPrqq//OmjWrXnp6es3ffvttw/r16zdcfvnlByZNmtSqcN01a9bEz58//581f6btbtTCFv/sYw9UeWyDTWnrmflMMm99lML8pSvJz8ut8DEL577DNsc/fPzNj7y9cAmb0v4qWnZmv/P46fsVAPy4ajldTu1O6k+ryc3NIX39Ok7t2RuAzIwMOnTuwodLlnPXQ0/w5AP3VPUlHMXjVZWeD2lz+kaiomswZfwYRg/tzz233cDBA6X7BdratqfXWf25/IJz2bFtK4mXjubJB+5m6j0P+rP1shPmwEqdKlwziIVtgXAshfO1z507d8umTZv+ev/99//Jz89XAAkJCQVpaWl/XXDBBc7Vq1fHd+nSpcu+ffsiopSnZix59fF6ouDo+eQNDAaf04ffl31YdNuR+iXt27QiJqYmoy4axOyFKSxYvIyBZ/eifr06pTIlv/Q23QdfTvfBlx/VKbBQq2ZN2Frsl77j3520KtaiUKhlsybs2rsft9ttZjMMtu3YTavmTY657FjuTn6Je26ZwO69+/nsyxUseO0J6te1MveTJRW/2aHjNMzOi6frDiKO7aabbtoP5r7cq1evzGXLlhU1F0+ePLnoG2nRokV1Vq1aVbtr164JnTp1Snj++eeb7Ny5s6iYGDhwoDPK2rDBzsO5tpHjxvPT98urnOmXH1Zx9nmDaNjY3NdGX3VthY/5efVKEi8ZTVRUFFFRUVx82eVFy/r0P5dfVq/A4/Hwz6aNXHndTfy0agW//vwjXbufTpTvtGCNGjU5/4KLATi1Zy/+3Xpyzt97vZZKFwgej5ufv1/OfY89y7ylK2nUpCmP3H1HmetOmXYv879cxVOz3uGnlctp0qw5zVq24r6pNzF10lUsXfTxCb+G49ACWGVLSgnZfT5sC4Tzzjsve+PGjbGFfQtmzpxZ3+VyKTj2fO2bN2+OUkoxbtw456xZs/41DIOtab83vPic060fpXytMrOyMQyD1+Yc+YAOPfcsvl71M3+sPzJZ4C+/rSv6/2vGDOfteYt4Z/7n5Z5eSJpyTVFxMfS8vqWWj7poEK/P/RiPx8PBQ07mLfqKMcOHlFqvUYN6nN6tE3MWml/eC1O+oUXTRrRr3eqYy8rzU+ofODOyGDbgbLJzcimsiywWC1nZFf8KCjENgW+wW/voDiKOn1KqqOWwcIpnMAvk22+/fVdaWtr6tLS09enp6evT09PXFy73qMjYfZn5RVMWKswPf0REJB7PkZGGC/Lyq5LphB7TtHlLoqJrsOSTBSR0O40zzz6XNT+u4ufvl3Pm2ecWrRddI7rocREREUflLu6qEUMYPbQ/4y6ueOwgAwyvUfnvlqbNWtCrb38aN22GUorES0bzx6/Hnok9KzODd199kcl33MWcN2ZyRp+zeeKVt3j1+SfJy/XL8acB8J0tKaXs3qZBTmtvMp3jFTRv3tz9wgsvOC655JJ20dHRxrnnnpsRGxvrrV+/vqdjx44FZc3XDpCamhozY8aMFoZh4PF41NjL/pN7RtsGzWnbj19+X8fpQ8dSu1YcFww4u2hb7Vq34v2XHuX66Y+Qk5tHgctFj66deP9ls7NS7x5diYiI4G/HdoacW7XvlisvS2TN//6ifb8RKKWYOukKunU2+08u+moFi75awRtPzQDg1eR7GH/7/Tz64lvUrhXH28/Yi57nWMtKcrlcTH/0BT567UkATk3oQJtTWtB14Cga1KvDJ288XaXXEuTqAF9htyZid67SHSbQBMJ4BbNmzWrwzDPP7Ny4cWP02rVra7388stlzjU+fPjwwy+++GLjK6+88lDjxo09+fn5au3atTX79u2bW2BE1F65/NuYA/v2Ur9hIz7+4D3O7G9+8ba0tWbVt1/h8XgoKMjn6y8+x9am3TEz9e7bn7defpb9e/fQoFFjFsx+u8LX0fvs/iz59CMuGHEZAJ9/NO+o5X36ncsrTz/KpFunUbtOHSIjo1iW8hnPvjH3uN6n4t779Pj7JkSYMzlW+rtlyMUj+GTeHLIyM4ivVZvvv1tGx4Qux3zM8489wPW3TSMmJpbcnByUUiilcLtcuFwF1Izxy4jJtTEHVbrMkZwYUs2mYdHdvDwXX3xxxlVXXXUYYPbs2XWWLVtmbdCggQfg7bff3g4UHTieeOKJXQCjR4/OGD16tPkrInN3QzJ3Ff28tt9xA/Y7bih6/oenH+kwM+icMxl0zpnlZln37YITei0RERG8/OhdZS4bPuRchg858quhYzsbP37+bpnrHmtZSVFRUaxY+MZR9xUWIWGuFrAUu3U4duc3usOIo3k8Hjp37pyQm5treeyxx7Z17NixoKz1Jk+efPDAgQOR55xzTkff49TYsWP3t+zco5FHRcSd3vsskm6+jr27d9GqdRseeuYVAAZdcDHLUj5jxIAzady0GZ26dKvw12z7TgnccPt0rhl5ITFxcZw/7OIKX8dl465hU9p6Lh3Yh1rWOnQ5tTv79hw5zXhm//OYP/st+vgKlz79zuXjD96jY8LJ70j8wB0PsHLZSvbv3c/EURMj4+KsLP7+VwDsd97CeYOHcd6QC8nNzWH4Ob1wFeSTmZnB4F5duGjkaG5Nup+mzVsyYcrtXDViKBaLhUZNmjLj8efK3eZva34iLy+Ps84ZAMDlV09k+pSJvD3zeS66dAy1avt1ctwY4FNbUspVjuTE8gehCTLKMKp/To3U1NROkZGRS9u3b58VGxubV+0bPE5JSUlNPvnkk3per1fFx8d7XnzxxW39+vXLOa4HZ+1pQMZO6ZR2AvLcBlt27KP16juomVXmj7hglwMMC9eWhEDc75VSPfft2/d74Q+Bytp2MKfV4ZyChic7V1VlZ2USF18Ll8vF3bdMonO307j2xtv8tv3ICK/LiNp1VOfM6IiaubnZ9QNysiPDXcDenf9i/24vOzKrZcJJL3C9IznxjQrXDAJh3YKQnJy8Ozk5ufQ1fBXJ3ldfigNxHGKBFOzWIdidP+kOI07M9oM5LQOpOACY9N9LcBXkk5+fT49efRh7zfW6IwXzRE0ngwV41ZaUkuFITpyvO8yJ8leB4AWz00/Qy95fF+e/Nt0xQkHRxyEUPhflqwV8gd16Pnbnr7rDhDvDMKrUB2LHodzmh3IK/D4D64H9+5g8rvSAnX36n8fUex9i7udfl/EovRRBOdXzyWQBZtuSUg46khMD7x+oEvxVIBw2DMNdUFAQHRcXFxBNjVWS54zHub3ahukKNzkuwFNAVN4B3VGqWx3MIuEM7M6QPJcSyvZn5tc/kJ1/7Gt9q0n9Bg2Z/2WQnaEKrXkYqioa+NiWlDIg4CYPrAR/FQj7vV7vij179iRGRUW5LBZL8FWYnoIodWhrG1XG+OqicgzDLA72HjxMna1fEOEJi8shGwGfYbf2w+48vn4uQruMPFf8LmeenE6slCA8vlePWsASW1LKmY7kRIfuMFXhlwKhZ8+e3tTU1Bm5ubndNm/e3BAIsi9ZwxKVd6CJ8rrDus/GSeUpoM7WL2iy6X3dSfypB/AO5lCtIsDluTzR2w/mtC1r0iVRvvImagpTjYDFtqSUvo7kxAzdYSrLb194PXv23JGamtrP6/W28ud2T5Tyuum4+pYXItzZpWZuE1VkGETlHQiXloOSRmG33ofd+ZDuIKJ8bo83wnEgu33YTtd8AqRAKKULsMCWlJLoSE506w5TGX798Pfs2bMA+Nuf2zxhduuDwGDdMURIeQC79U/szk91B/E7u7Vn9Tyv87jO886ZM6fOjBkzmkdHRxvvvffelt69e5eqUg3DYOuBnDYFbm/N4938mh+/pyAvj7MHVDzSYFn++G0tD02/jby8PBo3bcYjz82icdNmZa772vNP8dl8c7CjYcMv5ebp9x3XskIul4s7bxjPju1baXFKa56c+TaRkZHk5+Vxw7hLef7N96ldp/Rw78ervImawtwQ4HnAL7NJnSzyD3ksduso4F7dMUTIUcBs7NZuuoOEm9dee63h9OnTd6Wlpa0vqzgA+PdQbsvsAnft431Ot9vN2h+/Z/WKqo2J5fV6ufvmSdxpf4zPV66l/4DBPPnA3WWum/rTar5YtJAFy77nk29/4ocV37Lymy8rXFbcDyu+oXaduiz46ntq1bayernZ0f6155/k8vHXnVBxAOA1lHyvlO1GW1LKKN0hKkP+Ictjt3bHPF8szWWiOsQDi7BbS89nK6rF+PHjW65duzb+wQcfbN6jR49OAAsXLqydkJDQuUOHDgm9evXquPyHNU0P5RQ0WvPj94weemR4/U1p67ngrFMBiqZJfvbR+xlzwbl8+M7rLJjzNks+WcDoof2Z9dwTlcq1/o/fiYiMpHdfc3uXXTGeFV8vJT+v9AVfX37+CRddOprY2Diia9RgxJhxfPHZwgqXFRcZGUVertlPNi83h6ioaNI3rGPL5k0MvfiSSmUvS1Umagojr9mSUsqf3CbASIFQFru1NvAp5kA3QlQXG/A+dqsUoX7wzjvvbO/atWtOcnLy9t9++y1tx44dkRMmTGjzzjvvONLT09dffc21hyaMv6LZ8YzXkpmRQbsOnZn3xQqumDiZUVdcw4WXjGL+l6u44bZplcq1e+e/NG1+pItTXHwt4uJrHTVscqFdO/+lWbF1m7Vsxe4d/1a4rLizzhlAXHwtRg3pR3zt2vQ++xyeevBepj/wWKVyl6cqUz2HkTrAXFtSSlC8R9IBp2xPA3Jpk/CHwcD1wCzdQcLNihUr4jp06JDbu3fvXMMwGDryirp335XE3t07K3xsZFQUiZcG58UoFouF+594vujvOW/MZMDQC3G7PSRNmUhBQQFjrp7ImWefU+nnVkp5jSrM5Bhm+mGeun5Ad5CKyD9kSXbrUGCi7hgirDyJ3WrTHSKc7cnIb5zr8sQX/l1y6uOC/KOnbI6JicFynH3xMpxORg/tz+ih/blt4hWlljdp1oJdO46Mn5WdlUlWZgYNG5cem6lpsxbsLLbuzu3baNK8RYXLyrPz322s+nYZY66ayMtPPcLIceN56JmXSZ4x/bheW0kWFVEtExyEoPtsSSl9dYeoiBQIxZmnFl7XHUOEnXjgTTnV4F/nnXdednp6esz3P/1s3ZeV3/yLzxbSsEkzGjVpRotWNnbt+JeDB/YDsPjjecd8rrj4WmRmlH2Ze22rlflfrmL+l6t47o05pZYnnNodt8vFLz+YIyZ+NOcdzh00jBo1S19EMfiiESz+eD45OdkU5Ofz6by5DBt+aYXLyvPE/Xdx5/2PYLFYzOmSUSiLhbyc7GM+rjwWLFIgHJ8I4H1bUopfp5ysLDnFcLRnABnvQOgwELgBmKk7SLho1qyZ+7XXX99y3cTr2no8HlXbWoenZr6NUopGTZoy/oZbGHfx+dRv0Ih+FVy+OHDYRSz+eB6jh/Zn4AUXV6ofgsVi4dEXXuWhpNvJz8+nUeMmPPL8kTNON101ihvvuJsup/Wg11n9GHrxJVw2+GwAhl58CecOGgZwzGVlWfLJAjokdKVdx84AXHvjbTw4/VZcLhfX3XrncecvTqmIcJ6oqbJOAV4FLtcdpDx+me45KNitw4AvdMcQYS0L6Ibd6dAd5GQIxOmeS9p5OLfZ/qz8prpzBKuS0z3XiIjLzsmuE6cz07H4YbrnqhjtSE5coDtEWeQUA8ipBREo4oG35FSDf2Tlu2MPSHFwUimZh6EqnrIlpcToDlEWKRBMzwDH7s0jhH8MACbrDhHqDMNgx6Fcm3ybnWSGFAhV0AqoWq/QaiYFgt16NjBBdwwhinkcu7WR7hChbH9WQYN8tycgf7UFtwhp/aqaaYE4gJIUCPC47gBClBBPaAzx7QUMwwis2RA9XsOyLzO/7IkOxAkxvAH1T12aYQAGnsDrShkDPKU7REnh3UnRbr0YWKQ7hhBlKAA6YXdu0R2kqlJTU+MtFsv3derUadyoUaODSqmAONjsz8xveCjXJS00J0GExesyovYVdVKMMurl5BdEBeQItIbHTW7GIbYfyOLub/bjDohPYykDHMmJy3WHKBS+BYLdagH+B3TVHUWIcszF7iw9sk4QSU1N7WOxWGZZLBYrATCvidcg4kCup7lh6M8SCiIsXo8R4SwaNtjireVyeyKjjvUYXTxeL3/szuPDdZkczAu8JgSfP4EejuTEgLjEIpwLhKuAd3XHEOIYvEAP7M4/dAc5EampqfFAMwLglOa93x24PyPfG7DXnQebiCjnnpot32xc+HfBv1f/6yqoH3Advr0GZBd4ySwwCIJvvJscyYmv6A4B4Vog2K01gI3IfAsi8C3B7kzUHSIU2JJSOmH+QpMB4k4SFXVgR3y7J5sX/p2Vfu9BwxNfT2emELAfOMWRnJijO4j2il6TyUhxIILDhditlZ81R5TlcaQ4qDaGgWF4YgN66OAg0QC4VncICMcCwRwU6R7dMYSoBLnS5gTZklL6AMN15whxTrAExTTGQWBqIEwJHX4FAtyGWaEJESz6YLdepDtEkPs/3QFCX0TZs1WJqmgNXKY7RHgVCHZrNHCj7hhCVMHtugMEK1tSShvgEt05Qp43MlN3hBBTtRmzTqLwKhDMWbMaV7iWEIFnIHZrN90hgtRthN+xzu8Mb41c3RlCTE9bUsr5OgOE205zq+4AQpyAW3QHCDa2pJQ6BEiHr1BneGsW6M4QgrS2IoRPgWDOuXC67hhCnIBx2K31dYcIMlcDATv9cCgx3HEu3RlC0FBbUsqpujYePgWCzJAngl8M5heeOH436A4QLgx3rTAcVMcvtHWwDY8CwW6tC4zUHUOIk+A63QGChS0pZQDQSXeOcGG4a4fH94n/XWZLSqmtY8Ph8g96JVBTdwghToJO2K39dIcIEtJq6Eded20ZhKp6xKDpksdwKRDkV5cIJZN0Bwh0tqSUeGRgJL8y3NYaujOEsKt0bDT0CwS7tQcyY6MILSOxW2N0hwhwFwLyheVHhqt2QE7zHCLOsSWl+H16gNAvEORXhAg9scAg3SEC3KW6A4Qbr7tWLd0ZQpgCxvh7o1IgCBGc5HNdDltSSg3MFgThR4YnXktHujDi934IoV0g2K3NkbEPRGi6CLtV6Q4RoAYB8mvWjwwDF96aUiBUr162pJRW/txgaBcIcLHuAEJUkyZAL90hApScXvA75dSdIEz4tRUh1AsEaYYVoUwK4BJ8U+TKfu9vRoQUCP4xwp8bC90CwW6NAwbqjiFENZIvwtLOQaZz9z8jKlt3hDBxpi0pxW9j+oRugQBDkMucRGg7FbvVr+ckg8B/dAcIR4a3Rp7uDGEiGujjr42FcoEgv65EOJDP+dHO0R0gHBmeGJnJ0X/89hkP5QJBrhMX4WCw7gCBwpaUEgN0050jHBnueI/uDGGkv782FJoFgt3aGGihO4YQftBTd4AA0hOQ+QA0MNxyVakfnWVLSvHL5zw0CwQ5aIrw0dxXEAs4U3eAcOWVmRz9KQ4/fceF6j+qFAginMjn3SQFgiaG2xqlO0OY8Us/BCkQhAh+8nk3+a13tzia4artt0vvBOCnfghSIAgR/ML+825LSmkKtNSdI1x53TKTo5/19cdGQq9AsFsbIR0URXgJ+wIBOb2glSEzOfpbfVtSSv3q3kjoFQhysBThp4WvMA5nvXUHCGeGJ66u7gxhqF11b0AKBCFCQ7h/7tvrDhCuDINcjCjpg+B/UiBUwam6AwihwWm6A2gmQ05row7rThCmpECoAul/IMJRuH/upUDQxYjM0B0hTEmBUAVNdQcQQoOw/dzbklKiARksShPDG52rO0OYkgKhCsL2QCnCWjPdATRqASjdIcKWt6YUCHpIgVApdms9ZIpnEZ7CuTCW0wsaGZ5Yl+4MYaqBLSnFWp0bCK0CIbwPkiK8NdEdQCMZIEkjwx1v6M4QxtpU55NLgSBEaKjha0ELR9KCoJFXZnLUqU51PnmoFQjhfB5WiHD9/EsLgkaG2xqhO0MYi6vOJw+1AkFaEEQ4C9fPf7UPOSvKZ7hqR+vOEMakQKiEcD4PK0S4FggxugOEM69bZnLUSAqESojXHUAIjar1YBHApEDQyHDXluOuPtU6i2aoFQhRugMIoVGk7gCayC9YjQx3fG3dGcKYtCBUQrgeIIWA8P38S4GgjVIyk6NWUiBUQrgeIIWA8P38Sy96TQxPTBxY5P3XRwqESpAPqghn8vkX/uWtKacX9JI+CJXg0R1ACI28ugNoIvMwaKPkvQ9hoVYguHUHEEIj+fwLEV5yqvPJpUAQInSE6+e/QHcAITSRAqESwvUAKQSE7+f/gO4AQmhSrVNth1qBkK07gBAaVeuviQC2X3cAITSp1u+8UCsQdusOIIRGu3QH0EQKBBGuDlfnk4dagRCuB0ghIHw//1IgiHBVrafXpEAQInSE6+dfCgQRrg5W55OHWoGwU3cAITRxEb5flPt0BxBCEykQKiFcf0EJsRu709AdQpNwLYyEqNbvvFArEA5g/pISItyEc3EsBYIIR3scyYnO6txAaBUI5i8ouZJBhKNwLhBknxfhaGN1byC0CgST9EMQ4ShsP/eO5MQDwF7dOYTwMykQqmCH7gBCaBC2BYLPn7oDCOFnUiBUgRwoRDj6Q3cAzcL99YvwIwVCFaTqDiCEBuH+uZcfBiLcpFX3BqRAECL47cHuDPdTa9KCIMJJAbClujcSegWC3bkT6dUswosUxbAe8OgOIYSfbHYkJ1b75z30CgTTr7oDCOFHYV8gOJITc4G/decQwk/W+WMjoVoghP0BU4QV+byb5DSDCBcr/LERKRCECH7yeTf9T3cAIfzkO39sRAoEIYLbXuzOf3WHCBDf6g4ghB/scSQnrvfHhkKzQDAPmHt0xxDCD6QYPuIX4JDuEEJUs+X+2lBoFggm+TUhwsE3ugMECl+v7q915xCimvnl9AKEdoGwSHcAIfxAPudHW6o7gBDVTAqEk2ApMvWzCG0bsTs36Q4RYL7UHUCIarTTkZyY7q+NhW6BYHceBlbpjiFENZLWgxIcyYk78NM14kJo4LfWAwjlAsEkB1ARyj7XHSBASSuCCFVf+XNjoV4gyAFUhKoDwA+6QwQo6YcgQlEu8Ik/NxjaBYLd+Q/wl+4YQlSDJdidMvdA2VYBWbpDCHGSLXIkJ2b6c4OhXSCY5DSDCEXyuS6HIzkxH1ioO4cQJ9lsf29QCgQhgk8Bcp69Iu/pDiDESbQPDft8OBQIPwObdYcQ4iRahN3p16bGIPQdsE13CCFOknmO5ES3vzca+gWC3WkAb+iOIcRJ9LruAIHOkZxooKFJVohqMkfHRkO/QDC9jQyaJELDFmCZ7hBB4i3A0B1CiBO0yZGc+LPJu/SvAAALI0lEQVSODYdHgWB37kEueRSh4U1fq5iogCM58R+kmBLBb66uDYdHgWCapTuAECfIhfmrWBw/2e9FMHOjcZ8PnwLB7lwGbNAdQ4gTsAC7c5fuEEHmc2CH7hBCVNF8R3Lidl0bD58CwfSC7gBCnIDndQcINr6e3y/rziFEFT2pc+PhViC8BxzSHUKIKvgJu/MX3SGC1EuYQ1MLEUy+cSQn/q4zQHgVCHZnDvCa7hhCVMFzugMEK9/wtE/pziFEJT2uO0B4FQimp4AM3SGEqIQ/gAW6QwS5l4D9ukMIcZx+ciQnar8CJ/wKBLtzP/JrQgSXu7E7vbpDBDNHcmIWms/nClEJD+oOAOFYIJieAfboDiHEcViF3ZmiO0SIeBlzTHshAtkaR3LiF7pDQLgWCHZnNvCQ7hhCHIfpugOECkdyYjbwhO4cQlTgft0BCoVngWB6DZnESQS2z7A7f9QdIsS8grQeisC1OFBaDyCcCwS70wXcpzuGEOXwAHfrDhFqHMmJOcCjunMIUYY84FbdIYoL3wLB9CGg9TpTIcoxG7tzve4QIepl4DfdIYQo4Qnf/CEBI7wLBHPSm7t0xxCihHwC6DxkqHEkJ3qA6zBbaYQIBFuAx3SHKCm8CwQAu3MpsFB3DCGKeRC7c5vuEKHMkZyYigy9LgLHbY7kxDzdIUqSAsF0IzKIiggMawmAEdTCxH3AVt0hRNhLcSQnLtIdoixSIADYnXuBm3THEGEvHxiP3SlN337gu+xxsu4cIqzlE2AdE4uTAqGQ3Tkf+Eh3DBHWHsDu/Et3iHDiu6Rsnu4cImw94khODNjL7aVAONqNyEhrQo81yCA+utyKzPIq/G8lAX7JrRQIxdmd+5BTDcL/5NSCRo7kxD3ALbpziLCyHxjru6ImYEmBUJLduQCZOU/41/0y5oFejuTEOcCrunOIsGAAVzuSE3foDlIRKRDKdiOwV3cIERZ+RmYXDRS3Yp7qEaI6PeNITlyiO8TxkAKhLOaU0KMAl+4oIqTtAUbJqYXA4EhOzAcuAw7oziJC1s8E0eB8UiCUx+5cCUzRHUOErALgUuzO7bqDiCMcyYnbgP8CXt1ZRMhxAv91JCcGzQ9PKRCOxe58DXP2NyFOthuwO3/QHUKU5khOXIYMdS1OvomO5MQtukNUhhQIFbsV+E53CBFSnsfufFt3CHFMjwCLdYcQIcPuSE4MunF2pECoiN3pxuyPEFCzbImgtQy4Q3cIcWyO5EQDuBL4W3cWEfRedSQnPqA7RFVIgXA87M4DwHAgU3cUEdQ2AWOkU2JwcCQnHgaGAbt1ZxFB6xPMq+KCkhQIx8scAvcKzGtYhaisDGA4dqeM2BdEfMPgXoDZwUyIyliFORhS0HZ4lQKhMuzORciVDaLycoER2J1puoOIynMkJ/6O2YIYcNPxioC1DhgeiFM4V4YUCJVld76CnEMWxy8fuAS7Uzq6BjFHcuJKzDESCnRnEQFvGzDMd4oqqEmBUBV25zPAvbpjiIDnAkZjd36pO4g4cY7kxBRgDODWnUUErIOYxUHAD6N8PKRAqCq78xHgQd0xRMByA2N9p6VEiHAkJ34KjAWko6koaTdwniM5cYPuICeLMgzpc3dC7NZ7gId1xxABpQCz5eAz3UFE9bAlpYwB3gOidWcRAWErMMiRnBhSl8VKgXAy2K1Tgad1xxABIQ9zCOUvdAcR1cuWlHIe5mVsdTRHEXqlYxYHITdsuhQIJ4vdeiPwInLaJpxlAf/B7vxWdxDhH7aklM7AEsCmOYrQ4xfgIkdy4j7dQaqDFAgnk916EfA+UEt3FOF3DsxxDv7UHUT4ly0ppTHmsMxn6M4i/Opz4HJHcmKO7iDVRX7tnkx252KgD7BZdxThVyuAXlIchCdHcuIe4FxAOqSGj1nAJaFcHIC0IFQPu7UeMB84X3cUUe1mAbdgdwbNFK6ietiSUizAc8DNurOIapMP3OFITnxZdxB/kAKhutitkcAzyMEiVLkxC4OZuoOIwGJLSrkFeAqI0p1FnFSbgdGO5MRfdQfxFykQqpvdOhF4GbkcKpQcAC7D7lyuO4gITLaklJ7AXKCj7izipJgPXOdITszQHcSfpEDwB7u1H7AAaKI7ijhh/8McOnmL7iAisNmSUmKBZ4FJurOIKssHpjqSE1/RHUQHKRD8xeyX8CLmKGwi+LiBx4EHsTtlPH5x3GxJKSOAN4D6urOISvkb85TCb7qD6CIFgr/ZrZcAM4HGuqOI47YOGI/dmao7iAhOtqSUpsC7wGDdWcRxmQtMdiQnZuoOopMUCDrYrfUxWxP+qzuKOCYPZqvBA9JqIE6ULSlFAbcDjwI1NMcRZUsHpjiSE5fpDhIIpEDQyWxNmAU00h1FlPIXZqvBWt1BRGixJaW0w7zK4T+6s4giuZiF2xOO5ET5MeAjBYJuZmvCS8DluqMIwGw1eAKz1SBfdxgRumxJKYMwOzF21Z0lzC0GbnYkJzp0Bwk0UiAECrt1AJAM9NYdJYx9CtyD3bledxARHmxJKRHA9ZhTx0snRv9yALc6khNlBMxySIEQaOzWSzGbuuT6af9ZCSRhd/6oO4gIT7aklLrA/cBNQKTmOKHOiTni5ROhPlTyiZICIRDZrRHANYAdaK43TEj7H3CXTM0sAoUtKaUT8Bhm/wSlOU6o2Y95SudlR3KiU3eYYCAFQiCzW2Mwh2pOAupqThNKtgD3Ae9jd8oOIAKOLSmlCzAd80onaVE4MTswO4W+Ji0GlSMFQjCwW+tgXh41GWioOU0w24TZtPiGXLYogoEtKeUUYCpwLRCvOU6w2YJ5mfLbcmVC1UiBEEzs1hqYvyhuBbprThNMlgHPA0ukxUAEI1tSSm3MIuFmoI3mOIHuZ8z5bz5wJCe6dYcJZlIgBCu7tT9wAzASGXSlLIeA2cCrclWCCBW+KaUvBK4ELoL/b+/+WZuKwgCMP1QLbbRGQcRu0aKL4qAOChVERZBA106OfoeMd8x3EDdBHBy0RESoIiiCIOhgq4iQQazooJFCxSbqcG5J8Ih/sOakN88PDukU3iW3T27OvZdS2okGxnvgMnCpWa8+Sz1MURgIG114xsN54AJwIPE0g+AecBG4Rtb6nHoY6X+p1BpbCJEwC5wDxtJO1HcrwBxwBWg069XVxPMUjoFQJFn5EDCTr6MMxy7oVUIU3ADmyFrNtONI/VepNSYIVz7MAmcp7uPll4G7wFXgerNeXU48T6EZCEWVlScJ3y5mgNPAeNqB1tUH4CYhCm6RtYbqGe3Sr1Rqje2Ez/1JYBrYl3Sgf/MFeAjMA3eAR54p6B8DYRhk5RJwhnDQOAXsSTvQX+sAi8BtQhQ8IGu5+Uj6A5VaYxchFKaBE4QNzoN66eRX4DEhBuaB+816dSXtSMPLQBhGWXkHcBg40rOmks7U1QEWCAeJtfWUrOX1y9I6yPcuHAOOA/sJn/29wO4+jtEBXgHPCfG/mP+9MOyPWB4kBoKCcK+FtWg4SLiD42S+1vsmTd8Iu46X8vUaeEI3BvzGIPVZpdYoEUJhbU0RzjbuBCaAbfnrVmDTT96iA3wCPhJuZ/zj6zvgBSEGXnpvgsFnIOj3svIY3VjoXeOEU5WbgVFghHCQaBM2D7YJm4qWgDd0g+CtPxFIG1d+ueVoz2oDy8161X8oBWIgSJKkyEjqASRJ0uAxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJEQNBkiRFDARJkhQxECRJUsRAkCRJke/zezE26BMXLAAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU"
]
},
{
"cell_type": "code",
"execution_count": 117,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"gasdev",
"fftma2",
"covariance",
"ran2",
"cov_value",
"fourt",
"cgrid",
"length",
"maxfactor",
"prebuild_gwn",
"build_real",
"clean_real"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#00cc96",
"#EF553B",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#ab63fa",
"#636efa",
"#636efa",
"#636efa",
"#ab63fa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"generate",
"Py_kgeneration",
"fftma2",
"gasdev",
"covariance",
"fftma2",
"",
"",
"",
"fftma2",
"",
""
],
"type": "treemap",
"values": [
36.513029874999994,
37.119660375,
3.952229582167898,
34.781174625000006,
34.788295999999995,
1.0488777115030088,
1.0282644304084279,
20.899999999999995,
29.216666625,
12.520833333333334,
5.007499999999999,
0.0125,
0.0125,
0.0125
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "CPU treemap"
}
}
},
"text/html": [
"<div> <div id=\"37b632d7-0410-48a8-baa1-a162fd536112\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"37b632d7-0410-48a8-baa1-a162fd536112\")) { Plotly.newPlot( \"37b632d7-0410-48a8-baa1-a162fd536112\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"gasdev\", \"fftma2\", \"covariance\", \"ran2\", \"cov_value\", \"fourt\", \"cgrid\", \"length\", \"maxfactor\", \"prebuild_gwn\", \"build_real\", \"clean_real\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#EF553B\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#ab63fa\", \"#636efa\", \"#636efa\", \"#636efa\", \"#ab63fa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"generate\", \"Py_kgeneration\", \"fftma2\", \"gasdev\", \"covariance\", \"fftma2\", \"\", \"\", \"\", \"fftma2\", \"\", \"\"], \"type\": \"treemap\", \"values\": [36.513029874999994, 37.119660375, 3.952229582167898, 34.781174625000006, 34.788295999999995, 1.0488777115030088, 1.0282644304084279, 20.899999999999995, 29.216666625, 12.520833333333334, 5.007499999999999, 0.0125, 0.0125, 0.0125]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"CPU treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('37b632d7-0410-48a8-baa1-a162fd536112');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 64"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": 118,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file log_64-aa\n",
"Executing file log_64-ab\n",
"[39.241055, 42.262603, 56.511493, 42.525066, 42.717744, 35.235135, 28.406878, 32.749276]\n"
]
},
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">cpu</th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>count</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>sum</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>39.623390</td>\n",
" <td>39.623390</td>\n",
" <td>39.623390</td>\n",
" <td>-199.3</td>\n",
" <td>-199.3</td>\n",
" <td>-199.3</td>\n",
" <td>1.0</td>\n",
" <td>415.639768</td>\n",
" <td>415.639768</td>\n",
" <td>415.639768</td>\n",
" <td>415.639768</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>39.956156</td>\n",
" <td>39.956156</td>\n",
" <td>39.956156</td>\n",
" <td>-281.6</td>\n",
" <td>-281.6</td>\n",
" <td>-281.6</td>\n",
" <td>1.0</td>\n",
" <td>329.579564</td>\n",
" <td>329.579564</td>\n",
" <td>329.579564</td>\n",
" <td>329.579564</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>38.343737</td>\n",
" <td>38.343737</td>\n",
" <td>38.343737</td>\n",
" <td>85.3</td>\n",
" <td>85.3</td>\n",
" <td>85.3</td>\n",
" <td>1.0</td>\n",
" <td>86.059132</td>\n",
" <td>86.059132</td>\n",
" <td>86.059132</td>\n",
" <td>86.059132</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>38.374862</td>\n",
" <td>38.374862</td>\n",
" <td>38.374862</td>\n",
" <td>80.9</td>\n",
" <td>80.9</td>\n",
" <td>80.9</td>\n",
" <td>1.0</td>\n",
" <td>85.894170</td>\n",
" <td>85.894170</td>\n",
" <td>85.894170</td>\n",
" <td>85.894170</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>100.100000</td>\n",
" <td>4.585812</td>\n",
" <td>0.000000</td>\n",
" <td>8.0</td>\n",
" <td>0.0</td>\n",
" <td>-61.2</td>\n",
" <td>262144.0</td>\n",
" <td>0.011277</td>\n",
" <td>0.000909</td>\n",
" <td>0.000193</td>\n",
" <td>242.610944</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>26.647619</td>\n",
" <td>21.861514</td>\n",
" <td>18.985732</td>\n",
" <td>2.3</td>\n",
" <td>0.4</td>\n",
" <td>-0.2</td>\n",
" <td>3.0</td>\n",
" <td>0.066393</td>\n",
" <td>0.050588</td>\n",
" <td>0.042309</td>\n",
" <td>0.151763</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>62.575000</td>\n",
" <td>1.210890</td>\n",
" <td>0.000000</td>\n",
" <td>3.0</td>\n",
" <td>0.0</td>\n",
" <td>-7.1</td>\n",
" <td>156816.0</td>\n",
" <td>0.000575</td>\n",
" <td>0.000221</td>\n",
" <td>0.000193</td>\n",
" <td>34.674709</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>75.087500</td>\n",
" <td>1.219338</td>\n",
" <td>0.000000</td>\n",
" <td>2.7</td>\n",
" <td>0.0</td>\n",
" <td>-17.8</td>\n",
" <td>333450.0</td>\n",
" <td>0.000691</td>\n",
" <td>0.000218</td>\n",
" <td>0.000190</td>\n",
" <td>74.079918</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.012500</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.001935</td>\n",
" <td>0.001935</td>\n",
" <td>0.001935</td>\n",
" <td>0.001935</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>2.2</td>\n",
" <td>2.2</td>\n",
" <td>2.2</td>\n",
" <td>1.0</td>\n",
" <td>0.002618</td>\n",
" <td>0.002618</td>\n",
" <td>0.002618</td>\n",
" <td>0.002618</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>6.287500</td>\n",
" <td>6.287500</td>\n",
" <td>6.287500</td>\n",
" <td>0.4</td>\n",
" <td>0.4</td>\n",
" <td>0.4</td>\n",
" <td>1.0</td>\n",
" <td>0.001551</td>\n",
" <td>0.001551</td>\n",
" <td>0.001551</td>\n",
" <td>0.001551</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>0.025000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.003504</td>\n",
" <td>0.003504</td>\n",
" <td>0.003504</td>\n",
" <td>0.003504</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.012500</td>\n",
" <td>0.008333</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0.001141</td>\n",
" <td>0.000827</td>\n",
" <td>0.000668</td>\n",
" <td>0.002481</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.012500</td>\n",
" <td>0.006250</td>\n",
" <td>0.000000</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>4.0</td>\n",
" <td>0.000198</td>\n",
" <td>0.000195</td>\n",
" <td>0.000193</td>\n",
" <td>0.000780</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" cpu memory \\\n",
" max mean min max median min \n",
"function \n",
"Py_kgeneration 39.623390 39.623390 39.623390 -199.3 -199.3 -199.3 \n",
"generate 39.956156 39.956156 39.956156 -281.6 -281.6 -281.6 \n",
"fftma2 38.343737 38.343737 38.343737 85.3 85.3 85.3 \n",
"covariance 38.374862 38.374862 38.374862 80.9 80.9 80.9 \n",
"gasdev 100.100000 4.585812 0.000000 8.0 0.0 -61.2 \n",
"fourt 26.647619 21.861514 18.985732 2.3 0.4 -0.2 \n",
"cov_value 62.575000 1.210890 0.000000 3.0 0.0 -7.1 \n",
"ran2 75.087500 1.219338 0.000000 2.7 0.0 -17.8 \n",
"build_real 0.012500 0.012500 0.012500 0.0 0.0 0.0 \n",
"prebuild_gwn 0.025000 0.025000 0.025000 2.2 2.2 2.2 \n",
"clean_real 6.287500 6.287500 6.287500 0.4 0.4 0.4 \n",
"cgrid 0.025000 0.025000 0.025000 0.0 0.0 0.0 \n",
"length 0.012500 0.008333 0.000000 0.0 0.0 0.0 \n",
"maxfactor 0.012500 0.006250 0.000000 0.0 0.0 0.0 \n",
"\n",
" time \n",
" count max mean min sum \n",
"function \n",
"Py_kgeneration 1.0 415.639768 415.639768 415.639768 415.639768 \n",
"generate 1.0 329.579564 329.579564 329.579564 329.579564 \n",
"fftma2 1.0 86.059132 86.059132 86.059132 86.059132 \n",
"covariance 1.0 85.894170 85.894170 85.894170 85.894170 \n",
"gasdev 262144.0 0.011277 0.000909 0.000193 242.610944 \n",
"fourt 3.0 0.066393 0.050588 0.042309 0.151763 \n",
"cov_value 156816.0 0.000575 0.000221 0.000193 34.674709 \n",
"ran2 333450.0 0.000691 0.000218 0.000190 74.079918 \n",
"build_real 1.0 0.001935 0.001935 0.001935 0.001935 \n",
"prebuild_gwn 1.0 0.002618 0.002618 0.002618 0.002618 \n",
"clean_real 1.0 0.001551 0.001551 0.001551 0.001551 \n",
"cgrid 1.0 0.003504 0.003504 0.003504 0.003504 \n",
"length 3.0 0.001141 0.000827 0.000668 0.002481 \n",
"maxfactor 4.0 0.000198 0.000195 0.000193 0.000780 "
]
},
"execution_count": 118,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df = analyze(['log_64-aa', 'log_64-ab'])\n",
"overall_time[\"64\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"64\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempos"
]
},
{
"cell_type": "code",
"execution_count": 119,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfgAAAIYCAYAAACBhP5gAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd4FOX2wPHv2U2jLh3poYUmKoaiYEEQC7EX/NmxC4oFFeNVdNV7FctVsVdULAiooBIVbKCgXAEVQXog0jvpdXff3x+ziUtIJ8nsbs7nefaBnXpmYebMvGVeMcaglFJKqfDisDsApZRSSlU/TfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfAq7IlIrIgYERltdywKRGS+iMy3Ow6lwl2E3QEoVRUiUtF3LJ8CpNRgKEopFZRE30WvQpGIXFFs0lXACODKYtO/AXYD0UCBMcZbC+GpMohIFIAxJt/uWJQKZ5rgVVgQkReBW4wxYncsqmQiUt8Yk213HErVFVoHr8JeSXXwIvKOiGSKSEcRmeP/+zYRucU/v6+IfC8iWSLyt4hcVsJ2m4jIcyKyRUTyRGSDiNwrIhU6r0TkTBFZICIZIpIuIkuK70dELhaRZSKSIyJ7ReR9EWlXbJnDOhYRGe3/fU4SkddEZJ8/nqki0rTYsueKSJKIbPcfc7KITBQRZ7Hl5ovIShGJF5EfRSQbeCxg3vxiy48Tkb9EJFtEDojI0hLi7CciX/ljyxSR70TkuFKOZYiIPCMie/zHPUtEWhZbtr+IzPX/rjkisklEppT/L6dUaNAEr+oyJ/AVsAWYgFVX/6L/RuBrYClwL5ABTBWRzoUrikh9YAFwBTAVuA1YBDwOPFPejv37SAKa+ddJBP4Azii2zAzAC9wHvAFcACwUkSbVdSwBXgR6AW7/MV0OzBaRwFKR0UCm/xhvB5YBjwCTSthec39MfwB3AD+U8lvcADwPrPIv95B/nUEBy/QBfgKOBp4EHgU6A/NFZFDxbQIv+Jd9GHgFONt/fIXbawXMA2L9sY8DPgCOK74hpUKWMUY/+gn5D9bF25QyLxYwwOiAae/4p90XMK0JkA34gEsCpvfwL+sOmPYAVqLrXmxfjwMeoEMZsbqAdGAxEFNsXmG1WSSwC1gRuAyQ4I/l4Wo8ltH+aUuByIDp9/innxMwrV4Jx/MqkAVEB0yb71/3phKWnw/MD/g+G1hZzr/vLCAP6BIwrY3/d1xQwrF8U/hb+qc/4/93cfm/n+dfrr/d/3f1o5+a+ugTvKrr3iz8izEmFViLlaxmBExfC6QCXQLWuxjrifKAiLQo/ADfYj1Nn1TGPkcAjYBJxpjcwBnGmMJGMf2BVsDLgcsYY5KANViJvrqOpdDrxpiCgO+vYCXFkQHr5xT+XUQa+Y/5J6A+0LPY9vKAt0vYT3GpQHsRGVDSTH/x/2nAbGPMxoBYdgAfAieISOMSjiWwgdFPWP8unQL2CXCWiERWIEalQo4meFWX5Rpj9hSblgZsLZYcCqcH1kd3xypO31Ps861/fqsy9tvV/+fKMpYpTERrS5i3JmB+ocM5lkLrA78YYzKBHVglIIBVVO6vz07DenreA7zvn+0qtr1tpmIt5Z/AKg35VUTWi8hLIjIkYH5LrBuIkn6L1VjXsQ7Fpm8u9v2A/8/C414AfIJVHbBXRD4TkWtEJLoC8SoVErQfvKrLSusyV9r0wLpoB1Yx8JOlLLuuqkFV0eEcS4X46/0XYCX2B4FkIBc4FitJF39gyKECjDGrRaQHcBbWTdOFwFgRecQY81Bl4/Qr87j9Nz0X+RvpnQ2cDkwB7hKR4/w3N0qFNE3wSlVNMtDQGPNtuUuWvC7AkcCGUpb52/9nD+D7YvN6BMyvTt0JaAgnIg2x6rm/9E8aitVw7gJjzI8By5XUYK9SjDFZwHRgulj95D8F7heRx7FKCbKxjru4nljtDLZUcb+LsdpC3O9vtf8B8H8EVHcoFaq0iF6pqpkBHC8ipxef4e8+V9bN8zys1uz3iUhMsXULn6yXYr2g5+bAYmMROROrpXvSYcZfkhuL1UePwXoI+Mr/vfCpuOjp35+Mxx7OTkWkeeB3f7H+Kv9+Io31cqJ5wLkiEhuwXmvgMmChMSa9kvtsWqx3AFgt98F6KZJSIU+f4JWqmqeAc4A5IvIOVnexBkBf4CKseuu9Ja1ojEkXkTuxnhKXiMiHWHXER2PVNV9tjCkQkXuxGqktEJFpQGusrmkpwLM1cExRwHciMgPraXkssBD43D//Z3+c74rI81it0K+kCsX9xcwTkZ1Y3Qx3Yd3A3AokGWMy/Ms8gNU4caGIvIzV+O8mrGQ8oQr7vBqrGmAWVolKI+AGrOqHL8taUalQoQleqSowxmSLyMnAv7Ba1F+FlRzWYTXcSitn/bdEZDdW//eJQAFW47lnA5Z5x/+CmESsOu4srO5i9/pbyVe3W7H6vj+C1U1vGnBbYSM9Y8w+ETkL+C/wb6xk/z7wHTD3MPb7mn+/44GGwFasfvH/LlzAGPOXiJyI1Q3xPqzSx/8BVxhj/leFfS4ABmIVx7fG+vf6FbjcGLOp6oeiVPDQV9UqVcf5X4bzNjDAGLPU5nCUUtVE6+CVUkqpMKQJXimllApDmuCVUkqpMKR18EoppVQY0id4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpgldKKaXCkCZ4pZRSKgxpglflEpFYETEiMtruWJQKdQHn0912xxLsRGSo/7caancsoUgTvFKqzhOR0f5EUvjJFZF1IvKiiLS2O75wJyJj9QGi+kXYHYBSSgWRB4FNQAxwAjAGGCkiRxpjsm2NLLyNBfYC7xSb/iNQD8iv7YDCgSZ4pZT6x1fGmKX+v78pIvuA8cC5wDT7wgodIiJAjDEm53C3ZYzxAbmHH1XdpEX0Qc5fB7XUX2SYLCI3iYhbREzAMteIyPcisltE8kRklYiMKWFb/UVkrojsFZEcEdkkIlOKLdNERN4RkTQRSRWRd4EmpcTWU0Q+FpH9/viWisg5xfZnROTqEtY93T/vrMP6gZSqWd/7/+zs//96Z/EFRGSwf96lVd2JWF4XkXwRuSBg+lEissB/vm4VkQf857sRkdhi2zhTRH4SkSwRyRCRJBHpU2yZd0QkU0Taichs/9/3iMjTIuIstqxDRO4Qkb/85/cuEXlNRJoWWy5FROb4z+mlQA5wk39eudcmEUkB+gAnB1SRzPfPK7EOXkQuFpFl/t9lr4i8LyLtqnqs4Uqf4IOYiPQDvgZ2AA8BTqwixD3FFh0D/AV8DniAs4GXRcRhjHnJv61WwDz/upOAVCAWCLyYCPAZVtHkq8Bq4Hzg3RJi6wMsArb5t5cFjAJmi8iFxphZxpilIrLRP734Ni4BDgBzK/u7KFWLuvr/3If1//1y4Nliy1wOZGCdO5XmTzZTsM6J840xSf7p7YAfAAM8jnWOXQ/klbCNK7HOsbnAvUB9rOvCQhHpZ4xJCVjc6V/uf8DdwKnAXUAy8ErAcq8Bo4G3geeBzsCtQD8RGWKMKQhYtgdWCcdrwBvAWv/0cq9NwB3AC0Am8B//tF1l/F6FMS0B7gNaA7cDQ/zHmlqFYw1Pxhj9BOkH66TIAtoGTOsGFFj/dEXT6pWw7tdAcsD387AuFP3L2N+5/mXuCZjmxKoHM8DogOnfAn8C0QHTBOsiuC5g2mNY9WdNA6ZFYSX3t+z+jfWjH2MMWInMAMOBFkB7rIS7F8gG2gE3+pfpGbBeJNZN8zuV2Fesfzt3Yz1kfeTfx2nFlnse8AHHBExrhnWzYYBY/7SG/vPp9WLrt8a6kX89YNo7/nUnFlv2N2BpwPcT/MtdVmy504tPB1L8004v4VjLvTb5p60E5pew7FD/tocG/N67gBVY1QCFyyX4l3u4sscazh8tog9S/rv6U4HZxpjthdONMRuArwKXNQF1XSLiEpEWwAKgi4i4/LMK72rPEpHIUnY7Eusuu+jO1hjjxbq7DoytGTAMmAE0EpEW/n02x7pb7h5QXDYd66S8IGATp2EV+08v80dQqvZ9i5Wwt2Al3kysp+ptWP/fc7Ge2AudjnVD8H4V9hUFzATOAkYaY+YVm38G8Isx5o/CCcaY/cAHxZYbgXU+TSs8F/3noxfryfWUEvb9arHvPwFdAr5fDKQB3xTb5jKs36T4NjcZYw4pjavgtaky+gOtgJeNMUV188Yq9ViDleiLK+9Yw5YW0QevVlitRzeUMO+gaSIyBHgYOB6raC6QC+tEXQB8glXUf6e/jms28KExprDIrxOwwxiTWWwba4t974b1tP6o/1Na/NuMMctFZA3W09Bb/nmFT0bfl7KuUna5BViHdaO7C1hrrIZeGGNSReQL4DJgon/5y7Gqqaryf/k+rKfvM40x80uY3wn4pYTpxa8J3f1/lhZDerHvucaY4tV8B4DAuvXuWNeO3aVss1Wx75tKWqiC16bK6OT/s/g1CawEf0KxaRU51rClCT7EiUhX4Dus/9zjsZ488rGexu/E35DSWGVTF4nIcVj1YKdj1fvdJSLHlZDUy1JY8vM0pdehB16EpgP3++/eM4BzgGnGGE8l9qlUbfjV/NOKviRTgYtFZDBWMfE5WE+Tvirsay7WU/oEEZkf+ERaSYXn45XAzhLmFz/PvBXc5m4OLq0IVDxpHtJivqLXphpWkWMNW5rgg9durOLAbiXMC5x2NhANnGOM2Vw4UURKKpbDGLMYWIyVcC/DKu77P+BN4G9guIg0LJbwexTbzEb/nwXGmG8rcCzTsUoOLsR6KmqMVfypVKj5Giu5XY5V/F0feK+K21qMVXw8B5gpIucXu+n9m/LPf7AajAHsruD5WBHJWFWEi0zVu7tV5tpkSphWkr/9f/bg0BKLHgHzFdpNLmj5676/Bc4TkbaF00WkG3BmwKKFd6gSsIwLuCZweyLS1N9KPlBh3V60/88vsW76xgSs5wTGFYttNzAfuElE2hSPXURaFlt+NdbTziX+zw6shntKhRR/Ap6G1TNkNLDCGPPnYWzvW6wb7DOA90Qk8Jo8FzheRI4pnOBv/1L8qXouVjH8v0pqX1P8fKygGVgNbCcWnyEiESJSYtfZYip0bfLLopTuuMUsxXr4uVlECq9biMiZQC8gqQLbqDP0CT64ubEapC0SkVewTrhbsVqcFp7087CKvb4Qkdew6vRuwDoJApPv1cBYEZmFdXfeyL9cOlZiB/gCqxX8JH8f21VYjeNKagxzC7AQWCEib2A91bfGqmtrDxxdbPnpwCNYpRJvVbFIU6lgMBW4Dauh2b2HuzFjzGwRuca/3XT8fciBJ4ErsBq6vcA/3eQ2Y7WmN/710/19y98DfhORj7BKGTpiNTpbhHXdqExMC/zXk/v8NxjzsHrvdMdqgHc78HE5m6notQmsxntjROQBrOq93caYQ9oUGGMKRORerG5yC0RkGv90k0vh0C6MdZvdzfj1U/YHq7X6b1h9XzcA12HVfecELHM2sByrHmwTMAHrLjmwK00/4EOsIqxcrKLyL4D4YvtrhnWhScNqeT8V62bioG5y/mW7YPW93YF1Im/1b/PCEo6jm38bBhhi9++qH/0Efvinm1yp3UiLLb8S6wm1XRX2Fevf193Fpo/xT38qYNoxWKVduVh12IlYJWoGaF1s/aFYVQip/mvBBqxEGB+wzDtAZgkxuQnoehsw/Qasp+ZsrJuPP4EngDYBy6QAc0o51nKvTf7lWmNVVaT7580POKaibnIBy4/yXxdzsboNvl/836KyxxqOH/EfsAohIjIb6GOM6V7uwkqpaicivwP7jTHDbdj3c1hP+Q2NVZWnVIm0Dj7IiUi9Yt+7Y7VCnW9LQErVcSLSH+vJemot7Kv4+d8cq7X8Qk3uqjz6BB/kRGQHVlHTRqw+oGOwGsX1M8astzE0peoUETkSiMd61WkLoIsJ6Nrmb5BaXoO2TFOJLqki8gfWzfxqrGLs64C2wHBjjDZUVWXSRnbB72vgUuAIrHr4X4B/aXJXqtZdhDUWxFrgUnNov/UOlPLClwAPY9UBV9SX/v0Wvib3N+A6Te6qIvQJXimlqoGIFI4hX5aNxpiN5SyjVLXQBK+UUkqFIW1kp5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGNIEr5RSSoUhTfBKKaVUGKrUi26WLVvWEOstSnpjUDf4gO3x8fEVfvOWCj963qvD5MMaAGdvfHy8jiJZiyrcD37ZsmXHORyOVx0Oh4uA8X1VWDM+ny/N5/PdHB8fv9juYFTt0/NeVQdjjMfn8y0wxjwYHx+/ze546ooKJfhly5Y1dDgcC5s0adK6VatW+0VE344Tonw+Q4HPRPl8RowgGCPG4DBADAVE4LEWFMHg8O3Zn9ooNTV1p9fIYH2Sr1v0vA9tPmPw+kyEx2ucXmMifD6cHp/PaQxOgwGDRIrP14QMJ2Cw/n0NDqfPSIQHh9ODI8KLI8KDw1nlJ29jDPn5+VG7du1qnJOTs9nn850QHx+fX31HqkpT0SL6tg6Hw9WqVav9DRo0yKnRiNRh8Xh9zjyPLyrf64vO9/iiCry+qAKviSrw+qILvL4or8+U+m/eIyo1M9qT3jBwmsNpyMnb17LzwvGpfLE1FdiPNf77RqzxppP9nw240w7U4KGp2qfnfZAr8PqcuQXeerkFvpg8jzcmz+OLKfD4Yjw+E+kzpowqFaswpkmEL7ee70BMBXZl/Im+AGd0HhExOUTG5BBRL5fIerlI2YU7DRo0yI2MjCxITk5u6fP5OmJdO1QNq2iCdwCid/DBJc/jjczM9TTKyvc2ysn3Nijw+qLLPqkrr+i8tUbKau7/dAdOOmRht2sf1mAYvwJLgCW407ZXZzyqVul5H0Q8Xp8zI8/TMCvP0ygn39sg3+uLKeuGvZoJPk8kPk8knrz65KU3DZhncEblERGdQ2T9bKIbZhDVMBtxHPT/xuFwGKw7Cx3krJboDx1Ccgu8UZl5nkZZeZ5G2fnehgVeX7TdMRXTHBjh/1jcru1YCX8+8DXutLW2RKZUiMnzeKMycz0Ns/K9DbPzPY3yPb6KPGnbQfDmx+DNjyEvoymZuwDxEVk/k+gGGUQ1yiC6YbbdQdZFVU/wbld8NcZRbNtpyw5n9bVr10Z99tlnrgkTJuwpnNauXbu+M2fO3DB48OBaLWpcv3591E033dRx48aNMU6n01x77bV77r///t0AEydObP3RRx+18Pl8dOnSJXfatGkpLVq08Baum1vgjc7ILUrojTKzsiIvTTiFyMhIZsz9CYDZ0z/gwymvFu1v147tHDtoMM++8d4hsbz23FN8/cWnNGjQkCdffou27TsCMPHOsVxw2VX0GNK9Jn6CtsB5/g+4XSnAXKxhcL/DnZZREztVNSM2MalGzvuUSQmHdc4Hgzlz5jTKzc2Viy66KL0q6xtjyMzzNEjPKWiSketpku+1Evqi+d8x+XF30XL79+6leatWTP9qAQBffPIRU197Ea/XS/OWrXjkvy/Spl2HQ7b/v0U/Mvnxh8nJzgIRTho2gocm3l80/6lX3uXdmXPw+Xz06BrL28+4aeJqdMh2pnw0m6dffY/oqCje+u+DHNu3FwAPPvUKPbvFctn5ZwLGQUFWYwqyGsNuQHxCdLbTk53fcMf/mkHNpQ/1j7Ds9rJ+/froKVOmtKzu7RYUFFRqeZ/Px3nnndf1iiuu2JeSkrIyOTn5r6uuumo/wKxZsxp/+OGHLX799dfVycnJf/Xr1y/7zjvvbFfg9Tl3p+e2Wrczo9e6XRlH7kjL6ZSeW9DM4/NFPve4m2P6DzpoH+ddcjkz5v5U9GneshUJ5198SCyZGekkzZrBx/MWcslV1zHt7TcA+OXHH4ipV49+A46r6s9SWbHATcAsYB9u11zcrqtwl3AlUSqIlHf+f//9942+/PJLV2W2aYwhPaeg0eb92R1X7Ug/etPerJ77svKPKEzuAEOGDj/oHO/Z9yhGnmed45s2rOPZ/zzEy+99zKff/cK5oy7jP/+6q8R9NXY14cmX3mLW94v5KOkH/lj2KzOnf+QE+ObHxbw9/XN++fwdVs3/hPi+vbj/iRdL3M6jz73Jki/fZ/Ijd/PY81MA+GttMn+uXu9P7iUeqUM8OQ2d+enN2q5560fcru9wu27C7WpRmd9LVU5IJ/hPPvmkce/evXvFxcX1HjBgQI9ly5bFAIwbN65jSkpKTM+ePXsPGzasW+HyM2bMaHrMMcf0bNeuXd8JEya0KZy+efPmiJEjR3bp27dvr7i4uN633XZb28J57dq16ztmzJh2ffv27XXhhRd2rkx8n3/+eaOoqChz7bXXFjU+69Chgwfg999/rzdw4MDMpk2b+owxjDjzLO+s2bNbrtmRcfTO9NwOuR5v/cBtLf5pPrt37mBkCcm70J+/L2X/vr2cPOLQk8zhdOLzevEUFJCTnUVkZCQ5Odm8Pvkpbr/vococVnWKBE4D3gV24XZNx+06B7cr0q6AVHB7//33m3Tp0qVPjx49eo8ZM6Zd06ZNj167dm0UwIoVK6KHDh3a7cgjj+wVFxfX+7HHHiu6yReR+MTExCP69u3bq127dn0nT57cvHBeeevdeeedbY888shet956a/tff/21Xnx8fI/evXv36tq1a5/C68jPP/9cb+rUqS1nzZrVrGfPnr3vvvvuNmBdo+Lj43v06dOnV9++fXt98cUXjcAqndt6ILv9qh3pR6fsy4pLzc5vWZH69N07d/Drwh8568JLANiwdjXde/ahZesjADjxlNNY+MO3pB7Yf8i6vY48ivadYgGIjomhR+++bN2yWQCWr1rHCQOPoVHDBgCMHD6E9z75ssQYnE4Hubl5ZGXnEhUVic/n4073f5n8yN3lhW/9phgnMAx4FdiJ2/UNbtcNuF2VujlS5QvZOvht27ZFXHfddV3mzZu3duDAgTmvvPJKs1GjRnVdv379Xy+88MLmu+++u8OaNWtWBa6Tmprq/OOPP9bs2LEjIi4u7sgxY8bs7dy5c8Fll13W+b777tuRkJCQWVBQwLBhw7pPmTKlaWFi3r9/f8Ty5ctXOxyVux9auXJlvWbNmhWcddZZXZKTk2Pat2+fN3ny5C29e/fOHzBgQPaUt99uvXTVho4xrhZN35s2IyIrM5PUA/vF1bTpQdtJT0vj2cesu/SN60uvwp790fucdcElREYemh/r12/AlTeM5cpzR9C8ZWv+/ezLvPz041x14600bNS4UsdVQ+oBo/yf/bhd7wMv4k5bb29YKlhs27Yt4tZbb4394Ycf1vTr1y938uTJzVNTUyMAPB4Pl156aZf33ntvU79+/XIzMjIc8fHxPYcMGZJ18sknZwNER0ebFStWrP79999jTjjhhF5jx47dJyLlrud0Os3KlStXAxw4cMCxcOHCdfXq1TOZmZkyYMCAXqeffnr68OHDs6666qo9qampzilTpmwBWLVqVdSjjz7a9vvvv1/XrFkz34oVK6KHDRvea/5vq7K8ElGlk+7zmR9ywrARNG9h3YPE9T6SNSuXk7JxA7FdujFn1gyMMezYuoUmTZuVup29u3fx7ZefM+Xd97xARHzfXrz87kx27t5L65bN+eDTr8jIzGL/gTSaNT047z55/+2MuHQsjRrW57Un7ufld2eQMPwEOrVvW/LOyuYETvV/nsXtmgo8jzttTVU2pg4Wsgl+wYIFDeLi4nIGDhyYAzBmzJj9EyZM6Lhp06ZSn/6uvPLK/QBt2rTxtG/fPn/dunXRzZs39y5evLjxXXfdFXnXXVbRVnZ2tmPNmjVFRWTXXnvtvsomdwCPxyOLFy9uvGDBgtX9+/fPffLJJ1tePGpUtx9+Xrqnx8ChLa6++fbIq//v4pYOp5NhZyQA4IxwHrKdxyfew/W3jqd5i5alJvjs7Cy+/vxT3vtsXqnxXHL19Vxy9fUArPrzD3bt2MaQocN57P672b9vLyMG9om85/qLKn2cNaAZcBswDrfrS2Ay7rRvbI5J2Wz+/PkNevTokd2vX79cgFtvvXXfPffc0wlg+fLlMRs2bKh36aWXdilcPisry/nnn3/WK0zU11133T6Afv365TqdTrN58+bI1NRUZ3nrjRkzZm/hvOzsbMc111zTYdWqVfVEhJ07d0YtW7as/vDhw7OKx/v555+7/v777+jBg4f0wuGIQBxOcUbIxpS/G3fq3LXSx2+MYfb0D7j3kUlF0zp17soDjz/DA3eMwevxcOLw02jkcpV4HSmUmZHObddcyuibb+OYfv0Mvq2cMmQAd990JWddfTtOp5PzzzgFgIgStnPByOFcMHI4AFu27eSzuQv4+oMX+dfjL5D891a6xXbgP4m3Vvr4gAbAGOBm3K5vgeeBJNxp2oujikI2wVdFvXr1il7W4HQ6TUFBQdGLfn777bfV9evXL/E/UqNGjbwlTV+2bFnM5Zdf3gVgwIABme+9997mwPmdOnXK79WrV3b//v1zC7y+iPMuvSY6MTGx3pZ9GR0jIyMPSrh//raE1m3alvg0/ceSxfyxZDHP/HsieXl5pKUe4JyTB/D5giVFy3wz5zO6xvWka1zPcn8Hj8fDf/89kSdefJM5s2bQtHkL/vWfp7nl4tMiLhxxHF06tS93G7VEgAQgAbdrFdYJPxV3mvbJVgcxxtC4cWNP8VK7QIHnt9PpNB6PRyqynsvlKrpujB8/vl3z5s09f/3116rIyEhOO+20rrm5uSV2Avf4TMTgk07xTnrp7WiDKbWjePK6Ndw37gYAjuk/iH/95+kSl1u6eBF5eXkMPnn4QdNHJJzLiIRzAevJ/O1XJtMhtktJmyArM4OxV17E0NNGctWNtwD/tCsYO3oUY0ePAmDxsj9p36Y1jRs1LHE7hW5/6CmeeWg8839eyvZde5n+6hNcffuD/LBoCacMGVDmumUQ/umsFJCiAAAgAElEQVSNswG36yXgLW2QW3khWwc/dOjQrHXr1tVbsmRJDMDrr7/etHXr1gWdO3cuaNKkiTcjI6P0W9gALpfLN3DgwPQHHnigqE4+JSUlMjk5udx64Pj4+Nw1a9asWrNmzariyR3gwgsvTNu5c2fU/1as7bh2Z0bfz5OSWnfu3qOoCH3Prp0A5ORk89LTjzN6zO0l7uerX/4s+jzx0lt07d7joOQOMOuj9zj//66oyCEz9fUXGXneRbRo1Zqc7GzE39ldRMjKDtrc2Rurzi4Zt+tW3K4ouwNStWvo0KFZa9eurb98+fJogFdeeaV5QUGBABx99NG5DRs29AbWra9cuTJ6165dZV4HKrteampqRPv27fMjIyNZvnx59KJFi4ruyBs3buxNT0935hZ4o//elxXb78TT2/6y6KfotatXFCX3Fb8f2lmga1zPogZ0pSV3sM7xcy++FKfz4NAKryNer5fnHndzyVXXU69e/UPWz87KZOyVFzF46KncePuh9eU7dlmdjrJzcnjw6VeZMPbqUmMBmP7ZXHp160zfXt3JyvnnXTcOh5CZVW294roBzwIbcbvG43YFW9fgoBayT/Bt27b1vPnmmxuvvvrqzh6PR1wul3f69OnJDoeDQYMGZcfFxeV07969T4cOHfK+//77Mt+aNHPmzE1jx47t0L179z4iYurVq+d79dVX/+7atWvlms0H8Hh9znRvRJuJTz4fcfX/XdTSGEPDRo158sU3i5a5+fIL8BmDJz+fhAsv4dLRNxTNu+Wqixl717/oc3S/cveVkryetatWcvrZ55e77JaUTSz9ZSEvTZ0JwFnnj+LOG65g3pzZnNi/r69vr+4VujGyURvgBeAe3K5HgXdwp3lsjknVgnbt2nmef/75lPPPP79bVFSUOfnkk9Pr16/va968uTcyMpIvvvhiw7hx4zq89NJLrX0+nzRt2tQzY8aMjUCJJXAAlV3vwQcf3D569Ogu06ZNa96pU6e84447rqhL3AUXjcqcPvPjNsccc0zzYWeezc13TGDSC2/waOJ4cnOyKSgooGefvkwKuAZUVEZ6Gt99NYdPvll0yLyH7r6VHdu2kp+Xx4nDT+O2eycWzXPfcxtDR5zB0NNG8sFbr7Lyj9/Iyc7m+6++ACAhISHiv3dYDfZOu+wWfD4f+fkFXHlRArdec0mp8RxITeeld2cw78OXAThj6GDe/HAWR506is4d2nHGKYMrfYzlaAH8F7gDt+thrPO+1H9XZanou+h7RkREfN29e/fM+vXr59ZCXCHL5zOyOyOv1d7MvDY+Y4I9WR6kR9S+Q15Vm+sxbNq2h86L7iImc4tdoZVlPeAGpmldXfUKxvP+wIEDjqZNm/oA3nvvvSYPPfRQu40bN/5lZ0wFXl/EjtTcdmk5Bc3LKooPRk0iCnI7+rbWygt0qvlasgaYiDvt42oILWyF7BN8sDHGsC8rv/mejLy2BV6fFh/Xnu7AB8BtuF3jcKctKW8FFbqeeOKJVrNmzWrm8/mkYcOG3qlTp26yKxZjDHsy81ruTs9rF2o382GgJzATt2spcDvutJ/tDigYaYKvBjn5npgtB3I65xZ4D634UrVlEPA/3K63gHtxpx3aEViFvEmTJu2cNGnSTrvjyMzz1N+emtNJz3nb9QcW4na9CiTiTqvSWwTDVcg2sgsGxhh2pue23rAnq7ee6EFBgOuBNbhdV9kdjAo/Hq/PuXl/dseNezJ76TkfNASre90q3K5z7A4mmGiCr6LcAm/Uhj2ZPXan57Y3JrTq3eqAlsC7uF3zcLva2R2MCg/7s/Kbrt2VcWRqdn61vwZbVYt2wGe4XTNxu46wO5hgoAm+CvZk5LXYsDuzT06+t+xOospuI4A/cbuC4u09KjR5vD5nyt6szlsPZHepxeFZVdVdBKzG7brW7kDspgm+EvI9vsjkPZnddqTldKrucddVjWmG1RjnHR3QRlVWRm5Bw/W7M3un5xaU/t5XFYyaAG/5n+br7Dvuq3w3WlPDRkJwDh25LzOv2c703I5en7aWDVFXAyfhdl2hLW4PQ00NE32YQ0RXN2MMO9Ny2+zNzGurfS9D2kVAPG7XJXWxh40+hWKN+ta3b99eXbt27dOtW7c+N998c3uv13qHgtdnHJv2ZnXZlprTubzkvnXz3/zfyKGMOv1ELhh+PHffPJr01NSi+Qu+/Zpzhw7k7BPjufOGK8nMKLnB5yvPTGLo0d0YdfqJjDr9xKLXWAJ89M4bXHjq4KJ9fDDltRK3kZ6aynWjzubCUwcfNHzk/n17ue7isyo99G2Y6AwswO26ze5AVNUUjibXs2fP3r/++mu94t/Hjx/fNjs7+7DaxOR7fBHJe7Li9gQk94njb+Hsk/pz8WkncPX5p7Pyj9+qtO3nJz3CuUMHcvFpJ3DpyFNYNP+7onk+n4/HJ04gYUg/zjrhWKa983qJ20g9sL/o2jDq9BM5+6T+HBvbgrQD1qCVb77wX845eQDHdGzG918nlRrLX8t/5/ThQ6N7D72Qd2d8UTT9+4W/ctOEf1fp+IJUZ2ARbleVXpAfysImwR9OwmrevLln+vTpycnJyX/9+eefq5YsWdLgpZdeap7v8UVu2J3ZMyO3oGn5W4FWrY/gnU++Ysbcn/j0u19o2foIXnnWGhgiOysT9z238dyb7/PFT8to2foIXp/8VKnbGnn+xUWvr3z8hTeKpidcMIpPvv2ZGXN/YursuUx97QVWr/zzkPWTZs9gwOAT+eTbn9mUvJ71/ldtP/3I/dx+30MljjhXR0QAk3G73tLX3Yae119/veW99967Y82aNasGDhyYU/z7s88+2yY7O7vK17XsfE+95D2ZvbLzPQdV5ww/I4FZ3y9m5ryFXHvLndwzZnSVtn/soOOZ/tUCZs5biPvp55kw9hqys61xapI+ncHG9Wv5/MelfPDFd7z76gtsWLv6kG00adrsoPHhL7rsaoacciqFo1AOOmEoL0+dSfygst8mN+Xl53j40f8ULPnyfR5+1rqZyMnJxf3Mazxxf8mvzQ5hkcALuF1Tcbvq2R1MbQnpBF/RsZoBxo8f3zYhIaHLsGHDunXt2rXPcccdF1f4vukhQ4bk9O7dOx+sASn69OmTk7wppUHynsyeeR5vhf8zREVHE1PPWtzr9R70nveFP3xLzz5H0blbHACXXHUdX332aaWPuVHjf6qTcrKz8XhKfktrREQkuTnZ+Hw+CvLziIyKYtEP39LY1YSjjq3yIBDh5Fpgvra2DR2jR4/usHTp0oaPPPJIu379+vUs/v2yyy7rCDB48OAePXv27L1t27aICy+8MPbSSy/tNHjw4Lh27dr1vfjii2N/+OGH+gMHDuzRvn37vtdff33RyEoPPPRwp4EDBvY+/9QhUZclDGP5sl+L9j30tJFERFg1mkcdO4DdO3eUeu6V5YRTRhRdI7r37IMxcGDfPgDmfvEpF1x6FU6nE1fTppx+9vl8/dkn5W5z1vT3Of+SK4u+9+0XXzTue1kiIiLIyckhNzcPp3+0TPczr3H7dZfRJHybq1wJ/ILb1cHuQGpDyLcIrehYzQB//PFHg2XLlq064ogjvGeddVaX5557ruXjjz9+0EszNm/eHPHll181e3HqDAq8vkrXtxfk53P52cPZvm0LcT37MHnKhwDs2LaVNu3/GaWtbYeO7N29E4/HU3ThCDRvzmcs+fknXE2bcePt9zBw8IlF875J+oyXn5nElpSNjJswkV5HHnXI+gkXjGLinWO55IyTOOX0BFod0Qb33eN4aeqMyh5SODseWIrbdQHutF/LXVrZ6p133tmyatWq+uPGjdt15ZVXpgIU/z5t2rSWP//889oWLVoUvad89erV9X7++ee1DoeDuLi4Pqmpqc6ffvppXV5ennTu3LnvzTffvLdD3JGuUy+4vMWoG6wn1z9/W8LE8bfw2fxD/1t88NarnHDKiBLP28qYPeMD2nfsRNv2Vq7ZsW1r0d8B2rbvyJ+/Ly1zG38s/R/paamcdOrpld7/TXdM4LHE2yOez0njqYl38MfKtWz8e1s4Pr0XdzTwM27XGbjTbH3NcU0L+QRfmbGaTz755LQjjjjCCzBo0KDMlStXHvR0vn//fsfIhLN6XjP2Dkfvo/pVqR4vMiqKGXN/oiA/n8cfnMDHH7zDNaWMEleai6+4huvH3UVkZCS/L1nMnTdcyYdzvqNt+47AP8NDbtuymTtvuIKTTz2d2K7dD9pG/foN+O9r7xZ9f8r9L64ZezubUzbx1ovPAHDDbXfRo3ffqhxmOGmHVS9/Me60OXYHo6rfyJEjUwuHiu3Ro0fOiBEj0qOjo010dLTp1q1bzpIVazpEHdGt8ZqVf/LmC/8l9cB+IiIiSEleT25OTtETN8CcT6czb85s3v649LrtivjfwgW89uwTvPbhrKJSvqqY9dH7nH3hJVW62ejSvQcff/ZFfkff1hiv18tpl47lvef/zbTZX/Nx0rc0btiAZx66i6ZNDh3COgy0B37C7ToXd9pPdgdTU0K6iB5KH6t57dq1qwYNGpQROFZzTEzMIeNBF34/cOCAY9ipI/oMPeOc6CtvvKXEMy553Zqihi2P3X/ocIuBIqOiOG/U5cz5ZDoAbdq1Z8fWrUXzt2/ZTItWR5R4YrZo1bqojrzfgOPo2ecoVv35xyHLtevQkb794lnw7dwyY1nx+zL279vDyaeewRMP3sud9z/CHf96mCceTCxzvTokBpiF23W53YGo6hcTE1N0jXA6nabwu9dnHBIZXT8739u4ID+f8TdexfgHHuXT735hij+B5+fnF23n688/5bVnn+S1Dz+lectWJe5r0oP3Fl0j1q8u+eFw6S+LePCuW3j+7WkH3Zi3adee7Vv/GYRl+9bNtGnbvqRNAFa7nnlzZnPeJRUbJrosz73xIRefNYImroY8+twbTH9lEicddyzPvfnBYW87iDUF5uF2lT8MZ4gK+QQfqKyxmstZzzFsxGl9Bw87PaqkcZILlTdu8/atm8nJscZB9vl8zJvzGXG9+gAwZOhwVq9czqYN6wCYPvUtzjjnghL3s2vHtqK//70pmbWrVtCtZ2/AuskotH/fXn5d9FPRPkpSUFDAc4+7ufvB/wDW2PMi1pjNhY17FGCVZr2H23WL3YGoqmvQoIFv//795VateX3GsXFPZnfE4QTIy8uloCCfNu2shDrt7YNbsM/9YhYvPfUfXps2izbtSq++TXzkiaJrRPcSzstlixdx/x038dxbHx5SejYi4Tw+nTYVr9dL2oEDzP1iVplDQH/9xSzievcpatdTVZs2b+ObnxZz05UXUlDgwePxIiI4xEFmVs5hbTsExAAf43bdbHcgNaHKRfTB2Fe9rLGaS+P1GcdDjz3Va+XyPyJycnKLxkkekXAuN9xW9lN6cetW/8WLT1rdS3w+H736Hs29jzwBQIOGjXA/OZk7rr8Cr8dDtx69ePTZl4vWHXX6ibz47gxaHdGGF578N6v+/IOIiAgcTif/+vdTxHbpBsAHU17l918XExkZiTGGK667meNPOqXUmN599XnOvvD/ip44xt51H7dcbY3zPP7+hyt1fHWAAC/idjXFnRZW/YSqTZD1Vy/upptu2nnaaafFxcTE+L777rt1JS3jM0Y27smMyynwNiic1rBRY269534uP3s4TZo1P+Tm+1+33Ujzlq2447p/Cnle/+gzmjSt3Ptv3PfcRn5+Pg/d9c995H+ee5Xuvfpw1oWX8Nfy3zj7pHgE4cobbim6SZg/70vmf/M17qeeL1pv9kfvccGlVx+yj9cnP83M99/mwP69bFi7mscnTmD61wto1rxFiTHd/uBTPPfw3YgIrsaNuOz8M+g7fBQNG9Rn+iuTKnV8IcoBvILb1QZ32kN2B1Od6vR48D6fkWTrRNdXzhKy48HXlCdxp91rdxB2Csfz3uP1OTfuzeqeG5Dc67IQHg++pjyIO+1Ru4OoLmFVRF8ZxhhS9mV10eSuSjEBt2ui3UGo6uNP7nGa3FUZHsHtCptuBHU2wW85kNMxM8/TxO44VFB7BLdrnN1BqMPn8fqcG/dkxekQr6oCng2XgWoqmuB9YD31hoMdqTltdMjHiin6Jw+Tf/sqmKxjy4c2nzGSsi+rW65Hk7uqEAHewO0aZXcgh6uiCT7VGOPJz88P+Vd77snIa7EnM6+t3XGEinwf4PPgLMiwOxS7CDAFt+s8uwNRVbN5X3Zstg7trCrHAbyP2zXS7kAOR0Vb0e/1+XwLdu3alRAZGVngcDhC8nEuI7eg4a70vE4hGXwtyBWvw3j/+XV8Bvak5VJ/929E5JfbISGcOYGPcLtOwZ32i93BqIrbnprTVod6VVUUCXziP+8X2x1MVVQowcfHx/uWLVv2YE5OTt/k5OSWWE81IaXAa6JT83yt625JcwU4M5xRvsDG0gZHzn46rn0Hoc7/cNHAp7hd/XGnbSt3aWW7vZl5zfdm5rUpf0mlShWDleT7407bYXcwlVXhfvDx8fHbli1bdoLP5+tYmfWCwey1WZ1/SMn50BgTcjcmtenVmJdWdjab/hnv2+clKmc3DlP5QTXC1BHAbNyuE3GnhUW3scrq+27fGhkPfsXVKw6rf/3atWujPvvsM9eECRP2AKTlFDQ6ulf32Gff/ICefWr3dcwLvv2aZ/79ID6vl249e/PoMy/RsNGh79zy+Xw88VAiC7//BhHh8utv5tLRN5Y7L1B6aip33nglqfv3cezA47n/sf8C1kuw7rl5NK9+OKsujxxZXdpiJfmhuNPyy106iFQqUcfHx+cDG2oolhoRm5jUCpgLaIv5cjjy/s6JcQRt/9Rg0R94A2tUKhUk1q9fHz1lypSWEyZM2JOT743esj+7a3Vst7TBoEpTOCz0lJlz6NwtjsceuIfXJz/F+AcO7VodODxsZno6l5x5EgOOP5FuPXqVOe+gbfiHhb75jglcf8k5rF+ziu49e+uw0NXveOAF4Ca7A6mMsO4mF5uYJMBUoKPdsaiwcgVuV+Vec6iqxSeffNK4d+/eveLi4noPGDCgx7Jly2IAxo0b1zElJSWmZ8+evUcmJPTyGeME+O6rL7jy3NM4c/DRvD75n9dL7929i3vGXMNlZw3nwlMHF72BEuDM44/i2cce4rKzhjPxzjGViq8yw0KXNTxsRYeO1WGha9WNuF2a4IPIXUDlx1FUqnxP4HadbHcQdcm2bdsirrvuui7vvPNOyrp161Zde+21e0aNGtXV5/PxwgsvbI6Njc2du2hZ9uS3Pyp6F31GehrvfTaPD+d8z7uvPc+uHdsBeODOsVxy1fV8OOc7pn/9I3/9+Qfz5swu2lfagQN88MW3PP7CG5WKsaxhoUtatvjwsDu2by13XqCEC0axJWUTl5xxEoNOGEqrI9rwxgv/ZdyEByoVt6qw53G7BtsdREWFVF16ZcQmJg0AHrM7DhW2HFiD0xyFOy3V7mDqggULFjSIi4vLGThwYA7AmDFj9k+YMKHjpk2brHJocTjTcgqaB64z8ryLAGjarDntOsaybcvfNHK5+HXRAvbv3V20XHZWFinJ/9Q+nnPxpYc1jGtt0WGha10UVn38UbjT9tgdTHnCMsHHJiY1BqZhdXNQqqZ0AF4BLrU7kLrOY4jE4TzkPR1R0f+8Zt3pcOL1eote2vTeZ98QHVPya9jrNyi523zyujXcN+4GAI7pP+iQUSXbtGvP4p/mF30va1jowuFhj44faC0bMDxsWfNKEzgs9OgLzuQ/k1/DGMOD48cWDX+rqsURWOf9RXYHUp5wLaJ/HqiWRjZKleP/cLu0wV0tGDp0aNa6devqLVmyJAbg9ddfb9q6deuCTrGxHl904zYZGRV7V0P9Bg0ZMPhEprz8XNG03Tt3HDRMc2nKGzK6MsNClzU8bGWHjtVhoWvdhbhdQX9jH3ZP8LGJSWcDh46hqFTNeRG36yfcaSl2BxLO2rZt63nzzTc3Xn311Z09Ho+4XC7v9OnTk3dn5LeJjesd0zWuJxcMP572HWN5/u1pZW7rsedf5+lH7ueC4ccjItSr34CJk56hdZt2hxVjZYaFLmt42LLmlUSHhbbFi7hd84O5f3yFhosNFbGJSc2AlYC+3KIKkqLuW9jH8fcJdscRohYCJ+FOC5sTKhSGi83O98Qk787qbdB3XFSFDhd72JJwp51ldxClCbci+hfQ5K7scQIQFiNQhQpjDNsO5HTS5K5slIDbdY3dQZQmbBJ8bGLSecBldseh6rQncLual7+Yqg57M/Nb5BToIDLKds/hdnUof7HaFxYJPjYxKRqYbHccqs5rDjxhdxB1Qb7HF7E7PbfsZuVK1Y7GwKEtLoNAWCR4YCz6tjoVHK7F7Tre7iCqiQ8wwTiGw/bUnA5e/9vqVGjwGQADPq/dodSEUcH4ApyQb0Xv7/N+v91xKOUnwCu4XfG400L9Srbd5/Ol7d69u3WrVq32i0hQNCDMzPM0SMvM1SFgq4HHeCS3hhtaGwP5PmvoaUfOfqJydpe/Umh6FrfruGBqaBvyCR64B6toVKlgcTRwHfC63YEcjvj4+Mxly5bdnJqa+mp6erqLIBkmen+Ot63HZ3cU4SHD4XHkmQM1vyOfh/p7fqfjmrfDeXTKgVjtwD6wO5BCId1NLjYx6Qis0e0a2B1LONBuctVqO9ANd1qO3YEcrmXLljXEGjLT9iq95xannrkxteAZu+MIF8c4NyX/N+Klmn0pmDE4CzKIyE9HCN18U0FbgB7Bct6H+hP8g2hyV8GpLXA7MMnuQA5XfHx8JrDO7jhiE5OcwOxyF1QV1k6y8mOiw6ZPejDogDXI2b/LW7A22H5HXlWxiUndgBvsjkOpMkzA7WpsdxBh5Gqgh91BKFWORNyu1nYHASGc4LHukEK9BEKFt6bAnXYHEQ5iE5OigIfsjkOpCmiAVXpnu5BM8LGJSccCo+yOQ6kKuBO3q4ndQYSBm9CusCp0jMHtamR3ECGZ4LHqNYOiRa9S5XChVUmHxf/0fp/dcShVCU2AG+0OIuQSfGxi0tHACLvjUKoSbsXt0peyVN3F6BgTKvTcgdsVaWcAIZfggevtDkCpSuoIlD6YtyrPbXYHoFQVtMfm8VFCKsHHJibFAJfbHYdSVXCH3QGEotjEpIFYLxBRKhTdg9tlW3VySCV44AKslslKhZohuF3xdgcRgsbZHYBSh6EPMNKunYdagtfieRXKgqLrTKiITUxqjfaWUaHPtrwVMgk+NjGpKzDU7jiUOgwXBUPXmRByIxBldxBKHaaRuF22DI4UMgkeuBbtGqdCWz20sV2FxCYmCdq9UIWHKOD/7NhxSCR4/zuoR9sdh1LVQBuJVsxJWO/1ViocXGXHTkMiwWM1UmhrdxBKVYPhuF1H2B1ECLC1e5FS1WwQbldcbe80VBK8Nq5T4cKJTcV1oSI2MSkSuMjuOJSqZrX+FB/0CT42MaklNnYzUKoGaDF92YYBtjRKUqoGXVHbfeKDPsEDw9FR41R46Y/bpVVOpbvQ7gCUqgGdgAG1ucNQSPDD7A5AqRpwht0BBKPYxCQHcK7dcShVQxJqc2ea4JWyx5l2BxCkBgGt7A5CqRqiCb5QbGJSR6Cr3XEoVQNO1RHmSqQ39CpsGUP3Dx44v3Vt7S/Y67b1ZFfhqglwHLDI7kCCzCl2B6BUdTEGk03Mmp99vXd95D2l6QLf0b09RIy4HN6vjf1rglfKPmegCb5IbGJSFDDY7jiUOhxeI7vXm/brPvWeKJ94T+yxD1cvoFfAIsPRBA/o3bwKb0PtDiDIDMJ6na9SIcMY8vbR+K9vvcemT/MOa7vcdIuj7HYkw2srtqBN8LGJSXFAe7vjUKoGHYvb5cSd5rU7kCChN/QqJOSZiI2/+bpvme49pcFc34DeOUQfW4nVO8QmJnVJmZSwscYC9AvaBI+e7Cr81QeOBJbbHUiQ0HNeBSVjSPvbtF41x3ecZ7r3lC5bTKsuQJfD2GQ8UKcTvNa/q7pgIJrgC19Pe5zdcSgFYAzeDOqt/sl31N5p3mHNf/b16e3DcXw17uJYYGY1bq9EwZzgT7Y7AKVqwQDgDbuDCAJxQIzdQai6y2Mc21eZTskfe0+K+Mw7pFcaDY+swd1Vpki/yoIywccmJrUAaq2voFI2Gmh3AEGiJi+mSh3CGLJ30XTVXG//7I+8w9qtNp26UnujlvarjZ0EZYIHetodgFK15Ejcrijcafl2B2IzTfCqxuWYqPVLfD22f+Qd1uhb37F98onsb1MoLWMTkzqkTErYUpM7CdYE38PuAJSqJU6gM7DW7kBspgleVTufkX0bTZu1s71DfB97T+6+k2bdge52x+XXD9AEr1SY64YmeE3w6rAZQ0EqDVf94DvmwEeeU1ovMT16GBzB+vKkfsDnNbmDYE3wWkSv6pJudgdgp9jEpHocXpcjVYcVGOfff5ouf8/0nhz9hff43lnUO9rumCqoxsdZCdYErwPMqLqkTid4rNd4BvXAVyp4GEPGdpqvTvIOyv3IO6zTRtO2E9ZY66GmQ03vIFgTfEe7A1CqFtX1BB+KF2dVSwIHbJnmHdb0R99RvT1EhEPvkxrPc0GX4GMTk1xAQ7vjUKoW1fUSK+0Sqw7iNbJrnWm/YZb3REoZsCUctI9NTJKUSQmmpnYQdAmeWii2UCrI1PUEd4TdASh7lTJgS7ifF1FYg9LsqqkdaIJXyn6NcbsicKd57A7EJuF+IVclOMwBW8JFB+pYgtcR5FRd1AzYbXcQNtEn+DqgBgZsCQcdgaU1tfFgTPCN7Q5AKRtogldhpRYGbAkHZY0bf9iCMcE77Q5AKRs0szsAG2kRfZio5QFbwkG9mty4JnilgkNdTvDN7Q5AVc0/A7YMyPrIe0qH1aZTF2pvwJZwoAleqTqgkd0B2EiHiQ0hOSZq3a++njume0+xe8CWcKAJXqk6QOwOwEZRdgegSkGYkH4AACAASURBVFfCgC1xQJzdcYWJ+jW5cU3wSgWHOpngYxOTNLkHmRAbsCXU6RO8qnmRePKbSKZebFVtC8ZrUJ0TwgO2hDpN8KqmGDPUsXzFHRGfpB0lyX0dQji83zlU1ckneGWv1aZj22F5T/8dwgO2hLoabX+iCb4O6i5bU+6KmJky3PFb10jxHmV3PEope2TQwJVhGrjsjqMOK6jJjQdjgg/GmEJeM9L23RLx+cpRzvktGklOHyDW7pjUQerqE3yNDbShVAjIq8mNB2My1Sf4ahJNfu7/Ob///caIJGdb9vUT4WS7Y1KlyrY7AJvkAl70vFd1U51L8DVaZBH+jBnu+G35HRGfZBwpKUeJoK+GDA3pdgdgh5RJCSY2MSkdaGp3LErZIKcmNx6MCX673QGEol7yd/JdETO3DnX80TVCfMfYHY+qtDqZ4P0OoAle1U0ZNbnxYEzwW+0OIFS0IHXPuIjZqy5y/tiqgeT2ArraHZOqsgN2B2CjVLsDUMomNXpjrwk+xMSQl3OF89vfr4/4MrI1B7RePXzstTsAG9XlmxtVt9W5BL/N7gCCjeDzneZYuvz2iE+zesnmo0XQt0qFFy91O8npE7yqq2p0iOhgTfCGutttqEhf2bh+fMTM7Sc6VsRFiK+f3fGoGrMbd1pd7i6mCV7VVX/X5MaDLsGnTEooiE1M2k0dHSO6Nft3j4uYtfoC58Ij6kteD6C73TGpGrfR7gBsttPuAJSyyeaa3HjQJXi/rdShBF+f3KyrnPP+uDbiq5iWpB2j9ep1TrLdAdhsg90BKGWDtJRJCWk1uYNgTvDxdgdRkwSfb6Tj199vi/g0N062Hi3CELtjUrap60/wmuBVXVSjxfMQvAk+bBvaHSMb1t4VMXPnYMfKHk4xYX0Toyqsrj/Br7c7AKVsUGcTfFh1lWvL3h23R3y67hznz23rSX4PoIfdMamgUqef4FMmJeyKTUzKABrZHYtStajOJvgaP/Ca1oCczGucX/8xOmJu/eakHyNCG7tjUkFLi6it30B7iqi6ZFNN7yBYE/wSuwOoCgc+7zmOn3+/JWJ2XjfZ3k+EE+yOSQW97bjTarQvbIhYjyZ4Vbf8XtM7CMoEnzIpYb2/q1wru2OpiP6ydvX4iJm7BzlW93aK6W93PCqkLLU7gCCx1u4AlKpFBlhW0zsJygTvtwg43+4gStNBdm+7I+KT9QmOxR1ipKAX0MvumFRICsnSqhqgv4OqSzakTEqo8QGmNMFXQkOy06+P+HL5Vc5vGjUl42gR2tkdkwp5mtgsv9gdgFK1qMaf3iG4E/xCuwMAcOL1nO9c+NtY52fezrKznwgn2h2TCitaRA+kTErYG5uYtB59c6OqG+p8gv8NyAHq2bHzQbJq1fjIj/cMkLV9HGIG2hGDCnubcKftszuIIPILmuBV3VC3E7z/nfRLgJNqa5+dZOfW8REfbzjD8WunaPH0rq39qjrrR7sDCDK/AFfZHYRSNcxgPcDWuKBN8H4LqeEE35jMtJsikv683PltYxdZR4nQvib3p1SAuXYHEGS0Hl7VBctq+h30hYI9wS+qiY1G4Cm4yPnjb2Ocn5uOslvr1ZUdfMA3dgcRZFYC+kY7Fe6+rq0dBXuC/5lqHBv+BMeKlXdEfLL/WFl/pEPMoOrYplJV9BvutL12BxFMUiYleGMTk34AzrE7FqVqkCZ4gJRJCamxiUkrgKOquo0usv3v8REzN53mWNo5SrxHVmN4Sh0OLZ4v2ZdoglfhKxVYXFs7C+oE7zebSib4JmQcGBPx+YpLnT80bSzZfYFONROaUlWmCb5kX9odgFI16NuUSQne2tqZo7Z2dBimV2ShSDz5Vzi/WfxT1G3/+z36pgY3RSSd5E/uSgWbfWiDshKlTErYAiy3Ow6lashXtbmzoH+CT5mUsCo2MWklUELxujFDHctX3BHxSdpRktzXIRxX6wEqVXkzcad57A4iiM0CjrY7CKVqQK2W3AV9gvebTkCCj5Mtm8ZHzNw83PF7l0jxVrl+XimbfGh3AEHuU8BtdxBKVbP/pUxK2FabOwyZBN+MtDtuifh85Sjn/BaNJKcP0NnuoJSqgs0EyWuYg1XKpIQV+tpa9f/s3Xd8U9X7wPHPSdpCB4S9ChhklTKEH0uWgGwiyBIUAUFwgDhAgYgKwRk3jq8gKBsUZMgIIiCCiLJRQfYIG0oZ6W4z7u+P29ZSOqHlNul5v14RenNy75PKvc89457jgxbe7QN6RYK3W03HPJMNR3WCtlrHIkl36HssDkXrILzAQmQtXvIdbnI4niwvecMgOwB04u7f/UhSPpD/jnNmFupkQJLkCzbYraaIu31Qr0nwwHdAotZBSNId+BuL4x+tg/AGyaPp79qEIJKUz2ZrcVDvSfAWxzVgqdZhSNId+FzrALzMTK0DkKQ8cBV1Ppe7znsSvOpTrQOQpNsUiRw9n1trgItaByFJd2iR3WpK0uLA3pXgLY49wFatw5Ck2zATiyNB6yC8id1qcqFR06Yk5REP8D+tDu5dCV4la/GSt3EBX2kdhJf6FnXBKUnyRqvsVtMRrQ7ujQl+JXBS6yAkKReWY3Gc0zoIb2S3mk6iUf+lJOWBD7Q8uPcleIvDgxysJHmXj7QOwMu9rXUAknQbttmtJk3XnPC+BK/6BrjrzxRK0m1YjcWxS+sgvJndatqLXGVO8j6a1t7BWxO8xRELvKN1GJKUDQWYpHUQPuItrQOQpFw4BKzWOgjvTPCq6cBprYOQpCwsw+L4S+sgfIHdatoO/KJ1HJKUQx/ZrSbNB4d6b4K3OJKAKVqHIUmZ8ACTtQ7Cx8havOQNDgJztQ4CvDnBq+ahNoVIUkHzHRbHQa2D8CV2q2kLsEXrOCQpG+PtVpNb6yDA2xO8xeEG3tA6DElKJx54XesgfNRY5CI0UsH1i91qsmkdRArvTvAAFscyZN+cVLC8i8Vh1zoIX5Q8ov4breOQpAx4gJe1DiIt70/wqlHIleakguEY8KHWQfi414DrWgchSenMs1tNf2sdRFq+keAtjqMUgGcOJQl4HotD3mzmI7vVFIkcwCgVLHGoN54Fim8keNW7wHGtg5AKtWVYHD9rHUQh8RWwX+sgJCnZO3ar6YLWQaTnOwleXanrOa3DkAqtaGCM1kEUFsmjlF/QOg5JAvZQQFuQfSfBA1gc64H5WochFUpjsTjOah1EYWK3mjYDczQOQyrckoChyUsbFzi+leBVo4FTWgchFSo2LA45slsbLwHyxkrSylt2q+mA1kFkxvcSvMURBTyOuga3JOW3K8AIrYMorOxWkwMYrnUcUqG0F7BqHURWfC/BA1gcfyKntZTujiexOC5pHURhZreaNgBfah2HVKg4KcBN8yl8M8Gr3gF+1zoIyad9icWxRusgJADGAQW2qVTyORa71VTgn+Lw3QSvTmM7CDkhhpQ/tlPAZq0qzOxWUwIwEEjQOhbJ560D3tM6iJzw3QQPYHGcBvoj++OlvHUB6JO8oqFUQCTXqJ7XOg7Jp50FBhWEpWBzwrcTPIDFsRFZ05LyTiJqcr+odSDSrexW0zfI/ngpfyQB/e1W01WtA8kp30/wABbH58gFKqS8MRKLY4fWQUhZGoNcgErKe6PsVtN2rYPIjcKR4FWjgK1aByF5tS+wOGZrHYSUteSRzf2BE1rHIvmMaXar6Vutg8itwpPgLQ4n0Bc4qXUoklf6ETkVrdewW03XgJ6oUwhL0p3YBLyodRC3o/AkeACL4wrQEXWQlCTl1Cbg0eQnMyQvYbeaDqKOrPdoHYvktfYAvexWk1PrQG5H4UrwABbHKdQkH6l1KJJX2Ak8LJeA9U52q2kNMFLrOCSvdAToZreavLYVqPAleACL4xDQBXBoHYpUoB0EumNxxGgdiHT77FbTDGT3ipQ754HOdqvpitaB3InCmeABLI69gAmI0zoUqUA6BXTG4vCaR2KkzNmtpqnA61rHIXmFa6jJ/YzWgdypwpvgASyObUAPQNbQpLQOAW2wOM5rHYiUd+xW0zvAu1rHIRVoscBDyeM3vJ5QFK+YkCd/WQxNgZ+A0lqHImluL9AFi0OO0fBRRrPtU9RlZiUprRuAyW41/aF1IHlFJvgUFkMdYD1QWetQJM38DjyExSHHZvg4meSldC6jNsv/o3UgealwN9GnpQ68awUc1ToUSRM/o9bcZXIvBOxW0xhgPCBrONJpoLWvJXeQCf5mFscZoDWwW+tQpLtqFtATi0MOuCxE7FbTh8Bg1LW9pcLpENDKbjUd1zqQ/CCb6DNiMQQCs4EBWoci5Ss3MDZ5rQKpkDKabR2B5UAxrWOR7qrdqM+5++x4G5ngs2IxvAa8iWzp8EXXgAHJqw1KhZzRbGsIrAUqah2LdFd8Dwy3W00+3WonE3x2LIbuwAKgpNahSHnmIOrsdD7ZLCfdHqPZdg+wAmikdSxSvnEDZrvV9JHWgdwNsmaaHYtjLdAE+EvrUKQ8sQhoIZO7lJ7dajqNOtB2jsahSPnjKtClsCR3kDX4nLMYAoC3gZeRN0beKAoYhcWxUOtApILPaLY9DXwOFNE6FilP7AP62K0mu9aB3E0yweeWxdAWmAvco3UoUo5tAwZhcdi1DkTyHkaz7T5gCVBL61ikOzIXGGm3muK1DuRukwn+dlgMxYEvUR+xkQouF+ogyXflUq/S7TCabSHAV8hz3RtdBZ61W01LtQ5EKzLB3wmLoS9qM14lrUORbrEdeBaL42+tA5G8n9Fs64ma6EO1jkXKkZ9QR8lf1DoQLckEf6cshmKABXgB8NM2GAm4DpiBmVgc8h+3lGeMZltx4APgaUBoHI6UsevAGLvVNFfrQAoCmeDzisVQF/gf0FbrUAqxucA4LA6vXsNZKtiMZltbYCZQU+tYpJv8CIwq7LX2tGSCz2sWw+Ood/my2f7u2Q6Mx+LYqnUgUuFgNNuKApNRn6rx1zicwu4AMNZuNW3QOpCCRib4/KBOdTsStam4rMbR+LL9wOtYHKu0DkQqnIxmWw3gHeARZLP93XYFmATMtFtNchBtBmSCz08WQzDwPDAOKKVxNL7kOGrt6XssDo/WwUiS0WxrCrwPtNc6lkIgCXVw89t2q0mu/pgFmeDvBnUg3kvJL5nob98R4CNgDhaHS+tgJCk9o9nWFbAC92kdiw9yAYuByXar6YTWwXgDmeDvJrXp/nHUWn0DjaPxJluAj4E1cmS8VNAZzTYBPIbactdQ43B8QTzqks4fFbaZ6O6UTPBaUWfEewF4GNBrHE1BFA8sBL7A4vhH62Ak6XYYzbb2wFjAhOyjzy0H6pNJn9mtpgitg/FGMsFrzWKoCjwBDATCNI5GawpqbX0BsBSLQ/avST7BaLbVQu2iewII0jicgu4UMB2YbreaorQOxpvJBF+QWAwNURP9o0AVjaO5mw6gJvVFWBxntQ5GkvKL0WwrBQwHhgLh2kZToMQCS4HZwG92q0kmpjwgE3xBZDEIoDXQG+iC710IXKgLwKwDbFgc+zWOR5LuOqPZ1hgYAgwAymscjlZ+R03qS+xWU4zWwfgameC9gcVQGeiMmuw74p0j8c+hJvSfgI1YHLLpTZIAo9mmQ50BcwDQB9+eO8MD7ABWAcvsVtMxjePxaTLBexuLQYf6CE5ToAnQGKhPwZpNKxbYA+xMfVkcp7UNSZIKvuQR+I1Qb+Q7obbkFdU0qDt3DdgA/AzY5IC5u0cmeF9gMRRBfeyuMepAvZqoa1jfQ/4m/uuok84cS/PnP8C/cnlWSbpzyVPitkJN9h1Qz/MATYPKnh31xn4X8Buw2241yQmpNCATvC9Ta/sVURN9RaAkUCLNqyRQHNChjmBXUJvQUv4ej3r3fTX5lfL3SOAkFsfVu/htJKnQM5pt/qhjcu5Dfcb+vuRXaQ3CUYCLwF/8l9B32a0mudhTASETvCRJkpczmm2VUVvuQpNfldP8PRSoQO7m24gHooEY1Bt7O+rja2lfp+1WU0LefAMpP8gEL0mSVAgYzbZA1Gfwg1D79fWAX/Irkf8SerRcvMU3yAQvSZIkST5Ip3UAkiRJkiTlPZngJUmSJMkHyQQvSZIkST5IJnhJkiRJ8kEywUuSJEmSD5IJXpIkSZJ8kEzwkiRJkuSDZIKXJEmSJB8kE7wkSZIk+SCZ4CVJkiTJB8kEL0mSJEk+SCZ4SZIkSfJBMsFLkiRJkg+SCV6SJEmSfJBM8JIkSZLkg2SClyRJkiQfJBO8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INkgpckSZIkHyQTvCRJkiT5IJngJUmSCighRFMhxB9CiFghhCKEaCiE6CqE+EsIkZC8rYTWcUoFk5/WAUiFgxBiInBQUZQftY5FkryBEMIf+AFIAMYAccBZ4DfgX+A5IBGIFUIMBMopijJVo1h1wBCgD9AIKAWcAr4HPlIUJUGLuAo7oSiK1jFIhYAQIgZYqijKUK1jkSRvIIQIAw4BTymK8k3ytq7AT0AnRVE2pim7BqinKIpRo1hDgGhgO7AGiABaAE+g3pA8qMhkc9fJGryUa8l36wHyrlyS8lW55D9vZLOtIEgCWimK8keabTOFEHZgCtAB2JjRB6X8I/vgCwAhRDshxO7kPrUTQohnhBAWIYSSrtwgIcQeIUS8EOKaEOJ7IUSVdGU2CyEOCCHChRC/CiHihBDnhRDjMzhuESHEFCHEcSFEohDirBDiAyFEkXTlFCHEl0KIx4UQ/6I2C3ZNfu+V5D7Cq8lx7RFC9Ev/eSAYeCJ5X4oQYk6a90OFELOEEJeT4/hXCPHkHf5aJclrJZ8fW5J//CH5nNkMzE3etivlPErebgLuSXN+2ZP30y755/5CiMnJ14JoIcRSIYQh+RowVQgRIYSIEULMzuD8HyaE2JRcJlEIcVAIMTJtGUVRktIl9xQrkv+skxe/Fyl3ZA1eY0KIRsA64CIwGdADk4Ar6cq9BrwFLAG+AcoCzwO/CSEaKYqS9o6+ZPI+lyeX7we8L4TYryjKT8n70wGrgNbADNSmwPqofX21gF7pQn0Q6A98CUQC9uTtLybvZyEQADyKekF6SFEUW3KZwckx70w+FsCJ5DjKozbrKcn7vgJ0A74VQhTXqk9RkjT2NXAemAh8DuwCLgNHgKdRrxGnUM+jEMAAVEY9fwFi0u3vVSAesAI1UK8dTsCDer2wAPcDQ5P3+2aaz45E7fNfBbiAHsBXQgidoij/y+Z7VEj+MzInX1rKY4qiyJeGL9STJhaolGZbDdSTL6Xb6h7UE2tius/WSy43Mc22zajJcnCabQGoNxBL02wbBLiB1un2+Uzy51um2aYklw3PIP7AdD/7A/uBX9JtjwHmZPD5b4ALQOl0279DbYYMTP8Z+ZKvwvAC2iWfe/3SbBuavK1JurJrAHsW+9gP+KfZvgg1ua9NV/6P9PvJ6BxErUCcyMF32AA4gBJa/z4L40s20WtICKEHOgI/KopyIWW7oijHUQfSpOiD2p2yRAhRJuUFXAKOAe3T7ToGWJBmf0moted705R5BLXWfjjdPjclv59+n1sURTmY/jsoihKf5vuURK1JbAX+LwffXwB9gdXJP6aN4+fkfWW7H0mSsjVPURRnmp93AAKYla7cDqCKECK1dTfdOW5IPj+3APcKIQyZHTD5yZmOgFm5uYVRuktkE722ygGBwPEM3ku7rSbqyXgsk/040/18Tkm+fU7jOtAg3T7rkK4rIF1saZ3KqJAQ4iHgdaAhkLbvLicjZssCJVCbHJ/OYRySJOXemXQ/O5L/PJvBdh3qzfVVACFEK9SBci2AoHTlDWn2lUoIMQB4G/hWUZRpdxS5dNtkgvcOOtSE2Q21qTy99P1tGZUB9SYh7T73A2MzKZv+xI9PX0AI0Qa1i+E3YBRqN4ATGAYMzGS/aaW0IC3gv8FD6f2Tg/1IkpS1zK4JWV4rhBDVgV+Aw6jXirOoI+a7o/b339IKLIToBMwDbMCzdxS1dEdkgtdWBOokFjUyeC/tthOoJ9wpRVGO5tGxTwD3ofaV3+7zqX1R4++iKEpiykYhxLAMymZ0jCuoz87qlTTP9EqSlGv59Yx5D9SWuZ6KoqS2Aggh0nfhpWxvjjpyfjfQX1EUVz7FJeWA7IPXkKIobtRnQ3sJISqlbBdC1ECtradYjnqnPTm535o0ZYUQovRtHH4JEAo8lf4NIUSgECI4B/two15Y9Gk+a+TWEfigDiS8aUrN5O+/DOgrhKiXQRxlcxCDJEnq+ZVpf/gdSKnhp153kvvdb7mJF0LUQa2124GH0vbdS9qQNXjtWYDOwDYhxDTUZDkaOIDar42iKCeEEK8D7wFGIcSPqDXfakBv1EfPPsrlceejPvY2PflufFvyscOSt3dBvQvPig212W6dEGIRan/5c6jjBxqkK7sH6CiEGIs6av6Uoig7ADPqgL4dQoiZwEHUaS7/D3WATqlcfi9JKoz2AAOEEJ+gPlIXoyjK6jzY73rUJvnVQoivUR/Jewq19bFiSiEhRDHUgbElgQ8BU7q6yAlFUf7Mg3ikXJAJXmOKouwRQnRDTdBvofZxTUIdABeWppxVCHEUtd9rcvLms6gn4KrbOK5HCNEreX9DUG8U4oCTwGdAtl0BiqJsEkIMR03SU1EH4k0AjNya4Mei3oi8jTqwcC6wQ1GUy0KIZsnfuQ9qX/5V1OduJ+T2e0lSIfUVaoVgGOo5fRr16ZQ7oijKkeSJq95GvUZdAqahdq+lHYFfGkiZdMuawa7mAjLB32VyLvoCKrmWXldRlJpaxyJJkiR5H9kHXwAIIQLT/VwTdZTqZk0CkiRJkryerMEXAEKIi8Ac1Obxe1CnhiwCNFIUJbNn3yVJkiQpU7IPvmBYBzyGOm9zImpf1USZ3CVJkqTbJWvwkiRJkuSDZB+8JEmSJPkgmeAlSZIkyQfJBC9JkiRJPkgmeEmSJEnyQTLBS5IkSZIPkglekiRJknyQTPCSJEmS5INyNdHNnj17QoBKyBsD6WYe4ELjxo1jtA5EynvyvJcKAHmNuQ05nuhmz5499+t0uuk6nc5AmrWBJQlQPB6Pw+PxPNu4cePtWgcj5R153ksFhLzG3IYcJfg9e/aE6HS630uUKFG+XLly14QQcvo7H+FRFFAQCgoChA4FEAoCBQSI7K/piqKIiIiIUjdu3Ljs8Xhay7ts3yDPe+/n9niEy42/y+Pxd3kUP7dH0QFCUc95oUdRShGli8TgEUI97wUCncCj1wmXv07n9NcLp06n7f97eY25PTltoq+k0+kM5cqVuxYcHByfrxFJeSLJ5fFPcLqLJro8RZJcniIuj8fP7VH83Iri5/Yofh4Perei+CmKkprBy/gnxlVyXwhKtysFnZ8LnZ8TnV8Sen8nev8kdP5O9AHq3/UBSeXKlbsWFRVl8Hg8lcjBWvKSV5DnfQHn9ii6uCRXUFySO0g9zxV/l9vj7/Io/m6P4u9RlCy6VQSBQkkKFdcDrntKpNmupPnTA4BOCLe/XiT56XVOf50uyV8vkvz1uqQi/rqE4AC/uLtxAyCvMbmX0wSvA4S8gy94XG6PPibRFRKX5A5OdHmKJrk8RZ1uT5GsT+xcEXhc/nhc/kD65J9K5xJu/4Trzmo7LeNY/dc6YCcWx9k8ikHShjzvCxC3R9HFJrqC4p3uoPgkd3CCyx2U5PIUvdP95qSX1qMo+kSXEpjo8gSmf08glAA/XUJggD420F8fG1xEHxvor48XOWj9y43kf4cCORYkx+Rqcl5EURTiktyBcUnu4LgkV0h8kjs4yX3nJ3heEHj0wpOkD0i8OgIYAYDFcBHYBexM/dPiuKFdlJLkPVwejy4q3mWITnAa4pPcIUluT5F8OZAguYfu9igoItHlDkx0uQNvQBkAnRCeIv66uEB/fWxIEb/o4kX9o7Ru5i+MbjvBG822xnkZSFp2q2lPfu07p3bt2lW0V69eNc+fP7//bhxv8ODBVXft2hWS8vOpU6eKvvHGG+fMEydGzp67sNKH779bRqf30zudTh7sYmL0+NfJ6A5ZURSmf/o+a39cSkBAACVKlebbJasB+OaLj1m19HvOnDrBJzPm82BXU4ax7P77ICNeeZMkp5MJo4byRP8eAGz6fSeLV63n6w9ez+nXqgj0TH4BKFgMe4HlwDIsjiM53ZFUMOTXeV8QzvnshIWFhf/555+HS5Ys6cmvYyQ43QGOeGeJ6ARXifgkd4iCkqvEe+CvvXw45VXiYmMRQvDypHdo3uoBAE6fOsG7r73CtcgruNxunnlxHL0f7kVGYye3blrPlx++g+Lx4HK5GPrsC/R85DEgZ9cRj6Lodu/aHTJl/AshTqez/JMjX1QGDh7sKF7U//rWX9a5lyxeXGLRokWnb+NXJOWCrMEXEPPnzz+T8vfjp+xB9eqEhT348KMlD12IrlyvRTuxZL0JnU6HMymJJ/p0I7xBIzp0e+iW/Sya9TVHD/3L8o1/4B8QQGTE5dT3mrduR9eefZn8yugsY7F+OZvP3xpH4wbh1O/Qnyf69yA+PgHLJ1+zavbUO/maAmic/HoHi+EQarJfjsWx9052LEn5xel04u/vz+HDhw/m9b4VRSEm0RUcFe8qEZ3oLHEnTe6KojDmqcG89cn/uL9NO+wnj/PMY71YuXkXRQMDmTR2FA/3f5w+jw3h2tVIBpra06JZM2pUIqXpO3U/E194hm9/WE2tOvU4f/YMvdo3o0O3hwgOKZbj68isr6YyYYqVOg0a0q9TK9HjkcdKXLkeXeKtd99nxvzFURHRCWVLBAbcCPDTOW/3O0tZ8+q+jAULFpS4995769auXTt85MiRoSVLlrzvyJEjAQBPP/105Xr16tUJCwsLb9KkSe2///67CEBMTIwwmUz3Vq9evW7t2rXDW7VqVTNlf2PHjq10zz331Ktbt26dkPxAMQAAIABJREFU+fPnl0p7rGXLlhVv3Lhx7bp169apX79+ndWrVxcDaNmyZc3Zs2eXTCm3Zs2aYnXq1AnP7XdxexTdlejEMscuR4d9OXNOnZZtO4iQkmVCFBQRHFIMnU79X5WYmIAzKTHD2jvAnOlf8OKrk/EPCACgTLnyqe/Vb9SYyvcYs43F39+PuPgEEhIS0Scf1/LJ17w4fCAlDMVy+9WyUgd4DdiDxXAKi+ETLIZWWAzycSwpQxs3bgxu3Lhx7dq1a4fXqlUrfMGCBSUAfvvtt6BGjRqF1apVK7x+/fp11q9fHwzw6KOP3jNp0qTUk+Dw4cMBZcqUuS8xMVGsXLmyWMOGDcPq1KkTXqNGjbqffvppmZRyffv2NT7yyCPGJk2a1K5Vq1ZdACFE48jISD1kfn1JKWc2myvUr1+/TmhoaP3PPvusdMp7e/fuLdq6deuatWrXrlsrrM59k62fNjwVGRt25NSZCi8+9UTRgQ91oG/Hlnz5wdu5/t3cuH6N69ciub9NOwCM99agWHEDv2/eCMCRg//Sun0nAEqVLkOtOvWwrVyuz6gGL4Qg2uEAIDYmCkOJUgQEqF8xp9cRPz8/EuLjSUpMRK/TAzDtUyuPD38W/6BixS85EqoevhTV4Ojl6LDLUQnlXG6PPtdfWsqS19bgz58/7zd69Gjjr7/+erhRo0YJn332WekbN26kfh+LxXKpUqVK5wBmzJhRcvTo0VW3bt16bPny5QaHw6E/ceLEvwCXL1/WA3z//feGVatWldy3b9/BEiVKeHr37l0tZV8HDx4MeOuttypt2rTpaKlSpTwHDhwo0r59+9pnzpzZP2TIkKvz5s0rPWzYsOsAs2bNKj1o0KDInHwHRVGITnAVuxaXVCYmwVUiZWDcj4sXMvb1N28q+9fuHbxlHsMZ+0n6D3qS9l2637K/mOgorkVGsHn9WjbYVgEw+KlRdO3ZJ1e/20ljnuKZCe8QGxfPh2+8xF8HjnDy9Hnef+3FXO0nl4zAmOTXWSyGr4GZWBwR+XlQyXtcvnxZP2DAgBoLFy480bVr1xi3201kZKQ+ISFBDBgwoPqXX355um/fvlE///xzyMCBA2ucOHFi//DhwyNHjRplfPPNNy8DfP3112V69+59tUiRIkrLli3jdu/efdjPz4/Lly/rGzVqFN6zZ09H9erVnQD//PNP0Pbt2zNsks/s+pLyfpEiRZT9+/cf2rdvX9HWrVvXGTVq1FVFUejdp2+t58e95ur8cL+iANevXQXg9TGjGDF6LE1atMLlcvH80EdZv+ZHOj/UK8e/n5KlSlO2XHl+Xr2CLj16c+CvvdhPHufCWbVxMLz+fdhWLGHYyBc5d9rO33t2UqVyZbUPPg0hBB98NYuxTw8hMCiIKIeDT2bMS6005NQzL43nLfMY4uPjGPPamxz+dz/nz5xmzMQpN5VLcLqDE5zu4IjoxNDiRf2ulw4uciWkqF9srg4mZchrE/zmzZuDa9euHdeoUaMEgNGjR18dN27cPSnvr1q1qvj06dPLxcbG6j0eDw6Hww+gSZMmcRMmTCg6aNCgqm3bto3u16+fA2Djxo3FHn744WulSpXyAIwcOfLK8OHDQ5L3ZTh9+nSRli1bhqXsXwjB8ePHAwYNGnT91VdfrXL69Gn/EiVKuDdt2lTiq6++ynL0uMvj0UVGJ5W9HpdUzun23HTW7N3xB3ExMbR5sPNNn2nYpDnLNv7BtauRvPz0EPbu+IPG97e6qYzb5cblcpGQkMDC1Rs5f/YMT/TqQrUaNakdXj/Hv9s6Ne/lt+Xfqvt0u+n82Cjmf/423/24jqW2jRQPCeaTyS9TskTxHO8zl6oAbwOTsBh+AL7E4pCTWxRyv/76a0i1atUSunbtGgOg1+spX768e+fOnYE6nY6+fftGAXTp0iWmdOnSzu3btwd16dIlxuVysWXLlqA2bdrELVmypPSPP/54DODy5ct+jz/+uPHUqVNF9Xq9cuPGDb99+/YFpiT4hx9++Hpm/e2ZXV9SDB8+/CpAo0aNEvR6vfLX4ZOhF65cL5PkdPp1friff0q5kqVKExcXy85tW7gW+d+9bFxsLPYTx3P9O5r67UKmvjuFb//3KdVrhdGo6f3o/dTQ3vp0Gh+/9Tr9u7ShYmgVmrVqi16vB24e/OZyuZj5+Ud8MmMeje9vxYG/9vLi8IEs3bCNkqVKZ3TYDN1bszazl60F1OvIs4/34Z2p0/npx6VsWLuK4JBijJv0DsVLqI/oKYqic8Q7SzvinaWL+unjSocEXC4ZHHBdJ5/iuG1em+CzcuzYsYAJEyZU/eOPPw7VrVs3cceOHYEdO3asDRAeHp50+PDhf9esWVNsw4YNxSdPnlz577//vqVvLW0TuKIotG7dOmr16tWnMjpe9+7dr8+cObNU2bJlXS1atIiqUKGCO32ZiRMnVli+fHlpdHq/l157U9eybYcMu0dWfL+AHo88mnzi3apU6TK0frAT620rb0nwhpIlCQoO4aHe/QEIrVKVhk2b8+/f+3KV4NOaOnMRjzzUiRKGEN6aOpN/Ni5m/jIbU79ZyJRXRt7WPnMhAHgceByL4U/gQ2AlFke+DXKSfEPa83fgwIFXZ86cWSYqKup6yZIlXU2bNk0AePrpp+/p3LmzY926dSd0Oh3h4eF14uPjU8/LkJCQW85jyPr6kiIoKEiJT3IXjYhOqKD389dHxiRWcGf2PFry9vkrN1CkaNZd8C8/8wRn7ScBmPH9SkqUvKknkdrh9Zm2YGnqz73aN6dGLbVeElqlKp/MmJf63shB/aj5wAO3BHXk3/1EXL6Uen2p1/D/KF+hEocP/EOLB9pnGV9mFnwzjU6mhylmMDDj84/4Yf3vrFm2mAXfTmPUy6/eUj7B5Q46fyO+2uWoxMqlgv0jyoQUuXJbBy7kvLYPvl27drFHjhwJSun7mjZtWmmn0ykArl+/rvfz81OqVq3q9Hg8TJ06tVzK506cOOEvhODxxx93TJ8+/ZyiKJw8eTKgU6dO0atWrSp1/fp1ncfjYfr06an9cT169Ijatm1b8R07dqQ+A/rrr7+mPhM+YsSIyEWLFpVZsGBBmWHDht3SPB/vdBd59uXXivzwy44iS9Zv88ssucdER7Fh7Sp6DRh00/ZTx4/i8ag5LTYmmq2/rKdWnboZ/l66PdyXbcl9bo7r1znw1x5qhmVcNjunzpxnw9btPDO4L06nC5fLjRACndARE3vX5z1pgTog7yAWw1NYDPnzyJBUYHXo0CHm9OnTRdatWxcCaq3w8uXL+gYNGiR4PB5WrFhRHGDDhg3BkZGR/vfff38cwFNPPXXVZrOVnD59etnBgwennp8Oh0NvNBoTdTodP/30U8iRI0cynechrayuLynOOxKqHo+IruuId6ZWeY3Va1I0MIiffvwvAV+/dpWg4BCatmzDrK/+G8Aacekily+ev+XYH389lyU/b2XJz1tvSe4AVy5fSv37skVzCQwMolnyKPqrVyJSryPbNv/CyWOH6dnnEU/6GnyFSqFERlzm5DH1IZczp05y9vQpjNVr5OTXc4tzZ06zfetmHhk0DJfTicvlUq8jOh1xsVm3xLs8Hv+I6MTQw5eiG0TEJJZTvDhnacFra/ChoaGuzz//3N67d+8aAQEBStu2baOCgoI8pUuXdteuXTupZ8+e18LCwuqWLFnS1b1799Rnr/fs2RM4adKkyoqi4Ha7Rb9+/a41b948vnnz5vE7duwIbtiwYXhISIi7Q4cOjp07dwJQr169xFmzZp185pln7omPj9c5nU5Rt27duPbt258CaN++fZxer+f06dNF+vTpE5VyrESnO+CiIyE0KsF565mYgXWrlhNe/z7uqVb9pu0/r17Bz6tX4Ofnh9vtppPpYfo8NgSAf//ex1cfv8v/5v0AwAvmSUwa+xyL56lN7MNGvkj9RuqTTTM++4gfFszm+rVIjh85xHtvjGfxui2UKl2GjLw46UOmTnkFIQSG4sUY2Lsr9Tv0JyQ4iMXTrDn6/5QPagMzgDewGMxYHIu0CkS6u8qWLev+/vvvT4wbN67KCy+8oNPpdEyaNOn8wIEDHYsXLz7x4osvVp0wYULlIkWKKAsXLjxhMBg8AEaj0XnffffF/vLLLyXmzp2b+mjW22+/ff6ll16qarVaK9WtWzeuQYMGOer3bdasWXxG1xeX26O/FJVQESA6wV2qeLpbUD8/Pz77diHvvTGBb778BJ1OR/8hw3lk0DDe/XwGH735Gn06tEAIQWBQMG9YP6F8xdBc/Y6WLZqLbcUPoChUq1GLT7+Zn9qasWXjOmb9byo6vZ6y5Svw5dwlFA0MBAGb169l84Z1WD78nNJlyzHJ+injRg5Dp9Ph8Xh49a0PqBhaBcj9deSDyWbGW95FCEGx4ga69+pHv06tCAwK5oOvZuXoe3kUReeIc5a9Guf2TN91feCuH2xv2q0mV65+OYVQTueiD/Pz81tXs2bNmKCgoIS7EFeOXL9+XZfSRzZ//vwSkydPDj158uS/WseVcqJfj3OWSzsVbEGXyVS1OZLgUjh1/grVtr1M0Zi7OoHdn8BLWBw77+ZBC4OCet4XNG6PoouITih3NSapgkdRvGokeKDOk1RDd0Hsd1X2z760thRXEhEXzmH5NYLz0e6jgNluNa3QOq6CzGtr8ADvv/9+uRUrVpTyeDwiJCTEPW/evAz7yO8Wj6KIK9GJZSNjEiu6PYpX/269SAtgOxbDIsCMxXFO64CkwsGjKCIyJrFMZHRiRZdHKfAJMmNK6n+8TC1gudFs2waMs1tNf2odUEHk1UnIarVeslqtl7Ivmf9uxCUZLjoSqjjzazpJKSsCdTBebyyGD4EPsDjiNI5J8mExCa7gczfijHkxF7zW7mCW2oKgFfCH0WxbBrxit5rsGsdToMgBC3coyeXxOxUZe++Za3E1ZHLXXBAwGTiCxfC41sFIvsfjUcS563GVT0XGhPlCck/mjTX49PoC/xjNthFaB1KQyAR/ByJjEksfvRxdLzrBWTL70tJdVBlYgMWwCosh45E/kpRLMQmu4KMR0eHXYpPK+0JG9EHFgJlGs22N0WyroHUwBYFM8LchyeXxP3ElpsaFG/FGbxtUU8j0APZjMXTOtqQkZcJHa+3/8b2JZEzAAaPZ1l/rQLQmE3wuXY9NKnH0cnTd2ESXQetYpBypAKxLnuc+d3NtSoWerLV7rdLAYqPZ9p3RbMvRY8q+6PYH2VkM+bZcLBZHgVs60qMo4sKN+NBrsUnlsy8tFTACdY779lgMA7E4DmkdkNfKr/O+gJ3ziqJw0ZFQ8WpMYiVfT+xePsguO48CbY1m23C71fST1sHcbT5Zgz9y5EjABx98UDbtttDQ0Pp//PFHYGafyUqiy+1/IiKmdm6T+7FD/zKsb3cebteMPh1aMOnl0STE/zcDXNSNG7z6/FP0eKAJvTu0YOp7lgz388tPa+jXqRX9u7Sh94P388X7b5Eyf0FcXCxvjH2Ovh1b8nC7Zkx9z0Jmcxu8aX6Jvh1bMmJAT6Kj1JWiFEVh1OB+nLVr+oTh3dIQdeW6Z7UORLo9KStIhoWFhe/cufO2zueMrFmzptjSpUuLg/pcu/1qbPXIXCT3f/bt5pHOrenxQBNGDOjJ5YsXMix34K+9DOnVmeY1K/HS8JvHgSbEx/PaS8/Sp0ML+nRowQvDHuPa1YzXrcq7c1mQfiY7H1QRWGs026YYzTafvptJzycT/LFjx4rMmjWrbPYls+eISyp+PCImPN7pDna5cjdxUkDRorz69ges3LyTH9b/TnxcHLOnfZb6/qRXRhNWtwGrf9vNil/+ZNDwjOd2v79N29TpKZes+40/t25m0zobAN9+8Qkej5ulG7axdMM2jh48wAbbylv2cezwQc6cOsmyjX/QpEVr1ixfDMDy7+bRtGUbqhir3fIZHxUITMNiWIHFkG+r5Uj5Y8aMGWUnTJhw8fDhwwebNWuWJ/MlO51ONm3aVGzt2rWGRKc74HhETFh0gqtETj/v8XiY+PzTjLO8x+rfdtOmfSc+nDIxw7Jly5dn3OT3eGXyO7e8t3ThHBLi41m28Q+W//InpcuWY+70z28pl7fnsq/n9ptMAr43mm15dmNY0Hl1gl+2bFnx8PDwOrVq1Qpv2rRp7T179hQFeP7556va7faiYWFh4Q8++GDqBMpLliwp2bBhw7DQ0ND648ePr5iy/cyZM37du3e/t379+nVq1aoV/sILL1QCuHgjvmJ47Ro1P3p7kt/AhzrwxpjcLa5yT7Xq1KpTD1BXvqp3X6PUpRvPnDrJwX/2Mfjp51LLp127Pa2s1oM/cugArdp2QAiBv78/97dpz5pli2/Zh7+/P86kRDweD/Fxsfj7B3Dl8iV+WrmMwU89d0v5QqAX8BsWQyWtA5FyZujQoVV2794d8uabb4Y2atQoDDK/BqxZs6ZYWFhYeMpnd+3aVTQ0NLQ+qC18xYoVazhy5MjQ8PDwOu+99165efPmlV3x44+l72vYsP5nH72XqwRw8J+/0Pv50axlGwD6DRrKlo3rSEy4dfK/8hVDqd+ocera6mkJIUiIj0udrz0uNoZyGUxVK8/lO9If2GI02ypmW9IHeG2CP3/+vN/w4cPvnTNnjv3o0aMHn3zyySv9+/ev7vF4+OKLL84YjcaEw4cPH9y0aVPqmos3btzQ//XXX4d37959aNq0aeVPnTrlDzBw4MBqzz33XMT+/fsP/fvvvwf37dsX/PmM2TWvxCRWAnXRloWrN/LeFzNvO964uFiWfz+fdp3VddxPHjtM+YqhvD1xLI92b8czA/tw6MA/mX7+r9076NuxJe0b1aJZywdS14MPr9+Q9baVJCUmEhcbw68/27hw7swtnzdWr0nTFm14tFtbzp85jalPfz6cMpGxr72Jn59Xz3d0J+4D/sRiqKN1IFL25syZc7ZevXpxVqv17L59+w5ndQ3ITkxMjL5u3boJBw8ePDRp0qSIx4YMjTX1HqBf8vNWnn1pfK7iunThXOo87aDekAeHFLtp4Zec6Pf4UIKCi9G+UU0ebFSLmOgoHhv61C3l8vpcVnxvFH12mgK7jGZbI60DyW9em+C3bNkSXKtWrfiUZrqRI0dei4iI8E9J2hkZPHjwNYCKFSu6KleunHT06NEiUVFRuu3btxd/+eWXq4aFhYXXr18//PTZcyFHj51Ibb7t+chjNy0/mVvOpCTGj3qSFg+0p0O3hwBwud0c+GsPXXv25fu1mxn81EieH/ooTqczw32krAf/844DHNz/F3t3/AHAk6NeomJoZQb17MjoJwZQr2Hj1PWf0xs9/nWW/LyVj6bPYftvm6lQKZRKVaryxtjnGPv0EFYsX14YH/mrCmzDYmijdSBS7tzONSCFn5+fMnLkyKseRRFnrsVVdeFn0Hqs2Z+/bUJRPPyy5wi/7DlMseIGvvro3QzLZncur1u1PIdHLVRd0mmFAr8bzbY+WgeSnwpV1S0wMDD11l6v1ytOpzN1sZ29e/ce8gsoqrdHxtZMcLlvuvEJCg7JcH8njh7m1efVO+yGTZoz8Z2PbinjdDoZN+pJyparwIQp/63AVrFSZcpVqJjarNe6fSdcziQunjtL1Wr3Zvod0q8HXzQw8Kb9fvu/T6mevP5zZmKio5j79RdMW7iMb7/8lCb3t8LUpz+Pdm4Z8GTnuQQG+t6jvtkoCWzAYhiExbE029JSgefv76+krcmnXecdoGjRoh6ETnfySmz1uCRXlmMxohwORvRXb8wrVbmHqd8suOn9CpUqc/H8fwssxcZEExMdRdnyuZtrZemiuXR/uF/qmvDdez/Ct19+kuVnMjuXH+nShnaduqmrxWVJoRAn+SBgqdFse91uNWV8J+XlvLYG365du9ijR48G7tq1qyjAjBkzSpYvX95ZrVo1Z4kSJdzR0dE5qo0aDAZPs2bNoia+9kaVE1di6iS43EGZrcWcXvVaYamD3zJK7i6XiwnPDcdQoiST3p96UytAeIOGBIcU4+ihAwDs37cHRVGoUOnWPres1oOPiY4iPl6ddv3cmdP8MH8WQ54enWXcn703hWdeGk9gYBDxcXEIIRBC4HS5SMqkBaEQKAIsxmJ4UetApJzJ6hpQu3btxAsXLhS5cOGCH8Ds2bNLp//8ySsxNVOSe3BIMaKjotIXAaC4wZB6nqdP7qCeyy6nk51/bAVg6YI5tO3YNTVR51Tlqkb+/O1XFEVBURS2/rKe6rWz7j3K7Fx2OZ04nUk5Om5ha59PRwDvGM22L7QOJD/cwXPw2j63WqlSJdc333xz8oknnqjmcrmEwWBwL168+IROp6N58+ZxtWrViq9Zs2bdKlWqJKbth8/I/EXfX3hx7Cu1e7RrLu5kLeb0fl69nF9+Wk2tOnUZ0PUB4L+avhCCtz+dxpTxL5GYEE9AQBE+/noeAUXUwTfPDXmEUS9PpO59jbJcD/7cmdOMGzkMPz8/9Ho9r0x+l7C69TONad+u7SQkJNDigfYAPPrECCaMHsHsaZ/Rp29fl6F4MS9dFStP6ICpWAxVgVewOAr5tS8DBeh59ayuAUaj0Tlq1KhLTZs2rVOmTBlnx44dHSmfc3sUvRA6fbzTndo092DXh1izfDH9u7ThwW49ctUPr9PpePfzr3nLPIbExETKla/AO59NT30/7blsP3GMpx7tRUJ8HIkJCXRqWpcRo8cw4IkRjBxj5k3zS/Tp2BKAatVr8ob100yPm9W5/FCfARQrnuO5uOS/cxhtNNt0wGi71eQzvw+vXg8+L8QnuYucioyp7b3LPeYdL10PPr98CzxVmJO8L573TrdHf/JKbO1El7vQPCqVlUCdO8nod815KKlssNaxZCfdevD5dZivgZG+kuS9tok+LyQ43UVORcbK5C5lZDiQefVJ8jouNbnXksn9PwKfn8kut54BpmdbyksU2gSf4HQHnLwSW9vl8cjkLmXmRSyGt7QOQrpzbo+iOxkZWzPR5b6tFipf5RPV1Lz3tNFs+1jrIPJCThO8B8h0ClRvk+h0B6g1d5nc80rqPw0f+TeSxutYDOO0DkK6fW6Pojt5JaZmgtNd4JuhtaD4/lS1t2Os0WybrHUQdyqnCf6GoiiupKQkr1+Ny+X26E9dja3pdHu8/rsUJEkewONC74zWOpT88D4WwyCtg5ByT1EUTl+NrZZ2QJ0k5ZDFaLaN0TqIO5HTUfSRHo9ny+XLl03+/v5OnU7nlXd8iqJw7kbCPYlOd6F70DsnnDhFgif3/2s9ClxxJBAUsRe/pIwfNfJyApiFxXAJi2Oj1sFIOXfBkVApJjHn88oXNrL3PVsfGc22o3aryaZ1ILcjRwm+cePGnj179kyKj4+vf+LEibJ46b+L6ERP6XiXIu/kMxGnc+rjlBu38UkFXfw1qh6Zg/DdXj1/YBkWwwNYHH9rHYyUvauxiSWvxiQWijnH74QcZJclHbDQaLY1s1tNR7UOJrdy/Bx848aNz+/Zs6e1x+OpmpvPFRTv/n79iUsxLrPWcRRk7fwOHH9DPyc8+5LpeNwExEegU3K32p4XKg6sxWL4PyyOy1oHo4VDYXXyZT34OocP3dHz9UeOHAlYuXKlYfz48VcAYhNdQfXDat479ZuFWc4LkR+2bFzHJ29PwuN2UyMsnLc++R8hxW6dLM/j8fD+ZDO/b9qAEILHRzzLY0OfBuC3X37mq4/f4/iRQ/Qf/CTjLe9leKyoGzcY8/Rgbly7yv81a8Fr76pjw65djWTcs0OZvmgF/v7ZDDWS+T07BmCl0WxrbreavKqJMleJunHjxklAlpPGFERGs60HkLsVJAqha7qoxKIBPvEMe36qBCzAYuiCxZH9qibSXZGyRPT48eOvJLk8fqevxtXIi7zlcrlytYBLXGwMlnEvMOuHNVSrUYt3Xx/HjM8+ZOzrtz6MYVu+hJPHjrDqt93EREUxoNsDNG3Rhhq161C1WnWmfPQFG9asJC4uNtPj2X5cQtOWbXj2pfGMGNCTY4cPUjMsnI/efI0XX52cfXJH1uBzKAyYbzTbennTM/I+/5ic0WyrDiygEHxX6a7pCLyqdRCFUU6WiO7crXu9lCdkfvlpNYMf7ky3lvcx47P/ppOOjLjMuJHDGPhQB/p2bMmXH7yd+l63Fg349N3J3M4S0b//upGwug2oVqMWAAOGDOenlRkv/PLz6uX0eWwIer0eQ8mSdOnRm3UrlwFgvLcGtcPrZ7pwVAo/P38S4uPweDw4kxLxDwhg268bKW4oQYP/a5qr2KVs9QS8amS9Tyc9o9nmD3yH2rQqSXlpChZDa62DKExyskT0z9v2xH0++/vUdSiioxzMX7meRWs2Mffrz7l88QIAr48ZxYAhI1i05hcWr/uNf//5i/Vrfkw91u0uEX3x/DkqVq6c+nOlKlWJjLiEy3Vr99XF8+eoVPm/ZWYrVa7KxQvncnU8U5/+nLWfYkDXB2jeuh3lKlRk5hcf8/z413O8D0WRNfhcmGQ02x7WOoic8rq+9Fx6D3XtX0nKa3rgOyyGhlgcV7UOpjDIaHnY8ePHV01dHlbo/BzxzpsWleneqx8AJUuVJrSqkfNnT1PMYGDnti1ci4xILRcXG4v9xH+9j3e6RPTdEhQUzMdfz039+UPLRIaNepEz9lOpK9E99cLL1A6/u+MQfJhAbapvbreaDmkdTHZ8NsEbzbauwFit45B8WmVgDtBD4zgKPbcHP3T6WzqcA4r890SsXqfH7XanTsY0f+WGTFd8u90loiuGVmb71s2pP184e4Yy5Spk2I9fMbQyF86d5b7GzdSy585QsVLlW8rl1P59e7h29QptO3ZlaJ9uvPPZ1yiKwqSxo5i1NPOnvBQhJ7rJpWLAEqPZ1thuNeVsyT6N+GQTvdFsqwDMRY4PlfLfQ1gMXj0ZhrfIbHlYo9Ho9BQtXj46OmcDnIOCQ2jasg2zvpqaui2No6KEAAAf8ElEQVSvlohu1a4Dhw78zanj6hNVi+d9S9eefTLcVydTL5Z/Nw+3243j+nV+Xr2CLj165+g7pOd0Opn6noVXJr0DQHx8HEKATieyHKQnM/ttqwe8pnUQ2fHJBA/MA8ppHYRUaLyPxSC7gvJZ2uVha9WqFT5z5sxyixcvPnE11ln2nlrhwdVrhdGnQwteGPZYtvt69/MZnLGfpE+HFvTt2JKxTw/hxvVrdxxjcEgxLB98xksjBvFQ6/8j4uIFnn7xldT3+3dpQ8SliwA81HcA1arXpMcDjRn40IMMfuo5atapC8CO37fQqWld5s/8ihXfL6BT07psXr820+POnf45Pfo+Sumy6mVv1Muv8twTA9TXKxOzjFmRw+hv16tGs62B1kFkJUfLxXoTo9k2FJitdRzeqJtux75pAZ810joOL3UcqIfFkah1IHnFG5aLTXC6A45HxNT1KIqvVlbyVaDOnVTBPzbxVGLxYlrHkp27tFxsbu0G7rdbTQUmoLR86qQwmm1lgFvbzSQp/9UAXsm2lJRnFEXh3PW4ajK5SxpqArysdRCZ8bUT4yOgdLalJCl/TMRiqJJ9MSkvREQnlotLkovI3CnZQn/HphjNtlpaB5ERn0nwRrOtPfCE1nFIhVoQ8InWQRQGCU53kSvRiaFax+ETfKuXVgtFgW+NZluBu1PyiQRvNNuKANO1jkOSgH5YDA9qHYSvu3Ajvopsms8binzaKC+0Bp7TOoj0fOUEeQUokE0kUqH0BRaDz84xobXoBGdITKLLoHUcvkI20eeZt41mW0mtg0jL6xO80WwrjVxIRipYwoHntQ7CV11yJNz+bDDSTWRqz1MGClgu8oVaxkTkXPNSwWPBYljka8vK1p9bP1+Wi93/xP4cLRd7PTapRLzTHZwfMRRWsgafp14wmm1T7VZTgTjvvboGbzTbKgOjtI5DkjJQHLBqHYQvURSFy9EJcmBdHpLj6/JcEAVohjuvTvCABXUEoyQVRIOxGIxaB+ErImOSyiS5PHlyvk/7xMoHltyv+Lt5/Vo+tKgzw+3683f6d2mTYbm42Bjuq1KgumMzpQCnT51gSK/O9HigCQNND3L8SObrqCz/fj492jTG1KoRU8a/iNPpzNF7ab1pfom+HVsyYkBPoqMcahyKwqjB/ThrP5Wn308DzxjNtqpaBwFenOCNZlttYKjWcUhSFvQU4EkwvInHo4gr0YmVclo+o+VZ80K7zt0ZZ3k3X/atBYHaRP+WeQx9Bw5l9W+7GTbqRSaNzXhA+Lkzp/nqw3eZvWwta37fy9UrESxbOCfb99I6dvggZ06dZNnGP2jSojVrli8GYPl382jasg1VjNXy5bveRQGolU/NeW2CR/0F6rMrJEkaexKLQU6+dIciohPLuTwe//uqlOTLD96mf9cH6PFAE2wrlqSWua9KSb76+D0Gmh7kc+sUAOZO/4KBD3VgQLe2jBzUjwvnzqSWv3ThPCMG9OThds14ftijqXPRp6/dfzdnBm+MUXsCVy5ZxEvDH88wxh8WzKZHm8b07/oA82dOy/Y7OZ1O3pn4Mj0eaMKgnp346M3XGf7IQwCYR49g7YofAFg89xsa31suddGYEQN6smf7Ns6fPUPruvfw1cfv8Wj3djzU+v/Yuml9jn+nKS5fuSIO/vMXpj79AejYvSeXLp7nzKmTt5TduHYlbTt3pUy58ggheGTwMH5atSzb99Ly9/fHmZSIx+MhPi4Wf/8Arly+xE8rlzH4qQL3pNntGpJcCdWUVyZ4o9lWDXhE6zgkKQeCgNFaB+HN3B5FdzU2sWLqBiFYsu43ps1fivWNCZw/+1/S1un1LLJtYuzrb7F2xQ/YTx5n/sr1LP5pC9179+Pd1/6bTXjvzj+xfjGTlZt3UqFiKJ9b37ztGI8dPsi0T6zMWmpjybrfSEyIz/YzyxbO4Yz9JMt/+ZPZy9Zy7PC/qe81b92O7b9vAeDPrZup26Ahe7ZvIz4+jqMHD9AgeYnZ6KgoatWpy/drN/PqWx/w4ZTcd/+eP3dBlClXPnVJWyEEFSpV5uKFc7eUvXj+HJVC/5ussVLlqlw6fy7b99IyVq9J0xZteLRbW86fOY2pT38+nDKRsa+9meGyul5KD9z+P6g84pUJHhiDrL1L3mM0FkOg1kF4q6uxiaXdHiX1fO/z2GAAKt9jpHHzluzd8Udq2d4D/qtd/7p+Ldt/38xj3dvRv0sb5kz7nItpEk6bBztTplx5APo+PpTtv2++7Rh3/rGVVu06UrZ8BQD6D3ky28/s2PYbpt798ff3x9/fnx79Hk197/42bdm5bQtut5uTx44w+Knn2L51C3t3/Em9hv+Hv78/AEWKFKVDtx4ANGjclHOnc99/rcVEN6PHv86Sn7fy0fQ5bP9tMxUqhVKpSlXeGPscY58ewrpVy+92SPnhEaPZVkfLALzudil5IoHszx5JKjjKAMOAr7QOxNsoisK12KSsl35Ok54Cg/6bml5RFIY/N4Z+jw/N0bFE8o70ej/c7v8WB0tKyP0CgULkPmem/UzF0Cr4BxRh7YofCK9/H81btWXmFx+j1+to3qptarmAIgGpn9Pr9TfFndaQXp1JiI/HP6AIC1dvvOm90MqhSmTEZVwuF35+fiiKwqUL56hY6dbpBiqGVuZsmpuIC+fOUCG0crbvZSYmOoq5X3/BtIXL+PbLT2lyfytMffrzSJc2tOvUjaKBXn1fLFBb7zTrd/C6BA8MB+RzsJK3GYvF8DUWR4FcVjKncvq8el6JincWTz9yfuWSRYwca+b82TPs3fkn4yzvZfjZ9l26M2/G/+jU/WEMJUvidDo5fuQQdeqpS3j//usGrl6JoHTZciz/bh7N26iJs4qxGls3rcftdpOUlMjGn1ZjvLdGlnE2a9mGWf/7lMiIy5QpV54f5me/YnWzVm1Y++NSuvXqB8DqpYtvev/+1m356uN3efrF8RQvUQI/P3822Fby6TcLs913evN+zLxvvkzZckqdeg2wLV/Cw/0HsnHtKspXqETVavfeUrZjt54M7dONkWPMlC5bjh/mz6Zrzz7ZvpeZz96bwjMvjScwMIj4uDiEEAghcDmdOJ1J3p7gQe2Lf9VuNUVpcXCvSvBGs02HfO5d8k7Vgb7AkuwKSv+JzKD27na76d/1AeLj4pjwppXQKhk/kWTq3Z8b168zYoDahO1yu+nV//HUBP9/zVpgfv4pIi5dpGq1e3nrE7WBpWO3HmywraRX++aUr1iJsLr1SYjPuk+9Zlg4z46ZwLC+3QkMDqZD1x7Zfrd+jw/j2OGD9HnwfooZSlC3QUOuXL6U+n7zNu1YMn8W9yffeNzfui3Lv5tH7fB62e47NxQF3rB+yhtjn+ObLz8hJKQYb378Zer7lnEv0K5TV9p17k7le4yMfNnME727AtCkRWv6PT4MIMv3MrJv13YSEhJo8UB7AB59YgQTRo9g9rTPeKjPAIoV94nZiENQF0H7QouDC0XxnqkOjGZbD/6/vXuP8qOs7zj+ns19c1kSQsgVRyoCUqoYsS2KxSq1Oh4sFm/osQoVQS2CtjpQWkLxMj0ePFW8UARBrRYvgIKjolVRoAoYLhKBUIHhnmRv2WSzm+zu7zf9YyZCIGSTzc58Z+b5vM7ZQ+Ds2fnA8pvPPM888wxcY52jqV7bcfPtX5z+mSOsczTYrawaeKl1iN21evXqQ6ZOnfqjgw46aLCzs3Nr2cffNtqavnb95sOf+s9euGI+N6xJmNfViJM/WwY3M3vOXEZHRzn79FM49PAXctL7zijt+J0drZE5U8bGNozO6CztoBOUjo2w4fFHWfXzDTy2uVYTYWuTKDjE4sB1W2T3LusAInvhSFZ1HWYdoi56towstM5QtFPedjxvfs3RnHDsy5g9Zy4nvvu9pWeozxCvtg72w3jnOyIVrDZT9H4Y7wME1jlE9tI7gD3fQs0xaZoyMDT6jIK/85F+izgT1tvTzWlvf+Z96D87+hg+dM75z1jwZkEFX4qTgBvKPmhtCp7s/uUM6xAie+lEVnWdzaqBOpxX25CVbdk2Do/uM9ZuTyv9wJNs34X78a3rSj+v75G6vWymXYdPzjO9yQ/j05Mo2FzmQes0Rb/z7aNE6uUAwGS6bgI2pmk6NjIyMr30Aw+NLij7mA6rRcOnrTFa7TZbRtrWUSZiNvCWsg9aixG8H8bLgL8Y9xtF6uFtwC+tQ+yGnna7/Yv169cH06ZNG+3o6Chl7NROUzZvGZpXpwXAddXqaHmjrbaXVn3NWpoyvKmf367byuaR2v5/8RbgkjIPWIuCJzsh1mm2QWRX/oZVXe9n1UClhyIrV65sr169+l+Hh4cPv//++/ejpJHeSCudtXFrWztVlmC61/KmeumUoXbVqyClf2iMK9ZsrvOagVf4YTwniYLBsg5Y9d/qdidYBxCZRIuBo4AbrYOMZ+XKlY+tXr365e12+wBKOl+c+/Pecwa2tXVLrgTL6N6waMrg0O2t5+56Jx9jrTb0DLUYq3G7k71l7ljg6rIOWPmC98N4X+BI6xwik+x4alDwACtXrhwBfl/W8e7+ts0jRS7qaG8bbU8ZHn2s8nP0jRFQYsHXYdr71dQjp8ie2PUeno7yw/hFZAsRpQSelzLGFJ1fy/M6P4xLW9RYh1/sX1kHECmAz6quSk+LGnmDdQDXtOioQw80xRKgtN1C6/CLfY11AJGCHGUdoIKOsw7gkhQ0gi9faRu2VfoX64fxYcAy6xwiBXmZdYAq8cN4OfBi6xyu0Qi+dCr4nKbnpck0gt+R9roomUfqaQRfuiP9MN6vjANV/RerE6A02QtY1ZDXok2Ol1gHcFGLDu05UK4OStrNsuoFv9I6gEiBOoA/tw5RIfq8G2hpBG+hlIV2lf3F+mG8AHiudQ6RgmmWCvDDuIMSVxfLdh6tVPfgDbyojINU+RerxTbiAhV85mBgjnUI13hoit6I2yN4dD9O3PCnrOrSCVafdzNjTNH/f+Vb5ofxwqIPUuWC1/04ccEc4DDrEBWggjcyphG8lcJH8VUu+FLuUYhUwIHWASpAF/QGPDwtsrNTeMdV8hfrh/EUwLfOIVKS51gHsJR/3nVBb8FLaWsEb8XNggeWU4M33YlMEqcLnuzff7Z1CBelpFpkZ8fZKXrfOoBIiVwveG1HbUgFb+b5+exVYapa8Hr+XVziesEvtQ7gquwevAreyBSg0C1rq1rwvnUAkRKp4MVEiueBV9r7yeUZFhX5w1XwIvYWsqqr0zqEIRW8kbFUK+iN7V/kD6/qL1f35MQ1B1gHMLTEOoCrxvSqWGtOFrzesCWucXmaXiN4I6nuv1tzsuDnWQcQKdli6wCGVPBGWhrBW3Oy4OdaBxAp2XTrAIZU8EbGmKL9Rmw5WfAawYtrnDzR+mE8C13Qm2l5U6vaAa5wq+D9MPbQrlbiHicLHphpHcBlbTzdg7fl3HPwc8leUyziElcLfpp1AJdpkxtzM4r84VUseJfvRYq7VPBSOhW8uUI7uIoFP2odwFU9adfMoXTG2lbqrU9TxqzzOEYFL6VTwZsrtIOreFJRsRi5NT3k0Bdsuyz/uzSdz+b+xV5//1KvZ9MKr3t4hdc9sszrZrHX37EvA9O7vKHZM9k2bxqt+Z6nhVJ7ydWiq+IgwxmpHpOz5lzBawRfCZ7Xz7z5/em8+fek4+/BMpNtw4u8jb1LvZ5Ny72eLcu97q0rvO72EnrZz9s4db432DmbrXNmMDrfI53veWjksKMqfhbL0LIOINJUVTypqOBraCszZj2c7r/84XT8pz482u0FbO5Z4vVuXOb1Di73uodWeBvGlnk97cVe/9QF3qbp8xiaPZORrqm0FngeLuzTXsXPYhk0YycuGynyh1fupJJEQeqHcQs0wmuqlI6OXroW9qZdC9ekB477/Z0Mb9nf29i31OsdWO5tGFrhdW9b5vW0lnq9HfsxMHUfb7Czk61zpzO2j0e6wPNq+RSGqxe2GsGLy7YV+cMrV/C5UVTwkhti1uwH01mzH0yXrBjveztot/ZjY+8Sr2/jMq9ncLnXPbzC2zC21Otlf69/ygJv04y5DM+eycg+U2jv63nFPqayB/qsAxjRCF5c5tYIPjeANsCQCWjTMWU9CxatTxcsuiN93rjfP4ehTYu9vv6lXu+m5V73lhVe9+hyr7u1xOvrWMjA9C5vy6xOts6bxtj8Do99CozuasFvsg4gYsjJEfx6Ct7CTwRgkM55v0875/0+XT7u905lbHQRG3sXe30b84uBrcu97j/MDsz3Ns+aw/DsmYx2ddBe6Hl7tDLeyYJPomDED+M+YIF1FhEDA0X+8CoXvEiljDF12uMsXPx4unDxbenzx/3+LgYHFnt9fcu8ns3bZweWeT3pYq/PW8jAjC5vy6xZbOvKHzN0suBzT6CCFzc9WuQPr2rBr7MOILK3BpjTNZDO6VqbHrA7396dFJynwtYBh1mHEDHwWJE/vKqbHGgEL6553DqAIV3Qi6sKHcGr4EXsbUqiYMg6hKEnrAOIGHFyBK8renFJoVfxNaDPu7jKyYJ/wDqASInutQ5gTCN4cZWTU/Sun/DELfdYBzCmEby4aFMSBYNFHqCSBZ9EQR/QY51DpCSuF3xiHUDEQOG35ipZ8DnXT3rijrutAxh7kII3/BCpoIeKPkCVC/4u6wAiJUiBtdYhLCVRkAJ3WOcQKdnqog+gghex9ZDjj8htd5t1AJGS3VL0Aapc8LqiFxfcaR2gIlTw4ppbiz5AlQv+NmCrdQiRgt1gHaAiVPDikkeTKCj86ZHKFnwSBSPAzdY5RAp2o3WAirgX0K0KcUXho3eocMHnNLqRJhtCI1cAkihoo9sV4g4VPPBL6wAiBbo5iYJR6xAVoosdcYUKHvgVMGYdQqQgmqHaUeGrikUqIEUFD/k2frdb5xApiO6/7+g6spOfSJOtTaKglI2dKl3wuZ9aBxApwCAawe8giYL1lDSyETH0g7IOVIeCv9o6gEgBrkuiQI+BPtO11gFECvbdsg5Uh4K/Fb0vW5pHF647933rACIF6gZuKutglS/4fJ/q0q54REowCsTWIaooiYI7gEesc4gU5Nr8kdBSVL7gc1dZBxCZRL9IomCjdYgK0yhemqrUwWpdCv6XQK91CJFJoun5XVPBSxNtAX5S5gFrUfBJFLSA71nnEJkELVTw4/kZ2rZWmqf0hbW1KPjc5dYBRCbBD5IoeMI6RJXlJ8HrrHOITLLS15LVpuCTKLgBuMc6h8he+pJ1gJq43DqAyCQaweDWU20KPnexdQCRvfAYJW5yUXMx8Lh1CJFJcnUSBf1lH7RuBf9V9I54qa/L8vUkMo78v9NXrHOITJKLLA5aq4JPoqAPuNI6h8gEtIFLrEPUzCVob3qpv7VJFFxvceBaFXzuP60DiEzAj5MoeMg6RJ0kUfAA8GPrHCJ7yayzalfw+WI7vWFO6uZT1gFq6rPWAUT2whbgMquD167gcx+zDiCyB36dRMHPrEPU1A+B/7MOITJBl1nuWlnXgr8a+J11CJHd9HHrAHWVv4vic9Y5RCagDfyHZYBaFnz+oddJU+rgziQKtPXq3rkM6LEOIbKHrkmi4H7LALUs+Nw3gfusQ4iM4xPWAeouiYLNwCetc4jsocg6QG0LPn/lnvl/QJFduA/4jnWIhvgCeo2s1MeVSRTcbB2itgWf+xoaxUt1nVXmu5+bLN+f/jzrHCK7YQw4yzoE1LzgkygYA860ziGyE9cnUXCVdYiGuRy41zqEyDguTqKgEk9+1LrgAZIo+AHZozQiVdEGzrAO0TT59rX/Yp1DZBcGqdBMU+0LPncmMGodQiR3aRIFd1qHaKIkCr4D/MY6h8iz+FQSBRusQ2zXiIJPomAtelZWqmETcI51iIarxP1NkadZB1xgHeKpGlHwufOAylw5ibPOr9IVfBMlUfA/aI96qZ5VSRRssQ7xVI0p+CQKBoAPW+cQp63GeOcqh5xKts+3SBX8DrjUOsTTNabgAZIo+C+ybWxFyjYC/F3+ZIcULImCB4HQOocI2WNx76riZ79RBZ87Fei2DiHOOTeJAr0foVyfB35hHUKc98kkCiq58LNxBZ/f/zzNOoc45Wb0OtjS5e+kOBkYss4izrodON86xLNpXMEDJFFwJfAN6xzihK1k03Mt6yAuyl/mcbZ1DnHSCPDOJAoq+4h2Iws+9wHgMesQ0nhnJVGg3dVsXQjcaB1CnHNuEgVrrEPsSmMLPomCfuAtaAMcKc7VSRRo1byxfL//k4Bh6yzijF9Rg9tyjS14gCQKbgI+ZJ1DGul+4N3WISST7/39T9Y5xAlDZE/MVP62XKMLHiCJgs8BX7XOIY0yBPxtvveCVEQSBZ8HLrPOIY33waq8TGY8jS/43HvJVjuKTIaTtdd8ZZ1KNn0qUoTPJlFwiXWI3eVEwefvkj4e6LXOIrX3qSQKrrAOITuXRMEI8Ea0wFYm34+o2S1fJwoeIImCh4ATyB5tEJmI76Dd0yoviYJ1ZBf0W62zSGPcC7y1Dvfdn8qZggdIouB64J1AahxF6ufnwDvyFdtScUkU3AqcYp1DGqEPeH0d19w4VfAASRR8k5pNs4i524E3JFGwzTqI7L4kCr4GfNo6h9TaKNmC2vutg0yEcwUPkD+7/HHrHFIL9wOvTaJgs3UQmZCPkN07FZmID+Qzv7Xkpam7s9V+GF9ItuOdyM6sA16WRMED1kFk4vww7iQr+aOts0itfDqJglq/gtzJEfxTnA58yTqEVNITwKtU7vWXRMEQEAC3WGeR2vhC3csdHC/4JArSJApOQffpZEcPAUcnUXC3dRCZHPktlr8GtH+BjOdiGjKz63TBb5dfqa2yziGVcB9ZuddyUY08u/z9FK9GJS/P7svAqfmriGvP6XvwT+eH8Rlko3nPOouYuAs4NomC9dZBpDh+GC8AfgK82DqLVMpFwPuaUu6ggn8GP4xPJpui0eyGW24hWy3fZx1EiueH8T7AdcBLrbNIJVyQRME/WoeYbCqxp0mi4FLgOGCTdRYpzRXAMSp3dyRRsBE4FvipdRYxd14Tyx00gn9WfhgfCnwPOMg6ixQmBc5JouAT1kHEhh/GU4HPAO+zziKlGwVOT6LgIusgRVHB70I+jXcF8BrrLDLpBoG3J1FwjXUQseeH8WnAZ4Gp1lmkFBuAE5IouME6SJFU8OPww3gK8O9A7Z+JlD94EDguiYI11kGkOvwwfiXZC4UWWGeRQq0Gjk+i4BHrIEVTwe8mP4xPBL4IzLPOInvlSuAU3W+XnfHD+I+Aa4FDrbNIIb4OvCeJgmHrIGVQwe8BP4yfA3wNbXlZR4PAB5Mo+LJ1EKk2P4znkd2ae611Fpk0LeCjSRRcYB2kTFpFvwfyd8ofA5xFtkBD6uFm4AiVu+yOJAo2Aa8HzicrBqm3fuB1rpU7aAQ/YX4YH0E23aOpvOpqAZ8A/i2JgjHrMFI/fhgfCXwFfc7r6sdkU/IPWwexoILfC34YzwLOJXu//DTjOLKj3wCnJVHwG+sgUm9+GM8kG81/CM161sVG4MOuz9qp4CeBH8YHAxeSbZwhtvqBs4GLkyhoW4eR5vDD+CjgcrQ3RtVdS7af/OPWQayp4CeRH8YnkO1lv8I6i4NSspPvR5Mo6DbOIg2Vv1v+k8A/oHdWVE0v2ULar1sHqQoV/CTzw3g28M/AmcBM4ziuuBU4I4mC/7UOIm7ww/gYspeTHGwcRTJXAu/Xi6J2pIIviB/GS8mmiv8emGEcp6luB85NouBa6yDinnyb25PJXjW92DaNs9YAZ+scsHMq+IL5YbycbER/EjDdOE5TrCFb3Hh1k17tKPWUz9qdCXwEmGscxxUPkJ0DvqG1Ns9OBV8SP4wPICv6d6Gin6g1wMeBb+lDLVXjh/F+wDnAqegzXpQnyJ5ouCSJAu1FMg4VfMn8MN6fbNr+VGC5cZw6aAHfBT6XRMH1xllExuWH8YHAx4C3ooV4k6WP7J0gF7qyzexkUMEbyV9icxzwfuBVxnGqqBv4EnCRCy+FkObxw/hwsqn7E9E6nInqBb4AXJBEwYB1mLpRwVeAH8aHAKcAbwaWGcex1AJ+Srbf/7eTKNhmnEdkr/lhvAg4jeyd84uM49TF7WR7i/x3EgVbrcPUlQq+Qvww9oCjyIr+BGCpbaJStIGbgG8D30yiYINxHpFC+GE8HXgj2cX8K43jVNEwcBXZrN2N1mGaQAVfUXnZvxx4ExAAB9ommlSDwA3A94GrkihYZ5xHpFR+GD8feA/wdmCJcRxrtwGXkq2I32gdpklU8DWRL9w5lux+/SuA/W0T7ZER4Fdk0+8/A27RCliRP1zIHwm8If86zDZRKdrAr4EYuCaJgjXGeRpLBV9T+f73LweOAP4k/+oyDZVpA/cBd+ZftwI3aeWryPj8MH4eT5b9UcAU20STZgC4jmzW7odJFPQY53GCCr5B/DB+Dk+W/aFkj+EtJ1u4N5nb5qbABuBR4BHgYbJn1O8E7lKZi+w9P4wXkr2X/i/JRvkHU5/H7lrAPTxZ6jfqlc3lU8E7wg/jBWRFvwxYCMzKv2Y+7c8pMJR/DT/lz1vISv0R4PEkCkZK/lcQcZofxnOBlWRl/5L8r881DZXZBtxFtvJ9+9dvkygYMk0lKngRkbryw3hfsrL/Y568gN/+tYTJe/5+M7AeWJf/9RHgDrIyv1uj82pSwYuINFQ+zb+98BcDncA0sq10pwNTyabTt3+1ycp8HU+W+TqNxutJBS8iItJAHdYBREREZPKp4EVERBpIBS8iItJAKngREZEGUsGLiIg0kApeRESkgVTwIiIiDaSCFxERaSAVvIiISAOp4EVERBpIBS8iItJAKngREZEGUsGLiIg0kApeRESkgVTwIiIiDaSCFxERaSAVvIiISAOp4EVERBpIBS8iItJA/w9p7Hy1ALuz+QAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": 120,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"fftma2",
"covariance",
"gasdev",
"fourt",
"cov_value",
"ran2",
"build_real",
"prebuild_gwn",
"clean_real",
"cgrid",
"length",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#FFA15A",
"#19d3f3",
"#636efa",
"#00cc96",
"#636efa",
"#636efa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"Py_kgeneration",
"fftma2",
"generate",
"fftma2",
"covariance",
"gasdev",
"",
"fftma2",
"",
"",
"",
""
],
"type": "treemap",
"values": [
415.639768,
329.579564,
86.059132,
85.89417,
242.61094399984552,
0.15176299999999998,
34.67470900000529,
74.07991799999752,
0.001935,
0.002618,
0.001551,
0.003504,
0.002481,
0.0007800000000000001
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "Time treemap"
}
}
},
"text/html": [
"<div> <div id=\"a1b6f550-83e7-4e3c-a15b-9d2837cabec2\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"a1b6f550-83e7-4e3c-a15b-9d2837cabec2\")) { Plotly.newPlot( \"a1b6f550-83e7-4e3c-a15b-9d2837cabec2\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>time_sum=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"fftma2\", \"covariance\", \"gasdev\", \"fourt\", \"cov_value\", \"ran2\", \"build_real\", \"prebuild_gwn\", \"clean_real\", \"cgrid\", \"length\", \"maxfactor\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#00cc96\", \"#FFA15A\", \"#19d3f3\", \"#636efa\", \"#00cc96\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"Py_kgeneration\", \"fftma2\", \"generate\", \"fftma2\", \"covariance\", \"gasdev\", \"\", \"fftma2\", \"\", \"\", \"\", \"\"], \"type\": \"treemap\", \"values\": [415.639768, 329.579564, 86.059132, 85.89417, 242.61094399984552, 0.15176299999999998, 34.67470900000529, 74.07991799999752, 0.001935, 0.002618, 0.001551, 0.003504, 0.002481, 0.0007800000000000001]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"Time treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('a1b6f550-83e7-4e3c-a15b-9d2837cabec2');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria"
]
},
{
"cell_type": "code",
"execution_count": 121,
"metadata": {
"scrolled": true
},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"/home/cecix/.local/lib/python2.7/site-packages/ipykernel_launcher.py:13: RuntimeWarning:\n",
"\n",
"invalid value encountered in double_scalars\n",
"\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAggAAAIYCAYAAAAIKhT4AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMi41LCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvSM8oowAAIABJREFUeJzs3Xd8HMX5x/HPc5LcrbOxcTcIU2w6xkDAOMHEgAERCAmd0ELoJqEjIIBo4Uih944JNhAIxQhwMO0Hpjg4NNMxPuOGu+SmfvP7Y1fmONWTdbfS3ff9eu1LurnZnedOZZ+bmZ015xwiIiIi8UJBByAiIiLtjxIEERERqUcJgoiIiNSjBEFERETqUYIgIiIi9ShBEBERkXqUIIiIiEg9ShBERESkHiUIIiIiUo8SBBHJeGZ2opk5MysIOhaRjkIJgmSEuBOAM7MxDTxvZjbPf/6FIGIUEelIlCBIpqkAjmmgfC9gCFCZ3nCknXgU6ArMDToQkY5CCYJkmheBw80sN6H8GGAm8EP6Q9pwZtY96Bg6orr3zTlX65yrcLo7nUiLKUGQTDMZ6APsW1dgZp2Aw4BJDe1gZiEzO8fMPjOzCjNbbGb3mFnvhHpRM3vBzMaa2QdmVm5mn5rZWP/53/iPK8xsppmNbKCtX5rZW2a21sxKzew5M9s6oU6xPxSyjZlNMrOVwNtmdpJf3tBxLzWzWjMb3NSbY2aDzewBM1toZpVmNsfM7vLfo7o6w8zsX2a2wszWmdl7ZlaYcJyxfixHmNmVZrbAzFab2VNmFjazzmZ2s5ktMbM1ZvaQmXVOOIYzs9vN7Fgz+yrufftFQr1NzexOv065mS334ytIqFc3zLSXX38JMD/huYK4+ruY2VQzW+Yfd46ZPZhwzO5m9g9/eKrSj+ECM7NGXsuvzWyWX/czM9s/oV5P/32J+nWWmNkrZrZzUz83kSAkfsoS6eiiwLvA0cBLftkBQBh4HPhjA/vcA5wIPATcCmwGTABGmtmezrnquLpb4CUa9wD/BC4AppjZ6cBfgDv9epcAT5rZcOdcDMDM9vFj+g4oxuvyPhuYbmY7O+eiCXH9C/gGuBQw4CngDuBY4MOEuscCbzjnFjT2xpjZIGAG0Au4F/gSGIyXPHUDqsysP/CO//hWYDlwAvC8mR3mnHsm4bCXAOVAxH9vzgaqgRjQ23+du+O9v3OAqxP23ws40m+rEjgTeNnMdnPOzfLr7AqMxvv5zQcKgDOAN8xsG+fcuoRj3gks9dtqsOfFzPoB//HrRYBS/7i/iatjwPPA3sADwEfAeOBv/vt2bsJhx/j73wmsxvtde9rMNnHOLffr3I33ft8OfI6XzI4Btgb+11CsIoFxzmnT1uE3vBOQA3YBzgJWAV39554EXvO/jwIvxO03xt/vmITjjU8s9/d1wB5xZfv5ZeuATeLKT/XLx8aVfQgsBjaKK9sBqAUeiSsr9ved1MDrnAQsAEJxZSP9+ic28x494re1SwPPmf/1Jv9YY+Ke64GX1MypaxcY69f7FMhLiC8GvJhw/HeAaEKZ87dRcWWb4CUc/44r69pAvLv7+x7XwO/AW0BOI78fBf7jX9f9vjTxfh3i17ksofxf/mvcPOG1VCaU7eCXT4grKwVuD/rvRZu2lmwaYpBM9CTep/ODzKwncBCNDC8AhwNlwCtm1rduw5uvsAbv02O8z51z78Y9ft//+ppz7vsGyocBmNlAYCfgYefcirpKzrlPgFeAAxuI7e4GyiYCgxLiOhbvpPp0I68RMwvhnRSnOOc+SHzeOVc3Nn8gMMM593bcc2vwehwKgG0S43E/7WF5H6+348GEeu8DQ63+3JB3nXMz49r6HngOGG9mOX5ZedzryDOzPsC3eCfbhrrm73PO1TZQHq/U/3qQmeU1UudAvITq1oTyf+C9xgMSyqc552bHvZZP8BLVYQnt/szvzRFp15QgSMZxzi0FpuFNTPwNkIPXPd+QLfGGH5bgdTfHbz2Afgn145MAnHNl/rfzEurVldfNY9jU//pVAzF8AfS1+hMR5zRQ9xVgEV5SUHfiPxp4zjm3uoH6dTYG8oFZTdSpi7OxGOuej/d9wuOm3o8Q3nsd75sG2voab4hjYwAz62pmV5vZPLxP6cvwfj69GjgeNPy+JXoTL6G6EljmzwU5KWGexKbAwgbe15a+FwAr+fF3AOAiYDtgnpnN8OebDGtgP5HAaQ6CZKpJwH3AAOAl51xpI/VCeMnBsY08vzThcWOfTBsrt0bKW6I8scA5V2tmk4BTzOxMYE+8HoV/bkA7GyId78dtwEnAzXjzS8rwuu4fp+EPOfXet0R+j8lhZrY78Cu8IaUHgfPNbHe/1yRZzb5m59yTZvYWcCje8NSFwMVm9hvn3EuN7C8SCCUIkqmewZtIuDveJLjGzAb2AabHd2WnQN3198MbeG4EsMw5t7aFx5oInI93YjsAL4mZ2sw+S/G6u7drQZyNxVj3fFvasoGyrfDmdNQlZ4fhzdE4v66CmXXB60HYIM6594D3gMvM7BjgMeAo4H6817qPmfVM6EXYoPfCObcIbyLjnf5kyf8Bl/HjpFqRdkFDDJKR/E+AZ+BN+JvSRNUn8YYgLk98wsxyzWyDT0J+PIvwZsGfEH9MM9sO75Pki0kc6xPgE+APwG+Bx51zNc3sEwOeBX5lZrskPh932d6LwG5mtkfcc93xJl1G8Wbet6U94i/xM7OheJMD/xM3j6CW+j0PZ+P93FrFzHonXqqI9/MBqBtmeNFvY0JCvXPxejCSOqGbWY6Z/WRIxDm3BFgY16ZIu6EeBMlYzrlHWlDnTTO7B7jEzHbCu/StGu+T7eHAn2h8/kKyLsQ7qbxrZg/w42WOZXiJTDImAn/3v2/p8MKleMnIm2Z2L95Y+kC81zkGbwJdBP8SUTO7FViBd5njZsBv/USjLc0Cpvpt1V3mCN7cgDovAMeZWRlegrIHXq/PclrvBOBMM3sGrxepJ3AKXi9LXbI2BXgduM5fP+FjvPfvEODm+AmJLdQTmG9mT/nHWuO/jl3xeoRE2hUlCJL1nHOnm9lM4DS8tQxq8D4t/xOY3obtTPMXzrkK7xr9arzJchc751oysS7eY8ANwGzn3IwWtr/AzH4GXIM35yIf75LJl/C69HHOLTaz0f6xzwa64PVW/Mo5V5JkjC3xJt68givxLnH8HO9yzU/i6vwJrxfhWD+e6Xgn1uaGVZprdze84YT+eEnaDODYup+Fcy5mZgfj/ayOxJsHEcVL9P7RijbX4Q0t7Ic3eTaEdzXGmc65uzbgtYikRN21zyLSgfiXYi4CrnbOXRN0PK1hZg64wzmX2IUvIu2A5iCIdEwn4o2PPxpwHCKSoTTEINKBmNkv8RYrugx41tVfnllEpE0oQRDpWK7Auy/BdLw5AiIiKaE5CCIiIlKP5iCIiIhIPUoQREREpB4lCCIiIlKPEgQRERGpRwmCiIiI1KMEQUREROpRgiAiIiL1KEEQERGRepQgiIiISD1KEERERKQeJQgiIiJSjxIEERERqUcJgoiIiNSjBEFERETqUYIgIiIi9ShBEBERkXqUIIiIiEg9ShBERESkHiUIIiIiUo8SBBGRDsTMCszMmdkFQcfS3pnZWP+9Ght0LB2REgQRkQ1kZif6J6K6rcLMvjaz282sf9DxZTozO9PMTgw6jkyTG3QAIiIZ5ApgDtAFGAOcARxoZts559YFGllmOxNYBjycUP5/QFegKt0BZQIlCCIibecl59wH/vf3m9ly4DzgEGBycGF1HGZmQBfnXPmGHss5FwMqNjyq7KQhBhGR1HnN/7qZP/RwbmIFMxvtP3d0axsxz71mVmVmv4kr38HM3jSzcjObb2Z/NrOT/PYKEo5xgJm9ZWZrzWy1mZWY2bYJdR42szVmNtjMnvW/X2pmfzeznIS6ITM7x8w+84dcFpvZPWbWO6Fe1MxeMLPxZvYBUA6c5j93kpm9ZmZLzKzSzD43szMS9we2BfaKG+J5w3+uwTkIZna4mc3035dlZvZPMxvc2teaqdSDICKSOpv7X5cD04FjgZsS6hwLrAaea00D/snqQeBI4FDnXIlfPhh4HXDA9cBa4A9AZQPHOA54BJgKXAx0wxseedvMRjrnonHVc/x67wMXAPsA5wOzgbvi6t0DnAg8BNwKbAZMAEaa2Z7Oueq4usPxeljuAe4DvvLLzwA+A54HaoBfAXeaWcg5d4df5xzgNmANcJ1ftriJ96supv8ClwD9gT8Be/qvtbQVrzUzOee0adOmTdsGbHgnQgeMA/oCQ/BO2MuAdcBg4FS/zoi4/fKApcDDSbRV4B/nArwPeY/7beyXUO9WIAbsFFe2EV6y4oACv6wHsBK4N2H//kBpfDneGL8DLk+o+z/gg7jHY/x6xyTUG59YDkT9svENvNauDZS9DMxOKJsFvNFA3bH+scfGvd+LgU/xhjHq6hX69a5K9rVm8qYhBhGRtjMN74Q/D+/EvQbvU/0C4Em88fBj4+qPx0so/tmKtjoB/wIOAg50zv0n4fn9gXedcx/VFTjnVgCPJdTbF+gFTDazvnUbUIv3yXnvBtq+O+HxW8CwuMeHA2XAKwnHnIn3niQec45zbmpiIy5uHoKZhf1jvAkMM7NwA3E1ZxegH3Cnc2793ATn9bp8iZcoJGrutWYsDTGIiLSds4Cv8brDFwNfOW+iHM65UjObAhwDXO7XPxZYwI9zFZJxCd6n/wOcc2808PymwLsNlH+b8HhL/2tjMaxKeFzhnFuaULYSiJ9bsCUQBpY0csx+CY/nNFTJzPYErgL2wBv2iBfGS0KSsan/9asGnvsSr+cjXktea8ZSgiAi0nZmuB+vYmjIROBwMxuN1819MN6n2Vgr2pqK10twkZm9Ef+JOEl1PcnHAT808HxNwuPaFh5zCT/tLYmXeNKtd8WCmW0OvIp34j4Pr1emCjgQOJf0TLJvyWvNWEoQRETS52W8k+OxeN333YBHW3ms9/C6v18A/mVmhzrn4k/mc4EtGtgvsWy2/3WJc25aK2NJNBtvQt901/rLFX8FdAYOds59X1doZg0NebgWHnOu/3U49XtMhsc9L+gyRxGRtPFP4JOBI/AmNn7qnPtkA443DTgKryfhUTOL/58+FdjDzHaqKzCzjaj/qX4q3jDCpWaWl9iGmW3citCexLsC4PLEJ8ws18x6teAYdZ/eLW7fMHBSA3XX4s2jaM4HeD0bp5tZ57jjHgBsDZS04BhZQz0IIiLpNRH4I95EvYs39GDOuWfN7CT/uKvw1xAA/gr8Dm+i4G38eJnj93hXMzh//1X+2gKPAv8zs8fxejk2wZu0Nx3v8sRkYnrTzO4BLvETlP8A1XhzEw7Hu6zwqWYO8x+8IYUp/rF6AKfgneAHJtSdCZxhZn/Gm2OxxDlXb06Fc67azC7Gu8zxTTObzI+XOUapfwlqVlOCICKSRs65mWb2Gd4n1sQrClp7zH+aWU+8NQJWOecudM7N87vjbwUuxTvp34GXKNxK3AqDzrlJZrYQKAIuxOvaX4A3Y/+hVsZ0upnNxEtY/oI3lyGKd8XG9Bbs/5WZHQZcC/wdb37EXf7reDCh+tV4ExAvAnriXenQ4KRL59zDZrYO77XegPd+PANc7H66BkLWM/+6ThERSRMz+xBY4ZwbF0DbN+OdtHs457J6Ep40TXMQRETSyMx2AXbCGxJIdVtdEx73wbta4W0lB9Ic9SCIiKSBmW0HjMJbqrcvMCz+0kR/yeTmJgSucc6tSaLNj4A3gC/wxtpPBgYB45xz/5fUC5Csk3QPgpn9wsymmNlC/yYYv27BPmPN7H/+zTa+Nd23W0Syz2F44/l5wNENrFswFFjUzHZBkm2+iLduwE14EyK/x1tYScmBNCvpHgT/cpA98WaN/htvGdFnm6i/Gd462XcD9+OtVX4zUNjQ0poiItnIzLpQfyW/RN85575LRzwiGzTEYGaO5hOEG/CSge3iyh4Hejnn9m914yIiIpIy6ZikuAfeDUziTfXLRUREpB1KxzoIA6h/b+7FQL6ZdW1oGU5/havOCcUbAStSE6JIVukJLHSaoSwiTWivCyVdAlwZdBAiGWwI3kI4IiINSkeC8APe5TXx+gOrmriJx/XAjXGPewLz582bR35+fgpCFMkOq1atYujQoQCrg45FRNq3dCQI7+JdZhNvXxq+TzkAzrlKoLLusZl3r478/HwlCCIiImnQmnUQepjZTnF3CNvMf7yJ//z1Zha/QtjdwDAz+6uZjTCzM/HuZKabYoiIiLRTrelB2AV4Pe5x3VDAI3i3Lx2IdxcwAJxzc8ysEC8h+BMwH/iD1kAQyQ4zZ87sgbd6n5Z2l9aIAaXAslGjRsWCDiabdIills0sHygrKyvTEIPIBli1ahXhcBgg7Jxbler2Zs6cuXsoFLo7FAqFAUt1e5KZnHM1sVjsTefcFaNGjdLk2jRRgiCSRdKZIMycObNHKBR6u1evXv379eu3wl9YTTqY2ljMamPk1jiXE6uN5dQ6cgBzYM5hvW218zI/cw5zWMgRyqkhlFtLKK+aUGiDfu7OOaqqqjotXrw4v7y8/PtYLDZm1KhRVW3x2qRp7fUyRxHp+AaFQqFwv379VnTv3r2xK5YkYFU1sdyKmtouldWxLpU1tV2qamJdqmtjnWpjLrc2Rq7DNdnzMyi0tJmuIYsRyq0mJ7eGUG61932nSvK6ldOp2zpyOtU0F2P37t0r8vLyqmfPnr1xLBbbBPg2uVcpraEEQURSJQSYeg7aj4rq2k5rK2t6rK2q7VFRXdutqibWJeZcTmpbdSFi1Z2JVScufucJ5VST26Wc3K7ryOu6jrxu5eR1rcB+mnaEvJ4IQ+ettNEbLSKSgZxzrK2q7ba2sqbHuqraHuVVtT1qYrG8oOOqJ1abR9XaPKrWxo0fW4xO3dbQOb+MLuEy8rpWNn4ASRUlCCKSNgVFJaNScdxopHBmKo6bTi+88ELPiooKO+yww1o9N6SmNpZTVl4dXl1RE15bVROujbmc6W+8yi3XF6+vs2LZMvr068cTL70JwKrSUq6//EJmffwhuXl57LXPeM65pLjese+79e+8UvLc+sfzv5/LoUcdx8Sr/sAb73zAAcedzfBhm65//t3nH6Zr1y71jnPaRdfyzsxP2HijXjzzwD8I5/fEOceBx53N7ddezOYFQwEXomptPlVr81m9aCihvEqzLmtDtRW13Upnd4OU/BpJAiUIIiJpUF1dTV5e4x/gX3vttZ6lpaU5ySYI1bWx3NJ11b1WlVf3XldV2zNxzsCeY8ex59hx6x9POPFIdt3j5+sfX3HBBEbu8jOuv+0+AJYtSbx1jueUP17AKX+8AICqykr22WVrCg89fP3zw4dtykevPN5krLO+/JZv5nzPp68+ydU33cujT5cw4aSjuH/SM+w9ehc/OWhArLqz1VR1zq0speDD69/jrTPeBp4CJlNctrLJRqXVdF2yiGSNf/7zn72GDRu27fDhw7c544wzBvfu3XvHr776qhPAp59+2nns2LFbbLfddltvtdVW2/zlL3/ZuG4/MxtVVFQ0YPvtt9968ODB299yyy196p5rbr9zzz130Hbbbbf1hAkThsyYMaPrqFGjhm+zzTZbb7755ttedNFFAwHeeeedrhMnTtz4mWee2WjEiBHbXHDBBQMBnn766fxRo0YN33bbbbfefvvtt54yZUpP8IYPStdVhb9bumaLLxet2nFRWfmma6tq8pubULjkh0XMePv/OOi3RwLw/Zzv+PyTDznu1LPW1+nbL3Fl/Ppem1rCgEGD2WaHnZqtGy8vN5fKqmpisRhr15XTKS+PRYuXMvnZlznv1N+16BiGywP2Bu4AFlIcnkxxeD+KwzqftTH1IIhIVliwYEHuhAkTCl5//fUvR44cWXHLLbf0KS0tzQWoqanh6KOPHvboo4/OGTlyZMXq1atDo0aNGrHnnnuu3WuvvdYBdO7c2X366adffPjhh13GjBmz9ZlnnrnczJrdLycnx82aNesLgJUrV4befvvtr7t27erWrFlju+6669bjx49fNW7cuLXHH3/80tLS0pwHH3xwHsDnn3/e6Zprrhn02muvfb3RRhvFZs2a1XnvvfceMePTr5eWx3L6tmY+wfP/msSYX+5Ln75eDvPdN1/Sf+Bgrr30PD7/5CPCvTbinEuL2Xq7HZo8zjOP/5NfH3XcT8pmz53PzuOPIScnxElHHMyZJx5Rb7/hWxSw9+hd2Hn8MWy52SZced6p/P68q/jb5eeQm9uq01EX4Ch/+57i8CPAQxSXzWnNweSnlCCISFZ44403ug8fPnzdyJEjKwAmTJiw/MILL9wU4OOPP+7y7bffdj366KOH1dVfu3ZtzieffNK17kR/8sknLwcYOXJkRU5Ojvv+++/zSktLc5rb74wzzlhW99y6detCJ5100tDPP/+8q5nxww8/dJo5c2a3cePGrU2M9/nnnw/PnTu38+jRo0dgoRwslGs5eaFZ33w3cNPNNk/69TvnePaJx7j46sj6spraWmZ9NJOzL76cKyI38/brr3D2iUfx0rsfNzocsnD+93z03/f46x0PrC/befsRzP/gJcL5PZm/cDEHHn82fTfqxREH71dv/2svPotrL/Z6LJ6b+gZDB/WnYMggTjr3SlatWcsRB+3LkYeMT/r14a3geznwZ4rDbwC3A89QXKaraFpJCYKIZD3nHPn5+TVffvnl543V6dat2/oTTU5OjqupqbGW7BcOh9cvD3zeeecN7tOnT81nn332eV5eHvvtt9/mFRUVDQ4LxGIx9vz5XpV/v3diTlVNrFNjx5/99ZdccvYpAOy0y8+49Lq/N1jvg/emU1lZyei9fpyPMHDQEPoNGMhuo705CWP23pea6ioWzZ/HJpsNa/A4zz05ibH7HUC4d+/1Zfk9e6z/fsig/hx9yP68NePDBhOEOqtWr+Hvd09k6qQ7uP62h9hr91H87rcHsuO+R3Hwfns1OMGxhQxvCGJvYBbF4euAJyku0zLNSdKYjYhkhbFjx6796quvun388cedAe66664+1dXVBrDjjjtW9OjRozZ+bsGsWbM6L168uMk1ApLdr7S0NHfIkCFVeXl5fPzxx52nT5++/tK+/Pz82lWrVuXEnLNlqyv77LzXAQPeeWd691mffrL+TPnph/Uv1th8qxE8OfUtnpz6VqPJAcAzjz/KIYcfTU7Oj6Fts8NOdO/Rk6+/mLX++M45Bgwa3OAxYrEYzz35GIcmDC8sWryUWMw7/65es5YXpr3FyO2GNxoLQNFfbuOKc0+lW9eurF1XjplhZlRX11BVXd3kvknYDpgMfEZx+DiKwyle8yGzqAdBRLLC4MGDa2699dbooYceukWnTp3cXnvttapbt26xPn361Obl5TFlypRvzz777KF33HFH/1gsZr1796558sknvwNqGztmsvtdccUVC0888cRhkydP7rPppptW7r777uuvWDjiyCNLn3jyX/232W6Hkb884Fd2+jkXEbntPq4pOo+K8nVUV1czYtvtidx+f9KvffWqMl596QWefmX6T8rNjGtvuourLjqHyopyOnXqzD/umUinzt6aRmcdfzhnnn8p2+44EoD33noDC4X42Zi9fnKcp198lbsmPkVuTg41tbUcftA+nHTkIY3GM/2/H1FeUcG+v9jda+fEIzj6rEu54c6HOe63hYTzeyb9GpsxApgIXEFx+HpgIsVlza7gmO10LwaRLJLmezGMyM3NfXnLLbdc061bt4pUttVSK1euDPXu3TsG8Oijj/a68sorB3/33XefBR1X6bqq8A9lFUOramMNrzbYjm0fmpOWu3BV1DjmLFjKZtPPp8uaeRt6uChwCcVlTV+XmeXUgyAiWeOGG27o98wzz2wUi8WsR48etRMnTgx0tnt5dW3nhaXlQ9dW1oSDjCMLFQCTKQ6fDJxFcdnXAcfTLilBEJGsEYlEfohEIj8EHUdtzIUWlZUPWrm2ul9zaxdISu0DfEpx+G/AdRSX6aZicTRJUUQkjZavqdzoqx9WbbdibVV/JQftQifgMryJjAcFHUx7ogRBRCQNqmtjud8tXbP5gtLyzWpirv3dNEk2A6ZQHH6O4vAmQQfTHihBEBFJsRVrq3p/vXj1tmsqa3oFHYs062DgE4rDhwUdSNCUIIiIpEhtzIXmLl9bMH/lumG1Mac5Xx1HGPgXxeE7KQ53uCtL2op+YUUkfYrDqblPb3FZu7vd85rKmm7zVqwbVt0BL12U9c4ARlMcPiIbr3RQD4KIZI26uzmOGDFimxkzZnRNfHzeeecNWrdu3QZPHFy2prLPnGVrR9QlB5efdxa/+sUuHL7fGE44dDyzPvpfq457a+RqDhm7G4fvN4ajD9yb6W+8uv65xx++j9/uM5ojxv+c34zbg8cevKfBY1RWVHDOyceuj+e0Yw7l+znfrX/+5MMP4oDRO3LE+J9zxPif8+h9dzZ4nM8+/pAjxv+cbcf+lkeenLK+/LW3Z3DaRde26vW1UzsCMykOt+x2kxlECyWJZJHAF0oKuAfhF7/4xZbHHnvs8tNOO21FQ4/NbNTSpUs/6tu3b6OrJzbFOcf8leVDV66r6hdf/sZ/XmTML/cjNzeXN6e9TOTyi3jp3U+SPv7br7/CLruPoUvXrnz1+af8/rBCXvngC7p1687qVWX0zPeWU1izehW/3Wc0Nz8wqd6dGSsrKpjxzv8xZu99MTMmP3wv00qe54F/vQB4CcKxJ5/BL/cvbDKW8087gWNOOpXDd+rNDuOO4Lt3p1BeXsH4Y8/i+Yduple4bVdDbOOFklrrYbx1E9YFFUA6aYhBRLLCiSeeOPSDDz7oMXv27C533313vx133HFt/OOtt956HcDo0aOHh0IhXn311a//+Mc/DunUqZObO3duZ//OiqvPPPPMJRdffPHQhQsXdtp///1X3n///fMBrriyeOC/n31uQE1NTSg3N4+Lr46w46jdABi734Hr49hh511Z8sMiampqkr7F8Zi9913//ZYjtsU5WLl8Od26dV+fHACUr1tHTU3DKwl37tKFn//yx5so7TByVybec3tScQDk5uZSUV5ORUU3ckJeZ3Shb7ebAAAgAElEQVTxjffwp5OPafPkoB05EdiZ4nAhxWXzgw4m1ZQgiEhWePjhh+d9/vnn3c4+++zFxx13XClA4uPJkydv/M4773wV34PwxRdfdH3nnXe+CoVCbLXVVtuWlpbmvPXWW19XVlbaZptttv3pp5++bOvtd7L9Djuu72GnnBMC+OR//+Xy887iuTdm1IvjsQfuZsze+yadHCR69snHGLLJpgwaMnR92Sslz3HnjRHmRb/j7Isur9d70JDHHrz7JwkMwC2Rq7jj79cxbMsR/KnoCoZsWlBvv9POuYhris7l/vKV/O3yc/ho1ld8N3cBN1z2pw16XR3ADsB7FIcPorjso6CDSSUlCCIiTTjwwANL6271PHz48PJ99913VefOnV3nzp3dFltsUf7xZ1/07jJwywGzPvk4dP9t/6B05Qpyc3OJzv6GivJyunTtuv5YL/z7Cf7zwrM89FTJBsX0/ttvcs9NN3DPpGcw+3HKxL6Fh7Bv4SEsmPc9557yO/baZzwFm2/Z6HHuv+0fzIvO4fLHb1pfdt0tdzNg0BCcczz+yH2cfdJRPPPae/X2HbblcB56+kW2D80hVlvLfkefyaO3XsvkZ1/mqZJp5Pfozo1Xnk/vXhk5LDwYeMufvPhS0MGkiiYpiog0oUuXLrG673Nyclz841BOXm5pRWxgZWVl6LxTj+e8P1/Dv199lwf9BKCqqmr9cV5+/t/cc9NfuWfSv+mz8U+mKKwXueLi9ZMDv/mi4XtIffDudK44/yxufWhyoyf/wUM3YfuRo3hz2tRGX9cjd9/Gqy+9wB0T/0XXrt3Wlw8YNATw7vR49ImnMv/7KKUrVzR6HICb75vE4QftS69wD665+T6euCvCL3bfmZvvf6zJ/Tq4HsDzFIePDzqQVFEPgoiIr3v37rEVK1bktGSS4rI1lX1cTm5XgMrKCqqrqxg42Du5Tn7o3p/UnTrlGe7423XcM/kZBg4eWv9gvqKrb2iyzZnvTeeyc07j5gcmMXyb7X/y3Oyvv2TzrUYAsGL5MmZMf4t9Dji4weNMvPcOXnr+ae6d9Cz54R/nLtTU1FC2csX6BGbai8/Tp+/G9Oq9UaMxzfl+Aa+89R4v/fN2Vq1eQ01NLWZGyEKsWZvxtzbIBR6mONyH4rKbmq3dwShBEJH0aYfrFcQ77bTTfthvv/226tKlS+zVV19t9Lr3xasq+i1eVbH+TN+jZz4TLryMY381jl4b9WH/g3/zk/qX/vFU+mzcj3NOPnZ92b2PP9fkibchxRf+kaqqKq48/6z1ZdfdfDdbbr0tjz14Nx/OeI+8vDycc/zu5NPZ4xd7A95VFG+88jLFf7uVxYsW8I9r/syQTQr4w5G/AiCvU2cemzKNqqpKJpxwJFVVlYRCIXpt1IdbHpzUZEznXPE3br7qAsyMcH5Pjjl0f7YfdwQ9unfjibsiSb2+DsqAGykO96W47LKgg2lLusxRJIsEfpljBlhUWj5w6ZrKQUHH0V5sH5pDOu441U4uc2zOXzIpSdAcBBGRFlpUVj5AyYE04VKKw+cHHURbUYIgItICS1dX9l26unJw0HFIu/d3isMnBR1EW2hVgmBmZ5lZ1MwqzOx9M9utmfrnmNlXZlZuZvPM7CYz69K6kEWkg4iBt7pgR7dibVWvRWXlmwYdRzZb/2vUMX6f7qM4fGjQQWyopBMEMzsSuBG4CtgZ+BiYamYNXrdjZscAEb/+1sDJwJHAX1oZs4h0DKXOuZqqqqpOQQeyIVaVV/dcUFo+LOg4st26aqC2iryK5UGH0hI5wGSKw+OCDmRDtOYqhvOA+5xzDwGY2elAIfB7vEQg0WhgunOubips1MwmAz9rRdsi0nEsi8Viby5evLgwLy+vOhQKdYiPfvHKq2u7LCit2Mw5l455eB1SRcildJKic15ysGRFKb3mvkRObYe5dLIz8CzF4XEUl9VfUrMDSOoqBjPrBKwDDnPOPRtX/gjQyzl3SAP7HAPcCeznnJthZsOAEuBR51yDvQhm1hnvza3TE5ivqxhENkw6r2IAmDlz5uBQKPRMKBTaGNIy2b3N1DpyV5bXDow5zdVqyhBbBqQ496utotfclxjwzSQs1W21veXAzygumx10IMlKtgehL17XyeKE8sXAiIZ2cM5NMrO+wNvmrQmaC9zdWHLguwS4MsnYRKSdGTVq1IKZM2eOicVim9CB1l2ZW1bd5db3yyZVx5wmJTZjWqcLYmYpTKKcI69ieUfqOUjUB3iK4vAeFJd1qMt9U/4Ha2ZjgUuBM4H3gS2AW8zscufcNY3sdj3ePIc6PYGMv3OWSCYaNWpUFfBt0HEk47dFJZPx5kxJM7p0nod1qL6hQOyE15P++6ADSUayWd8yoBbon1DeH/ihkX2uwRtOuN8596lz7hm8hOESM2uwfedcpXNuVd0GrE4yThGRVikoKjkPOCroOCTjnERx+OSgg0hGUgmCc64KmAmsn5npn+THAe82sls3/Mud4tStc668U0TajYKikj2Bpm+IINJ6t1McHhl0EC3VmnGjG4FTzOwEM9sauAvoDtRd1TDRzK6Pqz8FOMPMjjKzzcxsX7xehSnOuWZviCIikg4FRSX9gCfpQHMlpMPpAjxNcbhX0IG0RNJ/CM65J8xsY+BqYADwEbC/c65u4uIm/LTH4Fq8Ka7X4t1Deyle0pAx61WLSEa4H9AyypJqmwETKQ4fQnFZu74kQzdrEski6b7MsaMoKCo5AXg46Dg6ojmdj0ntVQyZ67z2foto/VBFJKsVFJUMBm4OOg7JOtdQHC4IOoimKEEQkWx3H9AhxoQlo3QH7g46iKYoQRCRrFVQVPJ74ICg45CsNZ7i8LFBB9EYJQgikpUKikqG8NMF2USCcBPF4T5BB9EQJQgikq1uAsJBByFZb2PgH0EH0RAlCCKSdQqKSn4OHBZ0HCK+E9rjraGVIIhIVikoKjE0tCDtzz0Uhzs3Xy19lCCISLY5Htgl6CBEEmwOnBp0EPGUIIhI1igoKukONHWreZEgXUpxuGvQQdRRgiAi2eQitJyytF8DgAlBB1FHCYKIZIWCopKNgQuCjkOkGRdRHO4ZdBCgBEFEssef8G4/L9Ke9cX7XQ2cEgQRyXgFRSU9gbOCjkOkhc5vD7eEVoIgItngdHS/Bek4etEOhsOUIIhIRisoKukMnBt0HCJJ+hPF4UBX+lSCICKZ7gRgYNBBiCSpB/C7IANQgiAiGaugqCQEXBh0HCKtdFqQjStBEJFMNh7YIuggRFppe4rDewbVuBIEEclk7WrpWpFWCKwXQQmCiGSkgqKSAcBBQcchsoEOpzi8URANK0EQkUx1PJAbdBAiG6gL3kTbtFOCICKZ6vigAxBpI4EMMyhBEJGMU1BUMgrYNug4RNrIcIrDY9LdqBIEEclExwYdgEgb+3W6G1SCICKZ6JCgAxBpYwenu0ElCCKSUQqKSrYBhgUdh0gb25Li8PB0NqgEQUQyjS5tlEz1q3Q2pgRBRDKNEgTJVGkdZlCCICIZo6CoZCNgdNBxiKTI6HQumqQEQUQyyQFATtBBiKRIDlCYrsZalSCY2VlmFjWzCjN738x2a6Z+LzO7w8wWmVmlmX1tZge2LmQRkUbtH3QAIimWtnkISS9DamZHAjcCpwPvA+cAU81suHNuSQP1OwGvAEuAw4AFwKZA6QbELSLSkD2CDkAkxdJ2d8fW9CCcB9znnHvIOfc5XqKwDvh9I/V/D2wE/No5N905F3XOvemc+7h1IYuI1FdQVNIX2DzoOERSbBDF4UHpaCipBMHvDRgFTKsrc87F/MeNZe4HA+8Cd5jZYjObZWaXmlmj44Rm1tnM8us2oGcycYpIVto96ABE0mSXdDSSbA9CX7xJEosTyhcDAxrZZxje0EIOcCBwDXA+8Ocm2rkEKIvb5icZp4hkHyUIki12TUcj6biKIYQ3/+BU59xM59wTwHV4QxONuR4Ix21DUh6liHR0Pws6AJE0SUsPQrKTFJcBtUD/hPL+wA+N7LMIqHbO1caVfQEMMLNOzrmqxB2cc5VAZd1jM0syTBHJJgVFJSGgyaupRDJI+xti8E/mM4FxdWVmFvIfv9vIbtOBLfx6dbYCFjWUHIiItMKWQH7QQYikSV+KwwWpbqQ1Qww3AqeY2QlmtjVwF9AdeAjAzCaa2fVx9e/Cu4rhFjPbyswKgUuBOzYsdBGR9bYKOgCRNEt5L0LS6yA4554ws42Bq/EmJn4E7O+cq5u4uAkQi6s/z8zGAzcBn+Ctg3ALcMMGxi4iUmeLoAMQSbOdgKdS2UDSCQKAc+524PZGnhvbQNm7aIaxiKSOEgTJNim/pbnuxSAimUALJEm2KUh1A0oQRCQTqAdBss1mqW5ACYKIdGgFRSW5ePd3Ecl4zhGrdbZ4teu6rPiyszulsq1WzUEQEWlHNkH/yyQDOEcsRmjJOjovX+F6rl7o+lbNcQPcbDeo0zducPeoG9BnoevTr4bc/njrDw0uhjmpikd/VCLS0fULOgCR5jhHbe36k3/+moWuT+V3biDfusGdZrtBPaNuwEYLXZ9+teQMoPFbFyQaiBIEEZFG9Q06AMluzlHjnfy7rFjm8lcvcH2rom4A37rBnb91g3tEY/37LqLPxjFCA/FO6m2lLY9VjxIEEenolCBIyjhHdS2hJWvpsnyZC69d4PpWzfE++Xf+1g3qOTfWv88iNurnCA0C0nIb5jgp7T1TgiAiHV3voAOQjsk5qmrIWbKWLiuWufCa+a5v9Rw30L51gzt/GxvUM+oG9F1Cr76O0GBgcNDxNqBbKg+uBEFEOrqeQQcg7Y9/8l+8hq4rlrnw2vmub/V3bhDfukFdZ8cG9Yy6/n2X0Lsv2BA67h2Du6Ty4EoQRKSjU4KQZZyjopqcJWvounKZC6+d5/pVfecGhr51g7rMjg3uGXX9N15GuA/YUGBo0PGmUNdUHlwJgoh0dD2CDkDajnOUV5OzZDXdVix1vdbNdxvXzPa6/bvOjg3Kn+v6911OuA/e5a2bBB1vwJQgiIg0QQu+dRDOsa6a3MWr6Fa61IXXzXP9qme7QTmz3aAu38YG5891/fqtJL833sJXWvyqeUoQRESaUBt0AALOsbaK3CWr6bZyseu9bp7buPY7Nyj0TWxwl+/coF5zXb+NS+nZizQsEZxFlCCIiDRBCUKADq66dvZc16/fKnqE8U7+SgDSp3MqD64EQUQ6OiUIAfrUDdsy6BiyWEUqD66xOxHp6GqCDkAkIOtSeXAlCCLS0akHQbLV2lQeXAmCiHR0ShAkW6kHQUSkCauDDkAkIOpBEBFpwpKgAxAJiHoQRESaoARBspV6EEREmqAEQbLVolQeXAmCiHR0i4MOQCQg36fy4EoQRKSjUw+CZCslCCIijYlGCteR4rFYkXZouf+7nzJKEEQkE8wNOgCRNEtp7wEoQRCRzPBF0AGIpJkSBBGRFvg86ABE0kwJgohICyhBkGzzZaobUIIgIplAQwySbT5JdQOtShDM7Cwzi5pZhZm9b2a7tXC/o8zMmdmzrWlXRKQRX6GbNkl2aX8JgpkdCdwIXAXsDHwMTDWzfs3sVwD8HXgr6ShFRJoQjRRWAHOCjkMkTeZEI4WrUt1Ia3oQzgPuc8495Jz7HDgd74YRv29sBzPLAR4DrgS+a02gIiLN+CjoAETS5IN0NJJUgmBmnYBRwLS6MudczH+8RxO7XgEscc490MJ2OptZft0G9EwmThHJSu8EHYBImvw3HY0k24PQF8ih/trni4EBDe1gZmOAk4FTkmjnEqAsbpufZJwikn2UIEi2aJcJQlLMrCfwKHCKc25ZErteD4TjtiEpCE9EMsv/gPKggxBJsUrg/XQ0lGyCsAxvpnD/hPL+wA8N1N8cKACmmFmNmdUAxwMH+483b6gR51ylc25V3QasTjJOEcky0UhhNepFkMz3djRSmJZEOKkEwTlXBcwExtWVmVnIf/xuA7t8CWwP7BS3PQ+87n8/r1VRi4g07PWgAxBJsf+kq6HcVuxzI/CImX0AzADOAboDDwGY2URggXPuEudcBTArfmczKwVwzv2kXESkDbwWdAAiKdZ+EwTn3BNmtjFwNd7ExI+A/Z1zdRMXNwFibReiiEiL/RdYCfQOOhCRFFiCt/ZQWphzLl1ttZp/qWNZWVkZ+fn5QYcj0mGtWrWKcDgMEPbn92ScgqKSh4ETgo5DJAUmRSOFx6arMd2LQUQyzdNBByCSIlPT2ZgSBBHJNP8B1gQdhEgbqwJeSGeDShBEJKNEI4WVQEnQcYi0sZeikcIV6WxQCYKIZCINM0imeSzdDSpBEJFM9CJaVVEyxypgSrobVYIgIhknGilcCzwbdBwibeTf/i3N00oJgohkqruCDkCkjaR9eAGUIIhIhopGCt8CPgs6DpENtJCAVghVgiAimezuoAMQ2UB3RSOFgaxOrARBRDLZRGBt0EGItFI5AQ6VKUEQkYwVjRSuAiYFHYdIK02MRgqXB9W4EgQRyXR3Bh2ASCs44OYgA1CCICIZLRop/Ig0r2Ev0gZeikYKvwwyACUIIpINioMOQCRJNwUdgBIEEcl40Ujhe6gXQTqOmdFI4bSgg1CCICLZojjoAERa6M9BBwBKEEQkS6gXQTqIt6KRwpeDDgKUIIhIdikOOgCRZlwadAB1lCCISNbwexGeDzoOkUY8G40Uvh10EHWUIIhItjkfqAo6CJEENcDFQQcRTwmCiGSVaKTwW9rBJWQiCe6KRgq/DjqIeEoQRCQbXQssCDoIEd8C2smVC/GUIIhI1olGCtcA5wQdh4hvgn/fkHZFCYKIZKVopPAp4KWg45Cs9+9opPDZoINoiBIEEclmZwGrgw5CslYpMCHoIBqjBEFEslY0UjgH+FPQcUjWujgaKVwUdBCNUYIgIlktGil8CHg66Dgk67wJ3Bd0EE1RgiAiAqcCC4MOQrLGcuB30UihCzqQpihBEJGsF40UrgBOANr1P2zJCA44PhopnB90IM1RgiAiAvi3170l6Dgk4/01Gil8MeggWqJVCYKZnWVmUTOrMLP3zWy3JuqeYmZvmdlKf5vWVH0RkQAVAf8NOgjJWG/TDhdEakzSCYKZHQncCFwF7Ax8DEw1s36N7DIWmAzsDewBzAP+Y2aDWxOwiEiqRCOFlcCv0XwEaXvLgKOjkcKaoANpKXMuuSE3M3sf+K9zboL/OIR30r/NORdpwf45wEpggnNuYgvbzAfKysrKyM/PTypeEfnRqlWrCIfDAGHnXLtbua29KCgq2RX4P6BL0LFIRqgFCqORwqlBB5KMpHoQzKwTMAqYVlfmnIv5j/do4WG6AXnAiiba6Wxm+XUb0DOZOEVENkQ0Uvhf4OSg45CMcWZHSw4g+SGGvkAOsDihfDEwoIXHuAGv+25aE3UuAcritnY/21NEMks0UjgJaLZXVKQZkWik8N6gg2iNtF7FYGZFwFHAoc65iiaqXg+E47YhaQhPRCTRZcDzQQchHdYk4NKgg2itZBOEZXhjKf0TyvsDPzS1o5ldgDdDeD/n3CdN1XXOVTrnVtVtaK10EQlANFIYw/tQ82bQsUiH8wZwUntfDKkpSSUIzrkqYCYwrq7Mn6Q4Dni3sf3M7CLgcmB/59wHrQtVRCT9opHCcuAg4L2gY5EO4wvg0GiksCroQDZEa4YYbgROMbMTzGxr4C6gO/AQgJlNNLPr6yqb2cXANcDvgaiZDfC3HhsevohI6kUjhWuAA4APg45F2r2vgX2ikcLSoAPZUEknCM65J4ALgKuBj4Cd8HoG6iYubgIMjNvlDKAT8BSwKG67oPVhi4ikl/8Pfz/gs6BjkXbrG2DvaKQwI9bRSHodhCBoHQSRtqF1EDZcQVHJALw1ErYMOhZpV74GfhmNFC4IOpC2onsxiIgkIRop/AHYC/g06Fik3ZgF/CKTkgNQgiAikrRopHARXpIwPehYJHAzgbHRSGHi+kAdnhIEEZFWiEYKVwL7Ai8EHYsE5gW85GB50IGkghIEEZFW8i+B/DXe1VySXW4CDvGvcMlImqQokkU0STF1CopKLsRbSt6CjkVSqgaYEI0U3hN0IKmmHgQRkTYQjRT+DTgQyMjuZgGgFNg/G5IDUIIgItJmopHCl4GdgRlBxyJt7itgj2ik8NWgA0kXJQgiIm0oGin8Hvg5cHvQsUibuR/YORop/DLoQNJJcxBEsojmIKRXQVHJ0cB9eMvRS8dTCpwajRT+K+hAgqAeBBGRFIlGCicDo2jiZnbSbk0HdszW5ACUIIiIpFQ0UvgVMAY4D1gXcDjSvBrgKmAvf7goa2mIQSSLaIghWAVFJZvjDTnsHXQs0qDpwBnRSKGW0UY9CCIiaRONFM4GxgGnA0rQ2o/lwB+Anys5+JF6EESyiHoQ2o+CopLBwHXAcejDWlAc8BBwUaYul7whlCCIZBElCO1PQVHJTsDfgH2CjiXL/A/4YzRSqBtuNUJZq4hIgKKRwo+ikcJ9gQPQLaTT4WvgSGAXJQdNU4IgItIO+Ksw7gScDMwNOJxMNAc4Bdg2Gil8MhopbP/d5wHTEINIFtEQQ8dQUFSSCxwDFAFbBxxOR/cd8BfgkWiksCboYDoSJQgiWUQJQsdSUFRiwK/w1lDYK+BwOhIHTMNb7vqFaKQwFnA8HZISBJEsogSh4yooKhkJ/Ak4HOgWcDjt1WrgEeCObLtvQiooQRDJIkoQOr6CopIewGHA8cBYwAINqH34EHgAmBiNFK4OOphMoQRBJIsoQcgsBUUlm+Cto3A8sFXA4aTbJ8CTwJPRSOE3QQeTiZQgiGQRJQiZq6CoZGfgQH/7GZl5ldosfkwKvgo6mEynBEEkiyhByA4FRSUbAfvhra2wP9Av2IhabS7wur+9Fo0Uzg84nqyiBEEkiyhByD7+lRDbAbv62y7ADkCnIONqgANmA+8DrwGvRyOFc4INKbspQRDJIkoQBKCgqKQzXpKwK97iTFsCWwCDSc+kxyXA53HbR8DH0UjhmjS0LS2kBEEkiyhBkKYUFJV0ATYFhgKb4CUM+f7WM+5rT6AHEAOqgGr/a/y2HFgELPS/1m0Lo5HCdWl7UdJqShBEsogSBBFpqUyc5SoiIiIbSAmCiIiI1NOqBMHMzjKzqJlVmNn7ZrZbM/UPN7Mv/fqfmtmBrQtXRERE0iHpBMHMjgRuBK4CdgY+BqaaWYPX2ZrZaGAy3jKYI4FngWfNbLvWBi0iIiKplfQkRTN7H/ivc26C/zgEzANuc85FGqj/BNDdOXdQXNl7wEfOudNb2KYmKYq0AU1SFJGWyk2mspl1AkYB19eVOediZjYN2KOR3fbA63GINxX4dRPtdAY6xxX1BO+fm4i0nv6GRKSlkkoQgL5ADrA4oXwxMKKRfQY0Un9AE+1cAlyZWDh06NCWRSkizdkIULYgIo1KNkFIl+v5aa9DT2A+MATvft/tleJsex0l1o4W54qgAxGR9i3ZBGEZUAv0TyjvD/zQyD4/JFkf51wlUFn32Gz9yp+r2/O4qeJsex0l1g4Yp4hIk5K6isE5VwXMBMbVlfmTFMcB7zay27vx9X37NlFfREREAtaaIYYbgUfM7ANgBnAO0B14CMDMJgILnHOX+PVvAd40s/OBEuAovLuJnbqBsYuIiEiKJJ0gOOeeMLONgavxJhp+BOzvnKubiLgJ3g086uq/Y2bHANcCfwG+AX7tnJuVRLOVeOsuVDZXMWCKs+11lFgVp4hklA5xsyYRERFJL92LQUREROpRgiAiIiL1KEEQERGRepQgiIiISD1KEERERKSedpMgmNlZZhY1swoze9/Mdmum/uFm9qVf/1MzO7C9xWlmp5jZW2a20t+mNfe6gogzYb+jzMyZ2bOpjtFvL9mfey8zu8PMFplZpZl93R5/9n79c8zsKzMrN7N5ZnaTmXVJcYy/MLMpZrbQ/zk2elO0uH3Gmtn//PfzWzM7MZUxikjH0C4SBDM7Em8BpquAnYGPgalm1q+R+qOBycADwEjgWeBZM9uuPcUJjPXj3BvvrpbzgP+Y2eB2FmfdfgXA34G3UhlfXHvJ/tw7Aa8ABcBhwHDgFGBBO4z1GCDi198aOBk4Em8tkFTq7sd2Vksqm9lmeAuYvQ7sBNwM3G9m41MWoYh0DM65wDfgfeD2uMchvH/6RY3UfwJ4IaHsPeDu9hRnA/vn4N1B7/j2Fqcf23S8E9nDwLPt8Od+OjAbyEt1bG0Q6+3Aqwll/wDeTmPMDm9Rsqbq3ADMSih7HHg53e+xNm3a2tcWeA+C/6lwFDCtrsw5F/Mf79HIbnvE1/dNbaL+BmtlnIm6AXmk8E56GxDnFcAS59wDqYotXivjPBjvHh53mNliM5tlZpeaWU47jPUdYFTdMISZDQMOBF5MZaytkPa/JRHpGNrD7Z774n16XZxQvhgY0cg+AxqpP6BtQ/uJ1sSZ6AZgIfX/IbelpOM0szF4PQc7pTCuRK15P4cBvwQewzvZbgHciZd0XZWaMIFWxOqcm2RmfYG3zbuFYi5eD1eqhxiS1djfUr6ZdXXOlQcQk4i0A4H3IGQLMyvCu1HVoc65iqDjqWNmPYFHgVOcc8uCjqcZIWAJcKpzbqZz7gngOryhh3bFzMYClwJn4s1Z+A1QaGaXBxmXiEhLtYcehGVALdA/obw/8EMj+/yQZP220Jo4ATCzC4AiYB/n3CepCW+9ZOPcHG/S3xTvgy7gJ45mVgMMd87NbgdxAiwCqp1ztXFlXwADzKyT825HngqtifUa4FHn3P3+40/NrDtwr5ld5w9RtAeN/S2tUu+BSHYLvAfB/6c+ExhXV2ZmIf/xu43s9m58fd++TdTfYK2MEzO7CLgc746XH6Qqvg2I80tge7zhhbrteX6c1T6vncQJ3iTKLfx6dbYCFqUwOWhtrN2Iu6upry6xMdqPtP8tiUgHEfQsSecceJd/VQAn4F0Sdg+wEujvP1Lyn1MAACAASURBVD8RuD6u/migGjgfbwy4GKgCtmtncV6Md1vd3+KN9dZtPdpTnA3s/zDpuYoh2fdzKN5VILfhJQaFeOPll7XDWIv9WI8CNsM76X4LPJHiOHvwY6LngHP97zfxn78emBhXfzNgLfBX/2/pTKAGGJ/q91Rb6jdgV7wJs2v934edgP2Bj/zfZwf0CjpObe1zCzyA9YHABGCuf0L9f/buO76J8o8D+Oe5JN1tKAUKlBFGJ5Rh2Uv2KqBsfgxFEBREFFSogBAUsQoK4gABGbL3LBsBEQGhoozSQWkZhU5oOrJz9/vj0tK9aHJN8rxfr740uSd334Tc5XvPvAqgfZ5t5wFsKlB+JIAoY/nbAAZWtTgBxBtPwIJ/8qoUZxGvNUuCUJ44wbfnvw6+d/0V48Ut1vi8qCrFanwsBrDImBSoADwE8JOpL8bg594o6juX8zluAnC+iNfcML6vWAATzfF50j/T/oHvvBsPvpZwKoDxADzAJ66XwXdMHm8sNxbAhwLGygCYCL728hH4hOY2gAUAHIT+LG31jxj/cSiqSiOEZAHYy3HcRKFjoShLQAjxA99HZwpn7AtDCOkP4DiAPhzHnclT9ij4GliZQLG6AMgEn/wfBd8ZuSP4Grs/APTk6I+V2VWFToqUjTG239txVWg0B0VZoZxZPtNLea4q0ALozHHcX3meW0cIiQc/hLkXTDs8nCqC4J0UqZdnnEv/unGNgFhCyDuEEDkhhCtQbjwhJNy4NsAzQshOQkj9AmXOGycgCiCEnCOEKAkhCcbOlgWPa08IWWycv19jXG/gG0KIfYFyHCHkR0LIOELIHfBV2f2N2z4mhPxFCEkzxhVOCBlR8PXgpxB+07gvjhCyKc92L0LIBuPkSRpCyB1CyKSX/FgpymIZz48Lxod7jOfMeQCbjc9dyzmPjM8HA2iY5/yKN+6nu/HxKELIIuO1IJMQspcQIjVeA1YSQpIJIVmEkI1FnP9vEUJ+N5bREEIiCCHT8pbhOE5bIDnIccD4X//K+Fyo8qE1CBaOENIawAnwQwAXgZ/QZyGAlALl5oMfercbwHoANQG8D+APQkhrjuPy3lG4G/e531h+BICvCSG3OI47btwfA769sAuAteCrMgPBd4rzAd9fIK+eAEaBn4I4FXzbKAB8YNzPNgB24Dv17SGEDOI4LsxYZoIx5r+NxwL4tnIQQjzBV0tyxn2nABgA4FdCiBvHcSvL8DFSlLX5BfxU4PMArAJwDXyH3ijw/REWAogDfx65AJACqAf+/AWArAL7+xR8X5pQ8BOUvQ++ozgL/nohB9ABfD+COACf53ntNAB3wJ/negCDAfxMCGE4jvuplPeRM/ldVZ+jxToJ3QmC/r3cH/iTLhtA3TzPNQV/8uY02zUEf2LOK/Da5sZy8/I8dx78j+2EPM/ZgU9A9uZ5bjz4YXtdCuzzHePrO+V5jjOWDSgifscCjyUAbqHwOgZZKKJjJfjE4QkAjwLP7wBfjepY8DX0j/7Zwh9edFgdkee5icbn2hQoexRAfAn7uIU8a6AA2A4+OThWoPxfBfdT1DkI/gYktgzv4TQABehIC0H+aBODBTOuQdAb/IiDJznPcxx3D3xHpBzDwDcn7SaE1Mj5Az9JTgz41SbzygKwNc/+tODv3hvnKTMSfK1BZIF9/m7cXnCfFziOiyj4Hrg8k/EQQtzB38lcBD/7YGnvn4AfQnrE+DBvHCeN+yp1PxRFleo3juN0eR5fBT+fx4YC5a4CqE8Iya2dLnCOS43n5wUAjQkh0uIOSAiZB/76FsLlr+GkzIQ2MVi2WgAcwQ+lKyjvc97gT+aYYvajK/D4MWdM3/N4DqBFgX36o0BTRoHY8oorqhAhZBD4oUytAORtuyxLj+WaAKqBrzKdWsY4KIoqv4cFHiuM/y04kZoC/M2IFEAaABBCOoPvaNgR/ARieUnz7CsX4ZdXXwLgV47jVr9U5FSF0QTBNjDgf3AH4MVsfnkVbG8sqgyQfwZABny14+xiyha8cBSatpcQ0hV8E8kf4CfoeQo+WXkL/Ljs0uTUgG3Fi85XBZl6amuKsgXFXRNKvFYQQpoAOAt+LobZ4K8LWvCLrc1CER3lCSF9wE88FoYquM6KLaEJgmVLBj9hUNMituV9Lhb8CRvHcVx0JR07FkBL8H0FKjo+eTj4+PtxHKfJeZIQ8lYRZYs6Rgr4sdMiLs+Yboqiys1UcwwMBl8zOITjuNxaCEJIwSbInOfbgx+5cB3AKI7j9CaKiyoD2gfBgnH8okVnALxOCKmb8zwhpCn42oIc+8Fn+ouM7fbIU5YQQjwqcPjdALwATCm4gRDiSPiFiUpjAH9hEuV5rQyFR0AAfEfManmfML7/fQCGE0KaFxFHzTLEQFEUf34V2x/gJRRaf8TY76DQTQAhxB98rUE8gEEcXSxMcLQGwfLJAfQFcIkQshr8j+0M8NOUtgIAjuNiCSELwM/DLyOEHAR/590IwFDwQweXl/O4W8APW1xjvBu4ZDy2n/H5fuDvAkoSBr7a8QQhZDv4/gLvge8/0aJA2XAAvQkhs8GPWojjOO4q+FUyewC4SghZByACQHXwnRN7G/+foqiShQMYTQj5DvyQyCyO445Uwn5PgW9SOEII+QX8kMop4Gs/6+QUIvyy8yfBD5lcBn5p9Lz7ieU4ji4gZmY0QbBwHMeFE0IGgP+B/wJ8G99C8B0I/fKUCyWERINv91tkfPoR+BP4cAWOyxJCXjfu7w3wiYYSwH0A3wMotSmD47jfCSGTwf/IrwTfkXEu+OWnCyYIs8EnMkvAd8zcDOAqx3FJhJB2xvc8DHxfhjTw467nlvd9UZSN+hn8DcVb4M/pB+BHB70UjuOijBOfLQF/jUoEsBp882DeERAe4BdjA/i5FgraDLrCqNnRtRislLGWoBnHcd5Cx0JRFEVZHtoHwQoQQhwLPPYG30v4vCABURRFURaP1iBYAULIU/DL+N4HP2viNPA9h1tzHFfc3AcURVEUVSzaB8E6nADwP/DzlmvAt9XNo8kBRVEUVVG0BoGiKIqiqEJoHwSKoiiKogqhCQJFURRFUYXQBIGiKIqiqEJogkBRFEVRVCE0QaAoiqIoqhCaIFAURVEUVQhNECiKoiiKKsSsEyWFh4e7AKgLmpjYOhZAOoDUoKAgVuhgKNOi5z1VRbAAngQFBWUJHYilMNtESeHh4R0YhlnDMIwUedYGp2wTx3F6lmUvcBy3MCgoKEHoeCjToOc9VYVwLMsqWJZ9Nygo6IrQwVgCsyQI4eHhLgzD/FmtWjXPWrVqPSOE0OkbLQ3LErA6CVi9GAadmHAGMTiWAccR5F74uZz/5UDAAQQgjIFjxHqIJHowYj0YsY4DgVartUtKSnJTqVQPWZbtEhQUpBXuzVGmQM9768JxHAwcJ2I5MODAn+AcYMfq+AKEgAM4IhIZwDAsIVUrH+Q4jiQnJ1dPT09PMl5zaE1CKczVxFCXYRhprVq1njk7O6vMdEyqPDgO0CkdoFU6Q69yhEEnAat/8cexoko7FhHpnRmxzs6VGOIzMvwbXJm/AkdunQcQDrnifqUdhxIaPe8thIHlGKVW76jVs/Z6lpPoDayY/y8n0bOcRM+yEgPLFfl74Z1edAUgYRgWDKMnIpEeYrGOiMVaIrHTGpzs1QZHidZB5KAWMSKzNjHWqlXrWUZGhpRl2boAos15bEtkrgSBAUDoHUQVwScDjtBmO0GncoJO5Qy92hHgzNNGzBnEMBjEIgMHxqCGRJs+HcB0AIBc+hzAPwDCc//kilizxEVVNnreV0FaPStRavVOKp3BSa1jHdU6g5POwNpX9nE4lmXAsnacXm8HjSb3ebXUMeuJVu0CACJGpLdj7NT2YvtsR7Gj0knslG0vsteYqvbB+F0koP1hyoSu5mgLOA7QZjlDnV4NmmxXsyYD5ecOoJfxjyeXpoNPFk4BOAy5IlKY0CjKsnAch2ytwSlTpZNmaw0uGr3BqbiaAHPRiV/0RTGwBrGKVbmo9CqXdKQDABjCGBzEDllOYqcsJ4lTlrPEOZshDE0yBSBsgiCXBplmv4rwl3l5VFSU3aFDh6Rz5sxJyXnOy8srcM+ePfc6depktqpShULBBAcHN7lz546TXq8nmZmZ/+bdvmPHDum8efPqsSxLfH19VTt37oyrXr06CwA7t2+vtmDB/AYca2Ba+DdlNq9cTNxcXQodg2VZfLBwGY79fgmEAB++PRYz3hpT6ra8nqdnYNjbHyP1eTq6tmuNn7/6FACQkvYcI9+Zg9M7foZEInmZj6IaXiQNX0MujQFwxPh3EXKF4WV2TpmPLCTMJOd8fGjwS53z5uDn5xdw+fLlSHd3d5NWq+sNrEih0kkzNXq3bI1eWp6E4Pa//2DZ4k+hzM4GIQQfLfwS7Tt3y1fmfkwU/jewB4aPexNz5F8VuZ8Tf/yBxT/+CJZlYTAY8OHEiRj/2msAAA3DMgBw9eJVTBkxBZ8s/gQT3p2Q+1qWY0VKnVIafS9a+snUT6DMVmLIsCHqeZ/NS3azc0u//d9t0ccff1zv999/v1f+T4cqj6p6FymomJgY+w0bNtSs7P3qdLpylbezs+PmzJmTGBYWVqitTKFQMDNmzJDt378/9sGDB7dr166tm/dpSD1kJdXIjP+36QcfvN/k6KZvJbF/HRJ51a5Jvli5rshjbN13DBHR9xF98QD+ProFy1b/hjtRsaVuy2vbgWPo0bkNbp3djch7cbgdyZ+3s+XfIvTT9182OSiKN4DZAM4BSIZcuhVy6WjIpW6VfSCKelk5531kZGSEqZKDbI3e8Wm6qk5MUqbf3acZrRLSVY0yVDqP8iQHHMdh1pQJmDb7U+w59Se+Wb0RC2dPh1r14p5Ip9Ph87kfomf/4BL3M/nTT7H2iy9wde9e7PvxR7z/+efIzM4GAKgZvSQzIxMrvliBrr27FrufHRt2YMykMdh/YT8O7D7gcD/pfoM0xYNGc2fN8P9l+edqvU5T6c0iVH42nSDs27fPLSAgwN/Hxyegbdu2vuHh4Q4A8P777zeIj4938PPzC+jZs2fTnPK7d+92b9WqlZ+Xl1fgnDlz6uQ8//DhQ/HAgQMbBwYG+vv4+ATMnDmzbs42Ly+vwGnTpnkFBgb6Dx8+vFF54nN0dOSGDBmS6eHhUegOed++fdKAgABl61YtNchOrT7n7ZFORw8fqomMJw1PnDwlbd3cF35N+cNNf3MUdhw8WeQxdh0+hSnjhkEkEqG6uxSjh/TFjoMnSt2Wl0QshlKlBsuy0Gh1sJNIcOLcJbhXc0OHoBblecsVUR3AOAA7AaRALt0DubQP5NKq1YWaqhLOnDnjHBQU5Ovr6xvg4+MTsHXr1moA8Mcffzi1bt3az8fHJyAwMND/1KlTzgAwZsyYhgsXLvTMeX1kZKRdjRo1Wmo0GnLo0CHXVq1a+fn7+wc0bdq02YoVK2rklBs+fLhs5MiRsjZt2vj6+Pg0AwBCSFBqaqoIAKZOnVqvefPm/n5+fgFt2rTx/e+//3J/7AghQSEhIbUDAwP9vby8Ar///nuPnG3//POPQ5cuXbx9fHwCfHx9m30RurxxZGJGs6t3YgMmThhbd2i/7s7DenfCj98sKfdnk/78GZ4/S0WHrt0BALLGTeHqJsWf58/klvll5TfoM+h1NGjUpMR9EUKgyMwEAGRkZaF6tWqwt7MDCGG1hBV/GfIl3pn9Dqq5Vyt2H2KxGGqVGnqdHizLghCCnWt/c+j/agfGu7az54PULJ+oxEz/RIXaU6tnK/0uhLLhBCEhIUE8efLkxps2bYqPjo6OmDRpUsqoUaOasCyLH3744aFMJlNHRkZG5K3GSk9PF/3777+R169fv7t69WrPuLg4CQCMHTu20XvvvZd869atu3fu3Im4ceOG84YNG9xzXvfs2TPxf//9d/fw4cNxlRX/o/j7Tk0b1JEg8XYLKB41auzl4fw0ORV6vR4PExLR0Cs3f4Gsfh3kbCvo4ZNENPSq/aJsvbp4mJBY6ra8xg8Pxr24R2jd93/o3bUdvOrUwperfsWXc9+rrLdbVnYARoDvqxALuXQ+5NLapbyGshFJSUmi0aNHN/3yyy8ToqKiIu7evRvRp0+fTLVaTUaPHt1kwYIFT6KjoyOWL1/+aOzYsU0VCgUzefLk1B07duT+8P/yyy81hg4dmmZvb8916tRJef369ci7d+9GXLp0KXLZsmV1YmNjc3+obt686XT69OmYuLi4OwVjkcvlibdv374bGRkZMXXq1OQZM2Y0yLvd3t6eu3Xr1t2jR4/GzJs3r4FOp4NOp8PQoUObjh7/hur4pX+0+85edeg2cKi7Vs86LJg1HaPfeBvbj57FrhN/4M7Nf3Hq6MFyfT7u1T1Qs5YnTh45AIBvboi/fw9PHj3k38+N67j5zzWMfWtqifshhOC3Zcvwv1mz4Nu3L3q/+SbWLVkCO4kEkIh1pw6fAkMY9Ojfo8T9jJ8yHmfDzmLcgHGY+N5EKDOz9UePnpR8OGUsDCIHdbZBZKfRG5ySM9X1IhMzWtxLzvJ5nq2tZq65fWyBzXZSvHDhgrOPj4+qXbt2KgCYNm3aszlz5jTI+dEvyoQJE54BQJ06dfT16tXTRkdH23t4eBiuXLni9tFHH0k++ugjAIBSqWQiIyMdcl43adKkNIaphFyM4wB1uhTZKbVcoHSzIwaAE7753dnJEXvXLct9PGvRcsydPhH34h9h6aoNAIAFH7yNls18zBlWIwBLACyEXLobwPeQK66bMwCqajl37pxLo0aN1P37988CAJFIBE9PT8Pff//tyDAMhg8fngEA/fr1y/Lw8NBduXLFqV+/fll6vR4XLlxw6tq1q3L37t0eBw8ejAGApKQk8bhx42RxcXEOIpGIS09PF9+4ccOxSZMmOgB47bXXnhfXpHD48GG3NWvW1MrOzhaxLAuFQpHvWjx58uQ0AGjdurVaJBJx9+MfOD1KTPPQ6g32rw4a5Zmt4ZN99+oeUCqz8felC3iWmpz7emV2NuJjy99Ev/LXbVi5dDF+/WkFmvj4oXXbDhCJxVCplFg6/2MsX7MZpY0w0Ov1+HrtWuxYsQJd2rTB9du3MfL993Ft/35oJSLDL9/9go2HNpYaS83aNbF2z9rcxx+/NRvfLpyNc5euY+XmA2LW3hUzQxaibj0+t1Jq9a5Krd41MYPReDjbJXu42KeKGEJnan0JNpsgVISjo2Pul00kEnE6nS53oql//vnnrpOTU5Gpq6ura5G/4uHh4Q7jxo1rDABt27bN2rJly8MiD8yxhCFgkBzRHAatPQA08KqN0xdfTAYW/+gp6tSqAbFYXOK2ghrUrY0HCYno2KYlX/bxEzQw1hqUtK04f9+4jeS05xjUpxu6Dp2ELauWgOM4TJy1CBf2rS/xtSZiB2A8gPGQSy8D+BbAfsgV9DaDKlbeH8GxY8emrVu3rkZGRsZzd3d3fdu2bdUAMHXq1IZ9+/ZVnDhxIpZhGAQEBPirVKrcOwEXF5ciz/uYmBi7uXPnNvjrr7/uNmvWTHP16lXH3r17++Ytk3Mt0egMdiKxmIlLVfoptWzRv8zGa9CWQ6dh7+BQZJEcH73zJh7F81ONrN15CNXcq+fb7hsQiNVb9+Y+fr1HezT18cPj+DgkJjzGlNGDAQCZGQqwLIcMRTp2LZqfbx//RUXhaUoKurRpAwBo07w5vDw98d/du8gSgaQkp2BEjxEAgOdpz3Hu5Dk8S3uGD+Z/UGzcp4+chk/Delyr5r7wf3UYdhw7x12/cQs/f/sVlqxYna+szsDaJ2ao6ydnauq6O0lSarjaJ9uLReXrAEYBsOEmhu7du2dHR0c7Xrt2zQEA1q5d6+7p6alr1KiRrlq1aobMzMwyTQwklUrZdu3aZSxYsCC3Tj8+Pl6St6qxOEFBQerIyMiIyMjIiCKTA44DspI97DIe+BACkpMcAED/Hp3wz61IRN7jWy1+3rwbY17rV+q2gkYO6o112/bDYDDg2XMFdh0+hdFD+pa6rSg6nQ5zv1yF7xbNBgBkK9UgBGAYgqxsZWkfhzl0BLAXwDXIpX2EDoYyr169emU9ePDA/sSJEy4AYDAYkJSUJGrRooWaZVkcOHDADQBOnz7tnJqaKunQoYMSAKZMmZIWFhbmvmbNmpoTJkxIzdmfQqEQyWQyDcMwOH78uEtUVJRTWeJ4/vy5SCwWcw0aNNCxLIuVK1fWKlhGq2clD9OyG0YnZTUHCOEAImviDQdHJxw/+OIH/PmzNDg5u6Btp67Y8PPK3OeTE58i6WnhCYy+/WUzdp+8iN0nLxZKDgAgJelFE+K+7Zvh6OiEdp27wdu/Gc7/dw/HL9/E8cs3MW7yNLw+elyhH2cAqOfpicSUFETe5xOR2IcPEffoEXwaNUKf/r0Mf0T8gVP/nMKpf06h7+C+mPbRtBKTgwxFBrau3Yqls6eIACBbpeHUnETCEAZKY8fHorAcJ0rL1taOTswKjE/NbpSl0Zfp34d6wWZrEOrWratfv379/TfffLORXq8nUqnUsGvXrliGYdC+fXulj4+Pytvbu1n9+vU1pQ2n2bNnT9z06dPre3t7NyOEcI6OjuyaNWse5FQ1VojymRSZT+u16PG6Q0paOjIys1EvqD96dGqDLT8sgauLM9YvX4jXJ30EvUGP5r5NsXnlYgAocRsAtOozBse2/IC6tWtiwohgXPvvDry7vA5CCGZPHY9Af28AKHFbUZat/g1vjAyGZ02+T9XnH7+LgRNm8tsWfFjhj8IEggCcglx6FkAIbXqwDTVr1jTs3Lkz9pNPPqk/c+ZMhmEYLFy4MGHs2LGKXbt2xX7wwQcN5s6dW8/e3p7btm1brFQqZQFAJpPpWrZsmX327NlqmzdvfpCzvyVLliR8+OGHDUJDQ+s2a9ZM2aJFi+J/rfJo166dasiQIc/8/Pyaubu76wcOHJies02jM9gBQFyaKsBVapevxkAsFuP7X7fhq8/mYv2P34FhGIx6YzJGjn8LS1etxfLP52NYr44ghMDRyRmfhX4Hzzpe5fqM9m3fjLADewCOQ6OmPlixfkupTQoAcPTcOYSdP4/VixfDs0YN/LhoESZ89BEYhgHLsvhu3jzUr1MH6aLyz7+y4vMV+HDODLWzg70DAMz64H3t2OCe9hKJBPJlP5T6eg4cyVDrqmeoddWdGFZh4ECnWC4jc63F4CcWi094e3tnOTk5qU1+QEumznBB5hMv6FSFJy2wMmo9h7iEFDS69BEcsh4JFQYHYB+A+ZAr6NSrlYie92Wn0RvskjI0dRRKnQcHzqJG4HinPy5z2cRaEo2S0Zd7eGIdxi6rujrLBQBiSEOdysBUaNQCp9ci5eljbsVfaZvupGhnx4cGp5f+Kttls00MVY422xGpMU3xLNbXFpKDKoSAH/lwB3LpL5BL65b2AoqqLCzHkSfpqrrRSVnN05XaGpaWHJSXmuFrSMrLVat2AACDyEFd0eQgB8eBpKsNbwG4JwsJmykLCaNDJItBEwShsQYGzx/UR2p0ALRZUqHDsWFiAFMBxEAu/RByKT03KJPKUOlcoxMzm6VmaepwnHUnBgAAkUjHViABshdJ1BJWLwaALOJaeKx2xXkA+B7AbVlI2GuVuF+rQS+CQlJnuCDlbgBUzwp1UqIE4wRgBYDzkEtLng2GoipAZ2DFD9KyZfFp2T5aEyySVFVxElGFftxdOUYP8H22k/VOpvi8fAAclIWEnZKFhNUzwf4tFk0QhJBTa/As1hcGnc1cICxMVwA3IZfOpLMyUpUlNUvjEZ2U2Uyh0nmUXtq6sGKmQpO2uOm1Yv71DioV+3LNC6XoA+CWLCRsQqklbQRNEMyN1hpYEifwVZC0NoF6KWqdwf5ecqbvk3SVTOjVFIWiE5U/zxYzIp2jXuMAAJmk6PlkKlk1AL/JQsL2ykLCbC6JK4gmCObCGgjSH9ajtQYWqRv42oT3aW0CVV7PsrXu95KzApRag013Ps67zHNZuRCxBuCbF1JM07xQnOHg+yYUvyqVDRA0k7WZpV+1Sgc8j2uad6IjyuI4AVgFYCi/cqQipbQXUIUFbg40yTl/681bVeucBz9CIeG5qt5zpZbWFuLFMs/l4WYwMADAih1VKh3jWPlRlag2gKOykLD1AGbFhwbb3PwJtAbBRK5du+bg5eUVCOUzKdJi/E2dHLAsi/cXfI0mnYagaech+HHjzmLLxtx/iE5DJsKny+toO3B8viWcS9qW17Gzf6J5z5Fo3nMkTp7/K/f5DTsPYumqXyvvjVU9PcDPxNhS6ECoqkujN9jdS87ypcnBC2pGX67+AwwhrLNW5QgAmaToaavN5G0A/8pCwgIFjEEQNEEwIYZwIqQ/aAqu/JlzeW3ddwwR0fcRffEA/j66BctW/1bsj/s7c5dg6rhhiP7zIOZOn4iJsxaVaVteC5evxrEtq3BsyyrM//onAEBSShq27D2GOdPfrPw3WLU0BHAJcukwoQOhhDF79uy6kyZNql/UtnSlVnovOStArTM4F9x2/tQxLJPPAwBcu/wnRvXrWuT+ldlZaFnfvchtVY1ao8GomTPRYtAgtB8+HIOmTEHswwIzxxuXeU54mIAWni0wvPvw3L+HcS/K/rrqVwzpPATDuw/H//r+D9dv3CIcCo9eOLBzK4b27IBR/bvh7q3/cp//aflSHDuwxxRvswmAy7KQsBGm2HlVZdMJwtatW6s1bty4ma+vb8C0adO83N3dW0ZFRdkBxa/XnpWVRYKDgxs3adKkma+vb0Dnzp1z5x6ePXt23YYNGzZv1izAf++W9Y1FBLnrOZw8/xe6vD4JQf3Hol3wBJy7dA0A0GfMNOw9+mK99fN/XUfrvv8r93vZdfgUpowbBpFIhOruUowe0hc7Dp4oVC459Rmu37yL8cMHAgCGB/fCoydJuBf3sMRtBUnEYihVamQrGyszdwAAIABJREFUVfwyrgBmyb/F1/NnFrkolBVyBrAXcqmc9kuwPjpd+WdJ5zgOCekqr4fPlE0NLFfkWi7d+w7EJ/KlLx1fVTNpxAj8d+QIru7bh+AePTB9UYEbC4k49wN1dnHGvvP7cv8aNOJXY4y8FYmdG3di58md2Hd+H6ZOGqudseBrsCJHlbrA6IW1q5Zh29GzmCv/Cut//A4AcC/qLmLu3sHAoSNN9TadAeyWhYR9IQsJs4lz3mYThISEBPGMGTNk+/bti42Kiorw8/NTp6en5/6yFbde+/79+6UKhUIUGxt7JyoqKmL//v33AWDnzp3Sw4cPu/97/WrMrd/3IiHhUW572f0HjyH/9hcc27IK4Se2Y/uPX2LsjPnQaLR4a/QQbNp9ODeujbsOY9KY8s/Z8fBJIhrmWWlRVq8uHiYkFir36ElivpUdCSFo4FUbDxMSS9xW0DcLPsCbHy7CxFlyLP9sFo6e/gOeNaqjXevm5Y7dghEAiwDsgVxa6G6RqnoIIUEzZ86s6+/vHyCTyZqvXr26et5ts2bNqtu8eXP/GTNm1AOAhQsXegYGBvoHBAT4d+3a1Ts6Ojp3JsCEhAS7Dh06+DRq1KhZj549m16PeuCTlqWpvfq7UHwj/zT3mDs2rcVns6YDAA7t3o4PJ48rMrY9WzdicNcgjOrfDVvWFV4EqSCdTocv532Ewd3aYPyQPlj++QJMHjkIABAy4+3cO+ldm9cjqHEtKJX8UhFvjx6C8CuXkPDoIbo0a4ifv/0KYwZ2x6Aur+Di76fK+YkCDvb26N+tW+6aDe1atsSDJ0/ylWHFZZgDgQB6nR5KJb+wmy493a5enVrIKKJ5QcSIoNVooFIpIZFIwLIsli2ejzmLvyp3/OVEACwAsFcWEmbuPhFmZ7MJwvnz5519fX2VrVu3VgPAjBkz0iQSSe7CFIcPH3Zr1aqVn7e3d7Ovv/667t27d50AoE2bNsrY2FiH8ePHN1i3bp27nZ0dBwBnzpxxHfbaoCx3Q7IvY9A4vTN+eO6xTpz7C/fiH6HbsLfRqs8YjJg6BwxD8DAhEUP798CVf27jaVIKsrKVOHrmIsa+3t/Mn0b5dW3/Cq4e/Q1Xj/6GQP+m+PrnTVgy9z2sXLcNI6fOwYz5odBqbWaF1eHgmxwaCh0IVTpCCO7evRtx7Nix6JCQkAY5tYYAv4z77du37/7yyy+P16xZUz06Otrhxo0bdyMiIu6OGTMmberUqQ1yyl67ds1l9+7d96PvxUZ51pM5f/2F3LWiMcVERmD1d6HYsDcMu0/8AY1aVepr9m3bhIfx97H/7GVs3HcMMZF3cre179IdV/68AAC4fPE8mrVohfArl6BSKREdcRstgtoBADIzMuDj3ww7j53Hp198g2WL5xd1qHL5eetWDOrRI99zBjHJvbaqlCqM7jMaI3uOxOrlq2Ew8L//fs39MOHdCejfpj96tejFrVq3lVn1xVyk6J0KrWH94fzFeGfsUGz4aSXe+XAOdv22Ht169UXdeg0KFjWVYQDOyULCrLqPic0mCCXJWa9927ZtcTExMXe2b99+X6PREAAICAjQRkZG3hkwYIDi0qVLLs2aNWuWkpIikhCDgxPUHmANEiD/evIcOPTp1gH/nt6Z+5cQfhLejRvA0dEBIwf1xpZ9Ydhz9DR6dm4Lj+rVCsUU+uNGtOozBq36jMnXKTBHg7q18SDPnX784ydokKdGIUf9urXxNDkVej2f0HMch4cJiWjgVbvEbSWZF/oj5s+cjMTkVBw6eQF71n4DD3cpth04VvqHbT1agu+8+IrQgVAle++991IB/lxu27Zt5unTp3N/2KdNm5a7nPPhw4erXbx40a158+YBfn5+Ad9//33tJ0+e5CYTPXv2VNSq4yW6l5zlN2zcW+Irf56vcEx//3URnbv3Rk1P/lwb9cakUl9z9dIfCB46ChKJBBKJBINHjMnd1qHrq/j70gUYDAbcj4nChCnv4crFC/jn6mU0b/UKJMZmQXt7B/QaMBgA0CKoLR4/iKvwewCAb9atQ+zDh/j8g/zLN+uMDS41PWvi7M2z2HV6F9bvW4/wK+HY/PNmAMDjB49xNuwsjv19DLdu/5k9a8pYjHo3hFWzTKE2y94DBmPX8QvYsDcMjk5OOH/qOMZMnIJVoZ/jk2mT8MPXX7zU+yij9gCuykLC/M1xMCHYbILQvXv37KioKKecvgWrV6/20Ol0BCh5vfbY2FgJIQTjxo1TrFmz5jHHcXgQ+W/Nwd1eke4NO0Mys7LBcRzWbt2fe6x+r3bEmYtXcTPixWKBf9+4nfv/b40ego27DmPT7iPFNi+EzHgrN7no171Toe0jB/XGum37YTAY8Oy5ArsOn8LoIX0LlatVozpeCfTD1n38j/e+sLOoV6cWmjZqUOK24lwJvwlFRhb69+iMbKUKOXkRwzDIyi79LsjK1ARwFnJpB6EDocqOkBd3tzlLPAN8gjxr1qynkZGREZGRkRHR0dER0dHREbnbQUSxKVl+OuN0ycQ4zF8kEufeFQOAVq2pSEwv9Zo6XvUhsbPHsQN7EBDYEu07v4prly/i6p/n0b7zq7nl7Oztcl8nEonyxZ3XG6/3xah+XTFucO9ij79y0yYcOnMGB1evhpNj/tp3rXGZZzt7O3gYl4OXuksxbOwwhF/hR6iePnoa3v7eqFW7Ftx0Gru3Rr+Gy9f/ZXRabYnv++tFn+Ljz5bg+uU/kZKUiGWrNyAp8Qn+/utiia+rJDIAf1jrCAdBe5MJOV+Bl5eXftWqVfFDhw5tamdnx7366qsZTk5OrIeHh8HX11db3Hrt4eHhjgsXLqzHcRwMBgMZO+I1VZsmNbzQpAv+/vc2Xuk3Fm6uzhjQo3PusZo2aoDtPy7FO3O/hFKlhlanQ+vmftj+E99ZqV3r5hCJRLgX/wh9X63Yb8uEEcG49t8deHd5HYQQzJ46HoH+fP/Jw6cu4PCpC1i/fCEA4JfQ+Zg4axGW/rABbq7O2PidPHc/JW0rSKfTYe7SVdi7dhkAoEWADxo3rIfmPUeiRvVqOLD+2wq9FwtXDcApyKXBkCvMcoWyJFVhvoI1a9bU+O67755ERUXZXb9+3fWnn34qcq3xIUOGpP/www+eEyZMeO7p6WnQaDTk+vXrDp07d1YZOCI5f+FCteSkJHjUrIX9O35D+678D299WSNc/P0UDAYDtFoNzhw/AlnjpiXG1K5TV2z4aQVSk5NQo5Yn9mzZWOr7aNe5K44d3IsBr/Md64/s3ZVve4cur+Lnb5di6gdz4FatGsRiCU6HHcKK9dvK9Dnl9dvBkvsmrNq8GbuPHUPYunWo5uZWaLuaMYgAIC0lDW7V3CCRSKDVaHHm6Bn4B/I34PUa1sPBHQehVWq09mJid+D0H5A1bgKJXfELQJ44vB+Nm/rA278Zzp86hpw7FEIYKLPNNm1BDQBnZSFhPeNDg2+XWtqC2ER38+IMHjw444033kgHgC1btlQ7ffq0tEaNGgYA2Lhx4yMAuReOb7755ikAjBo1KmPUqFH8XURmYk1kPs29vZZ/9C7kH72bu/8lc9/L/f/e3dqjd7f2xcZy+/eXG5ojEonw09JPi9w2pO+rGNL3xV2Db1MZLh/ZXGTZkrYVJJFIcGHf+nzP5SQhNs4VwAnIpUMgV5wVOhgqP4PBAH9//wCVSsV89dVXD319fYu8RZ02bdqztLQ0cbdu3XyNryPjxo1LDXylnUhLJB6vtOuIkPenIDnxKRo0aowvvvsZAF/9fTrsEF7v0R6ederCr1kg1KqSa9O8/QLw7qy5eGv4QDg6O6NX/8Glvo8R495CTGQEhvXsAFdpNTRr0QopSS+aGdt37Y7dWzaggzFx6dDlVezf8Rt8Ayq3I/HjxESELF+ORvXqof/kyQAAezs7/LF9OwDg8x9/hF1TT7tRE0fhn6v/4KevfwIjYmDQG9C+S3tMnTUVANA7uDdu37iNET2Hi13sJHB0dGK/+mF9sbXcGenp2LV5PdZs42trO3fvjf07tmBEn87wqt8QnbsXX9thAjUB/C4LCesRHxp8p9TSFoJwHFd6qZcUHh7uJxaLT3h7e2c5OTmpTX7AMgoJCal94MCB6izLEhcXF8MPP/zwsEuXLsoyvTgrqQYyntBOaS9BrecQl5CCRpc+gkNWkTdxlk4JoL+t1iRUxfOeEBKUkpLyb86NQHllqnXO8WlKH47jqkTzbHZWJpxdXKHT6TBv5lT4B7bEpOkfmjUG7/THJRcQiXT3a7JlniRJxolUzjqV43NxraxHWudKnZ6a02uR/OQx5OeSkZBpkrmXkgH0iA8Njii1pAWw6RqE0NDQxNDQ0MJj+EqTneJBkwOqDJwAhEEu7Qu54orQwVAvR6XVOzxMU3pXleQAAKb+byh0Wg00Gg1at+2AsW+9I3RIhfDLPJctQWAIY3DSqhz5yZEcC41esAC1wNckdI8PDY4UOpiXZa4EgQX4Tj8WLzvVHYrHMqHDsAa5Xwdr+F4UzxXAccilvSBX/CN0MLaO47gK9YHQ6A2SuDSlt4EregIkU0lLTcG0cYUn7OzQtTtmL/gC246cKeJVVUt5lnl2YSQqArWLXuyk1GgZJ1PGZUKe4IdAdo8PDY4SOpiXYa4EIZ3jOL1Wq7VzdnauElWNFaJWuEDxqJHQYVgLpQ6AQQuJOk3oUEytGvgkoQ3kCqtsS7FmegMrikvN9tEb2OJ7y5mIR42a2H3SsluoyrPMsxvLEgDIgAtbWtkqrjb4moR28aHBCUIHU1HmShBSWZa9kJSUFCyRSHQMw1jeLaNBKyHPHzQm4Gxiik1T4jg+OUh+lo5qD45DZLCJ4ZC1AByCXNoFckXZ+rlQgmNZjsSlZjfV6llLrO6uEsq6zDMBOBe+eYGz0OaFguoCOCgLCesaHxpskTfGZkkQgoKC2PDw8IUqlSowNja2JlD+dcGFxTESdVptwuptus9GpTJoUe3BcdSO2S50JObUGsAmAKMEjoMqA47jEJ+W3VilM1RqRzlbU9Zlnh1FdiqRVuukFzsptZbbvFBQGwC/Aih6fu0qzmw/eEFBQQnh4eFdWJZtYM7jvizC6uF7aeYqkT67yJXbqArgOEjUabZSc1DQSMiln0GuMMtUb1TFPXquapCl0Ree1pQql7Iu8+zG8X3VrKB5oaCxspCwW/GhwaFCB1JeZv2hDgoK0gK4Z85jvjS59HMAfYQOg7IqiyGX3oJccVDoQMztrp9/kCn26x9596UmYIqKirI7dOiQdM6cOSkAkJql8ejY0q/mivXb4NfMfJPkxdy9g6ULPsGztFSIRCI0bxWEeUuWwcGx8LpAt//9B9/IQxB15zY6duuBlb9uK9O2vHQ6HT55dyISHj1AvYaNsGz1RojFYmjUarw7bhi+/3U73Kq9RI5kXOa5LEVddWp7DuCSdU7WuAjSl7KQsDvxocFHhA6kPKrMcJ0qSS4dCX7lLoqqTATAFsilVjk9qyWKiYmx37BhQ02AH86YqFBXyqo/OeualJWdgwM+XfINDp3/G3tO/QmVUomNq78vsmxNT098sugrfLzoy3Jty+uvC2fhVs0de079CVc3KS6d50dFrP1+GcZMnPJyyQGQb5nnktgxEo2dQS8xiJ1VWo6YdaSImTAAtslCwgKEDqQ8aIJQHLm0Ffj2YgvrL0FZCBcAhyGX1hA6EFuyb98+t4CAAH8fH5+Atm3b+oaHhzsAwPvvv98gPj7ewc/PL2BA8CB/1jjXwdnjRzDhtb4Y0Kkl1n6/PHc/qclJ+GTaWxg7qBeG9+6EH79ZkrttQMcWWLF0EcYO6oXPZk0rV3wNGzWBjz8/06FIJELzlq3x5NHDIst61vFCYOsg2NnZl2tbXmKxBGoV32dWrVJCIrFD9N3biIuNQb/BQ8sVe1HKtMwzADcwOgBQWF/zQl6uAA7LQsKql1qyiqAJQlHkUjcAB8FPdENRpiIDsB1yKU1CzSAhIUE8efLkxps2bYqPjo6OmDRpUsqoUaOasCyLH3744aFMJlOfvBSevWrjztzrYmaGAlsOncL2o79j8y+rkPT0CQBgwazpGP3G29h+9Cx2nfgDd27+i1NHX7QYKZ4/x7YjZ/DVD+sqHK9SmY39O7ege9+BL/GuS9axWw84u7hiZN8ucHFzQ7vO3bD88wWYu/irStl/3mWeS+Jq0In55oUi2lKsSxMAZZvLvgqwmM6CZvYtADpTImUOfQC8A2CN0IFYuwsXLjj7+Pio2rVrpwL4tRbmzJnTIC4uju9ERxiRQqXLV6Mz0LgQknt1D3g1kCHh0QO4SqX4+9IFPEtNzi2nzM5GfOyL7lVDRv6vQisy5tBptZgzfRI6duuBXgMGVXg/pWEYBou+edGEsXX9avToNxB6vQEhM96GVqvF6DffRvvO3Sq0f10ZGgtEjEjnqFY56MXOSp2W2MJN2SBZSNjE+NDgTUIHUhqaIBQkl/YD8LbQYVA2ZRnk0hOQK+KFDsRW6TlIwIgKTYRkZ/9iOL6IMS6HbJz5c8uh07B3KHq4vlMxSwjERkfi0/enAABatWmPeV8uL1RGp9Phk+mTULNWbcxdbL6O708eP8TF309j9da9WDBrGoaPm4iAwJYY/1pfHDh7uUL7zFnmuSQuRKwhgMQKRy+UZKUsJOxsfGhwlZ44jTYx5MU3LVS8TpCiKsYFwK+0qcG0unfvnh0dHe147do1BwBYu3atu6enp66hTKY32LnVyczMKNN+nJxd0LZTV2z4eWXuc8mJT5H0tPQJ85r4+GH3yYvYffJikcmBXq/H3PcmQ1rNHQu/XvlStRDl9c2iT/HJoi/BMAxUSiUICAjDQK3MrvA+1Yyh1JtQN4OB4UBsoXkhLyn4+RGqNJog5PcdADrfASWEngDeLbUUVWF169bVr1+//v6bb77ZyMfHJ2DdunW1du3aFZucqa3TyDfAoYmPH4b16oiZb/2v1H0tXbUWD+PvY1ivjhjeuxNmT30D6c+fvXSMJ4/sx9njRxBx8wZG9++GUf26Yun8j3O3v/fGSNz57wYAID42Bn3aNsPyz+fjrwu/o0/bZti1eX2p24py7MAe+AQ0R1NffwDApOkf4utFczE2uCemfPBJhd+PmjGUOAcCIYR10aoc9WInlc46Ry+UpI8sJKxKn/NmWe7ZIsil/QEcFzoMyqZlAQi0lqaGqrjcc0FqncE+JjmrGcfRKdQrqtjlnsuwzLOLyD67oSrTOVXsmfVE62TyGSvNsNxzeWUBaBkfGnxf6ECKQmsQANq0QFUVLgA20KYG80lIVzWgyYFp8Ms8l8yV5TgOhEuxreaFvFwAbJSFhFXJ7yBNEHjfAagndBAUBaAHgPINnqcq5Fm21j1bo3cTOg5rVZZlnt10Kge92Elpg80LeXUDMEPoIIpCEwS5tDOAyUKHQVF5fA25tJbQQVgzA8sxiQo17W9kQqUt8+wgslOJWYNYAboWFoDFVXECJZogAF8LHQBFFeACOsW3ST1VqOrq2ZLbx6mXoytl/IIrRww2OHqhOO4AFgsdREG2nSDIpYMBdBY6DIoqwjuQSxsJHYQ1Umr1Ds+zdbSGxsQ0DFtis4GbXiPRi52Veo7Y9u/QC+/KQsL8hQ4iL9v9h5FLGQBLhQ6DoophB4AuCW0CT9LVDTjQjommVtIyzxJGrHXQa+3TafNCXmIAy4QOIi9bnklxPIDmQgdBUSX4H+TSbyBX3BQ6kEojl5pkuWfIFWVa7lmh0rkqtXpXk8RAvVDKMs8uRKTlQCQpOgfavJBfsCwkrEt8aPCfQgcC2GoNglxqD+BzocOgqFIwACpn1RwKALB15+4Gr/doj1H9uiLm7p1K2++1y3/i0rkzFX79zRvXMbJvFwzu1gZvjx6SuyhUcdQqFYb27IBR/brmPndw1zaM6tc19+/VFk0wa8qEIl//y8plGNqrI8YP6YMnj1+sFvnZrOm4ce1Khd9HrlKWeXbT6xnavFCsKnPO2+o/zjTQxZgoyzAQcmnFVsqh8lGodG47ftvo8M4Hn2D3yYvw9m9WKfvV6/W4fvlPXLpwtkKvZ1kW896fik/kX+HIH9fRtUcfLFs8r8TXrPxKjlZt2ud77vXR43Kncd598iI8atZC8NCRhV6blZmBsAO7sffUnxj9xmTs2MhPAXP5j3NwcHRE67YdKvQ+8r2nEpZ5ZghjcNapHGnzQrG6yELCgoUOArDFBIGfFGm+0GFQVDnQkTaVYPr092T//H0Fq775Am+83hcAcOn8WYwe8CpG9OmMSSOCERsdCYCvEch7dx4TGYEBHVsAABIePUSXZg2xYukijB7wKnZuWoc9Wzfi2IE9GNWvK9as/KZccUXc/BcisRjtOvHHGzF+Ii6cOQGNuujJJ69cPI/kxKcYWMSPf46bN67jWVoqXu0zoNA2RiQCazBAr9NBpcyGRCKBSqXE2u+X4YNPF5Ur9uKUtMyzMyNRA4SjzQslkgsdAGCbfRA+BFCj1FIUVXV0gFw6CHLFUaEDsVQZKp3r3C++kURHRmDc5Gno2T8Yaakp+PT9Kfh19xF4+zdD2IHd+PjdidhfhpULMzMy0NTHH7PmLTY+ViAzQ4E58vLXDic+eYw6Xi+mZHB2cYWziytSkhJRr6Es//tQKLBi6SL8vGUv7sdEFbvPgzu3YtCw0ZBICvcTdHJyxoQp0zHhtT7wqOmJJSt+xs/Lv8IbU2fAxbVy5o0qaZlnN5aFTuys0muJc6UczDq1kYWEdY4PDb4kZBC2VYMgl9oBmC50GBRVAbOEDsCSpWRqahd87taN6/D2C8htaggeOgopSU+RnFhy+z8AiCUSBA8bVfmBluKrzz7B2zNmw6NGzWLLKJXZOHF4P4aOGV9smdFvvo3dJy9i9da9SHr6BElPE9C5ey8snf8xPn53IrZt+OWl4tQUv8wz56pVOdDmhTL5QOgAbCtBAMYA8BQ6CIqqgJ6QSwOFDsISZWv0jtna8k2pLBKJYDC8mClYq9Hk2+7o6AiGKdvlM0OhyO04+OHbhX+0a9eth6cJj17Em5WJrMwM1PQslNPg32tX8N2SzzCgYwvMfW8yYmOiMOTVtvnKnD56CE18/NDEx6/U2PR6Pb5d8hnmyL/C0QO74e5RA8vXbMLvJ47i8YP4Mr2/omiKWebZUWSnZjiO0OaFMhkqCwkTdLZPW2tiEDwjo6iXMBPAFKGDsDRF1R4AQItX2iImMgIxkRHw9gvA8UP7ULN2XdSqXReEMHia8BjP0lJR3aMGju7fVeIxnF1c8eTxoyK3uUml2H3yYrGvDWjRCnqdDn//dRHtOnXF3q2b8Grv/rB3cChU9vjlFyNer13+E8vknxba94GdW0qsPcjrt7U/YuDrI1CjlidUSiUI4aeHIIRApcwu0z6KUtwyz24cMejELioDbV4oCzH4Gu9PhQzANvBrLrwidBgU9RLGQS4NgVyRJnQgFVbG+Qoqi97AijI1eveitlX3qIGvVq3FglnTYNDr4SathuWrN4IQglq162DiuzMxbnAveNSohS49epd4nJ79B+Ho/l0Y1a8reg4YjHc/nFPmGBmGwdJVv+CLkFnQaDSo5VkbX36/Jnf7e2+MxPSP5qFZy9al7is+NgZREbfRb/DQUss+io/D9ct/4qff9gAABg0dhVlTxuPU0YNo1bZ9xUd5iEQ6FkVPY+2mU9ulkxolDoGk8pkqCwn7PD40WCXEwQnHFdvZ1LrIpVsBjBM6DIp6SR9BrvhO6CDKIjw83E8sFp/w9vbOcnJyKrpLvomlZGpqPFWo6JBmE/JOf5zvMedgp4qrpivUhGDHiDVN1SpJBNcQBoHmP+D0WiQ/eQz5uWQkZJa62GRVMTU+NHidEAe2jT4Icqk7gOFCh0FRlYA2MZTDc6WWjlgys+KWeXYlIp1O7KISKjmwYDOFOrCt/ENNAFC4QY+iLI8f5NIuQgdhCVRag4NaZ6Bt3WamK2YOBFe9TvSco6MXKqC5LCRMkMnSbCVBoHddlDWZKnQAZcQCgFDNmM+ytR6CHNjG6USFf1dEhNE76bV2qXoHJyFiKoi1vJZ184+phS0kCHJpa9BFmSjrMhxyqSUME0vnOE6v1WrtzH1gjuOgUOlogiAADcMW+l1xYSRqnchZbeAg6CqanEEPA8siW8sKGUZFDJOFhJn9s7OFUQxDhA6AoiqZE4DeAI4IHUgpUlmWvZCUlBQskUh0DMOY7b4tU61z1mk1xS43TFUeDZv/xzbboJWwBZ6z1+qYZNYFnF5rztDy4zioMp7jZqIamVqLq0KoA6ATALPOrEgTBIqyTENQxROEoKAgNjw8fKFKpQqMjY2tCZjv7lGhYWtq9Bb3I2CRiOp53odciib/7woB4RiDwT6Rq86wnJAVCByeK/XYeTsTFvrNGAEzJwjWPcxRLvUC8LjUchRleRIB1IVcUeVP4PDwcDsADWCmG5IMDSv67FzaVQ6gHRRNjeOw9uyy3Idae3H83Dchy1vEk2NuzXtK9G+rPyh9IgcTMrBAqtIAC84bHwFoGB8abLZ3YO01CIOFDoCiTKQ2gLYA/hY6kNIEBQVpAdwz1/FkIWFdQZMD8+A4ME+f5j7MdEPyU61YlrfIgHTF843PRjkkGCxm3oGqqj7MfM5beydF2rxAWTOaABetr9AB2KpEd5J/xj+O40ZkZNc9aOjSUqCQrM0Icx7MehMEudQZQE+hw6AoE6IJcNFogiCQB7Xy9zNx4rjIbF2dJC0k9kLFZGXMOuGf9SYI/EWCfikpa9YCcmkDoYOoSmQhYdUBtBE6DlsV50nyzXPQTalKWm8YaPZhrlassSwkrJG5DmbNCQK9u6JsAf2e59cb1n1dq9IeeJJ8c0+MyFC6HTJ0ps0LlaujuQ5kzSdSycuvUZR16CN0AFUMbV4QCAdwT6qjbs5jEcc9cVXVVOogpjUIlauTuQ5knQmCXOoJoJ7QYVCUGQRpf61cAAARb0lEQVQJHUAVQxMmgbAESXoxyW3WDdRo763TB9M1cCofTRBeEr1oUrbCy5gQ2zxZSFhj8PMtUAJQ2iM57+PXM1TkCNuRNi9UvhaykDCzDOOlCQJFWT76fee1EDoAW5bmhozcBxyXWT/Lg9VDTKe7rnwiAO3NcSCaIFCU5aPfd16g0AHYssc1SO5MSPX1+jtbdQPp2s6mY5ZmBpogUJTlo993Hk0QBBTvSXJrC/pmarLD2A60ecF0aIJQIXJpLdAOipRtoQkCjyYIAorzhBsAgOMMTRWenAEia5/KX0i0iaGC6MWSsjX1jImxzZKFhDkA8BY6Dlv2qCapDQBuLHvnhLZ3daHjsXLVZSFhNU19EJogUJR1sPXvfQD4zluUADggO92F1ACAjkp90nG2He0wanomT4itMUGgX0zKFtl6ey9tXhCQVownOf/fJL2ugTYvmIWPqQ9gjQkC7X9A2SJb/97TBEFAGU54BgASjov7T9nNppu7zIjWIFRAHaEDoCgB2Pr3vqnQAdiyRHeiBgB/NXv/FNvW1muzzMXkizbRBIGirEPd0otYNXreCyhnmed66fXVLBjaF8Q86pv6ANaVIMil1UGXeKZsk63/QNr6+xdUnCdxIhz3PCWjE/13MB+aIJQT/XJStqq20AEIjK5HIaAHnsSjjo7cOs++QpsXzMdLFhJm0t9wmiBQlHWwN9ag2RxZSFh1AHRJYYHkLPPsoZBl0uYFsxIDMOlcCNaWINh6Oyxl22z1+2+TiVFVwRIk6UUg6ucdbfX7JyQnU+7c2hIEWoNA2TJb/f67Cx2ALVPaI8nFwNy8YQikzQvm52jKnVvbZBa23g5L2TZbTRCqCR2ALUtzQ6ZjZuMsDoy13XBaApMmCNb2D0qXF6VsmbPQAQiEJggCelyD6PXPOtObM2HQJoZykJRehKKslrXVCJYV7aAooGduEuUjrR+d4l4YtAahHGz1AklRgO1+/w1CB2DL7jv7sLR5QTA0QSgHW71AUhRgu99/miAI6JZjR5NP2EMViyYI5UDH4FK2zFa//zRBEAoheCL2pc0LwqF9EMqBXigoW8YKHYBA6HkvLCJ0ADaMzqRYDnqhA6AoAdnq958mCJStUphy5zRBoCjrYavff1t93xSVYcqd0wSBoqyHrX7/aQ0CZatoDUI5ZAsdAEUJSCl0AAKx1cSIomgNQjkkCh0ARQnoqdABCCRN6AAoSiC0BqEcbPUCSVGA7X7/E4QOgKIEQhOEcrDVCyRFATb6/Y8PDU4DoBY6DooyMzY+NDjLlAewtgThidABUJRAdABShQ5CQPTcp2yNSfsfANaXINjkHRRFAUiEXMEJHYSAaDMDZWtM/ntnbQlCGvg7KYqyNbaeHNMEgbI1UaY+gHUlCPwdFB3JQNkimiBQlG2hCUIF0LZIyhbZ+veeJgiUrYk29QGsMUGgFwrKFtl6gvBI6AAoysxoDUIF3BI6AIoSwE2hAxCYrb9/yvbQBKECwoUOgKIEYOvf+xiYYdgXRVURz+JDg00+rJkmCBRl+ZIgV9h001p8aDAH4IbQcVCUmZi8/wFgjQmCXPEEdCQDZVtoUsy7LnQAFGUmJm9eAKwxQeD9I3QAFGVGNEHg0c+BshVmSYatNUGgFwrKltDvO49+DpStuGSOg9AEgaIsH/2+82hHRcoWZMJMo3ZogkBRli0ZcsVjoYOoCowdFWnzImXtrsSHBhvMcSDrTBD4C2aS0GFQlBnQZDi/K0IHQFEm9oe5DmSdCQLvd6EDoCgzOCt0AFXMSaEDoCgTO2OuA1lzgnBY6AAoygzo9zy/S+DbaCnKGmUAuGaug1lzgnACdOlnyrpFQa6IETqIqiQ+NFgHM95hUZSZnTdX/wPAmhMEuSIdwEWhw6AoE6K1B0U7JnQAFGUiZm1Cs94EgUcvoJQ1OyJ0AFXUEQCs0EFQVCUzANhnzgNae4JAL6CUtUoD8JfQQVRF8aHBSQAuCx0HRVWy343fbbOx7gRBrrgP4I7QYVCUCRyDXGG2tkgLdEDoACiqkm039wGtO0Hg0WYGyhrR73XJaIJAWRM1gP3mPihNECjK8mhBx/uXKD40+D6AP4WOg6IqybH40GCzTyNuCwnCVQCxQgdBUZXoMOQKOta/dGuEDoCiKskOIQ5q/QmCXMEBWC90GBRVidYJHYCF2Au+MydFWbIMAEeFOLD1Jwi8jaCTJlHWIQ7AaaGDsATxocEaAJuEjoOiXtLB+NBgtRAHto0EQa5IAh3ySFmHX421YlTZ/AKAfl6UJftRqAPbRoLAo+2RlKXTAdggdBCWJD40OAbAOaHjoKgKuhAfGmy2tRcKsp0EQa44DeCu0GFQ1EvYA7niqdBBWCB6c0BZqmVCHtx2EgTeKqEDoKiX8L3QAViogwDMOgMdRVWCCAi8roitJQi/AXgudBAUVQFXIFf8LXQQlsi4wiNNrihLszw+NFjQ/jO2lSDIFUoAa4UOg6IqYKXQAVi4VQBShA6CosroCYBtQgdhWwkCbzn4caUUZSluAtgjdBCWLD40OBvAV0LHQVFl9H18aLBW6CBsL0GQK1LBJwkUZSnmQa6gyxe/vNUAEoQOgqJKkQl+eK7gbC9B4H0H2mmJsgwXIVeECR2ENTBONrNE6DgoqhSh8aHBCqGDAGw1QZArsgF8IXQYFFUGc4UOwMr8Cn42SoqqiuLB38BWCbaZIPDWgi7iRFVthyBXXBY6CGtiHNGwWOg4KKoYnwg1rXJRbDdBkCt0AD4TOgyKKoYBwDyhg7BSWwFECh0ERRVw4f/t3WuMXVUZxvE/AtaCZlvAS8WYYxrBCAgK0WggQauJyW5KQYFSLaBBhIKtFIKbAHYVqVmtoYgUKAFDAhEbkYCFQxGiXGKjREhakYsSZXEttmDdbRGmzHT8sE7Tcc5g53LOeffl+SU7nW/zNJnZ85y1135X8OmvrEMMVd+CEK0C1lmHEBnBLbj8SesQVRR8OgDMt84hMsQOYIF1iOHqXRDioTcXWccQGaYPWGQdosqCT+8nDk4TKYIbg0/XW4cYrt4FAcDl9wK3W8cQGeIyXP68dYgaOA/YaB1Cai8HLrEOMRIVhGge8Kp1CBHgUWCpdYg6CD79FwVc1pXaccGnhZzyqYIA4PKNwDnWMaT2+oDTcfmAdZC6CD5dBdxtnUNq6/cU+BBBFYSdXP5LoFA7SKV2FuPyJ6xD1NA84vQ6kV56HTg9+LSwU1JVEP7XPHSgi9j4E7DMOkQdBZ++gDYrS+9dEHxa6Fk8KghDuXwTetQgvadHC/auBR6yDiG1sSb4dKV1iN1RQRjO5behk/OktxZp5oGt4NNB4BT0VoN03wbgNOsQo6GCMLJ56EYhvfEIOl20EIJPNwBziENrRLphBzC3qG8tDKeCMJJ4JPSJwFvWUaTS/gmcqEcLxRF8+lt0VoN0z9LWz1gpqCC8HZc/DJxrHUMqaztwAi5/wTqItLkc0BHb0ml3U7Lzf/YYHBy0zlBsLrmG+MhBpJO+hctvsg4hI2tkzYT4+Odg6yxSCeuAY4JPt1kHGQutIOzeAuAB6xBSKVepHBRb8GkOzAK2WGeR0nsJmFG2cgAqCLvn8n7ifoR/WEeRSrgfON86hOxe8OnTwGyg3zqLlNY2Yjl4yTrIeKggjIbLXwNmomlrMjHPACdrU2J5BJ+uAeaiNxtk7AaA2cGn66yDjJcKwmjFEbjfALRpQ8ZjCzATl2+2DiJj0zqv4SzrHFI63ws+LfVmVxWEsXD5avRmg4zdG8AsXP60dRAZn+DTG9CjIRm9K4NPV1iHmCgVhLFy+bXoRiGj1wccj8u10bXkgk+XA5dZ55DCWx58utA6RCeoIIyHy5cDl1jHkMJ7CzgJl//GOoh0RvDpIuBK6xxSWEuCTyvzAVJzECbCJYuBH1jHkELqB07B5TpCvIIaWfMG4AzrHFIolwafXm4dopO0gjARLl+EVhKk3XbgayoHlXYmOkNDdrmwauUAtILQGS5ZCFxhHUMK4U3iCOU11kGk+xpZ8xzgp+jDVl0NAguCT6+2DtINKgid4pJ5wNXoRlFn24DjcPnvrINI7zSy5nHAL4DJ1lmkpwaAs1tvuFSSCkInuWQGcCvwHuso0nOBOOfgcesg0nuNrPlZ4C7gfdZZpCc2E4cg3WcdpJtUEDrNJZ8AVgPTrKNIzzxE3HPwqnUQsdPImtOANcDHrLNIVz0OzAo+rfz4fS2Hd5rLnwQ+A5TmzG+ZkJXAl1UOJPj078DngbXWWaRrbgM+V4dyAFpB6B6X7AUsB75rHUW6oh+Yj8uvsw4ixdLImnsBPwQuRB/CqmIHcHHwqbcO0ksqCN3mkjOAa4B3WkeRjnmN+EjhQesgUlyNrDkduAWYap1FJmQzMCf49F7rIL2mgtALLjmauDT1QesoMmHriaOTn7UOIsXXyJoHADcBM6yzyLg8Any99fiodlQQesUl+xFfg5xjHUXGpR9YClyGy7dbh5FyaWTN+cAyYJJ1FhmV7cBiYGnwaW2PZ1dB6DWXHA9cB3zAOoqM2l+A03H5Y9ZBpLwaWfNwYBXwcess8n/9GTg1+HS9dRBr2kDTay6/AziEOFhFim0A+BFwpMqBTFTrD86niBsY+4zjSLs3gYuBo1QOIq0gWIqrCSuB91tHkTZPEFcNHrUOItXTyJoHETcvf8k6iwDwIHBm8Okz1kGKRAXBmkv2B1YAs62jCBBXDZYBi3G5PuVJVzWy5snEn7ePWGepqQBcCvw8+FR/DIdRQSgKl3wB8MQhS2LjTuDi1rArkZ5oZM3JwAXA94F9jePUxUZgCbAy+FSbjt+GCkLRuOQE4nPvg62j1MjDQIbL/2AdROqrkTU/BDjgNDQ3pVu2Ek/evSL4dJt1mKJTQSgil+wJfJN4szjQNkylrQcu0tHMUiStorAQ+A7wbuM4VdFH3O+1JPh0k3WYslBBKDKXTCaOas6AKcZpquRZ4nPHW3G5fgGkkBpZcz/gXGA+sL9xnLLaCtwM/Dj49DnrMGWjglAGLnkvcB5wNjpOdiKeAX4C3KhhR1IWjay5L/Bt4Hzgw8ZxyuIp4lsiNwefbrUOU1YqCGXikknAKcAC4AjjNGVyP3AVcI9WDKSsGllzb+Ak4FRgOrCnbaLCGQB+DawIPn3AOkwVqCCUlUuOAc4CvorGt45kM/GgnOv1VoJUTSNrTiV+WJiLPixsAH4GXB98+qJ1mCpRQSi7eMbDXOIS5CHGaYrgIeAG4HZc/qZ1GJFua2TNw4j3gDnUZ1Pz34ivJd8J/FEzDLpDBaFKXPJJYGbrOgrYwzZQT7xFLAWrgbtwebCNI2KjkTXfARwLfIX4COIIqjNOfxB4lFgI7gg+fco4Ty2oIFSVS6YSj5idSbxZTLYN1FGbgXuIpeBeXL7FOI9I4bTegjiW+Ps/nfLNVnkZWEscg7xajw96TwWhDlyyD3Hm+0zgi8BHbQON2QBxV/J9xFKwFpf320YSKZdG1jyQWBSOBg4HDgX2MQ21y+vEuSSPAY8Aa4NPg2kiUUGoJZdMAT4NHDnkmmaaaZcB4EnijWLntR6X/8c0lUjFtB5JTAMOI64uHDTkOqAL33Ir8DzwXOvf54lnIawD/hp8uqML31MmQAVBojhrYWdpOJS42Wlq6+r0kKZBYBNx9/EG4EXiTWJnGXijw99PRMagkTUnAfsRf/eH/rvz6ynE1yy3D7v6hn39Cq0yEHz6797+L2SiVBBk91zyLnaVhaHXZGCv1rU3cUPUANBP3DzYD2wjloCX2VUIXtEjAhGRYlNBEBERkTZVeQVGREREOkgFQURERNqoIIiIiEgbFQQRERFpo4IgIiIibVQQREREpI0KgoiIiLRRQRAREZE2KggiIiLSRgVBRERE2qggiIiISBsVBBEREWmjgiAiIiJtVBBERESkjQqCiIiItFFBEBERkTYqCCIiItJGBUFERETaqCCIiIhIm/8CwXQKa6zjgMwAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 4 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU"
]
},
{
"cell_type": "code",
"execution_count": 122,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"plotlyServerURL": "https://plot.ly"
},
"data": [
{
"domain": {
"x": [
0,
1
],
"y": [
0,
1
]
},
"hovertemplate": "function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>",
"labels": [
"Py_kgeneration",
"generate",
"fftma2",
"covariance",
"gasdev",
"fourt",
"cov_value",
"ran2",
"build_real",
"prebuild_gwn",
"clean_real",
"cgrid",
"length",
"maxfactor"
],
"marker": {
"colors": [
"#636efa",
"#EF553B",
"#EF553B",
"#00cc96",
"#ab63fa",
"#00cc96",
"#FFA15A",
"#19d3f3",
"#636efa",
"#00cc96",
"#636efa",
"#636efa",
"#636efa",
"#636efa"
]
},
"name": "",
"parents": [
"",
"Py_kgeneration",
"Py_kgeneration",
"fftma2",
"generate",
"fftma2",
"covariance",
"gasdev",
"",
"fftma2",
"",
"",
"",
""
],
"type": "treemap",
"values": [
39.623390375,
39.95615625000001,
38.34373725,
38.374862375,
4.585811751037405,
21.86151395833333,
1.2108900187277127,
1.2193375291062964,
0.0125,
0.025,
6.2875000000000005,
0.025,
0.008333333333333333,
0.00625
]
}
],
"layout": {
"legend": {
"tracegroupgap": 0
},
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"autotypenumbers": "strict",
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
},
"title": {
"text": "CPU treemap"
}
}
},
"text/html": [
"<div> <div id=\"43c681d9-06df-4d17-97d0-df9ee5e8fa48\" class=\"plotly-graph-div\" style=\"height:525px; width:100%;\"></div> <script type=\"text/javascript\"> require([\"plotly\"], function(Plotly) { window.PLOTLYENV=window.PLOTLYENV || {}; if (document.getElementById(\"43c681d9-06df-4d17-97d0-df9ee5e8fa48\")) { Plotly.newPlot( \"43c681d9-06df-4d17-97d0-df9ee5e8fa48\", [{\"domain\": {\"x\": [0.0, 1.0], \"y\": [0.0, 1.0]}, \"hovertemplate\": \"function=%{label}<br>cpu_mean=%{value}<br>parent=%{parent}<extra></extra>\", \"labels\": [\"Py_kgeneration\", \"generate\", \"fftma2\", \"covariance\", \"gasdev\", \"fourt\", \"cov_value\", \"ran2\", \"build_real\", \"prebuild_gwn\", \"clean_real\", \"cgrid\", \"length\", \"maxfactor\"], \"marker\": {\"colors\": [\"#636efa\", \"#EF553B\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#00cc96\", \"#FFA15A\", \"#19d3f3\", \"#636efa\", \"#00cc96\", \"#636efa\", \"#636efa\", \"#636efa\", \"#636efa\"]}, \"name\": \"\", \"parents\": [\"\", \"Py_kgeneration\", \"Py_kgeneration\", \"fftma2\", \"generate\", \"fftma2\", \"covariance\", \"gasdev\", \"\", \"fftma2\", \"\", \"\", \"\", \"\"], \"type\": \"treemap\", \"values\": [39.623390375, 39.95615625000001, 38.34373725, 38.374862375, 4.585811751037405, 21.86151395833333, 1.2108900187277127, 1.2193375291062964, 0.0125, 0.025, 6.2875000000000005, 0.025, 0.008333333333333333, 0.00625]}], {\"legend\": {\"tracegroupgap\": 0}, \"template\": {\"data\": {\"bar\": [{\"error_x\": {\"color\": \"#2a3f5f\"}, \"error_y\": {\"color\": \"#2a3f5f\"}, \"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"bar\"}], \"barpolar\": [{\"marker\": {\"line\": {\"color\": \"#E5ECF6\", \"width\": 0.5}}, \"type\": \"barpolar\"}], \"carpet\": [{\"aaxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"baxis\": {\"endlinecolor\": \"#2a3f5f\", \"gridcolor\": \"white\", \"linecolor\": \"white\", \"minorgridcolor\": \"white\", \"startlinecolor\": \"#2a3f5f\"}, \"type\": \"carpet\"}], \"choropleth\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"choropleth\"}], \"contour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"contour\"}], \"contourcarpet\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"contourcarpet\"}], \"heatmap\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmap\"}], \"heatmapgl\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"heatmapgl\"}], \"histogram\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"histogram\"}], \"histogram2d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2d\"}], \"histogram2dcontour\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"histogram2dcontour\"}], \"mesh3d\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"type\": \"mesh3d\"}], \"parcoords\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"parcoords\"}], \"pie\": [{\"automargin\": true, \"type\": \"pie\"}], \"scatter\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter\"}], \"scatter3d\": [{\"line\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatter3d\"}], \"scattercarpet\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattercarpet\"}], \"scattergeo\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergeo\"}], \"scattergl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattergl\"}], \"scattermapbox\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scattermapbox\"}], \"scatterpolar\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolar\"}], \"scatterpolargl\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterpolargl\"}], \"scatterternary\": [{\"marker\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"type\": \"scatterternary\"}], \"surface\": [{\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}, \"colorscale\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"type\": \"surface\"}], \"table\": [{\"cells\": {\"fill\": {\"color\": \"#EBF0F8\"}, \"line\": {\"color\": \"white\"}}, \"header\": {\"fill\": {\"color\": \"#C8D4E3\"}, \"line\": {\"color\": \"white\"}}, \"type\": \"table\"}]}, \"layout\": {\"annotationdefaults\": {\"arrowcolor\": \"#2a3f5f\", \"arrowhead\": 0, \"arrowwidth\": 1}, \"autotypenumbers\": \"strict\", \"coloraxis\": {\"colorbar\": {\"outlinewidth\": 0, \"ticks\": \"\"}}, \"colorscale\": {\"diverging\": [[0, \"#8e0152\"], [0.1, \"#c51b7d\"], [0.2, \"#de77ae\"], [0.3, \"#f1b6da\"], [0.4, \"#fde0ef\"], [0.5, \"#f7f7f7\"], [0.6, \"#e6f5d0\"], [0.7, \"#b8e186\"], [0.8, \"#7fbc41\"], [0.9, \"#4d9221\"], [1, \"#276419\"]], \"sequential\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]], \"sequentialminus\": [[0.0, \"#0d0887\"], [0.1111111111111111, \"#46039f\"], [0.2222222222222222, \"#7201a8\"], [0.3333333333333333, \"#9c179e\"], [0.4444444444444444, \"#bd3786\"], [0.5555555555555556, \"#d8576b\"], [0.6666666666666666, \"#ed7953\"], [0.7777777777777778, \"#fb9f3a\"], [0.8888888888888888, \"#fdca26\"], [1.0, \"#f0f921\"]]}, \"colorway\": [\"#636efa\", \"#EF553B\", \"#00cc96\", \"#ab63fa\", \"#FFA15A\", \"#19d3f3\", \"#FF6692\", \"#B6E880\", \"#FF97FF\", \"#FECB52\"], \"font\": {\"color\": \"#2a3f5f\"}, \"geo\": {\"bgcolor\": \"white\", \"lakecolor\": \"white\", \"landcolor\": \"#E5ECF6\", \"showlakes\": true, \"showland\": true, \"subunitcolor\": \"white\"}, \"hoverlabel\": {\"align\": \"left\"}, \"hovermode\": \"closest\", \"mapbox\": {\"style\": \"light\"}, \"paper_bgcolor\": \"white\", \"plot_bgcolor\": \"#E5ECF6\", \"polar\": {\"angularaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"radialaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"scene\": {\"xaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"yaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}, \"zaxis\": {\"backgroundcolor\": \"#E5ECF6\", \"gridcolor\": \"white\", \"gridwidth\": 2, \"linecolor\": \"white\", \"showbackground\": true, \"ticks\": \"\", \"zerolinecolor\": \"white\"}}, \"shapedefaults\": {\"line\": {\"color\": \"#2a3f5f\"}}, \"ternary\": {\"aaxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"baxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}, \"bgcolor\": \"#E5ECF6\", \"caxis\": {\"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\"}}, \"title\": {\"x\": 0.05}, \"xaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}, \"yaxis\": {\"automargin\": true, \"gridcolor\": \"white\", \"linecolor\": \"white\", \"ticks\": \"\", \"title\": {\"standoff\": 15}, \"zerolinecolor\": \"white\", \"zerolinewidth\": 2}}}, \"title\": {\"text\": \"CPU treemap\"}}, {\"responsive\": true} ).then(function(){\n",
" \n",
"var gd = document.getElementById('43c681d9-06df-4d17-97d0-df9ee5e8fa48');\n",
"var x = new MutationObserver(function (mutations, observer) {{\n",
" var display = window.getComputedStyle(gd).display;\n",
" if (!display || display === 'none') {{\n",
" console.log([gd, 'removed!']);\n",
" Plotly.purge(gd);\n",
" observer.disconnect();\n",
" }}\n",
"}});\n",
"\n",
"// Listen for the removal of the full notebook cells\n",
"var notebookContainer = gd.closest('#notebook-container');\n",
"if (notebookContainer) {{\n",
" x.observe(notebookContainer, {childList: true});\n",
"}}\n",
"\n",
"// Listen for the clearing of the current output cell\n",
"var outputEl = gd.closest('.output');\n",
"if (outputEl) {{\n",
" x.observe(outputEl, {childList: true});\n",
"}}\n",
"\n",
" }) }; }); </script> </div>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 128"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file log_128-aa\n",
"Executing file log_128-ab\n",
"Executing file log_128-ac\n"
]
}
],
"source": [
"df = analyze(['log_128-aa', 'log_128-ab', 'log_128-ac', 'log_128-ad', 'log_128-ae', 'log_128-af', 'log_128-ag', 'log_128-ah', 'log_128-ai', 'log_128-aj', 'log_128-ak'])\n",
"overall_time[\"128\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"128\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempo"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\", \"Time treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 256"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Armado del dataset"
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Executing file number 1 out of 10\n",
"Executing file number 2 out of 10\n",
"Executing file number 3 out of 10\n",
"Executing file number 4 out of 10\n",
"Executing file number 5 out of 10\n",
"Executing file number 6 out of 10\n",
"Executing file number 7 out of 10\n",
"Executing file number 8 out of 10\n",
"Executing file number 9 out of 10\n",
"Executing file number 10 out of 10\n"
]
}
],
"source": [
"df = analyze(['log_256-aa', 'log_256-ab', 'log_256-ac'])\n",
"overall_time[\"256\"] = df.loc[\"Py_kgeneration\"][(\"time\", \"sum\")]\n",
"overall_memory[\"256\"] = abs(df.loc[\"Py_kgeneration\"][(\"memory\", \"median\")])\n",
"df"
]
},
{
"cell_type": "code",
"execution_count": 96,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead tr th {\n",
" text-align: left;\n",
" }\n",
"\n",
" .dataframe thead tr:last-of-type th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr>\n",
" <th></th>\n",
" <th colspan=\"3\" halign=\"left\">memory</th>\n",
" <th colspan=\"5\" halign=\"left\">time</th>\n",
" </tr>\n",
" <tr>\n",
" <th></th>\n",
" <th>max</th>\n",
" <th>median</th>\n",
" <th>min</th>\n",
" <th>count</th>\n",
" <th>max</th>\n",
" <th>mean</th>\n",
" <th>min</th>\n",
" <th>sum</th>\n",
" </tr>\n",
" <tr>\n",
" <th>function</th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" <th></th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" <tr>\n",
" <th>Py_kgeneration</th>\n",
" <td>7421.6</td>\n",
" <td>7421.6</td>\n",
" <td>7421.6</td>\n",
" <td>1.0</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" <td>1226.822575</td>\n",
" </tr>\n",
" <tr>\n",
" <th>generate</th>\n",
" <td>6691.7</td>\n",
" <td>6691.7</td>\n",
" <td>6691.7</td>\n",
" <td>1.0</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" <td>959.799368</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fftma2</th>\n",
" <td>872.0</td>\n",
" <td>872.0</td>\n",
" <td>872.0</td>\n",
" <td>1.0</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" <td>267.021516</td>\n",
" </tr>\n",
" <tr>\n",
" <th>covariance</th>\n",
" <td>870.5</td>\n",
" <td>870.5</td>\n",
" <td>870.5</td>\n",
" <td>1.0</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" <td>247.512194</td>\n",
" </tr>\n",
" <tr>\n",
" <th>gasdev</th>\n",
" <td>8.7</td>\n",
" <td>0.0</td>\n",
" <td>-13.5</td>\n",
" <td>16777216.0</td>\n",
" <td>0.001358</td>\n",
" <td>0.000033</td>\n",
" <td>0.000000</td>\n",
" <td>564.182445</td>\n",
" </tr>\n",
" <tr>\n",
" <th>fourt</th>\n",
" <td>11.5</td>\n",
" <td>-1.4</td>\n",
" <td>-16.2</td>\n",
" <td>3.0</td>\n",
" <td>8.429829</td>\n",
" <td>6.378454</td>\n",
" <td>5.015006</td>\n",
" <td>19.135362</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cov_value</th>\n",
" <td>0.7</td>\n",
" <td>0.0</td>\n",
" <td>-13.9</td>\n",
" <td>8855600.0</td>\n",
" <td>0.000437</td>\n",
" <td>0.000002</td>\n",
" <td>0.000001</td>\n",
" <td>21.579349</td>\n",
" </tr>\n",
" <tr>\n",
" <th>ran2</th>\n",
" <td>0.9</td>\n",
" <td>0.0</td>\n",
" <td>-0.8</td>\n",
" <td>21359556.0</td>\n",
" <td>0.000381</td>\n",
" <td>0.000002</td>\n",
" <td>0.000000</td>\n",
" <td>45.002553</td>\n",
" </tr>\n",
" <tr>\n",
" <th>build_real</th>\n",
" <td>-0.2</td>\n",
" <td>-0.2</td>\n",
" <td>-0.2</td>\n",
" <td>1.0</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" <td>0.151968</td>\n",
" </tr>\n",
" <tr>\n",
" <th>prebuild_gwn</th>\n",
" <td>6.5</td>\n",
" <td>6.5</td>\n",
" <td>6.5</td>\n",
" <td>1.0</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" <td>0.108160</td>\n",
" </tr>\n",
" <tr>\n",
" <th>clean_real</th>\n",
" <td>127.2</td>\n",
" <td>127.2</td>\n",
" <td>127.2</td>\n",
" <td>1.0</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" <td>0.095267</td>\n",
" </tr>\n",
" <tr>\n",
" <th>cgrid</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>1.0</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" <td>0.000160</td>\n",
" </tr>\n",
" <tr>\n",
" <th>length</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>3.0</td>\n",
" <td>0.000043</td>\n",
" <td>0.000034</td>\n",
" <td>0.000021</td>\n",
" <td>0.000102</td>\n",
" </tr>\n",
" <tr>\n",
" <th>maxfactor</th>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>0.0</td>\n",
" <td>5.0</td>\n",
" <td>0.000002</td>\n",
" <td>0.000002</td>\n",
" <td>0.000001</td>\n",
" <td>0.000008</td>\n",
" </tr>\n",
" </tbody>\n",
"</table>\n",
"</div>"
],
"text/plain": [
" memory time \\\n",
" max median min count max mean \n",
"function \n",
"Py_kgeneration 7421.6 7421.6 7421.6 1.0 1226.822575 1226.822575 \n",
"generate 6691.7 6691.7 6691.7 1.0 959.799368 959.799368 \n",
"fftma2 872.0 872.0 872.0 1.0 267.021516 267.021516 \n",
"covariance 870.5 870.5 870.5 1.0 247.512194 247.512194 \n",
"gasdev 8.7 0.0 -13.5 16777216.0 0.001358 0.000033 \n",
"fourt 11.5 -1.4 -16.2 3.0 8.429829 6.378454 \n",
"cov_value 0.7 0.0 -13.9 8855600.0 0.000437 0.000002 \n",
"ran2 0.9 0.0 -0.8 21359556.0 0.000381 0.000002 \n",
"build_real -0.2 -0.2 -0.2 1.0 0.151968 0.151968 \n",
"prebuild_gwn 6.5 6.5 6.5 1.0 0.108160 0.108160 \n",
"clean_real 127.2 127.2 127.2 1.0 0.095267 0.095267 \n",
"cgrid 0.0 0.0 0.0 1.0 0.000160 0.000160 \n",
"length 0.0 0.0 0.0 3.0 0.000043 0.000034 \n",
"maxfactor 0.0 0.0 0.0 5.0 0.000002 0.000002 \n",
"\n",
" \n",
" min sum \n",
"function \n",
"Py_kgeneration 1226.822575 1226.822575 \n",
"generate 959.799368 959.799368 \n",
"fftma2 267.021516 267.021516 \n",
"covariance 247.512194 247.512194 \n",
"gasdev 0.000000 564.182445 \n",
"fourt 5.015006 19.135362 \n",
"cov_value 0.000001 21.579349 \n",
"ran2 0.000000 45.002553 \n",
"build_real 0.151968 0.151968 \n",
"prebuild_gwn 0.108160 0.108160 \n",
"clean_real 0.095267 0.095267 \n",
"cgrid 0.000160 0.000160 \n",
"length 0.000021 0.000102 \n",
"maxfactor 0.000001 0.000008 "
]
},
"execution_count": 96,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"merge_dfs(dfs)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de tiempos"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Time comparisons\", (\"time\", \"sum\"))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_treemap(df, (\"time\", \"sum\"), \"time_sum\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Comparación de memoria"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_pie_charts(df, \"Memory comparisons\", (\"memory\", \"median\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Análisis de la CPU"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"plot_treemap(df, (\"cpu\", \"mean\"), \"cpu_mean\", \"CPU treemap\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Tiempo insumido con distintos N\n",
"\n",
"Se busca mostrar en los siguientes gráficos la relación exponencial que existe entre el tiempo insumido por cada una de las configuraciones de distinto N."
]
},
{
"cell_type": "code",
"execution_count": 94,
"metadata": {},
"outputs": [],
"source": [
"def plot_overall_comparison(info, title, unit):\n",
" fig = plt.figure()\n",
" plt.title(title)\n",
" plt.bar(info.keys(),info.values())\n",
" plt.ylabel(unit)\n",
" plt.xlabel(\"sizes\")\n",
" plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 95,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'8': 0.544398, '16': 2.908668, '32': 22.135483, '64': 178.629961}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAY/0lEQVR4nO3df9xmc73v8deboeS35k5IRqIO2kZ7Ep10FJUoShFb+n3QSR3pl+rsTT1256g4nXa71HQ4ahPJj7Y2+ZFd7HMqGpIQ+dHIjGFGisSRH5/9x7Xu5XK7by4zc93rHvfr+Xhcj1nru359rnVzva/1XetaK1WFJEkAK3VdgCRp6jAUJEktQ0GS1DIUJEktQ0GS1DIUJEktQ0ErrCRHJjmxGZ6VpJLMWIr1XJ1kp+Vd31NNknuSPK/rOjRchoKelCTvTPKrJPcmuS3JsUnW6bqux9N8mI2+Hk5yX9/4/lW1VVX9eJJq2SLJd5PckeSuJFcmOSzJypOx/WVRVWtU1U1d16HhMhQ0sCQfBj4HfBRYG9ge2AS4IMmqy3lbT/ob/0SaD7M1qmoN4HfAG/raTlpe23kiSTYDLgFuAV5UVWsDewNzgDUnq44na3n+LTT1GQoaSJK1gE8DH6iqc6vqgaqaD+wDzALelmTD5lv4en3Lbdt8K16lGX93kl8n+UOS85Js0jdvJXl/kuuB65u2LyW5JcndSS5LsuMQ3tv8JLs0w0c23+RPTPKn5qhoiySfSLK4qeU1fcuuneS4JIuSLEzy94/zrf/TwE+q6rCqWgRQVddV1d9U1R+b9e3RdGf9McmPk/yHMXV+tDm6+HOz3fWT/KCp9YdJ1m3mHe1OOzDJrU19H+lb13ZJftpsZ1GSf+wP9gn+FpXk+c3wbkmuaba7cMy6/3OSG5LcmeSsJBuOWe/BSa5vtv2VJFn6v56WN0NBg3oZ8HTgjP7GqroHOAd4dVXdCvwUeHPfLH8DnFZVDyTZE/gksBcwAvwbcPKY7bwReCmwZTP+c2A2sB7wbeC7SZ6+3N7V+N4A/BOwLvAL4Dx6/69sBHwG+HrfvCcADwLPB7YFXgO8d4L17gKcNtFGk2xBb38cSm//nAN8f8xR2JuBVwNbNHX+gN4+HWlq/OCY1b4S2Lyp6+Oj4Qc8BHwImAnsAOwM/Jcxy76RR/8t+h0HHFRVawJbA//avIdXAf+D3peFDYCbgVPGLPt64CXAXzXzvXbcHaJuVJUvX0/4At4G3DbBtKOAC5rh9wL/2gyHXlfJK5rxHwDv6VtuJeBeYJNmvIBXPUEdfwC2aYaPBE5shmc1y894guXnA7tM1Nas84K+aW8A7gFWbsbXbLazDrA+cD+wWt/8+wE/mmDbDwC7Pk5tfwucOmb/LAR26qtz/77ppwPH9o1/APjemP3xwr7pnweOm2DbhwJn9o0/5m/RtD2/Gf4dcBCw1ph5jgM+3ze+RvO+Z/Wt4+V9008FDu/6v29fj7w8UtCg7gBmTtC/vEEzHXofVDsk2QB4BfAwvSMC6J1/+FLTbfBH4E56wbFR37pu6V9xko803U13NcusTe/b7TDd3jd8H3BHVT3UNw69D7tNgFWARX3v6evAsyZY7+/p7auJbEjvmzUAVfUwvf3Rv3/G1jZ2fI0x6+zfnzc32xg94f0v6V0scDfw33nsfr2Fib0Z2A24OclFSXaY4D3cQ+9997+H2/qG7x2nZnXIUNCgfkrvW/Fe/Y1J1gBeB1wIUFV/AM4H3kqv6+iUar4S0vuQOaiq1ul7rVZVP+lbZfWte0fgY/S6GNatqnWAu+gFyVRwC719MrPv/axVVVtNMP8PeXTX2li30gsaAJq+9o3pHS0srY37hp/bbAPgWOBaYPOqWoteF9TY/TrhLZSr6udVtSe9APwevW/88Nj3sDrwTJbtPWgSGQoaSFXdRe9E6ZeT7JpklSSz6H0YLKDXBz/q28Dbgbc0w6O+BnwiyVbQnqTd+3E2uya9/volwIwkfwestZze0jKr3sni84FjkqyVZKUkmyX5TxMscgTwsiRfSPJsgCTPb05qr0NvX+6eZOf0Tsx/mF7o/GSC9Q3ib5M8o9nn7wK+07SvCdwN3JPkhcD7Bl1hklWT7J9k7ap6oFnPw83kk4F3JZmd5Gn0jkAuqd5FCVoBGAoaWFV9nt43yqPpfRCMXl65c1Xd3zfrWfRObt5WVb/sW/5Mepe0ntJ0WVxF7yhjIucB5wK/odcl8f95/C6NLrwdWBW4ht75jtOYoIuoqm6kd1J3FnB1krvodbfNA/5UVdfRO3fzZXrdcW+gd/nsX5ahvouAG+gdyR1dVec37R+hdyT3J+AbPBIWgzoAmN/8HQ8G9geoqh/SOzdyOrAI2AzYdxnq1yTLI0f2kp4qmqO43wKrVNWDHZejFYhHCpKklqEgSWrZfSRJanmkIElqrdA3upo5c2bNmjWr6zIkaYVy2WWX3VFVI+NNW6FDYdasWcybN6/rMiRphZLk5omm2X0kSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWqt0L9oljR9zTr87K5L6NT8o3YfynqHdqSQ5Pgki5Nc1df2nSRXNK/5Sa5o2mclua9v2teGVZckaWLDPFI4AfhH4FujDVX11tHhJMfQewj7qBuravYQ65EkPYGhhUJVXdw8EvAxkgTYB3jVsLYvSXryujrRvCNwe1Vd39e2aZJfJLkoyY4TLZjkwCTzksxbsmTJ8CuVpGmkq1DYDzi5b3wR8Nyq2hY4DPh2krXGW7Cq5lbVnKqaMzIy7u3AJUlLadJDIckMYC/gO6NtVXV/Vf2+Gb4MuBHYYrJrk6TprosjhV2Aa6tqwWhDkpEkKzfDzwM2B27qoDZJmtaGeUnqycBPgRckWZDkPc2kfXl01xHAK4Arm0tUTwMOrqo7h1WbJGl8w7z6aL8J2t85TtvpwOnDqkWSNBhvcyFJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqSWoSBJahkKkqTW0EIhyfFJFie5qq/tyCQLk1zRvHbrm/aJJDckuS7Ja4dVlyRpYsM8UjgB2HWc9i9W1ezmdQ5Aki2BfYGtmmW+mmTlIdYmSRrH0EKhqi4G7hxw9j2BU6rq/qr6LXADsN2wapMkja+LcwqHJLmy6V5at2nbCLilb54FTdtjJDkwybwk85YsWTLsWiVpWpnsUDgW2AyYDSwCjnmyK6iquVU1p6rmjIyMLOfyJGl6m9RQqKrbq+qhqnoY+AaPdBEtBDbum/U5TZskaRJNaigk2aBv9E3A6JVJZwH7Jnlakk2BzYFLJ7M2SRLMGNaKk5wM7ATMTLIAOALYKclsoID5wEEAVXV1klOBa4AHgfdX1UPDqk2SNL6hhUJV7TdO83GPM/9ngc8Oqx5J0hPzF82SpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqDS0UkhyfZHGSq/ravpDk2iRXJjkzyTpN+6wk9yW5onl9bVh1SZImNswjhROAXce0XQBsXVV/BfwG+ETftBuranbzOniIdUmSJjC0UKiqi4E7x7SdX1UPNqM/A54zrO1Lkp68Ls8pvBv4Qd/4pkl+keSiJDtOtFCSA5PMSzJvyZIlw69SkqaRTkIhyaeAB4GTmqZFwHOralvgMODbSdYab9mqmltVc6pqzsjIyOQULEnTxKSHQpJ3Aq8H9q+qAqiq+6vq983wZcCNwBaTXZskTXeTGgpJdgU+BuxRVff2tY8kWbkZfh6wOXDTZNYmSYIZw1pxkpOBnYCZSRYAR9C72uhpwAVJAH7WXGn0CuAzSR4AHgYOrqo7x12xJGlohhYKVbXfOM3HTTDv6cDpw6pFkjQYf9EsSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKk1kChkGT1JCs1w1sk2SPJKsMtTZI02QY9UrgYeHqSjYDzgQOAE4ZVlCSpG4OGQpqH4uwFfLWq9ga2Gl5ZkqQuDBwKSXYA9gfObtpWHk5JkqSuDBoKh9J7atqZVXV188jMHw2tKklSJwZ68lpVXQRc1Dd+E/DBYRUlSerG44ZCku8DNdH0qtpjuVckSerMEx0pHN38uxfwbODEZnw/4PZhFSVJ6sbjhkLTbUSSY6pqTt+k7yeZ90QrT3I88HpgcVVt3bStB3wHmAXMB/apqj8kCfAlYDfgXuCdVXX5k35HkqSlNuiJ5tWbk8sAJNkUWH2A5U4Adh3TdjhwYVVtDlzYjAO8Dti8eR0IHDtgbZKk5WSgE83Ah4AfJ7kJCLAJcNATLVRVFyeZNaZ5T2CnZvibwI+Bjzft36qqAn6WZJ0kG1TVogFrlCQto0GvPjo3yebAC5uma6vq/qXc5vp9H/S3Aes3wxsBt/TNt6Bpe1QoJDmQ3pEEz33uc5eyBEnSeAY9UgD4a3rnAWYA2yShqr61LBuvqkoy4dVNEywzF5gLMGfOnCe1rCTp8Q0UCkn+CdgMuAJ4qGkuYGlC4fbRbqEkGwCLm/aFwMZ98z2naZMkTZJBjxTmAFs2/f3L6izgHcBRzb//3Nd+SJJTgJcCd3k+QZIm16ChcBW93yk8qQ/pJCfTO6k8M8kC4Ah6YXBqkvcANwP7NLOfQ+9y1BvoXZL6riezLUnSshs0FGYC1yS5FGhPMD/RL5qrar8JJu08zrwFvH/AeiRJQzBoKBw5zCIkSVPDwDfES7I+8JKm6dKqWvx4y0iSVjyDPo5zH+BSYG965wAuSfKWYRYmSZp8g3YffQp4yejRQZIR4IfAacMqTJI0+Qa999FKY7qLfv8klpUkrSAGPVI4N8l5wMnN+FuBHwynJElSVwY90fzRJHsBL2+a5lbVmcMrS5LUhUFvc7EpcE5VndGMr5ZkVlXNH2ZxkqTJNeh5ge8CD/eNP9S0SZKeQgYNhRlV9ZfRkWZ41eGUJEnqyqChsCRJe0uLJHsCdwynJElSVwa9+uhg4KQkX6F3y+wFwNuHVpUkqRODXn10I7B9kjWa8XuGWpUkqROD3uZi/STHAd+tqnuSbNnc+lqS9BQy6DmFE4DzgA2b8d8Ahw6hHklShwYNhZlVdSrNZalV9SCPPJZTkvQUMWgo/DnJM+mdZCbJ9sBdQ6tKktSJQa8+OozeM5Q3S/L/gBHAW2dL0lPMoEcKmwGvA15G79zC9QweKJKkFcSgofC3VXU3sC7wSuCrwLFDq0qS1IlBQ2H0pPLuwDeq6myW8jYXSV6Q5Iq+191JDk1yZJKFfe27Lc36JUlLb9AuoIVJvg68GvhckqexlA/ZqarrgNkASVYGFgJnAu8CvlhVRy/NeiVJy27QD/Z96J1LeG1V/RFYD/joctj+zsCNVXXzcliXJGkZDRQKVXVvVZ1RVdc344uq6vzlsP19eeRpbgCHJLkyyfFJ1h1vgSQHJpmXZN6SJUuWQwmSpFGdPWc5yarAHjzyXIZj6V3lNBtYBBwz3nJVNbeq5lTVnJGRkckoVZKmjc5Cgd4lrpdX1e0AVXV7VT1UVQ8D3wC267A2SZqWugyF/ejrOkqyQd+0NwFXTXpFkjTNdfIDtCSr07uS6aC+5s8nmU3vVhrzx0yTJE2CTkKhqv4MPHNM2wFd1CJJekSX3UeSpCnGUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktQwFSVLLUJAktWZ0teEk84E/AQ8BD1bVnCTrAd8BZgHzgX2q6g9d1ShJ003XRwqvrKrZVTWnGT8cuLCqNgcubMYlSZOk61AYa0/gm83wN4E3dleKJE0/XYZCAecnuSzJgU3b+lW1qBm+DVh/7EJJDkwyL8m8JUuWTFatkjQtdHZOAXh5VS1M8izggiTX9k+sqkpSYxeqqrnAXIA5c+Y8Zrokael1dqRQVQubfxcDZwLbAbcn2QCg+XdxV/VJ0nTUSSgkWT3JmqPDwGuAq4CzgHc0s70D+Ocu6pOk6aqr7qP1gTOTjNbw7ao6N8nPgVOTvAe4Gdino/okaVrqJBSq6iZgm3Hafw/sPPkVSZJg6l2SKknqkKEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWoZCpKklqEgSWpNeigk2TjJj5Jck+TqJP+1aT8yycIkVzSv3Sa7Nkma7mZ0sM0HgQ9X1eVJ1gQuS3JBM+2LVXV0BzVJkuggFKpqEbCoGf5Tkl8DG012HZKkx+r0nEKSWcC2wCVN0yFJrkxyfJJ1J1jmwCTzksxbsmTJZJUqSdNCZ6GQZA3gdODQqrobOBbYDJhN70jimPGWq6q5VTWnquaMjIxMVrmSNC10EgpJVqEXCCdV1RkAVXV7VT1UVQ8D3wC266I2SZrOJv2cQpIAxwG/rqr/2de+QXO+AeBNwFWTXZs0mWYdfnbXJXRq/lG7d12CxtHF1Uf/ETgA+FWSK5q2TwL7JZkNFDAfOKiD2iRpWuvi6qP/C2ScSedMdi2SpEfzF82SpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpJahIElqGQqSpNakP6NZTx2zDj+76xI6Nf+o3bsuQVruptyRQpJdk1yX5IYkh3ddjyRNJ1MqFJKsDHwFeB2wJbBfki27rUqSpo+p1n20HXBDVd0EkOQUYE/gmmFszO4Puz8kPVqqqusaWkneAuxaVe9txg8AXlpVh/TNcyBwYDP6AuC6SS90+ZkJ3NF1ESsw99+ycf8tmxV5/21SVSPjTZhqRwpPqKrmAnO7rmN5SDKvquZ0XceKyv23bNx/y+apuv+m1DkFYCGwcd/4c5o2SdIkmGqh8HNg8ySbJlkV2Bc4q+OaJGnamFLdR1X1YJJDgPOAlYHjq+rqjssapqdEN1iH3H/Lxv23bJ6S+29KnWiWJHVrqnUfSZI6ZChIklqGQgeSfCjJ1UmuSnJykqd3XdNUluT4JIuTXDWm/QNJrm325ee7qm+qS/L0JJcm+WWzrz7dtJ/U3FLmqmYfr9J1rVNVknWSnNb89/brJDv0Tftwkkoys8salxdDYZIl2Qj4IDCnqramd0J9326rmvJOAHbtb0jySnq/dt+mqrYCju6grhXF/cCrqmobYDawa5LtgZOAFwIvAlYD3ttZhVPfl4Bzq+qFwDbArwGSbAy8Bvhdh7UtV4ZCN2YAqyWZATwDuLXjeqa0qroYuHNM8/uAo6rq/maexZNe2Aqieu5pRldpXlVV5zTTCriU3u+CNEaStYFXAMcBVNVfquqPzeQvAh8DnjJX7BgKk6yqFtL7Vvs7YBFwV1Wd321VK6QtgB2TXJLkoiQv6bqgqSzJykmuABYDF1TVJX3TVgEOAM7tqLypblNgCfB/kvwiyf9OsnqSPYGFVfXLjutbrgyFSZZkXXrdHpsCGwKrJ3lbt1WtkGYA6wHbAx8FTk2SbkuauqrqoaqaTe9oYLskW/dN/ipwcVX9WyfFTX0zgBcDx1bVtsCfgSOBTwJ/12FdQ2EoTL5dgN9W1ZKqegA4A3hZxzWtiBYAZzS9H5cCD9O7QZkeR9Pt8SOaczRJjgBGgMM6LGuqWwAs6Du6Oo1eSGwK/DLJfHphe3mSZ3dT4vJjKEy+3wHbJ3lG8812Z5qTVnpSvge8EiDJFsCqrLh3rByqJCNJ1mmGVwNeDVyb5L3Aa4H9qurhDkuc0qrqNuCWJC9omnYGLq+qZ1XVrKqaRS84XtzMu0KbUre5mA6q6pIkpwGXAw8Cv+Ap+nP55SXJycBOwMwkC4AjgOOB45vLVP8CvKP8ef5ENgC+2TzEaiXg1Kr6lyQPAjcDP2163s6oqs90WOdU9gHgpOaebDcB7+q4nqHxNheSpJbdR5KklqEgSWoZCpKklqEgSWoZCpKklqEgLYPmlgdbdl2HtLx4SaokqeWRgjSg5iZoZzfPJbgqyVuT/DjJnCR7JLmieV2X5LfNMn/d3LDvsiTnJdmgaf9gkmuSXJnklG7fmfQIf9EsDW5X4Naq2h3aWyq/D6CqzgLOatpPBS5q7j76ZWDPqlqS5K3AZ4F3A4cDm1bV/aO3oJCmAo8UpMH9Cnh1ks8l2bGq7ho7Q5KPAfdV1VeAFwBbAxc0t63+bzzyzIIr6d024W30bnciTQkeKUgDqqrfJHkxsBvw90ku7J+eZBdgb3oPZAEIcHVV7cBj7d7M9wbgU0leVFWGgzrnkYI0oCQbAvdW1YnAF+jdPnl02ibAV4C9q+q+pvk6YGT0eb5JVkmyVZKVgI2r6kfAx4G1gTUm8a1IE/JIQRrci4AvJHkYeIDe+YTRZ0O/E3gm8L3mjqO3VtVuSd4C/ENz/mEG8L+A3wAnNm0B/qHv8Y5Sp7wkVZLUsvtIktQyFCRJLUNBktQyFCRJLUNBktQyFCRJLUNBktT6dy/3pdmXf/kQAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"print(overall_time)\n",
"plot_overall_comparison(overall_time, \"Overall Time Comparison\", \"seconds\")"
]
},
{
"cell_type": "code",
"execution_count": 97,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'8': 0.2, '16': 11.1, '32': 53.6, '64': 304.2}\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAEWCAYAAACJ0YulAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAAsTAAALEwEAmpwYAAAYxElEQVR4nO3debhcdZ3n8fdHwqYgi0SEgIRR0AYdkY4MdLfdKC4Io7F7XMANEcX2wW3EBW1tcKYdUelmxLbxwYY2iIJpBc0ooogLbatgQEEW0ShBEgK5iGwuIPCdP84vx/JybxaSunVD3q/nqeee8zvb95xK6lPnd05VpaqQJAngIaMuQJI0fRgKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoaBpI8lxSc5ow7OTVJIZo65LD0ySO5P8l1HXoTVjKGzgkrwyyY+S/CbJjUlOTrL1qOtalSSLk9ydZLtx7T9oYTJ7RKWtU0l2T/LvSW5OcluSy5O8JclGo65tVapqi6r6+ajr0JoxFDZgSY4GPgC8DdgK2BfYBTg/ySbreFvDeMd/LXDowDaeCDz0ga5s2Gcla7r+JI8BLgKuB55YVVsBLwTmAFuu+wrXDc/u1m+GwgYqycOB9wJvqKrzqur3VbUYeBEwG3hZkh2T/DbJtgPLPbm9a924jb8qydVJfpXkK0l2GZi3khyV5KfAT1vbh5Ncn+T2JJckeepa7MYngVcMjB8GnD5uPzdNckKSXyS5KcnHkmzepu2fZEmSdyS5Efi31oX170nOSHJHO4vaPck7kyxvtT9rYP07JlmQ5JYki5K8ZmDacUk+29Z1O3BMOyN7xMA8eycZW3E8x3kv8J2qektVLQOoqmuq6iVVdWtb/nlJrkxya5JvJvmTgXUvTvK2dnbx6ySnJtk+yZfbvn0tyTZt3hXddUcmuSHJsiRvHVjXPkm+27azLMk/D75xmOS5riSPbcMHJbmqbXfpuHW/ph27W9qx3HHcev82yU/btj+aJCv5N6G1VVU+NsAHcCBwDzBjgmnzgDPb8NeB1wxM+xDwsTY8F1gE/AkwA3g33YvYinkLOB/YFti8tb0MeESb/2jgRmCzNu044Iw2PLstf7/62vTFwDOAa9r2NwKW0J3pFDC7zXcisKDVsCXw/4D3t2n7t2PwAWBTYPNWw++AZ7caT6c7I/k7YGPgNcC1A3VcCPwLsBmwFzAGPH1gf34PPJ/uDdjmwLnA6waWPxH4yCT7eCNw+Eqew92BXwPPbLW9vT0fmwwco+8B2wOzgOXApcCTW71fB44dd7zPBB4GPLHtyzPa9D+lO5Oc0ea9GnjzKp7rAh7bhpcBT23D2wB7t+GnAzcDe7fn4CPAhePW+0Vga+DRraYDR/3/58H8GHkBPkb0xHcvzjdOMu144Pw2/Grg6204dF0Zf9nGvwwcMbDcQ4DfALu08VrxArmSOn4FPKkNH8eah8K7gffThdz57UWr2vJpL5qPGVhuP9qLOl0o3E0LpYEazh8Yfy5wJ7BRG9+yrX9rYGfgXmDLgfnfD3xiYF0Xjqv7xcB/tuGN6F7495lkH3+/shdA4D3A/HHHfymw/8AxeunA9M8BJw+MvwH4/Ljj/fiB6R8ETp1k228GzhkYv99zzR+Hwi+A1wIPHzfPqcAHB8a3aPs9e2AdfzEwfT5wzKj//zyYH3YfbbhuBrabpP93hzYduheS/ZLsAPwlcB/wH23aLsCH22n9rcAtdC/EswbWdf3gipO8tXU33daW2Qr4o4vFa+iTwEuAVzKu6wiYSXeN4ZKBGs9r7SuMVdXvxi1308Dwb4Gbq+regXHoXrx2BG6pqjsG5r+Olew/8AVgjyS70r3Dv62qLp5k335J91xMZse2PQCq6r62vcHtj9+X8eNbjFvnYL3XtW2suOD9xXQ3I9wO/B/u/7yN39dB/wM4CLguybeS7DfJPtxJt9+D+3DjwPBvJqhZ65ChsOH6LnAX8DeDjUm2AJ4DXABQVb8Cvkr3DvclwFnV3rLRvQi8tqq2HnhsXlXfGVhlDaz7qXRdHC8CtqmqrYHb6ILkAamq6+i6dw4Czh43+Wa6F749B+rbqqoGX1TW5muCbwC2TTJ40ffRdO/WJ1x/C6D5dGdqL6cLtcl8je7FdGXbH7yGE7qzl6WTLrFqOw8MP7ptA+Bk4MfAblX1cOBd3P95m/RYVtX3q2ou8Ejg83THAO6/Dw+j615cm33QWjAUNlBVdRvdhcyPJDkwycbpbuOcT9c3P/hi9Wm6C7ovaMMrfAx4Z5I9AZJsleSFK9nslnR9+GPAjCR/Dzx8HezOEXRdF78ebGzvnD8OnJjkka3GWUmevQ62SVVdD3wHeH+SzZL811bLGatY9HS6M5vnsfJQOBb4syQfSvIogCSPbReut6Z7rg5OckC7UH00XdB/Z9I1rtp7kjy0PaeHA59p7VsCtwN3Jnk88LrVXWGSTZK8NMlWVfX7tp772uQzgcOT7JVkU7ozkIuqu+lBI2AobMCq6oN07/hOoPuPuuL2xwOq6q6BWRcAu9Fdg7hsYPlz6C7SntW6FK6gO8uYzFfoum9+Qtdl8DtW3uWwuvvxs6paOMnkd9BdfP1eq/FrwOPWdpsDDqXrj78BOIfuwu3XVrZAVf0n3Yvipe1MZ7L5fkZ3DWQ2cGWS2+i68xYCd1TVNXRnHB+hOyt6LvDcqrp7LfbnW3TH6wLghKr6amt/K92Z4h10QfuZiRef1MuBxe05+FvgpQDtWL2n7dcy4DHAIWtRv9ZS/tATIGmqJPk68Omq+tdR1wLdLal03XAbV9U9Iy5HI+SHTKQpluQpdLdgzh11LdJ4dh9JUyjJPLourDePu2tJmhbsPpIk9TxTkCT11utrCtttt13Nnj171GVI0nrlkksuubmqZk40bb0OhdmzZ7Nw4WR3IkqSJpJk0luh7T6SJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSz1CQJPUMBUlSb2ih0H505OIklyW5Msl7W/uuSS5KsijJZ5Js0to3beOL2vTZw6pNkjSxYX6i+S66X8O6s/0q1LeTfBl4C3BiVZ2V5GN0v1R1cvv7q6p6bJJD6H685cVDrE/Semz2MV8adQkjtfj4g4ey3qGdKVTnzja6cXsU8HTgs619HvD8Njy3jdOmH9B+c1aSNEWGek0hyUZJfggsB84HfgbcOvDLTkuAWW14Fu2nGdv02+h+wFuSNEWGGgpVdW9V7QXsBOwDPH5t15nkyCQLkywcGxtb29VJkgZMyd1HVXUr8A26HyHfOsmKaxk7AUvb8FJgZ4A2fSvglxOs65SqmlNVc2bOnPCbXyVJD9Aw7z6amWTrNrw58EzgarpweEGb7TDgC214QRunTf96+bNwkjSlhnn30Q7AvCQb0YXP/Kr6YpKrgLOS/APwA+DUNv+pwCeTLAJuAQ4ZYm2SpAkMLRSq6nLgyRO0/5zu+sL49t8BLxxWPZKkVfMTzZKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKknqEgSeoZCpKk3tBCIcnOSb6R5KokVyZ5U2s/LsnSJD9sj4MGlnlnkkVJrkny7GHVJkma2Iwhrvse4OiqujTJlsAlSc5v006sqhMGZ06yB3AIsCewI/C1JLtX1b1DrFGSNGBoZwpVtayqLm3DdwBXA7NWsshc4KyququqrgUWAfsMqz5J0v1NyTWFJLOBJwMXtabXJ7k8yWlJtmlts4DrBxZbwspDRJK0jg09FJJsAXwOeHNV3Q6cDDwG2AtYBvzjGq7vyCQLkywcGxtb1+VK0gZtqKGQZGO6QPhUVZ0NUFU3VdW9VXUf8HH+0EW0FNh5YPGdWtsfqapTqmpOVc2ZOXPmMMuXpA3OMO8+CnAqcHVV/dNA+w4Ds/01cEUbXgAckmTTJLsCuwEXD6s+SdL9DfPuoz8HXg78KMkPW9u7gEOT7AUUsBh4LUBVXZlkPnAV3Z1LR3nnkSRNraGFQlV9G8gEk85dyTLvA943rJokSSvnJ5olST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLUMxQkSb2hhUKSnZN8I8lVSa5M8qbWvm2S85P8tP3dprUnyUlJFiW5PMnew6pNkjSxYZ4p3AMcXVV7APsCRyXZAzgGuKCqdgMuaOMAzwF2a48jgZOHWJskaQJDC4WqWlZVl7bhO4CrgVnAXGBem20e8Pw2PBc4vTrfA7ZOssOw6pMk3d+UXFNIMht4MnARsH1VLWuTbgS2b8OzgOsHFlvS2iRJU2TooZBkC+BzwJur6vbBaVVVQK3h+o5MsjDJwrGxsXVYqSRpqKGQZGO6QPhUVZ3dmm9a0S3U/i5v7UuBnQcW36m1/ZGqOqWq5lTVnJkzZw6veEnaAA3z7qMApwJXV9U/DUxaABzWhg8DvjDQ/op2F9K+wG0D3UySpCkwY4jr/nPg5cCPkvywtb0LOB6Yn+QI4DrgRW3aucBBwCLgN8DhQ6xNkjSBoYVCVX0byCSTD5hg/gKOGlY9kqRV8xPNkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6hkKkqSeoSBJ6q00FJJsluSwJM9L5x1Jvpjkw0m2m6oiJUlTY1VnCqcDzwJeBXwTeDTwz8AdwCeGWZgkaerNWMX0ParqCUlmAEuq6q9a+3lJLhtybZKkKbaqM4W7AarqHuCGcdPuHUpFkqSRWdWZwk5JTgIyMEwbnzXUyiRJU25VofC2geGF46aNH5ckredWGgpVNW+qCpEkjd5KQyHJgpVNr6rnrdtyJEmjtKruo/2A64EzgYvoriWsliSnAf8dWF5VT2htxwGvAcbabO+qqnPbtHcCR9BdwH5jVX1l9XdDkrQurCoUHgU8EzgUeAnwJeDMqrpyNdb9CbrPNJw+rv3EqjphsCHJHsAhwJ7AjsDXkuxeVd7hJElTaKW3pFbVvVV1XlUdBuwLLAK+meT1q1pxVV0I3LKadcwFzqqqu6rq2radfVZzWUnSOrLK7z5KsmmSvwHOAI4CTgLOWYttvj7J5UlOS7JNa5tF1021whImueU1yZFJFiZZODY2NtEskqQHaFXffXQ68F1gb+C9VfWUqvrfVbX0AW7vZOAxwF7AMuAf13QFVXVKVc2pqjkzZ858gGVIkiayqmsKLwN+DbwJeGPSX2cOUFX18DXZWFXd1K8g+TjwxTa6FNh5YNadWpskaQqt6prCQ6pqy/Z4+MBjyzUNBIAkOwyM/jVwRRteABzSuqp2BXYDLl7T9UuS1s6qzhQesCRnAvsD2yVZAhwL7J9kL6CAxcBrAarqyiTzgauAe4CjvPNIkqbe0EKhqg6doPnUlcz/PuB9w6pHkrRq/vKaJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKk3tFBIclqS5UmuGGjbNsn5SX7a/m7T2pPkpCSLklyeZO9h1SVJmtwwzxQ+ARw4ru0Y4IKq2g24oI0DPAfYrT2OBE4eYl2SpEkMLRSq6kLglnHNc4F5bXge8PyB9tOr8z1g6yQ7DKs2SdLEpvqawvZVtawN3whs34ZnAdcPzLektd1PkiOTLEyycGxsbHiVStIGaGQXmquqgHoAy51SVXOqas7MmTOHUJkkbbimOhRuWtEt1P4ub+1LgZ0H5tuptUmSptBUh8IC4LA2fBjwhYH2V7S7kPYFbhvoZpIkTZEZw1pxkjOB/YHtkiwBjgWOB+YnOQK4DnhRm/1c4CBgEfAb4PBh1SVJmtzQQqGqDp1k0gETzFvAUcOqRZK0evxEsySpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpZyhIknqGgiSpN2MUG02yGLgDuBe4p6rmJNkW+AwwG1gMvKiqfjWK+qSpMPuYL426hJFafPzBoy5BExjlmcLTqmqvqprTxo8BLqiq3YAL2rgkaQpNp+6jucC8NjwPeP7oSpGkDdOoQqGArya5JMmRrW37qlrWhm8Etp9owSRHJlmYZOHY2NhU1CpJG4yRXFMA/qKqliZ5JHB+kh8PTqyqSlITLVhVpwCnAMyZM2fCeSRJD8xIzhSqamn7uxw4B9gHuCnJDgDt7/JR1CZJG7IpD4UkD0uy5Yph4FnAFcAC4LA222HAF6a6Nkna0I2i+2h74JwkK7b/6ao6L8n3gflJjgCuA140gtokaYM25aFQVT8HnjRB+y+BA6a6HknSH0ynW1IlSSNmKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSeoaCJKlnKEiSejNGXYDWX7OP+dKoSxipxccfPOoSpHXOMwVJUs9QkCT1DAVJUs9QkCT1pl0oJDkwyTVJFiU5ZtT1SNKGZFqFQpKNgI8CzwH2AA5Nssdoq5KkDce0CgVgH2BRVf28qu4GzgLmjrgmSdpgTLfPKcwCrh8YXwL8t8EZkhwJHNlG70xyzRTVtq5tB9w86iLWcyM9hvnAqLa8znj81s76fPx2mWzCdAuFVaqqU4BTRl3H2kqysKrmjLqO9ZnHcO14/NbOg/X4Tbfuo6XAzgPjO7U2SdIUmG6h8H1gtyS7JtkEOARYMOKaJGmDMa26j6rqniSvB74CbAScVlVXjrisYVnvu8CmAY/h2vH4rZ0H5fFLVY26BknSNDHduo8kSSNkKEiSeobCCCT5n0muTHJFkjOTbDbqmqazJKclWZ7kinHtb0jy43YsPziq+qa7JJsluTjJZe1Yvbe1f6p9pcwV7RhvPOpap6skWyf5bPv3dnWS/QamHZ2kkmw3yhrXFUNhiiWZBbwRmFNVT6C7oH7IaKua9j4BHDjYkORpdJ92f1JV7QmcMIK61hd3AU+vqicBewEHJtkX+BTweOCJwObAq0dW4fT3YeC8qno88CTgaoAkOwPPAn4xwtrWKUNhNGYAmyeZATwUuGHE9UxrVXUhcMu45tcBx1fVXW2e5VNe2HqiOne20Y3bo6rq3DatgIvpPhekcZJsBfwlcCpAVd1dVbe2yScCbwceNHfsGApTrKqW0r2r/QWwDLitqr462qrWS7sDT01yUZJvJXnKqAuazpJslOSHwHLg/Kq6aGDaxsDLgfNGVN50tyswBvxbkh8k+dckD0syF1haVZeNuL51ylCYYkm2oev22BXYEXhYkpeNtqr10gxgW2Bf4G3A/CQZbUnTV1XdW1V70Z0N7JPkCQOT/wW4sKr+YyTFTX8zgL2Bk6vqycCvgeOAdwF/P8K6hsJQmHrPAK6tqrGq+j1wNvBnI65pfbQEOLv1flwM3Ef3BWVaidbt8Q3aNZokxwIzgbeMsKzpbgmwZODs6rN0IbErcFmSxXRhe2mSR42mxHXHUJh6vwD2TfLQ9s72ANpFK62RzwNPA0iyO7AJfuvshJLMTLJ1G94ceCbw4ySvBp4NHFpV942wxGmtqm4Erk/yuNZ0AHBpVT2yqmZX1Wy64Ni7zbtem1Zfc7EhqKqLknwWuBS4B/gBD9KPy68rSc4E9ge2S7IEOBY4DTit3aZ6N3BY+fH8yewAzGs/YvUQYH5VfTHJPcB1wHdbz9vZVfW/RljndPYG4FPtO9l+Dhw+4nqGxq+5kCT17D6SJPUMBUlSz1CQJPUMBUlSz1CQJPUMBWkttK882GPUdUjrirekSpJ6nilIq6l9CdqX2u8SXJHkxUm+mWROkucl+WF7XJPk2rbMn7Yv7LskyVeS7NDa35jkqiSXJzlrtHsm/YGfaJZW34HADVV1MPRfqfw6gKpaACxo7fOBb7VvH/0IMLeqxpK8GHgf8CrgGGDXqrprxVdQSNOBZwrS6vsR8MwkH0jy1Kq6bfwMSd4O/LaqPgo8DngCcH772up384ffLLic7msTXkb3dSfStOCZgrSaquonSfYGDgL+IckFg9OTPAN4Id0PsgAEuLKq9uP+Dm7zPRf4uyRPrCrDQSPnmYK0mpLsCPymqs4APkT39ckrpu0CfBR4YVX9tjVfA8xc8Xu+STZOsmeShwA7V9U3gHcAWwFbTOGuSJPyTEFafU8EPpTkPuD3dNcTVvw29CuBRwCfb984ekNVHZTkBcBJ7frDDOD/Aj8BzmhtAU4a+HlHaaS8JVWS1LP7SJLUMxQkST1DQZLUMxQkST1DQZLUMxQkST1DQZLU+/8luUKsmF9wLwAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 432x288 with 1 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"print(overall_memory)\n",
"plot_overall_comparison(overall_memory, \"Overall Mermory Comparison\", \"MB\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Identificación de valores usados en las funciones más invocadas\n",
"\n",
"Con los gráficos de las secciones anteriores es posible identificar qué funciones son las que son llamadas una mayor cantidad de veces: `gasdev`, `cov_value` y `ran2`. \n",
"\n",
"El objetivo de esta sección es analizar con qué valores se llaman a estas funciones para identificar patrones y diferencias."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"functions_repeated = {\n",
" \"gasdev\":[\"idum\", \"idum2\", \"iy\"],\n",
" \"cov_value\": [\"di\", \"dj\", \"dk\"],\n",
" \"ran2\": [\"idum\", \"idum2\", \"iy\"],\n",
"}\n",
"\n",
"def get_data_from_file(file_name):\n",
" data = {\n",
" \"gasdev\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
" \"ran2\": {\"idum\": [], \"idum2\": [], \"iy\": []},\n",
" \"cov_value\": {\"di\":[], \"dj\": [], \"dk\": []}\n",
" }\n",
"\n",
" with open(file_name) as log_file:\n",
" lines = log_file.readlines()\n",
" for line in lines:\n",
" if np.any([f in line for f in functions_repeated.keys()]) and \"RESULT = in progress\" in line:\n",
" split_line = line.split()\n",
" function_name = get_function_name(split_line[2])\n",
" params = functions_repeated[function_name]\n",
" for p in params:\n",
" idx_value = split_line.index(p) + 2\n",
" data[function_name][p].append(float(split_line[idx_value].rsplit(\",\")[0]))\n",
" #print(split_line)\n",
" return data\n",
"\n",
"def get_repeteated_data(filenames):\n",
" data_total = {}\n",
" for f in filenames:\n",
" data = get_data_from_file(f)\n",
" data_total = {**data_total, **data}\n",
" return data_total"
]
},
{
"cell_type": "code",
"execution_count": 248,
"metadata": {},
"outputs": [],
"source": [
"def distribution(data,f, p, plt):\n",
" values = data[f][p]\n",
" if np.isnan(values).all(): return # TODO: Pasa algo raro con gasdev iy en 32\n",
" plt.set_title(f\"{p}\")\n",
" plt.hist(values, bins=60, alpha=1, edgecolor = 'black', linewidth=1)\n",
" plt.grid(True)\n",
" plt.set_ylabel(\"Number of repetitions\")\n",
" plt.set_xlabel(\"value\")\n",
"\n",
"def plot_distributions(data, f):\n",
" fig, axs = plt.subplots(2, 2, dpi=100, figsize=(6, 6))\n",
" fig.suptitle(f\"Distribution in params for {f}\")\n",
" params = list(data[f].keys())\n",
" for i in range(2):\n",
" for j in range(2):\n",
" if 2*i + j < len(params):\n",
" distribution(data, f,params[2*i + j], axs[i, j])\n",
" \n",
" \n",
" fig.delaxes(axs[1, 1])\n",
" fig.tight_layout(pad=3.0)"
]
},
{
"cell_type": "code",
"execution_count": 245,
"metadata": {},
"outputs": [],
"source": [
"def plot_reapeated_data_distribution(data):\n",
" for f in functions_repeated.keys():\n",
" plot_distributions(data,f)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 8"
]
},
{
"cell_type": "code",
"execution_count": 234,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGD0lEQVR4nO3deZgkVZn3/e+vm2KzaRAX0FFAQR0EBURxxwW7wWWcEXV0dB5FfHR0UF9EH1zGBbcBNxAVx9FBEAXFGR0cRWRTBBUZZREQUUTZF1ntxqabkjrvHxGlSXZWV2VU1JKV38915ZWZJyIj7ozKvOvOEyciUkpBkiRpuhbNdQCSJGlhsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKiQJEmtsKhQY0kOSjIrp2RNckaSMzqePz1JSfKiWVr/0UmumI11da13m/p97jPb6x4WSdZL8pEkVycZS3LCXMc0W2bzO6zhYFEhAJLsU//zGr+tTnJdkpOTvCnJJi2t54F1Itu5jeW1aT7Hphm1L/D/gP8CXgkcNrfhSINrvbkOQPPOe4DfASPAlsDTgU8AByR5finlwo55Pwgc0ufyHwi8F7gCuKCP1y3vcz1NrCu21zA3RfiVwEbA6Byse1g8E7i2lPLmuQ5EGnQWFep2UinlZx3PD07yTODbwP8k2b6UcidAKeVPwJ9mMpgkG5dSVpVS7prJ9UymlDIn/9RLdcW/1XOx7ulIsiFwVyllbK5jmYL7A7e3tbAki4D1SykD93eTpsvdH5pUKeV7wAeArYF/HG/vtT82ybIkP0xye5I7kvwqyb/W054O/LSe9aiOXS371NPPSHJxkl2TnJlkFfCvHdPO6BHe4iT/muSGJH9M8j9JHtwV0xVJju5+YecypxDbWmMqktwrycfrffFr6vf61iTpmq8k+XSSv6vf35okv0iyV4/30x3jWmMq6ljuSPJXSU6oH9+U5GNJFk9hmVck+XaS5UkuqHd1XZJk7675Nq+XeVG9jhVJTkqyU9d84+NbXprkg0muBVYBSxss4++TvDfJtUlWJvmvJJsm2SDJJ5L8vl7OUUk26FrGhJ+9dW1b4BnADh1/86fX0/v9+748yS+ANcCEf9ski+rvznVJViX5fpJHdn9Op7rt6nnfWH+mViW5LcnPkrysa56nJPlp/fe+PMk/rSPGf0xybpI7k9ya5Kvp+F7V7/eOJBv3eO1XUn0fJ/0sauGxp0JT9SWqf/DLgc/3miHJDlQ9GhdS7UZZA2wHPLme5Zd1+/uBzwFn1e0/7ljMfYCTgK8CXwZunCSufwEK8GGqX5z7A6cl2Xm8R2WKphLbn9X/WP6H6h/SkVS7S/YEPgr8FdDdlf4UYG/gM8BK4E3A15NsVUq5pY84xy0GTgbOAd4KPAt4C3A58G9TeP3DgOOBzwJfBF4F/GeSvUopp9bzPBT4O+A/qXaJbQH8E/CDJI8spVzXtcx3A3cBHwM2qB8/ss9lvAO4k2q32nbAG6l2/YwB9wYOAp4A7FMv7/0wpc9eLzcB/4fqM7SkXjfALxv8fZ8J/D3waeBmql1oEzkYOBD4FtXfcKf6fsOu+aa0/ZO8Bvgk1ZiQw+vlPBp4PHBcPc+jgFPq93wQVe5/Hz2+X0n+hepHxNeA/wDuR/V3ODPJLqWU26k+O/sBz63jG3/txsDfAEeXUu5exzbQQlVK8eYNqiRdgMeuY57bgfM6nh9E3UNfP9+/XsZ917GMx9bz7NNj2hn1tH+aYNoZHc+fXs97DbBJR/uL6/Y3dbRdQZXkJlvmumI7Grii4/nf1vP+S9d8/0n1D3DbjrZC9U+us+3RdfsbJvm7bNMdUx1LAd7dNe95wM+m8Le+on793h1tS4Hruv6+GwCLesSzunPdHX+Ly4GNuubvdxkXASMd7cfV2/M7Xcv4cdffY9LP3jq2xxnAxV1t/f597wYeOYV1bUFVJP13V/t76+Uc3dE21W13Qnf8Pdb731TF2lYdbdtT7b4sHW1b123v7Hr9jnXc76yfh+q7919d841//57a79/B28K4uftD/bgDWNdRILfX93+bar9yE2uAo/qY/5hSysqO5/8FXA88p+H6p+o5VP9IPtnV/nGqhPvsrvbTSimXjz8p1YDXFVS/Rpv6bNfzs/pY3nVU/2jG41kBHAPskmTLum1NqcdEJFmc5D5Un4FfAY/pscwvlq7eoQbLOKbcc/zKOVTb8wtd850DPDjJeG/r7fX9dD57nfr9+/6glHLJFJa7B1UvwWe62j/VPWMf2+524EFJHtdrhfVuiD2BE0opV3Us/5dUPSSd9qbaLf61JPcdvwE3AJdR9dxQSilUBdZzkizpeP1LgGuBH064BbSgWVSoH0uouu4ncjzwI6ou0xvr/bB/32eSv7b0Nyjzss4ndbL7DdUvupm0NXBdV0ED1W6U8emdrmJtt1F16TexupRy0zSW95t6W3X6dX2/Dfx53/+bk1xGVezdTNV9/mhg0x7L/F13Q4NldG+nP9T3V/doX9SxjDY+e536/fuu9d7XsVyoPqN/Vkq5lerv92d9bLsPUxUb/5vksiRHJOnc7XM/qiOI7vFdqf2q6/nDqIqmy+p1dd62p9rFOO74ernPr+NdQlWM/WePz5aGhEWFpiTJg6gS2W8mmqf+lbo71f79L1Elv+OBU/sYtNXPOIipmijBzeZAson2L2eC9qbLa9M7gUOBM6kG6O4JLAN+Qe/c0etv1+8yJnpf69x+LX32pmMmPrdT2nZ1j8MjgJdS9RC8EPhhkvc1WOciqu/LXvW6um9/HtxZSvkJ1a60v6+b/oaqyDi+wXq1QDhQU1P1f+r77u7Se6i7a0+vbwckeSfwIapu09OY+B98Uw/rfFIPsNuOasDeuNuAzXq8dmvgtx3P+4ntSuBZSTbp+jX71x3T57PtkqTrF+XD6/sr6vsXAd8vpby684VJNqP61TwVbSxjSqbw2evHTP19x1+3HR29G/Wuje5epilvu1LKH6n+mR+fZH3gG8C/JDmYqpfhTrq+K7VHdD2/nKpQ+10p5dc95u/2NeD/S7KUatfHFXWxoSFlT4Umleo8Fe+mSoLHrmO+zXs0X1Dfjx/+98f6frOWwntF7nm2zxcBD6A6gmTc5cAT6mQLQJLnAfc49LTP2L5D1dPxhq72N1MVJyet9Yr55YHAC8af1P8UXgFcUEq5oW6+m66elCQvpjr6YaraWMakpvjZ68dM/X1PpxoI+fqu9u71wBS3XV2Q/Fm9+/CS+rUjpToK42Tg75Js1fG67al6Pzp9o17ve+sCvXM96V4XVSGzAdWZSPeiKjI0xOypULdnJ/lrqs/GFlSHyi2j+oX1/LLuE/q8J8nuwIn1/PcH/plqlPj4wK3LqQaWvS7JSqp/5OeUUqa6T7rbrVRdvUfV8e5PtYum87DX/6AqNr6b5GvAtlTdyZffc1F9xfYt4PvAh5JsA/yc6nDbvwU+0Tkoc576NXBkPbjvRqpTVW9BdWjpuG9T/U2Pojra4lHAy7ln785k2ljGVEzls9ePGfn7llJuTHI48JYk/wN8l+qQ0mdT9T509hxNddudkuQGqjElN1KNfXgDcGJHL8t7qf7pn5XkM1Tf7zdS7Up5dEd8lyd5F9Vhr9ukug7KSuAhVEXo56gOGR6f/7wkv6HqEdoAd31org8/8TY/bvzlkNLx2xqqoyhOoTqnwiY9XnMQ9zwc7ZlUh7ddW7/+WqpDAh/W9brnUyWzUToOl6THoX0drzmD3oeUvpTq/Bk3Up1w6dt0HDbXMf8BVP9gVlP9k9m1e5mTxHY0HYcw1m1LqPZ5X0t1ToZfU50zIl3zFeDTPWK6gh6HunbNs01nHB2x3DHZ32Mdy7yi3k7Lqf5ZrqYagPiirvk2oPoHcl29bX9IdY6Iif4WL+qxrmktgwkOdR5/r9SHkDLFz946Pltrfe6m+/ddx/oWU51f4/p6m5xOtVvlZuDfGmy71wI/qF+/mqqo/giwtGu9uwM/q7fP5VTjI3p+ZqiOAjmLagDoHfXn49PAw3vM+8F6G1zWT87xtjBvKcVButIwSXVm0ItLKc+b61hUqcdJ3Aa8q5TyoTkOR2rMMRWSNIuSbNSjef/6/ozZi0Rqn2MqJGl2vSTVtVy+Q7Vr4SnAPwCnlFJ+NJeBSdNlUSFJs+tCqiNADqQ6PfqNVNfseNdcBiW1wTEVkiSpFY6pkCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCokCRJrbCoUE9J9klSkmwzyXxXJDl6dqKSNEjMI8PHokKSNLSS7JHkC0l+nWRVkt8m+Y8kD5jr2AZRSilzHYPmoSSLgRFgTVnHhyTJFcAZpZR9Zik0SQNiEPJIkp8BmwP/CVwGPBR4A7AK2LmUcsNsxzTI1pvrADQ/lVLuBu6e6zgkDa4BySMHAD8spYyNNyT5LvADquLiXXMV2CBy94d66t4Xmsq7klxTdxF+P8kOPV53UJK1fpH02rda70f9dpKnJ/lZkjuTXJTk6fX0vevnq5Ocm2SXmXq/kto3CHmklHJmZ0Ex3gbcCmw//a0wXCwqNFXvBz4A/Bz4f8BvgVOAe01zudsBxwHfAt4B3Bv4VpKXA4cBXwbeC2wLfC2Jn1lpcA1EHkmyBFgC3DzNuIaOuz80qST3Aw4ETgT+ZnzfaJIPAe+c5uIfATyplHJ2vcxLgJOBzwN/XUq5qm6/Dfh3YHfgjGmuU9IsG7A8sj+wPnD8NOMaOv7q01Q8i+oL9qmuwVafaGHZl4wngto59f33xhNBV/tDW1inpNk3EHkkye5UvRpfK6V8r4XYhopFhaZi6/r+ss7GUspNwG3TXHbnF55Syh/qh1d3zTfefu9prk/S3Jj3eSTJXwP/DVwM/N9pxjSULCrUtokOG1s8QftEI8Mnak9/4UgaQLOeR5I8mGp8xx+A55RSVq4zQvVkUaGpuLK+f1hnY72PtLviv62etllX+9ZIGmbzNo8kuQ9VQbEBsGcp5fqZWM8wsKjQVJwGjAJvTNJZ4e/fY97L6/vdxxuS3At45YxFJ2kQzMs8Ui/3O8BfUfVQXDbJS7QOHv2hSZVSbkryMapDtb6d5DvALsCzWfuQq1Oo9m8emeSjVN2P+wI3AVvNXtSS5pN5nEeOBXYDvgBsn6Tz3BR3lFJOaHl9C5pFhabqXcBq4HXAM6hGUS+nOjzsz0opo0leAHyG6nj0G6hGd98GHDWL8Uqaf+ZjHtm5vt+3vnW6Ejih5fUtaF77Q5IktcIxFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRV9FxVJ9krylI7n+yW5IMlxSTyFsqRGzC3S4GvSU/FRYClAkkcBH6c6cchDgEPbC03SkDG3SAOuyXkqHgJcUj9+IfDtUso7kzyGKgEMnPrsbg8EPNe7BtUmwHVlsI8RN7dI809fuaVJUXEXsHH9+FnAMfXjW6l/ZQygBwLXzHUQ0jQ9CLh2roOYBnOLND9NObc0KSp+CBya5EdUpzZ9Sd3+cAb3y7MS4Oqrr2bp0rVz1+joKKeccgrLly9nZGRk1oMbdG6/6Zls+61YsYIHP/jBMPi/hs0t6ovbb3pmIrc0KSreQHXq1BcBry+ljFcvzwa+22B588bSpUsn/OJvvPHGLF261A9uA26/6Rmi7WduUV/cftMzE9uv76KilHIV8Lwe7W9uJSJJQ8ncIg2+RhcUS7II2A64P11HkJRSzmwhLklDyNwiDba+i4okTwCOA7YG0jW5AItbiEvSkDG3SIOvyXkqPgv8DNgR2By4d8dt8/ZC00Lz85//nKuuumquw9D8ZW5RI+aW+aPJ7o+HAS8qpfym7WC0MF1zTTVwf/fdd6cQfnXpL9lqq63mOCrNQ+YW9cXcMv806ak4h2qfpzQlt9xyCwBLd9ub1Xeu4uabb57jiDRPmVvUF3PL/NOkp+JTwMeTbAlcBIx2TiylXNhGYFp4Fi+931yHoPnN3KJGzC3zR5Oi4uv1/Rc62grVwCoHU0lqytwiDbim1/6QpLaZW6QB1+TkV1fORCCShpu5RRp8TU9+tS2wP7B93XQJcHgp5fKW4pI0hMwt0mDr++iPJHtSfdF3Ay6sb48HfpFkWbvhSRoW5hZp8DXpqTgEOKyU8vbOxiSHAB8GTm0jMElDx9wiDbgm56nYHjiyR/sXgEdOLxxJQ8zcIg24JkXFTcDOPdp3Bn4/nWAkDTVzizTgmuz++DzwuSQPBX5ctz0ZeBtwaFuBSRo65hZpwDUpKj4ArATeAhxct10HHAR8sp2wJA0hc4s04Jqcp6IAhwGHJdmkblvZdmCShou5RRp8jc5TMc4vvKSZYG6RBtOUiook5wF7lFJuS3I+1Xn4eyqlPKat4CQtbOYWaWGZak/FN4E1HY8n/OJLUh/MLdICMqWiopTyvo7HB81YNJKGirlFWlianKb7t0nu06N9syS/bScsScPG3CINviYnv9oGWNyjfQPgQdOKRtIw2wZzizTQpnz0R5LndzzdM8kfOp4vBvYAftdWYJKGg7lFWjj6OaT0hPq+AF/smjYKXEF10hpJ6scJ9b25RRpwUy4qSimLAJL8DnhcKeXmGYtK0tAwt0gLR5Mzaj5kJgKRNNzMLdLgm+rJr94EfK6Usrp+PKFSiufolzQl5hZpYZlqT8WbgWOB1fXjiRS88I+kqTO3SAvIlA4pLaU8pJRyS8fjiW4PbRpIkrcnKUk+0dG2YZIjktyS5I4kX0+yRdfrtkpyYpJVSX6f5KNJpnVNE0mzw9wiLSxNTn71niQb92jfKMl7mgSR5HHAPwEXdk06DPgb4MXA04AHAt/oeN1i4ERgfeBJwCuBfYD3N4lD0twxt0iDr8nJr94LLOnRvnE9rS9JllB1f74GuK2jfVPg1cABpZTvlVLOBV4FPCnJE+rZlgOPBP6xlHJBKeUk4N3AfknW7zcWSXPK3CINuCZdeaH3RX92Am5tsLwjgBNLKacleVdH+67ACHDaeEMp5dIkVwFPBH5S319USrmx43UnA/8G7ACc3/MNJBtQnaVv3CYAo6OjjI6OrjX/eFuvaZrc2NgYABuOLGajjTZibGzMbdmHyT5/C2hbmlvUF3PL9MxEbunnjJq3UX3hC/DrJJ1f/sVUvzA+28/Kk7wUeAzwuB6TtwTuKqXc3tV+Yz1tfJ4be0ynY55e3kGPXz6nnHIKG2+8Vu/rn5166qnrWKQmc+grngqveCrXXnst11577VyHM3Am+vytWrVqliNpl7nF3DJd5pbpaTO39NNTsT/VL4kvUH1pOk+lexdwRSnl7KkuLMmDgcOBZaWU1X3E0YaDgUM7nm8CXLN8+XKWLl261syjo6OceuqpLFu2jJGRkdmKccE4//zzuf766zngmLO4/qTPcOaZZ7LTTjvNdVgDY7LP34oVK+Ygqlbtj7nF3NKAuWV6ZiK39HNGzS/Cn89696NSyp/6Xts97QrcHzgvyXjbYmD3JG8A9gTWT7JZ1y+KLYAb6sc3ALt1LXeLjmk9lVLWAGvGn4+vf2RkZJ1f7Mmmq7dFi6qhO6tH7+bOO+9k0aJFbscGJvr8Dfq2NLeYW5oyt7SjzdzS90DNUsoPgK2TfDDJV5LcHyDJs5Ps0MeiTgceBezccfsZ1cCq8cejVBcTol7HI4CtgPFfLWcDjxqPobYMWAFc0udbkzSHzC3S4Ot7oGaSpwEnAT8Cdgf+Bfg91WCqVwMvmspySikrgYu7lv1H4JZSysX18yOBQ5PcSvVl/hRwdinlJ/VLTqH6gn8pyYFU+zo/CBxR/2KQNCDMLdLga3JI6SHAu0opy6j2d477HvCE3i9p7M3At4GvA2dSdTvuPT6xlHI38DzgbqpfFl8GjgEaHdMuaU6ZW6QB1+SQ0kcBL+vR/nvgvtMJppTy9K7nq4H96ttEr7kSeM501itpXjC3SAOuSU/F7cADerTvAngsj6SmbsfcIg20JkXFV4EPJ9mS6rjyRUmeDHyMqntQkpowt0gDrklR8U7gUuBqqpPSXEK1T/LHVAOZJKkJc4s04PoeU1FKuQt4TZIPADtSffnPL6Vc1nZwkoaHuUUafI0v41tKuSrJ1fXjXufrl6S+mVukwdVk9wdJXp3kYmA1sDrJxUn+b7uhSRo25hZpsDU5+dX7gQOoTxZTNz8ROCzJVqUUj+OW1DdzizT4muz+eD3wmlLKVzra/ifJhVTJwC++pCbMLdKAa7L7Y4Tq3PndzmUaYzQkDT1zizTgmhQVX6L6RdHttVQX7JGkJswt0oBrWv2/OslyYPziO4+nusLfMUkOHZ+plHLANOOTNFzMLdIAa1JU7AicVz/etr6/ub7t2DGfh4JJ6oe5RRpwTU5+9YyZCETScDO3SIOv0XkqAJJsl2TPJBvVz9NeWJKGlblFGlx9FxVJ7pPkdODXwHf4y1UFj0zy8TaDkzQ8zC3S4GvSU3EYMEo1eGpVR/vxwF5tBCVpKJlbpAHXZKDmcmDPUso1Xb2SlwFbtxKVpGFkbpEGXJOeintxz18R4zYH1kwvHElDzNwiDbgmRcVZwCs6npcki4ADge+3EpWkYWRukQZck90fBwKnJ3kssD7wEWAHql8TT24xNknDxdwiDbi+eypKKRcDDwd+CHyTqsvyG8AupZTL2w1P0rAwt0iDr6+eiiQjwHeB15VSPjQzIUkaNuYWaWHoq6eilDIKPHqGYpE0pMwt0sLQZKDml4FXtx2IpKFnbpEGXJOBmusB+yZ5FnAu8MfOiV49UFJD5hZpwE33KqUP75rm1QMlNWVukQacVymVNC+YW6TB1/gqpZIkSZ0sKiRJUissKiRJUissKiRJUiumVFQkOS/JvevH70my8cyGJWkYmFukhWWqPRXbU52HH+C9wJKZCUfSkDG3SAvIVA8pvQA4KskPgQBvTXJHrxlLKe9vKTZJC98FmFukBWOqRcU+wPuA51GdhObZwJ96zFcAv/iSpmofzC3SgjGloqKU8ivgpQBJxoA9Sim/n8nAJC185hZpYWlyRk2PGJHUOnOLNPiaXPuDJNsC+1MNsgK4BDi8lHJ5S3FJGkLmFmmw9f3LIMmeVF/03YAL69vjgV8kWdZueJKGhblFGnxNeioOAQ4rpby9szHJIcCHgVPbCEzS0DG3SAOuyT7M7YEje7R/AXjk9MKRNMTMLdKAa1JU3ATs3KN9Z6CvUdtJ3pHkp0lWJvl9khOSPKJrng2THJHkliR3JPl6ki265tkqyYlJVtXL+WiSRuNFJM0Zc4s04Jp8OT4PfC7JQ4Ef121PBt4GHNrnsp4GHAH8tI7lX4FTkjyylPLHep7DgOcCLwb+AHwa+Ea9TpIsBk4EbgCeBDwAOAYYBd7Z4P1JmhvmFmnANSkqPgCsBN4CHFy3XQccBHyynwWVUvbqfJ5kH6pfJLsCZybZFHg18LJSyvfqeV4F/DLJE0opPwGWU3WNPquUciNwQZJ3Ax9OclAp5a4G71HS7DO3SAOu790fpXJYKeVBwKbApqWUB5VSDi+llGnGs2l9f2t9vyswApzWsf5LgauAJ9ZNTwQuqr/0404GlgI7TDMeSbPE3CINvmntGyylrGwrkCSLgE8APyqlXFw3bwncVUq5vWv2G+tp4/Pc2GM6HfN0r2sDYIOOpk0ARkdHGR0dXWv+8bZe0zS5sbExADYcWcxGG23E2NiY27IPk33+FuK2NLdoKswt0zMTuWU+DTg6AtgReMosrOsdVFdEvIdTTjmFjTee+MrLp57qEW3TcegrngqveCrXXnst11577VyHM3Am+vytWrVqliMZOOaWBc7cMj1t5pZ5UVQk+TTVBYV2L6Vc0zHpBmD9JJt1/aLYop42Ps9uXYvcomNaLwdzz4FfmwDXLF++nKVLl6418+joKKeeeirLli1jZGRkKm9JHc4//3yuv/56DjjmLK4/6TOceeaZ7LTTTnMd1sCY7PO3YsWKOYhqMJhbFjZzy/TMRG6Z06IiSYBPAS8Anl5K+V3XLOdSjbTeA/h6/ZpHAFsBZ9fznA38S5L7d1yIaBmwgursfGsppawB1nTEAcDIyMg6v9iTTVdvixZVQ3dWj97NnXfeyaJFi9yODUz0+XNbrs3cMhzMLe1oM7f0NVAzyUiS05M8rO819XYE8I/Ay4CVSbasbxsBlFL+QHUynEOTPCPJrsBRwNn16GyAU6i+4F9KslN9qt8PAkfUX3BJ85y5RVoY+uqpKKWMJnl0i+t/fX1/Rlf7q4Cj68dvBsaofk1sQDX6+p87Yro7yfOAf6P6ZfFH4IvAe1qMU9IMMrdIC0OT3R9fpjq+++2TzTiZUkqmMM9qYL/6NtE8VwLPmW48kuaUuUUacE2KivWAfZM8i2q/5B87J5ZSDmgjMElDx9wiDbgmRcWOwHn144d3TZvuCWokDS9zizTg+i4qSinPmIlAJA03c4s0+JpcpRSAJNsl2XN8NHXGj52SpGkwt0iDq++iIsl9kpwO/Br4DtWV+wCOTPLxNoOTNDzMLdLga9JTcRjVSWO2AjrP4Xk8sFfPV0jS5Mwt0oBrMlBzObBnKeWarl7Jy4CtW4lK0jAyt0gDrklPxb2456+IcZvTcXpaSeqTuUUacE2KirOAV3Q8L/WlhQ8Evt9KVJKGkblFGnBNdn8cCJye5LHA+sBHgB2ofk08ucXYJA0Xc4s04PruqSilXEx1YpofAt+k6rL8BrBLKeXydsOTNCzMLdLga3Tp8/oKfx9qORZJQ87cIg22RkVFkntTXfhn+7rpEuCoUsqtbQUmafiYW6TB1uTkV7sDVwBvAu5d394E/K6eJkl9M7dIg69JT8URVCejeX0p5W6AJIuBz9TTHtVeeJKGiLlFGnBNDindDvj4+JceoH58aD1Nkpowt0gDrklRcR5/2d/ZaXvg59MLR9IQM7dIA25Kuz+SPLrj6SeBw5NsB/ykbnsCsB/w9nbDk7SQmVukhWWqYyouAArQeUL+j/SY7ziqfaKSNBUXYG6RFoypFhUPmdEoJA0rc4u0gEypqCilXDnTgUgaPuYWaWFpevKrBwJPAe5P12DPUsonW4hL0hAyt0iDre+iIsk+wL8DdwG3UO0PHVeoBltJUl/MLdLga9JT8QHg/cDBpZSxluORNLzMLdKAa3Keio2Br/qll9Qyc4s04JoUFUcCL247EElDz9wiDbgmuz/eAXw7yV7ARcBo58RSygFtBCZp6JhbpAHXtKjYE/hV/bx7MJUkNWFukQZck6LiLcC+pZSjW45F0nAzt0gDrsmYijXAj9oORNLQM7dIA65JUXE48Ma2A5E09Mwt0oBrsvtjN+CZSZ4H/IK1B1Pt3UZgkoaOuUUacE2KituBb7QchyTdjrlFGmh9FxWllFfNRCCShpu5RRp8TcZUSJIkraXJBcV+xzqOGS+lPHRaEUkaSuYWafA1GVPxia7nI8AuwF7AR6cbkKSh9Ymu5+YWacA0GVNxeK/2JPsBj512RJKGkrlFGnxtjqk4CXhhi8uTJDC3SAOjzaLiRcCtLS5PksDcIg2MJgM1z+eeg6kCbAncD/jnluKSNGTMLdLgazJQ84Su52PATcAZpZRLpx2RpGF1Qtdzc4s0YJoM1HzfTAQyXfVgrv9H9cvm58AbSyn/O7dRSZoqc4s0+BbEya+SvAQ4FHgf8BiqL/7JSe4/p4FJGmjmFqk/Uy4qkowluXuS259mMth1OAD4fCnlqFLKJcDrgFXAvnMUj6QpMrdIC0c/uz9esI5pTwTexBz0fCRZH9gVOHi8rZQyluS0Oq5er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaBoy5xdxiblkouaWU0vgGPAL4b+BPwBeBraezvIYxPJBqxPgTu9o/ApwzwWsOql/jzdtCuv3VbH//ZvB7bW7x5m3+3KacW5oc/UGSB1LtY3wlcDKwcynl4ibLmiMHU+0n7bQ5Ex8LvwlwDfAgYOB/Fs4Bt9/0TGX7bQJcN2sRzRBzi/rk9pue1nNLX0VFkk2BdwJvBC4A9iilnNXPMmbAzcDdwBZd7VsAN/R6QSllDbCmq3nFRCtIMv5wZSllwvnUm9tveqa4/QZ6u5pb/G404fabnpnILf0M1DwQ+C3wPOAfSilPmgdfekopdwHnAnuMtyVZVD8/e67ikjQ15hZp4Ui9H3DyGZMx4E7gNKrqvadSyt7thDZ19WFfXwT+CfhfYH/g74G/LqXc2MLylwJ/ADa1Gu6f2296Fvr2M7cs3L/tTHP7Tc9MbL9+dn8cQzVgY94ppRyf5H7A+6lOUHMBsFcbX/raGqr9vN3dmpoat9/0LPTtZ25ZuH/bmeb2m57Wt9+UeyokSZLWZUGcUVOSJM09iwpJktQKiwpJktQKiwpJktQKi4oekmye5NgkK5LcnuTIJEsmec0ZSUrX7bOzFfNcS7JfkiuSrE5yTpLdJpn/xUkuree/KMlzZivW+aif7Zdknx6ftdWzGa+aMbf0z9wyPbOdWywqejsW2AFYRnVCnt2Bz03hdZ8HHtBxO3CmApxP+r08dJInAV8BjgR2AU4ATkiy46wEPM80vLz2Cu75Wdt6puNUK8wtfTC3TM+c5Ja5vnDQfLsB21MdM//Yjra9gDHgget43RnAJ+Y6/jnaZucAn+54vgi4Fnj7BPMfD3y7q+0nwGfn+r0MyPbbB7h9ruP21vff2dzS/zYzt8zu9pt2brGnYm1PpNqoP+toO43qi//4SV778iQ3J7k4ycFJNp6xKOeJjstDnzbeVkoZq5/3vDx03X5aV9vJ65h/wWq4/QCWJLkyydVJvplkhxkOVdNnbumDuWV65iq3NLpK6QK3JfD7zoZSyp+S3FpPm8hxwJVUV3N7NPBhqss3z/qphWfZfYHFQPcZBm8E/nqC12w5wfzr2r4LVZPt9ytgX+BCYFPgrcCPk+xQSrlmpgLVtJlb+mNumZ45yS1DU1QkOQR42ySzbd90+aWUzv2iFyW5Hjg9yballMubLlfqVko5m44LWiX5MfBLqutTvHuu4hpW5hYtFG3klqEpKoCPA0dPMs9vqS5pfI9BLEnWAzZngssdT+Cc+n47YCF/8fu+PHTd3s/8C1mT7XcPpZTRJOdTfdY0+8wtM8PcMj1zkluGZkxFKeWmUsqlk9zuoqrSNkuya8fLn0m1rc7pufDedq7vr2/nHcxPpdnloc/unL+2bB3zL1gNt989JFkMPIoF/lmbr8wtM8PcMj1zllvmenTqfLwBJwHnAbsBTwZ+DRzXMf2vgEuB3ern21J1De0KbAM8n+oXxA/m+r3M0vZ6CbAaeCVVN++/A7cBW9TTjwEO7pj/ScAo8BaqfXsHAXcBO871exmQ7fceYDnwUKrDxL5CdenwR871e/E26d/a3NLf9jK3zO72m3ZumfM3PR9vVN2RxwErqa41/wVgScf0bagODXt6/fzBwA+AW+o/4GXAR4Clc/1eZnGbvYFqMNkaql9dj++YdgZwdNf8L6YaFLQGuBh4zly/h0HZfsBhHfPeAJwI7DLX78HblP7O5pb+t5m5ZZa2Xxu5xUufS5KkVgzNmApJkjSzLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCo0o5JckWT/uY5D0sJibpmfLCokSVIrLCokSVIrLCo0oSSvTXJdfbnczvZvJvlCkm3rxzcmuSPJT5M8ax3L2yZJSbJzR9tmddvTO9p2THJSvcwbk3wpyX1n4C1KmgPmloXLokLr8p/AfYBnjDck2RzYCzgWWAJ8B9gD2AX4LvCtJFs1XWGSzYDvAecDj63XtQXwtabLlDTvmFsWqPXmOgDNX6WU25KcBLwMOL1ufhFwM/D9UsoY8POOl7w7yQuA5wOfbrjaNwDnl1LeOd6QZF/g6iQPL6X8uuFyJc0T5paFy54KTeZY4IVJNqifvxz4aillLMmSJB9L8ssktye5A9geaPxrAtgJeEbdPXlHvcxL62nbTmO5kuYXc8sCZE+FJvMtIMBzk/wUeCrw5nrax4BlwFuB3wB3Av8FrD/Bssbq+3S0jXTNs6Re59t6vP76foOXNG+ZWxYgiwqtUylldZJvUP2K2A74VSnlvHryk4GjSyn/DZBkCbDNOhZ3U33/AKr9mgA7d81zHvBC4IpSyp+m/QYkzUvmloXJ3R+aimOB5wL71o/HXQbsnWTnJDsBx7GOz1Qp5U7gJ8Dbk2yf5GnAB7tmOwLYHPhKksfVo8D3THJUksUtvidJc8/cssBYVGgqvgfcCjyC6ss97gDgNuDHVN2KJ1P9GliXfal6yM4FPgG8q3NiKeU6ql8pi4FTgIvq+W7nL12ckhYGc8sCk1LKXMcgSZIWAHsqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywqJElSKywq1Kok+yQpSbaZ61gkSbPLokKSJLUipZS5jkELSJLFwAiwpvjhkqShYlEhSZJa4e4PtapzTEWSLya5OclIj/lOSfKruYhRkjQzLCo0k74E3AfYs7MxyZbAM4Evz0VQkqSZYVGhmfQ94BrgH7va/4Hqs2dRIUkLiEWFZkwpZQw4Fnh+kk06Jr0c+HEp5XdzE5kkaSZYVGimHQNsBLwAIMkjgF2pdo1IkhYQiwrNqFLKJcC5/GUXyD8CdwFfm7OgJEkzwqJCs+EY4JlJHgC8DDixlHLbHMckSWqZRYVmw1eAAhwOPBQHaErSgmRRoRlXSrkJ+C7wYuB24MQ5DUiSNCMsKjRbjqnvv1ZKWTOnkUiSZoRFhVpVSjm6lJJSyhVdk+6q7931IUkLlNf+0KxI8m1ge2A7LzQmSQvTenMdgBa2JC8FHg08F/j/LCgkaeGyp0IzKkkB7gCOB15XSvnTHIckSZohfRcVSfYC7iil/LB+vh/wGuASYD/PPyBJ0nBqMlDzo8BSgCSPAj4OfAd4CHBoe6FJkqRB0mRMxUOoeiUAXgh8u5TyziSPoSouJEnSEGpSVNwFbFw/fhZ/Of/ArdQ9GIMmSYAHAivnOhapoU2A6xwIK2kuNSkqfggcmuRHwG7AS+r2hwPXtBXYLHsggxu7NO5BwLVzHYSk4dWkqHgD8BngRcDrSynjSezZVKdiHkQrAa6++mqWLl27s2V0dJRTTjmF5cuXMzIyMuvBDTq33/RMtv1WrFjBgx/8YLCnTdIc67uoKKVcBTyvR/ubW4loDi1dunTComLjjTdm6dKl/lNswO03PW4/SYOi0cmvkiwCtgPuT9cRJKWUM1uIS5IkDZi+i4okTwCOA7YG0jW5AItbiEuSJA2YJuep+CzwM2BHYHPg3h23zdsLTQvNz3/+c6666qq5DkOSNEOa7P54GPCiUspv2g5GC9M111QH1uy+++4Uwq8u/SVbbbXVHEclSWpbk56Kc6jGU0hTcssttwCwdLe9WX3nKm6++eY5jkiSNBOa9FR8Cvh4ki2Bi4DRzomllAvbCEwLz+Kl95vrECRJM6hJUfH1+v4LHW2FatCmAzUlSRpSTa/9IUmSdA9NTn515UwEIkmSBlvTk19tC+wPbF83XQIcXkq5vKW4JEnSgOn76I8ke1IVEbsBF9a3xwO/SLKs3fAkSdKgaNJTcQhwWCnl7Z2NSQ4BPgyc2kZgkiRpsDQ5T8X2wJE92r8APHJ64UiSpEHVpKi4Cdi5R/vOwO+nE4wkSRpcTXZ/fB74XJKHAj+u254MvA04tK3AJEnSYGlSVHwAWAm8BTi4brsOOAj4ZDthSZKkQdPkPBUFOAw4LMkmddvKtgOTJEmDpdF5KsZZTEiSpHFTKiqSnAfsUUq5Lcn5VNf46KmU8pi2gpMkSYNjqj0V3wTWdDyesKiQJEnDaUpFRSnlfR2PD5qxaCRJ0sBqcpru3ya5T4/2zZL8tp2wJEnSoGly8qttgMU92jcAHjStaCRJ0sCa8tEfSZ7f8XTPJH/oeL4Y2AP4XVuBSZKkwdLPIaUn1PcF+GLXtFHgCqoTYkmSpCE05aKilLIIIMnvgMeVUm6esagkSdLAaXJGzYfMRCCSJGmwTfXkV28CPldKWV0/nlApxet/SJI0hKbaU/Fm4Fhgdf14IgUvKiZJ0lCa0iGlpZSHlFJu6Xg80e2hTQNJ8vYkJcknOto2THJEkluS3JHk60m26HrdVklOTLIqye+TfDTJtK5pIkmS+tfk5FfvSbJxj/aNkrynSRBJHgf8E3Bh16TDgL8BXgw8DXgg8I2O1y0GTgTWB54EvBLYB3h/kzgkSVJzTU5+9V5gSY/2jetpfUmyhGrXymuA2zraNwVeDRxQSvleKeVc4FXAk5I8oZ5tOfBI4B9LKReUUk4C3g3sl2T9fmORJEnNNdlNEHpfUGwn4NYGyzsCOLGUclqSd3W07wqMAKeNN5RSLk1yFfBE4Cf1/UWllBs7Xncy8G/ADsD5Pd9AsgHVGUDHbQIwOjrK6OjoWvOPt/WapsmNjY0BsOHIYjbaaCPGxsbcln2Y7PPntpQ0X/RzRs3bqIqJAvw6SWdhsZiq9+Kz/aw8yUuBxwCP6zF5S+CuUsrtXe031tPG57mxx3Q65unlHfToVTnllFPYeOO19uz82amnnrqORWoyh77iqfCKp3Lttddy7bXXznU4A2eiz9+qVatmORJJ6q2fnor9qXopvkD1D7nzNN13AVeUUs6e6sKSPBg4HFhWSlndRxxtOBg4tOP5JsA1y5cvZ+nSpWvNPDo6yqmnnsqyZcsYGRmZrRgXjPPPP5/rr7+eA445i+tP+gxnnnkmO+2001yHNTAm+/ytWLFiDqKSpLX1c0bNL8Kfz6j5o1LKn6a57l2B+wPnJRlvWwzsnuQNwJ7A+kk26+qt2AK4oX58A7Bb13K36JjWUyllDbBm/Pn4+kdGRtZZNEw2Xb0tWlQN3Vk9ejd33nknixYtcjs2MNHnz20pab7oe6BmKeUHwNZJPpjkK0nuD5Dk2Ul26GNRpwOPAnbuuP2MatDm+ONRqguVUa/jEcBWwHiPyNnAo8ZjqC0DVgCX9PnWJEnSNPQ9UDPJ04CTgB8BuwP/AvyeaqDmq4EXTWU5pZSVwMVdy/4jcEsp5eL6+ZHAoUlupSoUPgWcXUr5Sf2SU6iKhy8lOZBqHMUHgSPq3ghJkjRLmhxSegjwrlLKMqqxFOO+Bzyh90saezPwbeDrwJlUuzT2Hp9YSrkbeB5wN1WvxZeBY4BG58uQJEnNNTmk9FHAy3q0/x6473SCKaU8vev5amC/+jbRa64EnjOd9UqSpOlr0lNxO/CAHu27AB4nKEnSkGpSVHwV+HCSLanOWbEoyZOBj1HtepAkSUOoSVHxTuBS4GqqE15dQjXe4cdUgyQlSdIQ6ntMRSnlLuA1ST4A7EhVWJxfSrms7eAkSdLgaHyJ8FLKVUmurh/3uhaIJEkaIk12f5Dk1UkuBlYDq5NcnOT/thuaJEkaJE1OfvV+4ADqE1HVzU8EDkuyVSnFc0RIkjSEmuz+eD3wmlLKVzra/ifJhVSFhkWFJElDqMnujxGq63J0O5dpjNGQJEmDrUlR8SWq3opur6W6GJgkSRpCTXsWXp1kOTB+Ya/HU1099Jgkh47PVEo5YJrxSZKkAdGkqNgROK9+vG19f3N927FjPg8zlSRpiDQ5+dUzZiIQSZI02BqdpwIgyXZJ9kyyUf087YUlSZIGTd9FRZL7JDkd+DXwHf5yxdIjk3y8zeAkSdLgaNJTcRgwSjUwc1VH+/HAXm0EJUmSBk+TgZrLgT1LKdd07fG4DNi6lagkSdLAadJTcS/u2UMxbnNgzfTCkSRJg6pJUXEW8IqO5yXJIuBA4PutRCVJkgZOk90fBwKnJ3kssD7wEWAHqp6KJ7cYmyRJGiB991SUUi4GHg78EPgm1e6QbwC7lFIubzc8SZI0KPrqqUgyAnwXeF0p5UMzE5IkSRpEffVUlFJGgUfPUCySJGmANRmo+WXg1W0HIkmSBluTgZrrAfsmeRZwLvDHzolemVSSpOE03auUPrxrmlcmlSRpSHmVUkmS1IrGVymVJEnqZFEhSZJaYVEhSZJaYVEhSZJaMaWiIsl5Se5dP35Pko1nNixJkjRoptpTsT3VNT4A3gssmZlwJEnSoJrqIaUXAEcl+SEQ4K1J7ug1Yynl/S3FJkmSBshUi4p9gPcBz6M6wdWzgT/1mK8AFhWSJA2hKRUVpZRfAS8FSDIG7FFK+f1MBiZJkgZLkzNqesSIJElaS5Nrf5BkW2B/qgGcAJcAh5dSLm8pLkmSNGD67nVIsidVEbEbcGF9ezzwiyTL2g1PkiQNiiY9FYcAh5VS3t7ZmOQQ4MPAqW0EJkmSBkuT8RHbA0f2aP8C8MjphSNJkgZVk6LiJmDnHu07Ax4RIknSkGpSVHwe+FyStyV5an17O/Dv9bQpS/KOJD9NsjLJ75OckOQRXfNsmOSIJLckuSPJ15Ns0TXPVklOTLKqXs5HkzQahCpJkppp8o/3A8BK4C3AwXXbdcBBwCf7XNbTgCOAn9ax/CtwSpJHllL+WM9zGPBc4MXAH4BPA98AngyQZDFwInAD8CTgAcAxwCjwzr7fnSRJaqTJeSoK1T/6w5JsUretbLLyUspenc+T7EO1C2VX4MwkmwKvBl5WSvlePc+rgF8meUIp5SfAcqqxHM8qpdwIXJDk3cCHkxxUSrmrSWySJKk/09pF0LSYWIdN6/tb6/tdgRHgtI51XprkKuCJwE/q+4vqgmLcycC/ATsA53evJMkGwAYdTZsAjI6OMjo6ulZQ4229pmlyY2NjAGw4spiNNtqIsbExt2UfJvv8uS0lzRepOh7mXpJFwP8Am5VSnlK3vQw4qpSyQde8/wt8v5TytiSfA7YupezZMX1j4I/Ac0opJ/VY10FUV1u9h+OOO46NN/aq7hosq1at4mUvexnApqWUFXMdj6ThNZ8GMx4B7Ag8ZRbWdTBwaMfzTYBrli9fztKlS9eaeXR0lFNPPZVly5YxMjIyC+EtLOeffz7XX389BxxzFtef9BnOPPNMdtppp7kOa2BM9vlbscI6QtL8MC+KiiSfproC6u6llGs6Jt0ArJ9ks1LK7R3tW9TTxufZrWuRW3RMW0spZQ2wpmP9AIyMjKyzaJhsunpbtKg6yGj16N3ceeedLFq0yO3YwESfP7elpPmir0NKk4wkOT3Jw9pYeSqfBl4APLOU8ruuWc6lOopjj47XPALYCji7bjobeFSS+3e8bhmwgup04pIkaRb01VNRShlN8ugW138E8DLgb4GVSbas2/9QSrmzlPKHJEcChya5lapQ+BRwdn3kB8ApVMXDl5IcCGwJfBA4ou6RkCRJs6DJya++THWYZxteT3XExxnA9R23l3TM82bg28DXgTOpdmnsPT6xlHI31a6Tu6l6Lb5MdZ6K97QUoyRJmoImYyrWA/ZN8iyq3RN/7JxYSjlgqgsqpWQK86wG9qtvE81zJfCcqa5XkiS1r0lRsSNwXv344V3T5sfxqZIkadY1OaPmM2YiEEmSNNiajKkAIMl2SfZMslH9fNJdGZIkaeHqu6hIcp8kpwO/Br5DdQEvgCOTfLzN4CRJ0uBo0lNxGNW5I7YCVnW0Hw/s1fMVkiRpwWsyUHM5sGcp5ZquPR6XAVu3EpUkSRo4TXoq7sU9eyjGbU7Hqa8lSdJwaVJUnAW8ouN5qa8weiDw/VaikiRJA6fJ7o8DgdOTPBZYH/gIsANVT8WTW4xNkiQNkL57KkopF1Od9OqHwDepdod8A9illHJ5u+FJkqRB0ejS56WUPwAfajkWSZI0wBoVFUnuTXVRse3rpkuAo0opt7YVmCRJGixNTn61O3AF8Cbg3vXtTcDv6mmSJGkINempOILqRFevry87TpLFwGfqaY9qLzxJkjQomhxSuh3w8fGCAqB+fGg9TZIkDaEmRcV5/GUsRaftgZ9PLxxJkjSoprT7I8mjO55+Ejg8yXbAT+q2JwD7AW9vNzxJkjQopjqm4gKgAJ0X+/hIj/mOoxpvIUmShsxUi4qHzGgUkiRp4E2pqCilXDnTgUiSpMHW9ORXDwSeAtyfrsGepZRPthCXJEkaMH0XFUn2Af4duAu4hWqsxbhCNZBTkiQNmSY9FR8A3g8cXEoZazkeSZI0oJqcp2Jj4KsWFJIkqVOTouJI4MVtByJJkgZbk90f7wC+nWQv4CJgtHNiKeWANgKTJEmDpWlRsSfwq/p590BNSZI0hJoUFW8B9i2lHN1yLJIkaYA1GVOxBvhR24FIkqTB1qSoOBx4Y9uBSJKkwdZk98duwDOTPA/4BWsP1Ny7jcAkSdJgaVJU3A58o+U4JEnSgOu7qCilvGomApEkSYOtyZgKSZKktTS5oNjvWMf5KEopD51WRJIkaSA1GVPxia7nI8AuwF7AR6cbkCRJGkxNxlQc3qs9yX7AY6cdkSRJGkhtjqk4CXhhi8uTJEkDpM2i4kXArS0uT5IkDZAmAzXP554DNQNsCdwP+OeW4pIkSQOmyUDNE7qejwE3AWeUUi6ddkSSJGkgNRmo+b6ZCESSJA22BXPyqyT7Jbkiyeok5yTZba5jkiRpmEy5qEgyluTuSW5/mslg1xHbS4BDgfcBjwF+Dpyc5P5zEY8kScOon90fL1jHtCcCb2Luej4OAD5fSjkKIMnrgOcC+wKHzFFMkiQNlSkXFaWUb3a3JXkE1T/tvwGOBd7TXmhTk2R9YFfg4PG2UspYktOoip1er9kA2KCjaROAW2+9ldHR0bXmHx0dZdWqVZx11lmst956jI2NAbBo0aK1HvdqG/bpl112GUuWLGHxHTey4YYbcu6557JixYp5E998nz42NsaqVau45ZZbGBkZWevzuXLlyrXaJGkuNDn6gyQPpNrV8ErgZGDnUsrFbQbWh/sCi4Ebu9pvBP56gte8A3hvd+NDHvKQdiNTT6997WvnOoSFahNgxVwHIWl49VVUJNkUeCfwRuACYI9SylkzENdMO5hqDEanzZn45F2bANcADwL8Wdg/t9/0TGX7bQJcN2sRSVIPUy4qkhwIvA24AfiHXrtD5sjNwN3AFl3tW1DFupZSyhpgTVfzhL/wkow/XFlK8Zdgn9x+0zPF7ed2lTTn+umpOAS4E/gN8Mokr+w1Uyll7zYCm6pSyl1JzgX2oD4xV5JF9fNPz2YskiQNs36KimO45+m555NDgS8m+Rnwv8D+wL2Ao+YyKEmShkk/R3/sM4NxTEsp5fgk9wPeT3UdkguAvUop3YM3m1pDNTC1e5eJpsbtNz1uP0kDIaXM184HSZI0SBbMabolSdLcsqiQJEmtsKiQJEmtsKiQJEmtsKjoIcnmSY5NsiLJ7UmOTLJkkteckaR03T47WzHPtX4vPZ/kxUkuree/KMlzZivW+aif7Zdknx6ftdWzGa8k9WJR0duxwA7AMuB5wO7A56bwus8DD+i4HThTAc4n/V56PsmTgK8ARwK7UJ207IQkO85KwPNMv9uvtoJ7fta2nuk4JWkyHlLaJcn2wCXA40opP6vb9gK+AzyolNLz+gpJzgAuKKXsP0uhzhtJzgF+Wkp5Q/18EXA18KlSylqXnk9yPHCvUsrzOtp+QrX9XjdLYc8bDbbfPsAnSimbzWackjQZeyrW9kTg9vGConYaMAY8fpLXvjzJzUkuTnJwko1nLMp5ouPS86eNt5VSxurnPS89X7ef1tV28jrmX7Aabj+AJUmuTHJ1km8m2WGGQ5WkSTW69PkCtyXw+86GUsqfktxaT5vIccCVVFeKfDTwYeARwKxeC2UONLn0/JYTzL+u7btQNdl+vwL2BS4ENgXeCvw4yQ6llGtmKlBJmszQFBVJDqG6yuq6bN90+aWUzjEXFyW5Hjg9yballMubLlfqVko5Gzh7/HmSHwO/BP4JePdcxSVJQ1NUAB8Hjp5knt9SXS79HgPkkqwHbM4El1KfwDn1/XbAQi4q+r70fN3ez/wLWZPtdw+llNEk51N91iRpzgzNmIpSyk2llEsnud1F9QtwsyS7drz8mVTb6pyeC+9t5/r++nbewfxUb7PxS88D97j0/NkTvOzszvlry9Yx/4LVcPvdQ5LFwKNY4J81SfPfMPVUTEkp5ZdJvgt8PsnrgBHg08BXx4/8SPJXwOnAK0op/5tkW+BlVEeI3EI1puIw4MxSyoVz8T5m2TovPZ/kGODaUso76vkPB36Q5C3AicBLgccCr53luOeLvrZfkvcAPwF+A2wG/D+qQ0r/Y7YDl6ROFhW9vZyqkDid6qiPrwNv6pg+QjUIc/zojruAZ/GXfwZX16/54OyEO7emcOn5rai24/j8P07yMqrt86/AZcDflVIuntXA54l+tx9wb6pzomwJ3EbV0/GkUsolsxa0JPXgeSokSVIrhmZMhSRJmlkWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZIkqRUWFZpRSa5Isv9cxyFJmnkWFZIkqRUWFZIkqRUWFZpQktcmua6+amZn+zeTfCHJtvXjG5PckeSnSZ61juVtk6Qk2bmjbbO67ekdbTsmOale5o1JvpTkvjPwFiVJLbKo0Lr8J3Af4BnjDUk2B/YCjgWWUF2ZdQ9gF+C7wLeSbNV0hUk2A74HnE915dK9gC2ArzVdpiRpdniVUk2olHJbkpOoLut+et38IuBm4PullDHg5x0veXeSFwDPp7rKaxNvAM4vpbxzvCHJvsDVSR5eSvl1w+VKkmaYPRWazLHAC5NsUD9/OfDVUspYkiVJPpbkl0luT3IHsD3Vpbqb2gl4Rr3r4456mZfW07adxnIlSTPMngpN5ltAgOcm+SnwVODN9bSPAcuAtwK/Ae4E/gtYf4JljdX36Wgb6ZpnSb3Ot/V4/fX9Bi9Jmj0WFVqnUsrqJN+g6qHYDvhVKeW8evKTgaNLKf8NkGQJsM06FndTff8AqjETADt3zXMe8ELgilLKn6b9BiRJs8bdH5qKY4HnAvvWj8ddBuydZOckOwHHsY7PVCnlTuAnwNuTbJ/kacAHu2Y7Atgc+EqSx9VHmOyZ5Kgki1t8T5KklllUaCq+B9wKPIKqcBh3AHAb8GOqXRYnU/U0rMu+VD1k5wKfAN7VObGUch1VD8hi4BTgonq+2/nL7hNJ0jyUUspcxyBJkhYAeyokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIrLCokSVIr/n8Z6N6Kx6fSjgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhsAAAI2CAYAAAD5FUpVAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABO2UlEQVR4nO3deZxcVZ338c+3Q5N0CAHCvu8wKAoMiCCIIrKNqCOi+ERHWcZdGRZHkFE2HUFH2QT1kYdFlCg6aFQUQRBkNQYIu2BEtkAIhAAdkk7SSf+eP+6tpFKpXqr6nq7u29/361Wvqjp16pzfvVV9+lf3nnuvIgIzMzOzVNpaHYCZmZmVm5MNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDVuJpDMkDclpZSXdIumWqudvlxSSjhii/q+Q9ORQ9FXT71b5ch411H2PFpJWk/RNSc9I6pE0tdUxjXRVf59vb3UsNvI42SgxSUflg0PltkjSc5Kul3ScpDUL6meTPEnZtYj2ijScY7OkjgH+E/hf4GPAea0Nx2x0W63VAdiQOA14AmgHNgLeDpwPnCjpPRHxQFXdrwHnNNj+JsDpwJPAfQ2876AG+2lGX7F9nNYk3E8BHUB3C/oeLd4BPBsRJ7Q6EDNzsjFaXBcRd1c9P1vSO4BrgV9L2ikiugAiYimwNGUwksZHxMKIWJKyn/5EREv+2Ud29cNFreh7MCSNA5ZERE+rYxmADYBXimpMUhuwekSMuM/NbDjwbpRRKiL+CHwV2BL4SKW83pwNSQdKul3SK5Jek/SYpK/nr70dmJ5Xvbxql81R+eu3SHpI0u6SbpW0EPh61Wu31AlvjKSvS3pe0gJJv5a0eU1MT0q6ovaN1W0OILZV5mxIWkPSt/N9/YvzZf2CJNXUC0kXSfrXfPkWS3pY0iF1lqc2xlXmbOSxvCZpU0lT88cvSvqWpDEDaPNJSddKOkjSffkus0ckHV5Tb1Le5oN5H52SrpO0S029yv75D0n6mqRngYXAxCba+KCk0yU9K2m+pP+VtJaksZLOl/RC3s7lksbWtNHrd6+vdQvsD7y+6jN/e/56o5/vhyU9DCwG+vxsJR0q6U/5MnZKmi5pck2dD0i6R1KXpLmSfixp06rXv5D3vWWd9s+WtETSOn3FkdfdI2/nY3VeOzh/7bD8+ZaSvpuviy5JL0n6uaStBtBPv3+HVWVjJZ0p6e/5un9G2byasbXvt/Lxlo3R7Udk//gPAi6pV0HS68m2gDxAtjtmMbAdsE9e5a95+VnAD4Db8vI7q5pZF7gO+CnwY2BOP3H9FxDAN8h+oR4P3Chp18oWmAEaSGzL5f9wfk32j+pSst0uBwP/A2wK1G6S3xc4HPguMB84DrhG0hYR8VIDcVaMAa4HpgFfAN4JnAQ8DnxvAO/fHrga+D7wQ+Bo4OeSDomIP+R1tgH+Ffg52a61DYFPAn+S9LqIeK6mza8AS4BvAWPzx69rsI0vAV1ku+e2Az5PtgupB1gHOAPYCzgqb+8sGNB3r54XgX8j+w5NyPsG+GsTn+87gA8CFwFzyXbF1aUscbwMeBg4m2yrym5kCcqUqjqXkyXAXyJbb/8B7CNpt4h4BfgZ8M283/+p6eaDwA0R8XIfyw9ARNwt6R/5e35Y8/KRwMtk3zWANwFvIfv7nAVsBXwauCX/PBf2119/lG0Z+jXZ38wPyP4230C2zncg+z5ZmUWEbyW9kQ3eAezRR51XgHurnp9BvqU/f3583sZ6fbSxR17nqDqv3ZK/9sleXrul6vnb87qzgDWryj+Qlx9XVfYkcMUA2uwrtiuAJ6uevzev+1819X5O9o9x26qyIPvnV132xrz8c/18LlvVxpTHEsBXaureC9w9gM/6yfz9h1eVTQSeq/l8xwJtdeJZVN131WfxONBRU7/RNh4E2qvKp+Tr83c1bdxZ83n0+93rY33cAjxUU9bo57sMeN0A+loL6AT+DIyreU35fTtZkv1gdR3gXXlfZ9ash7tr2nlTXu/fGlgHXydLDtepKludLNG4tKqso85796rtr+rzfHsTf4cfydfnvjX1Ppm3+ZZGP2PfRtbNu1HsNaCvo1Jeye/fm/86acZisl90A3VlRMyvev6/wGzgX5rsf6D+hWxAvLCm/NuAgENrym+MiMcrTyKbaNtJtvWgWd+veX5bA+09B/yyKp5O4EpgN0kb5WWLI59zIWmMpHXJvgOPAf9cp80fRs3WpCbauDJWnh8zjWx9XlZTbxqwuaTKFtdX8vvBfPeqNfr5/ikiHhlAuweS/Q2dEzVzOiKisktyD7KtdN+trhMRvwUeJUs6Kq4Gdpe0bVXZkWR/R78aQDzV7bSTbX2rOAhYO3+tEsPyz1dSe/55/p1s/df7PJvxAbKtGY9KWq9yA/6Yv75/Qf3YMOVkwyaQ7QLozdXAHcD/A+ZI+mm+D76R786z0dhk0JnVT/IB++9kv55T2hJ4ribRgWyQrLxe7ek6bbxMtmugGYsi4sVBtPf3qn9uFX/L77eCbHO2pBMkzST75zWXbNfDG8l+odd6oragiTZq19Or+f0zdcrbqtoo4rtXrdHPd5Vl70UlKXion74hS8hqPVrTd2VLy5GwfPfeB8gmencOMCYi4v687SOrio8k+7wq/+SR1CHpLEnPsPLnuTb1P89mbA+8Pm+3+lb5fm5QUD82THnOxigmaTOyweTvvdWJiC5J+5H98ngX2T7oI4E/SjooIpYNoKtG5lkMVG8nHhtD9ut1KPTWj3opb7a9Ip1KNjH4MrL5GPPI/rGdT/0fH/U+u0bb6G25+lx/BX33BiPF97ZfEfGcpNvI5lt8nWyXxhbAyU00dzXwX/lWhPnAe4CfRHbUWcV3yOb3nA/cRZb0Bdkcjv4Su4H+HbaR7UI6sZf6tYmnlYyTjdHt3/L76/uqlG8yvym/nSjpVOC/yf4J3EjvA06ztq9+kv+y245somDFy2S/vGptCfyj6nkjsT0FvFPSmjW/fv+p6vXhbDtJqtm6sUN+/2R+fwRwc0QcW/1GSWuT/aIdiCLaGJABfPcakerzrexK25neE/dK2ztStVWhqqy276uB70rakSzBWgj8ponYriY7z8z7yeaMTCRLIqodQba77KRKgbLDnNceQPsD/Tt8HNgFuKnO1jcbBbwbZZRSdp6Nr5BtKr6qj3qT6hTfl99XDllbkN+vXVB4H9XKZzc9AtiY7IiWiseBvSStXinID+Vb6RDZBmP7Hdkvss/VlJ9AlrRct8o7hpdNgPdVnkiaCHwUuC8ins+Ll1Gz5UXSB8iOxhioItro1wC/e41I9fneQLbV4Ev5P+nl8kQZ4G7gBeBT1Yd6SjoU2An4bU2b15Ct5/9Dtgvl2ohYQIMi4q9kWxSOzG+zgVtrqq3yeZIdMdTvIdcM/O/wZ2Tfj4/XNpDvxlljAH3ZCOYtG6PDoZL+iezz3pDskL4DyX5Nvad2UluN0/JN2b/N628AfIbsiJHb8zqPk00m+5Sk+WT/4KdFxED3edeaB9wu6fI83uPJfjFWH577/8iSkN9L+hnZfvOPsOJXZkUjsf0GuBn47/wcA/eTTah7L3B+9WTQYepvwKWS3kT2K/YYsvV3dFWda8k+08vJjnp4A/BhVv4V2p8i2hiIgXz3GpHk842ITkknkH0np0uaQvaLfxdgPPCxiOiWdDLZROk/SfoJKw59fZKa06lHxAuSbibb7bAmVRM6m3A12eHEi8iOQqk9Kdu1wL9JehV4BNib7LDrgRy+PdC/wx+R7Rb6vqT9yebijCHbqvRBskOQ78bKq9WHw/iW7saKQ18rt8Vkv2xuIDsnxJp13nMGKx/6+g5gKvBs/v5nyQ5d3L7mfe8hO8dAN1WHdVLnEMSq99xC/UNfP0S2r3oO2ebja4Et6rz/RLJ/PIvI/vnsXttmP7FdQdWhlnnZBODcfDmXkP0D/wL5IYxV9QK4qE5MT1LnUMCaOltVx1EVy2v9fR59tPlkvp4OIvsnuohs4uMRNfXGkp0z47l83d5ONiegt8/iiDp9DaoNejkku7Ks5Ie6MsDvXh/frVW+d4P9fPvp891k/0QXks17mAZ8qKbOB8kOZ15E9s/8x8CmvbT373kcndQcUttgXNuxYgzYp87ra5PNv3mRbAvN78l27az0XabOoa8N/h22A18km0i7iOxHxd1k51CZ2Ozy+TYybpVjwM1sBFN2JtSHIuKwVsdiZlbLczbMzMwsKc/ZMDMbQSR10P/5L+ZFiy90aFbNyYaZ2chyJP2fkXd/snkTZsOC52yYmY0gkjYmOxtnX+6JAVywzWyoONkwMzOzpDxB1MzMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw1rGUlnSIqq509KuqKFIZnZCOSxZPhzsmFmZmZJrdbqAMyq7Aj0tDoIMxvxPJYMM042bNiIiMWtjsHMRj6PJcOPd6PYkJC0r6TpkhZJelzSJ+vU8X5WM+uTx5KRyVs2LDlJbwBuAF4EziD73p0JzGlhWGY2wngsGbmcbNhQOAsQ8NaIeBpA0jXAgy2NysxGGo8lI5R3o1hSksYABwNTK4MDQET8Fbi+ZYGZ2YjisWRkc7Jhqa0PdAAz67z22BDHYmYjl8eSEczJhpmZmSXlZMNSexHoArav89qOQxyLmY1cHktGMCcbllRELCPbn/qvkraolEvaiWz/q5lZvzyWjGxONmwonJ7f3ybpZEn/BdwMPNzCmMxs5PFYMkI52bDkIuIBsl8eL5IdunYM2aDxy1bGZWYji8eSkUsR0X8tMzOzEULSM8D1EfHvrY7FMt6yYWZmpSGpHVgXmNvqWGwFn0HUzMxKQdLBwIfIzsdxU4vDsSrejWJmZqUg6WZgO+B7EfH1VsdjKyTZjSLpEEn7Vj3/rKT7JE2RtE6KPs2sfDyWWCMiYv+I2NyJxvCTas7G/wATYflV+r4N/A7YGjg3UZ9mVj4eS8xKINWcja2BR/LH7weujYhTJf0z2UBhZjYQHkvMSiBVsrEEGJ8/fidwZf54HvmvlOFEkoBNgPmtjsUssTWB52LkTNYaMWOJxxEbZRoaS1IlG7cD50q6A9gTODIv3wGYlajPwdiE4RmXWQqbAc+2OogBGkljiccRG20GPJakSjY+B3wXOAL4dERUgjkU+H2iPgdjPsAzzzzDxImt/7HU3d3NDTfcwEEHHUR7e3urw2mIY2+NgcTe2dnJ5ptvDiPrl/dIGkuG1TgC5f9OD1dlj72ZsSRJshERTwOH1Sk/IUV/RZk4ceKwGCS6u7sZP348EydOHJFfVMc+9EZy7H0ZiWPJcBlHYGR/Lxx7a6SKPdlJvSS1kR3vvAE1R71ExK2p+jWzcvFYYjbyJUk2JO0FTAG2BFTzcgBjUvRrZuXiscSsHFJt2fg+cDfwLmA22aAwoj399NPMnZudan+99dZjiy22aEkbQ9HeYJbvhRdeAGDWrFlsvfXWhcQDw2d9Dbd1Xmmjst5LyGNJojbqtTec/s48lrQmnp6enqbj6FNEFH4DFgDbpWg7UbwTgXj11VejnqeeeirGdYwPsoEuxnWMj6eeeqpu3d400saSJUti6tSpsWTJkkLaazS+wSxfR0dHTJ06NdaZtG5h8RS9fL211996H27rvLqNynr/xz/+0WvdV199tRL7xBgGf3cDuY2ksaS/cSRi+I8lQ/F3NtA2PJYUF08jbaQaS1KdQXQa2T7WUpg7dy6Luhay7mEnse5hJ7Goa+HyLHIo2xiK9tba+8hBLd+kQz4PMGyXbzh+hs2u8+o2Ju55OAAvvfRS0/EMUx5LErRRr73BfA+LjM1jSWvjqaz3oseSVLtRvgN8W9JGwINAd/WLEfFAon6Tal9382HRRsr2xqy1waDe3z5p04IiydsbhutruK1zgDET1y8gkmHJY0nCNqoV8T2sKGT5PJYMeVvt625O+2q1U6OKkSrZuCa/v6yqLMgmeHlSl5kNlMcSsxJIeW0UM7PB8lhiVgKpTur1VIp2zWx08VhiVg4pT+q1LXA8sFNe9AhwQUQ8nqpPMysfjyVmI1+So1EkHUw2IOwJPJDf3gw8LOnAFH2aWfl4LDErh1RbNs4BzouIU6oLJZ0DfAP4Q6J+zaxcPJaYlUCq82zsBFxap/wy4HWJ+jSz8vFYYlYCqZKNF4Fd65TvCpT2vMpmVjiPJWYlkGo3yiXADyRtA9yZl+0DnAycm6hPMysfjyVmJZAq2fgqMB84CTg7L3sOOAO4MFGfZlY+HkvMSiDVeTYCOA84T9Kaedn8FH2ZWXl5LDErh2Tn2ajwwGBmRfBYYjZyFTZBVNK9ktbJH8/In9e9NdjuppJ+LOklSV2SHpS0R9XrknSWpNn56zdK2r6o5TKzoeWxxKx8ityy8StgcdXjGGyD+YBzB3AzcCjZzPTtgZerqn0ROA74GPAE2T7e6yW9LiIWDTYGMxtyHkvMSqawZCMizqx6fEZBzZ4MPBMRR1eVPVF5IElkpzH+WkT8Ki/7KDAH+FfgpwXFYWZDxGOJWfmkOl35PyStW6d8bUn/aKCp9wB3S/q5pBfyTaofr3p9a2Aj4MZKQUS8CkwD9m4yfDMbJjyWmJVDqgmiWwFj6pSPBTZroJ1tgE+THU//deBNwIWSlkTED8kGB8h+fVSbU/XaKiSNzWOpWBOgu7ub7u7uVer39PTQ0dHBuNUEQEdHBz09PXXr9qaRNiplfbVfREx122sfM6jlG1t0PEPYXn/rfbit89o2Ks97a6PZOFtsK4bpWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoO7KsGJLekz+cSrbf89Wql8cABwAHRsSOA2xvCXB3RLylquxC4E0Rsbekt5Dth90kImZX1fkZ2VFzR/bS7hnA6bXlU6ZMYfz48QMJzWzEWbhwIZMnTwZYKyI6Wx1PX0bCWOJxxEarpsaSiCjsBvTkt2VVjyu3xcBjwGENtPcU8P9qyj4NPJs/3oZs8tiuNXX+RHYJ6t7aHQtMrLptCsTcuXNjyZIlq9ymT58eHR0dsdWxF8RWx14QHR0dMX369Lp1e7s10saCBQti6tSpsWDBgkLaayS+Td59/KCWb8dPXhhTp06NSZMmFRJP0cvXV3v9rffhts6r29jm8JNi6tSpMW3atF7rzp07N/K/l4lF/t2nuI2EsaTRcWS4jyWD+R6mWD6PJUO/zrc69oLl673osaTQ3SgR0QYg6QmyXwxzB9nkHUDtL5cdyAYOyCZ4PU/2K+e+vO+JZJeg/l4fcS5mxWx3srlh0N7eTnt7+yr129ra6OrqYtHSbCtQV1cXbW1tdev2ppk2eounqJjqtdfRvWxQy7e44HiKXr6BtJfye1CvvWbX+UoxdS9b/ry3NpqNsxVGwljS6DgCw3ssGcz3cDCx9daGx5Li4xloG5WyIseSVGcQ3bqgps4D7pR0KvAzYE/gE/mNiAhJ5wNfljSTFYerPUe2+dXMRjCPJWblUFiyIek44AcRsSh/3KuIGNA1DSJiuqT3kV0T4TSyAeD4iLiqqto3gTWAHwBrA7cDh4SPizcbkTyWmJVPkVs2TgCuAhblj3sTNHABpYi4Fri2j9eDbPA4baBtmtmw5rHErGSKPKnX1vUem5k1wmOJWfmkOqnXaZJWOfZLUock/2owswHxWGJWDkmSDbJjzyfUKR9PnePSzcx64bHErARSJRui/sWTdgHmJerTzMrHY4lZCRR66Kukl8kGhgD+Jql6kBhD9gvl+0X2aWbl47HErFyKPs/G8WS/RC4j28RZfYrhJcCTEXFXwX2aWfkcj8cSs9Io+gyiP4TlZ/27IyKWFtm+mY0OHkvMyiXJnI2I+BOwpaSvSfqJpA0AJB0q6fUp+jSz8vFYYlYOqQ59fRvwINl1BQ5nxWzyXYAzU/RpZuXjscSsHFIdjXIO8OWIOJBs/2rFH4G9EvVpZuXjscSsBFIlG28Aflmn/AVgvUR9mln5eCwxK4FUycYrwMZ1yncDnk3Up5mVzyt4LDEb8VIlGz8FviFpI7Lj5Nsk7QN8C7gyUZ9mVj4eS8xKIFWycSrwKPAM2YSuR4BbgTuBryXq08zKx2OJWQkUfVIvACJiCfBxSV8FdiYbJGZExMwU/ZlZOXksMSuHJMlGRUQ8LemZ/HG96xuYmfXLY4nZyJZqNwqSjpX0ELAIWCTpIUn/nqo/MysnjyVmI1+SLRuSzgJOBL4DVK5fsDdwnqQtIuK0FP2aWbl4LDErh1S7UT4NfDwiflJV9mtJD5ANGh4gzGwgPJaYlUCq3SjtwN11yu8h8TwRMysVjyVmJZAq2fgR2S+SWp8ArkrUp5mVj8cSsxJI+cvgWEkHAX/On78Z2AK4UtK5lUoRcWLCGMxs5PNYYjbCpUo2dgbuzR9vm9/PzW87V9XzIWxm1hePJWYlkOqkXvunaNfMRhePJWblkOw8GwCStpN0sKSO/LlS9mdm5eSxxGxkS5JsSFpX0k3A34DfseKqjZdK+naKPs2sfDyWmJVDqi0b5wHdZJO4FlaVXw0ckqhPMysfjyVmJZBqguhBwMERMatma+dMYMtEfZpZ+XgsMSuBVFs21mDlXyEVk4DFzTYq6RRJIen8qrJxki6W9JKk1yRdI2nDZvsws2HFY4lZCaRKNm4DPlr1PCS1AV8Ebm6mQUlvAj4JPFDz0nnAu4EPAG8DNgF+0UwfZjbseCwxK4FUu1G+CNwkaQ9gdeCbwOvJfo3s02hjkiaQnS3w48CXq8rXAo4FJkfEH/Oyo4G/StorIv5crz0zGzE8lpiVQKrzbDwkaQfgc8B8YALZL4SLI2J2E01eDPw2Im6U9OWq8t3Jrp1wY1Xfj0p6muzKkHUHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdats+4o6ODnp6eunV700gblbK+2i8iprrttY8Z1PKNLTqeIWyvv/U+3NZ5bRuV57210WycrTScx5JGxxEY5mPJIL6HzcTWXxseS4qLp5E2Kuu96LFEEcWeeE9SO/B74FMRMbOA9j4E/BfwpohYJOkW4L6IOF7SZODyiBhb856/ADdHxMm9tHkGcHpt+ZQpUxg/fvxgQzYblhYuXMjkyZMB1oqIzlbH05/hPpZ4HLHRqqmxJCIKvwEvAtsX0M7mwBzgjVVltwDn548nA4vrvO8vwDf6aHcsMLHqtikQc+fOjSVLlqxymz59enR0dMRWx14QWx17QXR0dMT06dPr1u3t1kgbCxYsiKlTp8aCBQsKaa+R+DZ59/GDWr4dP3lhTJ06NSZNmlRIPEUvX1/t9bfeh9s6r25jm8NPiqlTp8a0adN6rTt37twgO633xBR/96NtLGl0HBnuY8lgvocpls9jydCv862OvWD5ei96LEk1Z+PHZPs/TxlkO7sDGwD3Vh32NgbYT9LngIOB1SWtHRGvVL1vQ+D53hqNiMVUzWSvtN3e3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbPFhu1Y0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklTJxmrAMZLeCdwDLKh+MQZ+dcabgDfUlF0OPAp8A3iG7IQ/BwDXAEjakewEQHc1G7yZDRseS8xKYCiu+rpDzWsDniQSEfOBh6rLJC0AXoqIh/LnlwLnSpoHdALfAe4Kzx43KwOPJWYlUIarvp4A9JD9GhkLXA98Zgj7N7NEPJaYlUOqLRvJRMTba54vAj6b38zMBsRjidnQSXqJeTMzMzMnG2ZmZpaUkw0zMzNLqrBkQ9K9ktbJH58myafQM7OGeSwxK58it2zsRHY5aMhO4TuhwLbNbPTwWGJWMkUejXIfcLmk2wEBX5D0Wr2KEXFWgf2aWbnch8cSs1IpMtk4CjgTOIzsZDuHAkvr1AvAA4SZ9eYoPJaYlUphyUZEPAZ8CEBSD3BARLxQVPtmNjp4LDErn1RnEPVRLmY2aB5LzMoh2RlEJW0LHE822QvgEeCCiHg8VZ9mVj4eS8xGviS/GiQdTDYg7Ak8kN/eDDws6cAUfZpZ+XgsMSuHVFs2zgHOi4hTqgslnUN2Oec/JOrXzMrFY4lZCaTaH7oTcGmd8suA1yXq08zKx2OJWQmkSjZeBHatU74r4FnlZjZQHkvMSiDVbpRLgB9I2ga4My/bBzgZODdRn2ZWPh5LzEogVbLxVWA+cBJwdl72HHAGcGGiPs2sfDyWmJVAqvNsBHAecJ6kNfOy+Sn6MrPy8lhiVg7JzrNR4YHBzIrgscRs5PLZ+czMzCwpJxtmZmaWlJMNMzMzS6rwZENSu6SbJG1fdNtmNnp4LDErj8KTjYjoBt5YdLtmNrp4LDErj1S7UX4MHJuobTMbPTyWmJVAqkNfVwOOkfRO4B5gQfWLEXFion7NrFw8lpiVQKpkY2fg3vzxDjWvRaI+zax8PJaYlUCqM4jun6JdMxtdPJaYlUPSQ18lbSfpYEkd+XOl7M/MysljidnIliTZkLSupJuAvwG/AzbOX7pU0rcbaOdLkqZLmi/pBUlTJe1YU2ecpIslvSTpNUnXSNqwuKUxs1bxWGJWDqm2bJwHdANbAAuryq8GDmmgnbcBFwN7AQcC7cANktao6evdwAfy+psAv2g6cjMbTjyWmJVAqgmiBwEHR8Ssmq2dM4EtB9pIRKw0mEg6CngB2B24VdJaZIfFTY6IP+Z1jgb+KmmviPjzoJbCzFrNY4lZCaRKNtZg5V8hFZOAxYNod638fl5+vzvZL5QbKxUi4lFJTwN7A3UHCEljgbFVRWsCdHd3093dvUr9np4eOjo6GLdaNth1dHTQ09NTt25vGmmjUtZX+0XEVLe99jGDWr6xRcczhO31t96H2zqvbaPyvLc2mo2zxYbtWNLoOALDfCwZxPewmdj6a8NjSXHxNNJGZb0XPZYoovijxyT9DrgnIr4iaT7ZWQCfAn4KtEXEEU202Qb8Glg7IvbNyyYDl0fE2Jq6fwFujoiTe2nrDOD02vIpU6Ywfvz4RkMzGxEWLlzI5MmTAdaKiM5WxzMQw3ks8Thio1VTY0lEFH4jOzZ+DnAd2a+PnwOPAM8D2zbZ5veAJ4HNqsomA4vr1P0L8I0+2hoLTKy6bQrE3LlzY8mSJavcpk+fHh0dHbHVsRfEVsdeEB0dHTF9+vS6dXu7NdLGggULYurUqbFgwYJC2mskvk3effyglm/HT14YU6dOjUmTJhUST9HL11d7/a334bbOq9vY5vCTYurUqTFt2rRe686dOzfIzk0xMcXf/WgbSxodR4b7WDKY72GK5fNYMvTrfKtjL1i+3oseS1KdZ+MhSTsAnwPmAxPIJlpdHBGzG21P0kXAYcB+ETGr6qXngdUlrR0Rr1SVb5i/1lt8i6naBFvZF9ze3k57e/sq9dva2ujq6mLR0mwrUFdXF21tbXXr9qaZNnqLp6iY6rXX0b1sUMu3uOB4il6+gbSX8ntQr71m1/lKMXUvW/68tzaajbOVhvNY0ug4AsN7LBnM93AwsfXWhseS4uMZaBuVsiLHklRzNoiIV4H/Hkwb+bH03wHeB7w9Ip6oqXIP2Uz1A4Br8vfsSDZz/a7B9G1mw4PHErORL1myIWkdstndO+VFj5DtE53X+7tWcTHZ5s33AvMlbZSXvxoRXRHxqqRLgXMlzQM6yQaUu8Kzx81KwWOJ2ciX6qRe+5HtEz0OWCe/HQc8kb82UJ8mmzV+CzC76nZkVZ0TgGvJfo3cSrbJ8/BBLYCZDQseS8zKIdWWjYvJTrrz6YhYBiBpDPDd/LU3DKSRiOj3lMQRsQj4bH4zs3LxWGJWAqnOILod8O3K4ACQPz43f83MbCA8lpiVQKpk415W7F+tthNwf6I+zax8PJaYlUBhu1EkvbHq6YXABZK2Y8WZ9/Yi2zx5SlF9mln5eCwxK58i52zcR3aSj+p9o9+sU28K2T5YM7N67sNjiVmpFJlsbF1gW2Y2enksMSuZwpKNiHiqqLbMbPTyWGJWPilP6rUJsC+wATUTUSPiwlT9mlm5eCwxG/mSJBuSjgL+L7AEeIls/2tFkE36MjPrk8cSs3JItWXjq8BZwNkR0ZOoDzMrP48lZiWQ6jwb44GfenAws0HyWGJWAqmSjUuBDyRq28xGD48lZiWQajfKl4BrJR0CPEh26eblIuLERP2aWbl4LDErgZTJxsHAY/nz2kldZmYD4bHErARSJRsnAcdExBWJ2jez0cFjiVkJpJqzsRi4I1HbZjZ6eCwxK4FUycYFwOcTtW1mo4fHErMSSLUbZU/gHZIOAx5m1Uldhyfq18zKxWOJWQmkSjZeAX6RqG0zGz1ewWOJ2YiXJNmIiKNTtGtmo4vHErNySDVnw8zMzAxIdyG2J+jjGPiI2CZFv2ZWLh5LzMoh1ZyN82uetwO7AYcA/5OoTzMrn/NrnnssMRuBUs3ZuKBeuaTPAnuk6NPMysdjiVk5DPWcjeuA9w9xn2ZWPh5LzEaQoU42jgDmDXGfZlY+HkvMRpBUE0RnsPKkLgEbAesDn0nRp5mVj8cSs3JINUF0as3zHuBF4JaIeDRRn2ZWPlNrnnssMRuBUk0QPTNFu33JJ4z9J9mvnvuBz0fEX4Y6DjMrjscSs3IoxUm9JB0JnAucCfwz2QBxvaQNWhqYmY0oHkvM0ig02ZDUI2lZP7elRfaZOxG4JCIuj4hHgE8BC4FjEvRlZol5LDErl6J3o7yvj9f2Bo6j+ARndWB34OxKWUT0SLox79PMRh6PJWYlUmiyERG/qi2TtCNwDvBu4CrgtCL7BNYDxgBzasrnAP9U7w2SxgJjq4rWBJg3bx7d3d2r1O/s7GTcuHHopScAGDduHPfccw+dnZ20tbXR09MDsPxxvbKZM2cOuI2lS5eycOFCbrvtNtra2hpq77XXXlul7kAeV9obM39Ov8tX7/Fjjz2WxTPvKRYuXL+pNqrXXSPrq8j1X1nvq622WlNtDOU6X6mN1+awcOFCOjs7eemll1b5DgPMnz+/bvlwNBLGkkbHERjYWDLQz3wgf/s9PT0DHksG8z2sPF4+Dgzi73b58jUxljT7t9/M31xf6x+aG0uaGb8Hs87rtaH2MSxcuH7xY0lEJLkBmwCXAEuA3wA7J+wngL1ryr8JTOvlPWfk7/HNt9F42zTV3/1oGkvwOOKbbwMeSwo/GkXSWsCpwOeB+4ADIuK2ovupMhdYBmxYU74h8Hwv7zmbbBJYtUkMn5MErQnMAjYDRs7P0Yxjb42Bxr4m8NyQRDRII2AsGe7jCIyO7/RwNBpib2gsKTTZkPRF4GSyP8z/E3U2hRYtIpZIugc4gPyYfElt+fOLennPYmBxTXFnwjAbIqnycH5EDJu4BsKxt0YDsY+I5RoJY8lwH0dg1Hynh51REntDy1X0lo1zgC7g78DHJH2sXqWIOLzgfs8FfijpbuAvwPHAGsDlBfdjZkPDY4lZiRSdbFxJth9nSEXE1ZLWB84iOxHPfcAhEVE70cvMRgaPJWYlUvTRKEcV2V6DfV9EL7tNRqDFZCcVqt1EOxI49tYYybGvwmNJYUby98Kxt0aS2JXPqjYzMzNLohSnKzczM7Phy8mGmZmZJeVkw8zMzJJysmFmZmZJOdkYBiRtJelSSU9I6pL0uKQz8wtD9fW+WyRFze37QxDvZyU9KWmRpGmS9uyn/gckPZrXf1DSv6SOsU4MX5I0XdJ8SS9Imppfa6Ov9xxVZ/0uGqqYa2I5o04sj/bznpavdxtaHkvSG8ljSSvHEScbw8M/kX0WnwReD5xAdmnrrw/gvZcAG1fdvpgoRgAkHUl24qMzgX8G7geul7RBL/XfAvwEuBTYjezMjFMl7ZwyzjreBlwM7AUcCLQDN0hao5/3dbLy+t0yZZD9eLgmln17qziM1rsNLY8l6Y30saQ140irL7LkW68XhfpP4B/91LkFOH+I45oGXFT1vA14Fjill/pXA9fWlP0Z+H6L1+/6ZCeN2q+POkcBr7T6u5DHcgZwXwP1h+V6923obx5Lki/HiBlLWjmOeMvG8LUWA7ug04clzZX0kKSzJY1PFVC+KXZ34MZKWUT05M/37uVte1fXz13fR/2hslZ+3986niDpKUnPSPqVpNenDqwP20t6TtI/JF0laYs+6g7X9W5Dz2NJWiNtLGnJOFL4VV9t8CRtR3alyy/0U3UK8BTZlffeCHwD2BEo+noRFesBY4DaUzfPIdt8W89GvdTfqNjQBk7ZxbXOB+6IiIf6qPoYcAzwANmA8gXgTkmvj4hZyQNd2TSyX0ePkW36PB24TdLOEVHvyozDbr3b0PNYktYIHEtaNo442UhI0jlkV67sy04RsXyCjqRNgd8DP4+IS/p6Y0T8oOrpg5JmAzdJ2jYiHm827lHgYmBn+thXCRARdwF3VZ5LuhP4K9n+8K+kDLBOLNdVPX1A0jSyfw4fJNufaiXmsWTYGlFjSSvHEScbaX0buKKfOv+oPJC0CXAzcCfwiSb6m5bfbwekGCDmAsuADWvKNyS7FHg9zzdYPylJFwGHke1fbegXRUR0S5pBtn5bKiJekfS3PmIZVuvdBs1jyTD7TpdhLBnKccRzNhKKiBcj4tF+bktg+a+QW4B7gKPz/ZeN2jW/n13IAtTIY70HOKBSlm9GPICqrL3GXdX1cwf2UT8JZS4C3ge8IyKeaKKNMcAbSLR+G4xlArBtH7EMi/VuxfBYAgyT73SZxpIhHUdaPTvWtwDYFJhJNhFnU7L9YRsBG9XUeRTYM3++Ldnmt92BrYD3kP0C+VPiWI8EFgEfA3YC/i/wMrBh/vqVwNlV9d8CdAMnke2LPQNYAuw8xOv4u8ArZIetbVR166iqUxv7acBBwDZkh+b9BOgCXteC78i38ti3ytfpH4AXgfWH83r3bci/Jx5L0q/jETuWtHIcafkfh2/LD4uKereqOlvlZW/Pn28O/Al4Kf+DnQl8E5g4BPF+jmw/32Kyza1vrnrtFuCKmvofIJuQtBh4CPiXFqzjuusXOKq32IHzqpbzeeC3wG4t+o78lGzy3mJgVv582+G+3n0b8u+Jx5L0MY/YsaSV44gvMW9mZmZJec6GmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNG3KSnpR0fKvjMLORzWPJyOFkw8zMzJJysmFmZmZJOdmwhkj6hKTn8is0Vpf/StJlkrbNH8+R9Jqk6ZLe2Ud7W0kKSbtWla2dl729qmxnSdflbc6R9CNJ6yVYRDMbAh5LRhcnG9aonwPrAvtXCiRNAg4BrgImAL8juyzxbsDvgd9I2qLZDiWtDfwRmAHskfe1IfCzZts0s5bzWDKKrNbqAGxkiYiXJV0HTAZuyouPAOYCN0dED3B/1Vu+Iul9ZJetvqjJbj8HzIiIUysFko4BnpG0Q0T8rcl2zaxFPJaMLt6yYc24Cni/pLH58w8DP42IHkkTJH1L0l8lvSLpNWAnoOlfI8AuwP75Zs/X8jYfzV/bdhDtmllreSwZJbxlw5rxG0DAuyRNB94KnJC/9i3gQOALwN+BLuB/gdV7aasnv1dVWXtNnQl5nyfXef/sRoM3s2HDY8ko4WTDGhYRiyT9guxXyHbAYxFxb/7yPsAVEfFLAEkTgK36aO7F/H5jsv2oALvW1LkXeD/wZEQsHfQCmNmw4LFk9PBuFGvWVcC7gGPyxxUzgcMl7SppF2AKfXzPIqIL+DNwiqSdJL0N+FpNtYuBScBPJL0pn6V+sKTLJY0pcJnMbOh5LBkFnGxYs/4IzAN2JBsEKk4EXgbuJNtceT3Zr4m+HEO2le0e4Hzgy9UvRsRzZL9yxgA3AA/m9V5hxaZTMxuZPJaMAoqIVsdgZmZmJeYtG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpaUkw0zMzNLysmGmZmZJeVkw8zMzJJysmFmZmZJOdkwMzOzpJxsmJmZWVJONszMzCwpJxtmZmaWlJMNMzMzS8rJhpmZmSXlZMPMzMyScrJhZmZmSTnZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYUNO0hmSoup5SLqolTGZmVk6TjbMzMwsKScbZmZmlpSTDTMzM0vKyYYlJWlfSdMlLZL0uKRPDvB9X5bUI+nzqWM0M7O0Vmt1AFZekt4A3AC8CJxB9n07E5jTz/u+BpwKfDIiLkkcppmZJeZkw1I6CxDw1oh4GkDSNcCDvb1B0reAE4CjI+KHQxKlmZkl5d0oloSkMcDBwNRKogEQEX8Frq//Fl0E/AfwEScaZmbl4S0blsr6QAcws85rjwH/UlP2UWAC8OmI+Eni2MzMbAh5y4YNF3eQzeX4nKRJrQ7GzMyK42TDUnkR6AK2r/PajnXK/g4cBGwC/F7SmgljMzOzIeRkw5KIiGVkczP+VdIWlXJJO5HN5aj3ngfIdq/sBPxGUsdQxGpmZmk52bCUTs/vb5N0sqT/Am4GHu7tDRHxZ+C9wF7A/0pqTx+mmZml5GTDksm3VBxMtkvlLOAYsgTkl/2874/AB8l2q/xIkr+nZmYjmCKi/1pmZmZmTfIvRjMzM0vKyYaZmZkl5WTDzMzMkmo42ZB0iKR9q55/VtJ9kqZIWqfY8MzMzGyka2bLxv8AE2H5VT2/DfwO2Bo4t7jQzMzMrAyauTbK1sAj+eP3A9dGxKmS/pks6TAzMzNbrplkYwkwPn/8TuDK/PE88i0eI40kkZ0me36rYzFLbE3gufAx72Y2hJpJNm4HzpV0B7AncGRevgMwq6jAhtgmjNzYzRq1GfBsq4Mws9GjmWTjc8B3gSPILgdeGbQOBX5fVGBDbD7AM888w8SJq26c6e7u5oYbbuCggw6ivb2cZ88u+zJ6+aCzs5PNN98cvAXPzIZYw8lGRDwNHFan/IRG25K0H/CfwO7AxsD7ImJq1esCzgQ+DqxNdhnyT0fEzKo6k4DvAO8GeoBrgP+IiNcajWfixIm9Jhvjx49n4sSJpfxHBeVfRi+fmVnrNLNlg/xaFdsBG1BzREtE3NpAU2sA9wOXAb+o8/oXgeOAjwFPAF8Frpf0uohYlNe5iixRORBoBy4HfgBMbiAOMzMzS6ThZEPSXsAUYEtANS8HMGagbUXEdcB1ebu1/Qg4HvhaRPwqL/soMAf4V+Cn+eXKDwHeFBF353U+D/xO0hci4rkGF8/MzMwK1sx5Nr4P3A3sDEwC1qm6TSouNLYGNgJurBRExKvANGDvvGhv4JVKopG7kWx3ypsLjMXMzMya1MxulO2BIyLi70UHU2Oj/H5OTfmcqtc2Al6ofjEilkqaV1VnFZLGAmOritaEbL93d3f3KvUrZTNmzKCtrY11112XzTbbbOBL0oRZs2bx0ksvAQxJf9XLuP766yfvD4Z2Gcv8Gc6aNYsXX3wRoO73t6Kv18zMUmr4EvOS/gh8MyIKPfJEUlA1QVTSW8gmhG4SEbOr6v0MiIg4UtKpwMciYseatl4ATo+I7/XS1xnA6bXlU6ZMYfz48au+wawEFi5cyOTJkwHWiojOVsdjZqNHM1s2vgN8W9JGwIPASj+XIuKBIgIDns/vNwRmV5VvCNxXVWeD6jdJWo1sd87z9O5sVj61+prArIMOOqju0SgzZsxg9uzZnDRlGou6lzHv99/h1ltvZZdddmlkeQbs/vvvZ7/99mPSIZ8HSN4frFjG/7j4l7xw+8+S9zfUy1jWz7DSzwb7fpALPvs+Nt54Y3bbbbe6dTs7nV+YWWs0k2xck99fVlUWZJNFG5og2o8nyBKGA8iTC0kTyeZiVLZY3AWsLWn3iLgnL3sH2VyUab01HBGLgcWV55XJqe3t7XUPG2xry6a2LFtzI5YtDbq6umhra0t2iGFbWxtdXV0sm7gJQPL+Kn0CdI9bZ8j6G8plLOtnWOmne9w6y5/31ocPiTWzVmn22iiFkDSB7BDa5W1L2hWYFxFPSzof+LKkmaw49PU5YCpARPxV0u+BSyR9iuzQ14uAn/pIFDMzs+GhmZN6PVVg/3sAN1c9r+za+CFwFPBNsnNx/IDspF63A4dUnWMD4MNkCcZNrDip13EFxmhmZmaD0OxJvbYlOwfGTnnRI8AFEfF4I+1ExC2seq6O6tcDOC2/9VZnHj6Bl5mZ2bDV8Hk2JB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+AfyhiMDMzMysHJo5g+hOwKV1yi8DXje4cMzMzKxsmkk2XgR2rVO+KzVn8zQzMzNrZjfKJcAPJG0D3JmX7QOczMonyjIzMzNrKtn4KjAfOInsTJyQnfviDODCYsIyMzOzsmjmPBsBnAecJ2nNvGx+0YGZmZlZOTR1no0KJxlmZmbWnwElG5LuBQ6IiJclzSC7BkpdEfHPRQVnZmZmI99At2z8ihUXLvsVfSQbZmZmZtUGlGxExJlVj89IFo2ZmZmVTjOnK/+HpHXrlK8t6R/FhGVmZmZl0cxJvbYCxtQpHwtsNqhozMzMrHQGfDSKpPdUPT1Y0qtVz8cABwBPFBWYmZmZlUMjh75Oze8D+GHNa93Ak2Qn+jIzMzNbbsDJRkS0AUh6AnhTRMxNFpWZmZmVRjNnEN06RSBmZmZWTgM9qddxwA8iYlH+uFcR4eujmJmZ2XID3bJxAnAVsCh/3JvAF2MzMzOzKgM9qdfW9R6bmZmZ9aeZk3qdJml8nfIOSacVE5aZmZmVRTMn9TodmFCnfHz+mpmZmdlyzSQbov6F2HYB5g0uHDMzMyubAScbkl6WNI8s0fibpHlVt1eBPwA/KzpASU9Kijq3i/PXb6nz2veLjsPMzMya08h5No4n26pxGdnukurTlS8BnoyIu4oLbbk3sfK1WHYmS2x+XlV2CVA9X2RhgjjMzMysCY2cQfSHsPwMondExNJkUa3c74vVzyWdAjwO/KmqeGFEPD8U8ZiZmVljmjmD6J8kbSvpaGBb4D8i4gVJhwJPR8TDhUeZk7Q68BHg3IionjfyYUkfAZ4HfgN8NSJ63bohaSzZVWor1gTo7u6mu7t7lfo9PT0AjF1NAHR0dNDT01O3bhF6enro6Ohg3BD1V+kTYFz7mCHrbyiXsayf4fJ+2scsf95bHyk/TzOzvmjl/9kDeIP0NuA64A5gP2CniPhHvsVhj4g4ovgwl/f9QWAKsEVEPJeXfQJ4CngOeCPwDeAvEXF4H+2cQZ0jZ6ZMmcL48asc1WtWCgsXLmTy5MkAa0VEZ6vjMbPRo5lk4y7g5xFxrqT5wC55srEn8IuI2CxFoHnf1wNLIuLdfdR5B3ATsF1EPN5LnXpbNmbNnTuXiRMnrlJ/xowZzJ49m5Ove5rFS4M5U07h1ltvZZdddhnU8vTm/vvvZ7/99mPDyecAJO8PVizjiVfexuzrvpu8v6FexrJ+hpV+Nj70M5z70bey8cYbs9tuu9Wt29nZyXrrrQdONsxsiDW8GwV4AzC5TvkLwHqDC6d3krYE3gn0usUiNy2/345sbscqImIxsLiqbQDa29tpb29fpX5bW3bQzuKlwaKlQVdXF21tbXXrFqGtrY2uri4WLc0SwdT9VfoEWNS9bMj6G8plLOtnuLyf7mXLn/fWR8rP08ysL82cZ+MVYOM65bsBzw4qmr4dTZbQ/Lafervm97MTxmJmZmYD1Eyy8VPgG5I2IjvnRpukfYBvAVcWGVyFpDayZOOH1UfB5BNVvyJpd0lbSXpPHsOtEfFAiljMzMysMc0kG6cCjwLPkJ22/BHgVuBO4GvFhbaSdwJbkJ3jo9qS/LUb8pi+DVwD9Dqnw8zMzIZWM4e+LgE+LumrZCfYmgDMiIiZRQdX1ecNZCcUqy1/Bnhbqn7NzMxs8JqZIApARDwt6Zn8cWOHtJiZmdmo0cxuFCQdK+khYBGwSNJDkv692NDMzMysDBresiHpLOBE4DtA5VooewPnSdoiIk7r9c1mZmY26jSzG+XTwMcj4idVZb+W9ABZAuJkw8zMzJZrZjdKO3B3nfJ7GMQcEDMzMyunZpKNH5Ft3aj1CeCqwYVjZmZmZdPslohjJR0E/Dl//may82BcKencSqWIOHGQ8ZmZmdkI10yysTNwb/542/x+bn7buaqeD4c1MzOzpk7qtX+KQMzMzKycmjrPBoCk7SQdLKkjf77KGT7NzMzMGk42JK0r6Sbgb8DvWHEF2EslfbvI4MzMzGzka2bLxnlAN9mE0IVV5VcDhxQRlJmZmZVHMxNEDwIOjohZNXtOZgJbFhKVmZmZlUYzWzbWYOUtGhWTgMWDC8fMzMzKpplk4zbgo1XPQ1Ib8EXg5kKiMjMzs9JoZjfKF4GbJO0BrA58E3g92ZaNfQqMzczMzEqg4S0bEfEQsANwO/Arst0qvwB2i4jHiw3PzMzMRrqGtmxIagd+D3wqIv47TUhmZmZWJg1t2YiIbuCNiWIxMzOzEmpmguiPgWOLDsTMzMzKqZkJoqsBx0h6J3APsKD6RV/p1czMzKoN9qqvO9S85iu9mpmZ2Up81VczMzNLqumrvg4FSWdIiprbo1Wvj5N0saSXJL0m6RpJG7YyZjMzM1vZsE42cg+TXVm2ctu36rXzgHcDHwDeBmxCds4PMzMzGyaambMx1JZGxPO1hZLWIjsqZnJE/DEvOxr4q6S9IuLPQxynmZmZ1TESko3tJT0HLALuAr4UEU8DuwPtwI2VihHxqKSngb2BXpMNSWOBsVVFawJ0d3fT3d29Sv2enh4Axq6WXeW2o6ODnp6eunWL0NPTQ0dHB+OGqL9KnwDj2scMWX9DuYxl/QyX99M+Zvnz3vpI+XmamfVFEf0fQCLpXuCAiHhZ0mnAtyKi3pVfiw1OOhSYADxGtgvldGBTsiNi3g1cHhFja97zF+DmiDi5j3bPyNtayZQpUxg/fnxh8ZsNJwsXLmTy5MkAa0VEZ6vjMbPRY6DJRhewfUTMkrQM2DgiXkge3apxrA08BZwIdNF8slFvy8asuXPnMnHixFXqz5gxg9mzZ3PydU+zeGkwZ8op3Hrrreyyyy6DX6g67r//fvbbbz82nHwOQPL+YMUynnjlbcy+7rvJ+xvqZSzrZ1jpZ+NDP8O5H30rG2+8Mbvttlvdup2dnay33nrgZMPMhthAd6PcB1wu6XZAwBckvVavYkScVVBs9dp+RdLfgO2APwCrS1o7Il6pqrYhsMocj5p2FgOLK8+lbFN3e3s77e3tq9Rva8vm0S5eGixaGnR1ddHW1la3bhHa2tro6upi0dIsEUzdX6VPgEXdy4asv6FcxrJ+hsv76V62/HlvfaT8PM3M+jLQZOMo4EzgMLITdx0KLK1TL4BkyYakCcC2wI/Izl7aDRwAXJO/viOwBdncDjMzMxsGBpRsRMRjwIcAJPWQzd9IvhtF0reA35DtOtmELOFZBvwkIl6VdClwrqR5QCfwHeAuH4liZmY2fDRzBtGhPDfHZsBPgHWBF4Hbgb0i4sX89ROAHrItG2OB64HPDGF8ZmZm1o+mDn2VtC1wPLBTXvQIcEFEPF5QXABExIf6eX0R8Nn8ZmZmZsNQw1spJB1MllzsCTyQ394MPCzpwGLDMzMzs5GumS0b5wDnRcQp1YWSzgG+QXaUiJmZmRnQ3LVRdgIurVN+GfC6wYVjZmZmZdNMsvEisGud8l2BIT/Rl5mZmQ1vzexGuQT4gaRtgDvzsn2Ak4FziwrMzMzMyqGZZOOrwHzgJODsvOw54AzgwmLCMjMzs7Jo5jwbAZwHnCdpzbxsftGBmZmZWTkM6hLzTjLMzMysP0N5NlAzMzMbhZxsmJmZWVJONszMzCyphpINSe2SbpK0faqAzMzMrFwaSjYioht4Y6JYzMzMrISa2Y3yY+DYogMxMzOzcmrm0NfVgGMkvRO4B1hQ/WJEnFhEYGZmZlYOzSQbOwP35o93qHktBheOmZmZlU0zZxDdP0UgZmZmVk5NH/oqaTtJB0vqyJ+ruLDMzMysLBpONiStK+km4G/A74CN85culfTtIoMzMzOzka+ZLRvnAd3AFsDCqvKrgUOKCMrMzMzKo5kJogcBB0fErJo9JzOBLQuJyszMzEqjmS0ba7DyFo2KScDiwYVjZmZmZdNMsnEb8NGq5yGpDfgicHMhUZmZmVlpNJNsfBH4hKTrgNWBbwIPAfsBJxcYG5K+JGm6pPmSXpA0VdKONXVukRQ1t+8XGYeZmZk1r+FkIyIeIjuZ1+3Ar8h2q/wC2C0iHi82PN4GXAzsBRwItAM3SFqjpt4lZEfFVG5fLDgOMzMza1IzE0SJiFeB/y44lnr9rHR0i6SjgBeA3YFbq15aGBHPp47HzMzMGtdUsiFpHbKLse2UFz0CXB4R84oKrBdr5fe1/XxY0keA54HfAF+NiHqTWAGQNBYYW1W0JkB3dzfd3d2r1O/p6QFg7GrZ0TcdHR309PTUrVuEnp4eOjo6GDdE/VX6BBjXPmbI+hvKZSzrZ7i8n/Yxy5/31kfKz9PMrC+KaOxyJpL2I/uH/ipwd168O7A28O6IuLWXtw5KPgn118DaEbFvVfkngKeA54A3At8A/hIRh/fR1hnA6bXlU6ZMYfz48QVHbjY8LFy4kMmTJwOsFRGdrY7HzEaPZpKNB4G7gE9HxLK8bAzwXeAtEfGGwqPM+vgecCiwb0TM6qPeO4CbgO16m0PSy5aNWXPnzmXixImr1J8xYwazZ8/m5OueZvHSYM6UU7j11lvZZZddBrNIvbr//vvZb7/92HDyOQDJ+4MVy3jilbcx+7rvJu9vqJexrJ9hpZ+ND/0M5370rWy88cbstttudet2dnay3nrrgZMNMxtizexG2Q44opJoAETEMknnsvIhsYWRdBFwGLBfX4lGblpVnHWTjYhYTNU5QSonJ2tvb6e9vX2V+m1t2TzaxUuDRUuDrq4u2tra6tYtQltbG11dXSxamiWCqfur9AmwqHvZkPU3lMtY1s9weT/dy5Y/762PlJ+nmVlfmjn09V5WzNWothNw/+DCWZkyFwHvA94REU8M4G275vezi4zFzMzMmjOgLRuS3lj19ELgAknbAX/Oy/YCPgucUmx4XAxMBt4LzJe0UV7+akR0Sdo2f/13wEtkczbOA26NiAcKjsXMzMyaMNDdKPcBAVRfDOWbdepNIbsgW1E+nd/fUlN+NHAFsAR4J3A82fk+ngGuAb5WYAxmZmY2CANNNrZOGkUvIkL9vP4M2Ym/zMzMbJgaULIREU+lDsTMzMzKqdmTem0C7AtsQM0k04i4sIC4zMzMrCQaTjbyU4b/X7L5Ei+RzeWoCLIJpGZmZmZAc1s2vgqcBZwdET0Fx2NmZmYl08x5NsYDP3WiYWZmZgPRTLJxKfCBogMxMzOzcmpmN8qXgGslHQI8CKx0KcmIOLGIwMzMzKwcmk02DgYey5/XThA1MzMzW66ZZOMk4JiIuKLgWMzMzKyEmpmzsRi4o+hAzMzMrJyaSTYuAD5fdCBmZmZWTs3sRtkTeIekw4CHWXWC6OFFBGZmZmbl0Eyy8Qrwi4LjMDMzs5JqONmIiKNTBGJmZmbl1MycDTMzM7MBa+ZCbE/Qx/k0ImKbQUVkZmZmpdLMnI3za563A7sBhwD/M9iAzMzMrFyambNxQb1ySZ8F9hh0RGZmZlYqRc7ZuA54f4HtmZmZWQkUmWwcAcwrsD0zMzMrgWYmiM5g5QmiAjYC1gc+U1BcZmZmVhLNTBCdWvO8B3gRuCUiHh10RGZmZlYqzUwQPTNFIGZmZlZOpTmpl6TPSnpS0iJJ0yTt2eqYzMzMrIFkQ1KPpGX93JamDLaP2I4EzgXOBP4ZuB+4XtIGrYjHzMzMVmhkN8r7+nhtb+A4Wrel5ETgkoi4HEDSp4B3AccA57QoJjMzM6OBZCMiflVbJmlHsn/m7wauAk4rLrSBkbQ6sDtwdqUsInok3UiWBNV7z1hgbFXRmgDz5s2ju7t7lfqdnZ0sXLgQzXsKdS9j3Lhx3HPPPXR2dtLW1kZPTw/A8sf1yhp5/NhjjzFu3Dj00hMA/fZXRN8zZ85kwoQJjHltTkP9Ndv3zJkz6y7ja6+9Nqh111scleXr6zMc7OdW3UZvy1f0d6bSz5jX5rBw4UI6Ozt56aWXVvkOA8yfP79uuZlZaoro9TInvb9J2oRsl8XHgOuBL0XEQwXH1kgszwJviYi7qsq/CbwtIt5c5z1nAKcPWZBmw8tmEfFsq4Mws9GjoaNRJK0FnAp8HrgPOCAibksQV2pnk83xqDaJ3k9KtiYwC9gMKOvPw7Ivo5dvRb3nhiQiM7PcgJMNSV8ETgaeB/5Pvd0qLTIXWAZsWFO+IVmsq4iIxcDimuLO3jqQVHk4PyJ6rTeSlX0ZvXzLlW7ZzWz4a2TLxjlAF/B34GOSPlavUkQcXkRgAxURSyTdAxxAfsIxSW3584uGMhYzMzNbVSPJxpWsfJry4eRc4IeS7gb+AhwPrAFc3sqgzMzMrLGjUY5KGMegRMTVktYHziK7Tst9wCERMaegLhaTTYit3fVSJmVfRi+fmVmLNHU0ipmZmdlAleZ05WZmZjY8OdkwMzOzpJxsmJmZWVJONszMzCwpJxsDUNbL10v6kqTpkuZLekHS1Px6N6Uk6RRJIen8VsdSJEmbSvqxpJckdUl6UNIerY7LzKzCyUY/Sn75+rcBFwN7AQcC7cANktZoaVQJSHoT8EnggVbHUiRJ6wB3AN3AocDrgJOAl1sZl5lZNR/62g9J04DpEfG5/Hkb8AzwnYgo1eXr83OVvEB2AbtbWx1PUSRNAO4FPgN8GbgvIo5vaVAFkXQOsE9EvLXVsZiZ9cZbNvpQdfn6GytlEdGTP697+foRbq38vrcL0o1UFwO/jYgb+6058rwHuFvSz/NdYTMkfbzVQZmZVXOy0bf1gDFA7ZlI55CdqbQ08i025wN3RMRDLQ6nMJI+RLb760utjiWRbYBPAzOBg4HvARf2du0iM7NWaOgS81ZqFwM7A/u2OpCiSNocuAA4MCIWtTqeRNqAuyPi1Pz5DEk7A58Cfti6sMzMVvCWjb41fPn6kUjSRcBhwP4RMavV8RRod2AD4F5JSyUtJZsUe1z+fExrwyvEbOCRmrK/Alu0IBYzs7qcbPQhIpYAlcvXAytdvv6uVsVVFGUuAt4HvCMinmh1TAW7CXgDsGvV7W7gKmDXiFjWqsAKdAdQe7jyDsBTLYjFzKwu70bpX5kvX38xMBl4LzBfUmUeyqsR0dW6sIoREfOBleafSFoAvFSieSnnAXdKOhX4GbAn8In8ZmY2LPjQ1wGQ9DngP1lx+frjImJaS4MqgKTePvyjI+KKoYxlqEi6hRId+gog6TDgbGB74Ang3Ii4pLVRmZmt4GTDzMzMkvKcDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknGzbkJD0p6fhWx2FmZkPDyYaZmZkl5WTDzMzMknKyYQ2R9AlJz+VXv60u/5WkyyRtmz+eI+k1SdMlvbOP9raSFJJ2rSpbOy97e1XZzpKuy9ucI+lHktZLsIhmZlYwJxvWqJ8D6wL7VwokTQIOIbt0+wTgd8ABwG7A74HfSNqi2Q4lrQ38EZgB7JH3tSHZVU7NzGyY8yXmrSER8bKk68guTX9TXnwEMBe4OSJ6gPur3vIVSe8D3gNc1GS3nwNmRMSplQJJxwDPSNohIv7WZLtmZjYEvGXDmnEV8H5JY/PnHwZ+GhE9kiZI+pakv0p6RdJrwE5A01s2gF2A/fNdKK/lbT6av7btINo1M7Mh4C0b1ozfAALeJWk68FbghPy1bwEHAl8A/g50Af8LrN5LWz35varK2mvqTMj7PLnO+2c3GryZmQ0tJxvWsIhYJOkXZFs0tgMei4h785f3Aa6IiF8CSJoAbNVHcy/m9xuTzckA2LWmzr3A+4EnI2LpoBfAzMyGlHejWLOuAt4FHJM/rpgJHC5pV0m7AFPo43sWEV3An4FTJO0k6W3A12qqXQxMAn4i6U35ES8HS7pc0pgCl8nMzBJwsmHN+iMwD9iRLKGoOBF4GbiTbNfH9WRbJvpyDNlWtnuA84EvV78YEc+RbTEZA9wAPJjXe4UVu2HMzGyYUkS0OgYzMzMrMW/ZMDMzs6ScbJiZmVlSTjbMzMwsKScbZmZmlpSTDTMzM0vKyYaZmZkl5WTDzMzMknKyYWZmZkk52TAzM7OknGyYmZlZUk42zMzMLCknG2ZmZpbU/wdabBSQeYxMGgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhUAAAI2CAYAAADn3HrmAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABKt0lEQVR4nO3deZwcdZ3/8dd7whASkgBRuVRuwQAaEMWDBVFIAgq6oq4u7o/L1YUFWUCXaxURUUAlARHWleVULl0UVw5JADEogRUIlxwicoYQjhCSmGvCfH5/VLVUOj0z3dXV01PT7+fj0Y/u+lZ19adruj/z6apvfUsRgZmZmVmzutodgJmZmQ0PLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKmxQSDpZ0qAM3yrpVkm3ZqZ3lxSSPjVIr3+xpCcH47WqXnez9H0eNNiv3SkkrSHpO5KekdQr6Zp2x2Q2lLiosIZJOij951W5LZP0nKQbJR0paWxBr7NxWozsUMT6ijSUY7OWOgT4d+B/gAOBae0NpziS3p4WTPdKWiRprqTrJL273bFZeazR7gCs1E4CngC6gQ2B3YGzgGMkfSwi7s8seypweoPr3xj4OvAkcG8Dz5vc4Ovk0V9sX6A9BftTwCigpw2v3Sk+DMyJiKPbHUgL/DPweeBq4DxgHeBfgDsk7RURN7UzOCsHFxXWjBsi4q7M9GmSPgxcC/yvpAkRsRQgIlYCK1sZjKTREbEkIla08nUGEhFt+aceydUBl7XjtZshaS1gRUT0tjuWOqwPLChqZZK6gDUjoq6/myQBa1W+VwW7Ajg5IhZnXu9C4GHgZMBFhQ3Ihz+sUBFxC/BNYFPgnyrttfpUSJok6XeSFkhaLOlRSd9O5+0O/CFd9KLMoZaD0vm3SnpQ0k6SZkpaAnw7M+/WGuGNkPRtSc9L+quk/5X01qqYnpR0cfUTs+usI7bV+lRIWlvSmemx+OXpe/1K+k8iu1xI+oGkv0/f33JJf5S0V433Ux3jan0q0lgWS3qzpGvSxy9K+p6kEXWs80lJ10qanO4WXybpIUn7VS03Pl3nA+lrLJR0g6SJVctV+rd8VtKpkuYAS4BxOdbxD5K+LmlOurv+fyStI2mkpLMkvZCu5yJJI6vW0ednr79tC3wI2C7zN989nd/o3/dzkv4ILAf6/Ntmtv8USXcBS0n2HiDpYEm3pO9zefp3OayfdfydpP9L/4Z/kXRAdrmIuDtbUKRtLwO3ARP6itEsy3sqrBV+TPIPfjJwfq0FJG1HskfjfpLDKMuBrYBd0kUeTttPAX5EktgAbs+s5g3ADcCVwE+AeQPE9R9AAGeQ/OI8CrhJ0g4N/vKrJ7a/Sf+x/C/JP6QLSA6XTAG+C7wZqN6V/nfAfiS7oBcBRwJXS9okTfKNGgHcCNwJfAXYE/gy8Djwn3U8/23AVcAPgUuAg4GfKdklPiNdZgvg74GfkRwS24Dkn99vJW0bEc9VrfNrwArge8DI9PG2Da7jBJJ/sqeTfHa+RHLopxdYj+TX9fuAg9L1nQJ1ffZqeRH4fySfoTHpawM8nOPv+2HgH4AfAC+RHELrzzYkexH+i+T79Gjafhjwx/S1VwL7AudJ6oqIc6vWsRVJP5ALSP6GhwAXS7o7Iv44wOtvmMZpNrCI8M23hm4kSTqAd/ezzALgnsz0yaR76NPpo9J1vLGfdbw7XeagGvNuTef9Sx/zbs1M754u+ywwNtP+6bT9yEzbk8DFdayzv9guBp7MTH88XfY/qpb7Gck/wC0zbUHyTy7b9s60/YgB/i6bVceUxhLA16qWvQe4q46/9ZPp8/fLtI0Dnqv6+44EumrEsyz72pm/xePAqKrlG13HA0B3pv3ydHteX7WO26v+HgN+9vrZHrcCD1a1Nfr3fQ3Yts7Xq2z/KTXmjarR9mvg8T7WsWum7U3pdv3eAK+/a/oeTml0W/nWmTcf/rBWWQz0dxbIgvT+40qOK+exHLiogeUvjYhFmen/AeYCH8n5+vX6CMk/ku9XtZ8JCNi7qv2miHi8MhFJh9eFJHsD8vph1fRtDazvOeAXmXgWApcCO0raMG1bHmmfCEkjJL2B5DPwKPCuGuu8JKr2DuVYx6Wxav+VO0m254VVy90JvFVSZc/sgvS+mc9eVqN/399GxEMNrP+JiLixujG7/dLDPm8EfgtsIWmdqsUfiojbMs99kWS79vkZkLQ+SaH2BPCdBuK1DuaiwlplDMmu+75cBfwe+G9gnqQr02PkjXwm50RjnTIfy05ERAB/Jvk13EqbAs9VFTSQHEapzM96usY6XiHZpZ/HsvSfSN71/TndVll/Su83g6TDoaSjJT1GUuy9RHLI4J0kZxFUe6K6Icc6qrfTq+n9MzXauzLrKOKzl9Xo33e19z6AmstL2kXSTZL+SlIovUjar4jVt1dDnylJa5McIhoLfDyq+lqY9cVFhRVO0ltIktqf+1om/ZW1G8nx/R+T/OO4CpihOjoQplrRA76vAbrqjakIr/XRrj7a866vSCcCU4GZJB10pwCTSI7518oztf52ja6jr/fV7/Yr6LPXjEY/t6stL2lL4GbgjcAxwEdJtlVl3Izq7VX3Z0rSmsDPSbbLxyPiwQbjtQ7mjprWCv8vvV9tl21Wuqv75vR2jKQTgW+RdHi7ib7/wef1tuxE2sFuK5IOexWvAOvWeO6mwF8y043E9hSwp6SxVb9m356ZP5RtJUlVeyu2Tu+fTO8/BfwmIj6ffaKkdam/k18R66hLHZ+9RrTj77svSR+Uj0XE3/ZCSPpQMytN99ZcCuwB/ENE/LapKK3jeE+FFUrJOBVfI9lle1k/y42v0Xxvel85/e+v6f26BYV3gFYd7fNTwEYkZ5BUPA68L/21BoCkfYBVTj1tMLbrSfZ0HFHVfjRJcXLDas8YWjYGPlGZkDQOOAC4NyKeT5tfo+pXr6RPk5z9UK8i1jGgOj97jWjH37ey5+Fv2yvtR3Fwk+s9B/gM8K8R8fMm12UdyHsqrBl7S3o7yedoA5JT5SaR/DL7WPQ/oM9JknYDrkuXXx/4V5IzNH6XLvM4ybHiQyUtIvlHfmdENHpMumI+8DtJF6XxHkVyiCZ72ut/kxQbv5b0U2BLkl3xj6+6qoZi+xXwG+BbkjYD7iM53fbjwFnZTplD1J+ACyS9h+S03UNItl/2H9i1JH/Ti0jOtngH8DlW3bszkCLWUY96PnuNaMffdzrJabi/kvRfJH2YvgC8QFIoN0zSUSTbYRawRNI/VS3yi4j462pPNMtwUWHNOCW9X0HyD/sBkn/UF9XotFbtf0k6+R1Cclz4JZKe61+PiFchGZlS0oHAaSRnL6xB8o8sb1HxbZLjxCeQdEC7meQX2ZLKAhFxo6QvkxynPgu4C9iHpCc/meXqji0ieiV9jGR7fSZd7kmSa0icWb38EPQYyRgQ3yUZM+EJ4DNVZyR8G1gb2J/kPd5Dcpy/kaHZi1hHPQb87DWiHX/fiHhUyQXyTiUZ6+N5kjFHXmT1s1/qtUN6//70Vm1zXt9DZ1aTVu/UbWaWUDIy6IMRsU+7YzGzoc99KszMzKwQLirMzMysEC4qzMzMrBDuU2FmZmaF8J4KMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCqtJ0kGSQtJmAyz3pKSLBycqMysT55HO46LCzMw6lqQ9JF0o6U+Slkj6i6T/lrRRu2MrI0VEu2OwIUjSCKAbWB79fEgkPQncGhEHDVJoZlYSZcgjku4CxgM/Ax4DtgCOAJYAO0TE84MdU5mt0e4AbGiKiNeA19odh5mVV0nyyDHA7yKit9Ig6dfAb0mKi6+2K7Ay8uEPq6n6WKgSX5X0bLqL8DeStqvxvJMlrfaLpNax1fQ46rWSdpd0l6Slkh6QtHs6f790epmkuyXt2Kr3a2bFK0MeiYiZ2YKi0gbMByY0vxU6i4sKq9cpwDeB+4B/B/4CTAfWbnK9WwGXA78CTgDWA34l6XPANOAnwNeBLYGfSvJn1qy8SpFHJI0BxgAvNRlXx/HhDxuQpDcBxwLXAftWjo1K+hZwYpOr3wb4QETMStf5EHAjcD7w9oh4Om1/BfgvYDfg1iZf08wGWcnyyFHAmsBVTcbVcfyrz+qxJ8kX7JyqzlZnFbDuhyqJIHVnen9LJRFUtW9RwGua2eArRR6RtBvJXo2fRsQtBcTWUVxUWD02Te8fyzZGxIvAK02uO/uFJyJeTR8+U7VcpX29Jl/PzNpjyOcRSW8HfgE8CPxzkzF1JBcVVrS+Thsb0Ud7Xz3D+2pXY+GYWQkNeh6R9FaS/h2vAh+JiEX9Rmg1uaiwejyV3r8t25geI62u+F9J561b1b4pZtbJhmwekfQGkoJiJDAlIua24nU6gYsKq8dNQA/wJUnZCv+oGss+nt7vVmmQtDZwYMuiM7MyGJJ5JF3v9cCbSfZQPDbAU6wfPvvDBhQRL0r6HsmpWtdKuh7YEdib1U+5mk5yfPMCSd8l2f14CPAisMngRW1mQ8kQziOXATsDFwITJGXHplgcEdcU/HrDmosKq9dXgWXAocCHSHpRTyY5PexvIqJH0ieA80jOR3+epHf3K8BFgxivmQ09QzGP7JDeH5Lesp4Crin49YY1X/vDzMzMCuE+FWZmZlYIFxVmZmZWCBcVZmZmVggXFWZmZlaIhosKSXtJ+rvM9OGS7pV0uSQPoWxmuTi3mJVfnj0V3wXGAUh6B3AmycAhmwNTiwvNzDqMc4tZyeUZp2Jz4KH08SeBayPiREnvIkkApZOO7rYx4LHerazGAs9Fuc8Rd24xG3oayi15iooVwOj08Z7Apenj+aS/MkpoY+DZdgdh1qS3AHPaHUQTnFvMhqa6c0ueouJ3wFRJvycZ2vQzafvWlPfLswjgmWeeYdy41XNXT08P06dPZ/LkyXR3dw96cGXn7decgbbfwoULeetb3wrl/zXs3GIN8fZrTityS56i4giSoVM/BRwWEZXqZW/g1znWN2SMGzeuzy/+6NGjGTdunD+4OXj7NaeDtp9zizXE2685rdh+DRcVEfE0sE+N9qMLicjMOpJzi1n55bqgmKQuYCtgfarOIImImQXEZWYdyLnFrNwaLiokvQ+4HNgUUNXsAEYUEJeZdRjnFrPyy7On4ofAXcBHgbkkX3azAd13332sv/76bLLJJu0OxYYm5xbL5b777qOrq4s3vvGNzi9tlqeoeBvwqYj4c9HB2PD07LNJx/3ddtuNQDz6yMP+4lstzi3WkGxuWbp0KWuNGu380mZ5RtS8k+SYp1ldXn75ZQDG7bwfy5Yu4aWXXmpzRDZEObdYQyq5ZfxeX+IN+3zZ+WUIyLOn4hzgTEkbAg8APdmZEXF/EYHZ8DNi3JvaHYINbc4tlkv3+Dfz2kofLRsK8hQVV6f3F2bagqRjlTtTmVlezi1mJZf32h9mZkVzbjEruTyDXz3VikDMrLM5t5iVX97Br7YEjgImpE0PAWdHxOMFxWVmHci5xazcGj77Q9IUki/6zsD96e29wB8lTSo2PDPrFM4tZuWXZ0/F6cC0iDg+2yjpdOAMYEYRgZlZx3FuMSu5PONUTAAuqNF+IbBtc+GYWQdzbjEruTxFxYvADjXadwBeaCYYM+tozi1mJZfn8Mf5wI8kbQHcnrbtAhwHTC0qMDPrOM4tZiWXp6j4JrAI+DJwWtr2HHAy8P1iwjKzDuTcYlZyecapCGAaME3S2LRtUdGBmVlncW4xK79c41RU+AtvZq3g3GJWTnUVFZLuAfaIiFckzSYZh7+miHhXUcGZ2fDm3GI2vNS7p+KXwPLM48IuByfpzSTnoO8NjAb+DBwcEXel8wV8A/gCsC7we+CwiHgss47xJFc43BfoJbkw0b9FxOKi4jSzlnBuMRtG6ioqIuIbmccnF/XiktYj+SL/huSL/yLwNuCVzGLHAkcCBwJPkHTmulHSthGxLF3mMmAjYBLQDVwE/AjYv6hYzax4zi1mw0vDfSok/QV4T0S8XNW+LnBPRGzRwOqOA56JiIMzbU9k1imS6wCcGhG/TNsOAOYBfw9cKWkCsFcaU+UXyJeA6yV9JSKea+wdmlk7OLeYlV+ejpqbASNqtI8E3tLguj5G8svgZ8AHgTnAeRFxfjp/c2BD4KbKEyLiVUl3Au8HrkzvF1S+9KmbSHZVvhf4RfWLShqZxlsxFqCnp4eenp7Vgqy01ZpnA+vt7QVgre4RjBo1it7eXm/LBgz0+RtG23IznFusAZXcMnINATi/NKgVuaXuokLSxzKTUyS9mpkeAexB5pdAnbYADiMZ2ObbwHuA70taERGXkHzpIfn1kDUvM29Dqkbbi4iVkuZnlql2AvD16sbp06czevToPoOdMcOXHmjG1AN2hQN2Zc6cOcyZM6fd4ZROX5+/JUuWDHIkxXJucW5p1hl7b5I82PcK55cciswtjeypuCa9D+CSqnk9wJMkg9Y0ogu4KyJOTKdnS9oeOLTGaxTpNFYdoW8s8OzkyZMZN27cagv39PQwY8YMJk2aRHd3dwvDGp5mz57N3LlzOebS25h7w3nMnDmTiRMntjus0hjo87dw4cI2RFWoa9J75xZrSCW3HHfD0yxfGcy7/Hjnlwa0IrfUXVRERBeApCdIjjG+1PCrrW4uyaWOsx4GPpk+fj693yBdlsz0vZll1s+uQNIawPjM81cREct5vcc5yeFV6O7u7veLPdB8q62rK7nEzLKe11i6dCldXV3ejjn09fkr+7Z0bnFuyauSW5avDJatDOeXnIrMLQ1fUCwiNi/oSw9J7+xtqtq2Bp5KHz9B8uXdozJT0jiS45mz0qZZwLqSdsqs48Mk7+3OguI0sxZzbjErv3oHvzoS+FFELEsf9ykiGhmjfxpwu6QTgZ8COwNfTG9EREg6C/iqpMd4/bSv50h3mUbEw5J+DZwv6VCS075+AFzp3tlmQ5tzi9nwUu/hj6NJztdelj7uS9DAhX8i4g+SPkFyHPIkki/2URFxWWax7wBrk5wbvi7wO2CvzHnkAJ8j+bLfzOsD1PSboMxsSHBuMRtG6h38avNaj4sQEdcC1/YzP0iSwkn9LDMfD0ZjVjrOLWbDS8N9KiSdJGm1c6MkjZLU55fTzKw/zi1m5ddwUUFyDvaYGu2jqXF+tplZnZxbzEouT1Ehal/0ZyIwv7lwzKyDObeYlVwjI2q+QvKFD+BPkrJf/hEkvzB+WGx4ZjbcObeYDR+NjKh5FMkviQtJdkVmh9JdATwZEbNqPM/MrD9H4dxiNiw0MqLmJfC3Ue9+HxErWxaVmXUM5xaz4SPPiJq/BTaVdKqkKyStDyBpb0nbFR6hmXUE5xaz8stzSukHgQdIhrPdj9d7a08EvlFcaGbWSZxbzMovz9kfpwNfjYhJJMc7K24B3ldIVGbWiZxbzEouT1HxDuAXNdpfAN7YXDhm1sGcW8xKLk9RsQDYqEb7jsCcpqIxs062AOcWs1LLU1RcCZwhaUOS88q7JO0CfA+4tMjgzKyjOLeYlVyeouJE4BHgGZKOVA8BM4HbgVOLC83MOoxzi1nJNTL4FQARsQL4gqRvAtuTfPlnR8RjRQdnZp3DucWs/BouKioi4mlJz6SPa43Xb2bWMOcWs/LKc/gDSZ+X9CCwDFgm6UFJ/1xsaGbWaZxbzMqt4T0Vkk4BjgHOASrj8b8fmCZpk4g4qcD4zKxDOLeYlV+ewx+HAV+IiCsybf8r6X6SZOAvvpnl4dxiVnJ5Dn90A3fVaL+bJvpomFnHc24xK7k8RcWPSX5RVPsicFlz4ZhZB3NuMSu5vNX/5yVNBu5Ip98LbAJcKmlqZaGIOKbJ+Mysszi3mJVYnqJie+Ce9PGW6f1L6W37zHI+FczMGuHcYlZyeQa/+lArAjGzzubcYlZ+ucapAJC0laQpkkal0youLDPrVM4tZuXVcFEh6Q2Sbgb+BFzP61cVvEDSmUUGZ2adw7nFrPzy7KmYBvSQdJ5akmm/CtiriKDMrCM5t5iVXJ6OmpOBKRHxbNVeyceATQuJysw6kXOLWcnl2VOxNqv+iqgYDyzPG4ik4yWFpLMybWtJOlfSy5IWS7pa0gZVz9tE0nWSlkh6QdJ3JXmgHLPyaUluAecXs8GSp6i4DTggMx2SuoBjgd/kCULSe4B/Ae6vmjUN2Bf4NPBBYGPg55nnjQCuA9YEPgAcCBwEnJInDjNrq8JzCzi/mA2mPBX3scDNkt5N8mX7DrAdya+JXRpdmaQxJKPlfQH4aqZ9HeDzwP4RcUvadjDwsKT3RcQdJLtLtwX2jIh5wL2SvgacIenkiFiR4/2ZWXsUmlvA+cVssOUZp+JBSVsDRwCLgDEk1f25ETE3RwznAtdFxE2Svppp34nkWgA3ZV77EUlPk1y58I70/oH0C19xI/CfJMlodq0XlDQSGJlpGgvQ09NDT0/PastX2mrNs4H19vYCsFb3CEaNGkVvb6+3ZQMG+vwNl23ZgtwCg5xfnFsGVyW3jFwj6YPj/NKYVuSWhooKSd3Ar4FDI+JbDb/a6uv7LPAu4D01Zm8IrIiIBVXt89J5lWXm1ZhPZplaTgC+Xt04ffp0Ro8e3eeTZsyY0c8qbSBTD9gVDtiVOXPmMGfOnHaHUzp9ff6WLKnVDaFcis4t6TrbkV+cW9rgjL03SR7se4XzSw5F5paGioqI6JH0zoZfpQZJbwXOBiZFxLIi1tmA04CpmemxwLOTJ09m3Lhxqy3c09PDjBkzmDRpEt3d3YMV47Axe/Zs5s6dyzGX3sbcG85j5syZTJw4sd1hlcZAn7+FCxe2IapiFZlboK35xbllEFVyy3E3PM3ylcG8y493fmlAK3JLnj4VPyE5Fnl8judm7QSsD9yTOX1sBLCbpCOAKcCaktat+jWxAfB8+vh5YOeq9W6QmVdTRCwn05u88vrd3d39frEHmm+1dXUl/YGX9bzG0qVL6erq8nbMoa/P3zDalkXlFmhTfnFuGVyV3LJ8ZbBsZTi/5FRkbslTVKwBHCJpT+Bu4K/ZmQ1cPfBm4B1VbRcBjwBnAM+QDISzB3A1gKRtSAbGmZUuPwv4D0nrR8QLadskYCHwUAPvyczar6jcAs4vZm3R7FVKt66aV/fVAyNiEfBgtk3SX4GXI+LBdPoCYKqk+SRf5HOAWWnPbIDpJF/uH0s6luQ456kkHbuaOq/dzAZdIbkFnF/M2mWoX6X0aKCX5JfESJKe1/+aieU1SfuQ9MaeRfLL5hLgpEGM0cwK0IarlDq/mBVsSI0MFxG7V00vAw5Pb3095yngI62NzMzKzvnFrPVyX/rczMzMLMtFhZmZmRXCRYWZmZkVoq6iQtI9ktZLH58kqe+h4czM6uTcYja81LunYgLJZYkhGYJ2TGvCMbMO49xiNozUe/bHvcBFkn4HCPiKpMW1FowIXxbYzOp1L84tZsNGvUXFQcA3gH1IBqHZG1hZY7kA/MU3s3odhHOL2bBRV1EREY8CnwWQ1AvskRm21swsF+cWs+Elz4iaPmPEzArn3GJWfrlG1JS0JXAUSScrSMbHPzsiHi8oLjPrQM4tZuXW8C8DSVNIvug7A/ent/cCf5Q0qdjwzKxTOLeYlV+ePRWnA9Mi4vhso6TTSS4pPKOIwMys4zi3mJVcnmOYE4ALarRfCGzbXDhm1sGcW8xKLk9R8SKwQ432HQD32jazvJxbzEouz+GP84EfSdoCuD1t2wU4DphaVGBm1nGcW8xKLk9R8U1gEfBl4LS07TngZOD7xYRlZh3IucWs5PKMUxHANGCapLFp26KiAzOzzuLcYlZ+ucapqPAX3sxawbnFrJw8gp2ZmZkVwkWFmZmZFcJFhZmZmRWioaJCUrekmyW9rVUBmVnncW4xGx4aKioiogd4Z4tiMbMO5dxiNjzkOfzxE+DzRQdiZh3PucWs5PKcUroGcIikPYG7gb9mZ0bEMUUEZmYdx7nFrOTyFBXbA/ekj7eumhfNhWNmHcy5xazk8oyo+aFWBGJmnc25xaz8cp9SKmkrSVMkjUqnVVxYZtapnFvMyqvhokLSGyTdDPwJuB7YKJ11gaQzG1zXCZL+IGmRpBckXSNpm6pl1pJ0rqSXJS2WdLWkDaqW2UTSdZKWpOv5rqSmhiA3s8Hl3GJWfnn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYWXs5t5iVXJ6KezIwJSKerdor+RiwaSMriohVEoWkg4AXgJ2AmZLWITnFbP+IuCVd5mDgYUnvi4g70ni2BfaMiHnAvZK+Bpwh6eSIWJHjPZrZ4HNuMSu5PEXF2qz6K6JiPLC8uXBYJ72fn97vRPIL46bKAhHxiKSngfcDd6T3D6Rf+oobgf8EtgNmV7+IpJHAyEzTWICenh56enpWC6rSVmueDay3txeAtbpHMGrUKHp7e70tGzDQ528YbUvnFmtIJbeMXCMpQp1fGtOK3JKnqLgNOAD4WjodkrqAY4Hf5FgfAOk6zgJ+HxEPps0bAisiYkHV4vPSeZVl5tWYT2aZaicAX69unD59OqNHj+4zxhkzZvQ5zwY29YBd4YBdmTNnDnPmzGl3OKXT1+dvyZJa/4dLybnFcjlj702SB/te4fySQ5G5JU9RcSxws6R3kxxr/A5J1T4e2CXH+irOJTlP/e+aWEe9TgOmZqbHAs9OnjyZcePGrbZwT08PM2bMYNKkSXR3dw9CeMPL7NmzmTt3LsdcehtzbziPmTNnMnHixHaHVRoDff4WLlzYhqhawrnFGlLJLcfd8DTLVwbzLj/e+aUBrcgtecapeFDS1sARwCJgDEnnpnMjYm7DEQCSfgDsA+wWEc9mZj0PrClp3apfFBuk8yrL7Fy1yg0y82q9h+VkdqdWjt92d3f3+8UeaL7V1tWV9Ade1vMaS5cupaury9sxh74+f8NlWzq3DI+/42Cq5JblK4NlK8P5Jacic0uuU6Mi4lXgW3mem5Wef34O8Alg94h4omqRu0l6g+8BXJ0+ZxuS3uGz0mVmAf8haf2IeCFtmwQsBB5qNkYzGzzOLWbllquokLQeSc/pCWnTQ8BFETG/72fVdC6wP/BxYJGkynHKVyNiaUS8KukCYKqk+SRf5nOAWWnvbIDp6ev/WNKxJMc6TyX5ddNs5y4zG0TOLWbllmfwq92AJ4EjgfXS25HAE+m8RhxG0iv7VmBu5vaZzDJHA9eS/JqYSbLbcb/KzIh4jWT35mskvyx+AlwKnNRgLGbWRs4tZuWXZ0/FuSSD0RyWfukqg8Scl857R70riogBh9+NiGXA4emtr2WeAj5S7+ua2ZDk3GJWcnlG1NwKOLPypYe/VfRT03lmZnk4t5iVXJ6i4h5eP96ZNQG4r7lwzKyDObeYlVxdhz8kvTMz+X3gbElbkYw6B8n4+ocDxxcbnpkNZ84tZsNLvX0q7gUCyB6n/E6N5S4nOSZqZlaPe3FuMRs26i0qNm9pFGbWqZxbzIaRuoqKtAe0mVmhnFvMhpe8g19tTDKO/vpUdfaMiO8XEJeZdSDnFrNya7iokHQQ8F/ACuBlkuOhFUHS2crMrCHOLWbll2dPxTeBU4DTIqK34HjMrHM5t5iVXJ5xKkYDV/pLb2YFc24xK7k8RcUFwKeLDsTMOp5zi1nJ5Tn8cQJwraS9gAdILh/8NxFxTBGBmVnHcW4xK7m8RcUU4NF0urozlZlZHs4tZiWXp6j4MnBIRFxccCxm1tmcW8xKLk+fiuXA74sOxMw6nnOLWcnlKSrOBr5UdCBm1vGcW8xKLs/hj52BD0vaB/gjq3em2q+IwMys4zi3mJVcnqJiAfDzguMwM1uAc4tZqTVcVETEwa0IxMw6m3OLWfnl6VNhZmZmtpo8FxR7gn7OGY+ILZqKyMw6knOLWfnl6VNxVtV0N7AjsBfw3WYDMrOOdVbVtHOLWcnk6VNxdq12SYcD7246IjPrSM4tZuVXZJ+KG4BPFrg+MzNwbjErjSKLik8B8wtcn5kZOLeYlUaejpqzWbUzlYANgTcB/1pQXGbWYZxbzMovT0fNa6qme4EXgVsj4pGmIzKzTnVN1bRzi1nJ5Omo+Y1WBNKstDPXv5P8srkP+FJE/F97ozKzejm3mJXfsBj8StJngKnAN4B3kXzxb5S0flsDM7NSc24xa0zdRYWkXkmvDXBb2cpg+3EMcH5EXBQRDwGHAkuAQ9oUj5nVybnFbPho5PDHJ/qZ937gSNqw50PSmsBOwGmVtojolXRTGlet54wERmaaxgLMnz+fnp6e1Zbv6elhyZIl3Hbbbayxxhr09vYC0NXVtdrjWm2dPv+xxx5jzJgxjFg8j7XWWou7776bhQsXDpn4hvr83t5elixZwssvv0x3d/dqn89Fixat1lYyzi115JbsY89fNbdo/lOo57W/5ZfFixcPifiG+vyW5JaIyH0DtgF+AawELgE2bWZ9OWPYmKTH+Pur2r8D3NnHc05On+Obb8Pp9ubB/v618Hvt3OKbb0PnVnduyXP2B5I2JjnGeCBwI7BDRDyYZ11tchrJcdKs8fR9LvxY4FngLUDpfxa2gbdfc+rZfmOB5wYtohZxbrEGefs1p/Dc0lBRIWkd4ETgS8C9wB4RcVsj62iBl4DXgA2q2jcAnq/1hIhYDiyval7Y1wtIqjxcFBF9Lme1efs1p87tV+rt6tzi70Ye3n7NaUVuaaSj5rHAX4B9gH+MiA8MgS89EbECuBvYo9ImqSudntWuuMysPs4tZsOH0uOAAy8o9QJLgZtIqveaImK/YkKrX3ra1yXAvwD/BxwF/APw9oiYV8D6xwGvAuu4Gm6ct19zhvv2c24Zvn/bVvP2a04rtl8jhz8uJemwMeRExFWS3gScQjJAzb3AXkV86VPLSY7zVu/WtPp4+zVnuG8/55bh+7dtNW+/5hS+/ereU2FmZmbWn2ExoqaZmZm1n4sKMzMzK4SLCjMzMyuEiwozMzMrhIuKGiSNl3SZpIWSFki6QNKYAZ5zq6Souv1wsGJuN0mHS3pS0jJJd0raeYDlPy3pkXT5ByR9ZLBiHYoa2X6SDqrxWVs2mPFafs4vjXFuac5g5xYXFbVdBmwHTCIZkGc34Ed1PO98YKPM7dhWBTiUNHp5aEkfAK4ALgB2BK4BrpG0/aAEPMTkvLz2Qlb9rG3a6jitMM4vdXJuaU5bcku7Lxw01G7ABJJz5t+dadsL6AU27ud5twJntTv+Nm2zO4EfZKa7gDnA8X0sfxVwbVXbHcAP2/1eSrL9DgIWtDtu33L9rZ1fGttezi2Du/2azi3eU7G695Ns1LsybTeRfOnfO8BzPyfpJUkPSjpN0uiWRTlEZC4PfVOlLSJ60+mal4dO22+qaruxn+WHrZzbD2CMpKckPSPpl5K2a3GoVgznlzo5tzSnXbkl11VKh7kNgReyDRGxUtL8dF5fLgeeIrma2zuBM0gu3zzoQwsPsjcCI4DqEQbnAW/v4zkb9rF8f9t3uMqz/R4FDgHuB9YBvgLcLmm7iHi2VYFaIZxf6ufc0py25JaOKSoknQ4cN8BiE/KuPyKyx0QfkDQXuFnSlhHxeN71mlWLiFlkLmgl6XbgYZLrU3ytXXF1MucXGw6KyC0dU1QAZwIXD7DMX0guabxKJxZJawDj6eNyx324M73fChjOX/qGLw+dtjey/HCWZ/utIiJ6JM0m+axZezi/FM+5pTltyS0d06ciIl6MiEcGuK0gqdLWlbRT5ukfJtlWd9ZceW07pPdzi3kHQ1Pkuzz0rOzyqUn9LD9s5dx+q5A0AngHw/yzNpQ5vxTPuaU5bcst7e6dOhRvwA3APcDOwC7An4DLM/PfDDwC7JxOb0mya2gnYDPgYyS/Hn7b7vcySNvrM8Ay4ECSXbz/BbwCbJDOvxQ4LbP8B4Ae4Mskx/ZOBlYA27f7vZRk+50ETAa2IDlN7AqSS4dv2+734ltdf2/nl/q3lXPL4G6/pnNL29/0ULyR7Iq8HFhEcq35C4ExmfmbkZwWtns6/Vbgt8DL6R/wMeA7wLh2v5dB3GZHkHQkW07yi+u9mXm3AhdXLf9pkk5By4EHgY+0+z2UZfsB0zLLPg9cB+zY7vfgW91/a+eXxraXc8sgbb8icosvfW5mZmaF6Jg+FWZmZtZaLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qzMzMrBAuKszMzKwQLirMzMysEC4qrKUkPSnpqHbHYWbDi3PL0OSiwszMzArhosLMzMwK4aLC+iTpi5KeSy+Xm23/paQLJW2ZPp4nabGkP0jas5/1bSYpJO2QaVs3bds907a9pBvSdc6T9GNJb2zBWzSzNnBuGb5cVFh/fga8AfhQpUHSeGAv4DJgDHA9sAewI/Br4FeSNsn7gpLWBW4BZgPvTl9rA+CneddpZkOOc8swtUa7A7ChKyJekXQDsD9wc9r8KeAl4DcR0Qvcl3nK1yR9AvgY8IOcL3sEMDsiTqw0SDoEeEbS1hHxp5zrNbMhwrll+PKeChvIZcAnJY1Mpz8HXBkRvZLGSPqepIclLZC0GJgA5P41AUwEPpTunlycrvORdN6WTazXzIYW55ZhyHsqbCC/AgR8VNIfgF2Bo9N53wMmAV8B/gwsBf4HWLOPdfWm98q0dVctMyZ9zeNqPH9uo8Gb2ZDl3DIMuaiwfkXEMkk/J/kVsRXwaETck87eBbg4In4BIGkMsFk/q3sxvd+I5LgmwA5Vy9wDfBJ4MiJWNv0GzGxIcm4Znnz4w+pxGfBR4JD0ccVjwH6SdpA0Ebicfj5TEbEUuAM4XtIESR8ETq1a7FxgPHCFpPekvcCnSLpI0ogC35OZtZ9zyzDjosLqcQswH9iG5MtdcQzwCnA7yW7FG0l+DfTnEJI9ZHcDZwFfzc6MiOdIfqWMAKYDD6TLLeD1XZxmNjw4twwzioh2x2BmZmbDgPdUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFSYmZlZIVxUmJmZWSFcVJiZmVkhXFRYoSQdJCkkbdbuWMzMbHC5qDAzM7NCKCLaHYMNI5JGAN3A8vCHy8yso7ioMDMzs0L48IcVKtunQtIlkl6S1F1juemSHm1HjGZm1houKqyVfgy8AZiSbZS0IfBh4CftCMrMzFrDRYW10i3As8A/VbX/I8lnz0WFmdkw4qLCWiYieoHLgI9JGpuZ9Tng9oh4oj2RmZlZK7iosFa7FBgFfAJA0jbATiSHRszMbBhxUWEtFREPAXfz+iGQfwJWAD9tW1BmZtYSLipsMFwKfFjSRsD+wHUR8UqbYzIzs4K5qLDBcAUQwNnAFriDppnZsOSiwlouIl4Efg18GlgAXNfWgMzMrCVcVNhguTS9/2lELG9rJGZm1hIuKqxQEXFxRCginqyatSK996EPM7Nhytf+sEEh6VpgArCVLzRmZjY8rdHuAGx4k/RZ4J3AR4F/c0FhZjZ8eU+FtZSkABYDVwGHRsTKNodkZmYt0nBRIWkvYHFE/C6dPhz4AvAQcLjHHzAzM+tMeTpqfhcYByDpHcCZwPXA5sDU4kIzMzOzMsnTp2Jzkr0SAJ8Ero2IEyW9i6S4MDMzsw6Up6hYAYxOH+/J6+MPzCfdg1E2kgRsDCxqdyxmOY0FnnNHWDNrpzxFxe+AqZJ+D+wMfCZt3xp4tqjABtnGlDd2s4q3AHPaHYSZda48RcURwHnAp4DDIqKSxPYmGYq5jBYBPPPMM4wbt/rOlp6eHqZPn87kyZPp7u4e9ODKztuvOQNtv4ULF/LWt74VvKfNzNqs4aIiIp4G9qnRfnQhEbXRuHHj+iwqRo8ezbhx4/xPMQdvv+Z4+5lZWeQa/EpSF7AVsD5VZ5BExMwC4jIzM7OSabiokPQ+4HJgU0BVswMYUUBcZmZmVjJ5xqn4IXAXsD0wHlgvcxtfXGg23Nx33308/fTT7Q7DzMxaJM/hj7cBn4qIPxcdjA1Pzz6bnFiz2267EYhHH3mYTTbZpM1RmZlZ0fLsqbiTpD+FWV1efvllAMbtvB/Lli7hpZdeanNEZmbWCnn2VJwDnClpQ+ABoCc7MyLuLyIwG35GjHtTu0MwM7MWylNUXJ3eX5hpC5JOm+6oaWZm1qHyXvvDzMzMbBV5Br96qhWBmJmZWbnlHfxqS+AoYELa9BBwdkQ8XlBcZmZmVjINn/0haQpJEbEzcH96ey/wR0mTig3PzMzMyiLPnorTgWkRcXy2UdLpwBnAjCICMzMzs3LJM07FBOCCGu0XAts2F46ZmZmVVZ6i4kVghxrtOwAvNBOMmZmZlVeewx/nAz+StAVwe9q2C3AcMLWowMzMzKxc8hQV3wQWAV8GTkvbngNOBr5fTFhmZmZWNnnGqQhgGjBN0ti0bVHRgZmZmVm55BqnosLFhJmZmVXUVVRIugfYIyJekTSb5BofNUXEu4oKzszMzMqj3j0VvwSWZx73WVQ0StKbSca32BsYDfwZODgi7krnC/gG8AVgXeD3wGER8VhmHeNJrp66L9BLctGzf4uIxUXFaWZmZv2rq6iIiG9kHp9c1ItLWo+kSPgNSVHxIvA24JXMYscCRwIHAk+QdBS9UdK2EbEsXeYyYCNgEtANXAT8CNi/qFjNzMysfw33qZD0F+A9EfFyVfu6wD0RsUUDqzsOeCYiDs60PZFZp0iuMXJqRPwybTsAmAf8PXClpAnAXmlMlb0bXwKul/SViHiusXdoZmZmeeTpqLkZMKJG+0jgLQ2u62Mkex1+BnwQmAOcFxHnp/M3BzYEbqo8ISJelXQn8H7gyvR+QaWgSN1EchjkvcAvql9U0sg03oqxAD09PfT09KwWZKWt1jwbWG9vLwBrdY9g1KhR9Pb2els2YKDPn7elmQ0VdRcVkj6WmZwi6dXM9AhgDzJ7Geq0BXAYyaBZ3wbeA3xf0oqIuISkoIBkz0TWvMy8DakayTMiVkqan1mm2gnA16sbp0+fzujRo/sMdsYMX9akGVMP2BUO2JU5c+YwZ86cdodTOn19/pYsWTLIkZiZ1dbInopr0vsALqma1wM8STIgViO6gLsi4sR0erak7YFDa7xGkU5j1dE/xwLPTp48mXHjxq22cE9PDzNmzGDSpEl0d3e3MKzhafbs2cydO5djLr2NuTecx8yZM5k4cWK7wyqNgT5/CxcubENUZmarq7uoiIguAElPkPRfeKmA159Lchn1rIeBT6aPn0/vN0iXJTN9b2aZ9bMrkLQGMD7z/FVExHJeP5uFpOsGdHd391s0DDTfauvqSi4xs6znNZYuXUpXV5e3Yw59ff68Lc1sqGj4gmIRsXlBBQUkZ35sU9W2NfBU+vgJksJgj8pMSeNI+krMSptmAetK2imzjg+TvLc7C4rTzMzMBlDv4FdHAj+KiGXp4z5FRCPX/5gG3C7pROCnwM7AF9MbERGSzgK+KukxXj+l9DnSwzER8bCkXwPnSzqU5JTSHwBX+swPMzOzwVPv4Y+jScaCWJY+7kvQwEXFIuIPkj5B0sfhJJKi4aiIuCyz2HeAtUnGnVgX+B2wV2aMCoDPkRQSN/P64Ff9Fj9mZmZWrHoHv9q81uMiRMS1wLX9zA+SguOkfpaZjwe6MjMza6uG+1RIOknSauddSholqc9//GZmZja8NVxUkIzvMKZG+2hqjP1gZmZmnSFPUSFqX1BsIjC/uXDMzMysrBoZUfMVkmIigD9JyhYWI0j2Xvyw2PDMzMysLBoZUfMokr0UF5Ic5sgO070CeDIiZtV4npmZmXWARkbUvAT+NqLm7yNiZcuiMjMzs9LJM6Lmb4FNJZ0q6QpJ6wNI2lvSdoVHaGZmZqWQ55TSDwIPkAyVvR+vnwkyEfhGcaGZmZlZmeQ5++N04KsRMYmkL0XFLcD7ConKzMzMSidPUfEO4Bc12l8A3thcOGZmZlZWeYqKBcBGNdp3BOY0FY2ZmZmVVp6i4krgDEkbkoxZ0SVpF+B7wKVFBmdmZmblkaeoOBF4BHiGpJPmQ8BM4Hbg1OJCMzMzszJpZPArACJiBfAFSd8EticpLGZHxGNFB2dmZmbl0XBRURERT0t6Jn1c61ogZmZm1kHyHP5A0uclPQgsA5ZJelDSPxcbmpmZmZVJw3sqJJ0CHAOcA1Su9fF+YJqkTSLipALjMzMzs5LIc/jjMOALEXFFpu1/Jd1PUmi4qDAzM+tAeQ5/dAN31Wi/myb6aJiZmVm55Skqfkyyt6LaF4HLmgvHzMzMyirvnoXPS5oM3JFOvxfYBLhU0tTKQhFxTJPxmZmZWUnkKSq2B+5JH2+Z3r+U3rbPLOfTTM3MzDpInsGvPtSKQMzMzKzcco1TASBpK0lTJI1Kp1VcWGZmZlY2DRcVkt4g6WbgT8D1vH7F0gsknVlkcGZmZlYeefZUTAN6SDpmLsm0XwXsVURQZmZmVj55OmpOBqZExLNVRzweAzYtJCozMzMrnTx7KtZm1T0UFeOB5XkDkXS8pJB0VqZtLUnnSnpZ0mJJV0vaoOp5m0i6TtISSS9I+q4kD8JlZmY2yPIUFbcBB2SmQ1IXcCzwmzxBSHoP8C/A/VWzpgH7Ap8GPghsDPw887wRwHXAmsAHgAOBg4BT8sRhZmZm+eX5RX8scLOkd5P8M/8OsB3JnopdGl2ZpDEkI3F+Afhqpn0d4PPA/hFxS9p2MPCwpPdFxB0kh2K2BfaMiHnAvZK+Bpwh6eSIWJHj/ZmZmVkODe+piIgHga2B3wG/JDkc8nNgx4h4PEcM5wLXRcRNVe07kVxn5G/tEfEI8DTJVVFJ7x9IC4qKG4FxJIWOmZmZDZKG9lRI6gZ+DRwaEd9q9sUlfRZ4F/CeGrM3BFZExIKq9nnpvMoy82rMJ7NMrdcdCYzMNI0F6OnpoaenZ7XlK2215tnAent7AVirewSjRo2it7fX27IBA33+vC3NbKhoqKiIiB5J7yzihSW9FTgbmBQRy4pYZwNOAL5e3Th9+nRGjx7d55NmzJjRypiGvakH7AoH7MqcOXOYM2dOu8Mpnb4+f0uW1Oo3bWY2+PL0qfgJSV+H45t87Z2A9YF7MqemjgB2k3QEMAVYU9K6VXsrNgCeTx8/D+xctd4NMvP6chowNTM9Fnh28uTJjBs3brWFe3p6mDFjBpMmTaK7u3vAN2armj17NnPnzuWYS29j7g3nMXPmTCZOnNjusEpjoM/fwoUL2xCVmdnq8hQVawCHSNoTuBv4a3ZmA1cmvRl4R1XbRcAjwBnAMySDbO0BXA0gaRuSQbdmpcvPAv5D0voR8ULaNglYCDzU1wtHxHIyp79Wipru7u5+i4aB5lttXV1J151lPa+xdOlSurq6vB1z6Ovz521pZkNFs1cp3bpqXt1XJo2IRcCD2TZJfwVeTjuDIukCYKqk+SSFwjnArPTMD4DpJMXDjyUdS9KP4lTg3LRwMDMzs0Ey1K9SejTQS7KnYiTJmR3/monlNUn7AP9Jstfir8AlwEmDGKOZmZmRb09Fy0TE7lXTy4DD01tfz3kK+EhrIzMzM7OB5L70uZmZmVmWiwozMzMrhIsKMzMzK0RdRYWkeyStlz4+SVLfI0SZmZlZR6p3T8UEkmt8QDIS5ZjWhGNmZmZlVe/ZH/cCF0n6HSDgK5IW11owInzZcTMzsw5Ub1FxEPANYB+SAa72BlbWWC4AFxVmZmYdqK6iIiIeBT4LIKkX2CMzLLaZmZlZrhE1fcaImZmZrSbXiJqStgSOIunACcn1N86OiMcLisvMzMxKpuG9DpKmkBQROwP3p7f3An+UNKnY8MzMzKws8uypOB2YFhHHZxslnU5yyfIZRQRmZmZm5ZKnf8QE4IIa7RcC2zYXjpmZmZVVnqLiRWCHGu07AD4jxMzMrEPlOfxxPvAjSVsAt6dtuwDHAVOLCszMzMzKJU9R8U1gEfBl4LS07TngZOD7xYRlZmZmZZNnnIoApgHTJI1N2xYVHZiZmZmVS65xKipcTJiZmVmFR8c0MzOzQrioMDMzs0K4qDAzM7NCNFRUSOqWdLOkt7UqIDMzMyunhoqKiOgB3tmiWMzMzKzE8hz++Anw+aIDMTMzs3LLc0rpGsAhkvYE7gb+mp0ZEccUEZiZmZmVS56iYnvgnvTx1lXzorlwzMzMrKzyjKj5oVYEYmZmZuWW+5RSSVtJmiJpVDqt4sIyMzOzsmm4qJD0Bkk3A38Crgc2SmddIOnMBtd1gqQ/SFok6QVJ10japmqZtSSdK+llSYslXS1pg6plNpF0naQl6Xq+K6mpIcjNzMysMXn2VEwDeoBNgCWZ9quAvRpc1weBc4H3AZOAbmC6pLWrXm9f4NPp8hsDP6/MlDQCuA5YE/gAcCBwEHBKg7GYmZlZE/L8mp8MTImIZ6uOeDwGbNrIiiJilSJE0kHAC8BOwExJ65Ccvrp/RNySLnMw8LCk90XEHWk82wJ7RsQ84F5JXwPOkHRyRKzI8R7NzMysQXmKirVZdQ9FxXhgeXPhsE56Pz+934lk78VNlQUi4hFJTwPvB+5I7x9IC4qKG4H/BLYDZle/iKSRwMhM01iAnp4eenp6Vguq0lZrng2st7cXgLW6RzBq1Ch6e3u9LRsw0OfP29LMhoo8RcVtwAHA19LpkNQFHAv8Jm8g6TrOAn4fEQ+mzRsCKyJiQdXi89J5lWXm1ZhPZplqJwBfr26cPn06o0eP7jPGGTNm9DnPBjb1gF3hgF2ZM2cOc+bMaXc4pdPX52/Jklo1vpnZ4MtTVBwL3Czp3ST9GL5DskdgPLBLE7GcSzIGxt81sY56nQZMzUyPBZ6dPHky48aNW23hnp4eZsyYwaRJk+ju7h6E8IaX2bNnM3fuXI659Dbm3nAeM2fOZOLEie0OqzQG+vwtXLiwDVGZma0uzzgVD0raGjgCWASMIek4eW5EzM0ThKQfAPsAu0XEs5lZzwNrSlq3am/FBum8yjI7V61yg8y8Wu9hOZlDNZW+Id3d3f0WDQPNt9q6upL+wMt6XmPp0qV0dXV5O+bQ1+fP29LMhopcp11GxKvAt5p98XRsi3OATwC7R8QTVYvcTXKmyR7A1elztiE582RWusws4D8krR8RL6Rtk4CFwEPNxmhmZmb1yVVUSFqP5KyMCWnTQ8BFETG/72fVdC6wP/BxYJGkSh+IVyNiaUS8KukCYKqk+SSFwjnArPTMD4Dp6ev/WNKxJP0oTiXZc9Jsx1EzMzOrU57Br3YDngSOBNZLb0cCT6TzGnEYyRkftwJzM7fPZJY5GriWZE/FTJJDGvtVZkbEaySHTl4j2WvxE+BS4KQGYzEzM7Mm5NlTcS7JQFeHpf/QKwNQnZfOe0e9K4qIAYf2johlwOHpra9lngI+Uu/rmpmZWfHyjKi5FXBmpaCAv+0tmJrOMzMzsw6Up6i4h9f7UmRNAO5rLhwzMzMrq7oOf0h6Z2by+8DZkrYiGdESkmt3HA4cX2x4ZmZmVhb19qm4Fwgg2wfiOzWWu5ykv4WZmZl1mHqLis1bGoWZmZmVXl1FRXp2hZmZmVmf8g5+tTHJNTrWp6qzZ0R8v4C4zMzMrGQaLiokHQT8F7ACeJmkr0VFkHTkNDMzsw6TZ0/FN4FTgNMiorfgeMzMzKyk8oxTMRq40gWFmZmZZeUpKi4APl10IGZmZlZueQ5/nABcK2kv4AGSS5P/TUQcU0RgZmZmVi55i4opwKPpdHVHTTMzM+tAeYqKLwOHRMTFBcdiZmZmJZanT8Vy4PdFB2JmZmbllqeoOBv4UtGBmJmZWbnlOfyxM/BhSfsAf2T1jpr7FRGYmZmZlUueomIB8POC4zAzM7OSa7ioiIiDWxGImZmZlVuePhVmZmZmq8lzQbEn6Gc8iojYoqmIzMzMrJTy9Kk4q2q6G9gR2Av4brMBmZmZWTnl6VNxdq12SYcD7246IjMzMyulIvtU3AB8ssD1mZmZWYkUWVR8Cphf4PrMzMysRPJ01JzNqh01BWwIvAn414LiMjMzs5LJ01HzmqrpXuBF4NaIeKTpiMzMzKyU8nTU/EYrAjEzM7NyGzaDX0k6XNKTkpZJulPSzu2OyczMrJPUXVRI6pX02gC3la0Mtp/YPgNMBb4BvAu4D7hR0vrtiMfMzKwTNXL44xP9zHs/cCTt2/NxDHB+RFwEIOlQ4KPAIcDpbYrJzMyso9RdVETEL6vbJG1D8k97X+Ay4KTiQquPpDWBnYDTKm0R0SvpJpJip9ZzRgIjM01jAebPn09PT89qy/f09LBkyRJuu+021lhjDXp7ewHo6upa7XGttk6f/9hjjzFmzBhGLJ7HWmutxd13383ChQuHTHxDfX5vby9Llizh5Zdfpru7e7XP56JFi1ZrMzNrhzxnfyBpY5JDDQcCNwI7RMSDRQbWgDcCI4B5Ve3zgLf38ZwTgK9XN26++ebFRmY1ffGLX2x3CMPVWGBhu4Mws87VUFEhaR3gROBLwL3AHhFxWwviarXTSPpgZI2n78G7xgLPAm8B/LOwcd5+zaln+40Fnhu0iMzMaqi7qJB0LHAc8Dzwj7UOh7TJS8BrwAZV7RuQxLqaiFgOLK9q7vMXnqTKw0UR4V+CDfL2a06d28/b1czarpE9FacDS4E/AwdKOrDWQhGxXxGB1SsiVki6G9iDdGAuSV3p9A8GMxYzM7NO1khRcSmrDs89lEwFLpF0F/B/wFHA2sBF7QzKzMyskzRy9sdBLYyjKRFxlaQ3AaeQXIfkXmCviKjuvJnXcpKOqdWHTKw+3n7N8fYzs1JQxFDd+WBmZmZlMmyG6TYzM7P2clFhZmZmhXBRYWZmZoVwUWFmZmaFcFFRg6Txki6TtFDSAkkXSBozwHNulRRVtx8OVszt1uil5yV9WtIj6fIPSPrIYMU6FDWy/SQdVOOztmww4zUzq8VFRW2XAdsBk4B9gN2AH9XxvPOBjTK3Y1sV4FDS6KXnJX0AuAK4ANiRZNCyayRtPygBDzGNbr/UQlb9rG3a6jjNzAbiU0qrSJoAPAS8JyLuStv2Aq4H3hIRNa+vIOlW4N6IOGqQQh0yJN0J/CEijkinu4BngHMiYrVLz0u6Clg7IvbJtN1Bsv0OHaSwh4wc2+8g4KyIWHcw4zQzG4j3VKzu/cCCSkGRugnoBd47wHM/J+klSQ9KOk3S6JZFOURkLj1/U6UtInrT6ZqXnk/bb6pqu7Gf5YetnNsPYIykpyQ9I+mXkrZrcahmZgPKdenzYW5D4IVsQ0SslDQ/ndeXy4GnSK4U+U7gDGAbYFCvhdIGeS49v2Efy/e3fYerPNvvUeAQ4H5gHeArwO2StouIZ1sVqJnZQDqmqJB0OslVVvszIe/6IyLb5+IBSXOBmyVtGRGP512vWbWImAXMqkxLuh14GPgX4GvtisvMrGOKCuBM4OIBlvkLyeXSV+kgJ2kNYDx9XEq9D3em91sBw7moaPjS82l7I8sPZ3m23yoiokfSbJLPmplZ23RMn4qIeDEiHhngtoLkF+C6knbKPP3DJNvqzporr22H9H5uMe9gaEq3WeXS88Aql56f1cfTZmWXT03qZ/lhK+f2W4WkEcA7GOafNTMb+jppT0VdIuJhSb8Gzpd0KNAN/AC4snLmh6Q3AzcDB0TE/0naEtif5AyRl0n6VEwDZkbE/e14H4Os30vPS7oUmBMRJ6TLnw38VtKXgeuAzwLvBr44yHEPFQ1tP0knAXcAfwbWBf6d5JTS/x7swM3MslxU1PY5kkLiZpKzPq4GjszM7ybphFk5u2MFsCev/zN4Jn3OqYMTbnvVcen5TUi2Y2X52yXtT7J9vg08Bvx9RDw4qIEPEY1uP2A9kjFRNgReIdnT8YGIeGjQgjYzq8HjVJiZmVkhOqZPhZmZmbWWiwozMzMrhIsKMzMzK4SLCjMzMyuEiwozMzMrhIsKMzMzK4SLCjMzMyuEiwprKUlPSjqq3XGYmVnruagwMzOzQrioMDMzs0K4qLA+SfqipOfSq2Zm238p6UJJW6aP50laLOkPkvbsZ32bSQpJO2Ta1k3bds+0bS/phnSd8yT9WNIbW/AWzcysQC4qrD8/A94AfKjSIGk8sBdwGTCG5MqsewA7Ar8GfiVpk7wvKGld4BZgNsmVS/cCNgB+mnedZmY2OHyVUutTRLwi6QaSy7rfnDZ/CngJ+E1E9AL3ZZ7yNUmfAD5GcpXXPI4AZkfEiZUGSYcAz0jaOiL+lHO9ZmbWYt5TYQO5DPikpJHp9OeAKyOiV9IYSd+T9LCkBZIWAxNILtWd10TgQ+mhj8XpOh9J523ZxHrNzKzFvKfCBvIrQMBHJf0B2BU4Op33PWAS8BXgz8BS4H+ANftYV296r0xbd9UyY9LXPK7G8+c2GryZmQ0eFxXWr4hYJunnJHsotgIejYh70tm7ABdHxC8AJI0BNutndS+m9xuR9JkA2KFqmXuATwJPRsTKpt+AmZkNGh/+sHpcBnwUOCR9XPEYsJ+kHSRNBC6nn89URCwF7gCOlzRB0geBU6sWOxcYD1wh6T3pGSZTJF0kaUSB78nMzArmosLqcQswH9iGpHCoOAZ4Bbid5JDFjSR7GvpzCMkesruBs4CvZmdGxHMke0BGANOBB9LlFvD64RMzMxuCFBHtjsHMzMyGAe+pMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQrioMDMzs0K4qDAzM7NCuKgwMzOzQvx/oSgccolv38QAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_8-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 16"
]
},
{
"cell_type": "code",
"execution_count": 235,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABUjElEQVR4nO3deZxcVZn/8c+3QxMSkoDoEGQ0gKAMsgTEDXAQwQQQcFzAcdSfRhwdFFQWh8UFEHEQVEAFdVQ2HUAcUVABs4AY1MBIEgRkx7AkhLCEkMQsdOjn98e5BTeV6nTV7dtdXVXf9+tVr6o699Stp27fOv3Uueeeq4jAzMzMrAxdzQ7AzMzM2ocTCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMyuNEwszMzMrjRMLK0zSqZKGZOpWSTdKujH3fB9JIenQIXr/iyU9NBTvVfW+W2efc8pQv3enkLSBpLMkPSqpV9JVzY5pqAzld9g6hxMLA0DSlOwfWOW2StJjkqZK+oyksSW9z5ZZY7ZrGesr03COzQbV4cB/Aj8HPgKc09xwzFrbBs0OwIadk4F5QDewBbAPcC5wrKR3RsTtubqnA19rcP1bAqcADwG3NfC6yQ2+TxHri+3jNCcRfxgYBfQ04b07xb7Agog4ptmBmLUDJxZW7bqIuDX3/AxJ+wK/AX4laYeIWAkQEWuANYMZjKTREbEiIp4bzPfpT0Q05R97pKsErmrGew+EpI2A5yKit9mx1GFzYElZK5PUBWwYES33dzMrgw+FWL8i4gbgK8BWwIcq5bWOz0qaJOkPkpZIWi7pXkn/lS3bB/hzVvWi3GGXKdnyGyXdKWl3STMlrQD+K7fsxhrhjZD0X5Iel/R3Sb+S9MqqmB6SdHH1C/PrrCO2dcZYSNpY0jezY/Ors8/6OUmqqheSzpP0ruzzrZb0V0kH1Pg81TGuM8Yii2W5pH+UdFX2+ElJ35A0oo51PiTpN5ImS7otO+x1l6T3VNXbLFvnHdl7LJV0naSJVfUq413eL+l0SQuAFcC4Aut4n6RTJC2QtEzSzyVtImmkpHMlPZGt5yJJI6vW0ee+t75tC7wN2DH3N98nW97o3/eDkv4KrAb6/NtK6sq+O49JWiHpd5JeW72f1rvtsrqfzvapFZKekXSrpA9U1XmLpD9nf+8HJf3HemL8kKTZklZKWizpp8p9r7LPu1zS6BqvvVzp+9jvvmjtyT0WVq+fkP7JTwZ+WKuCpB1JPRu3kw6prAa2A/bKqtydlZ8G/AC4KSv/U241LwWuA34K/A+wqJ+4vgAEcCbpl+fRwAxJu1Z6VupUT2wvyP65/Ir0T+kC0qGT/YGvA/8IVHervwV4D/BdYBnwGeBKSRMi4ukG4qwYAUwFbgE+B7wdOA54EPheHa9/NXAF8H3gEuCjwP9KOiAipmd1XgW8C/hf0uGx8cB/AL+X9NqIeKxqnV8CngO+AYzMHr+2wXWcBKwkHWLbDvg06TBQL/AS4FTgzcCUbH2nQV37Xi1PAv+PtA+Nyd4b4O4Cf999gfcB5wFPkQ6n9eUM4Hjg16S/4cTsfqOqenVtf0kfB75NGiPyrWw9uwBvAi7L6uwMTMs+86mktv/L1Ph+SfoC6YfEz4AfAf9A+jvMlLRbRCwh7TtHAgdl8VVeOxo4BLg4Ip5fzzawdhYRvvkGqaEO4PXrqbMEmJN7fipZb332/OhsHS9bzzpen9WZUmPZjdmy/+hj2Y255/tkdecDY3Plh2Xln8mVPURq6Ppb5/piuxh4KPf8X7K6X6iq97+kf4Lb5sqC9I8uX7ZLVn5UP3+XratjymIJ4EtVdecAt9bxt34oe/17cmXjgMeq/r4jga4a8azKv3fub/EgMKqqfqPruAPozpVflm3Pa6vW8aeqv0e/+956tseNwJ1VZY3+fZ8HXlvHe40nJUq/rCo/JVvPxbmyerfdVdXx13jfX5IStgm5sh1IhzIjV7ZVVvb5qtfvlMX9+ey5SN+9n1fVq3z//rnRv4Nv7XPzoRBrxHJgfWeHLMnu/0XpOHMRq4GLGqj/44hYlnv+c2Ah8I6C71+vd5D+mXy7qvybpEb3wKryGRHxYOVJpEGwS0m/Sov6ftXzmxpY32OkfzaVeJYCPwZ2k7RFVrY6sjESkkZIeilpH7gXeF2NdV4SVb1EBdbx41h7PMstpO15YVW9W4BXSqr0ui7J7gey7+U1+vf9fUTcVcd69yP1Fny3qvw71RUb2HZLgFdIekOtN8wOSewPXBURj+TWfzeppyTvPaRD5D+T9LLKDXgcuJ/Ug0NEBCnJeoekMbnX/yuwAPhDn1vA2p4TC2vEGFI3fl+uAP5I6j5dlB2XfV+DDf2CaGyg5v35J1mD9wDpl91g2gp4rCqpgXRIpbI87xHW9Qype7+IVRHx5ADW90C2rfLuy+63hhfGAhwj6X5SwvcUqSt9F2CTGuucV11QYB3V2+nZ7P7RGuVduXWUse/lNfr3Xeezr2e9kPbRF0TEYtLf7wUNbLszSQnH/0m6X9L5kvKHgP6BdGbRWt+VzL1Vz19NSpzuz94rf9uBdLix4opsve/M4h1DSsj+t8a+ZR3EiYXVRdIrSI3ZA33VyX6t7k063v8TUgN4BTC9gYFcjYyLqFdfjdxQDi7r63iz+igvur4yfR44G5hJGrS7PzAJ+Cu1245af7tG19HX51rv9itp3xuIwdhv69p2Wc/D9sD7ST0F7wX+IOnLBd6zi/R9OSB7r+rbCwM+I+Jm0mG192VFh5ASjSsKvK+1EQ/etHr9v+y+uut0LVnX7fXZ7VhJnwe+SupCnUHf/+SLenX+STbobjvSIL6KZ4BNa7x2K+BvueeNxPYw8HZJY6t+1f5Tbvlwtp0kVf2yfE12/1B2fyjwu4j4WP6FkjYl/XquRxnrqEsd+14jBuvvW3ndduR6ObLDHNW9TXVvu4j4O+kf+hWSNgR+AXxB0hmk3oaVVH1XMttXPX+QlKzNi4j7atSv9jPgs5LGkQ6DPJQlHNbB3GNh/VKax+JLpIbw0vXU26xG8W3ZfeXUwL9n95uWFN6HtfasoIcCLyedWVLxIPDmrMEFQNLBwFqnpTYY27WkHo+jqsqPISUo163ziuFlS+DdlSfZP4YPA7dFxONZ8fNU9ahIOox0VkS9ylhHv+rc9xoxWH/f60mDIz9ZVV79PlDntsuSkhdkhxLvyl7bHensjKnAuyRNyL1uB1IvSN4vsvc9JUvS8++j6vciJTMjSTOWHkBKNKzDucfCqh0o6Z9I+8Z40ml0k0i/tN4Z65/052RJewPXZPU3Bz5FGj1eGcz1IGmw2RGSlpH+md8SEfUeo662mNTte1EW79GkwzX5U2J/REo4fivpZ8C2pK7lB9deVUOx/Rr4HfBVSVsDfyGdivsvwLn5gZrD1H3ABdmAv0Wkaa3Hk047rfgN6W96EeksjJ2BD7J2L09/ylhHPerZ9xoxKH/fiFgk6VvAcZJ+BfyWdLrpgaReiHwPUr3bbpqkx0ljTBaRxkIcBVyT6205hfSP/yZJ3yV9vz9NOqyySy6+ByV9kXRK7NZK101ZBmxDSkR/QDqduFJ/jqQHSD1DI/FhEAOfbupbuvHi6aaV22rS2RXTSHMujK3xmlNZ+1S1fUmnvi3IXr+AdLrgq6te905Sg9ZD7lRKapz2l3vNjdQ+3fT9pPk1FpEmZfoNuVPqcvWPJf2TWUX6R7N79Tr7ie1icqc3ZmVjSMfAF5DmbLiPNKeEquoFcF6NmB6ixmmwVXW2zseRi2V5f3+P9azzoWw7TSb9w1xFGpR4aFW9kaR/Io9l2/YPpDkk+vpbHFrjvQa0Dvo4DbryWclOL6XOfW89+9Y6+91A/77reb8RpPk3Fmbb5HrSIZangO8V2HafAH6fvX4VKbE+CxhX9b57A7dm2+dB0niJmvsM6eyQm0iDQpdn+8d5wGtq1D092wb3N9Lm+Na+N0V48K5ZJ1GaQfTOiDi42bFYko2beAb4YkR8tcnhmA2Ix1iYmQ0hSaNqFB+d3d84dJGYDQ6PsTAzG1r/qnTtl2tJhxneAvwbMC0i/tjMwMzK4MTCzGxo3U46M+R40lTqi0jX+PhiM4MyK4vHWJiZmVlpPMbCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwuomaYqkkLR1P/UeknTx0ERlZq3E7Uj7c2JhZmaWI2k/SRdKuk/SCkl/k/QjSS9vdmytQBHR7BisRUgaAXQDq2M9O46kh4AbI2LKEIVmZi2iFdoRSbcCmwH/C9wPvAo4ClgB7BoRjw91TK1kg2YHYK0jIp4Hnm92HGbWulqkHTkW+ENE9FYKJP0W+D0pwfhiswJrBT4UYnWrPjaq5IuS5mfdhb+TtGON150qaZ1fJrWOtWbHVX8jaR9Jt0paKekOSftky9+TPV8labak3Qbr85pZ+VqhHYmImfmkolIGLAZ2GPhWaG9OLGwgTgO+AvwF+E/gb8A0YOMBrnc74DLg18BJwEuAX0v6IHAO8D/AKcC2wM8keT82a10t0Y5IGgOMAZ4aYFxtz4dCrBBJ/wAcD1wDHFI5Virpq8DnB7j67YE9I2JWts67gKnAD4F/iohHsvJngP8G9gZuHOB7mtkQa7F25GhgQ+CKAcbV9vxLz4p6O+lL9p2qAVjnlrDuuyqNQeaW7P6GSmNQVf6qEt7TzIZeS7QjkvYm9W78LCJuKCG2tubEworaKru/P18YEU8Czwxw3fkvPRHxbPbw0ap6lfKXDPD9zKw5hn07IumfgF8CdwL/PsCYOoITCxsKfZ1SNqKP8r5GjPdVrsbCMbMWNOTtiKRXksZ7PAu8IyKWrTdCA5xYWHEPZ/evzhdmx0yrM/9nsmWbVpVvhZl1smHbjkh6KSmpGAnsHxELB+N92pETCytqBtADfFpSPtM/ukbdB7P7vSsFkjYGPjJo0ZlZKxiW7Ui23muBfyT1VNzfz0ssx2eFWCER8aSkb5BO4/qNpGuB3YADWfd0rGmk450XSPo6qSvycOBJYMLQRW1mw8kwbkcuBd4IXAjsICk/d8XyiLiq5PdrK04sbCC+CKwCjgDeRhpdPZl06tgLIqJH0ruB75LOV3+cNOr7GeCiIYzXzIaf4diO7JrdH57d8h4Grir5/dqKrxViZmZmpfEYCzMzMyuNEwszMzMrjRMLMzMzK40TCzMzMytNw4mFpAMkvSX3/EhJt0m6TJKnVjazQty2mLWHIj0WXwfGAUjaGfgmaSKRbYCzywvNzDqM2xazNlBkHottgLuyx+8FfhMRn5f0OlIj0HayGeG2BDxPvA1XY4HHorXPH++4tgXcvtiw13DbUiSxeA4YnT1+O/Dj7PFisl8bbWhLYH6zgzDrxyuABc0OYgA6sW0Bty82/DXUthRJLP4AnC3pj6QpT/81K38N7fvlWAbw6KOPMm7cuu1bT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhJa/xdvJ7YtsJ72xd+Vxnh7NWaw2pYiicVRpClVDwU+GRGVLOZA4LcF1tcyxo0b12diMXr0aMaNG+eduQ7eXo3poO3VsW0L1G5fOuhvXwpvr8YM1vZqOLGIiEeAg2uUH1NKRGbWkdy2mLWHQhchk9QFbAdsTtWZJRExs4S4zKwDuW0xa30NJxaS3gxcBmwFqGpxACNKiMvMOozbFrP2UGQei+8DtwI7AZsBL8ndNisaiKQTJYWkc3NlG0k6X9LTkpZLulLS+KrXTZB0jaQVkp6Q9HVJG1TV2UfSHEmrJT0gaUrROK08f/nLX5gzZw6PPPJIs0Ox4WFQ2hZw+9Jp3LY0V5FDIa8GDo2IB8oKQtIbgP8Abq9adA5wEHAY8CxwHvALYK/sdSOAa4DHgT2Bl5NOUesBPp/V2Sar833gg8B+wI8kLYyIqWV9Bqvf/PlpgP/ee+/NypUr2WjUaO69524mTJjQ5MisyUpvW8DtSydx2zI8FOmxuIV0DLQUksYAlwIfB57JlW8CfAw4NiJuiIjZwEeBPbMuU4DJwGuBD0XEbRFxHfAl4EhJG2Z1jgDmRcRxEXF3RJwH/BzwgLAmefrppwHY7IBP89KDj2PVyhU89dRTTY7KhoFS2xZw+9Jp3LYMD0V6LL4DfFPSFsAdpOz9BRFR/augP+cD10TEDElfzJXvDnQDM3LrvkfSI8AewM3Z/R0RsSj3uqnA94AdgblZnRmsbSpwbl8BSRoJjMwVjYV0ak5PT8869StltZbZunp7ewEYs/kr6F4TrBg1it7eXm+/PvS3f7XRdiu7bYEWb1/ctjTGbUtjBqttKZJYXJndX5grC9Jgq4YGWEl6P/A64A01Fm8BPBcRS6rKF2XLKnUW1VhOHXXGSRoVEStrvPdJwCnVhdOmTWP06NE1qifTp0/vc5mt68wDs+7JQy5nwYIFLFjQypNGDr6+9q8VK1YMcSSDprS2BdqrfXHb0hi3LY0pu20peq2QAZP0SuBbwKSIWFXGOkt0Bmtf9GgsMH/y5Ml9TpA1ffp0Jk2a5ElZ6jB37lwWLlzICdc9wuo1waLLTmTmzJlMnDix2aENS/3tX0uXLm1CVIOilLYF2qd9cdvSGLctjRmstqXIBFkPF3qnde1OOld9TroGD5B+kewt6Shgf2BDSZtW/aoYTxpMRXb/xqr1js8tq9yPr1FnaR+/JoiI1cDqyvNKfN3d3ev9cve33JKurjS0Z/WaYNWaYOXKlXR1dXnb9aOv/atdtluJbQu0WfvitqU+bluKKbttKTJ4E0nbSvqOpBnZ7duStm1wNdcDOwO75m63kgZaVR73kEZZV953e2ACMCsrmgXsLGnz3HonAUt58SqJs/LryNWZhZkNKyW1LeD2xaxpikyQtT/wK+A24I9Z8V7AXyUdEhF1HQyMiGXAnVXr/jvwdETcmT2/gHRRosWkL/N3gFkRcXP2kmmkL/hPJB1POt55OnB+9qsA0mlgR0k6i3Tsdl/gfaTTzMxsmCirbQG3L2bNVGSMxdeAcyLixHyhpK8BZwJljjI6BuglDeoaSRpt/anKwoh4XtLBpFHas4C/A5cAJ+fqzJN0EOmc9c+SrpL47z7H3GzYGcq2Bdy+mA2KIonFDqSMvNqFwNEDCSYi9ql6vgo4Mrv19ZqHgXf0s94bgd0GEpuZDbpBa1vA7YvZUCkyxuJJ0jHKarsCTwwkGDPraG5bzNpAkR6LHwI/kPQq4E9Z2V7ACax9CpWZWSPctpi1gSKJxVeAZcBxpPOxAR4DTgW+XU5YZtaB3LaYtYEi81gEaaDSOZLGZmXLyg7MzDqL2xaz9lCkx+IF/tKb2WBw22LWuupKLCTNAfaLiGckzSXN219TRLyurODMrL25bTFrP/X2WFzNi1PQXs16vvxmZg1w22LWZupKLCLiy7nHpw5aNGbWUdy2mLWfhuexkPQ3SS+tUb6ppL+VE5aZdRq3LWbtocgEWVuTrhJYbSTwigFFY2adbGvctpi1vLrPCpH0ztzT/SU9m3s+gnSFv3llBWZmncFti1l7aeR006uy+yBdiCevB3iINLGNmVkjrsru3baYtYG6E4uI6AKQNA94Q0Q8NWhRmVnHcNti1l6KzLy5zWAEYmadzW2LWXuod4KszwA/iIhV2eM+RYTn9DezurhtMWs/9fZYHANcCqzKHvcl8MWCzKx+blvM2ky9E2RtU+uxmdlAuG0xaz9FJsg6WdLoGuWjJJ1cTlhm1mnctpi1hyITZJ0CjKlRPjpbZmZWhNsWszZQJLEQtS8UNBFYPLBwzKyDuW0xawONzLz5DOlLH8B9kvINwAjSL43vlxuembU7ty1m7aWReSyOJv2iuJDULZmfdvc54KGImFVeaGbWIY7GbYtZ26j7UEhEXBIRFwNvA76bPa/cLi/yxZf0SUm3S1qa3WZJOjC3fCNJ50t6WtJySVdKGl+1jgmSrpG0QtITkr4uaYOqOvtImiNptaQHJE1pNFYzGxxuW8zaS8NjLCLi98BWkk6XdLmkzQEkHShpxwZXNx84EdgdeD1wA3B1bj3nAIcAhwFvBbYEflF5saQRwDXAhsCewEeAKcBpuTrbZHV+B+wKnAv8SNL+DcZqZoPIbYtZeyhyuulbgTuANwHv4cVR3BOBLzeyroj4dURcGxH3R8R9EfEFYDnwZkmbAB8Djo2IGyJiNvBRYE9Jb85WMRl4LfChiLgtIq4DvgQcKWnDrM4RwLyIOC4i7o6I84Cfs/7JeMxsiLltMWsPDV8rBPga8MWIOFvSslz5DcBRRQPJfiEcBmwMzCL90ugGZlTqRMQ9kh4B9gBuzu7viIhFuVVNBb4H7AjMzerMYG1TSb8u+oplJDAyVzQWoKenh56ennXqV8pqLbN19fb2AjByAwEwatQoent7vf360N/+1Ubbre3bliyeutsXty2NcdvSmMFqW4okFjsDH6hR/gTwskZXJmln0pd9I9IvindHxF2SdgWei4glVS9ZBGyRPd4ie169nDrqjJM0KiJW1gjrJGqcNz9t2jRGj15n/p4XTJ8+vc9ltq4zD5yQHhxyOQsWLGDBggXNDWiY62v/WrFixRBHMmg6oW2BAu2L25bGuG1pTNltS5HEYgnwcmBeVfluQJG/3r2k45ObAIcCl2Rdos10BnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoltD+bQs00L64bWmM25bGDFbbUiSx+ClwpqTDSOedd0naC/gG8ONGVxYRzwEPZE9nS3oD8FngCmBDSZtW/bIYDzyePX4ceGPVKsfnllXux9eos7SvXxQRsRpYXXkupW617u7u9X65+1tuSVdXGtqzek2wak2wcuVKurq6vO360df+1Ubbre3bliyuhtsXty31cdtSTNltS5GZNz8P3AM8ShpcdRcwE/gTcHqhKNaNaSQwG+gB9qsskLQ9MIHUvUl2v3Nl9HhmErA0i6tSZz/WNim3DjMbHty2mLWBhnsssl8BH5f0FWAnUgMwNyLub3Rdks4ArgMeIXUHfgDYB9g/Ip6VdAFwtqTFpC/0d4BZEXFztopppC/5TyQdTzrmeTpwfvarANKMfUdJOos0Ac++wPuAgxqN18wGj9sWs/ZQ5FAIABHxiKRHs8e15vevx+akLs6Xk2bbu530xa+MJDkG6AWuJP3SmAp8KhfD85IOJo3UngX8HbgEODlXZ56kg0jnrX+WdH77v0fE1IIxm9kgctti1toKJRaSPkb6Yr46e34/cG5E/KiR9UTEx/pZvgo4Mrv1Vedh4B39rOdG0gAwMxvG3LaYtb6GEwtJpwHHknUdZsV7AOdImhARJ/f5YjOzPrhtMWsPRXosPgl8PCIuz5X9StLtpAbBX34zK8Jti1kbKHJWSDdwa43y2QxgzIaZdTy3LWZtoEhi8RPSL4tqnwAuHVg4ZtbB3LaYtYGivwI+JmkyaU59SBcNmgD8WNILM8pFxLEDjM/MOovbFrMWVySx2AmYkz3eNrt/KrvtlKtX9DQxM+tMblvM2kCRCbLeNhiBmFlnc9ti1h6KjLEAQNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGtJM9sBXCDpm2UGZ2adw22LWXso0mNxDukCPhOA/MXarwAOKCMoM+tIblvM2kCRwZuTSXPuz6/qobwf2KqUqMysE7ltMWsDRXosNmbtXxMVmwGra5SbmdXDbYtZGyiSWNwEfDj3PCR1AccDvyslKjPrRG5bzNpAkUMhxwPXS3o9sCFwFrAj6VfFXiXGZmadxW2LWRtouMciIu4EXgP8Abia1H35C2C3iHiw3PDMrFO4bTFrDw31WEjqBn4LHBERXx2ckMys07htMWsfDfVYREQPsMsgxWJmHcpti1n7KDJ483+Aj5UdiJl1PLctZm2gyODNDYDDJb0dmA38Pb/QVx00s4Lctpi1gYFe3fQ1Vct81UEzK8pti1kb8NVNzWxYcNti1h4KX93UzMzMrFpTEwtJJ0n6s6Rlkp6QdJWk7avqbCTpfElPS1ou6UpJ46vqTJB0jaQV2Xq+LmmDqjr7SJojabWkByRNGYKPaGZN4LbFrHma3WPxVuB84M3AJKAbmCZp41ydc4BDgMOy+luSJs0BQNII4BrSTH17Ah8BpgCn5epsk9X5HbArcC7wI0n7D8qnMrNmc9ti1iRFBm+WJiLWuhRyluk/AewOzJS0Cen0sw9ExA1ZnY8Cd0t6c0TcTLoi4muBt0fEIuA2SV8CzpR0akQ8BxwBzIuI47K3ulvSW4BjgKmD/kHNbEi5bTFrnroSC0lzgP0i4hlJJwPfiIhaVyEcqE2y+8XZ/e6kXxozKhUi4h5JjwB7ADdn93dkX/yKqcD3SNcZmJvVmcHappJ+XaxD0khgZK5oLEBPTw89PT3r1K+U1Vpm6+rt7QVg5Abp0tijRo2it7fX268P/e1frbzdOq1tgcbaF7ctjXHb0pjBalvq7bHYgTRv/zPAKcD3qX1548KyqxieC/wxu2YAwBbAcxGxpKr6omxZpc6iGsupo844SaMiYmXVspNIn3Mt06ZNY/To0X1+hunTp/e5zNZ15oET0oNDLmfBggUsWLCguQENc33tXytWDMb/4SHTaW0LFGhf3LY0xm1LY8puW+pNLG4DLpL0B0DA5yQtr1UxIk6rVV6H80nnsb+l4OvLdAZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRVmtvorLYFGmhf3LY0xm1LYwarbak3sZgCfBk4mDRRzYHAmhr1gtzApnpJOi9b994RMT+36HFgQ0mbVv2yGJ8tq9R5Y9Uqx+eWVe7H16iztNYviohYDazOxQdAd3f3er/c/S23pKsrjRlevSZYtSZYuXIlXV1d3nb96Gv/avHtNoUOalugWPvitqU+bluKKbttqSuxiIh7gfcDSOolHRN9otA75ih9o74DvBvYJyLmVVWZDfQA+wFXZq/ZHpgAzMrqzAK+IGnzXEyTgKXAXbk676ha96TcOsysCdy2mLWfIjNvlnmK6vnAB4B/AZZJqhy3fDYiVkbEs5IuAM6WtJj0hf4OMCsbtQ0wjfQl/4mk40nHPE8Hzs9+GUA6bnuUpLOAC4F9gfcBB5X4WcxsANy2mLWHQqebStoWOJo08ArSl+9bEfFgg6v6ZHZ/Y1X5R4GLs8fHAL2kXxUjSSOuP1WpGBHPSzqYNFJ7FunCRZcAJ+fqzJN0EOm89c8C84F/jwifDmY2jLhtMWt9DScW2cQvvyINuvpjVrwX8FdJh0RE3cOXI0J11FkFHJnd+qrzMOt2R1bXuRHYrd7YzGxouW0xaw9Feiy+BpwTESfmCyV9DTgT8HlRZlaE2xazNlDkmOYOwAU1yi8kzVJnZlaE2xazNlAksXiSNCd+tV1JU+aamRXhtsWsDRQ5FPJD4AeSXgX8KSvbCziBtSd9MTNrhNsWszZQJLH4CrAMOI40gxzAY8CpwLfLCcvMOpDbFrM2UGQeiyCdWnWOpLFZ2bKyAzOzzuK2xaw9DOiy6f7Sm9lgcNti1rrKnOnOzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmncdti1n7aCixiIgeYJdBisXMOpTbFrP2UeRQyP8AHys7EDPreG5bzNpAkdNNNwAOl/R2YDbpUsIviIhjywjMzDqO2xazNlAksdgJmJM9fk3VshhYOGbWwdy2mLWBIjNvvm0wAjGzzua2xaw9FD7dVNJ2kvaXNCp7rvLCMrNO5bbFrLU1nFhIeqmk64H7gGuBl2eLLpD0zTKDM7PO4bbFrD0U6bE4B+gBJgArcuVXAAeUEZSZdSS3LWZtoMjgzcnA/hExv6qH8n5gq1KiMrNO5LbFrA0U6bHYmLV/TVRsBqweWDhm1sHctpi1gSKJxU3Ah3PPQ1IXcDzwu1KiMrNO5LbFrA0USSyOBz4h6TpgQ+As4E5gb+CERlYkaW9Jv5b0mKSQ9K6q5ZJ0mqSFklZKmlF9LQFJm0m6VNJSSUskXSBpTFWdXSTdJGmVpEclHV/gc5vZ4HLbYtYGGk4sIuJO0uQ1fwCuJnVf/gLYLSIebHB1GwN/AY7sY/nxwGeAI4A3kWbimyppo1ydS4EdgUnAwaRG6AeVhZLGAdOAh4Hdgf8ETpX0iQZjNbNB5LbFrD0UGbxJRDwLfHWgbx4R1wHXAVSfqp6du340cHpEXJ2VfRhYBLwL+KmkHUijxd8QEbdmdT4NXCvpcxHxGPBB0q+fwyPiOeCvknYFjiXXSJhZ87ltMWt9hRILSS8hXSxoh6zoLuCiiFhcVmDANsAWwIxKQUQ8K+kWYA/gp9n9ksoXPzMD6CX9CvllVmdm9sWvmAqcIOklEfFM9RtLGgmMzBWNBejp6aGnp2edQCtltZbZunp7ewEYuUFq8EeNGkVvb6+3Xx/627/aabu1e9sCjbUvblsa47alMYPVtjScWEjaG/g18CxQ+dJ9BjhZ0iERMbNQJOvaIrtfVFW+KLdsC+CJ/MKIWCNpcVWdeTXWUVlW68t/EnBKdeG0adMYPXp0nwFPnz69z2W2rjMPnJAeHHI5CxYsYMGCBc0NaJjra/9asaLWiRStp0PaFijQvrhtaYzblsaU3bYU6bE4nzRhzScj4nkASSOA72bLdi4UyfByBnB27vlYYP7kyZMZN27cOpV7enqYPn06kyZNoru7e6hibFlz585l4cKFnHDdI6xeEyy67ERmzpzJxIkTmx3asNTf/rV06dImRDUoOqFtgQbaF7ctjXHb0pjBaluKJBbbAYdWvvgAEfG8pLNZ+1SxgXo8ux8PLMyVjwduy9XZPP8iSRuQznt/PFdnfNW6x+eWrSMiVpM7b75yjLa7u3u9X+7+llvS1ZXGDK9eE6xaE6xcuZKuri5vu370tX+10XZr+7YFirUvblvq47almLLbliKnm87hxeOfeTuQRmGXZR7py7lfpSAbhf0mYFZWNAvYVNLuudftS/pct+Tq7C0pv4UmAff2dQzUzJrCbYtZG6irx0LSLrmn3wa+JWk74Oas7M2k07pObOTNs3PCt8sVbZONql4cEY9IOhf4oqT7SY3BV4DHgKsAIuJuSb8FfijpCKAbOA/4aTZqG+Ay0vHMCySdCewEfBY4ppFYzax8blvM2k+9h0JuAwLIn7d1Vo16l5GOkdbr9aw9o17luOMlwJTsPTYmnbq1Ken89gMiYlXuNR8kfeGvJ43YvpI04At4YbT3ZNIx2tnAU8BpEeHTwcya7zbctpi1lXoTi20G480j4kbWblCqlwdwcnbrq85i4AP9vM/twD8Xi9LMBpHbFrM2U1diEREPD3YgZtZ53LaYtZ+iE2RtCbyFNGp6rQGgEfHtEuIysw7ktsWs9RWZIGsK8N/Ac8DTpOOjFUEagGVm1hC3LWbtoUiPxVeA04AzIqK35HjMrHO5bTFrA0XmsRhNOuXKX3wzK5PbFrM2UCSxuAA4rOxAzKzjuW0xawNFDoWcBPxG0gHAHcBalz+LiGPLCMzMOo7bFrM2UDSx2B+4N3tePcDKzKwIty1mbaBIYnEccHhEXFxyLGbW2dy2mLWBImMsVgN/LDsQM+t4blvM2kCRxOJbwKfLDsTMOp7bFrM2UORQyBuBfSUdDPyVdQdYvaeMwMys47htMWsDRRKLJcAvSo7DzGwJblvMWl7DiUVEfHQwAjGzzua2xaw9FBljYWZmZlZTkYuQzWM955RHxKsGFJGZdSS3LWbtocgYi3OrnncDuwEHAF8faEBm1rHOrXrutsWsBRUZY/GtWuWSjgReP+CIzKwjuW0xaw9ljrG4DnhvieszMwO3LWYtpczE4lBgcYnrMzMDty1mLaXI4M25rD3ASsAWwD8AnyopLjPrMG5bzNpDkcGbV1U97wWeBG6MiHsGHJGZdaqrqp67bTFrQUUGb355MAIZCtkgsP8k/Qr6C/DpiPi/5kZlZuC2xaxddMwEWZL+FTgb+DLwOtKXf6qkzZsamJm1NLctZmurO7GQ1Cvp+X5uawYz2AE6FvhhRFwUEXcBRwArgMObG5ZZZ3PbYtZeGjkU8u71LNsD+AzDtAdE0obA7sAZlbKI6JU0gxR7df2RwMhc0ViAxYsX09PTU12dnp4eVqxYwU033URXVxddXV309va+cA8MadlQv1+jcd17772MGTMGLX4Y9TzPRhttxOzZs1m+fHlHbJtGX7NmzRpWrFjB008/TXd39zr737Jly9YpazEd07Zkr6m7fRmqtqWs9TQ7hsFoW9pl2wxp2xIRhW/A9sAvgTXAJcBWA1nfYN2ALUmjzfeoKj8LuKVG/VOz+r751kq3f2z2d63E72xbti1uX3xr0VtDbUuRs0KQtCXpeOJHgKnArhFxZ5F1DVNnkI6Z5m1G3+fSjwXmA68AWv7n4xDw9mpMPdtrLPDYkEU0SDqgbYHG2hd/Vxrj7dWYQWlbGkosJG0CfB74NHAbsF9E3NTIOprkKeB5YHxV+Xjg8erKEbEaWF1VvLSvlUuqPFwWEX3Ws8TbqzF1bq+W3o6d0rZAY+2LvyuN8fZqzGC1LY0M3jwe+BtwMPBvEbFni3zxiYjngNnAfpUySV3Z81nNisvM3LaYtRtlx/z6ryj1AiuBGaQMvaaIeE85oZUrOyXsEuA/gP8DjgbeB/xTRCwa4LrHAc8CmzhL7p+3V2PafXu5bVnvutv6b182b6/GDNb2auRQyI9JgzhaUkRcIekfgNNIk9jcBhww0C9+ZjXpuHB196bV5u3VmHbfXm5b+tbuf/uyeXs1ZlC2V909FmZmZmb9GZbnhpuZmVlrcmJhZmZmpXFiYWZmZqVxYmFmZmalcWJRkKTNJF0qaamkJZIukDSmn9fcKCmqbt8fqpiHkqQjJT0kaZWkWyS9sZ/6h0m6J6t/h6R3DFWsw0Ej20vSlBr70aqhjNcGj9uW9XPb0phmtC1OLIq7FNgRmESa2Gdv4Ad1vO6HwMtzt+MHK8BmafQy0pL2BC4HLgB2A64CrpK005AE3GQFL7u9lLX3o60GO04bMm5b+uC2pTFNa1uafRGfVrwBO5DOu399ruwAoBfYcj2vuxE4t9nxD8H2uQU4L/e8C1gAnNhH/SuA31SV3Qx8v9mfZZhurynAkmbH7dug7AtuW9a/fdy2DO72KqVtcY9FMXuQNv6tubIZpC//m/p57QclPSXpTklnSBo9aFE2Qe4y0jMqZRHRmz2veRnprHxGVdnU9dRvGwW3F8AYSQ9LelTS1ZJ2HORQbWi4bemD25bGNLNtKXR1U2ML4Il8QUSskbQ4W9aXy4CHSVeK2wU4k3R56GE5VXFBLwNGANWzDi4C/qmP12zRR/31bct2UWR73QscDtwObAJ8DviTpB0jYv5gBWpDwm1L39y2NKZpbYsTixxJXwNO6KfaDkXXHxH546R3SFoIXC9p24h4sOh6rbNExCxyF7iS9CfgbtK1Kr7UrLisb25brBWU1bY4sVjbN4GL+6nzN9LlkNca/CJpA2Az+rhUch9uye63A9rly9/wZaSz8kbqt5Mi22stEdEjaS5pP7LhyW3LwLltaUzT2haPsciJiCcj4p5+bs+RMrpNJe2ee/m+pO15S82V17Zrdr+wnE/QfFHsMtKz8vUzk9ZTv20U3F5rkTQC2Jk22o/ajduWgXPb0pimti3NHrXaqjfgOmAO8EZgL+A+4LLc8n8E7gHemD3fltSVtDuwNfBO0i+J3zf7swzCtvlXYBXwEVL37n8DzwDjs+U/Bs7I1d8T6AGOIx37OxV4Dtip2Z9lmG6vk4HJwKtIp5BdTrrs+Gub/Vl8K2V/cNvS97Zx2zK426uUtqXpH7xVb6SuycuAZaTr2V8IjMkt35p02tg+2fNXAr8Hns7+0PcDZwHjmv1ZBmn7HEUaTLaa9EvrTbllNwIXV9U/jDRwaDVwJ/COZn+G4bq9gHNydR8HrgF2a/Zn8K20fcFty/q3j9uWQdpeZbUtvmy6mZmZlcZjLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4sbMhJekjS0c2Ow8zai9uW4cGJhZmZmZXGiYWZmZmVxomFNUTSJyQ9ll1+N19+taQLJW2bPV4kabmkP0t6+3rWt7WkkLRrrmzTrGyfXNlOkq7L1rlI0k8kvWwQPqKZNYHblvbhxMIa9b/AS4G3VQokbQYcAFwKjAGuBfYDdgN+C/xa0oSibyhpU+AGYC7w+uy9xgM/K7pOMxt23La0iQ2aHYC1loh4RtJ1wAeA67PiQ4GngN9FRC/wl9xLviTp3cA7gfMKvu1RwNyI+HylQNLhwKOSXhMR9xVcr5kNE25b2od7LKyIS4H3ShqZPf8g8NOI6JU0RtI3JN0taYmk5cAOQOFfFcBE4G1ZV+XybJ33ZMu2HcB6zWx4cdvSBtxjYUX8GhBwkKQ/A/8MHJMt+wYwCfgc8ACwEvg5sGEf6+rN7pUr666qMyZ7zxNqvH5ho8Gb2bDltqUNOLGwhkXEKkm/IP2a2A64NyLmZIv3Ai6OiF8CSBoDbL2e1T2Z3b+cdJwTYNeqOnOA9wIPRcSaAX8AMxuW3La0Bx8KsaIuBQ4CDs8eV9wPvEfSrpImApexnv0sIlYCNwMnStpB0luB06uqnQ9sBlwu6Q3Z6PD9JV0kaUSJn8nMms9tS4tzYmFF3QAsBrYnfcErjgWeAf5E6mKcSvpVsD6Hk3rPZgPnAl/ML4yIx0i/VkYA04A7snpLeLG708zag9uWFqeIaHYMZmZm1ibcY2FmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYWZmZqVxYmFmZmalcWJhZmZmpXFiYYNK0hRJIWnrZsdiZmaDz4mFmZmZlUYR0ewYrI1JGgF0A6vDO5uZWdtzYmFmZmal8aEQG1T5MRaSLpH0lKTuGvWmSbq3GTGamVl5nFjYUPoJ8FJg/3yhpC2AfYH/aUZQZmZWHicWNpRuAOYDH6oq/zfSvujEwsysxTmxsCETEb3ApcA7JY3NLfog8KeImNecyMzMrCxOLGyo/RgYBbwbQNL2wO6kwyRmZtbinFjYkIqIu4DZvHg45EPAc8DPmhaUmZmVxomFNcOPgX0lvRz4AHBNRDzT5JjMzKwETiysGS4HAvgW8Co8aNPMrG04sbAhFxFPAr8FDgOWANc0NSAzMyuNEwtrlh9n9z+LiNVNjcTMzErjxMIGVURcHBGKiIeqFj2X3fswiJlZG/G1QqwpJP0G2AHYzhcnMzNrHxs0OwDrLJLeD+wCHAR81kmFmVl7cY+FDSlJASwHrgCOiIg1TQ7JzMxK1HBiIekAYHlE/CF7fiTwceAu4EjPR2BmZta5igze/DowDkDSzsA3gWuBbYCzywvNzMzMWk2RMRbbkHonAN4L/CYiPi/pdaQEw8zMzDpUkcTiOWB09vjtvDgfwWKynox2I0nAlsCyZsdi1oexwGMeDGtmzVYksfgDcLakPwJvBP41K38NML+swIaZLWnfz2bt4xXAgmYHYWadrUhicRTwXeBQ4JMRUWnIDiRN09yOlgE8+uijjBu3bqdMT08P06ZNY/LkyXR3dw95cK3G26sx/W2vpUuX8spXvhLco2Zmw0DDiUVEPAIcXKP8mFIiGsbGjRvXZ2IxevRoxo0b53+UdfD2aoy3l5m1kkITZEnqArYDNqfqzJKImFlCXGZmZtaCGk4sJL0ZuAzYClDV4gBGlBCXmZmZtaAi81h8H7gV2AnYDHhJ7rZZ0UAknSgpJJ2bK9tI0vmSnpa0XNKVksZXvW6CpGskrZD0hKSvS9qgqs4+kuZIWi3pAUlTisZp5fnLX/7CnDlzeOSRR5odipmZlaTIoZBXA4dGxANlBSHpDcB/ALdXLTqHdE2Jw4BngfOAXwB7Za8bAVwDPA7sCbycdPprD/D5rM42WZ3vAx8E9gN+JGlhREwt6zNY/ebPTyfY7L333qxcuZKNRo3m3nvuZsKECU2OzMzMBqpIj8UtpPEVpZA0BriUNC34M7nyTYCPAcdGxA0RMRv4KLBndjgGYDLwWuBDEXFbRFwHfAk4UtKGWZ0jgHkRcVxE3B0R5wE/B9p+sOlw9fTTTwOw2QGf5qUHH8eqlSt46qmnmhyVmZmVoUhi8R3gm5KmSNpd0i75W4H1nQ9cExEzqsp3B7qBF8oj4h7gEWCPrGgP4I6IWJR73VTSRF075upUr3tqbh3WJN2b/SPdL31ls8MwM7MSFTkUcmV2f2GuLEgDORsavJldQvt1wBtqLN4CeC4illSVL8qWVeosqrGcOuqMkzQqIlbWiGskMDJXNBbSaX89PT3rBFopq7XM1tXb2wvAyA3S2N9Ro0bR29vr7deH/vYvbzczG06KXitkwCS9EvgWMCkiVpWxzhKdBJxSXTht2jRGjx5do3oyffr0wYyp7Zx5YDam4pDLWbBgAQsWeNLI9elr/1qxYsUQR2Jm1rciE2Q9XNJ7706aB2NOuhQHkHo79pZ0FLA/sKGkTat6LcaTBmuS3b+xar3jc8sq9+Nr1Flaq7cicwZrX6l1LDB/8uTJfU6QNX36dCZNmuQJjOowd+5cFi5cyAnXPcLqNcGiy05k5syZTJw4sdmhDUv97V9Lly5tQlRmZrUVnSBrW+BoYIes6C7gWxHxYAOruR7YuarsIuAe4EzgUdLZHfuRHX6RtD0wAZiV1Z8FfEHS5hHxRFY2CVjKi1dgnQW8o+p9JuXWsY6IWA2srjyvJD7d3d3rTRz6W25JV1ca2rN6TbBqTbBy5Uq6urq87frR1/7l7WZmw0mRCbL2B34F3Ab8MSveC/irpEMioq7jARGxDLizat1/B56OiDuz5xeQLni2mJQsfAeYFRE3Zy+ZRkogfiLpeNJ4itOB87PkANJppkdJOos0LmRf4H2k01jNzMysREV6LL4GnBMRJ+YLJX2N1NNQ5kCDY4BeUo/FSNLZHJ+qLIyI5yUdDHyP1APxd+AS4ORcnXmSDiLNifFZ0lVK/91zWJiZmZWvSGKxA+kXf7ULSYdHCouIfaqerwKOzG59veZh1j3UUV3nRmC3gcRmZmZm/Ssyj8WTwK41yncFnqhRbmZmZh2iSI/FD4EfSHoV8KesbC/gBNY+k8LMzMw6TJHE4ivAMuA40mmZAI8BpwLfLicsMzMza0VF5rEI0kDIcySNzcqWlR2YmZmZtZ5C81hUOKEwMzOzvLoSC0lzgP0i4hlJc0nXBKkpIl5XVnBmZmbWWurtsbiaF2eivJr1JBZmZmbWuepKLCLiy7nHpw5aNGZmZtbSGp7HQtLfJL20Rvmmkv5WTlhmZmbWiopMkLU16Sqk1UYCrxhQNGZmZtbS6j4rRNI7c0/3l/Rs7vkI0lVI55UVmJmZmbWeRk43vSq7D9KFvvJ6gIdIk2aZmZlZh6o7sYiILgBJ84A3RMRTgxaVmZmZtaQiM29uMxiBmJmZWeurd4KszwA/iIhV2eM+RYSvF2JmZtah6u2xOAa4FFiVPe5L4AuRmZmZdax6J8japtZjMzMzs7wiE2SdLGl0jfJRkk4uJywzMzNrRUUmyDoFGFOjfHS2zMzMzDpUkcRC1L4I2URg8cDCMTMzs1bWyMybz5ASigDuk5RPLkaQejG+X254ZmZm1koamcfiaFJvxYWkQx75Kb2fAx6KiFnlhWZmZmatpu5DIRFxSURcDLwN+G72vHK7vEhSIemTkm6XtDS7zZJ0YG75RpLOl/S0pOWSrpQ0vmodEyRdI2mFpCckfV3SBlV19pE0R9JqSQ9ImtJorGZmZta/hsdYRMTvga0knS7pckmbA0g6UNKODa5uPnAisDvweuAG4Orces4BDgEOA94KbAn8ovJiSSOAa4ANgT2BjwBTgNNydbbJ6vwO2BU4F/iRpP0bjNXMzMz6UeR007cCdwBvAt7Di2eITAS+3Mi6IuLXEXFtRNwfEfdFxBeA5cCbJW0CfAw4NiJuiIjZwEeBPSW9OVvFZOC1wIci4raIuA74EnCkpA2zOkcA8yLiuIi4OyLOA37O+if6MjMzswKKnBXyNeCLETGJNLai4gbgzbVf0j9JIyS9H9gYmEXqxegGZlTqRMQ9wCPAHlnRHsAdEbEot6qpwDhgx1ydGaxtam4dZmZmVpKGL0IG7Ax8oEb5E8DLGl2ZpJ1JicRGpN6Kd0fEXZJ2BZ6LiCVVL1kEbJE93iJ7Xr2cOuqMkzQqIlbWiGkkMDJXNBagp6eHnp6edT5DpazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpwUSSyWAC8H5lWV7wYsKLC+e0ljHzYBDgUuyQ63NNNJ1Jjsa9q0aYwevc6koy+YPn36YMbUds48cEJ6cMjlLFiwgAULiuw+naOv/WvFihVDHImZWd+KJBY/Bc6UdBhpTosuSXsB3wB+3OjKIuI54IHs6WxJbwA+C1wBbChp06pei/HA49njx4E3Vq1yfG5Z5X58jTpLa/VWZM4Azs49HwvMnzx5MuPGjVunck9PD9OnT2fSpEl0d3f3sUqrmDt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7PaiiQWnwfOBx4lTYx1V3Z/GXB6CTF1kQ5DzAZ6gP2AKwEkbQ9MIB06Ibv/gqTNI+KJrGwSsDSLq1LnHVXvMSm3jnVExGpgdeW5lLrsu7u715s49Lfckq6uNLRn9Zpg1Zpg5cqVdHV1edv1o6/9y9vNzIaThhOLrIfh45K+AuxEOitkbkTc3+i6JJ0BXEcakDmWNHZjH2D/iHhW0gXA2ZIWk5KF7wCzIuLmbBXTSAnETyQdTxpPcTpwfpYcQJoN9ChJZ5Em99oXeB9wUKPxmpmZ2foV6bEAICIekfRo9rjWtUPqsTnp8MnLSTN53k5KKioHk48Bekk9FiNJZ3N8KhfD85IOBr5H6oH4O3AJcHKuzjxJB5HmxPgsae6Mf4+IqQVjNjMzsz4USiwkfYz0T//V2fP7gXMj4keNrCciPtbP8lXAkdmtrzoPs+6hjuo6N5IGl5qZmdkgajixkHQacCzZYYmseA/gHEkTIuLkPl9sZmZmba1Ij8UngY9HxOW5sl9Jup2UbDixMDMz61BFZt7sBm6tUT6bAYzZMDMzs9ZXJLH4CanXotongEsHFo6ZmZm1sqI9DB+TNBmonPb5JtL8Ej+W9MLEUhFx7ADjMzMzsxZSJLHYCZiTPd42u38qu+2Uq1f0FFQzMzNrUUUmyHrbYARiZmZmra/IGAsAJG0naX9Jo7LnKi8sMzMza0UNJxaSXirpeuA+4FrSrJkAF0j6ZpnBmZmZWWsp0mNxDuniYBOA/PWarwAOKCMoMzMza01FBm9OJl3PY37V0Y/7ga1KicrMzMxaUpEei41Zu6eiYjNylxo3MzOzzlMksbgJ+HDueUjqAo4HfldKVGZmZtaSihwKOR64XtLrgQ2Bs4AdST0We5UYm5mZmbWYhnssIuJO4DXAH4CrSYdGfgHsFhEPlhuemZmZtZKGeiwkdQO/BY6IiK8OTkhmZmbWqhrqsYiIHmCXQYrFzMzMWlyRwZv/A3ys7EDMzMys9RUZvLkBcLiktwOzgb/nF/qKpmZmZp1roFc3fU3VMl/R1MzMrIP56qZmZmZWmsJXNzUzMzOr1tTEQtJJkv4saZmkJyRdJWn7qjobSTpf0tOSlku6UtL4qjoTJF0jaUW2nq9L2qCqzj6S5khaLekBSVOG4COamZl1lGb3WLwVOB94MzAJ6AamSdo4V+cc4BDgsKz+lqQJuQCQNAK4hjQL6J7AR4ApwGm5OttkdX4H7AqcC/xI0v6D8qnMzMw6VJHBm6WJiLUus571IjwB7A7MlLQJ6dTWD0TEDVmdjwJ3S3pzRNxMutrqa4G3R8Qi4DZJXwLOlHRqRDwHHAHMi4jjsre6W9JbgGOAqYP+Qc3MzDpEXT0W2SGEl2SPT5Y0epDi2SS7X5zd707qxZhRqRAR9wCPAHtkRXsAd2RJRcVUYBzpGiaVOjNY29TcOszMzKwE9fZY7EC6JsgzwCnA96l96fTCsiukngv8MbseCcAWwHMRsaSq+qJsWaXOohrLqaPOOEmjImJlVSwjgZG5orEAPT099PT0rBN7pazWMltXb28vACM3EACjRo2it7fX268P/e1f3m5mNpzUm1jcBlwk6Q+AgM9JWl6rYkScVqu8DueT5sh4S8HXl+kkUgK1lmnTpjF6dN+dNdOnTx/MmNrOmQdOSA8OuZwFCxawYMGC5gY0zPW1f61YUWqOb2Y2IPUmFlOALwMHkybBOhBYU6NekBs0WS9J52Xr3jsi5ucWPQ5sKGnTql6L8dmySp03Vq1yfG5Z5X58jTpLq3srMmcAZ+eejwXmT548mXHjxq1Tuaenh+nTpzNp0iS6u7trfUTLmTt3LgsXLuSE6x5h9Zpg0WUnMnPmTCZOnNjs0Ial/vavpUuXNiEqM7Pa6kosIuJe4P0AknqB/SLiiYG+uSQB3wHeDewTEfOqqswGeoD9gCuz12wPTABmZXVmAV+QtHkupknAUuCuXJ13VK17Um4da4mI1cDqXJwAdHd3rzdx6G+5JV1daWjP6jXBqjXBypUr6erq8rbrR1/7l7ebmQ0nRWbeLPMU1fOBDwD/AiyTVBkT8WxErIyIZyVdAJwtaTEpWfgOMCs7IwRgGimB+Imk40njKU4Hzs8SBEhjQo6SdBZwIbAv8D7goBI/i5mZWccrdLqppG2Bo0mDOiH9Y/9WRDzY4Ko+md3fWFX+UeDi7PExQC+px2Ik6WyOT1UqRsTzkg4Gvkfqgfg7cAlwcq7OPEkHkebE+CwwH/j3iPCppmZmZiVqOLHIJpX6FWlA5x+z4r2Av0o6JCLqHsEYEaqjzirgyOzWV52HWfdQR3WdG4Hd6o3NzMzMGlekx+JrwDkRcWK+UNLXgDMBnxphZmbWoYqMl9gBuKBG+YWkGTDNzMysQxVJLJ4kXW+j2q6k6bjNzMysQxU5FPJD4AeSXgX8KSvbCziBted+MDMzsw5TJLH4CrAMOI40kRTAY8CpwLfLCcvMzMxaUZF5LIJ02uY5ksZmZcvKDszMzMxaz4Aum+6EwszMzPLKnEXTzMzMOpwTCzMzMyuNEwszMzMrTUOJhaRuSddLevVgBWRmZmatq6HEIiJ6gF0GKRYzMzNrcUUOhfwP8LGyAzEzM7PWV+R00w2AwyW9HZhNukz5CyLi2DICMzMzs9ZTJLHYCZiTPX5N1bIYWDhmZmbWyorMvPm2wQjEzMzMWl/h000lbSdpf0mjsucqLywzMzNrRQ0nFpJeKul64D7gWuDl2aILJH2zzODMzMystRTpsTgH6AEmACty5VcAB5QRlJmZmbWmIoM3JwP7R8T8qqMf9wNblRKVmZmZtaQiPRYbs3ZPRcVmwOqBhWNmZmatrEhicRPw4dzzkNQFHA/8rpSozMzMrCUVORRyPHC9pNcDGwJnATuSeiz2KjE2MzMzazEN91hExJ2kibH+AFxNOjTyC2C3iHiwkXVJ2lvSryU9JikkvatquSSdJmmhpJWSZlRfAE3SZpIulbRU0hJJF0gaU1VnF0k3SVol6VFJxzf6uc3MzKx/RXosiIhnga+W8P4bA38BLiQlJ9WOBz4DfASYB3wFmCrptRGxKqtzKemU10lAN3AR8APgAwCSxgHTgBnAEcDOwIWSlkTED0r4DGZmZpYplFhIegnpQmQ7ZEV3ARdFxOJG1hMR1wHXZeusfg8BRwOnR8TVWdmHgUXAu4CfStqBdIrrGyLi1qzOp4FrJX0uIh4DPkg6ZHN4RDwH/FXSrsCxpATEzMzMStJwYiFpb+DXwLPArVnxZ4CTJR0SETNLim0bYAtSTwOQekok3QLsAfw0u19SSSoyM4Be4E3AL7M6M7OkomIqcIKkl0TEMzU+40hgZK5oLEBPTw89PT3rBFopq7XM1tXb2wvAyA1SMjlq1Ch6e3u9/frQ3/7l7WZmw0mRHovzSZNhfTIingeQNAL4brZs55Ji2yK7X1RVvii3bAvgifzCiFgjaXFVnXk11lFZtk5iAZwEnFJdOG3aNEaPHt1nwNOnT+9zma3rzAMnpAeHXM6CBQtYsGBBcwMa5vrav1asqHX2t5lZcxRJLLYDDq0kFQAR8byks1n7NNRWdgZwdu75WGD+5MmTGTdu3DqVe3p6mD59OpMmTaK7u3uoYmxZc+fOZeHChZxw3SOsXhMsuuxEZs6cycSJE5sd2rDU3/61dOnSJkRlZlZbkcRiDmlsxb1V5TuQBmKW5fHsfjywMFc+HrgtV2fz/IskbUA69fXxXJ3xVesen1u2johYTW6yr8r4j+7u7vUmDv0tt6SrK52MtHpNsGpNsHLlSrq6urzt+tHX/uXtZmbDSV2JhaRdck+/DXxL0nbAzVnZm4EjgRNLjG0e6R//fmSJRHaGx5uA72V1ZgGbSto9ImZnZfuSTqO9JVfnq5K6I6JyMHoScG+t8RVmZmZWXL09FrcBAeRP3TirRr3LSOMv6pLNN7Fdrmib7IyNxRHxiKRzgS9Kup8XTzd9DLgKICLulvRb4IeSjiCdbnoe8NPsjJBKTKeQrr56JrAT8FngmHrjNDMzs/rUm1hsM0jv/3rWnga8Mq7hEmAKKXnZmHRa6KakSbkOyM1hAel00vOA60lng1xJOksFeOFMksmkgaWzgaeA0zyHhZmZWfnqSiwi4uHBePOIuJG1e0Gqlwdwcnbrq85issmw1lPnduCfi0VpZmZm9So6QdaWwFtIAyfXmhY8Ir5dQlxmZmbWgopMkDUF+G/gOeBp0tiLiiAN7jQzM7MOVKTH4ivAacAZEdFbcjxmZmbWwhq+uikwmnTWhZMKMzMzW0uRxOIC4LCyAzEzM7PWV+RQyEnAbyQdANwBrHUFpIg4tozAzMzMrPUUTSz258UpvasHb5qZmVmHKpJYHAccHhEXlxyLmZmZtbgiYyxWA38sOxAzMzNrfUUSi28Bny47EDMzM2t9RQ6FvBHYV9LBwF9Zd/Dme8oIzMzMzFpPkcRiCfCLkuMwMzOzNtBwYhERHx2MQMzMzKz1FRljYWZmZlZTkYuQzWM981VExKsGFJGZmZm1rCJjLM6tet4N7AYcAHx9oAGZmZlZ6yoyxuJbtcolHQm8fsARmZmZWcsqc4zFdcB7S1yfmZmZtZgyE4tDgcUlrs/MzMxaTJHBm3NZe/CmgC2AfwA+VVJcZmZm1oKKDN68qup5L/AkcGNE3DPgiMzMzKxlFRm8+eXBCMTMzMxaX0dNkCXpSEkPSVol6RZJb2x2TGZmZu2k7sRCUq+k5/u5rRnMYAdC0r8CZwNfBl4H/AWYKmnzpgZmZmbWRho5FPLu9SzbA/gMw7sH5FjghxFxEYCkI4CDgMOBrzUzMDMzs3ZRd2IREVdXl0nanvRP+RDgUuDk8kIrj6QNgd2BMyplEdEraQYpKaquPxIYmSsaC7B48WJ6enqqq9PT08OKFSu46aab6Orqoquri97e3hfugSEtG+r3azSue++9lzFjxqDFD6Oe59loo42YPXs2y5cv74ht0+hr1qxZw4oVK3j66afp7u5eZ/9btmzZOmVmZs1S5KwQJG1JOqTwEWAqsGtE3FlmYCV7GTACWFRVvgj4pxr1TwJOqS7cZpttyo/MAPjEJz7R7BDawVhgabODMLPO1lBiIWkT4PPAp4HbgP0i4qZBiKvZziCNx8jbjL4nABsLzAdeAfjnY/+8vRpTz/YaCzw2ZBGZmfWh7sRC0vHACcDjwL/VOjQyjD0FPA+MryofT/o8a4mI1cDqquI+fwlKqjxcFhH+xdgPb6/G1Lm9vB3NbFhopMfia8BK4AHgI5I+UqtSRLynjMDKFBHPSZoN7Ec2wZekruz5eU0MzczMrK00klj8mLWn8m41ZwOXSLoV+D/gaGBj4KJmBmVmZtZOGjkrZMogxjHoIuIKSf8AnEa6tsltwAERUT2gs4jVpMGs1YdPrDZvr8Z4e5lZy1BEK3dCmJmZ2XAynCe0MjMzsxbjxMLMzMxK48TCzMzMSuPEwszMzErjxKIgSZtJulTSUklLJF0gaUw/r7lRUlTdvj9UMQ+lRi9RL+kwSfdk9e+Q9I6hinU4aGR7SZpSYz9aNZTxmpn1xYlFcZcCOwKTgIOBvYEf1PG6HwIvz92OH6wAm6XRS9RL2hO4HLgA2I00idlVknYakoCbrNHtlVnK2vvRVoMdp5lZPXy6aQGSdgDuAt4QEbdmZQcA1wKviIia12yQdCNwW0QcPUShNoWkW4A/R8RR2fMu4FHgOxGxziXqJV0BbBwRB+fKbiZtqyOGKOymKbC9pgDnRsSmQxmnmVk93GNRzB7AkkpSkZkB9AJv6ue1H5T0lKQ7JZ0hafSgRdkEuUvUz6iURURv9nydS9Rn9sjXz0xdT/22UXB7AYyR9LCkRyVdLWnHQQ7VzKwuhS6bbmwBPJEviIg1khZny/pyGfAw6SqUuwBnAtsDw+76KgPQ6CXqIW2zWvXXty3bRZHtdS9wOHA7sAnwOeBPknaMiPmDFaiZWT2cWORI+hrpCq7rs0PR9UdEfgzGHZIWAtdL2jYiHiy6XussETELmFV5LulPwN3AfwBfalZcZmbgxKLaN4GL+6nzN9Kl1tcaWCdpA2AzalyGfT1uye63A9olsWjoEvWZxxus306KbK+1RESPpLmk/cjMrKk8xiInIp6MiHv6uT1H+rW4qaTdcy/fl7Q9b6m58tp2ze4XlvMJmi/bPpVL1ANrXaJ+Vh8vm5Wvn5m0nvpto+D2WoukEcDOtNF+ZGatyz0WBUTE3ZJ+C/xQ0hFAN3Ae8NPKGSGS/hG4HvhwRPyfpG2BD5DOHHmaNMbiHGBmRNzejM8xiNZ7iXpJPwYWRMRJWf1vAb+XdBxwDfB+4PXAJ4Y47mZpaHtJOhm4GXgA2BT4T9Lppj8a6sDNzKo5sSjug6Rk4nrS2SBXAp/JLe8mDcysnPXxHPB2Xvyn8Wj2mtOHJtyhU8cl6ieQtlml/p8kfYC0Lf4LuB94V0TcOaSBN0mj2wt4CWk+lC2AZ0g9HntGxF1DFrSZWR88j4WZmZmVxmMszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLGzISXpI0tHNjsPMzMrnxMLMzMxK48TCzMzMSuPEwhoi6ROSHsuuwJkvv1rShZK2zR4vkrRc0p8lvX0969taUkjaNVe2aVa2T65sJ0nXZetcJOknkl42CB/RzMwGwImFNep/gZcCb6sUSNoMOAC4FBhDuoLrfsBuwG+BX0uaUPQNJW0K3ADMJV319ABgPPCzous0M7PB4aubWkMi4hlJ15EuAX99Vnwo8BTwu4joBf6Se8mXJL0beCfparBFHAXMjYjPVwokHQ48Kuk1EXFfwfWamVnJ3GNhRVwKvFfSyOz5B4GfRkSvpDGSviHpbklLJC0HdiBd+ruoicDbssMgy7N13pMt23YA6zUzs5K5x8KK+DUg4CBJfwb+GTgmW/YNYBLwOeABYCXwc2DDPtbVm90rV9ZdVWdM9p4n1Hj9wkaDNzOzwePEwhoWEask/YLUU7EdcG9EzMkW7wVcHBG/BJA0Bth6Pat7Mrt/OWkMBcCuVXXmAO8FHoqINQP+AGZmNmh8KMSKuhQ4CDg8e1xxP/AeSbtKmghcxnr2s4hYCdwMnChpB0lvBU6vqnY+sBlwuaQ3ZGee7C/pIkkjSvxMZmY2QE4srKgbgMXA9qTkoeJY4BngT6TDF1NJPQ7rczip92w2cC7wxfzCiHiM1BMyApgG3JHVW8KLh1LMzGwYUEQ0OwYzMzNrE+6xMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0jixMDMzs9I4sTAzM7PSOLEwMzOz0vx/Ro5EHfQdraUAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABPTElEQVR4nO3deZxcVZ338c+3Q5N0gABBWZVFQAY3QFBBHBRZAm6jiOITZxTBGUTUAfQBRWXTEdzCIqiDDyAoERzRKCqCbAMoxrDviLIbtpCEBNNJOvTv+ePcgptKdXfV7VtdXVXf9+t1X1117qlzf3Xr1ulf3eVcRQRmZmZmZeppdQBmZmbWeZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGDYSiQdL2lMhneVdI2ka3LP3yYpJO0/Rsv/oaSHxmJZVcvdPHufB471sruFpNUkfUPSo5IGJc1qdUztLvf9fFurY7H24ASjg0k6MOsQKtNSSXMlXSbpM5LWKmk5G2eJyfZltFem8RybNdVBwP8FfgZ8FDilteGYdZ/VWh2AjYljgQeBXmBD4G3AqcCRkt4TEbfn6n4VOLnB9jcGjgMeAm5t4HV7N7icIoaL7d9pTZL9MNAHDLRg2d3i7cDfI+KIVgdi1q2cYHSHSyPixtzzkyS9Hfg18CtJ20ZEP0BErABWNDMYSZMjYklELG/mckYSES35Bx/pDoNLW7Hs0ZA0CVgeEYOtjqUO6wMLy2pMUg+wekS03edm1io+RNKlIuIq4CvAZsC/VsprnYMhaS9J10taKOk5SfdJ+lo2723AnKzqubnDMQdm86+RdKekHSVdK2kJ8LXcvGtqhDdB0tckPSHpH5J+JenlVTE9JOmH1S/Mt1lHbKucgyFpDUnfzo7dL8ve6+ckqapeSDpD0nuz97dM0l2S9qnxfqpjXOUcjCyW5yRtImlW9vhpSd+SNKGONh+S9GtJe0u6NTscdrek/arqTc3avCNbxiJJl0rarqpe5Xj7hyR9VdLfgSXAlAJtfFDScZL+LmmxpJ9JWlvSREmnSnoqa+dcSROr2hhy2xtu3QK7A6/OfeZvy+Y3+vl+WNJdwDJg2M9W0r6S/jd7j4skzZE0varOByTdJKlf0jxJP5a0SW7+57Jlb1aj/ZMkLZe07nBxZHV3ytr5aI1507J578qebybpu9m66Jf0jKT/kbR5HcsZ8XuYK5so6QRJf83W/aNK58lMrH69dQbvwehuPyL9s98b+EGtCpJeTdrTcTvpUMsyYCtg16zKPVn5icBZwHVZ+R9zzawHXApcCPwYeHKEuL4IBPB10i/Rw4ErJG1f2dNSp3pie0H2T+ZXpH9OZ5MOqUwDvglsAlTvbn8LsB/wXWAx8BngYkmbRsQzDcRZMQG4DJgNfA7YE/gs8Dfge3W8fmvgIuD7wHnAx4D/kbRPRPw+q/MK4L3A/5AOm20AHAL8r6RXRcTcqja/DCwHvgVMzB6/qsE2vgD0kw69bQV8mnR4aBBYFzge2Bk4MGvvRKhr26vlaeDfSNvQmtmyAe4p8Pm+HfggcAYwj3SYrSalZPEc4C7gJNLekx1IScnMXJ1zSUnvF0jr7T+BXSXtEBELgZ8C38iW+82qxXwQuDwiFgzz/gGIiBslPZC95ryq2QcAC0jbGsAbgDeTvp+PAZsDhwLXZJ/nkpGWNxKlPUC/In1nziJ9N19LWuevJG1P1mkiwlOHTqQOO4CdhqmzELg59/x4sr342fPDszZeMkwbO2V1Dqwx75ps3iFDzLsm9/xtWd3HgLVy5R/Iyj+TK3sI+GEdbQ4X2w+Bh3LP/yWr+8Wqev9D+me4Za4sSP/w8mWvy8o/NcLnsnl1TFksAXy5qu7NwI11fNYPZa/fL1c2BZhb9flOBHpqxLM0v+zcZ/E3oK+qfqNt3AH05spnZuvzt1Vt/LHq8xhx2xtmfVwD3FlV1ujn+zzwqjqWtTawCPgTMKlqnrK/vaTE+o58HeCd2bJOqFoPN1a184as3r81sA6+RkoI182VrU5KLs7OlfXVeO3O1cvLfZ5vK/A9/Ndsfb6lqt4hWZtvbvQz9jT+Jx8iseeA4a4mWZj9/ZfsV0gRy0i/3Op1fkQszj3/GfA48I6Cy6/XO0id4OlV5d8GBOxbVX5FRPyt8iTSybKLSHsJivp+1fPrGmhvLvCLXDyLgPOBHSRtmJUti+wcCkkTJK1H2gbuA15fo83zomqvUYE2zo+Vz3eZTVqf51TVmw28XFJlz+rC7O9otr28Rj/f/42Iu+tody/Sd+jkqDpHIyIqhxt3Iu2N+26+TkT8BriXlGhUXATsKGnLXNkBpO/RL+uIJ99OL2kvW8XewDrZvEoML3y+knqzz/OvpPVf6/Ms4gOkvRb3SnpJZQKuyubvXtJybBxxgmFrknbvD+Ui4A/A/wOelHRhdky9kW3n79HYCZ33559knfRfSb+Sm2kzYG5VcgOpY6zMz3ukRhsLSLv9i1gaEU+Por2/5v6hVfwl+7s5pF3Vko6QdD/pH9Y80mGF15F+iVd7sLqgQBvV6+nZ7O+jNcp7cm2Use3lNfr5rvLeh1BJBO4cYdmQkrBq91Ytu7JH5QB44dDdB0gnay+qMyYi4ras7QNyxQeQPq/KP3Yk9Uk6UdKjrPx5rkPtz7OIrYFXZ+3mp8r2uX5Jy7FxxOdgdDFJLyN1IH8dqk5E9EvajfQL452kY8oHAFdJ2jsinq9jUY2cN1GvoQYDm0D6lToWhlqOhigv2l6ZjiGd3HsO6fyK+aR/ZqdS+wdHrc+u0TaGel/Drr+Str3RaMZ2O6KImCvpOtL5E18jHa7YFDi6QHMXAV/M9hYsBt4D/CTS1WIV3yGdr3MqcAMp0QvSORkjJXP1fg97SIeHjhyifnWyaR3ACUZ3+7fs72XDVcp2h1+ZTUdKOgb4L1LHfwVDdzJFbZ1/kv2C24p0sl/FAtIvrGqbAQ/knjcS28PAnpLWqvqV+0+5+ePZVpJUtRfjldnfh7K/+wNXR8TB+RdKWof0y7UeZbRRlzq2vUY06/OtHCZ7DUMn65W2tyG39yBXVr3si4DvStqGlFQtAS4pENtFpHFg3k86B2QKKXHI2590KOyzlQKlS5LXqaP9er+HfwO2A66ssZfNOpQPkXQppXEwvkzaDXzBMPWm1ii+NftbubzsH9nfdUoK7yNaeZTR/YGNSFeiVPwN2FnS6pWC7LK7lS5nbTC235J+eX2qqvwIUqJy6SqvGF82Bt5XeSJpCvAR4NaIeCIrfp6qPSySPkC6iqJeZbQxojq3vUY06/O9nLR34AvZP+YXZMkxwI3AU8An8pdlStoX2Bb4TVWbF5PW8/8hHR75dUT8gwZFxD2kPQcHZNPjwLVV1Vb5PElX+ox4eTT1fw9/Sto+/r26gewQzRp1LMvajPdgdId9Jf0T6fPegHT53V6kX03vqT4xrcqx2W7q32T11wc+SbrS4/qszt9IJ4R9QtJi0j/12RFR7zHsavOB6yWdm8V7OOmXYf5S2v9HSjx+J+mnpOPg/8qLvyYrGontEuBq4L+yMQBuI50U9y/AqfkTOsepvwBnS3oD6dfqQaT197FcnV+TPtNzSVcrvBb4MCv/2hxJGW3Uo55trxFN+XwjYpGkI0jb5BxJM0m/7LcDJgMfjYgBSUeTTnb+X0k/4cXLVB+iaijziHhK0tWkQwprkTsps4CLSJf+LiVdPVI9UNqvgX+T9CxwN7AL6RLpei61rvd7+CPSIZ/vS9qddG7NBNLeow+SLhe+Eessrb6MxVPzJl68TLUyLSP9grmcNGbDWjVeczwrX6b6dmAW8Pfs9X8nXWa4ddXr3kMaA2CA3CWY1LhcMPeaa6h9meqHSMeenyTtGv41sGmN1x9J+mezlPQPZ8fqNkeI7YfkLovMytYEZmTvcznpn/bnyC43zNUL4IwaMT1Ejcv2qupsno8jF8tzI30ew7T5ULae9ib941xKOnlx/6p6E0ljWszN1u31pGP8Q30W+9dY1qjaYIjLpyvvleyyVOrc9obZtlbZ7kb7+Y6wzHeT/nEuIZ3HMBv4UFWdD5IuPV5K+gf+Y2CTIdr7eBbHIqouf20wrq14sQ/Ytcb8dUjn0zxN2hPzO9Jhm5W2ZWpcptrg97AXOIp0MuxS0g+JG0ljnEwp+v48jd+pco22mbUxpRFJ74yId7U6FjMz8DkYZmZm1gQ+B8PMrI1I6mPk8SnmR4tvJmjmBMPMrL0cwMgj4+5OOg/CrGV8DoaZWRuRtBFpVMzh3BR13BTNrJmcYJiZmVnpfJKnmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4JhpmZmZXOCYaZmZmVzgmGmZmZlc4Jho05ScdLitzzhyT9sIUhmVkHcN8yvjjBMDMzs9Kt1uoAzIBtgMFWB2FmHcd9Sws5wbCWi4hlrY7BzDqP+5bW8iESaypJb5E0R9JSSX+TdEiNOj5OamYNcd8y/nkPhjWNpNcClwNPA8eTtrcTgCdbGJaZtTn3Le3BCYY104mAgH+OiEcAJF0M3NHSqMys3blvaQM+RGJNIWkCMA2YVekAACLiHuCylgVmZm3NfUv7cIJhzfJSoA+4v8a8+8Y4FjPrHO5b2oQTDDMzMyudEwxrlqeBfmDrGvO2GeNYzKxzuG9pE04wrCki4nnS8dD3Stq0Ui5pW9LxUzOzhrlvaR9OMKyZjsv+XifpaElfBK4G7mphTGbW/ty3tAEnGNY0EXE76RfF06TLyg4idQy/aGVcZtbe3Le0B0XEyLXMzMzajKRHgcsi4uOtjqUbeQ+GmZl1HEm9wHrAvFbH0q08kqeZmXUUSdOAD5HGy7iyxeF0LR8iMTOzjiLpamAr4HsR8bVWx9OtGj5EImkfSW/JPT9M0q2SZkpat9zwzKxbuG+xskTE7hHxcicXrVXkHIxvAlPghTvafRv4LbAFMKO80Mysy7hvMesgRc7B2AK4O3v8fuDXEXGMpNeTOgMzsyLct5h1kCIJxnJgcvZ4T+D87PF8sl8f7UaSgI2Bxa2OxaxkawFzoz1OtnLfYtY+RuxbiiQY1wMzJP0BeCNwQFb+SuCxAu2NBxvTvrGbjeRlwN9bHUQd3LeYtZdh+5YiCcangO8C+wOHRkSl8X2B3zXSkKQvAPsB/0S6ec0fgaMj4r5cnUmkY7EfAiaSxqD/ZEQ8mauzKfA9YHfgOeA84AsRsaLOUBYDPProo0yZMj5+KA0MDHD55Zez995709vb2+pwCmn399Du8S9atIiXv/zl0D6/nt23jIF2367B76HV6u1bGk4wIuIR4F01yo9otC3grcCZwJwslq8Bl0t6VUT8I6tzCvBO4APAs8AZwM+BXQEkTQB+AzwBvBnYiLRrdQA4ppFgpkyZMq46gcmTJzNlypS22/gq2v09tHv87cZ9y9johO3a76E9FBpoS1IP6Rrj9am6EiUirq23nYjYp6rdA4GngB2BayWtDRwMTI+Iq7I6HwPukbRzRPwJ2Bt4FbBn9svjVklfBr4u6fiIWF7kPZrZ2HPfYtY5Gk4wJO0MzAQ2A1Q1O4AJo4hn7ezv/OzvjkAvcMULC4i4V9IjwC7An7K/d+R3a5J2dX4PeDVwS433MJG0S7RiLUgZ5cDAwCjCL08ljvESTxHt/h46Jf524b5lbLT7dg1+D61Wb8xF9mB8H7iRtGvxcdIXf9SyXy6nAn+IiDuz4g2B5RGxsKr6k9m8Sp0na8wnV6faF3jxdr8vuPzyy5k8eXKN6q3z+9//vtUhjFq7v4d2jX/JkiWtDqFR7lvGULtu13l+D61Rd98SEQ1NwD+ArRp9XR3tfg94CHhZrmw6sKxG3T8DX88en0W6W15+/mRS57TvEMuaSLrsrTJtAsS8efNi+fLlq0wPPPBArDt1vejr64u+vr5Yd+p68cADD9Q9v0hbU6dOjVmzZsVGG29SuK1mxVZvWxttvEnMmjUrpk6d2tR1Vl1nuLbqqVvmZ9Cq9b98+fKYN29eZN+DKWV/X5sxuW9p7vZT/b0cbrtu5HvSzn1LK99npX+5//77x822UW8fWm/fUmQkz9mkY6SlkXQG6eSu3SMif0nXE8DqktapeskG2bxKnQ1qzCdXZyURsSwiFlUmsjNhe3t7a04LFixgwfxnmLzHJ5m8xydZMP8ZFixYUPf8Im31vTXdXXjhgvmF22pWbPW2tXBB2hvd99aPN3Wd5eusvv17hm2rnrplfgatWv+Vqc24bxmD70nlezncdt3I96Sd+5ZWvs8X+peFC8fNtlFvH1pv31LkEMl3gG9L2hC4g3RGdf4Ldnu9DWWD0HwHeB/wtoh4sKrKTVn7ewAXZ6/ZBtgUuCGrcwPwRUnrR8RTWdlewCJeHBWwFL3rvXxU8xtqa+ompbVVb5166zbSFgz/XsqMC2DC2uvX3d5Idcv8DFq5/tuI+5aC84vWrceI35MO6Ftg7N9n72rVpxkVb6usuKCxPnQkRRKMi7O/5+TKgnRSVqMnYp1J2lX5L8DirGMBeDYi+iPiWUlnkwbfmU/6Yn8HuCHSWd4Al5O+7D+SdBTp2OhXgTMjYlnjb8/MWsR9i1kHKXovkrIcmv29pqr8Y8APs8dHAIOkzueFwXAqFSPieUnvIh1nvYF0HPc84NgS4zSz5nPfYtZBigy09XBZC4+IEfcRRcRS4LBsGi6md5QVl5mNPfctZp2l6EBbWwKHA9tmRXcDp0XE30qKy8y6kPsWs87R8FUkkqaRvvRvBG7PpjcBd0naq9zwzKxbuG8x6yxF9mCcDJwSEZ/PF0o6Gfg60H6jhpjZeOC+xayDFBkHY1vg7Brl55DG7TczK8J9i1kHKZJgPA1sX6N8e9LNhMzMinDfYtZBihwi+QFwlqRXAH/MynYFjgZmlBWYmXUd9y1mHaRIgvEV0vC3nwVOysrmAscDp5cTlpl1IfctZh2kyDgYAZwCnCJpraxscdmBmVl3cd9i1lkKjYNR4S+/mTWD+xaz9ldXgiHpZmCPiFgg6RbSfQFqiojXlxWcmXU29y1mnavePRi/BJblHg/ZCZiZNcB9i1mHqivBiIgTco+Pb1o0ZtZV3LeYda4iQ4U/IGm9GuXrSHqgnLDMrNu4bzHrLEUG2tocmFCjfCLwslFFY2bdbHPct5h1jLqvIpH0ntzTaZKezT2fAOwBPFhWYGbWHdy3mHWmRi5TnZX9DeC8qnkDwEOkAXLMzBoxK/vrvsWsg9SdYERED4CkB4E3RMS8pkVlZl3DfYtZZyoykucWzQjEzLqb+xazzlLvQFufAc6KiKXZ4yFFhO8ZYGZ1cd9i1rnq3YNxBHABsDR7PJTANyUys/q5bzHrUPUOtLVFrcdmZqPhvsWscxUZaOtYSZNrlPdJOracsMys27hvMessRQbaOg5Ys0b55GyemVkR7lvMOkiRBEPUviHRdsD8hhqSdpN0iaS5kkLSe6vm/zArz0+/q6ozVdIFkhZJWijpbEm1OikzG9/ct5h1kEZG8lxA+vIH8BdJ+Y5gAumXx/cbXP4awG3AOcDPh6jzO+BjuefLquZfAGwE7AX0AucCZwHTG4zFzFrAfYtZZ2pkHIzDSb8wziHtrswP57sceCgibmhk4RFxKXApgKShqi2LiCdqzZC0LbAPaXCeG7OyTwO/lfS5iJjbSDxm1hKH477FrOM0MpLnefDCaHt/iIgVTYtqZW+T9BSwALgK+FJEPJPN2wVYWOkAMlcAg8CbgF/UalDSRNINlCrWAhgYGGBgYGCV+oODg/T19TFptdRR9fX1MTg4+ELdkeYXaWtiCW01K7ZG2gKYuJqaus5WqtM7Ydi26qlb5mfQqvUPDFk+3rhvGZvtJ19npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRdQ65DnCi6QtSbsWtwT+MyKekrQv8EhE3NVwg6nNAN4XEbNyZR8ClpBudLQl8DXgOWCXiHhe0jHARyNim6q2ngKOi4jvDbGs46lx0tjMmTOZPHmVk9jN2tKSJUuYPn06wNoRsajV8dTDfYvZ+Fd33xIRDU3AW0lfzN+Tjlm+Iiv/PPCzRtvLtRvAe0eo84qs3h7Z82OA+2rUewo4dJh2JgJTctMmQMybNy+WL1++yjRnzpzo6+uLzQ8+LTY/+LTo6+uLOXPm1D2/SFvbHHJ6zJo1K6ZOnVq4rWbFVm9bU6dOjVmzZsU2h5ze1HWWr7Pxuw8ftq166pb5GbRq/S9fvjzmzZtXOa9hStHv5VhO7luau/1Ufy+H264b+Z60c9/SyvdZ6V9mz549braNevvQevuWhu9FApxM2pU4Q9LiXPlVwKcKtFe3iHhA0jxgK+BK4Alg/XwdSasBU7N5Q7WzjNwJXZVjtL29vfT29q5Sv6enh/7+fpauSHt7+vv76enpeaHuSPOLtLWshLaaFVsjbQEsWxFNXWf5On0Dzw/bVj11y/wMWrX+gSHLxzH3LWP0PRmprXzdkb4n7dy3tPp9VsrG07ZRTx9ab99S5DLV11L7+ONTwEsKtFc3SS8D1gMez4puANaRtGOu2ttJ72t2M2Mxs9K5bzHrIEX2YCwkXbr1YFX5DsDfG2kou6Z8q1zRFpK2J13zPp90LPNi0i+GLYFvAH8FLgOIiHuya9d/IOkTpEvJzgAuDJ/lbdZuFuK+xaxjFNmDcSHwdUkbko7B9EjaFfgWcH6Dbe0E3JJNADOyxycCzwOvA34F/AU4G7gJ+OdsN2TFh4F7Sbs1fwtcD/xH42/LzFrMfYtZBymyB+MY4EzgUdIgOHdnf2cCX22koYi4hnT9+1Cm1dHGfDzwjVkncN9i1kEaTjAiYjnw75K+AryGNMreLRFxf9nBmVn3cN9i1lmK7MEAICIekfRo9rjxwTTMzGpw32LWGYqcg4GkgyXdCSwFlkq6U9LHyw3NzLqN+xazztHwHgxJJwJHAt8hXcoFaVjdUyRtGhHHlhifmXUJ9y1mnaXIIZJDgX+PiJ/kyn4l6XZSx+BOwMyKcN9i1kGKHCLpBW6sUX4Tozinw8y6nvsWsw5SJMH4EemXRrX/AC4YXThm1sXct5h1kKK/Cg6WtDfwp+z5m4BNgfMlzahUiogjRxmfmXUX9y1mHaJIgvEa4Obs8ZbZ33nZ9JpcPV9eZmaNcN9i1kGKDLS1ezMCMbPu5r7FrLMUGgcDQNJWkqZJ6sueDzcsr5lZXdy3mHWGhhMMSetJupJ0k6Dfku5+CHC2pG+XGZyZdQ/3LWadpcgejFOAAdKJV0ty5RcB+5QRlJl1JfctZh2kyEmeewPTIuKxqj2X9wOblRKVmXUj9y1mHaTIHow1WPnXRcVUYNnowjGzLua+xayDFEkwrgM+knseknqAo4CrS4nKzLqR+xazDlLkEMlRwJWSdgJWB74BvJr0K2PXEmMzs+7ivsWsgzS8ByMi7gReCVwP/JK0W/PnwA4R8bdywzOzbuG+xayzNLQHQ1Iv8DvgExHxX80Jycy6jfsWs87T0B6MiBgAXtekWMysS7lvMes8RU7y/DFwcNmBmFnXc99i1kGKnOS5GnCQpD2Bm4B/5Gf6LodmVpD7FrMOMtq7qb6yap7vcmhmRblvMesgRa4i2X2Y6e2NtCVpN0mXSJorKSS9t2q+JJ0o6XFJ/ZKukLR1VZ2pki6QtEjSQklnS1qz0fdlZq3lvsWssxS+m2pJ1gBuAw4bYv5RwGeATwBvIu0yvUzSpFydC0jXyu8FvAvYDTirWQGbWVtw32LWYkUOkZQmIi4FLgWoviNzdovmw4GvRsQvs7KPAE8C7wUulLQt6SZIb4iIG7M6nwZ+K+lzETF3bN6JmY0n7lvMWq+lCcYItgA2BK6oFETEs5JmA7sAF2Z/F1Y6gMwVwCDpV8kvajUsaSIwMVe0FsDAwAADAwOr1B8cHKSvr49Jq6WOqq+vj8HBwRfqjjS/SFsTS2irWbE10hbAxNXU1HW2Up3eCcO2VU/dMj+DVq1/YMhy686+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRYyPc6ckBfC+iJiVPX8z8Adg44h4PFfvp0BExAGSjgE+GhHbVLX1FHBcRHxviGUdDxxXXT5z5kwmT55c0jsya60lS5Ywffp0gLUjYlGr42kV9y1m5aq7b4mIESfSmd3rZo+PBSbX87pGJtJZ4u/NPX9zVrZRVb2fAhdlj48B7qvR1lPAocMsayIwJTdtAsS8efNi+fLlq0xz5syJvr6+2Pzg02Lzg0+Lvr6+mDNnTt3zi7S1zSGnx6xZs2Lq1KmF22pWbPW2NXXq1Jg1a1Zsc8jpTV1n+Tobv/vwYduqp26Zn0Gr1v/y5ctj3rx5kX2HppT9fS3xe+++ZYy2n+rv5XDbdSPfk3buW1r5Piv9y+zZs8fNtlFvH1pv31LvIZJtSSdNLSBl59+n9m2Vy/RE9ncD4PFc+QbArbk66+dfJGk10s2RnmAIEbGM3O2fK8doe3t76e3tXaV+T08P/f39LF2R9vb09/fT09PzQt2R5hdpa1kJbTUrtkbaAli2Ipq6zvJ1+gaeH7ateuqW+Rm0av0DQ5aPM+5bxmj7ydcZqa183ZG+J+3ct7T6fVbKxtO2UU8fWm/fUm+CcStwrqTrAQGfk/RcrYoRcWKdbY7kQdIXeY9s+UiaQjr+Wdk9eQOwjqQdI+KmrOztpKtjZpcUh5k1z624bzHrSPUmGAcCJ5Au1QpgX2BFjXoB1N0JZNeUb5Ur2kLS9sD8iHhE0qnAlyTdT+oUvgLMBWYBRMQ9kn4H/EDSJ4Be4AzgwvBZ3mbt4EDct5h1pLoSjIi4D/gQgKRBYI+IeKqE5e8EXJ17PiP7ex6p4/kGaffpWcA6pNs47xMRS3Ov+TDpi38l6Qzvi0nXt5vZOOe+xaxzNXyZakSUNjhXRFxD2i061Pwgnfh17DB15gPTy4rJzFrDfYtZZyk0DoakLUkD1WybFd0NnBYRfyspLjPrQu5bzDpHw78YJE0jfenfCNyeTW8C7pK0V7nhmVm3cN9i1lmK7ME4GTglIj6fL5R0MvB14PdlBGZmXcd9i1kHKXLMc1vg7Brl5wCvGl04ZtbF3LeYdZAiCcbTwPY1yrcnjXJnZlaE+xazDlLkEMkPgLMkvQL4Y1a2K3A0L14KZmbWKPctZh2kSILxFWAx8FngpKxsLnA8cHo5YZlZF3LfYtZBioyDEcApwCmS1srKFpcdmJl1F/ctZp2l0DgYFf7ym1kzuG8xa3+ljZxnZmZmVuEEw8zMzErnBMPMzMxK11CCIalX0pWStm5WQGbWfdy3mHWehhKMiBgAXtekWMysS7lvMes8RQ6R/Bg4uOxAzKzruW8x6yBFLlNdDThI0p7ATcA/8jMj4sgyAjOzruO+xayDFEkwXgPcnD1+ZdW8GF04ZtbF3LeYdZAiI3nu3oxAzKy7uW8x6yyFL1OVtJWkaZL6sucqLywz61buW8w6Q8MJhqT1JF0J/AX4LbBRNutsSd8uMzgz6x7uW8w6S5E9GKcAA8CmwJJc+UXAPmUEZWZdyX2LWQcpcpLn3sC0iHisas/l/cBmpURlZt3IfYtZBymyB2MNVv51UTEVWDa6cMysi7lvMesgRRKM64CP5J6HpB7gKODqUqLKSDpeUlRN9+bmT5J0pqRnJD0n6WJJG5QZg5mNmTHrW8D9i1mzFTlEchRwpaSdgNWBbwCvJv3K2LXE2CruAvbMPV+Re3wK8E7gA8CzwBnAz5sUh5k111j3LeD+xaxpioyDcaekVwKfAhYDa5K+dGdGxOMlxwewIiKeqC6UtDZpWOHpEXFVVvYx4B5JO0fEn5oQi5k1SQv6FnD/YtY0RfZgEBHPAv9VcixD2VrSXGApcAPwhYh4BNgR6AWuyMV1r6RHgF2AITsASROBibmitQAGBgYYGBhYpf7g4CB9fX1MWi2deNbX18fg4OALdUeaX6StiSW01azYGmkLYOJqauo6W6lO74Rh26qnbpmfQavWPzBk+Xg2xn0LlNy/jOe+JV9npLZWam+E70k79y2tfJ+V/mU89C31rIe8evsWRTQ+Aq+kdUnZ/bZZ0d3AuRExv+HGhl/OvqRfMfeRrok/DtiENKTwu7NlTqx6zZ+BqyPi6GHaPT5rayUzZ85k8uTJpcVv1kpLlixh+vTpAGtHxKJWx1OPsepbsmWV3r+4b7FuUHffEhENTcBupOORj5B2X/4ceDgr263R9hpc9jrZcg4GpgPLatT5M/D1EdqZCEzJTZsAMW/evFi+fPkq05w5c6Kvry82P/i02Pzg06Kvry/mzJlT9/wibW1zyOkxa9asmDp1auG2mhVbvW1NnTo1Zs2aFdsccnpT11m+zsbvPnzYtuqpW+Zn0Kr1v3z58pg3b16Q7uExpZnfyxK/3y3rW8rqX8Zz31L9vRxuu27ke9LOfUsr32elf5k9e/a42Tbq7UPr7VuKHCI5kzTwzaER8TyApAnAd7N5ry3QZl0iYqGkvwBbAb8HVpe0TkQszFXbAFjlmGpVO8vIXfZWuea+t7eX3t7eVer39PTQ39/P0hVpb09/fz89PT0v1B1pfpG2lpXQVrNia6QtgGUroqnrLF+nb+D5Yduqp26Zn0Gr1j8wZPk41rK+BcrpX8Zz35KvM1Jb+bojfU/auW9p9fuslI2nbaOePrTevqXIZapbAd+udAAA2eMZ2bymkbQmsCXwOOl2zgPAHrn525BGAbyhmXGYWVO0rG8B9y9mZSuyB+Nm0vHR+6rKtwVuG3VEOZK+BVxC2k26MXAC8Dzwk4h4VtLZwAxJ84FFwHeAG8JneJu1ozHrW8D9i1mz1ZVgSHpd7unpwGmStuLFM6l3Bg4DPl9ueLwM+AmwHvA0cD2wc0Q8nc0/AhgELiYd+7wM+GTJMZhZk7SwbwH3L2ZNVe8ejFtJJ3TkbxDwjRr1ZpKOoZYiIj40wvylpM7nsLKWaWZj6lZa0LeA+xezZqs3wdiiqVGYWbdy32LWoepKMCLi4WYHYmbdx32LWecqNJKnpI2BtwDrU3UlSkScXkJcZtaF3LeYdY6GEwxJBwL/DSwHniEdP60I0olaZmYNcd9i1lmK7MH4CnAicFJEDJYcj5l1L/ctZh2kyEBbk4EL3QGYWcnct5h1kCIJxtnAB8oOxMy6nvsWsw5S5BDJF4BfS9oHuIM0nO4LIuLIMgIzs67jvsWsgxRNMKbx4nC+1SdimZkV4b7FrIMUSTA+CxwUET8sORYz627uW8w6SJFzMJYBfyg7EDPreu5bzDpIkQTjNODTZQdiZl3PfYtZBylyiOSNwNslvQu4i1VPxNqvjMDMrOu4bzHrIEUSjIXAz0uOw8xsIe5bzDpGwwlGRHysGYGYWXdz32LWWYqcg2FmZmY2rCI3O3uQYa5Jj4hXjCoiM+tK7lvMOkuRczBOrXreC+wA7AN8c7QBmVnXOrXqufsWszZW5ByM02qVSzoM2GnUEZlZV3LfYtZZyjwH41Lg/SW2Z2YG7lvM2lKZCcb+wPwS2zMzA/ctZm2pyEmet7DyiVgCNgReCnyypLjMrMu4bzHrLEVO8pxV9XwQeBq4JiLuHXVEZtatZlU9d99i1saKnOR5QjMCGa3sRLD/S/rFcxvw6Yj4c2ujMrN6uW8x6ywdMdCWpAOAGcAJwOtJncBlktZvaWBm1tbct5gVV3eCIWlQ0vMjTCuaGewwjgR+EBHnRsTdwCeAJcBBLYrHzOrkvsWsMzVyiOR9w8zbBfgMLdgjIml1YEfgpEpZRAxKuiKLy8zGN/ctZh2o7gQjIn5ZXSZpG+Bk4N3ABcCx5YVWt5cAE4Anq8qfBP6p1gskTQQm5orWApg/fz4DAwOr1F+0aBGTJk1CzzwIwKRJk7jpppt47rnnGBwc5P777685f9GiRfT09DA4OPjC35Hq3nfffWn+/IdZsuSlNdsCVq47zHKHWl4l9kpb9dQt8j6XLFmC5j889Pscpq0i73PC4ieHbaueui+8z6rPYKzW2YjbRm7+okWLeOaZZ2pt5ixevLhm+XjjvqWxz7yM78mSJUvK+560cd/Syvep3gksWfJSbrnlFp577rlS+oMy+9BS+paIaHgCNgZ+ACwHLgFeU6SdMqYslgB2qSr/BjB7iNccn73Gk6dumDZp1ffTfYsnTx09Ddu3NHQViaS1gWOATwO3AntExHWNtNEE84DngQ2qyjcAnhjiNSeRTtzKm8r4GsxnLeAx4GVAe/wUXVW7v4d2jx/Se5jb6iBG4r5lTHXKdu330Foj9i11JxiSjgKOJn2x/k/U2K3ZChGxXNJNwB5k19FL6smenzHEa5YBy6qKFzUxzIZJqjxcHBHjKrZ6tft7aPf4M+M+bvctY6sTtmu/h3FhxJiV7dYbkaRBoB+4gpTV1xQR+9UbXVmyS8nOAw4B/gwcDnwQ+KeIqD5+2hYkTQGeBdZu042v7d9Du8ffLty3jK1O2K79HtpDI4dIzicdcxl3IuIiSS8FTiQNhnMrsE+7dgBmXcZ9i1kHauQqkgObGMeoRcQZDLHbsk0tIw3uU727tZ20+3to9/jbgvuWMdcJ27XfQxuo+xCJmZmZWb06YqhwMzMzG1+cYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYLQBSQ9Jiqrp862OaziSDsviXipptqQ3tjqmekk6vsb6vrfVcZk1Q7v1L+5b2kdDQ4VbSx1LukdDxbgdWjYbnGgG6dbWs0mDE10maZuIeKqVsTXgLmDP3PNW3S7cbCy0Rf/ivqW9OMFoH4sjYqj7H4w3RwI/iIhzASR9AngncBDpDpntYEUbrW+z0WqX/sV9SxvxIZL28XlJz0i6RdL/lTQuk0NJqwM7koZ9BiAiBrPnu7QqrgK2ljRX0gOSLpC0aasDMmuicd+/uG9pP+NuI7KaTgduJt2R8c2kOzZuRMrmx5uXABOA6qGUnwT+aezDKWQ2cCBwH2k9HwdcJ+k1ETEudx2bjUK79C/uW9qME4wWkXQy6Q6Sw9k2Iu6NiPztn2+XtBz4b0lfyO7eaCWKiEtzT2+XNBt4mHSTq7NbE5VZ/dy/jE/d1rc4wWidbwM/HKHOA0OUzyZ9dpuTMuHxZB7pjpgbVJVvQLodd9uJiIWS/gJs1epYzOrUif2L+5Y24wSjRSLiaeDpgi/fHhgExt1Z0xGxXNJNwB7ALABJPdnztrxhlKQ1gS2BH7U6FrN6dGL/4r6l/TjBGOck7QK8CbiadOnYLsApwI8jYkErYxvGDOA8STcCfyZdSrYGcG4rg6qXpG8Bl5B2XW5MuuPh88BPWhmXWdnasH9x39JGnGCMf8uADwHHAxOBB0kdwIxhXtNSEXGRpJcCJwIbArcC+0RE9clZ49XLSF/49Ui/Aq8Hds5+FZp1krbqX9y3tBffrt3MzMxK53EwzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMGzMSHpI0uGtjsPMOov7lvHJCYaZmZmVzgmGmZmZlc4JhtVF0n9ImpvdvTBf/ktJ50jaMnv8pKTnJM2RtOcw7W0uKSRtnytbJyt7W67sNZIuzdp8UtKPJL2kCW/RzFrAfUvncoJh9fof0g16dq8USJoK7ANcAKwJ/JZ06+QdgN8Bl0jatOgCJa0DXAXcAuyULWsD4KdF2zSzccd9S4fy3VStLhGxQNKlwHTgyqx4f2AecHVEDAK35V7yZUnvA94DnFFwsZ8CbomIYyoFkg4CHpX0yoj4S8F2zWyccN/SubwHwxpxAfB+SROz5x8GLoyIQUlrSvqWpHskLZT0HLAtUPhXBrAdsHu2C/O5rM17s3lbjqJdMxtf3Ld0IO/BsEZcAgh4p6Q5wD8DR2TzvgXsBXwO+CvQD/wMWH2Itgazv8qV9VbVWTNb5tE1Xv94o8Gb2bjlvqUDOcGwukXEUkk/J/262Aq4LyJuzmbvCvwwIn4BIGlNYPNhmns6+7sR6TgowPZVdW4G3g88FBErRv0GzGxcct/SmXyIxBp1AfBO4KDsccX9wH6Stpe0HTCTYbaviOgH/gR8XtK2kt4KfLWq2pnAVOAnkt6QnU0+TdK5kiaU+J7MrPXct3QYJxjWqKuA+cA2pC96xZHAAuCPpF2Pl5F+JQznINJetJuAU4Ev5WdGxFzSr5cJwOXAHVm9hby4G9TMOoP7lg6jiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPGhKTjJUXueUg6o5UxmZlZ8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBsNJJeoukOZKWSvqbpEPqfN2XJA1K+nSzYzQzs+ZardUBWGeR9FrgcuBp4HjSNnYC8OQIr/sqcAxwSET8oMlhmplZkznBsLKdCAj454h4BEDSxcAdQ71A0reAI4CPRcR5YxKlmZk1lQ+RWGkkTQCmAbMqyQVARNwDXFb7JToD+E/gX51cmJl1Du/BsDK9FOgD7q8x7z7gHVVlHwHWBA6NiJ80OTYzMxtD3oNhrfQH0rkZn5I0tdXBmJlZeZxgWJmeBvqBrWvM26ZG2V+BvYGNgd9JWquJsZmZ2RhygmGliYjnSedavFfSppVySduSzs2o9ZrbSYdOtgUukdQ3FrGamVlzOcGwsh2X/b1O0tGSvghcDdw11Asi4k/AvwA7Az+T1Nv8MM3MrJmcYFipsj0S00iHS04EDiIlHb8Y4XVXAR8kHTL5kSRvm2ZmbUwRMXItMzMzswb4V6KZmZmVzgmGmZmZlc4JhpmZmZWu4QRD0j6S3pJ7fpikWyXNlLRuueGZmZlZOyqyB+ObwBR44c6Z3wZ+C2wBzCgvNDMzM2tXRe5FsgVwd/b4/cCvI+IYSa8nJRpmZmbW5YokGMuBydnjPYHzs8fzyfZstBtJIg1XvbjVsZiVbC1gbvh6dDMbY0USjOuBGZL+ALwROCArfyXwWFmBjbGNad/YzUbyMuDvrQ7CzLpLkQTjU8B3gf1Jt9mudFz7Ar8rK7Axthjg0UcfZcqUVXfCDAwMcPnll7P33nvT2+tRrEfD67Ic9azHRYsW8fKXvxy8Z87MWqDhBCMiHgHeVaP8iFIiaqEpU6YMmWBMnjyZKVOm+J/iKHldlsPr0czGuyJ7MMjuE7EVsD5VV6JExLUlxGVmZmZtrOEEQ9LOwExgM0BVswOYUEJcZmZm1saK7MH4PnAj8E7gcVJSYWZmZvaCIgnG1sD+EfHXsoMZ72677TZ6enp4yUtewqabbtrQax955BHmzZsHUOj1ZbfRyhggrcv111+/q9dDkRgqrxkcHGx4eWZmYyoiGpqAq4B9Gn3deJ5I43fEs88+G7U88MADMWvWrOjr6wsgJvVNjocffrhm3VoefvjhmNQ3OUh7exp+fTPaaFUM+XXZzeuhSAz51/T19cWsWbPigQceGLL+s88+W4lxSoyD75knT566ayoyVPh3gG9LOlDSjpJel58KZzrj2DPPPAPA1H0+zXrv+ixL+5e88Ou1HvPmzWNp/xLWe9dnC72+7DbW3uWAlsVQWZdT3rhfV6+HIjHklzt1n08DL65PM7Pxpsghkouzv+fkyoJ0wmdHn+TZO3UTnl9R/JST3vVePvoYSmhjwtrrtz6GKS9tfQzjYT0UiKF3vZfTu1r1+dVmZuNL0XuRmJmZmQ2pyEBbDzcjEDMzM+scRc7BQNKWkr4j6YpsOl3SlgXaOVTS7ZIWZdMNkvbNzZ8k6UxJz0h6TtLFkjaoamNTSb+RtETSU5K+KanQAGJmZmZWjoYTDEnTSLdrfyNweza9CbhL0l4NNvcY8HlgR2An0hUqv5T06mz+KcC7gQ8AbyXdlOznuVgmAL8BVgfeDHwUOBA4sdH3ZWZmZuUp8kv/ZOCUiPh8vlDSycDXgd/X21BEXFJV9EVJhwI7S3oMOBiYHhFXZcv4GHCPpJ0j4k/A3sCrgD0j4kngVklfBr4u6fiIWF7g/ZmZmdkoFTlEsi1wdo3yc0j/7AuRNEHSh4A1gBtIezV6gSsqdSLiXuARYJesaBfgjiy5qLiMNK7FqzEzM7OWKLIH42lge+D+qvLtgacabUzSa0kJxSTgOeB9EXG3pO2B5RGxsOolTwIbZo83zJ5XzydXp9YyJwITc0VrQbpD5cDAwCr1K6MmTswuDezr62NwcLBm3VoGBwfp6+tjUsHXl95G74SWxgC0PIbxsB4ajSG/3Mq2ONzrGonHzKxsimhsXAdJxwJHkA6V/DEr3hU4GpgREV9psL3VgU2BtYH9gY+TzrfYHjg3IiZW1f8zcHVEHC3pLGCziJiWmz8Z+Afwjoi4dIhlHg8cV10+c+ZMJk+e3Ej4ZuPWkiVLmD59OsDaEbGo1fGYWZdpdOhP0oBaR5BO0BzMpseA/yRLWEYzkQ6J/DfwdtLAXetUzX8YOCJ7fCJwa9X8LbLX7TDMMiaSDqNUpk2AmDdvXixfvnyVafbs2TFr1qzY5pDTY/ODT4u+vr6YM2dOzbq1pjlz5kRfX19sfvBphV5fdhsbv/vwlsVQWZev2O+zXb0eisSQX+42h5wes2bNitmzZw9Zf968eR4q3JMnTy2bioyDEaSrO06RtFZWtrjRdobRQ0oAbgIGgD3IRg+VtA1pb8cNWd0bSCeGrh8RlcMzewGLSFe6DPUelgHLKs+ltLu5t7eX3t7eVQPqSaeqLFsRLF0R9Pf309PTU7NuzTfU00N/fz9Ls1FAG3192W30DTzf0hgAlrY4hvGwHhqNoXq5lbKhXtdIPGZmZRvVeBGjTSwknQRcSjpxcy1gOvA2YFpEPCvpbGCGpPmkpOE7wA2RriABuJyUSPxI0lGk8y6+CpyZJRFmZmbWAnUlGJJuBvaIiAWSbiHtdq0pIl7fwPLXB84HNgKeJY2pMS0iKpe6HkE6BHMxaa/GZcAnc8t6XtK7gO+R9mb8AzgPOLaBGMzMzKxk9e7B+CUvHlL4JcMkGI2IiINHmL8UOCybhqrzMPCOMuIxMzOzctSVYETECbnHxzctGjMzM+sIRYYKf0DSejXK15H0QDlhmZmZWTsrMpLn5sCEGuUTgZeNKhozMzPrCHVfRSLpPbmn0yQ9m3s+gXQ56YNlBWZmZmbtq5HLVGdlf4N0pUbeAPAQ8NnRh2RmZmbtru4EIyJ6ACQ9CLwhIuY1LSozMzNra0VG8tyiGYGYmZlZ56h3oK3PAGdFxNLs8ZAi4vRSIjMzM7O2Ve8ejCOAC4Cl2eOhBOAEw8zMrMvVO9DWFrUem5mZmdVSZKCtYyVNrlHeJ8n3ADEzM7NCA20dB6xZo3xyNs/MzMy6XJEEQ9S+2dl2wPzRhWNmZmadoJGRPBeQEosA/iIpn2RMIO3V+H654ZmZmVk7amQcjMNJey/OIR0KyQ8Vvhx4KCJuKC80MzMza1eNjOR5HrwwkucfImJF06IyMzOzttbwORgR8b/AZpK+KuknktYHkLSvpFeXHqGZmZm1nSKXqb4VuAN4E7AfL15Rsh1wQnmhmZmZWbsqchXJycCXImIv0rkXFVcBO5cSlZmZmbW1IgnGa4Ff1Ch/CnjJ6MIxMzOzTlAkwVgIbFSjfAfg76OKxszMzDpCkQTjQuDrkjYkjYnRI2lX4FvA+WUGZ2ZmZu2pSIJxDHAv8CjpBM+7gWuBPwJfLS80MzMza1eNDLQFQEQsB/5d0leA15CSjFsi4v6ygzMzM7P21HCCURERj0h6NHtc694kZmZm1qWKHCJB0sGS7gSWAksl3Snp4+WGZmZmZu2q4T0Ykk4EjgS+A1TuPbILcIqkTSPi2BLjMzMzszZU5BDJocC/R8RPcmW/knQ7KelwgmFmZtblihwi6QVurFF+E6M4p8PMzMw6R5EE40ekvRjV/gO4YHThmJmZWScousfhYEl7A3/Knr8J2BQ4X9KMSqWIOHKU8ZmZmVkbKrIH4zXAzcDTwJbZNC8rew1pyPAdgO1HakjSFyTNkbRY0lOSZknapqrOJElnSnpG0nOSLpa0QVWdTSX9RtKSrJ1vSvLhGjMzsxYpMtDW7iUu/63AmcCcLJavAZdLelVE/COrcwrwTuADwLPAGcDPgV0BJE0AfgM8AbyZdJ+U84EB0qijZmZmNsYK/8qXtBVp78W1EdEvSY0OuBUR+1S1eSDprqw7AtdKWhs4GJgeEVdldT4G3CNp54j4E7A38Cpgz4h4ErhV0pdJ90s5Pht51MzMzMZQkXEw1gN+CuxOutnZ1sADwNmSFkTEZ0cRz9rZ3/nZ3x1JV61cUakQEfdKeoQ09safsr93ZMlFxWXA94BXA7fUeA8TgYm5orUABgYGGBgYWCWowcFBACauJgD6+voYHBysWbeWwcFB+vr6mFTw9aW30TuhpTEALY9hPKyHRmPIL7eyLQ73ukbiMTMrmxod5VvS+cD6wMeBe4DtIuIBSdOAGRHx6kKBSD3Ar4B1IuItWdl04NyImFhV98/A1RFxtKSzgM0iYlpu/mTgH8A7IuLSGss6HjiuunzmzJlMnjy5SPhm486SJUuYPn06wNoRsajV8ZhZdylyiGRvYFpEPCYpX34/sNkoYjmTdJLoW0bRRr1OAmbknq8FPLb33nszZcqUVSrfcsstPP744xx96SMsWxE8OfPzXHvttWy33XZ1Ley2225jt912Y4PpJwM0/Pqy21h3z0NYcMV/tySGyro88vzrePzS73bteigSQ365E1cTX993UzbaaCN22GGHmvUXLXJOYWatUyTBWANYUqN8KrCsSBCSzgDeBewWEY/lZj0BrC5pnYhYmCvfIJtXqfPGqiY3yM1bRUQsy8daSZR6e3vp7e1dpX5PT7rYZtmKYOmKoL+/n56enpp1a+np6aG/v5+lK9LeokZfX3YbfQPPtzQGgKUtjmE8rIdGY6hebqVsqNc1Eo+ZWdmKXKZ6HfCR3PPIDm8cBVzdSENKzgDeB7w9Ih6sqnIT6WqQPXKv2YY05kblPig3AK+VtH7udXsBi4C7G4nHzMzMylFkD8ZRwJWSdgJWB75BOplyKtmlow04E5gO/AuwWNKGWfmzEdEfEc9KOhuYIWk+KWn4DnBDdgUJwOWkROJHko4CNgS+CpyZ7akwMzOzMdbwHoyIuBN4JXA98EvSIZOfAztExN8abO5Q0pUj1wCP56YDcnWOAH4NXAxcSzrssV8unudJh1eeJ+3N+DFpHAzfdM3MzKxFGtqDIakX+B3wiYj4r9EuPCJUR52lwGHZNFSdh4F3jDYeMzMzK0dDezAiYgB4XZNiMTMzsw5R5CTPH5NG1zQzMzOrqchJnqsBB0nak3SVxz/yM30HVTMzMyuSYFTupgrpZM+8xoYFNTMzs47U6rupmpmZWQcqcg6GmZmZ2bCcYJiZmVnpnGCYmZlZ6ZxgmJmZWenqSjAk3Sxp3ezxsZImNzcsMzMza2f17sHYlnTPEYDjgDWbE46ZmZl1gnovU70VOFfS9YCAz0l6rlbFiDixpNjMzMysTdWbYBwInEC6a2kA+wIratQLwAmGmZlZl6srwYiI+4APAUgaBPaIiKeaGZiZmZm1ryIjefrKEzMzMxtWkXuRIGlL4HDSyZ8AdwOnRcTfSorLzMzM2ljDeyMkTSMlFG8Ebs+mNwF3Sdqr3PDMzMysHRXZg3EycEpEfD5fKOlk4OvA78sIzMzMzNpXkfMptgXOrlF+DvCq0YVjZmZmnaBIgvE0sH2N8u0BX1liZmZmhQ6R/AA4S9IrgD9mZbsCRwMzygrMzMzM2leRBOMrwGLgs8BJWdlc4Hjg9HLCMjMzs3ZWZByMAE4BTpG0Vla2uOzAzMzMrH0VGgejwomFmZmZ1eJROc3MzKx0TjDMzMysdE4wzMzMrHQNJRiSeiVdKWnrZgVkZmZm7a+hBCMiBoDXNSkWMzMz6xBFDpH8GDi47EDMzMyscxS5THU14CBJewI3Af/Iz4yII8sIzMzMzNpXkT0YrwFuJo3m+Upgh9y0fSMNSdpN0iWS5koKSe+tmi9JJ0p6XFK/pCuqz/+QNFXSBZIWSVoo6WxJaxZ4X2ZmZlaSIiN57l7i8tcAbiPdifXnNeYfBXwG+CjwIGmY8sskvSoilmZ1LgA2AvYCeoFzgbOA6SXGaWZmZg0oPJKnpK2ALYFrI6JfkrJhxOsWEZcCl2btVbcv4HDgqxHxy6zsI8CTwHuBCyVtC+wDvCEibszqfBr4raTPRcTcou/PzMzMims4wZC0HvBTYHcggK2BB4CzJS2IiM+WFNsWwIbAFZWCiHhW0mxgF+DC7O/CSnKRuQIYBN4E/GKI9zARmJgrWgtgYGCAgYGBVeoPDg4CMHG1lAT19fUxODhYs24tg4OD9PX1Mang60tvo3dCS2MAWh7DeFgPjcaQX25lWxzudY3EY2ZWNjW40wFJ5wPrAx8H7gG2i4gHJE0DZkTEqwsFIgXwvoiYlT1/M/AHYOOIeDxX76eke64dIOkY4KMRsU1VW08Bx0XE94ZY1vHAcdXlM2fOZPLkyUXCNxt3lixZwvTp0wHWjohFrY7HzLpLkUMkewPTIuKxqsMa9wOblRJV850EzMg9Xwt4bO+992bKlCmrVL7lllt4/PHHOfrSR1i2Inhy5ue59tpr2W677epa2G233cZuu+3GBtNPBmj49WW3se6eh7Dgiv9uSQyVdXnk+dfx+KXf7dr1UCSG/HInria+vu+mbLTRRuywww416y9a5JzCzFqnSIKxBrCkRvlUYNnowlnJE9nfDYDHc+UbALfm6qyff5Gk1bJYnmAIEbGMXKyVRKm3t5fe3t5V6vf0pIttlq0Ilq4I+vv76enpqVm3lp6eHvr7+1m6Iu0tavT1ZbfRN/B8S2MAWNriGMbDemg0hurlVsqGel0j8ZiZla3IZarXAR/JPQ9JPaQrPq4uJarkQVKSsEelQNIU0rkVN2RFNwDrSNox97q3k97X7BJjMTMzswYU2YNxFHClpJ2A1YFvAK8m7TXYtZGGsvEqtsoVbSFpe2B+RDwi6VTgS5Lu58XLVOcCswAi4h5JvwN+IOkTpMtUzwAu9BUkZmZmrVNkHIw7Jb0S+BRpsK01SWNYnJk/GbNOO7HyXo/KeRHnAQeSkpc1SONarANcD+yTGwMD4MOkpOJK0tUjF5PGzjAzM7MWKTQORkQ8C/zXaBceEdcAGmZ+AMdm01B15uNBtczMzMaVQgmGpHVJNzzbNiu6Gzg3+2dvZmZmXa7hkzwl7QY8RDoMsW42fQZ4MJtnZmZmXa7IHowzgYuAQyPieQBJE4DvZvNeW154ZmZm1o6KXKa6FfDtSnIBkD2ewcpXhJiZmVmXKpJg3MyL517kbUu6M6qZmZl1uboOkUh6Xe7p6cBp2d1U/5SV7QwcBny+3PDMzMysHdV7DsatpDun5i8p/UaNejNJ52eYmZlZF6s3wdiiqVGYmZlZR6krwYiIh5sdiJmZmXWOogNtbQy8hXQn05VOFI2I00uIy8zMzNpYwwmGpAOB/waWA8+Qzs2oCNJJoGZmZtbFiuzB+ApwInBSRAyWHI+ZmZl1gCLjYEwm3Q7dyYWZmZnVVCTBOBv4QNmBmJmZWecocojkC8CvJe0D3AEM5GdGxJFlBGZmZmbtq2iCMQ24L3tefZKnmZmZdbkiCcZngYMi4oclx2JmZmYdosg5GMuAP5QdiJmZmXWOIgnGacCnyw7EzMzMOkeRQyRvBN4u6V3AXax6kud+ZQRmZmZm7atIgrEQ+HnJcZiZmVkHaTjBiIiPNSMQMzMz6xxFzsEwMzMzG1aRm509yDDjXUTEK0YVkZmZmbW9IudgnFr1vBfYAdgH+OZoAzIzM7P2V+QcjNNqlUs6DNhp1BGZmZlZ2yvzHIxLgfeX2J6ZmZm1qTITjP2B+SW2Z2ZmZm2qyEmet7DySZ4CNgReCnyypLjMzMysjRU5yXNW1fNB4Gngmoi4d9QRmZmZWdsrcpLnCc0IxMzMzDpHxwy0JekwSQ9JWipptqQ3tjomMzOzblV3giFpUNLzI0wrmhnsMLEdAMwATgBeD9wGXCZp/VbEY2Zm1u0aOUTyvmHm7QJ8htbtETkS+EFEnAsg6RPAO4GDgJNbFJOZmVnXqjvBiIhfVpdJ2ob0D/zdwAXAseWFVh9JqwM7AidVyiJiUNIVpMSn1msmAhNzRWsBzJ8/n4GBgVXqL1q0iCVLlqD5D6OB55k0aRI33XQTzz33HIODgwD09PQM+fi+++5j0qRJ6JkHAV54/aJFi2q+rlbZ/fffX7ONemPItzFh8ZMjxlArnqFiyLdRTwxrrrkmE55rbQzjYT00GkN+O1LvBJYseSmLFi3imWeeqbWZs3jx4prlZmZjQRFD3lZk6BdJG5MOR3wUuAz4QkTcWXJsjcTyd+DNEXFDrvwbwFsj4k01XnM8cNyYBWnWWi+LiL+3Oggz6y4NXUUiaW3gGODTwK3AHhFxXRPiaraTSOds5E1l6IHC1gIeA14G+Gfh6HhdlqPe9bgWMHdMIjIzy6k7wZB0FHA08ATwf2odMmmRecDzwAZV5RuQYl1FRCwDllUVLxpqAZIqDxdHxJD1bGRel+VoYD16HZtZSzSyB+NkoB/4K/BRSR+tVSki9isjsHpFxHJJNwF7kA0CJqkne37GWMZiZmZmSSMJxvmsPET4eDIDOE/SjcCfgcOBNYBzWxmUmZlZt2rkKpIDmxjHqETERZJeCpxIui/KrcA+EfFkSYtYRjqptfqwijXO67IcXo9mNq4VuorEzMzMbDgdM1S4mZmZjR9OMMzMzKx0TjDMzMysdE4wzMzMrHROMEbg28CPnqTjJUXVdG+r42oHknaTdImkudl6e2/VfEk6UdLjkvolXSFp6xaFa2b2AicYw/Bt4Et1F7BRbnpLa8NpG2uQtrvDhph/FOlOxp8A3gT8g7SNThqb8MzMavNlqsOQNBuYExGfyp73AI8C34kI3wa+TtnN5d4bEdu3OJS2JimA90XErOy5SPcZ+XZEfCsrWxt4EjgwIi5sVaxmZt6DMYTcbeCvqJRFxGD2vOZt4G1YW2e7+R+QdIGkTVsdUAfYgjSwXH4bfRaYjbdRM2sxJxhDewkwgfRrMO9JUqdu9ZsNHAjsAxxK+sd4naS1WhlUB6hsh95GzWzcaeh27WZFRMSluae3Z4eeHgY+CJzdmqjMzKyZvAdjaA3fBt7qExELgb8AW7U4lHZX2Q69jZrZuOMEYwgRsRyo3AYeWOk28De0Kq5OIGlNYEvg8VbH0uYeJCUS+W10CulqEm+jZtZSPkQyPN8GvgSSvgVcQjossjHpst/ngZ+0Mq52kCVj+T09W0jaHpgfEY9IOhX4kqT7SQnHV0hXlswa41DNzFbiBGMYY3Ab+G7xMlIysR7wNHA9sHNEPN3SqNrDTsDVueczsr/nkU6c/QYp6T0LWIe0bveJiKVjF6KZ2ao8DoaZmZmVzudgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYNiYkfSQpMNbHYeZmTWfEwwzMzMrnRMMMzMzK50TDKuLpP+QNDe7o2y+/JeSzpG0Zfb4SUnPSZojac9h2ttcUmQ37qqUrZOVvS1X9hpJl2ZtPinpR5Je0oS3aGZmJXKCYfX6H9LNynavFEiaCuwDXACsCfyWdOvwHYDfAZdI2rToAiWtA1wF3EK66dc+wAbAT4u2aWZmY8N3U7W6RMQCSZcC04Ers+L9gXnA1RExCNyWe8mXJb0PeA9wRsHFfgq4JSKOqRRIOgh4VNIrI+IvBds1M7Mm8x4Ma8QFwPslTcyefxi4MCIGJa0p6VuS7pG0UNJzwLZA4T0YwHbA7tnhkeeyNu/N5m05inbNzKzJvAfDGnEJIOCdkuYA/wwckc37FrAX8Dngr0A/8DNg9SHaGsz+KlfWW1VnzWyZR9d4/eONBm9mZmPHCYbVLSKWSvo5ac/FVsB9EXFzNntX4IcR8QsASWsCmw/T3NPZ341I51gAbF9V52bg/cBDEbFi1G/AzMzGjA+RWKMuAN4JHJQ9rrgf2E/S9pK2A2YyzPYVEf3An4DPS9pW0luBr1ZVOxOYCvxE0huyK1WmSTpX0oQS35OZmZXMCYY16ipgPrANKYmoOBJYAPyRdFjjMtIeiOEcRNqLdhNwKvCl/MyImEvaMzIBuBy4I6u3kBcPsZiZ2TikiGh1DGZmZtZhvAfDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK9/8BYaMikxAoPNsAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABGr0lEQVR4nO3deZxkVX3//9d7hgEZYUA0gqgoQlTcAFFc8EtQmAEVzdc9X81PEZe4oEFM3KKIaAK4sCSSGBVBFNQkGo0isiniAkTZBFlEZB2RHQechR76/P64t7Wmpnum6/btrq7q1/PxqEfVPffUrU/drjr9qXPPPTelFCRJktowr98BSJKk4WFiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNiIUmSWmNioRmR5JAkMzLNa5Kzk5zdsbxHkpLk5TP0+ickuW4mXqvrdR9dv8/9Zvq154okGyT5eJIbk4wm+Wa/Y5JmGxML9SzJfvU/sLHbyiS/TXJakncm2bSl19m6Tkh2amN7bZrNsWla7Q/8PfBfwOuAo/obTnuSPL5Omi5Ock+Sm5OckuRp/Y5Ng2WDfgeggXYwcC2wANgK2AM4GjgoyYtLKb/oqPsx4PAet7818GHgOuDiHp63pMfXaWJdsb2J/iTt1wMbAyN9eO254nnA0lLKu/odyDR4I/AG4OvAvwKbAX8DnJdkn1LKmf0MToPDxEJTcWop5ecdy4cleR7wHeB/kuxQSlkBUEpZDayezmCSLCylLC+l3Dedr7M+pZS+/GMv1RUFV/bjtaciyQOA+0opo/2OZRIeCtzd1saSzAM2LKVM6u+WJMADxr5XLfsKcEgp5d6O1/sCcAVwCGBioUnxUIhaVUr5PvBR4FHAX4+VjzfGIsniJD9OcneSe5NcleSf6nV7AD+rqx7fcdhlv3r92UkuS7JLknOSLAf+qWPd2eOENz/JPyX5XZI/JPmfJI/sium6JCd0P7Fzm5OIba0xFkkemORT9bH5VfV7/bv6H0VnvZLk00n+b/3+ViX5ZZJ9xnk/3TGuNcaijuXeJA9P8s368W1JPplk/iS2eV2S7yRZUneRr0xyeZKXdtXbot7mpfVrLEtyapIdu+qNjXf5qyQfS7IUWA4sarCNVyb5cJKlddf9fyXZLMlGSY5Ocmu9neOTbNS1jQk/e+vat8BzgSd2/M33qNf3+vd9TZJfAquACf+2Hft/7yQ/B1ZQ9SKQ5PVJvl+/z1X13+Wt69jGc5L8b/03/E2S13bWK6Vc0JlU1GV3AD8CdpgoRqmbPRaaDl+i+ie/BPjceBWSPJGqZ+MXVIdUVgHbA7vVVa6oyw8FPkvVuAH8tGMzDwZOBb4KfBm4ZT1x/QNQgCOofnkeCJyZZKcefwFOJrY/qv+5/A/VP6XjqA6d7A18Ang40N2t/hzgpVTd0fcA7wS+nmSbuqHv1XzgNOB84O+AvYB3A9cA/zaJ5/858DXgM8AXgdcD/5mqe/yMus5jgP8L/CfV4bEtqf4B/jDJE0opv+3a5oeA+4BPAhvVj5/Q4zbeT/WP9nCqz847qA4DjQIPovqV/Uxgv3p7h8KkPnvjuQ34/6g+Q5vUrw1wRYO/7/OAVwKfBm6nOpy2Lo+j6k34d6rv01V1+VuBX9avvRp4EfCvSeaVUo7t2sb2VONCjqP6G+4PnJDkglLKL9fz+lvVcUqTU0rx5q2nG1VDXYCnraPO3cCFHcuHUPfW18sH1tt4yDq28bS6zn7jrDu7Xvc3E6w7u2N5j7ruTcCmHeWvqMvf2VF2HXDCJLa5rthOAK7rWP7Luu4/dNX7T6p/gtt1lBWqf3SdZU+pyw9Yz9/l0d0x1bEU4ENddS8Efj6Jv/V19fNf2lG2CPht1993I2DeOPGs7Hztjr/FNcDGXfV73calwIKO8pPr/fndrm38tOvvsd7P3jr2x9nAZV1lvf597weeMMnXG9v/e4+zbuNxyr4HXDPBNv5PR9mf1fv1k+t5/f9Tv4dDe91X3ubuzUMhmi73Aus6O+Tu+v4vUx1nbmIVcHwP9U8spdzTsfxfwM3ACxq+/mS9gOqfyT93lX8KCPD8rvIzSynXjC2UahDsMqpegaY+07X8ox6291vgvzviWQacCOycZKu6bFWpx0gkmZ/kwVSfgauAp46zzS+Wrl6iBts4saw5nuV8qv35ha565wOPTDLWQ3t3fT+Vz16nXv++PyylXN7D9q8tpZzWXdi5/+pDQA8Bfgg8JslmXdUvL6X8qOO5t1Ht1wk/A0keSpWsXQt8vId4NceZWGi6bELVjT+RrwE/AT4P3JLkq/Ux814+k0tLbwM1r+5cKKUU4NdUv4qn06OA33YlNVAdUhlb3+mGcbZxF1X3fhMr638kTbf363pfdfpVff9oqAYhJnlXkqupEr7bqQ4fPIXq7IJu13YXNNhG9376fX1/4zjl8zq20cZnr1Ovf9+13vt6jFs/yW5JzkzyB6pk6TbqcUasvb96+kwleSDV4aJNgb8sXWMvpHUxsVDrkjyCqmH79UR16l9bu1Md7/8S1T+PrwFnZBKDCmvTMTJ+okm8JhtTG+6foDwTlDfdXps+ABwJnEM1aHdvYDHVGIDx2pnx/na9bmOi97XO/dfSZ28qev3crlU/yXbAWcBDgIOAF1Ltq7F5Nbr316Q/U0k2BL5BtV/+spRyWY/xao5z8Kamw/9X36/Vfdup7vY+q74dlOQDwD9SDYI7k4n/yTf1550L9aC77akG8Y25C9h8nOc+CvhNx3IvsV0P7JVk065ftY/vWD+bbZ8kXb0Wj63vr6vvXw78oJTyhs4nJtmcyQ/8a2MbkzKJz14v+vH3fRHVmJQXl1L+2BuR5LlT2Wjda3MisCfwylLKD6cUpeYkeyzUqlTzWHyIqvv2pHXU22Kc4ovr+7FTA/9Q32/eUnivzZqzgr4ceBjVmSVjrgGeWf9qAyDJvsAap6X2GNt3qXo8DugqfxdVgnLqWs+YXbYGXjK2kGQR8Frg4lLK7+ri++n69ZvkFVRnRUxWG9tYr0l+9nrRj7/vWA/EH/dXPa7i9VPc7r8ArwLeVkr5xhS3pTnKHgtNxfOTPJ7qc7Ql1Wl0i6l+ob24rHvSn4OT7A6cUtd/KPA2qjM3flzXuYbq2PFbktxD9c/8/FJKr8eox9wJ/DjJ8XW8B1Idruk8JfbzVAnH95L8B7AdVbf8NWtuqqfYvg38APjHJI8GLqE6FfcvgaM7B2rOUr8CjkvydKpTeven2n+d/8S+Q/U3PZ7qLIwnA69hzV6e9WljG5Mxmc9eL/rx9z2d6hTdbyf5d6oxTW8CbqVKlnuW5ECq/XAusDzJX3dV+e9Syh/WeqLUxcRCU3FofX8f1T/tS6n+WR8/zkC2bv9DNfBvf6rjxLdTjWj/cCnl91DNYJnkdcBhVGc1bED1z6xpYvFPVMeN3081KO0sql9my8cqlFJOS/JuquPWRwM/B/alGuFPR71Jx1ZKGU3yYqr99aq63nVU15z4VHf9WehqqjkiPkE1p8K1wKu6zlT4J+CBwKup3uOFVMf9e5nGvY1tTMZ6P3u96Mfft5RyVaqL6n2Mai6Q31HNSXIba58VM1k71ffPqm/dtuVPPXXShLL2YG9JqqSaQfSyUsq+/Y5F0mBwjIUkSWqNiYUkSWqNiYUkSWqNYywkSVJr7LGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbGQJEmtMbHQpCXZL0lJ8uj11LsuyQkzE5WkQWI7MvxMLCRJ6pBkzyRfSPKrJMuT/CbJ55M8rN+xDYKUUvodgwZEkvnAAmBVWccHJ8l1wNmllP1mKDRJA2IQ2pEkPwe2AP4TuBp4DHAAsBzYqZTyu5mOaZBs0O8ANDhKKfcD9/c7DkmDa0DakYOAH5dSRscKknwP+CFVgvHBfgU2CDwUoknrPjaaygeT3FR3F/4gyRPHed4hSdb6ZTLesdb6uOp3kuyR5OdJViS5NMke9fqX1ssrk1yQZOfper+S2jcI7Ugp5ZzOpGKsDLgT2GHqe2G4mVhoKg4FPgpcAvw98BvgdOCBU9zu9sDJwLeB9wMPAr6d5DXAUcCXgQ8D2wH/kcTPsTS4BqIdSbIJsAlw+xTjGnoeClEjSf4MeA9wCvCisWOlSf4R+MAUN/844NmllHPrbV4OnAZ8Dnh8KeWGuvwu4N+B3YGzp/iakmbYgLUjBwIbAl+bYlxDz196amovqi/Zv3QNwDq6hW1fPtYY1M6v778/1hh0lT+mhdeUNPMGoh1JsjtV78Z/lFK+30JsQ83EQk09qr6/urOwlHIbcNcUt935paeU8vv64Y1d9cbKHzTF15PUH7O+HUnyeOC/gcuAN04xpjnBxEIzYaJTyuZPUD7RiPGJytNbOJIG0Iy3I0keSTXe4/fAC0op96wzQgEmFmru+vr+zzsL62Om3Zn/XfW6zbvKH4WkuWzWtiNJHkyVVGwE7F1KuXk6XmcYmVioqTOBEeAdSToz/QPHqXtNfb/7WEGSBwKvm7boJA2CWdmO1Nv9LvBwqp6Kq9fzFHXwrBA1Ukq5LcknqU7j+k6S7wI7A89n7dOxTqc63nlckk9QdUXuD9wGbDNzUUuaTWZxO3ISsCvwBWCHJJ1zV9xbSvlmy683VEwsNBUfBFYCbwGeSzW6egnVqWN/VEoZSfIS4F+pzlf/HdWo77uA42cwXkmzz2xsR3aq7/evb52uB77Z8usNFa8VIkmSWuMYC0mS1BoTC0mS1BoTC0mS1BoTC0mS1JqeE4sk+yR5Tsfy25NcnOTkJE6tLKkR2xZpODTpsfgEsAggyZOBT1FNJLItcGR7oUmaY2xbpCHQZB6LbYHL68cvA75TSvlAkqdSNQJDp54RbmvAeeI1W20K/LYM9vnjti3S7NNz29IksbgPWFg/3gs4sX58J/WvjSG0NXBTv4OQ1uMRwNJ+BzEFti3S7NRT29IksfgxcGSSn1BNefqquvyxDO8X5B6AG2+8kUWL1m7fRkZGOP3001myZAkLFiyY8eAGjfurN+vbX8uWLeORj3wkDP6vXtuWLn5XeuP+6s10tS1NEosDqKZUfTnw1lLKWBbzfOB7DbY3MBYtWjThl3/hwoUsWrTID/MkuL96M4f2l21Llzn0t2+F+6s307W/ek4sSik3APuOU/6uViKSNCfZtkjDodFFyJLMA7YHHkrXmSWllHNaiEvSHGTbIg2+nhOLJM8ETgYeBaRrdQHmtxCXpDnGtkUaDk16LD4D/Bx4IXAz1Rde6tkll1zCvHnzeMhDHsI222zT73DUf7YtaoVtS381SSz+HHh5KeXXbQejueGmm6oB/rvvvjsrVqzgARsv5Korr7ABkG2LpsS2ZXZoMvPm+VTHQKVG7rjjDgC22OcdPHjfd7NyxXJuv/32PkelWcC2RVNi2zI7NOmx+BfgU0m2Ai4FRjpXllJ+0UZgGn4Ltng496+2t1t/ZNuiVti29FeTxOLr9f0XOsoK1WArB1hJasq2RRoCTa8VIklts22RhkCTCbKun45AJM1tti3ScGg6QdZ2wIHADnXR5cAxpZRrWopL0hxk2yINvp7PCkmyN9WXfVfgF/XtGcAvkyxuNzxJc4VtizQcmvRYHA4cVUp5X2dhksOBI4Az2ghM0pxj2yINgSbzWOwAHDdO+ReAJ0wtHElzmG2LNASaJBa3ATuNU74TcOtUgpE0p9m2SEOgyaGQzwGfTfIY4Kd12W7Ae4Ej2wpM0pxj2yINgSaJxUeBe4B3A4fVZb8FDgH+uZ2wJM1Bti3SEGgyj0UBjgKOSrJpXXZP24FJmltsW6Th0GgeizF+6SVNB9sWaXBNKrFIciGwZynlriQXUc3bP65SylPbCk7ScLNtkYbPZHssvgWs6njsZeMktcG2RRoyk0osSikf6Xh8yLRFI2lOsW2Rhk+TKb1/k+TB45RvnuQ37YQlaa6xbZGGQ5MJsh4NzB+nfCPgEVOKRtJc9mhsW6SBN+mzQpK8uGNx7yS/71ieD+wJXNtWYJLmBtsWabj0crrpN+v7Anyxa90IcB3VxDaS1Itv1ve2LdIQmHRiUUqZB5DkWuDppZTbpy0qSXOGbYs0XJrMvLntdAQiaW6zbZGGw2QnyHon8NlSysr68YRKKc7pL2lSbFuk4TPZHot3AScBK+vHEyl4sSBJk2fbIg2ZyU6Qte14jyVpKmxbpOHTZIKsg5MsHKd84yQHtxOWpLnGtkUaDk0myPowsMk45QvrdY0keV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJKmjW2LNASaJBZh/AsF7Qjc2SSIJE8H/gb4Rdeqo4AXAa8A/gLYGvhGx/PmA6cAGwLPBl4H7Acc2lFn27rOD4CdgKOBzyfZu0mskqaNbYs0BHqZefMuqi99AX6VpLMBmE/1S+MzvQaQZBOqwVtvAj7YUb4Z8Abg1aWU79dlrweuSPLMUsp5wBLgCcBepZRbgIuTfAg4IskhpZT7gLcA15ZSxibYuSLJc6gGip3Wa7yS2mXbIg2XXuaxOJDqF8UXqLolO6fdvQ+4rpRyboMYjgVOKaWcmeSDHeW7AAuAM8cKSilXJrkBeBZwXn1/af3FH3Ma8G/AE4GL6jpnsqbTqH5dSOq/A7FtkYZGLzNvfhH+ODveT0opq6f64kn+Cngq8PRxVm8F3FdKubur/JZ63VidW8ZZzyTqLEqycSllxThxbUR14aMxmwKMjIwwMjKyVqBjZeOt09pGR0cB2GiDALDxxhszOjrq/pvA+j5fg77fbFtsW9pi29Kb6Wpbmsy8+cMk29Vdh9sBf1tKuTXJ84EbSim/nMx2kjwSOAZYXEpZ2Wsc0+z9jDNY7PTTT2fhwrUGrf/RGWecMZ0xDZ0jnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUwP2xbblrbYtvSm7bal58QiyV8ApwI/AXYH/gG4lWqA1RuAl09yU7sADwUuTDJWNh/YPckBwN7Ahkk27/plsSXwu/rx74Bdu7a7Zce6sfstx6mzbLxfFLXDgCM7ljcFblqyZAmLFi1aq/LIyAhnnHEGixcvZsGCBRNsUmMuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqvbZtti2TJVtS2+mq23pObEADgc+WEo5Msk9HeXfBw7oYTtnAU/uKjseuBI4AriR6sqGewJfB0jyOGAbYOx467nAPyR5aCnl1rpsMbAMuLyjzgu6XmdxxzbWUkpZBawaWx5rnBYsWLDOL/f61qsyb151MtKq1YWVqwsrVqxg3rx57rv1mOjzNUT7zbZlArYtk2Pb0kzbbUuTxOLJwKvHKb8VeMhkN1JKuQe4rLMsyR+AO0opl9XLxwFHJrmT6gv9L8C59ahtgNOpvuRfSvIeqmOeHwOOrb/AUI0mPyDJx6kGhz0PeCXwwsnGKmlG2LZIQ6DJPBZ3Aw8bp3xnoO0DWe8CvkP1q+Icqq7Hl46tLKXcD+wL3E/1K+HLwInAwR11rqX6oi8GLgHeDbyxlOLpYNLscje2LdLAa9Jj8VWqc7lfQXXe+bwkuwGfpPriNVZK2aNreSXw9vo20XOuZ+3uyO46Z1M1TpJmL9sWaQg06bH4ANWxyhupJq65nCrj/ylVV6EkNWHbIg2BJqeb3ge8KclHgSdRNQAXlVKubjs4SXOHbYs0HJocCgGglHJDkhvrx+PN7y9JPbNtkQZbk0MhJHlDksuAlcDKJJcleWO7oUmaa2xbpMHXZIKsQ4GDqE/PqoufBRyVZJtSysETPlmSJmDbIg2HJodC3gq8qZTylY6y/0nyC6oGwS+/pCZsW6Qh0ORQyALg5+OUX8AUxmxImvNsW6Qh0CSx+BLVL4tubwZOmlo4kuYw2xZpCDT9FfCGJEuAselvn0E1z/6JSf54gZ1SykFTjE/S3GLbIg24JonFk4AL68fb1fe317cnddTzNDFJvbBtkYZAkwmynjsdgUia22xbpOHQaB4LgCTbJ9k7ycb1ctoLS9JcZdsiDbaeE4skD05yFvAr4Lv86WqExyX5VJvBSZo7bFuk4dCkx+IoYIRqQNXyjvKvAfu0EZSkOcm2RRoCTQZvLgH2LqXc1NVDeTXwqFaikjQX2bZIQ6BJj8UDWfPXxJgtgFVTC0fSHGbbIg2BJonFj4DXdiyXJPOA9wA/aCUqSXORbYs0BJocCnkPcFaSpwEbAh8Hnkj1q2K3FmOTNLfYtkhDoOcei1LKZcBjgR8D36LqvvwGsHMp5Zp2w5M0V9i2SMOhpx6LJAuA7wFvKaX84/SEJGmusW2RhkdPPRallBHgKdMUi6Q5yrZFGh5NBm9+GXhD24FImvNsW6Qh0GTw5gbA/kn2Ai4A/tC50qsOSmrItkUaAlO9uulju9Z51UFJTdm2SEPAq5tKmhVsW6Th0PjqppIkSd1MLCRJUmtMLCRJUmtMLCRJUmsmlVgkuTDJg+rHBydZOL1hSZoLbFuk4TPZHosdqObtB/gwsMn0hCNpjrFtkYbMZE83vRg4PsmPgQB/l+Te8SqWUg5tKTZJw+9ibFukoTLZxGI/4CPAvlQT1TwfWD1OvQL45Zc0Wfth2yINlUklFqWUq4C/AkgyCuxZSrl1OgOTNPxsW6Th02TmTc8kkdQ62xZpODS5VghJtgMOpBp4BXA5cEwp5ZqW4pI0B9m2SIOv518ISfam+rLvCvyivj0D+GWSxe2GJ2musG2RhkOTHovDgaNKKe/rLExyOHAEcEYbgUmac2xbpCHQ5JjmDsBx45R/AXjC1MKRNIfZtkhDoElicRuw0zjlOwGO5pbUlG2LNASaHAr5HPDZJI8BflqX7Qa8FziyrcAkzTm2LdIQaNJj8VGqiWreAfywvh0AHAJ8rJcNJXl/kp8luSfJrUm+meRxXXUekOTYJHckuTfJ15Ns2VVnmySnJFleb+cTSTboqrNHfV2CVUl+nWS/nt+5pOlk2yINgZ4Ti1I5qpTyCGAzYLNSyiNKKceUUkqPm/sL4FjgmcBiYAFwepIHdtQ5CngR8Iq6/tbAN8ZWJpkPnAJsCDwbeB3VbH6HdtTZtq7zA6pu1aOBz9ej0CXNArYt0nBoNI/FmFLKPVN8/j6dy3WmfyuwC3BOks2ANwCvLqV8v67zeuCKJM8spZwHLKEa2LVXKeUW4OIkHwKOSHJIKeU+4C3AtaWUd9cvdUWS5wDvAk6bynuQ1D7bFmlwTSmxmAab1fd31ve7UP3SOHOsQinlyiQ3AM8CzqvvL62/+GNOA/4NeCJwUV3nTNZ0GtWvi7Uk2QjYqKNoU4CRkRFGRkbWqj9WNt46rW10dBSAjTYIABtvvDGjo6Puvwms7/PlfpsU25Y5wLalN9PVtsyaxCLJPKov409KKZfVxVsB95VS7u6qfku9bqzOLeOsZxJ1FiXZuJSyomvd+6ku4byG008/nYULF074Hs44w9Pse3HE87epHrzoKyxdupSlS5f2N6BZbqLP1/Lly2c4ksFi2zL32Lb0pu22ZdYkFlTHQ58EPKffgQCHseYo9E2Bm5YsWcKiRYvWqjwyMsIZZ5zB4sWLWbBgwUzFOLAuuugibr75Zt576g2sWl245eT3cc4557Djjjv2O7RZaX2fr2XLlvUhqoFi2zJH2Lb0Zrralp4SiyQLgO8BbymlXN3oFcff7qepLpu8eynlpo5VvwM2TLJ51y+LLet1Y3V27drklh3rxu63HKfOsnF+UVBKWQWs6ogPgAULFqzzy72+9arMm1eNGV61urBydWHFihXMmzfPfbceE32+hmG/2bbYtrTBtqWZttuWns4KKaWMAE9p9ErjSOXTwEuA55VSru2qcgEwAuzZ8ZzHAdsA59ZF5wJPTvLQjuctBpZRXXdgrM6erGlxxzYk9ZFtizQ8msxj8WWq0dRtOBb4a+DVwD1JtqpvGwOUUn5PNcXvkUmem2QX4Hjg3HrUNsDpVF/yLyXZsT7N62PAsfWvA4DPAI9J8vEkj0/yNuCVVKebSZodbFukIdBkjMUGwP5J9qLK+v/QubKUclAP23prfX92V/nrgRPqx+8CRoGvU42mPg14W8fr3Z9kX6qR2ufW8XwROLijzrVJXkj1Zf9b4CbgjaUUTweTZg/bFmkINEksngRcWD9+bNe6niaxKaVkEnVWAm+vbxPVuR54wXq2czawcy/xSZpRti3SEOg5sSilPHc6ApE0t9m2SMOhyRgLAJJsn2TvsWOWGRveLElTYNsiDbaeE4skD05yFvAr4LvAw+pVxyX5VJvBSZo7bFuk4dCkx+IoqtO0tgE6p+X6GrDPuM+QpPWzbZGGQJPBm0uAvUspN3X1UF4NPKqVqCTNRbYt0hBo0mPxQNb8NTFmCzpmlJOkHtm2SEOgSWLxI+C1HculvsjPe4AftBKVpLnItkUaAk0OhbwHOCvJ04ANgY9TXUJ4C2C3FmOTNLfYtkhDoOcei/qyw48Ffgx8i6r78hvAzqWUa9oNT9JcYdsiDYdGl02v59n/x5ZjkTTH2bZIg69RYpHkQVQXC9qhLrocOL6UcmdbgUmae2xbpMHXZIKs3YHrgHcCD6pv7wSurddJUs9sW6Th0KTH4liqCWveWkq5HyDJfOBf63VPbi88SXOIbYs0BJqcbro98KmxLz5UlxcGjqzXSVITti3SEGiSWFzIn45/dtoBuGRq4Uiaw2xbpCEwqUMhSZ7SsfjPwDFJtgfOq8ueCbwdeF+74UkaZrYt0vCZ7BiLi4ECdE7g//Fx6p1MdYxUkibjYmxbpKEy2cRi22mNQtJcZdsiDZlJJRallOunOxBJc49tizR8mk6QtTXwHOChdA0ALaX8cwtxSZqDbFukwddzYpFkP+DfgfuAO6iOj44pVAOwJKknti3ScGjSY/FR4FDgsFLKaMvxSJq7bFukIdBkHouFwFf94ktqmW2LNASaJBbHAa9oOxBJc55tizQEmhwKeT/wnST7AJcCI50rSykHtRGYpDnHtkUaAk0Ti72Bq+rl7gFWktSEbYs0BJokFu8G9i+lnNByLJLmNtsWaQg0GWOxCvhJ24FImvNsW6Qh0CSxOAZ4R9uBSJrzbFukIdDkUMiuwPOS7Av8krUHWL20jcAkzTm2LdIQaJJY3A18o+U4JOlubFukgddzYlFKef10BCJpbrNtkYZDkzEWkiRJ42pyEbJrWcc55aWUx0wpIklzkm2LNByajLE4umt5AbAzsA/wiakGJGnOOrpr2bZFGkBNxlgcM155krcDT5tyRJLmJNsWaTi0OcbiVOBlLW5PksC2RRoobSYWLwfubHF7kgS2LdJAaTJ48yLWHGAVYCvgz4C3tRSXpDnGtkUaDk0Gb36za3kUuA04u5Ry5ZQjkjRXfbNr2bZFGkBNBm9+ZDoCmQn1ILC/p/oVdAnwjlLK//Y3Kklg2yINizkzQVaSVwFHAh8Bnkr15T8tyUP7GpikgWbbIq1p0olFktEk96/ntno6g52ig4DPlVKOL6VcDrwFWA7s39+wpLnNtkUaLr0cCnnJOtY9C3gns7QHJMmGwC7AYWNlpZTRJGdSxd5dfyNgo46iTQHuvPNORkZGuqszMjLC8uXL+dGPfsQGG2zA6OgoAPPmzWN0dPSP951l61s/E2X9iuHqq69mk002IXdeT0bu5wEPeAAXXHAB995775zfN+PFsHr1apYvX84dd9zBggUL1vr83XPPPWuVDRjblkm0LfPmzZs1n8nZGsNVV101I23LbNgPbcQ1bW1LKaXxDXgc8N/AauCLwKOmsr3pugFbU402f1ZX+ceB88epf0hd35u3Qbo9vN/ftRa/s7Yt3rzNnltPbUuTs0JIsjXV8cTXAacBO5VSLmuyrVnqMKpjpp22YOJz6TcFbgIeAQz8z8cZ4P7qzWT216bAb2csomli27IWvyu9cX/1Zlralp4SiySbAR8A3gFcDOxZSvlRL9vok9uB+4Etu8q3BH7XXbmUsgpY1VW8bKKNJxl7eE8pZcJ6qri/ejPJ/TXQ+9G2ZXx+V3rj/urNdLUtvQzefA/wG2Bf4P+VUp49IF98Sin3ARcAe46VJZlXL5/br7gk2bZIwyb1cb/1V0xGgRXAmVQZ+rhKKS9tJ7R21aeEfRH4G+B/gQOBVwKPL6XcMsVtLwJ+D2xmlrx+7q/eDPv+sm1Z57aH+m/fNvdXb6Zrf/VyKOREqkEcA6mU8rUkfwYcSjWJzcXAPlP94tdWUR0X7u7i1PjcX70Z9v1l2zKxYf/bt8391Ztp2V+T7rGQJElan1l5brgkSRpMJhaSJKk1JhaSJKk1JhaSJKk1JhYNJdkiyUlJliW5O8lxSTZZz3POTlK6bp+ZqZhnUpK3J7kuycok5yfZdT31X5Hkyrr+pUleMFOxzga97K8k+43zOVo5k/Fq+ti2rJttS2/60baYWDR3EvBEYDHVxD67A5+dxPM+Bzys4/ae6QqwX3q9jHSSZwNfAY4Ddga+CXwzyZNmJOA+a3jZ7WWs+Tl61HTHqRlj2zIB25be9K1t6fdFfAbxBuxAdd790zrK9gFGga3X8byzgaP7Hf8M7J/zgU93LM8DlgLvm6D+14DvdJWdB3ym3+9llu6v/YC7+x23t2n5LNi2rHv/2LZM7/5qpW2xx6KZZ1Ht/J93lJ1J9eV/xnqe+5oktye5LMlhSRZOW5R90HEZ6TPHykopo/XyWpeRrj2rs37ttHXUHxoN9xfAJkmuT3Jjkm8leeI0h6qZYdsyAduW3vSzbWl0dVOxFXBrZ0EpZXWSO+t1EzkZuJ7qSnFPAY6gujz0rJyquKGHAPOB7lkHbwEeP8Fztpqg/rr25bBosr+uAvYHfgFsBvwd8NMkTyyl3DRdgWpG2LZMzLalN31rW0wsOiQ5HHjveqrt0HT7pZTO46SXJrkZOCvJdqWUa5puV3NLKeVcOi5wleSnwBVU16r4UL/i0sRsWzQI2mpbTCzW9CnghPXU+Q3V5ZDXGPySZANgC8a5VPI6nF/fbw8My5e/p8tI137XY/1h0mR/raGUMpLkIqrPkWYn25aps23pTd/aFsdYdCil3FZKuXI9t/uoMrrNk+zS8fTnUe3P88fd+Ph2qu9vbucd9F9pdhnpczvr1xavo/7QaLi/1pBkPvBkhuhzNGxsW6bOtqU3fW1b+j1qdVBvwKnAhcCuwG7Ar4CTO9Y/HLgS2LVe3o6qK2kX4NHAi6l+Sfyw3+9lGvbNq4CVwOuounf/HbgL2LJefyJwWEf9ZwMjwLupjv0dAtwHPKnf72WW7q+DgSXAY6hOIfsK1WXHn9Dv9+Ktlc+DbcvE+8a2ZXr3VyttS9/f+KDeqLomTwbuobqe/ReATTrWP5rqtLE96uVHAj8E7qj/0FcDHwcW9fu9TNP+OYBqMNkqql9az+hYdzZwQlf9V1ANHFoFXAa8oN/vYbbuL+Cojrq/A04Bdu73e/DW2mfBtmXd+8e2ZZr2V1tti5dNlyRJrXGMhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhWZUkuuSHNjvOCQNH9uX2cHEQpIktcbEQpIktcbEQpOW5M1Jfltferez/FtJvpBku/rxLUnuTfKzJHutY3uPTlKS7NRRtnldtkdH2ZOSnFpv85YkX0rykGl4i5L6xPZleJhYqBf/CTwYeO5YQZItgH2Ak4BNgO8CewI7A98Dvp1km6YvmGRz4PvARcDT6tfaEviPptuUNCvZvgyJDfodgAZHKeWuJKcCrwbOqotfDtwO/KCUMgpc0vGUDyV5CfBi4NMNX/YA4KJSygfGCpLsD9yY5LGllF813K6kWcT2ZXjYY6FenQS8LMlG9fJrgK+WUkaTbJLkk0muSHJ3knuBHYDGvyiAHYHn1t2U99bbvLJet90Utitp9rF9GQL2WKhX3wYCvDDJz4D/A7yrXvdJYDHwd8CvgRXAfwEbTrCt0fo+HWULuupsUr/me8d5/s29Bi9pVrN9GQImFupJKWVlkm9Q/ZLYHriqlHJhvXo34IRSyn8DJNkEePQ6Nndbff8wqmOcADt11bkQeBlwXSll9ZTfgKRZy/ZlOHgoRE2cBLwQ2L9+POZq4KVJdkqyI3Ay6/iMlVJWAOcB70uyQ5K/AD7WVe1YYAvgK0meXo8M3zvJ8Unmt/ieJM0Oti8DzsRCTXwfuBN4HNWXe8xBwF3AT6m6F0+j+kWwLvtT9ZxdABwNfLBzZSnlt1S/VOYDpwOX1vXu5k9dnZKGh+3LgEsppd8xSJKkIWGPhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhSRJao2JhaZVkv2SlCSP7ncskqTpZ2IhSZJak1JKv2PQEEsyH1gArCp+2CRp6JlYSJKk1ngoRNOqc4xFki8muT3JgnHqnZ7kqn7EKElqj4mFZtKXgAcDe3cWJtkKeB7w5X4EJUlqj4mFZtL3gZuAv+4q/39Un0UTC0kacCYWmjGllFHgJODFSTbtWPUa4KellGv7E5kkqS0mFpppJwIbAy8BSPI4YBeqwySSpAFnYqEZVUq5HLiAPx0O+WvgPuA/+haUJKk1JhbqhxOB5yV5GPBq4JRSyl19jkmS1AITC/XDV4ACHAM8BgdtStLQMLHQjCul3AZ8D3gFcDdwSl8DkiS1xsRC/XJiff8fpZRVfY1EktQaEwtNq1LKCaWUlFKu61p1X33vYRBJGiJeK0R9keQ7wA7A9l6cTJKGxwb9DkBzS5K/Ap4CvBD4W5MKSRou9lhoRiUpwL3A14C3lFJW9zkkSVKLek4skuwD3FtK+XG9/HbgTcDlwNudj0CSpLmryeDNTwCLAJI8GfgU8F1gW+DI9kKTJEmDpskYi22peicAXgZ8p5TygSRPpUowJEnSHNUksbgPWFg/3os/zUdwJ3VPxrBJEmBr4J5+xyJNYFPgtw6GldRvTRKLHwNHJvkJsCvwqrr8scBNbQU2y2zN8L43DY9HAEv7HYSkua1JYnEA8K/Ay4G3llLGGrLnU03TPIzuAbjxxhtZtGjtTpmRkRFOP/10lixZwoIFC2Y8uEHj/urN+vbXsmXLeOQjHwn2qEmaBXpOLEopNwD7jlP+rlYimsUWLVo0YWKxcOFCFi1a5D/KSXB/9cb9JWmQNJogK8k8YHvgoXSdWVJKOaeFuCRJ0gDqObFI8kzgZOBRQLpWF2B+C3FJkqQB1KTH4jPAz6mmZL6ZKpmQenbJJZcwb948HvKQh7DNNtv0OxxJUguaJBZ/Dry8lPLrtoPR3HDTTdUJNrvvvjsrVqzgARsv5KorrzC5kKQh0GTmzfOpxldIjdxxxx0AbLHPO3jwvu9m5Yrl3H777X2OSpLUhiY9Fv8CfCrJVsClwEjnylLKL9oITMNvwRYP5/7VHkmTpGHSJLH4en3/hY6yQjWQ08GbkiTNYU2vFSJJkrSWJhNkXT8dgUiSpMHXdIKs7YADgR3qosuBY0op17QUlyRJGkA9nxWSZG+qRGJX4Bf17RnAL5Msbjc8SZI0SJr0WBwOHFVKeV9nYZLDgSOAM9oITJIkDZ4m81jsABw3TvkXgCdMLRxJkjTImiQWtwE7jVO+E3DrVIKRJEmDrcmhkM8Bn03yGOCnddluwHuBI9sKTJIkDZ4micVHgXuAdwOH1WW/BQ4B/rmdsCRJ0iBqMo9FAY4CjkqyaV12T9uBSZKkwdNoHosxJhSSJKnTpBKLJBcCe5ZS7kpyEdU1QcZVSnlqW8FJkqTBMtkei28Bqzoee0lKSZK0lkklFqWUj3Q8PmTaopEkSQOtyZTev0ny4HHKN0/ym3bCkiRJg6jJBFmPBuaPU74R8IgpRSNJkgbapM8KSfLijsW9k/y+Y3k+sCdwbVuBSZKkwdPL6abfrO8L8MWudSPAdVSTZkmSpDlq0olFKWUeQJJrgaeXUm6ftqgkSdJAajLz5rbTEYgkSRp8k50g653AZ0spK+vHEyqleL0QSZLmqMn2WLwLOAlYWT+eSMELkUmSNGdNdoKsbcd7LEmS1KnJBFkHJ1k4TvnGSQ5uJyxJkjSImkyQ9WFgk3HKF9brJEnSHNUksQjjX4RsR+DOpoEkeV+SkuTojrIHJDk2yR1J7k3y9SRbdj1vmySnJFme5NYkn0iyQVedPZJcmGRVkl8n2a9pnJIkaWK9zLx5F1VCUYBfJelMLuZT9WJ8pkkQSZ4O/A3wi65VRwEvBF4B/B74NPANYLf6efOBU4DfAc8GHgacSDVh1wfqOtvWdT4DvIZqhtDPJ7m5lHJak3glSdL4epnH4kCq3oovUB3y6JzS+z7gulLKub0GkGQTqjNO3gR8sKN8M+ANwKtLKd+vy14PXJHkmaWU84AlwBOAvUoptwAXJ/kQcESSQ0op9wFvAa4tpYzNCnpFkudQnd1iYiFJUot6mXnzi/DHmTd/UkpZ3VIMxwKnlFLOTPLBjvJdgAXAmR0xXJnkBuBZwHn1/aV1UjHmNODfgCcCF9V1zmRNpwFHTxRQko2oLqo2ZlOAkZERRkZG1qo/VjbeOq1tdHQUgI02CAAbb7wxo6Oj7r8JrO/z5X6TNJs0mXnzh0m2q3sPtgP+tpRya5LnAzeUUn452W0l+SvgqcDTx1m9FXBfKeXurvJb6nVjdW4ZZz2TqLMoycallBXjvPb7GWcg6umnn87ChWudEPNHZ5xxxoTrtLYjnr9N9eBFX2Hp0qUsXbq0vwHNchN9vpYvXz7DkUjSxHpOLJL8BXAq8BNgd+AfgFupBm++AXj5JLfzSOAYYHEpZWWvcUyzw4AjO5Y3BW5asmQJixYtWqvyyMgIZ5xxBosXL2bBggUzFePAuuiii7j55pt576k3sGp14ZaT38c555zDjjvu2O/QZqX1fb6WLVvWh6gkaXw9JxbA4cAHSylHJrmno/z7wAE9bGcX4KHAhUnGyuYDuyc5ANgb2DDJ5l29FltSDdakvt+1a7tbdqwbu99ynDrLJuitoJSyClg1tjwW34IFC9aZOKxvvSrz5lUnI61aXVi5urBixQrmzZvnvluPiT5f7jdJs0mT002fDPz3OOW3Ag/pYTtn1dvaqeP2c6qBnGOPR6jO4gAgyeOAbYCxQaLnAk9O8tCO7S4GlgGXd9TZkzUt7tiGJElqSZMei7upTuu8tqt8Z2DSB8lLKfcAl3WWJfkDcEcp5bJ6+TjgyCR3UiUL/wKcW58RAnA6VQLxpSTvoRpP8THg2LrXAarTTA9I8nGqM1qeB7yS6jRWSZLUoiY9Fl+lOp1zK6o5LeYl2Q34JNUcEm16F/Ad4OvAOVSHNV46trKUcj+wL3A/VQ/El+sYDu6ocy1VErEYuAR4N/BG57CQJKl9TXosPkB1iuiNVGMiLq/vT6bqLWislLJH1/JK4O31baLnXA+8YD3bPZuqR0WSJE2jJqeb3ge8KclHgSdRzbh5USnl6raDkyRJg6VJjwUApZQbktxYPx7v2iGSJGmOaTLGgiRvSHIZsBJYmeSyJG9sNzRJkjRomkyQdShwEPUZGnXxs4CjkmxTSjl4widLkqSh1uRQyFuBN5VSvtJR9j9JfkGVbJhYSJI0RzU5FLKAavKqbhcwhTEbkiRp8DVJLL5E1WvR7c1Us2ZKkqQ5qmkPwxuSLKG6dDnAM6im2j4xyR8v3lVKOWiK8UmSpAHSJLF4EnBh/Xi7+v72+vakjnqegipJ0hzTZIKs505HIJIkafA1mscCIMn2SfZOsnG9nPU9R5IkDbeeE4skD05yFvAr4LtUVzoFOC7Jp9oMTpIkDZYmPRZHASNUgzWXd5R/DdinjaAkSdJgajJ4cwmwdynlpq6jH1cDj2olKkmSNJCa9Fg8kDV7KsZsAayaWjiSJGmQNUksfgS8tmO5JJkHvAf4QStRSZKkgdTkUMh7gLOSPA3YEPg48ESqHovdWoxNkiQNmJ57LEoplwGPBX4MfIvq0Mg3gJ1LKde0G54kSRokPfVYJFkAfA94SynlH6cnJEmSNKh66rEopYwAT5mmWCRJ0oBrMnjzy8Ab2g5EkiQNviaDNzcA9k+yF3AB8IfOlV7RVJKkuWuqVzd9bNc6r2gqSdIc5tVNJUlSaxpf3VSSJKmbiYUkSWqNiYUkSWqNiYUkSWrNpBKLJBcmeVD9+OAkC6c3LEmSNIgm22OxA9U1QQA+DGwyPeFIkqRBNtnTTS8Gjk/yYyDA3yW5d7yKpZRDW4pNkiQNmMkmFvsBHwH2pZoE6/nA6nHqFcDEQpKkOWpSiUUp5SrgrwCSjAJ7llJunc7AJEnS4Gky86ZnkkiSpHE1uVYISbYDDqQa1AlwOXBMKeWaluKSJEkDqOfehyR7UyUSuwK/qG/PAH6ZZHG74UmSpEHSpMficOCoUsr7OguTHA4cAZzRRmCSJGnwNBkvsQNw3DjlXwCeMLVwJEnSIGuSWNwG7DRO+U6AZ4pIkjSHNTkU8jngs0keA/y0LtsNeC9wZFuBSZKkwdOkx+KjVJNgvQP4YX07ADgE+FgvG0ry/iQ/S3JPkluTfDPJ47rqPCDJsUnuSHJvkq8n2bKrzjZJTkmyvN7OJ5Js0FVnj/qaJ6uS/DrJfj2/c0mStE49JxalclQp5RHAZsBmpZRHlFKOKaWUHjf3F8CxwDOBxcAC4PQkD+yocxTwIuAVdf2tgW+MrUwyHzgF2BB4NvA6qplCD+2os21d5wdUh2yOBj5fn+EiSZJa0mgeizGllHum+Px9OpfrXoRbgV2Ac5JsBrwBeHUp5ft1ndcDVyR5ZinlPGAJ1aDRvUoptwAXJ/kQcESSQ0op9wFvAa4tpby7fqkrkjwHeBdw2lTegyRJ+pMpJRbTYLP6/s76fheqXowzxyqUUq5McgPwLOC8+v7SOqkYcxrwb8ATgYvqOmeyptOoei7WkmQjYKOOok0BRkZGGBkZWav+WNl467S20dFRADbaIABsvPHGjI6Ouv8msL7Pl/tN0mwyaxKLJPOo/tH/pJRyWV28FXBfKeXuruq31OvG6twyznomUWdRko1LKSu61r2f6vLwazj99NNZuHDhhO/hjDOcwqMXRzx/m+rBi77C0qVLWbp0aX8DmuUm+nwtX758hiORpInNmsSCaqzFk4Dn9DsQ4DDWPMNlU+CmJUuWsGjRorUqj4yMcMYZZ7B48WIWLFgwUzEOrIsuuoibb76Z9556A6tWF245+X2cc8457Ljjjv0ObVZa3+dr2bJlfYhKksbXU2KRZAHwPeAtpZSr2woiyaepLsm+eynlpo5VvwM2TLJ5V6/FlvW6sTq7dm1yy451Y/dbjlNn2Ti9FZRSVgGrOuIDYMGCBetMHNa3XpV586oxw6tWF1auLqxYsYJ58+a579Zjos+X+03SbNLTWSGllBHgKW29eCqfBl4CPK+Ucm1XlQuAEWDPjuc8DtgGOLcuOhd4cpKHdjxvMbCM6pomY3X2ZE2LO7YhSZJa0GQeiy9TnanRhmOBvwZeDdyTZKv6tjFAKeX3VNOHH5nkuUl2AY4Hzq3PCAE4nSqB+FKSHetTSD8GHFv3PAB8BnhMko8neXyStwGvpDqVVZIktaTJGIsNgP2T7EXVo/CHzpWllIN62NZb6/uzu8pfD5xQP34XMAp8nepMjdOAt3W83v1J9qU6C+TcOp4vAgd31Lk2yQupEom/BW4C3lhK8VRTSZJa1CSxeBJwYf34sV3repogq5SSSdRZCby9vk1U53rgBevZztnAzr3EJ0mSetNzYlFKee50BCJJkgZfkzEWACTZPsneY+MhMnbqhCRJmrN6TiySPDjJWcCvgO8CD6tXHZfkU20GJ0mSBkuTHoujqE4B3QbonPLva8A+4z5DkiTNCU0Gby4B9i6l3NR19ONq4FGtRCVJkgZSkx6LB7JmT8WYLeiYrVKSJM09TRKLHwGv7Vgu9QXE3gP8oJWoJEnSQGpyKOQ9wFlJngZsCHyc6vLkWwC7tRibJEkaMD33WNSXNH8s8GPgW1SHRr4B7FxKuabd8CRJ0iBpdNn0+hoe/9hyLJIkacA1SiySPIjqQmQ71EWXA8eXUu5sKzBJkjR4mkyQtTtwHfBO4EH17Z3AtfU6SZI0RzXpsTiWajKst5ZS7gdIMh/413rdk9sLT5IkDZImp5tuD3xqLKmA6tLlwJH1OkmSNEc1SSwu5E9jKzrtAFwytXAkSdIgm9ShkCRP6Vj8Z+CYJNsD59VlzwTeDryv3fAkSdIgmewYi4uBAnReHOTj49Q7mWr8hSRJmoMmm1hsO61RSJKkoTCpxKKUcv10ByJJkgZf0wmytgaeAzyUrgGgpZR/biEuSZI0gHpOLJLsB/w7cB9wB9XYizGFanCnJEmag5r0WHwUOBQ4rJQy2nI8kiRpgDWZx2Ih8FWTCkmS1K1JYnEc8Iq2A5EkSYOvyaGQ9wPfSbIPcCkw0rmylHJQG4FJkqTB0zSx2Bu4ql7uHrwpSZLmqCaJxbuB/UspJ7QciyRJGnBNxlisAn7SdiCSJGnwNUksjgHe0XYgkiRp8DU5FLIr8Lwk+wK/ZO3Bmy9tIzBJkjR4miQWdwPfaDkOSZI0BHpOLEopr5+OQCRJ0uBrMsZCkiRpXE0uQnYt65ivopTymClFJEmSBlaTMRZHdy0vAHYG9gE+MdWAJEnS4GoyxuKY8cqTvB142pQjkiRJA6vNMRanAi9rcXuSJGnAtJlYvBy4s8XtSZKkAdNk8OZFrDl4M8BWwJ8Bb2spLkmSNICaDN78ZtfyKHAbcHYp5copRyRJkgZWk8GbH5mOQCRJ0uCbUxNkJXl7kuuSrExyfpJd+x2TJEnDZNKJRZLRJPev57Z6OoOdiiSvAo4EPgI8FbgEOC3JQ/samCRJQ6SXQyEvWce6ZwHvZHb3gBwEfK6UcjxAkrcALwT2Bw7vZ2CSJA2LSScWpZRvdZcleRzVP+UXAScBB7cXWnuSbAjsAhw2VlZKGU1yJlVS1F1/I2CjjqJNAe68805GRka6qzMyMsLy5cv50Y9+xAYbbMDo6CgA8+bNY3R09I/3nWXrWz8TZf2K4eqrr2aTTTYhd15PRu7nAQ94ABdccAH33nvvnN8348WwevVqli9fzh133MGCBQvW+vzdc889a5VJUr80OSuEJFtTHVJ4HXAasFMp5bI2A2vZQ4D5wC1d5bcAjx+n/vuBD3cXbrvttu1HJgDe/OY39zuEYbApsKzfQUia23pKLJJsBnwAeAdwMbBnKeVH0xBXvx1GNR6j0xZMPAHYpsBNwCMAfz6un/urN5PZX5sCv52xiCRpApNOLJK8B3gv8Dvg/413aGQWux24H9iyq3xLqvezhlLKKmBVV/GEvwSTjD28p5TiL8b1cH/1ZpL7y/0oaVbopcficGAF8GvgdUleN16lUspL2wisTaWU+5JcAOxJPcFXknn18qf7GJokSUOll8TiRNacynvQHAl8McnPgf8FDgQeCBzfz6AkSRomvZwVst80xjHtSilfS/JnwKFU1za5GNinlNI9oLOJVVSDWbsPn2h87q/euL8kDYyUMsidEJIkaTaZzRNaSZKkAWNiIUmSWmNiIUmSWmNiIUmSWmNi0VCSLZKclGRZkruTHJdkk/U85+wkpev2mZmKeSb1eon6JK9IcmVd/9IkL5ipWGeDXvZXkv3G+RytnMl4JWkiJhbNnQQ8EVgM7AvsDnx2Es/7HPCwjtt7pivAfun1EvVJng18BTgO2JlqErNvJnnSjATcZ73ur9oy1vwcPWq645SkyfB00waS7ABcDjy9lPLzumwf4LvAI0op416zIcnZwMWllANnKNS+SHI+8LNSygH18jzgRuBfSilrXaI+ydeAB5ZS9u0oO49qX71lhsLumwb7az/g6FLK5jMZpyRNhj0WzTwLuHssqaidCYwCz1jPc1+T5PYklyU5LMnCaYuyDzouUX/mWFkpZbReXusS9bVnddavnbaO+kOj4f4C2CTJ9UluTPKtJE+c5lAlaVIaXTZdbAXc2llQSlmd5M563UROBq6nugrlU4AjgMcBs+76KlPQ6yXqodpn49Vf174cFk3211XA/sAvgM2AvwN+muSJpZSbpitQSZoME4sOSQ6nuoLruuzQdPullM4xGJcmuRk4K8l2pZRrmm5Xc0sp5Vzg3LHlJD8FrgD+BvhQv+KSJDCx6PYp4IT11PkN1aXW1xhYl2QDYAvGuQz7Opxf328PDEti0dMl6mu/67H+MGmyv9ZQShlJchHV50iS+soxFh1KKbeVUq5cz+0+ql+LmyfZpePpz6Pan+ePu/Hx7VTf39zOO+i/ev+MXaIeWOMS9edO8LRzO+vXFq+j/tBouL/WkGQ+8GSG6HMkaXDZY9FAKeWKJN8DPpfkLcAC4NPAV8fOCEnycOAs4LWllP9Nsh3waqozR+6gGmNxFHBOKeUX/Xgf02idl6hPciKwtJTy/rr+McAPk7wbOAX4K+BpwJtnOO5+6Wl/JTkYOA/4NbA58PdUp5t+fqYDl6RuJhbNvYYqmTiL6myQrwPv7Fi/gGpg5thZH/cBe/Gnfxo31s/52MyEO3MmcYn6baj22Vj9nyZ5NdW++CfgauD/llIum9HA+6TX/QU8iGo+lK2Au6h6PJ5dSrl8xoKWpAk4j4UkSWqNYywkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCwkSVJrTCw0o5Jcl+TAfschSZoeJhaSJKk1JhaSJKk1JhaatCRvTvLb+uqbneXfSvKFJNvVj29Jcm+SnyXZax3be3SSkmSnjrLN67I9OsqelOTUepu3JPlSkodMw1uUJE2RiYV68Z/Ag4HnjhUk2QLYBzgJ2ITq6q17AjsD3wO+nWSbpi+YZHPg+8BFVFc83QfYEviPptuUJE0fr26qSSul3JXkVKrLv59VF78cuB34QSllFLik4ykfSvIS4MVUV4Jt4gDgolLKB8YKkuwP3JjksaWUXzXcriRpGthjoV6dBLwsyUb18muAr5ZSRpNskuSTSa5IcneSe4EdqC773dSOwHPrwyD31tu8sl633RS2K0maBvZYqFffBgK8MMnPgP8DvKte90lgMfB3wK+BFcB/ARtOsK3R+j4dZQu66mxSv+Z7x3n+zb0GL0maXiYW6kkpZWWSb1D1VGwPXFVKubBevRtwQinlvwGSbAI8eh2bu62+fxjVGAqAnbrqXAi8DLiulLJ6ym9AkjStPBSiJk4CXgjsXz8eczXw0iQ7JdkROJl1fMZKKSuA84D3JdkhyV8AH+uqdiywBfCVJE+vzzzZO8nxSea3+J4kSS0wsVAT3wfuBB5HlTyMOQi4C/gp1eGL06h6HNZlf6qeswuAo4EPdq4spfyWqidkPnA6cGld727+dChFkjRLpJTS7xgkSdKQsMdCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS15v8Herd6cf8h/7wAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_16-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 32"
]
},
{
"cell_type": "code",
"execution_count": 246,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"gasdev idum\n",
"gasdev idum2\n",
"gasdev iy\n",
"cov_value di\n",
"cov_value dj\n",
"cov_value dk\n",
"ran2 idum\n",
"ran2 idum2\n",
"ran2 iy\n"
]
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABCyUlEQVR4nO3de5gkZXn38e9vl2XlNIt4WDwhKB7wBIpB8UBQ5KCoUaPiq3mVYDQqaBCNilFB1CBqQCMaXxVRjCiaGDziAiqCiihHQRARWQ4LrCKwC4FdFvZ5/6hq7G1mZqd7a6Z3qr+f6+qrp55+quru6u577q56qjqlFCRJkpowZ9gBSJKk9rCwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGwkCRJjbGw0MCSHJpkRi7dmuS0JKd1Te+apCR56Qyt/4tJFs/EunrWu3X9PPed6XWPiiQbJPlIkquTrE5y4rBjmikz+RnW6LCwEABJ9q3/gXVuK5Jcm2RRkrck2ayh9TywTmY7NLG8Jq3PsWla7Qf8M/BfwGuAo4YbjjS7bTDsALTeeR9wBTAP2BLYFfg4cFCSF5ZSft3V94PAh/tc/gOBQ4DFwPl9zLdHn+sZxGSxvY7hFOJXAhsBq4aw7lHxbGBJKeWtww5EagMLC/U6qZRydtf04UmeDXwX+HaS7UoptwOUUu4E7pzOYJJsXEq5rZRyx3SuZ21KKUP5x16qXwlcMYx1r4sk9wLuKKWsHnYsU3B/4OamFpZkDrBhKWXWvW5SEzwUorUqpfwI+ADwUODvOu3jHZ9NsnuSnya5OcmtSS5N8q/1Y7sCv6q7Htt12GXf+vHTklyUZMckpye5DfjXrsdOGye8uUn+Ncn1Sf43ybeTPKQnpsVJvtg7Y/cypxDbPcZYJNkkyb/Vx+ZX1s/17UnS068kOTrJi+rntzLJb5LsNc7z6Y3xHmMs6lhuTfKgJCfWf/8pyceSzJ3CMhcn+W6SPZKcXx/2ujjJS3r6bVEv88J6HcuTnJRk+55+nfEur0jywSRLgNuAsQGW8fIkhyRZkuSWJP+VZEGS+Uk+nuSP9XKOTTK/ZxkTvvcm27bAs4DHdr3mu9aP9/v6virJb4CVwISvbZI59Wfn2iS3Jflxksf0vk+nuu3qvm+u31O3JbkpydlJXtnT5xlJflW/3pcn+cdJYvy7JOckuT3JjUm+lq7PVf18b02y8TjzfjXV53Gt70W1k3ssNFVfpvonvwfwufE6JHks1Z6NX1MdUlkJbAs8ve5ySd1+GPBZ4Iy6/eddi7kPcBLwNeA/gaVrietfgAIcQfXN80Dg1CQ7dPasTNFUYrtb/c/l21T/lI6hOnSyJ/BR4EFA7271ZwAvAT4N3AK8BfjvJFuVUv7cR5wdc4FFwFnA24HnAG8DLgf+YwrzPwI4AfgM8CXg74FvJNmrlHJK3edhwIuAb1AdHlsI/CPwkySPKaVc27PM9wJ3AB8D5td/P6bPZRwM3E51iG1b4M1Uh4FWA/cGDgWeCuxbL+8wmNJ7bzx/Av4v1Xto03rdAJcM8Po+G3g5cDRwA9XhtIkcDrwD+A7Va7h9fX+vnn5T2v5JXgf8O9UYkU/Uy3kC8BTg+LrP44GT6+d8KFXufz/jfL6S/AvVF4mvA58H7kf1Opye5ImllJup3jv7A3vX8XXm3Rh4AfDFUspdk2wDtVkpxZs3qBJ1AZ48SZ+bgXO7pg+l3ltfTx9YL+O+kyzjyXWffcd57LT6sX+c4LHTuqZ3rfteA2zW1f6yuv0tXW2LqRLd2pY5WWxfBBZ3Tf9N3fdfevp9g+qf4MO72grVP7rutifU7Qes5XXZujemOpYCvLen77nA2VN4rRfX87+kq20MuLbn9Z0PzBknnhXd6+56LS4HNurp3+8yLgTmdbUfX2/P7/cs4+c9r8da33uTbI/TgIt62vp9fe8CHjOFdS2kKpT+p6f9kHo5X+xqm+q2O7E3/nHW+z9UBdtWXW3bUR3KLF1tD63b3t0z/+PquN9dT4fqs/dfPf06n79n9vs6eGvPzUMh6setwGRnh9xc3/9NquPMg1gJHNtH/+NKKbd0Tf8XcB3wvAHXP1XPo/pn8u897f9GlXSf29N+ainl8s5EqQbBLqf6Vjqoz/RMn9HH8q6l+mfTiWc5cBzwxCRb1m0rSz1GIsncJPeheg9cCjxpnGV+qfTsJRpgGceVNceznEW1Pb/Q0+8s4CFJOntdb67v1+W9163f1/cnpZSLp7Dc3aj2Fny6p/2TvR372HY3Aw9O8lfjrbA+JLEncGIp5aqu5V9Ctaek20uoDpF/Pcl9OzfgeuAyqj04lFIKVZH1vCSbds2/D7AE+OmEW0CtZ2GhfmxKtRt/IicAP6Pafbq0Pi778j4T/ZLS30DNy7on6oT3e6pvdtPpocC1PUUNVIdUOo93u4p7uolq9/4gVpRS/rQOy/t9va26/a6+3xruHgvw1iSXURV8N1DtSn8CsGCcZV7R2zDAMnq307L6/upx2ud0LaOJ9163fl/fezz3SZYL1Xv0bqWUG6lev7v1se2OoCo4fpnksiSfStJ9COh+VGcWrfFZqV3aM/0IqsLpsnpd3bftqA43dpxQL/eFdbybUhVk3xjnvaURYmGhKUnyYKpk9vuJ+tTfVnehOt7/ZaoEeAJwSh8DufoZFzFVEyW5mRxcNtHx5kzQPujymvRu4EjgdKpBu3sCuwO/YfzcMd5r1+8yJnpek26/ht5762I63rdT2nb1nodHAa+g2lPwt8BPk7x/gHXOofq87FWvq/d294DPUsovqA6rvbxuegFVoXHCAOtVizh4U1P1f+v73l2na6h33f6wvh2U5N3Ah6h2oZ7KxP/kB/WI7ol60N22VIP4Om4CNh9n3ocCf+ia7ie2K4HnJNms51vto7seX59tmyQ93ywfWd8vru9fCvy4lPLa7hmTbE717XkqmljGlEzhvdeP6Xp9O/NtS9dejvowR+/epilvu1LK/1L9Qz8hyYbAN4F/SXI41d6G2+n5rNQe1TN9OVWxdkUp5Xfj9O/1deCfkoxRHQZZXBccGmHusdBapbqOxXupEuFXJum3xTjN59f3nVMD/7e+37yh8F6dNa8K+lLgAVRnlnRcDjy1TrgAJHk+sMZpqX3G9n2qPR4H9LS/lapAOekec6xfHgi8uDNR/2N4NXB+KeX6uvkuevaoJHkZ1VkRU9XEMtZqiu+9fkzX6/tDqsGRb+xp710PTHHb1UXJ3epDiRfX884r1dkZi4AXJdmqa77tqPaCdPtmvd5D6iK9ez3pXRdVMTOf6oqle1EVGhpx7rFQr+cmeTTVe2Mh1Wl0u1N903phmfyiP+9Lsgvwvbr//YE3UY0e7wzmupxqsNkbktxC9c/8rFLKVI9R97qRarfvsXW8B1Idruk+JfbzVAXHD5J8HXg41a7ly9dcVF+xfQf4MfChJFsDF1Cdivs3wMe7B2qup34HHFMP+FtKdVnrhVSnnXZ8l+o1PZbqLIzHA69izb08a9PEMqZiKu+9fkzL61tKWZrkE8Dbknwb+AHV6abPpdoL0b0Haarb7uQk11ONMVlKNRbiAOB7XXtbDqH6x39Gkk9Tfb7fTHVY5Qld8V2e5D1Up8Runep3U24BtqEqRD9LdTpxp/+5SX5PtWdoPh4GEXi6qbfqxl9ON+3cVlKdXXEy1TUXNhtnnkNZ81S1Z1Od+raknn8J1emCj+iZ74VUCW0VXadSMs5pf13znMb4p5u+gur6GkupLsr0XbpOqevqfxDVP5kVVP9oduxd5lpi+yJdpzfWbZtSHQNfQnXNht9RXVMiPf0KcPQ4MS1mnNNge/ps3R1HVyy3ru31mGSZi+vttAfVP8wVVIMSX9rTbz7VP5Fr6237U6prSEz0Wrx0nHWt0zKY4DToznOlPr2UKb73Jnlv3eN9t66v7yTrm0t1/Y3r6m3yQ6pDLDcA/zHAtns98JN6/hVUhfVHgLGe9e4CnF1vn8upxkuM+56hOjvkDKpBobfW74+jgUeO0/eD9Ta4rJ+c4629t5Ti4F1plKS6guhFpZTnDzsWVepxEzcB7ymlfGjI4UjrxDEWkjSDkmw0TvOB9f1pMxeJND0cYyFJM2ufVL/98n2qwwzPAP4PcHIp5WfDDExqgoWFJM2sX1OdGfIOqkupL6X6jY/3DDMoqSmOsZAkSY1xjIUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUkSWqMhYUGlmTfJCXJ1mvptzjJF2cmKkmziXmkfSwsJEmaRJLdknwhye+S3JbkD0k+n+QBw45tfZRSyrBj0CyVZC4wD1hZJnkjJVkMnFZK2XeGQpM0S8yGPJLkbGAL4BvAZcDDgAOA24AdSinXz3RM67MNhh2AZq9Syl3AXcOOQ9LsNUvyyEHAT0spqzsNSX4A/ISqwHjPsAJbH3koRAPrPTaaynuSXFPvLvxxkseOM9+hSe7xzWS8Y631cdXvJtk1ydlJbk9yYZJd68dfUk+vSHJOkidO1/OV1LzZkEdKKad3FxWdNuBGYLt13wrtYmGhJh0GfAC4APhn4A/AycAm67jcbYHjge8ABwP3Br6T5FXAUcB/AocADwe+nsT3tTR7zYo8kmRTYFPghnWMq3U8FKJGJLkf8A7ge8ALOsdKk3wIePc6Lv5RwNNKKWfWy7wYWAR8Dnh0KeWquv0m4P8BuwCnreM6Jc2wWZZHDgQ2BE5Yx7hax292aspzqD5kn+wZgPXxBpZ9cScZ1M6q73/USQY97Q9rYJ2SZt6syCNJdqHau/H1UsqPGoitVSws1JSH1veXdTeWUv4E3LSOy+7+0FNKWVb/eXVPv077vddxfZKGY73PI0keDfwPcBHwD+sYUytZWGgYJjqlbO4E7RONGJ+oPf2FI2kWmvE8kuQhVOM9lgHPK6XcMmmEI8rCQk25sr5/RHdjfcy0t/K/qX5s8572hyJplK23eSTJfaiKivnAnqWU66ZjPW1gYaGmnAqsAt6cpLvSP3CcvpfX97t0GpJsArxm2qKTNBusl3mkXu73gQdR7am4bC2zjDTPClEjSil/SvIxqtO4vpvk+8ATgedyz9OxTqY63nlMko9S7YrcD/gTsNXMRS1pfbIe55GvADsBXwC2S9J97YpbSyknNry+Wc3CQk16D7ACeAPwLKrR1XtQnTp2t1LKqiQvBj5Ndb769VSjvm8Cjp3BeCWtf9bHPLJDfb9ffet2JXBiw+ub1fytEEmS1BjHWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZYWEiSpMZ4HYuG1FeJeyDgteM1DJsB1xbPH28dc4uGrO/cYmHRnAcC1ww7CI20BwNLhh2EGmdu0bD1lVssLJpzC8DVV1/N2NjYGg+sWrWKk08+mT322IN58+YNJbj1mdtn7SbbRsuXL+chD3kI+I22rSbMLeDnZ23cPpObjtxiYdGwsbGxcQuLjTfemLGxMd/Y43D7rJ3bSOPlFvC9sTZun8lNx/Zx8KYkSWqMhYUkSWqMhYUkSWpM34VFkr2SPKNrev8k5yc5Psm9mw1P0qgwt0jtMMgei48CYwBJHg/8G/B9YBvgyOZC06i54IILOPfcc7nqqquGHYqGw9yiaXPBBReYW2bIIGeFbANcXP/9t8B3SynvTvIkqiQg9eWaa6pT9HfZZRduv/127rXRxlz620vYaquthhyZZpi5RY3rzi+FmFtmwCB7LO4ANq7/fg5wcv33jdTfNqR+/PnPfwZgi73ezH2e/zZW3H4bN9xww5Cj0hCYW9S4Tn4Z2+kl5pYZMsgei58CRyb5GbATsE/d/ki8OpzWwbwtHsRdd3pF6hFmbtG0mTt2v2GHMDIG2WNxAHAn8FLgjaWUzmU+nwv8oKnAJI0cc4vUAn3vsSilXAU8f5z2tzYSkaSRZG6R2mGgS3onmQNsC9yfnr0epZTTG4hL0ggyt0izX9+FRZKnAscDDwXS83AB5jYQl6QRY26R2mGQPRafAc4G9gauo/rAS9K6MrdILTBIYfEI4KWllN83HYykkWZukVpgkLNCzqI6BrrOkrwxya+TLK9vZyZ5btfj90ryqSR/TnJrkv9OsrBnGVsl+V6S25L8MclHk2zQ02fXJOcmWZnk90n2HSeW/ZMsTrIiyVlJdmriOUqaMnOL1AKD7LH4JPBvSbYELgRWdT9YSvl1H8u6BngXcBnVMdXXAN9K8sRSym+Ao6h2i74MWAYcDXwTeDpAkrnA94DrgacBDwCOq2N6d91nm7rPZ4BXAbsBn09yXSllUd1nH6pLBr+BKrkdCCxK8qhSyh/7eD6SBmdukVpgkMLiv+v7L3S1FaoPb18DrEop3+lp+pckbwSemuQa4LXAK0spPwJI8vfAJUmeWkr5BbAH8BjgOaWUpcD5Sd4LHJHk0FLKHVQf6CtKKW+r13FJ/UNHbwUW1W0HAZ8rpRxbr+cNVElnP+DDU30+ktaJuUVqgUF/K6Rx9TeElwGbAGcCOwLzgFM7fUopv01yFbAz8Iv6/sL6g9+xCPgP4LHAeXWfU1nTIuDj9Xo3rNd1eNd6Vic5tZ53onjnA/O7mjYDWLVqFatWrfFF6+7p3nZVVq9eDcD8DaoTATbaaCNWr17t9uoy2XuoRdvJ3EJ/uaXT3n2vNXXyy73mzTW3jGM6cssgF8i6cqA1TaD+FcMzgXsBtwIvLqVcnGQH4I5Sys09sywFtqz/3rKe7n2cKfQZS7IRcG+qb0Lj9Xn0JKEfDBzS23jyySez8cYbj9MdTjnllEkWpyOeW/8w0Au+ypIlS1iyZMnkM4yg8d5Dt9122xAiaZ655W595xYwv6zNka9+Jrz6meaWCTSZWwa9QNbDqY4Vblc3XQx8opRy+QCLuxTYAVhAdSnfLyX560HimmGHs+ZPOW8GXLPHHnswNrbm7yWtWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVPHML0EduAfPL2nTyy0HHncF1J33a3NJjOnLLIBfI2hP4NnA+8LO6+enAb5K8oJTSV9lcH6vsnF52TpK/Av4JOAHYMMnmPd8sFlINqKK+7x1hvbDrsc79wnH6LC+l3J7kLuCuCfpczwRKKSuBlZ3ppNqNP2/evAk/3JM9NsrmzKlOTlp5Z2HFnYXbb7+dOXPmuK3GMd57qC3bydxyd9x955apPD6qOvllxaq7zC2TaDK3DHK66YeBo0opTymlHFTfnkJ1XPGIgaK4Z0zzgXOoRmDv1nkgyaOArah2b1LfPz7J/bvm3x1YTvVNp9NnN9a0e2cZdfI5p2c9c+rpM5E0U8wtUgsMcihkO+Dl47R/gWoX5pQlORw4CbiKanffK4FdgT1LKcuSHEP1M8o3Un2gPwmcWY/aBjiZ6kP+5STvoDrm+UHgU3XVD9WpYAck+Ugd47Pr+PfuCuVIqt2kZwO/rJ/HJsCx/TwfSevE3CK1wCCFxZ+ojlte1tO+A9Dvedn3pzo3/AFU55L/muqD39nl+VZgNdVpaPOpRly/qTNzKeWuJM+nGql9JvC/wJeA93X1uSLJ3lTnrf8T1fnt/9A5z7zuc0KS+wGHUSWQ84G9ekaES5pe5hapBQYpLD4HfDbJw4Cf121PB97JmgOO1qqU8tq1PL4C2L++TdTnSuB5a1nOacAT19LnaKqL5EgaDnOL1AKDFBYfAG4B3sZfzs++FjgU+PdmwpI0gswtUgsMch2LQrXr76gkm9VttzQdmKTRYm6R2mGg61h0+KGXNB3MLdLsNaXCIsm5wG6llJuSnEd13f5xlVKe1FRwktrN3CK1z1T3WHyLv1yw5VtM8uGXpD6YW6SWmVJhUUp5f9ffh05bNJJGirlFap++r7yZ5A9J7jNO++ZJ/tBMWJJGjblFaodBLum9NdUv9vWaDzx4naKRNMq2xtwizXpTPiskyQu7JvdMsqxrei7V9e+vaCowSaPB3CK1Sz+nm55Y3xeqS9t2WwUsprqwjST148T63twitcCUC4tSyhyAJFcAf1VKuWHaopI0MswtUrsMcuXNbaYjEEmjzdwitcNUL5D1FuCzpZQV9d8TKqV4TX9JU2Jukdpnqnss3gp8BVhR/z2Rgj8WJGnqzC1Sy0z1AlnbjPe3JK0Lc4vUPoNcIOt9STYep32jJO9rJixJo8bcIrXDIBfIOgTYdJz2jevHJGkQ5hapBQYpLML4PxS0PXDjuoUjaYSZW6QW6OfKmzdRfegL8Lsk3QlgLtU3jc80G56ktjO3SO3Sz3UsDqT6RvEFqt2S3ZfdvQNYXEo5s7nQJI2IAzG3SK3Rz5U3vwR3Xx3vZ6WUO6ctKkkjw9witUvfYyxKKT8BHprkg0m+muT+AEmem+SxjUcoaSSYW6R2GOR0078GLgSeAryEv4zi3h54f3OhSRol5hapHQY5K+TDwHtKKbtTHf/s+BHw1EaikjSKzC1SCwxSWDwe+J9x2v8I3HfdwpE0wswtUgsMUljcDDxgnPYnAkvWKRpJo+xmzC3SrDdIYfE14IgkW1Kddz4nydOBjwHHNRmcpJFibpFaYJDC4t3Ab4GrqQZXXQycDvwc+GBzoUkaMeYWqQX6uUAWAKWUO4DXJfkA8DiqBHBeKeWypoOTNDrMLVI79F1YdJRSrkpydf33eNf3l6S+mVuk2W2QQyEkeW2Si4AVwIokFyX5h2ZDkzRqzC3S7Nf3HoskhwEHAZ8EOtfv3xk4KslWpZT3NRifpBFhbpHaYZBDIW8EXldK+WpX27eT/JoqIfjhlzQIc4vUAoMcCpkHnD1O+zmsw5gNSSPP3CK1wCCFxZepvln0ej3wlXULR9IIM7dILTDQ4E3gtfWgqs/XtwuB1wGrkxzZua1tIUkOTvKrJLck+WOSE5M8qqfPvZJ8Ksmfk9ya5L+TLOzps1WS7yW5rV7OR5Ns0NNn1yTnJlmZ5PdJ9h0nnv2TLE6yIslZSXYaaOtIGpS5RZrlBiksHgecC/wJeHh9u6FuexzV5XefCOwwhWX9NfApqh8Y2p1qV+jJSTbp6nMU8ALgZXX/BwLf7DyYZC7wPWBD4GnAa4B9gcO6+mxT9/lxHdfHgc8n2bOrzz7AkVS/ovgk4AJgUeenmyVNO3OL1AKDXCDrWU2tvJSyV/d0Xen/EdgROD3JAuC1wCtLKT+q+/w9cEmSp5ZSfgHsATwGeE4pZSlwfpL3Ul0a+ND6ojtvAK4opbytXtUlSZ4BvBVYVLcdBHyulHJsvZ43AHsD+1H96qKkaWRukdph4AFRSbal+kZxeinl9iRp4GI2C+r7G+v7Ham+aZza6VBK+W2Sq6hOQ/tFfX9h/cHvWAT8B/BY4Ly6z6msaRHVtwuSbFiv6/Cu9axOcmo97z0kmQ/M72raDGDVqlWsWrVqjb6d6d52VVavXg3A/A0CwEYbbcTq1avdXl0mew+1bTuZW6aeWzrt3fdaUye/3GveXHPLOKYjtwxyHYv7AF8HnkX1Q0GPAP4AHJPkpq7Kvd/lzqH6MP6slHJR3bwlcEcp5eae7kvrxzp9lo7zOFPoM5ZkI+DewNwJ+jx6gpAPBg7pbTz55JPZeOONx53hlFNOmWBRAjjiuVtVf7zgqyxZsoQlS/xBy17jvYduu+22IUTSPHPL3frOLWB+WZsjX/1MePUzzS0TaDK3DLLH4ihgFbAVcElX+wlUxxEH+vBTHQ99HPCMAeefaYdTPd+OzYBr9thjD8bGxtbouGrVKk455RR233135s2bN5MxzgrnnXce1113He886SpW3llYevy7OP3009l+++2HHdp6Y7L30PLly4cUVePMLZUp5xYwv6xNJ78cdNwZXHfSp80tPaYjtwxSWOwB7FlKuSZJd/tlwEMHCSLJ0cDzgV1KKdd0PXQ9sGGSzXu+WSysH+v06R1hvbDrsc79wnH6LK93td4F3DVBn+sZRyllJbCy6zkAMG/evAk/3JM9NsrmzKnGEK+8s7DizsLtt9/OnDlz3FbjGO891KLtZG5hsNwylcdHVSe/rFh1l7llEk3mlkHOCtkEGG//yBZ0fRimIpWjgRcDzy6lXNHT5RyqbzC7dc3zKKpvNJ1L/p4JPL5nhPXuwHKqn13u9NmNNe3eWUY9COucnvXMqafPRNJMMLdILTBIYXEG8Oqu6VJ/UN5BdcpVPz4F/B3wSuCWJFvWt40ASinLgGOAI5M8K8mOwLHAmfWobYCTqT7kX06yfX2a1weBT9WVP8BngIcl+UiSRyd5E/Byql2vHUdS/WTza5JsRzVAa5N6fZKmn7lFaoFBDoW8A/hhkidTnd/9EaoR0lsAT+9zWZ2r7J3W0/73wBfrv98KrAb+m2qk9CLgTZ2OpZS7kjyf6sN6JvC/wJfo+l2BUsoVSfam+rD/E3AN8A+llEVdfU5Icj+qc9S3BM4H9uoZES5p+phbpBYY5DoWFyV5JHAAcAuwKdVFZT5VSrmuz2VlCn1WAPvXt4n6XAk8by3LOY3q4jqT9TkaOHptMUlqnrlFaoe+Cosk84AfAG8opXxoekKSNGrMLVJ79DXGopSyCnjCNMUiaUSZW6T2GGTw5n9SXQpXkppkbpFaYJDBmxsA+yV5DtVpVP/b/WAp5aAmApM0cswtUgsMUlh0foEQ4JE9j63r9fwljS5zi9QCQ/11U0nqMLdI7TDIGAtJkqRxWVhIkqTGWFhIkqTGWFhIkqTGTKmwSHJuknvXf78vycbTG5akUWBukdpnqnsstqP6NT6AQ6iu4S9J68rcIrXMVE83PR84NslPgQBvT3LreB1LKYc1FJuk9jsfc4vUKlMtLPYF3g88n+pCNc8F7hynX6H6aWBJmop9MbdIrTKlwqKUcinwCoAkq4HdSil/nM7AJLWfuUVqn0GuvOmZJJIaZ26R2mGQ3wohycOBA6kGXgFcDHyilHJ5Q3FJGkHmFmn26/sbQpI9qT7sOwG/rm9PAX6TZPdmw5M0KswtUjsMssfiw8BRpZR3dTcm+TBwBHBKE4FJGjnmFqkFBjmmuR1wzDjtXwAes27hSBph5hapBQYpLP4E7DBO+w6Ao7klDcrcIrXAIIdCPgd8NsnDgJ/XbU8H3gkc2VRgkkaOuUVqgUEKiw8AtwBvAw6v264FDgX+vZmwJI0gc4vUAoNcx6IARwFHJdmsbrul6cAkjRZzi9QOA13HosMPvaTpYG6RZi+vdCdJkhpjYSFJkhpjYSFJkhrTV2GRZF6SHyZ5xHQFJGn0mFuk9uirsCilrAKeME2xSBpR5hapPQY5FPKfwGubDkTSyDO3SC0wyOmmGwD7JXkOcA7wv90PllIOaiIwSSPH3CK1wCCFxeOAc+u/H9nzWFm3cCSNMHOL1AKDXHnzWdMRiKTRZm6R2mHg002TbJtkzyQb1dNpLixJo8rcIs1ufRcWSe6T5IfA74DvAw+oHzomyb81GZyk0WFukdphkD0WRwGrgK2A27raTwD26mdBSXZJ8p0k1yYpSV7U83iSHJbkuiS3Jzm19zz3JFsk+UqS5UluTnJMkk17+jwhyRlJViS5Osk7xonlZUl+W/e5MMnz+nkuktaZuUVqgUEKiz2Ad5ZSrulpvwx4aJ/L2gS4ANh/gsffAbwFeAPwFKpR4ouS3Kurz1eAxwK7A88HdgE+23kwyRhwMnAlsCPwz8ChSV7f1edpwFeBY4AnAicCJyZ5XJ/PR9LgzC1SCwxyVsgmrPltomMLYGU/CyqlnAScBNB7GLU+rnog8MFSyrfqtlcDS4EXAV9Lsh3VN5m/KqWcXfd5M/D9JG8vpVwLvArYENivlHIH8JskOwAH8Zck8U/AD0opH62n35tkd+AAqsQjafqZW6QWGKSwOAN4NfDeerokmUP1DeDHTQUGbANsCZzaaSilLEtyFrAz8LX6/ubOB792KrCa6lvI/9R9Tq8/+B2LgHcmuXcp5aa6z5E9619ElWTGlWQ+ML+raTOAVatWsWrVqjX6dqZ721VZvXo1APM3qP4BbLTRRqxevdrt1WWy91CLtpO5hf5yS6e9+15r6uSXe82ba24Zx3TklkEKi3cAP0zyZKpq/SNUuwu3AJ4+UBTj27K+X9rTvrTrsS2BP3Y/WEq5M8mNPX2uGGcZncduqu8nW894DgYO6W08+eST2Xjjjced4ZRTTplkcTriuVtVf7zgqyxZsoQlS5YMN6D10HjvodtuG+9L/qxkbqn0nVvA/LI2R776mfDqZ5pbJtBkbhnkOhYXJXkk1a68W4BNgW8CnyqlXDdQFLPT4az5TWQz4Jo99tiDsbGxNTquWrWKU045hd1335158+bNZIyzwnnnncd1113HO0+6ipV3FpYe/y5OP/10tt9++2GHtt6Y7D20fPnyIUXVLHPL3aacW8D8sjad/HLQcWdw3UmfNrf0mI7cMsgeC0opy4APDbTGqbu+vl8IdCeVhcD5XX3u3z1Tkg2ovuFc39VnYc+yF3Y9Nlmf65lAKWUlXcd9O8dx582bN+GHe7LHRtmcOdUY4pV3FlbcWbj99tuZM2eO22oc472H2rSdzC2D5ZapPD6qOvllxaq7zC2TaDK3DHSBrCT3TvL2+vSrY5K8LckWA0UwsSuoPny7da13jOr45pl105nA5kl27Jrv2VTP66yuPrsk6d5CuwOX1sdAO312Y027d61H0gwwt0iz3yAXyNoFWEx1qta969tbgCvqx/pZ1qZJdqhHUgNsU09vVUopwMeB9yR5YZLHA8cB11KdskUp5RLgB8DnkuyU5OnA0cDX6lHbAMcDd1BdZOexSfahGqndvavxE8BedRJ7dJJDgSfXy5I0A8wtUjsMcijkU1QXrHljKeUugCRzgU/Xjz2+j2U9mTVHe3c+kF8C9qUavLUJ1albmwM/BfYqpazomudVVB/SH1KN2P5vqmQE3D3ae486tnOAG4DDSimf7erz8ySvBD4I/CvVefMvKqVc1MdzkbRuzC1SCwxSWGwLvLTzwQcopdyV5EiqU8WmrJRyGjDh7wDU3yzeV98m6nMj8Mq1rOfXwDPX0ucbwDcm6yNpWplbpBYYZIzFucB247RvR3WlO0kahLlFaoEp7bFI8oSuyX8HPpFkW+AXddtTqS6d+65mw5PUZuYWqX2meijkfKCw5q7Fj4zT73iqY6SSNBXnY26RWmWqhcU20xqFpFFlbpFaZkqFRSnlyukORNLoMbdI7TPQlTeTPBB4BtWV6dYYAFpK+fcG4pI0gswt0uzXd2GRZF/g/1FdGObPVMdHOwrVACxJ6ou5RWqHQfZYfAA4DDi8lLK64XgkjS5zi9QCg1zHYmOqy9r6wZfUJHOL1AKDFBbHAC9rOhBJI8/cIrXAIIdCDga+m2Qv4EJgVfeDpZSDmghM0sgxt0gtMGhhsSdwaT3dO8BKkgZhbpFaYJDC4m3AfqWULzYci6TRZm6RWmCQMRYrgZ81HYikkWdukVpgkMLiE8Cbmw5E0sgzt0gtMMihkJ2AZyd5PvAb7jnA6iVNBCZp5JhbpBYYpLC4Gfhmw3FI0s2YW6RZr+/CopTy99MRiKTRZm6R2mGQMRaSJEnjGuRHyK5gknPKSykPW6eIJI0kc4vUDoOMsfh4z/Q84InAXsBH1zUgSSPr4z3T5hZpFhpkjMUnxmtPsj/w5HWOSNJIMrdI7dDkGIuTgL9tcHmSBOYWaVZpsrB4KXBjg8uTJDC3SLPKIIM3z2PNAVYBtgTuB7ypobgkjRhzi9QOgwzePLFnejXwJ+C0Uspv1zkiSaPqxJ5pc4s0Cw0yePP90xGIpNFmbpHawQtkSZKkxkx5j0WS1Uxy8ZpaKaUMcnhF0ogyt0jt0s8H9cWTPLYz8BbcAyKpf+YWqUWmXFiUUr7V25bkUcCHgRcAXwHe11xokkaBuUVql4G+BSR5YJLPARdSFSc7lFJeU0q5stHoJI0Uc4s0+/VVWCRZkOQI4PfAY4HdSikvKKVcNC3RSRoJ5hapPfoZvPkO4J3A9cD/GW/3pST1y9witUs/gzc/DNxO9Y3iNUleM16nUspLmghM0sgwt0gt0k9hcRxrPyVs1qt/SfGfqS4lfAHw5lLKL4cbldRq5hapRfo5K2TfaYxjvZBkH+BI4A3AWcCBwKIkjyql/HGYsUltZW4xt6hdPDd8TQcBnyulHFtKuZgqCdwG7DfcsCTNcuYWjQwLi1qSDYEdgVM7baWU1fX0zsOKS9LsZm7RqPESuX9xX2AusLSnfSnw6N7OSeYD87uaNgO48cYbWbVq1Rp9V61axW233cYZZ5zBnDlzmDNnDqtXr777HrhH22SPta3/pZdeyqabbkpuvJKsuot73etenHPOOdx6662NxbO+b4O1PbZ69Wpuu+02/vznPzNv3rw13l+33HJL79tT65dpyy2wZn7ZYIMNhv5eXd/6X3bZZWy66abMvXXplHLLMOIf5jabjtxiYTG4g4FDehu32WabIYTSPq9//euHHcJstBmwfNhBaJ2ZW6aRuWUgfeUWC4u/uAG4C1jY076Q6vz6XodTDcbqtgVw4zh9NwOuAR4M+PXyntw+a7e2bbQZcO2MRqSpms7cAn5+1sbtM7nGc4uFRa2UckeSc4DdgBMBksypp48ep/9KYGVP87gVXZLOn7eUUvxG2cPts3ZT2EZut/XUdOaWelmdP/38jMPtM7npyC0WFms6EvhSkrOBX1KdErYJcOwwg5I065lbNDIsLLqUUk5Icj/gMKqL2JwP7FVK6R10JUlTZm7RKLGw6FFKOZpxdk+uo5XA+7nn7k1V3D5r5zaa5aYpt4DvjbVx+0yu8e2TUlp/JV1JkjRDvECWJElqjIWFJElqjIWFJElqjIWFJElqjIXFNEmyRZKvJFme5OYkxyTZdC3znJak9Nw+M1MxT6ck+ydZnGRFkrOS7LSW/i9L8tu6/4VJnjdTsQ5LP9soyb7jvFdWzGS8Gg5zyz2ZXyY307nFwmL6fAV4LLA78HxgF+CzU5jvc8ADum7vmK4AZ0qSfaguEPR+4EnABcCiJPefoP/TgK8CxwBPpLpa4YlJHjcjAQ9Bv9uotpw13ysPne44tV4wt3Qxv0xuKLmllOKt4RuwHVCAJ3e17QWsBh44yXynAR8fdvzTsD3OAo7ump4DLAHeNUH/E4Dv9rT9AvjMsJ/LerSN9gVuHnbc3mb8fWJuuedzM780u33WObe4x2J67Ez1wpzd1XYq1Yf/KWuZ91VJbkhyUZLDk2w8bVHOgCQbAjtSPX8ASimr6+mdJ5ht5+7+tUWT9J/VBtxGAJsmuTLJ1Um+leSx0xyqhs/c0sX8Mrlh5RavvDk9tgT+2N1QSrkzyY31YxM5HriS6pfkngAcATwKeMk0xTkT7gvMBXovXbwUePQE82w5Qf/Jtt1sNsg2uhTYD/g1sAB4O/DzJI8tpVwzXYFq6MwtazK/TG4oucXCog9JPgy8cy3dtht0+aWU7uOkFya5DvhhkoeXUi4fdLlqn1LKmcCZnekkPwcuAf4ReO+w4tJgzC1aXzSRWyws+vNvwBfX0ucPwPXAGgNjkmwAbFE/NlVn1ffbArP1w38DcBewsKd9IRNvi+v77D/bDbKN1lBKWZXkPKr3imYfc8tgzC+TG0pucYxFH0opfyql/HYttzuoqr3Nk+zYNfuzqbb3WeMufHw71PfXNfMMZl69Pc4Bduu0JZlTT585wWxndvev7T5J/1ltwG20hiRzgcczi98ro8zcMhjzy+SGlluGPWK1rTfgJOBcYCfg6cDvgOO7Hn8Q8Ftgp3r64VS7mXYEtgZeSPVN4ifDfi4NbIt9gBXAa6h25/4/4CZgYf34ccDhXf2fBqwC3kZ1HPBQ4A7gccN+LuvRNnofsAfwMKpTyL4K3A48ZtjPxdu0v1fMLWtuD/NLs9tnnXPL0J90W29UuyaPB24BlgFfADbtenxrqtPGdq2nHwL8BPhz/Sa4DPgIMDbs59LQ9jiAavDYSqpvVk/peuw04Is9/V9GNYhoJXAR8LxhP4f1aRsBR3X1vR74HvDEYT8HbzPyPjG33HObmF8a2j5N5BZ/Nl2SJDXGMRaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhaSJKkxFhYauiSLkxw47DgktYu5ZTgsLCRJUmMsLCRJUmMsLLROkrw+ybX1L+Z1t38ryReSPLz+e2mSW5P8KslzJlne1klKkh262jav23btantckpPqZS5N8uUk952GpyhpCMwts5eFhdbVN4D7AM/qNCTZAtgL+AqwKfB9qp/pfSLwA+A7SbYadIVJNgd+BJwHPLle10Lg64MuU9J6x9wyS20w7AA0u5VSbkpyEvBK4Id180uBG4Afl1JWAxd0zfLeJC+m+unmowdc7QHAeaWUd3cakuwHXJ3kkaWU3w24XEnrCXPL7OUeCzXhK8DfJplfT78K+FopZXWSTZN8LMklSW5OciuwHTDwtwpge+BZ9a7KW+tl/rZ+7OHrsFxJ6xdzyyzkHgs14TtAgL2T/Ap4JvDW+rGPAbsDbwd+D9wO/Bew4QTLWl3fp6ttXk+fTet1vnOc+a/rN3hJ6y1zyyxkYaF1VkpZkeSbVN8mtgUuLaWcWz/8dOCLpZT/AUiyKbD1JIv7U33/AKrjnAA79PQ5F/hbYHEp5c51fgKS1kvmltnJQyFqyleAvYH96r87LgNekmSHJNsDxzPJ+66UcjvwC+BdSbZL8tfAB3u6fQrYAvhqkr+qR4fvmeTYJHMbfE6Shs/cMstYWKgpPwJuBB5F9QHvOAi4Cfg51S7GRVTfCiazH9XetHOAjwPv6X6wlHIt1beVucDJwIV1v5v5y+5OSe1gbpllUkoZdgySJKkl3GMhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIaY2EhSZIa08rCIskuSb6T5NokJcmLpjDPrknOTbIyye+T7Dv9kUqS1C6tLCyATYALgP2n0jnJNsD3gB8DOwAfBz6fZM9pik+SpFZKKWXYMUyrJAV4cSnlxEn6HAHsXUp5XFfb14DNSyl7TX+UkiS1wwbDDmA9sTNwak/bIqo9F+NKMh+Y39O8BXBjo5FJU7MZcG1p+zcFSes9C4vKlsDSnralwFiSjUopt48zz8HAIdMemTR1DwaWDDsISaPNwmJwhwNHdk1vBlxz9dVXMzY2NqSQNIqWL1/OQx7yEIBbhh2LJFlYVK4HFva0LQSWT7C3glLKSmBlZzoJAGNjYxYWkqSR1dazQvp1JrBbT9vudbskSZqiVhYWSTZNskOSHeqmberprerHD09yXNcsnwEeluQjSR6d5E3Ay4GjZjZySZJmt1YWFsCTgfPqG1RjIc4DDqunHwBs1elcSrkC2JtqL8UFwNuAfyilLJqpgCVJaoPWX8dipiQZA5YtW7bMMRaaUcuXL2fBggUAC0opy4cdj6TR1tY9FpIkaQgsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmMsLCRJUmNaW1gk2T/J4iQrkpyVZKe19D8wyaVJbk9ydZKjktxrpuKVJKkNWllYJNkHOBJ4P/Ak4AJgUZL7T9D/lcCH6/7bAa8F9gH+dUYCliSpJVpZWAAHAZ8rpRxbSrkYeANwG7DfBP2fBvyslHJ8KWVxKeVk4KvApHs5JEnSmlpXWCTZENgROLXTVkpZXU/vPMFsPwd27BwuSfIw4HnA9ydZz/wkY50bsFlDT0GSpFlrg2EHMA3uC8wFlva0LwUePd4MpZTjk9wX+GmSUG2Xz5RSJjsUcjBwSAPxSpLUGq3bYzGIJLsC7wbeRDUm4yXA3kneO8lshwMLum4Pnt4oJUla/7Vxj8UNwF3Awp72hcD1E8zzAeDLpZTP19MXJtkE+GySD9WHUtZQSlkJrOxMVzs6JEkaba3bY1FKuQM4B9it05ZkTj195gSzbQz0Fg93dWZvOkZJktqqjXssoDrV9EtJzgZ+CRwIbAIcC5DkOGBJKeXguv93gIOSnAecBWxLtRfjO6WUu5AkSVPSysKilHJCkvsBhwFbAucDe5VSOgM6t2LNPRQfBEp9/yDgT1TFxr/MVMySJLVBSinDjqEV6lNOly1btoyxsbFhh6MRsnz5chYsWACwoJSyfNjxSBptrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/82TfCrJdUlWJvldkufNVLySJLXBBsMOYDok2Qc4EngDcBZwILAoyaNKKX8cp/+GwCnAH4GXAkuAhwI3z1DIkiS1QisLC+Ag4HOllGMBkrwB2BvYD/jwOP33A7YAnlZKWVW3LZ6BOCVJapXWHQqp9z7sCJzaaSulrK6nd55gthcCZwKfSrI0yUVJ3p1k7iTrmZ9krHMDNmvuWUiSNDu1rrAA7gvMBZb2tC8FtpxgnodRHQKZCzwP+ADwNuA9k6znYGBZ1+2awUOWJKkd2lhYDGIO1fiK15dSzimlnAB8iGqMxkQOBxZ03R487VFKkrSea+MYixuAu4CFPe0LgesnmOc6YFUp5a6utkuALZNsWEq5o3eGUspKYGVnOsk6BS1JUhu0bo9FXQScA+zWaUsyp54+c4LZfgZsW/freCRw3XhFhSRJGl/rCovakcDrkrwmyXbAfwCbAJ2zRI5LcnhX//+gOivkE0kemWRv4N3Ap2Y4bkmSZrU2HgqhlHJCkvsBh1EN2Dwf2KuU0hnQuRWwuqv/1Un2BI4Cfk11HYtPAEfMZNySJM12KaUMO4ZWqE85XbZs2TLGxsaGHY5GyPLly1mwYAHAglLK8mHHI2m0tfVQiCRJGgILC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1BgLC0mS1JjWFhZJ9k+yOMmKJGcl2WmK870iSUly4jSHKElS67SysEiyD3Ak8H7gScAFwKIk91/LfFsDHwPOmO4YJUlqo1YWFsBBwOdKKceWUi4G3gDcBuw30QxJ5gJfAQ4B/jAjUUqS1DKtKyySbAjsCJzaaSulrK6nd55k1vcBfyylHDPF9cxPMta5AZutQ9iSJLVC6woL4L7AXGBpT/tSYMvxZkjyDOC1wOv6WM/BwLKu2zV9RypJUsu0sbDoS5LNgC8Dryul3NDHrIcDC7puD56G8CRJmlU2GHYA0+AG4C5gYU/7QuD6cfo/HNga+E6STtscgCR3Ao8qpVzeO1MpZSWwsjPdNa8kSSOrdXssSil3AOcAu3Xaksypp88cZ5bfAo8Hdui6fRv4cf331dMYriRJrdLGPRZQnWr6pSRnA78EDgQ2AY4FSHIcsKSUcnApZQVwUffMSW4GKKWs0S5JkibXysKilHJCkvsBh1EN2Dwf2KuU0hnQuRWwekjhSZLUWimlDDuGVqhPOV22bNkyxsbGhh2ORsjy5ctZsGABwIJSyvJhxyNptLVujIUkSRoeCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktQYCwtJktSY1hYWSfZPsjjJiiRnJdlpkr6vS3JGkpvq26mT9ZckSeNrZWGRZB/gSOD9wJOAC4BFSe4/wSy7Al8FngXsDFwNnJzkQdMfrSRJ7ZFSyrBjaFySs4BflVIOqKfnUBULnyylfHgK888FbgIOKKUcN8V1jgHLli1bxtjY2ODBS31avnw5CxYsAFhQSlk+7HgkjbbW7bFIsiGwI3Bqp62Usrqe3nmKi9kYmAfcOMl65icZ69yAzQaPWpKkdmhdYQHcF5gLLO1pXwpsOcVlHAFcS1dxMo6DgWVdt2v6C1OSpPZpY2GxTpK8C3gF8OJSyopJuh4OLOi6PXgGwpMkab22wbADmAY3AHcBC3vaFwLXTzZjkrcD7wKeU0r59WR9SykrgZVd8w4UrCRJbdK6PRallDuAc4DdOm314M3dgDMnmi/JO4D3AnuVUs6e7jglSWqjNu6xgOpU0y8lORv4JXAgsAlwLECS44AlpZSD6+l3AocBrwQWJ+mMxbi1lHLrDMcuSdKs1crCopRyQpL7URULWwLnU+2J6Azo3ApY3TXLG4ENgf/qWdT7gUOnNVhJklqkldexGAavY6Fh8ToWktYnrRtjIUmShsfCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNcbCQpIkNaa1hUWS/ZMsTrIiyVlJdlpL/5cl+W3d/8Ikz5upWCVJaotWFhZJ9gGOBN4PPAm4AFiU5P4T9H8a8FXgGOCJwInAiUkeNyMBS5LUEimlDDuGxiU5C/hVKeWAenoOcDXwyVLKh8fpfwKwSSnl+V1tvwDOL6W8YYrrHAOWLVu2jLGxsSaehjQly5cvZ8GCBQALSinLhx2PpNG2wbADaFqSDYEdgcM7baWU1UlOBXaeYLadqfZwdFsEvGiS9cwH5nc1bQZVkpdmku85SeuT1hUWwH2BucDSnvalwKMnmGfLCfpvOcl6DgYO6W18yEMeMrUopeZtAVhlSBqqNhYWM+Vw1tzLsRlwDfBg4JahRDR7ue3WTWf73TjsQCSpjYXFDcBdwMKe9oXA9RPMc32f/SmlrARWdqaTdP68xePc/XHbrZuu7SdJQ9e6s0JKKXcA5wC7ddrqwZu7AWdOMNuZ3f1ru0/SX5IkjaONeyygOkTxpSRnA78EDgQ2AY4FSHIcsKSUcnDd/xPAT5K8Dfge8ArgycDrZzhuSZJmtVYWFqWUE5LcDziMagDm+cBepZTOAM2tgNVd/X+e5JXAB4F/BS4DXlRKuaiP1a6kum7GyrV11D247daN20/SeqOV17GQJEnD0boxFpIkaXgsLCRJUmMsLCRJUmMsLCRJUmMsLPrgT7EPrp9tl2TfJKXntmIm411fJNklyXeSXFtvhxdNYZ5dk5ybZGWS3yfZd/ojlaSKhcUU+VPsg+t329WWAw/ouj10uuNcT21Ctb32n0rnJNtQXYvlx8AOwMeBzyfZc5rik6Q1eLrpFA3jp9jbYoBtty/w8VLK5jMZ5/ouSQFeXEo5cZI+RwB7l1Ie19X2NWDzUspe0x+lpFHnHosp6Pop9lM7baWU1fX0ZD/FfmpP26JJ+rfSgNsOYNMkVya5Osm3kjx2mkNtC993kobKwmJqJvsp9ol+Wn2Qn2Jvo0G23aXAfsDfAH9H9T79eZIHT1eQLTLR+24syUZDiEfSiGnlJb01u5VSzqTrB+CS/By4BPhH4L3DikuStHbusZiaGfkp9pYaZNutoZSyCjgP2LbZ0Fppovfd8lLK7UOIR9KIsbCYAn+KfXADbrs1JJkLPB64bjpibBnfd5KGykMhU+dPsQ+ur22X5H3AL4DfA5sD/0x1uunnZzrwYUuyKWvuqdkmyQ7AjaWUq5IcDjyolPLq+vHPAAck+QjwBeDZwMuBvWcwbEkjzMJiiob0U+yt0O+2A+4NfK7uexPVHo+nlVIunrGg1x9PpromRceR9f2XgH2prvGxVefBUsoVSfYGjgL+CbgG+IdSyqIZiVbSyPM6FpIkqTGOsZAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY2xsJAkSY35/1Z1kQi6TFVhAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABOoklEQVR4nO3deZwcdZ3/8dd7kiGZGAIEDAgYYAFZBBTFg8MDREhUdL1x0RWEdcFFXQ4XFJVLdsWLS1AXf8ghRFDRUVSO5VpFMAaQWxA5whGuIZAEMkkG5vP7o6pDpdMz00fV9FTP+/l49GO6v1X9/X6qp+Yzn65TEYGZmZlZnrraHYCZmZl1HhcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7FxhmZmaWOxcYZmZmljsXGGZmZpY7Fxi2CknHShqVy7tKulbStZnXu0oKSR8epfHPkfTgaIxVNe6m6XLuN9pjjxeSJkr6pqSHJQ1K6m13TGWX+fvctd2xWDm4wOhgkvZLE0LlsUzSAkmXS/q8pDVzGmfDtDDZPo/+8jSWY7NC7Q/8J/BzYF/g5PaGYzb+TGx3ADYqjgYeALqBDYBdgVOAwyS9LyJuy8x7AnBig/1vCBwDPAjc0sD79mxwnGYMF9unaU+RPR/oAQbaMPZ48Q7g0Yg4tN2BmI1XLjDGh0sj4sbM669LegfwG+DXkraOiH6AiHgBeKHIYCRNiYilEbGiyHFGEhFt+QcfyR0Gl7Vj7FZImgysiIjBdsdShxnAs3l1JqkLWCMiSvd7M2sX7yIZpyLiauBrwCbAJyrttY7BkLSHpOskPSvpOUn3SPrvdNquwLx01rMzu2P2S6dfK+kOSTtI+r2kpcB/Z6ZdWyO8CZL+W9Ljkp6X9GtJr6yK6UFJ51S/MdtnHbGtdgyGpJdJ+k667355uqxfkKSq+ULS6ZLeny7fckl3SppdY3mqY1ztGIw0luckbSSpN33+lKRvS5pQR58PSvqNpD0l3ZLuDrtL0ger5pue9nl7OsZiSZdKem3VfJX97R+TdIKkR4GlwLQm+viopGMkPSppiaSfS1pL0iRJp0h6Mu3nbEmTqvoYct0b7rMFdgO2yfzOd02nN/r7/bikO4HlwLC/W0nvkvR/6TIuljRP0j5V83xE0k2S+iX1STpf0kaZ6V9Ix96kRv9fl7RC0jrDxZHO+4a0n31rTJuVTtsrfb2JpO+ln0W/pKcl/UzSpnWMM+LfYaZtkqTjJP09/ewfVnKczKTq91tn8BaM8e3HJP/s9wR+WGsGSduQbOm4jWRXy3JgC2CXdJa/pu3HA2cCf0jbr890sy5wKXAhcD7wxAhxfRkI4Bsk30QPAa6UtH1lS0ud6oltpfSfzK9J/jmdRbJLZRbwLWAjoHpz+1uADwLfA5YAnwculjQzIp5uIM6KCcDlwFzgC8A7gcOB+4Dv1/H+LYGLgB8A5wKfAn4maXZE/G86zz8A7wd+RrLbbH3gQOD/JL06IhZU9flVYAXwbWBS+vzVDfbxJaCfZNfbFsDnSHYPDQLrAMcCOwL7pf0dD3Wte7U8BfwLyTo0NR0b4K9N/H7fAXwUOB3oI9nNVpOSYvFHwJ3A10m2nryOpCiZk5nnbJKi90skn9t/ALtIel1EPAv8FPhmOu63qob5KHBFRDwzzPIDEBE3Sro/fc+5VZP3Bp4hWdcA3gjsTPL3+QiwKfAZ4Nr097l0pPFGomQL0K9J/mbOJPnb3I7kM38VyfpknSYi/OjQB0nCDuANw8zzLHBz5vWxpFvx09eHpH2sN0wfb0jn2a/GtGvTaQcOMe3azOtd03kfAdbMtH8kbf98pu1B4Jw6+hwutnOABzOv/ymd98tV8/2M5J/h5pm2IPmHl217Tdr+2RF+L5tWx5TGEsBXq+a9Gbixjt/1g+n7P5hpmwYsqPr9TgK6asSzLDt25ndxH9BTNX+jfdwOdGfa56Sf5++q+ri+6vcx4ro3zOdxLXBHVVujv98XgVfXMdZawGLgT8DkqmlKf3aTFNa3Z+cB3pOOdVzV53BjVT9vTOf7lwY+g/8mKQjXybStQVJcnJVp66nx3h2rx8v8Pndt4u/wE+nn+Zaq+Q5M+9y50d+xH2P/4V0k9hww3Nkkz6Y//yn9FtKM5STf3Op1XkQsybz+OfAY8O4mx6/Xu0mS4GlV7d8BBLyrqv3KiLiv8iKSg2UXk2wlaNYPql7/oYH+FgC/zMSzGDgPeJ2kDdK25ZEeQyFpgqR1SdaBe4DX1+jz3KjaatREH+fFqse7zCX5PH9UNd9c4JWSKltWn01/trLuZTX6+/2/iLirjn73IPkbOjGqjtGIiMruxjeQbI37XnaeiPgtcDdJoVFxEbCDpM0zbXuT/B39qo54sv10k2xlq9gTWDudVolh5e9XUnf6+/w7yedf6/fZjI+QbLW4W9J6lQdwdTp9t5zGsTHEBYZNJdm8P5SLgD8C/w94QtKF6T71RtadR6OxAzrvzb5Ik/TfSb4lF2kTYEFVcQNJYqxMz3qoRh/PkGz2b8ayiHiqhf7+nvmHVvG39OemkGyqlnSopHtJ/mH1kexWeA3JN/FqD1Q3NNFH9ee0KP35cI32rkwfeax7WY3+fldb9iFUCoE7RhgbkiKs2t1VY1e2qOwNK3fdfYTkYO3FdcZERNya9r13pnlvkt9X5R87knokHS/pYVb9fa5N7d9nM7YEtkn7zT4q6+eMnMaxMcTHYIxjkjYmSSB/H2qeiOiX9DaSbxjvIdmnvDdwtaQ9I+LFOoZq5LiJeg11MbAJJN9SR8NQ42iI9mb7y9NRJAf3/ojk+IqFJP/MTqH2F45av7tG+xhquYb9/HJa91pRxHo7oohYIOkPJMdP/DfJ7oqZwJFNdHcR8OV0a8ES4H3ATyI5W6ziuyTH65wC3EBS6AXJMRkjFXP1/h12keweOmyI+auLTesALjDGt39Jf14+3Ezp5vCr0sdhko4C/osk8V/J0EmmWVtmX6Tf4LYgOdiv4hmSb1jVNgHuz7xuJLb5wDslrVn1LfcfM9PHsi0kqWorxqvSnw+mPz8MXBMRB2TfKGltkm+u9cijj7rUse41oqjfb2U32bYMXaxX+t6KzNaDTFv12BcB35O0FUlRtRS4pInYLiK5DsyHSI4BmUZSOGR9mGRX2OGVBiWnJK9dR//1/h3eB7wWuKrGVjbrUN5FMk4puQ7GV0k2A18wzHzTazTfkv6snF72fPpz7ZzC+6RWvcroh4FXkJyJUnEfsKOkNSoN6Wl3q5zO2mBsvyP55vXZqvZDSQqVS1d7x9iyIfCBygtJ04BPArdExONp84tUbWGR9BGSsyjqlUcfI6pz3WtEUb/fK0i2Dnwp/ce8UlocA9wIPAkclD0tU9K7gK2B31b1eTHJ5/zPJLtHfhMRz9OgiPgryZaDvdPHY8Dvq2Zb7fdJcqbPiKdHU//f4U9J1o9PV3eQ7qJ5WR1jWcl4C8b48C5J/0jy+16f5PS7PUi+Nb2v+sC0Kkenm6l/m84/A/h3kjM9rkvnuY/kgLCDJC0h+ac+NyLq3YddbSFwnaSz03gPIflmmD2V9v+RFB6XSfopyX7wT/DSt8mKRmK7BLgG+K/0GgC3khwU90/AKdkDOseovwFnSXojybfV/Uk+v09l5vkNye/0bJKzFbYDPs6q3zZHkkcf9ahn3WtEIb/fiFgs6VCSdXKepDkk3+xfC0wB9o2IAUlHkhzs/H+SfsJLp6k+SNWlzCPiSUnXkOxSWJPMQZlNuIjk1N9lJGePVF8o7TfAv0haBNwF7ERyinQ9p1rX+3f4Y5JdPj+QtBvJsTUTSLYefZTkdOEbsc7S7tNY/CjuwUunqVYey0m+wVxBcs2GNWu851hWPU31HUAv8Gj6/kdJTjPcsup97yO5BsAAmVMwqXG6YOY911L7NNWPkex7foJk0/BvgJk13n8YyT+bZST/cHao7nOE2M4hc1pk2jYVOCldzhUk/7S/QHq6YWa+AE6vEdOD1Dhtr2qeTbNxZGJ5bqTfxzB9Pph+TnuS/ONcRnLw4oer5ptEck2LBelnex3JPv6hfhcfrjFWS30wxOnTlWUlPS2VOte9Ydat1da7Vn+/I4z5XpJ/nEtJjmOYC3ysap6Pkpx6vIzkH/j5wEZD9PevaRyLqTr9tcG4tuClHLBLjelrkxxP8xTJlpjLSHbbrLIuU+M01Qb/DruBI0gOhl1G8kXiRpJrnExrdvn8GLuPyjnaZlZiSq5IekdE7NXuWMzMwMdgmJmZWQF8DIaZWYlI6mHk61MsjDbfTNDMBYaZWbnszchXxt2N5DgIs7bxMRhmZiUi6RUkV8Uczk1Rx03RzIrkAsPMzMxy54M8zczMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMMzMzCx3LjDMzMwsdy4wzMzMLHcuMGzMkHSspMi8flDSOW0MycxKyLlkbHCBYWZmZrmb2O4AzIaxFTDY7iDMrPScS9rABYaNWRGxvN0xmFn5OZe0h3eRWFtIeoukeZKWSbpP0oE15vF+UzMblnPJ2OUtGDbqJG0HXAE8BRxLsh4eBzzRxrDMrGScS8Y2FxjWDscDAt4aEQ8BSLoYuL2tUZlZ2TiXjGHeRWKjStIEYBbQW0kIABHxV+DytgVmZqXiXDL2ucCw0fZyoAe4t8a0e0Y5FjMrL+eSMc4FhpmZmeXOBYaNtqeAfmDLGtO2GuVYzKy8nEvGOBcYNqoi4kWS/aPvlzSz0i5pa5L9qWZmI3IuGftcYFg7HJP+/IOkIyV9GbgGuLONMZlZ+TiXjGEuMGzURcRtJN8wniI5zWx/kkTxy3bGZWbl4lwytikiRp7LzMyspCQ9DFweEf/a7ljGE2/BMDOzjiWpG1gX6Gt3LOONr+RpZmYdSdIs4GMk18u4qs3hjDveRWJmZh1J0jXAFsD3I+K/2x3PeFPILhJJsyW9JfP6YEm3SJojaZ0ixjSzzuNcYq2IiN0i4pUuLtqjqGMwvgVMg5V3u/sO8DtgM+CkgsY0s87jXGJWUkUdg7EZcFf6/EPAbyLiKEmvJ0kOZmb1cC4xK6miCowVwJT0+TuB89LnC0m/jZSJJAEbAkvaHYtZi9YEFkR5Dr5yLjEbm0bMJUUVGNcBJ0n6I/AmYO+0/VXAIwWNWaQNKWfcZrVsDDza7iDq5FxiNnYNm0uKKjA+C3wP+DDwmYioBPAu4LKCxizSEoCHH36YadPG5pemgYEBrrjiCvbcc0+6u7vbHU7dHPfoWbx4Ma985SuhXN+enUtGWRnXbXDco6neXFJIgRERDwF71Wg/tIjxRsu0adPGdFKYMmUK06ZNK81KCo7bhudcMvrKum477rGnsAttSeoiOf94BlVnq0TE74sa18w6i3OJWTkVUmBI2hGYA2wCqGpyABOKGNfMOotziVl5FbUF4wfAjcB7gMdIEkFHe+ihh+jrSy51v3z5ciZNmgTAeuutx8yZM1eZp1Zb9n1DTa+012qruPXWWxkYGGhp/HrGymtZHnnkkZbjrhVrM8vSyO8tG/eMGTNa6qvVdWCosTqEc0mB63HRuaTZXFbvsmTbR8olReeyZn8HtXJJ0evAUH3lnksiIvcH8DywRRF9t+NBcjpcLFq0KGqZP39+TO6ZEiTJL1DXyueTe6bE/PnzV5mnVlv2fUNNn9wzJa6//vrV2ubPnx/3339/9Pb2Rk9PT8vjjzRWnsuyzvR1W467VqzNLEsj42fjbrWvVteBWmPVsmjRosp809r9N9XA355zSYHrcdG5pJlc1siy1JtLis5leeaS0chlo5VLirqS51ySfabjQl9fH8v6l7LuXoez1ls/ATHIunsdzrp7Hc6y/qX09fWtnGetnfZerS37vqGmV/q6//77V2vr6+vj6aefBmDqNru1NH49Y+W9LADTdt67qbhrxdrMskzdbo+GxweYPvtzufTV7Dow1PrWQZxLCl6Pi8olzeayepelkVxSdC7LM5cUnctGM5cUtYvku8B3JG0A3A4MZCdGxG0FjdtW3eu+subzrAlrzRj2fSNNH6l/vWydlsZvZKy8lgVg4rQZLY1Vq62RZemaOr3h8QG6p2+US1+trgNDjdUBnEsKXo+LyiWt5rKRlqWZXDIauSyvXFLUOjCauaSoAuPi9OePMm1BcpCWD8wys3o5l5iVVJH3IjEza5VziVlJFXWhrflF9Gtm44tziVl5FXmhrc2BQ4Ct06a7gFMj4r6ixjSzzuNcYlZOhZxFImkWSRJ4E3Bb+ngzcKekPYoY08w6j3OJWXkVtQXjRODkiPhitlHSicA3gP8taFwz6yzOJWYlVdR1MLYGzqrR/iPg1QWNaWadx7nErKSKKjCeArav0b498GRBY5pZ53EuMSuponaR/BA4U9I/ANenbbsARwInFTSmmXUe5xKzkiqqwPgasAQ4HPh62rYAOBY4raAxzazzOJeYlVQhu0jS+6GcHBEbA2sBa0XExhFxaqR3/KmXpI0knS/paUn9km6X9IbMdEk6XtJj6fQrJW1Z1cd0SRdIWizpWUlnSZqaz9KaWVGcS8zKq6hjMFaKiCURsaSZ90paB/gjyf0H3kVyUNfhwDOZ2Y4APg8cRHL62vPA5ZImZ+a5ANgG2APYC3gbcGYzMZlZeziXmJVLbrtIJN0M7B4Rz0j6C8l9AmqKiNfX2e2RwMMR8alM2wOZMUVyAZ4TIuJXadsngSeA9wMXStoamA28MSJuTOf5HPA7SV+IiAV1xmJmo8C5xKwz5HkMxq+A5ZnnDW2+HML7SL5B/Ax4O/Ao8L2I+GE6fTNgA+DKyhsiYpGkucBOwIXpz2crCSF1JTBI8i3ll9WDSpoETMo0rQkwMDDAwMBA9ewMDg7S09PD5IliQveElc8Benp6GBwcXPl8cjp9lbbs+4aYXnleq21wcHDl/JPXmNja+HWMlfeyACvnbXSsWrE2tSxrTGSgwfEBJk1ULn01uw4Mtb7VWk9rtY1RziWjuB4XlkuazGV1L0sDuWTEsVpcljxzSc3xC/7cisolanA35qiStCx9ehLwM+CNwKnAQRFxrqSdSTZ7bhgRj2Xe91OS3bd7SzoK2Dcitqrq+0ngmIj4fo1xjwWOqW6fM2cOU6ZMyWfhzEbZ0qVL2WeffSA5jmFxu+MZTc4lZvmpO5dERO4P4H5g3RrtawP3N9DPCuD6qrbTgBvS5zuTfLt5RdU8PwUuSp8fBdxTo+8ngc8MMe4kYFrmsREQfX19sWLFitUe8+bNi56entj0gFNjow8csfL5pgecGj09PTFv3ryV82z43kNWa8u+b6jplb7OP//8mv3PnTs3ent7Y+Ye+7Y0fj1j5bks06dPj97e3tj8o19qaqxasTazLDPe/vGGxq/EvdWBp7XcVyvrwFDrW631tK+vL9K/l2lF/N07lxSfS/Jej4vMJc3msnqXpZFcUnQuyzOXFJ3LRjOXFHWa6qbAhBrtk4CNG+jnMZL7EGT9FfhQ+vzx9Of66bxkXt+SmWdGtgNJE4HpmfevIiKW89ImWpLds9Dd3U13d/dq83d1ddHf38+yF4KBgRdXPgfo7++nq6tr5fOedHq2Lfu+oaZXntdqq8wLsGzFCy2NX+9YeS4LwLImP7dasTazLN1NfG4Ay1+IXPpqdh0Yan2rtZ7WaiuBTXEuAYpbj4vKJa3ksnqWpZFcMtJYrS5Lnrmk1vhFf25F5ZJcCwxJ78u8nCVpUeb1BGB3MgdW1eGPwFZVba8CKrdwfoDkD3t30iQgaRrJ/tDK5sobgLUl7RARN6Vt7yA5g2ZuA7GY2ShxLjErv7y3YPSmPwM4t2raAPAgyalh9ToZuD7d9/lTkjsq/lv6ICJC0inAVyTdS5IkvkZyIZ7edJ6/SroM+KGkg4Bu4HTgwvBR32ZjVW/607nErKRyLTAiogtA0gMkp3L1tdjfPEkfILmC39Ekf/SHRMQFmdm+CbyM5Fz0tYHrgNkRsSwzz8dJEsFVJEd8X0xyvruZjUHOJWblV8gxGBGxWY59/Qb4zTDTgyRhHD3MPAuBffKKycxGh3OJWXnleaGtzwNnRsSy9PmQIsL3EDCzmpxLzDpDnlswDiW5jO6y9PlQAt+kyMyG5lxi1gFyKzCymzLz3KxpZuOLc4lZZyjkZmeSjpa02mXqJPVIGnL/pplZlnOJWXkVdTfVY4BatzCeQo3L5pqZDcG5xKykiiowRO0bFL0WWFjQmGbWeZxLzEoq7yt5PkOSDAL4m6RsYphA8k3kB3mOaWadx7nErPzyvg7GISTfOH5Esvkye3nfFcCDEXFDzmOaWec5BOcSs1LL+0qe58LKq+/9MSJeyLN/MxsfnEvMyq+QYzAi4v+ATSSdIOknkmYASHqXpG2KGNPMOo9ziVl5FXWa6tuB20nuRPhBXjoK/LXAcUWMaWadx7nErLyKOovkROArEbEHyf7SiquBHQsa08w6j3OJWUkVVWBsB/yyRvuTwHoFjWlmnce5xKykiiowngVeUaP9dcCjBY1pZp3nWZxLzEqpqALjQuAbkjYgOY+9S9IuwLeB8woa08w6j3OJWUkVVWAcBdwNPExyUNZdwO+B64ETChrTzDqPc4lZSeV9oS0AImIF8GlJXwO2JUkMf4mIe4sYz8w6k3OJWXkVUmBURMRDkh5On9e6n4CZ2YicS8zKp6hdJEg6QNIdwDJgmaQ7JP1rUeOZWWdyLjErp0K2YEg6HjgM+C5QuV/ATsDJkmZGxNFFjGtmncW5xKy8itpF8hng0xHxk0zbryXdRpIonBTMrB7OJWYlVdQukm7gxhrtN1HwcR9m1lGcS8xKqqgC48ck3zyq/RtwQUFjmlnncS4xK6kivwEcIGlP4E/p6zcDM4HzJJ1UmSkiDiswBjMrP+cSsxIqqsDYFrg5fb55+rMvfWybmc+nm5nZcJxLzEqqqAtt7VZEv2Y2vjiXmJVXYdfBAJC0haRZknrS1ypyPDPrTM4lZuVTSIEhaV1JVwF/A37HS3dDPEvSd4oY08w6j3OJWXkVtQXjZGCA5ECspZn2i4DZzXYq6YuSQtIpmbbJks6Q9LSk5yRdLGn9qvfNlPRbSUslPSnpW5J8ipvZ2OdcYlZSRf1h7AnMiohHqrZk3gts0kyHkt4IHAjcVjXpZOA9wEeARcDpwC+AXdL3TQB+CzwO7EzyDeg8kqR1VDOxmNmocS4xK6mitmC8jFW/bVRMB5Y32pmkqSTnvH8aeCbTvhZwAHBYRFwdETcBnwJ2lrRjOtuewKuBT0TELRFxKfBV4GBJazQai5mNKucSs5IqagvGH4BPkvzxAYSkLuAI4Jom+jsD+G1EXCnpK5n2HUiu9HdlpSEi7pb0EMn9Cv6U/rw9Ip7IvO9y4PvANsBfqgeTNAmYlGlaE2BgYICBgYHVghscHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuURF3PlY0rbAVSTnr78D+DXJH+B0YJeIuK+Bvj4GfBl4Y0Qsk3QtcEtEHCJpH+DsiJhU9Z4/A9dExJGSzgQ2iYhZmelTgOeBd6ffQqrHPBY4prp9zpw5TJkypd7QzcaUpUuXss8++wCsFRGL2x1PPZxLzMaeunNJRBTyANYi+WP+KcnR3ycAr2iwj1cCTwCvybRdC5ySPt8HWF7jfX8GvpE+PxO4vGr6FJIL87xriHEnAdMyj42A6OvrixUrVqz2mDdvXvT09MSmB5waG33giJXPNz3g1Ojp6Yl58+atnGfD9x6yWlv2fUNNr/R1/vnn1+x/7ty50dvbGzP32Lel8esZK89lmT59evT29sbmH/1SU2PVirWZZZnx9o83NH4l7q0OPK3lvlpZB4Za32qtp319fZGu99OK+rt3Lik2l+S9HheZS5rNZfUuSyO5pOhclmcuKTqXjWYuyX0XiaRu4DLgoIj4rxa72wGYAdycOcBrAvA2SZ8FZgFrSFo7Ip7NvG99kgOxSH++qarf9TPTVhMRy8ns362M3d3dTXd392rzd3V10d/fz7IXgoGBF1c+B+jv76erq2vl8550erYt+76hplee12qrzAuwbMULLY1f71h5LgvAsiY/t1qxNrMs3U18bgDLX4hc+mp2HRhqfau1ntZqG8ucS0ZnPS4ql7SSy+pZlkZyyUhjtboseeaSWuMX/bkVlUtyP8gzIgaA1+TU3VXAdsD2mceNJAdpVZ4PALtX3iBpK5JT2m5Im24AtpM0I9PvHsBi4K6c4jSznDmXmJVbUQd5nk9yRPYXW+kkIpYAd2TbJD0PPB0Rd6SvzwJOkrSQ5A/9u8ANEVG5MdIVJH/8P5Z0BLABySbWM9JvF2Y2djmXmJVUUQXGRGB/Se8EbiI5CGqlyPeuh4cCg8DFJPs7Lwf+PTPWi5L2IjnS+4Y0lnOBo3OMwcyK4VxiVlKjcTfVV1VNa+m0lYjYter1MuDg9DHUe+YD725lXDNrC+cSs5Ly3VTNbMxyLjErr0LvpmpmZmbjkwsMMzMzy50LDDMzM8udCwwzMzPLXW4FhqSbJa2TPj86vUa/mVlDnEvMOkOeWzC2Jrm1MiQ395maY99mNn44l5h1gDxPU70FOFvSdYCAL0h6rtaMEXF8juOaWWe5BecSs9LLs8DYDzgO2Iv07oLACzXmC8BJwcyGsh/OJWall1uBERH3AB8DkDQI7B4RT+bVv5mND84lZp2hqCt5+uwUM2uZc4lZeRV1LxIkbQ4cQnLAFiR3ITw1Iu4rakwz6zzOJWblVMi3A0mzSJLAm4Db0sebgTsl7VHEmGbWeZxLzMqrqC0YJwInR8QXs42STgS+AfxvQeOaWWdxLjErqaL2b24NnFWj/UfAqwsa08w6j3OJWUkVVWA8BWxfo317wEeDm1m9nEvMSqqoXSQ/BM6U9A/A9WnbLsCRwEkFjWlmnce5xKykiiowvgYsAQ4Hvp62LQCOBU4raEwz6zzOJWYlVdR1MAI4GThZ0ppp25IixjKzzuVcYlZehV0Ho8LJwMzy4FxiVi6+Sp6ZmZnlzgWGmZmZ5c4FhpmZmeUu9wJDUrekqyRtmXffZjZ+OJeYlVvuBUZEDACvybtfMxtfnEvMyq2oXSTnAwcU1LeZjR/OJWYlVdRpqhOB/SW9E7gJeD47MSIOK2hcM+ssziVmJVVUgbEtcHP6/FVV06KgMc2s8ziXmJVUUVfy3K2Ifs1sfHEuMSuvQk9TlbSFpFmSetLXavD9X5I0T9ISSU9K6pW0VdU8kyWdIelpSc9JuljS+lXzzJT0W0lL036+Janwq5iaWT6cS8zKp5ACQ9K6kq4C/gb8DnhFOuksSd9poKu3A2cAOwJ7AN3AFZJelpnnZOC9wEfS+TcEfpGJZQLwW2ANYGdgX2A/4PiGF8zMRpVziVl5FbUF42RgAJgJLM20XwTMrreTiJgdEedExJ0RcSvJH/NMYAcASWuRHGF+WERcHRE3AZ8Cdpa0Y9rNnsCrgU9ExC0RcSnwVeBgSWu0spBmVjjnErOSKmrT3p7ArIh4pGpL5r3AJi30u1b6c2H6cweSbyJXVmaIiLslPQTsBPwp/Xl7RDyR6edy4PvANsBfqgeRNAmYlGlaE2BgYICBgYHVghocHKSnp4fJE8WE7gkrnwP09PQwODi48vnkdPoqbdn3DTG98rxW2+Dg4Mr5J68xsbXx6xgr72UBVs7b6Fi1Ym1qWdaYyECD4wNMmqhc+mp2HRhqfau1ntZqKwHnkoLX48JySZO5rO5laSCXjDhWi8uSZy6pOX7Bn1tRuUTJ3ZDzJWkJ8PqIuDd9/tqIuF/SG4DLI2LdJvrsAn4NrB0Rb0nb9gHOjohJVfP+GbgmIo6UdCawSUTMykyfQnK627vTbyHVYx0LHFPdPmfOHKZMmdJo6GZjwtKlS9lnn30A1oqIxe2Opx7OJWZjT925JCJyf5DsK/1a+nwJsBnJ7pifAj9vss/vAw8CG2fa9gGW15j3z8A30udnkiSi7PQpJKe4vWuIsSYB0zKPjYDo6+uLFStWrPaYN29e9PT0xKYHnBobfeCIlc83PeDU6OnpiXnz5q2cZ8P3HrJaW/Z9Q02v9HX++efX7H/u3LnR29sbM/fYt6Xx6xkrz2WZPn169Pb2xuYf/VJTY9WKtZllmfH2jzc0fiXurQ48reW+WlkHhlrfaq2nfX19ka7304r4u3cuKT6X5L0eF5lLms1l9S5LI7mk6FyWZy4pOpeNZi4pahfJEcBV6beMNYBvkmxCnA7s0mhnkk4H9gLeFhGPZCY9Dqwhae2IeDbTvn46rTLPm6q6XD8zbTURsRxYnhkfgO7ubrq7u1ebv6uri/7+fpa9EAwMvLjyOUB/fz9dXV0rn/ek07Nt2fcNNb3yvFZbZV6AZSteaGn8esfKc1kAljX5udWKtZll6W7icwNY/kLk0lez68BQ61ut9bRWWwk4lxS8HheVS1rJZfUsSyO5ZKSxWl2WPHNJrfGL/tyKyiWFHOQZEXeQXBTnOuBXwMtIjsZ+XUTcV28/SpwOfAB4R0Q8UDXLTSQHgO2eec9WJAdv3ZA23QBsJ2lG5n17AIuBuxpZLjMbXc4lZuVV2PnbEbEI+K8WuzmDZNPlPwFLJG2Qti+KiP6IWCTpLOAkSQtJ/tC/C9wQEX9K572C5I//x5KOADYATgDOSL9dmNkY5lxiVk6FFRiS1iE57WvrtOkukoOoFg79rtV8Jv15bVX7p4Bz0ueHAoPAxST7Oy8H/r0yY0S8KGkvkv2uN5AckHUucHQDcZhZmziXmJVTIQWGpLcBlwCLgBvT5s8DR0t6b0T8vp5+ImLEq/VFxDLg4PQx1DzzgXfXM6aZjR3OJWblVdQWjDNILoTzmYh4EVZeBe976bTtChrXzDqLc4lZSRV1Jc8tgO9UEgIkmxeBk9JpZmb1cC4xK6miCoybeWl/adbWwK0FjWlmnce5xKykcttFIuk1mZenAadK2oLkEruQ3GToYOCLeY1pZp3HucSsM+R5DMYtJFf2yh5M9c0a880h2adqZlbLLTiXmJVengXGZjn2ZWbjl3OJWQfIrcBIT98yM2uJc4lZZyjyQlsbAm8BZlB1MGlEnFbUuGbWWZxLzMqpqAtt7Qf8D7ACeJpkf2pFkBy4ZWY2LOcSs/IqagvG14Djga9HxGBBY5hZ53MuMSupoq6DMQW40AnBzFrkXGJWUkUVGGcBHymobzMbP5xLzEqqqF0kXwJ+I2k2cDswkJ0YEYcVNK6ZdRbnErOSKrLAmAXck76uPjDLzKweziVmJVVUgXE4sH9EnFNQ/2Y2PjiXmJVUUcdgLAf+WFDfZjZ+OJeYlVRRBcapwOcK6tvMxg/nErOSKmoXyZuAd0jaC7iT1Q/M+mBB45pZZ3EuMSupogqMZ4FfFNS3mY0fz+JcYlZKhRQYEfGpIvo1s/HFucSsvIo6BsPMzMzGsaJudvYAw5yjHhH/UMS4ZtZZnEvMyquoYzBOqXrdDbwOmA18q6AxzazznFL12rnErCSKOgbj1Frtkg4G3lDEmGbWeZxLzMprtI/BuBT40CiPaWadx7nEbIwb7QLjw8DCUR7TzDqPc4nZGFfUQZ5/YdUDswRsALwc+PcixjSzzuNcYlZeRR3k2Vv1ehB4Crg2Iu4uaEwz6zy9Va+dS8xKoqiDPI8rot9WpQeG/SfJN6Bbgc9FxJ/bG5WZDcW5xKy8xs2FtiTtDZwEHAe8niQpXC5pRlsDM7NScS4xq0+uBYakQUkvjvB4Ic8xG3AY8MOIODsi7gIOApYC+7cpHjMbgnOJWfnlvYvkA8NM2wn4PG3YaiJpDWAH4OuVtogYlHRlGpeZjS3OJWYll2uBERG/qm6TtBVwIvBe4ALg6DzHrNN6wATgiar2J4B/rJ5Z0iRgUqZpTYCFCxcyMDBQPTuLFy9m8uTJ6OkH6Fry1MrnAJMnT+amm25a+XzCkidWa8u+b6jplef33HPPkP1PnTqV7v5nWhq/3rHyXJalS5fSteTxpsaqFWszy9K9bGHD4y9duhQtnJ9LX82uA7WWdfHixTz99NOrradLlixZrW2sci4ZvfW4qFzSSi6rZ1kaySVF57I8c0nRuWxUc0lEFPIANgR+CKwALgG2LWqsOmMJYKeq9m8Cc2vMf2w6vx9+dOJjo3b9LTqX+OFHRz2GzSW5n0UiaS3gKOBzwC3A7hHxh7zHaVAf8CKwflX7+sDjNeb/OslBXFnTGdsX9lkTeATYGCjPV1XHPdrWBBa0O4h6OJe0TZnXbcc9ekbMJbkWGJKOAI4k+UP756ixmbMdImKFpJuA3UnPq5fUlb4+vcb8y4HlVc2LCw6zJZIqT5dExJiONctxj7pSxOpc0j5lXbcd96gbMValm/FyIWkQ6AeuJKnya4qID+Y2aJ3SU8vOBQ4E/gwcAnwU+MeIqN6fWjqSpgGLgLXKtJI6bqvFuaR9yrpuO+6xJ+9dJOeR7JcZcyLiIkkvB44nuTjOLcDsTkgIZh3IucSs5PI+i2S/PPvLW0ScTo3NmB1iOcmFf6o3x451jttW41zSVmVdtx33GJPrLhIzMzMzGEeXCjczM7PR4wLDzMzMcucCw8zMzHLnAsPMzMxy5wKjA0j6sqTrJS2V9OwQ88yU9Nt0niclfUtS7ldybYSkgyU9KGmZpLmS3tTOeGqR9DZJl0haICkkvb9quiQdL+kxSf2SrpS0ZZvCNWtaWfNIGteYziXjNY+4wOgMawA/A75fa6KkCcBv0/l2BvYF9iM5j78t0osVnURyetbrgVuByyXNaFdMQ3gZSWwHDzH9CJI7ex4EvBl4nmQ5Jo9OeGa5KV0egdLkkvGZR9p9IyM/cr0R037AszXa30V6/4RM20EkV49bo02xzgVOz7zuAh4Fvtjuz3GYmAN4f+a1gMeAL2Ta1gKWAR9rd7x++NHMo0x5JI2hVLlkPOURb8EYH3YCbo9VrzR4OTAN2Ga0g5G0BrADyWWgAYiIwfT1TqMdTws2I7mSY3Y5FpEkvDIth1k9xlQegY7JJR2bR1xgjA8bANWXMX4iM220rQdMoHZM7YinWZVYy74cZvUYa3kEOiOXdGwecYExRkk6MT0YaLjHP7Y7TjMbu5xHrJ3afvSvDek7wDkjzHN/nX09DlQfVb1+Ztpo6yPdl1vVvj7tiadZlVjXJ9mHSub1LaMejdnqOjmPQGfkko7NI96CMUZFxFMRcfcIjxV1dncDsF3VUdV7AIuBu3IPfgRp3DcBu1faJHWlr28Y7Xha8ABJcsguxzSSo8DLtBzWoTo5j0DH5JKOzSPegtEBJM0EpgMzgQmStk8n/T0ingOuIEkAP5Z0BMl+vROAMyKiXXfwOwk4V9KNwJ+BQ0hO5Tq7TfHUJGkqsEWmabP0810YEQ9JOgX4iqR7SRLF14AFQO8oh2rWkpLmEShBLhm3eaTdp7H40fqDZBNo1HjsmplnE+B3wFLgKeDbwMQ2x/1ZYD7JbYrnAm9u92dZI8Zdh/hsz0mni+Q6AI+TnFZ2JfCqdsfthx+NPsqaR9K4xnQuGa95xLdrNzMzs9z5GAwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMGxMkPSjpkHbHYWbl5TwytrjAMDMzs9y5wDAzM7PcucCwlkn6N0kL0rsYZtt/JelHkjZPnz8h6TlJ8yS9c5j+NpUUmZstIWnttG3XTNu2ki5N+3xC0o8lrVfAIppZwZxHOo8LDMvDz4B1gd0qDZKmA7OBC4CpJDdI2h14HXAZcEl698amSFobuBr4C/CGdKz1gZ8226eZtZXzSIfx7dqtZRHxjKRLgX2Aq9LmDwN9wDURMQjcmnnLVyV9AHgfcHqTw34W+EtEHFVpkLQ/8LCkV0XE35rs18zawHmk83gLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNPfPIDXArulmzWfS/u8O522eQv9mln7OI90EG/BsLxcAgh4j6R5wFuBQ9Np3wb2AL4A/B3oB34OrDFEX4PpT2XauqvmmZqOeWSN9z/WaPBmNiY4j3QQFxiWi4hYJukXJN84tgDuiYib08m7AOdExC8BJE0FNh2mu6fSn68g2TcKsH3VPDcDHwIejIgXWl4AM2s755HO4l0klqcLgPcA+6fPK+4FPihpe0mvBeYwzLoXEf3An4AvStpa0tuBE6pmOwOYDvxE0hvTI8xnSTpb0oQcl8nMRpfzSIdwgWF5uhpYCGxF8sdfcRjwDHA9yebIy0m+OQxnf5ItbDcBpwBfyU6MiAUk32gmAFcAt6fzPctLm0bNrHycRzqEIqLdMZiZmVmH8RYMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwwzMzPLnQsMMzMzy50LDDMzM8udCwxrO0nHSorM65B0ejtjMjOz1rjAMDMzs9y5wDAzM7PcucAwMzOz3LnAsFEl6S2S5klaJuk+SQfW+b6vSBqU9LmiYzQzs9ZNbHcANn5I2g64AngKOJZk/TsOeGKE950AHAUcGBE/LDhMMzPLgQsMG03HAwLeGhEPAUi6GLh9qDdI+jZwKPCpiDh3VKI0M7OWeReJjQpJE4BZQG+luACIiL8Cl9d+i04H/gP4hIsLM7Ny8RYMGy0vB3qAe2tMuwd4d1XbJ4GpwGci4icFx2ZmZjnzFgwbq/5IcmzGZyVNb3cwZmbWGBcYNlqeAvqBLWtM26pG29+BPYENgcskrVlgbGZmljMXGDYqIuJFkmMt3i9pZqVd0tYkx2bUes9tJLtOtgYukdQzGrGamVnrXGDYaDom/fkHSUdK+jJwDXDnUG+IiD8B/wTsCPxcUnfxYZqZWatcYNioSbdIzCLZXXI8sD9J0fHLEd53NfBRkl0mP5bk9dbMbIxTRIw8l5mZmVkD/E3QzMzMcucCw8zMzHLnAsPMzMxy13CBIWm2pLdkXh8s6RZJcyStk294ZmZmVkbNbMH4FjANVt4d8zvA74DNgJPyC83MzMzKqpl7kWwG3JU+/xDwm4g4StLrSQoNMzMzG+eaKTBWAFPS5+8EzkufLyTdstFpJInkktVL2h2LWYvWBBaEz083s4I1U2BcB5wk6Y/Am4C90/ZXAY/kFdgYsyGdu2w2/mwMPNruIMysszVTYHwW+B7wYZJbaVcS1buAy/IKbIxZAvDwww8zbdrqG2kGBga44oor2HPPPenuLseVrB3z6BhLMS9evJhXvvKV4C1xZjYKGi4wIuIhYK8a7YfmEtEYNm3atCELjClTpjBt2rS2/xOpl2MeHWWM2cwsD81swSC9F8QWwAyqzkSJiN/nEJeZmZmVWMMFhqQdgTnAJoCqJgcwIYe4zMzMrMSa2YLxA+BG4D3AYyRFhZmZmdlKzRQYWwIfjoi/5x1M2d166610dXWx3nrrMXPmzNWmP/TQQ/T19TU9vXo+oOa89Ux/8sknAXjkkUfYbLPNCh1ruOmNzPvII8mJPLfeeiszZswodKw8l6sS81DrxmjHYmY2KiKioQdwNTC70feV+UFyfY9YtGhR1HL//fdHb29v9PT0BBCTe6bE/PnzV5ln/vz5MblnStPTa81Xa956p/f09ERvb2+sM33dwscaanqjY60zfd2Vn3PRY+W1XCOtG6MZy6JFiyrzTYsx8Hflhx9+dPajmUuFfxf4jqT9JO0g6TXZRxP9ld7TTz8NwPTZn2PdvQ5nWf/Sld8oK/r6+ljWv5S1dtq7qenV86271+E1x6p3+vTZnwMYlbGGmt7MWJXPeTTGymO5Rlo3RjMWM7PR1MwukovTnz/KtAXJAZ/j+iDP7ukb8eILwx+SMmGtGS1NXznWuq9sbfr0jeoaJ5exRpje6LzDxZ7nWLku1wjrxmjGYmY2Gpq9F4mZmZnZkJq50Nb8IgIxMzOzztHshbY2Bw4Btk6b7gJOjYj7corLzMzMSqzhgzwlzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezZymujVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8eeLKVYMzMzKwzNLOL5IfAmZL+Abg+bdsFOBI4Ka/AzMzMrLyaKTC+BiwBDge+nrYtAI4FTssnLDMzMyuzZq6DEcDJwMmS1kzbluQdmJmZmZVXU9fBqHBhYWZmZrXUVWBIuhnYPSKekfQXknuO1BQRr88rODMzMyunerdg/ApYnnk+/B29zMzMbFyrq8CIiOMyz48tLBozMzPrCM1cKvx+SevWaF9b0v35hGVmZmZl1syFtjYFJtRonwRs3FI0ZmZm1hHqPotE0vsyL2dJWpR5PQHYHXggr8DMzMysvBo5TbU3/RnAuVXTBoAHSS6+ZWZmZuNc3QVGRHQBSHoAeGNE9BUWlZmZmZVaM1fy3KyIQMzMzKxz1Huhrc8DZ0bEsvT5kCLC9yMxMzMb5+rdgnEocAGwLH0+lMA3PDMzMxv36r3Q1ma1npuZmZnV0syFto6WNKVGe4+koxvs622SLpG0QFJIen/VdEk6XtJjkvolXSlpy6p5pku6QNJiSc9KOkvS1Kp5XiPpD5KWSXpY0hGNxGlmZmaNaeZCW8cAU2u0T0mnNeJlwK3AwUNMPwL4PHAQ8GbgeeBySZMz81wAbAPsAewFvA04szJR0jTgCmA+sAPwn8Cxkv6twVjNzMysTs3crl3UvtnZa4GFjXQUEZcClwJIWnWQpOEQ4ISI+FXa9kngCeD9wIWStgZmk5w2e2M6z+eA30n6QkQsAD4OrAHsHxErgDslbQ8cRqYQMTMzs/w0ciXPZ0gKiwD+JilbZEwg2arxgxxj2wzYALiy0hARiyTNBXYCLkx/PlspLlJXAoMkWzx+mc7z+7S4qLgcOFLSOhHxTPXAkiaRXPq8Yk2AgYEBBgYGVgt0cHAQgEkTkyKpp6eHwcHBVeYdHBykp6eHyd0Tmpq+2nxDjFXv9OFizXusoaY3M1blcx6NsfJarkrMRYzVSCy12szMiqKI+u68Lmlfkq0XPyLZspC9VPgK4MGIuKHpQJKC5QMR0Zu+3hn4I7BhRDyWme+nQETE3pKOAvaNiK2q+noSOCYivi/pCuCBiDgwM/3VwJ3AqyPirzViOZYau3vmzJnDlCmrHX5iVgpLly5ln332AVgrIha3Ox4z63AR0dADeDswsdH31dFvAO/PvN45bXtF1Xw/BS5Knx8F3FOjryeBz6TPrwD+p2r6q9O+tx4ilknAtMxjIyD6+vpixYoVqz3mzp0bvb29sdWBp8WmB5waPT09MW/evFXmmTdvXvT09MSG7z2kqenV8216wKk1x6p3+lYHnha9vb0xffr0wscaanqjY02fPn3l51z0WHkt10jrxmjG0tfXV9kCOS3vv18//PDDj+pHM1fy/D9Jm0v6FLA58B8R8aSkdwEPRcSdjfY5hMfTn+sDj2Xa1wduycwzI/smSROB6Zn3P56+J2v9zLTVRMRyYHmmTwC6u7vp7u5ebf6uruRY2eUvBMteCPr7++nq6lpl3q6uLvr7++kZeLGp6dXzLXsh2fJUPW+905cPMb2IsYaa3sxYlc95NMbKa7kqMddaN0YzllptZmZFaeY01bcDt5Mc4/BBXjqj5LXAcfmFxgMkBcDumbGnpeNWdsXcAKwtaYfM+95BslxzM/O8TVI2u+5BsuVjteMvzMzMrHXNnKZ6IvCViNiD5NiLiquBHRvpSNJUSdunZ3UAbJa+nhkRAZwCfEXS+yRtB5wHLCC9s2skx09cBvxQ0psk7QKcDlwYyRkkAHPSOM+StI2kvYH/AE5qdMHNzMysPs2cprodsE+N9ieB9Rrs6w3ANZnXlX/65wL7Ad8kuVbGmcDawHXA7IhYlnnPx0mKiqtIzh65mOTaGcDKM0/2BM4AbgL6gOMjwqeompmZFaSZAuNZ4BUkuzCyXgc82khHEXEtyZkpQ00P4Oj0MdQ8C6ld8GTnuQ14ayOxmZmZWfOa2UVyIfANSRuQHJHele6a+DbJLgwzMzMb55opMI4C7gYeJjnA8y7g98D1wAn5hWZmZmZl1cxpqiuAT0v6GrAtSZHxl4i4N+/gzMzMrJyaOQYDgIh4SNLD6fP6LgdqZmZm40Izu0iQdICkO4BlwDJJd0j613xDMzMzs7JqeAuGpONJ7kT6XV664NVOwMnp9SuGPOPDzMzMxodmdpF8Bvh0RPwk0/ZrSbeRFB0uMMzMzMa5ZnaRdAM31mi/iRaO6TAzM7PO0UyB8WOSrRjV/g24oLVwzMzMrBM0u8XhgPTy239KX78ZmAmcJ2nlPT4i4rAW4zMzM7MSaqbA2Ba4OX2+efqzL31sm5nPp66amZmNU81caGu3IgIxMzOzztHUdTAAJG0haZaknvT1kDctMzMzs/Gl4QJD0rqSrgL+BvyO5M6qAGdJ+k6ewZmZmVk5NbMF42RggOSgzqWZ9ouA2XkEZWZmZuXWzEGeewKzIuKRqr0i9wKb5BKVmZmZlVozWzBexqpbLiqmA8tbC8fMzMw6QTMFxh+AT2Zeh6Qu4AjgmlyiMjMzs1JrZhfJEcBVkt4ArAF8E9iGZAvGLjnGZmZmZiXV8BaMiLgDeBVwHfArkl0mvwBeFxH35RuemZmZlVFDWzAkdQOXAQdFxH8VE5KZmZmVXUNbMCJiAHhNQbGYmZlZh2jmIM/zgQPyDsTMzMw6RzMHeU4E9pf0TuAm4PnsRN9B1czMzFq9m+qrqqb5DqpmZmbmu6mamZlZ/pq+m6qZmZnZUFxgmJmZWe5cYJiZmVnuXGCYmZlZ7uoqMCTdLGmd9PnRkqYUG5aZmZmVWb1bMLYmuecIwDHA1GLCMTMzs05Q72mqtwBnS7oOEPAFSc/VmjEijs8pNjMzMyupeguM/YDjgL1ILqb1LuCFGvMF4ALDzMxsnKurwIiIe4CPAUgaBHaPiCeLDMzMzMzKq5krefrMEzMzMxtWM/ciQdLmwCEkB38C3AWcGhH35RSXmZmZlVjDWyMkzSIpKN4E3JY+3gzcKWmPfMMzMzOzMmpmC8aJwMkR8cVso6QTgW8A/5tHYGZmZlZezRxPsTVwVo32HwGvbi0cMzMz6wTNFBhPAdvXaN8e8JklZmZm1lSB8UPgTElHSnpr+vgi8D/ptNxIOlZSVD3uzkyfLOkMSU9Lek7SxZLWr+pjpqTfSloq6UlJ35LU1MGtZmZmVp9m/tF+DVgCHA58PW1bABwLnJZPWKu4E3hn5nX2Al8nA+8BPgIsAk4HfgHsAiBpAvBb4HFgZ+AVwHnAAHBUAbGamZkZzV0HI0j+sZ8sac20bUnegWW8EBGPVzdKWgs4ANgnIq5O2z4F/FXSjhHxJ2BPkuNC3hkRTwC3SPoq8A1Jx0bEigLjNjMzG7daumhWRCwpuLgA2FLSAkn3S7pA0sy0fQegG7gyE8/dwEPATmnTTsDtaXFRcTkwDdim4LjNzMzGrbF+LMJckvug3EOye+MY4A+StgU2AFZExLNV73kinUb684ka08nMsxpJk4BJmaY1AQYGBhgYGFht/sHBQQAmTRQAPT09DA4OrjLv4OAgPT09TO6e0NT01eYbYqx6pw8Xa95jDTW9mbEqn/NojJXXclViLmKsRmKp1WZmVhQlezzKQdLawHzgMKAfODsiJlXN82fgmog4UtKZwCYRMSszfQrwPPDuiLh0iHGOJSlmVjFnzhymTJmS09KYja6lS5eyzz77AKwVEYvbHY+ZdbiIKNUDmEdycOk7SO7eunbV9PnAoenz44FbqqZvlr7vdcOMMYlkN0rlsREQfX19sWLFitUec+fOjd7e3tjqwNNi0wNOjZ6enpg3b94q88ybNy96enpiw/ce0tT06vk2PeDUmmPVO32rA0+L3t7emD59euFjDTW90bGmT5++8nMueqy8lmukdWM0Y+nr64t03Z/W7r9jP/zwo/MfDe0ikdQNXAYcFBH3tlTZNEHSVGBz4MfATSRng+wOXJxO3wqYCdyQvuUG4MuSZsRLd3/dA1hMcrnzmiJiObA8My4A3d3ddHd3rzZ/V1dyKMvyF4JlLwT9/f10dXWtMm9XVxf9/f30DLzY1PTq+Za9kGx5qp633unLh5hexFhDTW9mrMrnPBpj5bVclZhrrRujGUutNjOzojRUYETEgKTXFBVMNUnfBi4h2SqxIXAc8CLwk4hYJOks4CRJC0mKhu8CN0RyBgnAFSSFxI8lHUFy3MUJwBlpEWFmZmYFaOYskvNJTg8dDRsDPyE5yPOnwNPAjhHxVDr9UOA3JFswfk9yvYsPVt4cES8Ce5EUJTeksZ8HHD1K8ZuZmY1LzZxFMhHYX9I7SXZTPJ+dGBGH5RFY2tfHRpi+DDg4fQw1z3zg3XnFZGZmZiNrpsDYFrg5ff6qqmnlOSXFzMzMCtPMlTx3KyIQMzMz6xxNX8lT0haSZknqSV8rv7DMzMyszBouMCStK+kq4G/A70iusAlwlqTv5BmcmZmZlVMzWzBOJrn+xExgaab9ImB2HkGZmZlZuTVzkOeewKyIeKRqr8i9wCa5RGVmZmal1swWjJex6paLiulkrn5pZmZm41czBcYfgE9mXoekLuAI4JpcojIzM7NSa2YXyRHAVZLeAKwBfBPYhmQLxi45xmZmZmYl1fAWjIi4g+QCW9cBvyLZZfILkruT3pdveGZmZlZGzWzBICIWAf+VcyxmZmbWIZoqMCStQ3LDs63TpruAsyNiYV6BmZmZWXk1c6GttwEPAp8H1kkfnwceSKeZmZnZONfMFowzSC6q9Zn0duhImgB8L522XX7hmZmZWRk1c5rqFsB3KsUFQPr8pHSamZmZjXPNFBg389KxF1lbA7e2Fo6ZmZl1grp2kUh6TeblacCpkrYA/pS27QgcDHwx3/DMzMysjOo9BuMWIIDszUe+WWO+OSTHZ5iZmdk4Vm+BsVmhUZiZmVlHqavAiIj5RQdiZmZmnaPZC21tCLwFmEHVgaIRcVoOcZmZmVmJNVxgSNoP+B9gBfA0ybEZFUFyEKiZmZmNY81swfgacDzw9YgYzDkeMzMz6wDNXAdjCnChiwszMzMbSjMFxlnAR/IOxMzMzDpHM7tIvgT8RtJs4HZgIDsxIg7LIzAzMzMrr2YLjFnAPenr6oM8zczMbJxrpsA4HNg/Is7JORYzMzPrEM0cg7Ec+GPegZiZmVnnaKbAOBX4XN6BmJmZWedoZhfJm4B3SNoLuJPVD/L8YB6BmZmZWXk1U2A8C/wi5zjMzMysgzRcYETEp4oIxMzMzDpHM8dgmJmZmQ2rmZudPcAw17uIiH9oKSIzMzMrvWaOwTil6nU38DpgNvCtVgMyMzOz8mvmGIxTa7VLOhh4Q8sRmZmZWenleQzGpcCHcuzPzMzMSirPAuPDwMIc+zMzM7OSauYgz7+w6kGeAjYAXg78e05xmZmZWYk1c5Bnb9XrQeAp4NqIuLvliMzMzKz0mjnI87giAjEzM7POMa4utCXpYEkPSlomaa6kN7U7JjMzs05Ud4EhaVDSiyM8Xigy2FZI2hs4CTgOeD1wK3C5pBltDczMzKwDNbKL5APDTNsJ+Dxje4vIYcAPI+JsAEkHAe8B9gdObGdgZmZmnabuAiMiflXdJmkrkn/O7wUuAI7OL7T8SFoD2AH4eqUtIgYlXUlSHFXPPwmYlGlaE2DhwoUMDAxUz87ixYtZunQpWjgfDbzI5MmTuemmm1i8eDFdXV0MDg5y7733MnnyZCYseaKp6QBdXV3cc889TJ48GT39AMBq89Y9feF8li59+eiMNcT0wcHB1ZZ/pL4qn3MRYz333HMtTR9qrKlTp662brQ61nDTFy9ezNNPP73aerpkyZJafx5mZoVQxJC3FRn6TdKGJLsa9gUuB74UEXfkHFtu0ngfBXaOiBsy7d8E3h4Rb66a/1jgmFEN0mz0bBwRj7Y7CDPrbA2dRSJpLeAo4HPALcDuEfGHAuJqt6+THK+RNZ2hLyS2JvAIsDFQlq+Jjnl0jLWY1wQWtDsIM+t8dRcYko4AjgQeB/651i6TMawPeBFYv6p9fZLlWUVELAeWVzUvHqpzSZWnSyJiyPnGEsc8OsZgzGMhBjMbBxrZgnEi0A/8HdhX0r61ZoqID+YRWJ4iYoWkm4DdSS8UJqkrfX16G0MzMzPrSI0UGOex6iXCy+Yk4FxJNwJ/Bg4BXgac3c6gzMzMOlEjZ5HsV2AchYuIiyS9HDie5N4ptwCzI+KJHLpfTnLQa/VulbHMMY+OMsZsZtayps4iMTMzMxvOWL4wlpmZmZWUCwwzMzPLnQsMMzMzy50LDDMzM8udC4wclOk28JKOlRRVj7vbHVeWpLdJukTSgjS+91dNl6TjJT0mqV/SlZK2bFO4lZhGivmcGp/7ZW0K18yscC4wWlTS28DfCbwi83hLe8NZzctIPseDh5h+BMndew8C3gw8T/KZTx6d8GoaKWaAy1j1c//nUYjLzKwtGroXidVUxtvAvxARq10ifayIiEuBS2GVS22TvhbJRdJOqFyuXtIngSeA9wMXjmKoKw0Xc8bysfy5m5nlyVswWpC5DfyVlbaIGExfr3Yb+DFky3RT/v2SLpA0s90BNWAzkgulZT/zRcBcxvZnDrCrpCcl3SPp+5LWbXdAZmZFcYHRmvWACSTfnrOeIPknOBbNBfYDZgOfIfmH/QdJa7YzqAZUPtcyfeaQ7B75JMn9b44E3g5cKmlCW6MyMyuId5GMM+mm/IrbJM0F5gMfBc5qT1SdLyKyu25ul3QbcB+wK3BVW4IyMyuQt2C0pqHbwI9FEfEs8DdgizaHUq/K51razxwgIu4nWX/K8rmbmTXEBUYLImIFULkNPLDKbeBvaFdcjZA0FdgceKzdsdTpAZJCIvuZTyM5m6QUnzmApI2BdSnP525m1hDvImldqW4DL+nbwCUku0U2JDm99kXgJ+2MKysterLf7DeTtD2wMCIeknQK8BVJ95IUHF8DFgC9oxzqSsPFnD6OAS4mKY42B74J/B24fHQjNTMbHS4wWlTwbeCLsDFJMbEu8BRwHbBjRDzV1qhW9Qbgmszrk9Kf55IcoPpNkiLuTGBtkmWYHRHLRi/E1QwX82eA1wD7ksS7ALgC+GpE+DbuZtaRfLt2MzMzy52PwTAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucAwMzOz3LnAMDMzs9y5wDAzM7PcucCwMUHSg5IOaXccZmaWDxcYZmZmljsXGGZmZpY7FxjWMkn/JmlBeifZbPuvJP1I0ubp8yckPSdpnqR3DtPfppIivVlYpW3ttG3XTNu2ki5N+3xC0o8lrVfAIpqZWYNcYFgefkZy87TdKg2SpgOzgQuAqcDvSG6x/jrgMuASSTObHVDS2sDVwF9IbjQ2G1gf+GmzfZqZWX58N1VrWUQ8I+lSYB/gqrT5w0AfcE1EDAK3Zt7yVUkfAN4HnN7ksJ8F/hIRR1UaJO0PPCzpVRHxtyb7NTOzHHgLhuXlAuBDkialrz8OXBgRg5KmSvq2pL9KelbSc8DWQNNbMIDXArulu0eeS/u8O522eQv9mplZDrwFw/JyCSDgPZLmAW8FDk2nfRvYA/gC8HegH/g5sMYQfQ2mP5Vp666aZ2o65pE13v9Yo8GbmVm+XGBYLiJimaRfkGy52AK4JyJuTifvApwTEb8EkDQV2HSY7p5Kf76C5BgLgO2r5rkZ+BDwYES80PICmJlZrryLxPJ0AfAeYP/0ecW9wAclbS/ptcAchln3IqIf+BPwRUlbS3o7cELVbGcA04GfSHpjeqbKLElnS5qQ4zKZmVkTXGBYnq4GFgJbkRQRFYcBzwDXk+zWuJxkC8Rw9ifZwnYTcArwlezEiFhAsmVkAnAFcHs637O8tIvFzMzaRBHR7hjMzMysw3gLhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5c4FhpmZmeXOBYaZmZnlzgWGmZmZ5e7/A1cYIVn9G7g9AAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABXTklEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCFdAwIDgAigimBA2rxvqV/0hgnpRUCF4WbyKiCiLyqLg9YqsXkCuoqBizAJiUAJKCAiyCBiWhBCWAAGzTTKf3x+nGmo6PUvX1ExP97yfj0c/evrU6epP1/R85tNVp04pIjAzMzMrQ1ujAzAzM7PW4cLCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIGhaSTJQ3KNK+SbpR0Y+7xXpJC0ocG6fUvkfTwYLxW1etukb3PQwf7tYcLSetIOlPSY5I6JV3T6JjMhhoXFlY3SYdm/8AqtxWSHpc0XdIXJY0t6XU2ywqSncpYX5mGcmw2oA4D/hP4BfBJ4OzGhlMeSdtmRdMdkl6QtEjSdZJ2bXRs1lzWaXQA1tROAuYD7cCmwF7AOcBUSe+NiL/l+p4KnF7n+jcDvg48DNxRx/Mm1/k6RfQU22doTNH+CDAK6GjAaw8XewMLI+KYRgcyAD4NHA5cDfwQ2AD4D+AWSVMiYlYjg7Pm4cLC+mNaRNyWe3yapL2B3wK/lrRdRCwHiIjVwOqBDEbS6IhYFhGrBvJ1ehMRDfnHHumKgisa8dr9IWk9YFVEdDY6lj7YBHiurJVJagPWjYg+/d4kCViv8ndVsiuBkyPixdzrXQTcC5wMuLCwPvGhECtVRNwAfBPYHPhEpb3WGAtJkyT9SdJzkl6UdL+kb2fL9gL+mnW9OHfY5dBs+Y2S7pa0i6TZkpYB384tu7FGeCMkfVvSE5L+JenXkl5XFdPDki6pfmJ+nX2Iba0xFpLWl/S97Nj8yuy9fjn7R5HvF5LOk/S+7P2tlPR3SVNqvJ/qGNcaY5HF8qKk10i6Jvv5KUnflTSiD+t8WNJvJU3OdpGvkHSPpA9U9ds4W+dd2WsslTRN0sSqfpXxLh+VdKqkhcAyYFyBdXxY0tclLcx23f9C0gaSRko6R9KT2XouljSyah3dfvZ62rbAu4Htc7/zvbLl9f5+Py7p78BKoNvfbW777yvpNmA5aS8Ckj4l6Ybsfa7Mfi+f62Ed75D0l+x3+E9Jh+T7RcTcfFGRtT0D3ARs112MZtW8x8IGwk9J/+QnAxfU6iBpe9Kejb+RDqmsBLYG9si63Ju1nwL8mJTcAG7OreYVwDTgZ8D/Aot7ieu/gADOIH3zPBqYJWmnOr8B9iW2l2T/XH5N+qd0IenQyb7Ad4DXANW71d8BfIC0O/oF4IvA1ZImZIm+XiOA6cCtwJeB9wDHAg8B/92H5/8bcBXwI+BS4FPAz5V2j8/M+rweeB/wc9LhsfGkf4B/lPTGiHi8ap1fA1YB3wVGZj+/sc51nEj6R3s66bPzBdJhoE5gI9K37LcDh2brOwX69Nmr5Sng/yN9hsZkrw1wb4Hf797Ah4HzgKdJh9N6sg1pb8L/kP6e7s/aPwf8PXvt1cBBwA8ltUXE+VXr2Jo0LuRC0u/wMOASSXMj4u+9vP6mWZxmfRMRvvlW142UqAPYtYc+zwG35x6fTLa3Pnt8dLaOV/awjl2zPofWWHZjtuw/ull2Y+7xXlnfBcDYXPvBWfsXc20PA5f0YZ09xXYJ8HDu8b9nff+rqt/PSf8Et8q1BekfXb7tTVn7Ub38XraojimLJYCvVfW9HbitD7/rh7PnfyDXNg54vOr3OxJoqxHPivxr534XDwGjqvrXu467gPZc+xXZ9vxd1Tpurvp99PrZ62F73AjcXdVW7+93DfDGPr5eZfvvW2PZqBptvwce6mYd78y1vSrbrt/t5fXfmb2HU+rdVr4N35sPhdhAeRHo6eyQ57L7f1c6zlzESuDiOvpfFhEv5B7/AlgE7F/w9ftqf9I/k+9XtX8PELBfVfusiHio8iDSINilpL0CRf2o6vFNdazvceBXuXiWApcBO0vaNGtbGdkYCUkjJL2C9Bm4H3hzjXVeGlV7iQqs47LoOp7lVtL2vKiq363A6yRV9tA+l93357OXV+/v948RcU8d658fEdOrG/PbLzsE9Ergj8DrJW1Q1f2eiLgp99ynSNu128+ApE1Ixdp84Mw64rVhzoWFDZQxpN343bkK+DPwE2CxpJ9lx8zr+UwujPoGaj6QfxARATxI+lY8kDYHHq8qaiAdUqksz3u0xjqeJe3eL2JF9o+k6PoezLZV3j+y+y0gDUKUdIykB0gF39OkwwdvIp1dUG1+dUOBdVRvp+ez+8dqtLfl1lHGZy+v3t/vWu+9FzX7S9pD0ixJ/yIVS0+RjTNi7e1V12dK0vqkw0VjgX+PqrEXZj1xYWGlk/RaUmJ7sLs+2betPUnH+39K+udxFTBTfRhUmBmIkfHdTeLV15jKsKabdnXTXnR9ZfoKcBYwmzRod19gEmkMQK08U+t3V+86untfPW6/kj57/VHv53at/pK2Aq4HXglMBQ4gbavKvBrV26vPnylJ6wK/JG2Xf4+Iu+uM14Y5D960gfD/Zfdr7b7Ny3Z7X5/dpkr6CvAt0iC4WXT/T76of8s/yAbdbU0axFfxLLBhjeduDvwz97ie2B4B3iNpbNW32m1zy4eyrSWpaq/FG7L7h7P7DwF/iIjD80+UtCF9H/hXxjr6pA+fvXo04vd7EGlMynsj4qW9EZLe3Z+VZnttLgP2AT4cEX/sV5Q2LHmPhZVKaR6Lr5F2317eQ7+NazTfkd1XTg38V3a/YUnhHaKus4J+CHg16cySioeAt2ff2gCQdCDQ5bTUOmP7HWmPx1FV7ceQCpRpaz1jaNkMeH/lgaRxwCHAHRHxRNa8hqpvv5IOJp0V0VdlrKNXffzs1aMRv9/KHoiXtlc2ruJT/VzvD4CPAJ+PiF/2c102THmPhfXHfpK2JX2OxpNOo5tE+ob23uh50p+TJO0JXJf13wT4POnMjT9lfR4iHTs+QtILpH/mt0ZEvceoK5YAf5J0cRbv0aTDNflTYn9CKjh+L+n/gK1Iu+Uf6rqqumL7DfAH4FuStgDuJJ2K++/AOfmBmkPUP4ALJb2FdErvYaTtl/8n9lvS7/Ri0lkYOwIfp+tent6UsY6+6Mtnrx6N+P3OIJ2i+xtJ/0Ma0/QZ4ElSsVw3SUeTtsMcYJmkT1R1+VVE/GutJ5pVcWFh/XFKdr+K9E/7LtI/64trDGSr9mvSwL/DSMeJnyaNaP96RDwPaQZLSZ8ETiOd1bAO6Z9Z0cLi26TjxieSBqVdT/pmtqzSISKmSzqWdNz6HOA24EDSCH9y/focW0R0SnovaXt9JOv3MOmaE9+r7j8EPUCaI+I7pDkV5gMfqTpT4dvA+sDHSO/xdtJx/3qmcS9jHX3R62evHo34/UbE/UoX1TuVNBfIE6Q5SZ5i7bNi+mqn7H637FZtS17eU2fWLa092NvMLFGaQfTuiDiw0bGYWXPwGAszMzMrjQsLMzMzK40LCzMzMyuNx1iYmZlZabzHwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsIKk3SopJC0RS/9HpZ0yeBEZWbNxHmk9biwMDMz64GkfSRdJOkfkpZJ+qekn0h6daNjG4oUEY2OwZqUpBFAO7AyevggSXoYuDEiDh2k0MysSTRDHpF0G7Ax8HPgAeD1wFHAMmCniHhisGMaytZpdADWvCJiDbCm0XGYWfNqkjwyFfhTRHRWGiT9HvgjqcD4aqMCG4p8KMQKqz42quSrkhZkuwv/IGn7Gs87WdJa30xqHWvNjqv+VtJekm6TtFzSXZL2ypZ/IHu8QtJcSTsP1Ps1s/I1Qx6JiNn5oqLSBiwBtuv/VmgtLiysTKcA3wTuBP4T+CcwA1i/n+vdGrgC+A1wIrAR8BtJHwfOBv4X+DqwFfB/kvy5NmteTZFHJI0BxgBP9zOuluNDIVYKSa8CjgOuAw6qHCuV9C3gK/1c/TbA7hExJ1vnPcB04AJg24h4NGt/FvgfYE/gxn6+ppkNsibLI0cD6wJX9TOuluNvdlaW95D+yH5QNQDrnBLWfU8lGWRuze5vqCSDqvbXl/CaZjb4miKPSNqTtHfj/yLihhJiaykuLKwsm2f3D+QbI+Ip4Nl+rjv/R09EPJ/9+FhVv0r7Rv18PTNrjCGfRyRtC/wKuBv4dD9jakkuLKwRujulbEQ37d2NGO+uXfWFY2ZNaNDziKTXkcZ7PA/sHxEv9BjhMOXCwsrySHb/b/nG7JhpdeX/bLZsw6r2zTGz4WzI5hFJryAVFSOBfSNi0UC8TitwYWFlmQV0AF+QlK/0j67R96Hsfs9Kg6T1gU8OWHRm1gyGZB7J1vs74DWkPRUP9PKUYc1nhVgpIuIpSd8lncb1W0m/A3YG9mPt07FmkI53XijpO6RdkYcBTwETBi9qMxtKhnAeuRx4K3ARsJ2k/NwVL0bENSW/XlNzYWFl+iqwAjgCeDdpdPVk0qljL4mIDknvB35IOl/9CdKo72eBiwcxXjMbeoZiHtkpuz8su+U9AlxT8us1NV8rxMzMzErjMRZmZmZWGhcWZmZmVhoXFmZmZlYaFxZmZmZWmroLC0lTJL0j9/hISXdIukKSp1I2s0KcW8xaQ5E9Ft8BxgFI2hH4HmnikC2Bs8oLzcyGGecWsxZQZB6LLYF7sp8/CPw2Ir4i6c2kJDAsZbPEbQZ47nhrhLHA49Hc5487t9Tg3GINVnduKVJYrAJGZz+/B7gs+3kJ2beNYWozYEGjg7Bh7bXAwkYH0Q/OLbU5t1ij1ZVbihQWfwLOkvRn0hSnH8na38Dw/vC/APDYY48xblzXHNjR0cGMGTOYPHky7e3tDQluKPP26V1P22jp0qW87nWvg+b/RuvcUlu3uQX899Mbb5+eDURuKVJYHEWaQvVDwOciolLF7Af8vsD6Wsq4ceNqFhajR49m3Lhx/mDX4O3Tu2GyjZxbelArt8Cw+WwU5u3Ts4HYPnUXFhHxKHBgjfZjSonIzIYl5xaz1lDoImSS2oCtgU2oOrMkImaXEJeZDUPOLWbNr+7CQtLbgSuAzQFVLQ5gRAlxmdkw49xi1hqK7LH4EXAbcACwiPQHb9Zvd955J21tbbzyla9kwoQJjQ7HBp9ziw2YO++8k0022cS5ZRAUKSz+DfhQRDxYdjA2PC1YkAb877nnnixfvpz1Ro3m/vvudQIYfpxbrHT5/BLIuWUQFJl581bSMdBSSTpBUkg6J9e2nqTzJT0j6UVJV0saX/W8CZKuk7RM0pOSviNpnao+e0m6XdJKSQ9KOrTG6x8p6WFJKyTdKumtZb9Hq+2ZZ54BYOMpX+AVBx7LiuXLePrppxsclTXAgOQWcH4Zzir5ZdxbP+DcMkiK7LH4AfA9SZsCdwEd+YUR8bd6VyjpLcB/ANXPPZu0W/Rg4HngPOCXwB7Z80YA1wFPALsDryZNqtMBfCXrs2XW50fAx4F9gJ9IWhQR07M+HyFNGXwEKbkdDUyXtE1EPFnv+7Fi2jd+DWtWe+/3MFZ6bgHnF0tGjHtVo0MYNooUFldn9xfl2oI02KruAVaSxgCXA58Bvppr3wA4HPhYRNyQtX0KuFfS2yPiFmAy8EbgPRGxGLhD0teAMySdHBGrSH/M8yPi2GzV92YXOjoGmJ61TQUuiIiLs9c5gpRwDgNOr+f9mFlhpeYWcH4xa4Si1wop0/nAdRExS9JXc+27AO3ArEpDRNwn6VFgN+CW7P6u7I++Yjrw38D2wLyszyy6mg6cAyBp3ey1Tsu9TqekWdlza5I0EhiZaxoLabKRjo4uX7ReelzdbklnZycAI9dJJwKMGjWKzs5Ob6+cnj5DLbSdys4t0IT5pZ7cUmnP31tXlfyyXvsI55YaBiK3FJkg65FCr1SDpI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSN+EavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZQOqDrqShQsXsnBhM1/2YmDU+gwtW7asAZGUr8zcAk2dX+rOLeD80puzDnknHPJO55ZulJlbik6QtRXpOOF2WdM9wLkR8VAd63gdcC4wKSJWFImjwU6j66WcxwILJk+eXHNK75kzZzJp0iRPKVvDvHnzWLRoEcdPe5SVq4PFV5zA7NmzmThxYqNDGzJ6+gwtXbq0QVGVr4zckq2nmfNLn3MLOL/0ppJfpl52E4um/dC5pcpA5JYiE2TtC/wauAP4c9a8B/B3SQdFRF/L5l1Is+vdnq4KDKTKfk9JRwH7AutK2rDqW8V40mAqsvvq0dXjc8sq9+Nr9FkaEcslrQHWdNPnCboRESuBlZXHlffQ3t7e7R93T8uGs7a2dHLSytXBitXB8uXLaWtr87aqodZnqFW2U4m5BZo4vxTJLX1ZPlxV8suKjjXOLT0oM7cUOd30dODsiHhbREzNbm8jHVM8o471XA/sCOyUu91GGmhV+bmDNMoaAEnbABOAOVnTHGBHSZvk1jsJWEr6plPpsw9dTaqsIxuANbfqddqyx3Mws8FSVm4B5xezhilyKGQ74MM12i8i7cLsk4h4Abg73ybpX8AzEXF39vhC0mWUl5D+mH8AzMlGbAPMIP2B/1TScaTjnacC52dVP6TTwI6SdGYW495Z/AfkXvos4FJJtwF/yd7H+sDFfX0/ZtZvpeQWcH4xa6QihcVTpIr/gar2nYCyz8k+BugknYY2kjTa+vOVhRGxRtKBpFHac4B/AZcCJ+X6zJd0AOmc9S8BC4BPV84xz/pcJelVwCmk5HEHMKVqNLiZDazBzC3g/GI2IIoUFhcAP5b0euDmrG0P4Hi6DjiqW0TsVfV4BXBkduvuOY8A+/ey3huBnXvpcx5pghwza4wByy3g/GI2WIoUFt8EXgCO5eVzsx8HTga+X05YZjYMObeYtYAi81gEabff2ZLGZm0vlB2YmQ0vzi1mraHQPBYV/qM3s4Hg3GLWvPpUWEi6HdgnIp6VNI80b39NEfHmsoIzs9bm3GLWevq6x+JaXp6w5Vp6+OM3M6uDc4tZi+lTYRER38j9fPKARWNmw4pzi1nrqXvmTUn/lPSKGu0bSvpnOWGZ2XDj3GLWGopM6b0Fac79aiOB1/YrGjMbzrbAucWs6fX5rBBJ78093FfS87nHI0hz388vKzAzGx6cW8xaSz2nm16T3QdpWtu8DuBh0sQ2Zmb1uCa7d24xawF9Liwiog1A0nzgLRHx9IBFZWbDhnOLWWspMvPmlgMRiJkNb84tZq2hrxNkfRH4cUSsyH7uVkR4Tn8z6xPnFrPW09c9FscAlwMrsp+7E/hiQWbWd84tZi2mrxNkbVnrZzOz/nBuMWs9RSbIOknS6BrtoySdVE5YZjbcOLeYtYYiE2R9HRhTo310tszMrAjnFrMWUKSwELUvFDQRWNK/cMxsGHNuMWsB9cy8+Szpjz6Af0jKJ4ARpG8aPyo3PDNrdc4tZq2lnnksjiZ9o7iItFsyP+3uKuDhiJhTXmhmNkwcjXOLWcuoZ+bNS+Gl2fH+HBGrBywqMxs2nFvMWkvdYywi4o/A5pJOlXSlpE0AJO0nafvSIzSzYcG5xaw1FDnd9F3AXcDbgA/w8ijuicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXsysf5xbzFpDkbNCTge+GhGTSMc/K24A3l7nuhYAJwC7ALtm67g29+3kbOAg4GDgXcBmwC8rT5Y0ArgOWBfYHfgkcChwSq7PllmfPwA7AecAP5G0b67PR4CzSMnrzcCdwPTKNyYzGxTOLWYtoEhhsSPwqxrtTwKvrGdFEfGbiPhdRDwQEf+IiP8CXgTeLmkD4HBgakTcEBFzgU8Bu0uqJJnJwBuBT0TEHRExDfgacKSkdbM+RwDzI+LYiLg3Is4DfkHX6YOnAhdExMURcU/2nGXAYfW8HzPrF+cWsxZQ99VNgeeAVwPzq9p3BhYWDST7hnAwsD4wh/RNox2YVekTEfdJehTYDbglu78rIhbnVjUd+G9ge2Be1mcWXU0nfbsgSxK7AKflXqdT0qzsud3FOxIYmWsaC9DR0UFHR0eXvpXH1e2WdHZ2AjByHQEwatQoOjs7vb1yevoMtdB2eg7nlrpyS6U9f29dVfLLeu0jnFtqGIjcUqSw+BlwhqSDSeedt0naA/gucFm9K5O0I+mPfT3SN4r3R8Q9knYCVkXEc1VPWQxsmv28afa4ejl96DNO0ihgI9K58rX6bNtD6CdSYzbAGTNmMHr0WrMSAzBz5sweVmdn7Dch/XDQlSxcuJCFCwv/L2lZtT5Dy5Yta0AkA8K5Jak7t4DzS2/OOuSdcMg7nVu6UWZuKVJYfAU4H3iM9EdzT3Z/BXBqgfXdTzo+uQHwIeDSbBDXUHca6dhpxVhgweTJkxk3blyXjh0dHcycOZNJkybR3t4+mDE2hXnz5rFo0SKOn/YoK1cHi684gdmzZzNx4sRGhzZk9PQZWrp0aYOiKp1zS9Ln3ALOL72p5Jepl93Eomk/dG6pMhC5pe7CIiJWAZ+R9E1gB9LI7XkR8UCRALL1PZg9nCvpLcCXgKuAdSVtWPXNYjzwRPbzE0D1COvxuWWV+/E1+iyNiOWS1gBruunzBN2IiJXAyspjKe3Gb29v7/aPu6dlw1lbWxrqs3J1sGJ1sHz5ctra2rytaqj1GWqV7eTc8lLcdeeWviwfrir5ZUXHGueWHpSZW4oM3gQgIh4FpgE/L/qH34020vHFuUAHsE9lgaRtgAmk3Ztk9ztWjbCeBCwlfdup9NmHriZV1pEln7lVr9OWPfZsf2aDzLnFrLkVKiwkHS7pbmAFsELS3ZI+XWA9p0naU9IWknaUdBqwF3B5RDwPXAicJendknYBLgbmRMQt2SpmkP7IfyppYnaa16nA+VnVD+kaA6+XdKakbSV9Hvgw6XSzirNI35Q+KWk70gCt9bPXM7NB4txi1vzqPhQi6RTSKVQ/4OWqezfgbEkTIuKkOla3CWlQ1qtJ1wf4G7BvRFRGkRwDdAJXk75pTAc+X3lyRKyRdCDpj3UO8C/gUuCkXJ/5kg4g/bF/iXR++6cjYnquz1WSXkU6R31T4A5gStWIcDMbQM4tZq2hyODNzwGfiYgrc22/lvQ3UkLo8x9/RBzey/IVwJHZrbs+jwD797KeG0mnrPXU5zzgvJ76mNmAcm4xawFFDoW0A7fVaJ9LsULFzAycW8xaQpHC4qekbxbVPgtc3r9wzGwYc24xawFFvwUcLmkyaYY6SBcNmgBcJuml868jYmo/4zOz4cW5xazJFSksdgBuz37eKrt/OrvtkOsX/YjLzIYf5xazFlBkgqx3D0QgZja8ObeYtYbCE2RJ2lrSvtmc+KgyPZyZWT84t5g1t7oLC0mvkHQ98A/gd6TzxAEulPS9MoMzs+HDucWsNRTZY3E2aTrcCUD+0mdXAVPKCMrMhiXnFrMWUGTw5mTSDHYLqvZQPgBsXkpUZjYcObeYtYAieyzWp+u3iYqNyV2Rz8ysTs4tZi2gSGFxE3BI7nFkV+w7DvhDKVGZ2XDk3GLWAoocCjkOuF7SrsC6wJnA9qRvFXuUGJuZDS/OLWYtoO49FhFxN/AG4E/AtaTdl78Edo6Ih8oNz8yGC+cWs9ZQ1x4LSe3A74EjIuJbAxOSmQ03zi1mraOuPRYR0QG8aYBiMbNhyrnFrHUUGbz5v8DhZQdiZsOec4tZCygyeHMd4DBJ7wHmAv/KL/RVB82sIOcWsxbQ36ubvqFqma86aGZFObeYtQBf3dTMhgTnFrPWUPjqpmZmZmbVXFiYmZlZaRpaWEg6UdJfJb0g6UlJ10japqrPepLOl/SMpBclXS1pfFWfCZKuk7QsW893JK1T1WcvSbdLWinpQUmH1ojnSEkPS1oh6VZJbx2QN25mA8q5xaxxGr3H4l3A+cDbgUlAOzBD0vq5PmcDBwEHZ/03I83GB4CkEcB1pCmAdwc+CRwKnJLrs2XW5w/ATsA5wE8k7Zvr8xHgLOAbwJuBO4HpkjYp7+2a2SBxbjFrkD4VFlk1vlH280mSRpfx4hExJSIuiYi/R8SdpD/aCcAu2WttQDqvfWpE3BARc4FPAbtLenu2msnAG4FPRMQdETEN+BpwpKR1sz5HAPMj4tiIuDcizgN+ARyTC2cqcEFEXBwR92TPWQYcVsZ7NbO1ObeYtZ6+nhWyHWne/meBrwM/ovbljftrg+x+SXa/C+mbxqxKh4i4T9KjwG7ALdn9XRGxOLee6cB/ky5gNC/rM4uuppO+XZAliV2A03Kv0ylpVvbctUgaCYzMNY0F6OjooKOjo0vfyuPqdks6OzsBGLmOABg1ahSdnZ3eXjk9fYaafDs5t1SpJ7dU2vP31lUlv6zXPsK5pYaByC19LSzuAC6W9CdAwJclvVirY0ScUqu9N9nlkc8B/pxdjAhgU2BVRDxX1X1xtqzSZ3GN5fShzzhJo4CNgBHd9Nm2m5BPJCXCLmbMmMHo0bW/dM2cObObVRnAGftNSD8cdCULFy5k4cKFjQ1oCKr1GVq2bCD+Dw+aO3BuqVZ3bgHnl96cdcg74ZB3Ord0o8zc0tfC4lDS8cEDSRPV7AesrtEvyB1/rNP5pAly3lHw+YPtNNJx04qxwILJkyczbty4Lh07OjqYOXMmkyZNor29fTBjbArz5s1j0aJFHD/tUVauDhZfcQKzZ89m4sSJjQ5tyOjpM7R06dIGRVWKQ3Fuqdbn3ALOL72p5Jepl93Eomk/dG6pMhC5pU+FRUTcD3wUQFInsE9EPFnoFWuQdB4psewZEQtyi54A1pW0YdU3i/HZskqf6hHW43PLKvfja/RZGhHLJa0B1nTT5wlqiIiVwMrcewCgvb292z/unpYNZ21taajPytXBitXB8uXLaWtr87aqodZnqJm3k3PL2orklr4sH64q+WVFxxrnlh6UmVvqPiskItrK+sNXch7wfmDviJhf1WUu0AHsk3vONqRBWHOypjnAjlUjrCcBS4F7cn32oatJlXVExKrstfKv05Y9noOZDTjnFrPWUORaIUjaCjiaNPAK0h/ZuRHxUJ2rOh/4GPDvwAuSKsctn4+I5RHxvKQLgbMkLSH9Qf8AmBMRt2R9Z2Sv/1NJx5GOeZ4KnJ9V/pAGhB0l6UzgImBv4MPAAblYzgIulXQb8Jfs/a0PXFznezKzgpxbzJpf3YVFdn72r0mDrv6cNe8B/F3SQRFRzwiiz2X3N1a1fwq4JPv5GKATuJo0Uno68PlKx4hYI+lA0kjtOaQrIl4KnJTrM1/SAaTz1r8ELAA+HRHTc32ukvQq0nHcTbP3N6VqRLiZDRDnFrPWUGSPxenA2RFxQr5R0unAGUCf//gjQn3oswI4Mrt11+cRYP9e1nMjsHMvfc4DzustJjMbEM4tZi2gyMyb2wEX1mi/iDSZjJlZEc4tZi2gSGHxFGnq2mo7AaWN5jazYce5xawFFDkUcgHwY0mvB27O2vYAjqfruddmZvVwbjFrAUUKi28CLwDH8vI0tY8DJwPfLycsMxuGnFvMWkDdhUVEBGkE9NmSxmZtL5QdmJkNL84tZq2h0DwWFf6jN7OB4Nxi1ryKDN40MzMzq8mFhZmZmZXGhYWZmZmVpq7CQlK7pOsl/dtABWRmw49zi1nrqKuwiIgO4E0DFIuZDVPOLWato8ihkP8FDi87EDMb9pxbzFpAkdNN1wEOk/QeYC7pin8viYipZQRmZsOOc4tZCyhSWOwA3J79/IaqZdG/cMxsGHNuMWsBRWbefPdABGJmw5tzi1lrKHy6qaStJe0raVT2WOWFZWbDlXOLWXOru7CQ9ApJ1wP/AH4HvDpbdKGk75UZnJkNH84tZq2hyB6Ls4EOYAKwLNd+FTCljKDMbFhybjFrAUUGb04G9o2IBVV7KB8ANi8lKjMbjpxbzFpAkT0W69P120TFxsDK/oVjZsOYc4tZCyhSWNwEHJJ7HJLagOOAP5QSlZkNR84tZi2gyKGQ44DrJe0KrAucCWxP+laxR4mxmdnw4txi1gLq3mMREXeTJq/5E3AtafflL4GdI+KhetYlaU9Jv5H0uKSQ9L6q5ZJ0iqRFkpZLmlV9kSJJG0u6XNJSSc9JulDSmKo+b5J0k6QVkh6TdFyNWA6WdF/W5y5J+9fzXsysf5xbzFpDoXksIuL5iPhWRHw4IvaPiK9GxKICq1ofuBM4spvlxwFfBI4A3kaa4ne6pPVyfS4nfauZBBwI7An8uLJQ0jhgBvAIsAvwn8DJkj6b67M7cCVwIbAzcA1wjaQdCrwnMyvIucWs+RU5FIKkjUgXC9oua7oHuDgiltSznoiYBkzL1ln9GgKOBk6NiGuztkOAxcD7gJ9J2o50GtpbIuK2rM8XgN9J+nJEPA58nLRb9bCIWAX8XdJOwFReThJfAn4fEd/JHn9N0iTgKFLiMbNB4Nxi1vzqLiwk7Qn8BngeuC1r/iJwkqSDImJ2SbFtCWwKzKo0RMTzkm4FdgN+lt0/V/nDz8wCOknfQn6V9Zmd/eFXTAeOl7RRRDyb9Tmr6vWnk5JMTZJGAiNzTWMBOjo66Ojo6NK38ri63ZLOzk4ARq6T/gGMGjWKzs5Ob6+cnj5DrbKdnFuSenJLpT1/b11V8st67SOcW2oYiNxSZI/F+aQJaz4XEWsAJI0Afpgt27FQJGvbNLtfXNW+OLdsU+DJ/MKIWC1pSVWf+TXWUVn2bHbf0+vUciLw9erGGTNmMHr06JpPmDlzZg+rszP2m5B+OOhKFi5cyMKFCxsb0BBU6zO0bFmtMzSbknNLUnduAeeX3px1yDvhkHc6t3SjzNxSpLDYGvhQ5Q8fICLWSDqLrqeKtbrT6PpNZCywYPLkyYwbN65Lx46ODmbOnMmkSZNob28fzBibwrx581i0aBHHT3uUlauDxVecwOzZs5k4cWKjQxsyevoMLV26tEFRlc65JelzbgHnl95U8svUy25i0bQfOrdUGYjcUqSwuJ10/PP+qvbtSIOlyvJEdj8eyA/eGg/ckeuzSf5JktYhnZ72RK7P+Kp1j88t66nPE3QjIlaSm7Snchy3vb292z/unpYNZ21taQzxytXBitXB8uXLaWtr87aqodZnqIW2k3MLxXJLX5YPV5X8sqJjjXNLD8rMLX06KyQ7pepNkt4EfB84V9KXJb0ju32ZNM//2YWiqG0+6Y9vn1wc40jHN+dkTXOADSXtknve3qT3dWuuz56S8ltoEnB/dgy00mcfupqUex0zGwDOLWatp697LO4AAsgPrz6zRr8rSMdI+yQ7J3zrXNOW2ajqJRHxqKRzgK9KeoCUDL4JPE46ZYuIuFfS74ELJB0BtAPnAT/LRm1XYvo66QqJZwA7kEZqH5N73XOBP0o6FrgO+CiwK/BZzGwg3YFzi1lL6WthseUAvf6udJ2qt3Jc8VLgUFKCWZ906taGpIlzpkTEitxzPk76g7+eNGL7atJIcuCl0d6TSYO/5gJPA6dExI9zfW6W9DHgVODbpIsevS+bsMfMBo5zi1mL6VNhERGPDMSLR8SNdP2mUr08gJOyW3d9lgAf6+V1/ga8s5c+Pwd+3lMfMyuXc4tZ6yk6QdZmwDtIg5u6jNOIiO+XEJeZDUPOLWbNr8gEWYcC/wOsAp4hHR+tCNIALDOzuji3mLWGInssvgmcApwWEZ0lx2Nmw5dzi1kLKHIRstGkkdH+wzezMjm3mLWAIoXFhcDBZQdiZsOec4tZCyhyKORE4LeSpgB3AV2uUhIRU8sIzMyGHecWsxZQtLDYl5en3a0eYGVmVoRzi1kLKFJYHAscFhGXlByLmQ1vzi1mLaDIGIuVwJ/LDsTMhj3nFrMWUKSwOBf4QtmBmNmw59xi1gKKHAp5K7C3pAOBv7P2AKsPlBGYmQ07zi1mLaBIYfEc8MuS4zAzew7nFrOmV3dhERGfGohAzGx4c24xaw1FxliYmZmZ1VTkImTz6eGc8oh4fb8iMrNhybnFrDUUGWNxTtXjdmBnYArwnf4GZGbD1jlVj51bzJpQkTEW59Zql3QksGu/IzKzYcm5xaw1lDnGYhrwwRLXZ2YGzi1mTaXMwuJDwJIS12dmBs4tZk2lyODNeXQdYCVgU+BVwOdLisvMhhnnFrPWUGTw5jVVjzuBp4AbI+K+fkdkZsPVNVWPnVvMmlCRwZvfGIhAhopsoNh/kr4p3Ql8ISL+0tiozFqfc4tZa/AEWTmSPgKcBXwDeDPpj3+6pE0aGpiZNTXnFhtO+lxYSOqUtKaX2+qBDHYQTAUuiIiLI+Ie4AhgGXBYY8Mya13OLWatpZ5DIe/vYdluwBdp4j0gktYFdgFOq7RFRKekWaT3V91/JDAy1zQWYMmSJXR0dLkoIx0dHSxbtoybbrqJtrY22tra6OzsfOkeWKutp2Wt1v/+++9nzJgxaMkjqGMN6623HnPnzuXFF18sLZ6hvg16W9bZ2cmyZct45plnaG9v7/L5euGFF6o/ns3GuaVr/z7nFuiaX9ZZZ52Gf1aHWv8HHniAMWPGMOLFxX3KLY2Iv5HbbEByS0QUvgHbAL8CVgOXApv3Z32NvAGbkUak71bVfiZwa43+J2f9ffNtqNxe0+i/oxL/Hp1bfPNt6Nzqyi1FzgpB0makY4WfBKYDO0XE3UXW1cROIx0zzduY2ufbjwUWAK8Fmv7r5QDw9uldb9toLPD4oEY0AJxbgPpyC/jvpzfePj0rPbfUVVhI2gD4CvAF4A5gn4i4qZ51DGFPA2uA8VXt44EnqjtHxEpgZVXz0lorllT58YWIqNlnOPP26V0ftlFTbzfnlpfVk1vAfz+98fbp2UDklnoGbx4H/BM4EPh/EbF7C/3hExGrgLnAPpU2SW3Z4zmNisus1Tm3mLUWZcf0eu8odQLLgVmk6rumiPhAOaENvuyUsEuB/wD+AhwNfBjYNiIW92O944DngQ1cMa/N26d3rbyNnFuK55Zs3S372SiDt0/PBmL71HMo5DLSII6WFRFXSXoVcAppEps7gCn9/cMn7db8Bmvv3rTE26d3rbyNnFv6p5U/G2Xw9ulZ6dunz3sszMzMzHrTtOeGm5mZ2dDjwsLMzMxK48LCzMzMSuPCwszMzErjwmKASNpY0uWSlkp6TtKFksb08pwbJUXV7UeDFfNAknSkpIclrZB0q6S39tL/YEn3Zf3vkrT/YMXaKPVsI0mH1visrBjMeK0xnFvW5vzSs8HOLS4sBs7lwPbAJNLEP3sCP+7D8y4AXp27HTdQAQ6Wei8ZLWl34ErgQmBn4BrgGkk7DErADVDwstpL6fpZ2Xyg47Qhwbklx/mlZw3JLY2+QE8r3oDtSOfl75prmwJ0Apv18LwbgXMaHf8AbI9bgfNyj9uAhcAJ3fS/CvhtVdstwI8a/V6G0DY6FHiu0XH7NuifE+eWtd+b80u526ffucV7LAbGbqRfzG25tlmkP/639fLcj0t6WtLdkk6TNHrAohwEuUtGz6q0RURn9nitS0Zndsv3z0zvoX9TK7iNAMZIekTSY5KulbT9AIdqjefckuP80rNG5ZZCVze1Xm0KPJlviIjVkpZky7pzBfAI6UpybwLOIF0+ummnMgZeCYwAqmcYXAxs281zNu2mf0/brpkV2Ub3A4cBfwM2AL4M3Cxp+4hYMFCBWsM5t3Tl/NKzhuQWFxZ1kHQ6cHwv3bYruv6IyB8nvUvSIuB6SVtFxENF12utJyLmkLuAlaSbgXtJ16L4WqPismKcW2yoKCO3uLCoz/eAS3rp80/SpZC7DIyRtA6wMTUuk9yDW7P7rYFm/eOv65LRmSfq7N/simyjLiKiQ9I80mfFmo9zSzHOLz1rSG7xGIs6RMRTEXFfL7dVpGpvQ0m75J6+N2l731pz5bXtlN0vKucdDL4odsnoOfn+mUk99G9qBbdRF5JGADvSxJ+V4cy5pRjnl541LLc0esRqq96AacDtwFuBPYB/AFfklr8GuA94a/Z4K9Jupl2ALYD3kr5J/LHR76WEbfERYAXwSdLu3P8BngXGZ8svA07L9d8d6ACOJR0HPBlYBezQ6PcyhLbRScBk4PWkU8iuJF16/I2Nfi++Dfhnxbml6/Zwfil3+/Q7tzT8TbfqjbRr8grgBdK17i8CxuSWb0E6bWyv7PHrgD8Cz2QfggeAM4FxjX4vJW2Po0iDx1aSvlm9LbfsRuCSqv4HkwYRrQTuBvZv9HsYStsIODvX9wngOmDnRr8H3wblc+LcsvY2cX4pafuUkVt82XQzMzMrjcdYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFiYmZlZaVxYmJmZWWlcWJiZmVlpXFhYw0l6WNLRjY7DzFqLc0tjuLAwMzOz0riwMDMzs9K4sLB+kfRZSY9nl+LNt18r6SJJW2U/L5b0oqS/SnpPD+vbQlJI2inXtmHWtleubQdJ07J1Lpb0U0mvHIC3aGYN4NzSvFxYWH/9HHgF8O5Kg6SNgSnA5cAY4HfAPsDOwO+B30iaUPQFJW0I3ADMA3bNXms88H9F12lmQ45zS5Nap9EBWHOLiGclTQM+BlyfNX8IeBr4Q0R0AnfmnvI1Se8H3gucV/BljwLmRcRXKg2SDgMek/SGiPhHwfWa2RDh3NK8vMfCynA58EFJI7PHHwd+FhGdksZI+q6keyU9J+lFYDug8LcKYCLw7mxX5YvZOu/Llm3Vj/Wa2dDi3NKEvMfCyvAbQMABkv4KvBM4Jlv2XWAS8GXgQWA58Atg3W7W1ZndK9fWXtVnTPaax9d4/qJ6gzezIcu5pQm5sLB+i4gVkn5J+jaxNXB/RNyeLd4DuCQifgUgaQywRQ+reyq7fzXpOCfATlV9bgc+CDwcEav7/QbMbEhybmlOPhRiZbkcOAA4LPu54gHgA5J2kjQRuIIePncRsRy4BThB0naS3gWcWtXtfGBj4EpJb8lGh+8r6WJJI0p8T2bWeM4tTcaFhZXlBmAJsA3pD7xiKvAscDNpF+N00reCnhxG2ps2FzgH+Gp+YUQ8Tvq2MgKYAdyV9XuOl3d3mllrcG5pMoqIRsdgZmZmLcJ7LMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4szMzMrDQuLMzMzKw0LizMzMysNC4sbNBJOlRSSNqi0bGYmVm5XFiYmZlZaRQRjY7BhhlJI4B2YGX4A2hm1lJcWJiZmVlpfCjEBl1+jIWkSyU9Lam9Rr8Zku5vRIxmZlaMCwtrtJ8CrwD2zTdK2hTYG/jfRgRlZmbFuLCwRrsBWAB8oqr9/5E+ny4szMyaiAsLa6iI6AQuB94raWxu0ceBmyNifmMiMzOzIlxY2FBwGTAKeD+ApG2AXUiHSczMrIm4sLCGi4h7gLm8fDjkE8Aq4P8aFpSZmRXiwsKGisuAvSW9GvgYcF1EPNvgmMzMrE4uLGyouBII4Fzg9XjQpplZU3JhYUNCRDwF/B44GHgOuK6hAZmZWSEuLGwouSy7/7+IWNnQSMzMrBAXFjboIuKSiFBEPFy1aFV278MgZmZNytcKsSFD0m+B7YCtfXEyM7PmtE6jAzCT9FHgTcABwJdcVJiZNS/vsbCGkxTAi8BVwBERsbrBIZmZWUF1FxaSpgAvRsSfssdHAp8B7gGO9NwDZmZmw1eRwZvfAcYBSNoR+B7wO2BL4KzyQjMzM7NmU2SMxZakvRMAHwR+GxFfkfRmUoFhZmZmw1SRwmIVMDr7+T28PPfAErI9GcORJAGbAS80OhYblsYCj3vgq5k1WpHC4k/AWZL+DLwV+EjW/gZgQVmBNaHNGN7v3xrvtcDCRgdhZsNbkcLiKOCHwIeAz0VEJZHtR5qSebh6AeCxxx5j3LiuO246OjqYMWMGkydPpr29vSHBDWXePr3raRstXbqU173udeC9ZWY2BNRdWETEo8CBNdqPKSWiJjdu3LiahcXo0aMZN26c/3HW4O3TO28jM2sWhSbIktQGbA1sQtWZJRExu4S4zMzMrAnVXVhIejtwBbA5oKrFAYwoIS4zMzNrQkX2WPwIuI00/fIiUjFh1m933nknbW1tvPKVr2TChAmNDsfMzAooUlj8G/ChiHiw7GBseFqwIJ1Ms+eee7J8+XLWGzWa+++718WFmVkTKjLz5q2k8RWlknSCpJB0Tq5tPUnnS3pG0ouSrpY0vup5EyRdJ2mZpCclfUfSOlV99pJ0u6SVkh6UdGiN1z9S0sOSVki6VdJby36PVtszzzwDwMZTvsArDjyWFcuX8fTTTzc4KjMzK6LIHosfAN+TtClwF9CRXxgRf6t3hZLeAvwHUP3cs0mHXA4GngfOA34J7JE9bwRwHfAEsDvwatKEXR3AV7I+W2Z9fgR8HNgH+ImkRRExPevzEdJ05EeQCqejgemStomIJ+t9P1ZM+8avYc1qH1kzM2tmRQqLq7P7i3JtQRrIWffgTUljgMtJFzL7aq59A+Bw4GMRcUPW9ingXklvj4hbgMnAG4H3RMRi4A5JXwPOkHRyRKwiFQvzI+LYbNX3SnoHcAwwPWubClwQERdnr3MEqaA5DDi9nvdjZmY2nBW9VkiZzgeui4hZkr6aa98FaAdmVRoi4j5JjwK7Abdk93dlRUXFdOC/ge2BeVmfWXQ1HTgHQNK62WudlnudTkmzsufWJGkkMDLXNBbSfAMdHV124rz0uLrdks7OTgBGrpNOMho1ahSdnZ3eXjk9fYa8ncxsKCkyQdYjZb24pI8CbwbeUmPxpsCqiHiuqn1xtqzSZ3GN5fShzzhJo4CNSHtZavXZtofwTwS+Xt04Y8YMRo8eXaM7zJw5s4fV2Rn7ZYM1D7qShQsXsnChZ6euVusztGzZsgZEYmZWW9EJsrYijUPYLmu6Bzg3Ih6qYx2vA84FJkXEiiJxNNhpdL1M/FhgweTJk2vOvDlz5kwmTZrkWRNrmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FZkga1/g18AdwJ+z5j2Av0s6KCL6+rV8F9LMnbenC4MCac/BnpKOAvYF1pW0YdVei/GkwZpk99Vnb4zPLavcj6/RZ2lELJe0BljTTZ8n6EZErARWVh5X3kN7e3u3xUNPy4aztrZ0ctLK1cGK1cHy5ctpa2vztqqh1mfI28nMhpIip5ueDpwdEW+LiKnZ7W2kMQtn1LGe64EdgZ1yt9tIAzkrP3eQzuIAQNI2wARgTtY0B9hR0ia59U4ClpL2olT67ENXkyrryAZ4zq16nbbs8RzMzMysz4ocCtkO+HCN9otIh0f6JCJeAO7Ot0n6F/BMRNydPb6QdIn2JaRi4QfAnOyMEIAZpALip5KOI42nOBU4P9ujAOk006MknZnFuHcW/wG5lz4LuFTSbcBfsvexPnBxX9+PmZmZFSssniLtUXigqn0noOw5H44BOkmnuI4knc3x+crCiFgj6UDSWSBzgH8BlwIn5frMl3QAaU6MLwELgE9X5rDI+lwl6VXAKaTi5A5gStXZJmZmZtaLIoXFBcCPJb0euDlr2wM4nq6DGesWEXtVPV4BHJndunvOI8D+vaz3RmDnXvqcR5qAy8zMzAoqUlh8E3gBOJaX5354HDgZ+H45YZmZmVkzKjKPRZAOK5wtaWzW9kLZgZmZmVnzKTSPRYULCjMzM8vrU2Eh6XZgn4h4VtI80jVBaoqIN5cVnJmZmTWXvu6xuJaXJ4O6lh4KCzMzMxu++lRYRMQ3cj+fPGDRmJmZWVOre+ZNSf+U9Ioa7RtK+mc5YZmZmVkzKjKl9xaka3pUGwm8tl/RmJmZWVPr81khkt6be7ivpOdzj0eQrq0xv6zAzMzMrPnUc7rpNdl9kKbNzusAHiZNmmVmZmbDVJ8Li4hoA5A0H3hLRDw9YFGZmZlZUyoy8+aWAxGImZmZNb++TpD1ReDHEbEi+7lbEeHrhZiZmQ1Tfd1jcQxwObAi+7k7gS9EZmZmNmz1dYKsLWv9bGZmZpZXZIKskySNrtE+StJJ5YRlZmZmzajIBFlfB8bUaB+dLTMzM7NhqkhhIWpfhGwisKR/4ZiZmVkzq2fmzWdJBUUA/5CULy5GkPZi/Kjc8MzMzKyZ1DOPxdGkvRUXkQ555Kf0XgU8HBFzygvNzMzMmk09M29eCi/NvPnniFg9YFGZmZlZU6p7jEVE/BHYXNKpkq6UtAmApP0kbV96hGZmZtY0ipxu+i7gLuBtwAd4+QyRicA36lzX5yT9TdLS7DZH0n655etJOl/SM5JelHS1pPFV65gg6TpJyyQ9Kek7ktap6rOXpNslrZT0oKRDa8RypKSHJa2QdKukt9bzXszMzKzYWSGnA1+NiEmksRUVNwBvr3NdC4ATgF2AXbN1XJvb83E2cBBwMPAuYDPgl5UnSxoBXAesC+wOfBI4FDgl12fLrM8fgJ2Ac4CfSNo31+cjwFmkwujNwJ3A9MreGDMzM+ubIoXFjsCvarQ/CbyynhVFxG8i4ncR8UBE/CMi/gt4EXi7pA2Aw4GpEXFDRMwFPgXsLqlSwEwG3gh8IiLuiIhpwNeAIyWtm/U5ApgfEcdGxL0RcR7wC7pOTT4VuCAiLo6Ie7LnLAMOq+f9mJmZDXd1X90UeA54NTC/qn1nYGHRQLK9DwcD6wNzSHsx2oFZlT4RcZ+kR4HdgFuy+7siYnFuVdOB/wa2B+ZlfWbR1XTSnguyAmQX4LTc63RKmpU9t7t4RwIjc01jATo6Oujo6OjSt/K4ut2Szs5OAEauIwBGjRpFZ2ent1dOT58hbyczG0qKFBY/A86QdDBpTos2SXsA3wUuq3dlknYkFRLrkfZWvD8i7pG0E7AqIp6respiYNPs502zx9XL6UOfcZJGARuR5uGo1WfbHkI/kRozjc6YMYPRo9ea8RyAmTNn9rA6O2O/CemHg65k4cKFLFxYuE5tWbU+Q8uWLWtAJGZmtRUpLL4CnA88RvqHfE92fwVwaoH13U8a+7AB8CHg0myA6FB3GmlcRsVYYMHkyZMZN25cl44dHR3MnDmTSZMm0d7ePpgxNoV58+axaNEijp/2KCtXB4uvOIHZs2czceLERoc2ZPT0GVq6dGmDojIzW1vdhUVErAI+I+mbwA6ks0LmRcQDRQLI1vdg9nCupLcAXwKuAtaVtGHVXovxwBPZz08A1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyfoRkSsBFZWHktpN357e3u3xUNPy4aztrY01Gfl6mDF6mD58uW0tbV5W9VQ6zPk7WRmQ0mRwZsARMSjwDTg50WLim60kcYuzAU6gH0qCyRtA0wgHTohu9+x6uyNScBS0p6USp996GpSZR1ZYTO36nXasseeSdTMzKwOhQoLSYdLuhtYAayQdLekTxdYz2mS9pS0haQdJZ0G7AVcHhHPAxcCZ0l6t6RdgIuBORFxS7aKGaQC4qeSJmankJ4KnJ/tUYB0/ZLXSzpT0raSPg98mHQqa8VZpL0wn5S0HWnw5/rZ65mZmVkf1X0oRNIppNMzf8DL3+h3A86WNCEiTqpjdZuQBny+mnTtkb8B+0ZEZYTaMUAncDVpL8Z04POVJ0fEGkkHkgqBOcC/gEuBk3J95ks6gFRIfIk0d8anI2J6rs9Vkl5Fmv9iU+AOYErV2SZmZmbWiyKDNz8HfCYirsy1/VrS30jFRp8Li4g4vJflK4Ajs1t3fR4B9u9lPTeSToftqc95wHk99TEzM7OeFTkU0g7cVqN9LsUKFTMzM2sRRQqLn5L2WlT7LHB5/8IxMzOzZlZ0D8PhkiaTZr+EdEGyCcBlkl6a2yEipvYzPjMzM2siRQqLHYDbs5+3yu6fzm475PpFP+IyMzOzJlRkgqx3D0QgZmZm1vwKT5AlaWtJ+2bX20CVqSfNzMxs2Kq7sJD0CknXA/8AfkeagwLgQknfKzM4MzMzay5F9licTZpqewKQv6ziVcCUMoIyMzOz5lRk8OZk0uyYC6qOfjwAbF5KVGZmZtaUiuyxWJ+ueyoqNiZ3tU8zMzMbfooUFjcBh+QeR3Y10OOAP5QSlZmZmTWlIodCjgOul7QrsC5wJrA9aY/FHiXGZmZmZk2m7j0WEXE38AbgT8C1pEMjvwR2joiHyg3PzMzMmkldeywktQO/B46IiG8NTEhmZmbWrOraYxERHcCbBigWMzMza3JFBm/+L3B42YGYmZlZ8ysyeHMd4DBJ7wHmAv/KL/QVTc3MzIav/l7d9A1Vy3xFUzMzs2HMVzc1MzOz0hS+uqmZmZlZNRcWZmZmVpqGFhaSTpT0V0kvSHpS0jWStqnqs56k8yU9I+lFSVdLGl/VZ4Kk6yQty9bzHUnrVPXZS9LtklZKelDSoTXiOVLSw5JWSLpV0lsH5I2bmZm1qEbvsXgXcD7wdmAS0A7MkLR+rs/ZwEHAwVn/zUgzfQIgaQRwHWl68d2BTwKHAqfk+myZ9fkDsBNwDvATSfvm+nwEOAv4BvBm4E5guqRNynu7ZmZmra1PhUX2TX+j7OeTJI0u48UjYkpEXBIRf4+IO0kFwQRgl+y1NiDNmTE1Im6IiLnAp4DdJb09W81k4I3AJyLijoiYBnwNOFLSulmfI4D5EXFsRNwbEecBvwCOyYUzFbggIi6OiHuy5ywDDivjvZqZmQ0Hfd1jsR3pmiAAXwfGDEw4bJDdL8nudyHtxZhV6RAR9wGPArtlTbsBd0XE4tx6pgPjSBdHq/SZRVfTK+vICpBdql6nM3u8G2ZmZtYnfT3d9A7gYkl/AgR8WdKLtTpGxCm12nuTXXr9HODP2YXOADYFVkXEc1XdF2fLKn0W11hOH/qMkzQK2AgY0U2fbbuJdyQwMtc0FqCjo4OOjo4ufSuPq9st6ezsBGDkOgJg1KhRdHZ2envl9PQZ8nYys6Gkr4XFoaSxBweSJsHaD1hdo1+QG9tQp/NJk2+9o+DzB9uJpL03XcyYMYPRo2sfKZo5c+ZAx9TUzthvQvrhoCtZuHAhCxcubGxAQ1Ctz9CyZcsaEImZWW19Kiwi4n7gowCSOoF9IuLJsoKQdB6paNkzIhbkFj0BrCtpw6q9FuOzZZU+1WdvjM8tq9yPr9FnaUQsl7QGWNNNnyeo7TTSYM+KscCCyZMnM27cuC4dOzo6mDlzJpMmTaK9vb2b1Q1f8+bNY9GiRRw/7VFWrg4WX3ECs2fPZuLEiY0Obcjo6TO0dOnSBkVlZra2IjNvlnYmiSQBPwDeD+wVEfOruswFOoB9gKuz52xDGuA5J+szB/gvSZvkip1JwFLgnlyf/avWPamyjohYJWlu9jrXZK/Tlj0+r1bsEbESWJl7LwC0t7d3Wzz0tGw4a2tLH6mVq4MVq4Ply5fT1tbmbVVDrc+Qt5OZDSVFrhWCpK2Ao0mDOiH9Az83Ih6qc1XnAx8D/h14QVJlTMTzEbE8Ip6XdCFwlqQlpGLhB8CciLgl6zsje/2fSjqONJ7iVOD87J8/wI+AoySdCVwE7A18GDggF8tZwKWSbgP+kr2/9YGL63xPZmZmw1bdhUU298OvSQM6/5w17wH8XdJBEVHPQILPZfc3VrV/Crgk+/kYoJO0x2Ik6WyOz1c6RsQaSQcC/03aA/Ev4FLgpFyf+ZIOIM2J8SVgAfDpiJie63OVpFeRxohsmr2/KVVnm5iZmVkPiuyxOB04OyJOyDdKOh04A+hzYRER6kOfFcCR2a27Po+w9qGO6j43Ajv30uc8ujn0YWZmZr0rMl5iO+DCGu0XkSaqMjMzs2GqSGHxFGla7Go7AaWdKWJmZmbNp8ihkAuAH0t6PXBz1rYHcDxdT780MzOzYaZIYfFN4AXgWNJcDgCPAycD3y8nLDMzM2tGReaxCNLZFWdLGpu1vVB2YGZmZtZ8Cs1jUeGCwszMzPJKm0XTzMzMzIWFmZmZlcaFhZmZmZWmrsJCUruk6yX920AFZGZmZs2rrsIiIjqANw1QLGZmZtbkihwK+V/g8LIDMTMzs+ZX5HTTdYDDJL0HmEu6muhLImJqGYGZmZlZ8ylSWOwA3J79/IaqZdG/cMzMzKyZFZl5890DEYiZmZk1v8Knm0raWtK+kkZlj1VeWGZmZtaM6i4sJL1C0vXAP4DfAa/OFl0o6XtlBmdmZmbNpcgei7OBDmACsCzXfhUwpYygzMzMrDkVGbw5Gdg3IhZUHf14ANi8lKjMzMysKRXZY7E+XfdUVGwMrOxfOGZmZtbMihQWNwGH5B6HpDbgOOAPpURlZmZmTanIoZDjgOsl7QqsC5wJbE/aY7FHibGZmZlZk6l7j0VE3E2aGOtPwLWkQyO/BHaOiIfqWZekPSX9RtLjkkLS+6qWS9IpkhZJWi5pVvUF0CRtLOlySUslPSfpQkljqvq8SdJNklZIekzScTViOVjSfVmfuyTtX897MTMzs4LzWETE8xHxrYj4cETsHxFfjYhFBVa1PnAncGQ3y48DvggcAbyNNH34dEnr5fpcTtpjMgk4ENgT+HFloaRxwAzgEWAX4D+BkyV9Ntdnd+BK4EJgZ+Aa4BpJOxR4T2ZmZsNWkUMhSNqIdCGy7bKme4CLI2JJPeuJiGnAtGyd1a8h4Gjg1Ii4Nms7BFgMvA/4maTtSKe4viUibsv6fAH4naQvR8TjwMdJh2wOi4hVwN8l7QRM5eUC5EvA7yPiO9njr0maBBxFKmrMzMysD+ouLCTtCfwGeB64LWv+InCSpIMiYnZJsW0JbArMqjRExPOSbgV2A36W3T9XKSoys4BO0h6OX2V9ZmdFRcV04HhJG0XEs1mfs6pefzqpgKlJ0khgZK5pLEBHRwcdHR1d+lYeV7db0tnZCcDIdVJxOWrUKDo7O729cnr6DHk7mdlQUmSPxfmkybA+FxFrACSNAH6YLduxpNg2ze4XV7Uvzi3bFHgyvzAiVktaUtVnfo11VJY9m9339Dq1nAh8vbpxxowZjB49uuYTZs6c2cPq7Iz9JqQfDrqShQsXsnDhwsYGNATV+gwtW1br7G8zs8YoUlhsDXyoUlQARMQaSWfR9TTUVncaXfdyjAUWTJ48mXHjxnXp2NHRwcyZM5k0aRLt7e2DGWNTmDdvHosWLeL4aY+ycnWw+IoTmD17NhMnTmx0aENGT5+hpUuXNigqM7O1FSksbieNrbi/qn070kDMsjyR3Y8H8gNDxwN35Ppskn+SpHVIp74+keszvmrd43PLeurzBN2IiJXkJgSrjBFpb2/vtnjoadlw1taWxhCvXB2sWB0sX76ctrY2b6saan2GvJ3MbCjp01kh2emab5L0JuD7wLmSvizpHdnty6RriJxdYmzzSf/Y98nFMY40dmJO1jQH2FDSLrnn7U16X7fm+uwpKZ99JwH3Z+MrKn32oatJudcxMzOzPujrHos7gADyp26cWaPfFaTxF32SzTexda5py+yMjSUR8aikc4CvSnqAVGh8E3icdDooEXGvpN8DF0g6AmgHzgN+lp0RUonp66Srr54B7EA6C+SY3OueC/xR0rHAdcBHgV2Bz2JmZmZ91tfCYssBev1d6ToNeGXMwqXAoaTiZX3SaaEbkiblmhIRK3LP+TipmLiedDbI1aSzVICXziSZTBpYOhd4GjglIn6c63OzpI8BpwLfJl1Q7X3ZZGBmZmbWR30qLCLikYF48Yi4ka57QaqXB3BSduuuzxLgY728zt+Ad/bS5+fAz3vqY2ZmZj0rOkHWZsA7SAMnu4zTiIjvlxCXmZmZNaEiE2QdCvwPsAp4hjT2oiJIgzvNzMxsGCqyx+KbwCnAaRHRWXI8ZmZm1sSKXIRsNOmsCxcVZmZm1kWRwuJC4OCyAzEzM7PmV+RQyInAbyVNAe4CulwBKSKmlhGYmZmZNZ+ihcW+vDyld/XgTTMzMxumihQWxwKHRcQlJcdiZmZmTa7IGIuVwJ/LDsTMzMyaX5HC4lzgC2UHYmZmZs2vyKGQtwJ7SzoQ+DtrD978QBmBmZmZWfMpUlg8B/yy5DjMzMysBdRdWETEpwYiEDMzM2t+RcZYmJmZmdVU5CJk8+lhvoqIeH2/IjIzM7OmVWSMxTlVj9uBnYEpwHf6G5CZmZk1ryJjLM6t1S7pSGDXfkdkZmZmTavMMRbTgA+WuD4zMzNrMmUWFh8ClpS4PjMzM2syRQZvzqPr4E0BmwKvAj5fUlxmZmbWhIoM3rym6nEn8BRwY0Tc1++IzMzMrGkVGbz5jYEIxMzMzJqfJ8iqIulISQ9LWiHpVklvbXRMZmZmzaLPhYWkTklrermtHshgB5qkjwBnAd8A3gzcCUyXtElDAzMzM2sS9RwKeX8Py3YDvkjz7wGZClwQERcDSDoCOAA4DDi9kYGZmZk1gz4XFhFxbXWbpG1I/3APAi4HTiovtMElaV1gF+C0SltEdEqaRSqcqvuPBEbmmsYCLFmyhI6OLleSp6Ojg2XLlnHTTTfR1tZGW1sbnZ2dL90Da7X1tKzV+t9///2MGTMGLXkEdaxhvfXWY+7cubz44oulxTPUt0Fvyzo7O1m2bBnPPPMM7e3tXT5fL7zwQvXH08ysYYqcFYKkzUiHCz4JTAd2ioi7ywysAV4JjAAWV7UvBrat0f9E4OvVjVtuuWX5kQ1Dn/3sZxsdQjMaCyxtdBBmNrzVVVhI2gD4CvAF4A5gn4i4aQDiagankcZj5G1M7UnCxgILgNcC/nq5Nm+f3vW2jcYCjw9qRGZmNfS5sJB0HHA88ATw/2odGmlyTwNrgPFV7eNJ77mLiFgJrKxqrvltUVLlxxciwt8oq3j79K4P28jbzcyGhHr2WJwOLAceBD4p6ZO1OkXEB8oIbLBFxCpJc4F9yCYBk9SWPT6vgaGZmZk1jXoKi8voOpV3KzoLuFTSbcBfgKOB9YGLGxmUmZlZs6jnrJBDBzCOISEirpL0KuAU0vVP7gCmRET1gM56rSQNdq0+dGKJt0/vvI3MrCkootV3QpiZmdlgafYJrczMzGwIcWFhZmZmpXFhYWZmZqVxYWFmZmalcWExQCRtLOlySUslPSfpQkljennOjZKi6vajwYp5INV7OXpJB0u6L+t/l6T9ByvWRqlnG0k6tMZnZcVgxmtmVosLi4FzObA9MAk4ENgT+HEfnncB8Orc7biBCnCw1Hs5ekm7A1cCFwI7kyYsu0bSDoMScAPUu40yS+n6Wdl8oOM0M+uNTzcdAJK2A+4B3hIRt2VtU4DfAa+NiJrXdJB0I3BHRBw9SKEOCkm3An+NiKOyx23AY8APImKty9FLugpYPyIOzLXdQto2RwxS2IOqwDY6FDgnIjYczDjNzHrjPRYDYzfguUpRkZkFdAJv6+W5H5f0tKS7JZ0mafSARTkIcpejn1Vpi4jO7PFal6PP7Jbvn5neQ/+mVnAbAYyR9IikxyRdK2n7AQ7VzKxXhS6bbr3aFHgy3xARqyUtyZZ15wrgEdJVKt8EnAFsAzTl9Vcy9V6OHtI2qtW/p23XzIpso/uBw4C/ARsAXwZulrR9RCwYqEDNzHrjwqIOkk4nXeG1J9sVXX9E5Mdg3CVpEXC9pK0i4qGi67XWExFzgDmVx5JuBu4F/gP4WqPiMjNzYVGf7wGX9NLnn6TLrHcZdCdpHWBjalyCvQe3ZvdbA81aWNR1OfrME3X2b3ZFtlEXEdEhaR7ps2Jm1jAeY1GHiHgqIu7r5baK9E1yQ0m75J6+N2l731pz5bXtlN0vKucdDL5se1QuRw90uRz9nG6eNiffPzOph/5NreA26kLSCGBHmvizYmatwXssBkBE3Cvp98AFko4A2oHzgJ9VzgiR9BrgeuCQiPiLpK2Aj5HOHHmGNMbibGB2RPytEe+jRD1ejl7SZcDCiDgx638u8EdJxwLXAR8FdgU+O8hxD6a6tpGkk4BbgAeBDYH/JJ1u+pPBDtzMLM+FxcD5OKmYuJ50NsjVwBdzy9tJAzMrZ32sAt7Dy/9QHsuec+rghDtw+nA5+gmkbVTpf7Okj5He+7eBB4D3RcTdgxr4IKp3GwEbkeY82RR4lrTHY/eIuGfQgjYzq8HzWJiZmVlpPMbCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwszMzErjwsLMzMxK48LCzMzMSuPCwhpO0sOSjm50HGZm1n8uLMzMzKw0LizMzMysNC4srF8kfVbS49nVOPPt10q6SNJW2c+LJb0o6a+S3tPD+raQFJJ2yrVtmLXtlWvbQdK0bJ2LJf1U0isH4C2amVkdXFhYf/0ceAXw7kqDpI2BKcDlwBjSFVv3AXYGfg/8RtKEoi8oaUPgBmAe6aqnU4DxwP8VXaeZmZXDVze1fomIZyVNI13y/fqs+UPA08AfIqITuDP3lK9Jej/wXtLVX4s4CpgXEV+pNEg6DHhM0hsi4h8F12tmZv3kPRZWhsuBD0oamT3+OPCziOiUNEbSdyXdK+k5SS8C25EuA17URODd2WGQF7N13pct26of6zUzs37yHgsrw28AAQdI+ivwTuCYbNl3gUnAl4EHgeXAL4B1u1lXZ3avXFt7VZ8x2WseX+P5i+oN3szMyuPCwvotIlZI+iVpT8XWwP0RcXu2eA/gkoj4FYCkMcAWPazuqez+1aQxFAA7VfW5Hfgg8HBErO73GzAzs9L4UIiV5XLgAOCw7OeKB4APSNpJ0kTgCnr43EXEcuAW4ARJ20l6F3BqVbfzgY2BKyW9JTvzZF9JF0saUeJ7MjOzOrmwsLLcACwBtiEVDxVTgWeBm0mHL6aT9jj05DDS3rS5wDnAV/MLI+Jx0p6QEcAM4K6s33O8fCjFzMwaQBHR6BjMzMysRXiPhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZlcaFhZmZmZXGhYWZmZmVxoWFmZmZleb/B9uEx1mzsfasAAAAAElFTkSuQmCC\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_32-aa'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## N = 64"
]
},
{
"cell_type": "code",
"execution_count": 249,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYxElEQVR4nO3deZwcVb3//9d7whASkrCoBFEDCIqRJSC4AIoIJoTNrwuoV/0h4nJRUFm8gF4ERLwsKouCekVk8QKioqBCzAJiUAJKCJvsyJYQwhIgYLZJ5vP741RDTdOzdE3N9HTP+/l49KO7T52u/nRN9ZlPnzp1ShGBmZmZWRnaGh2AmZmZtQ4nFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWZmZmVhonFmZmZlYaJxZmZmZWGicWVpikEyQNytStkq6TdF3u+a6SQtJ+g/T+F0h6eDDeq+p9N8k+54GD/d7DhaQ1JJ0m6TFJnZKuaHRMg2Uwv8M2fDixMAAkHZj9A6vclkt6XNJ0SV+RNLak99koa8y2LWN9ZRrKsdmAOgj4L+A3wKeBMxobjllzW6PRAdiQcxzwENAObAjsCpwJHCHpAxFxe67uScApda5/I+B44GHg1jpeN6XO9ymip9g+T2MS8UeAUUBHA957uNgNWBARhzc6ELNW4MTCqk2LiJtzz0+WtBvwR+D3kiZGxDKAiFgFrBrIYCSNjoilEbFyIN+nNxHRkH/ska4SuLwR790fktYCVkZEZ6Nj6YMNgOfKWpmkNmDNiGi6v5tZGXwoxHoVEdcC3wY2Bj5VKa91fFbSZEl/lfScpBcl3Svpf7JluwL/yKqenzvscmC2/DpJd0raXtJsSUuB/8ktu65GeCMk/Y+kJyT9W9LvJb2hKqaHJV1Q/cL8OvsQ2yvGWEhaW9L3s2PzK7LP+jVJqqoXks6W9MHs862Q9E9JU2t8nuoYXzHGIovlRUmvk3RF9vgpSd+TNKIP63xY0h8lTZF0a3bY6y5JH66qt362zjuy91giaZqkSVX1KuNdPi7pJEkLgKXAuALr+Kik4yUtkPSCpN9IWkfSSElnSnoyW8/5kkZWraPbfa+nbQu8D9gy9zffNVte79/3k5L+CawAuv3bSmrLvjuPS1oq6c+S3lq9n/Z122V1v5ztU0slPSvpZkmfqKrzbkn/yP7eD0r6zx5i/JSkuZKWSVos6ZfKfa+yz/uipNE1Xnup0vex133RWpN7LKyvfkH6Jz8FOLdWBUlbkno2bicdUlkBbA7snFW5Oys/EfgpcH1WfkNuNa8CpgG/BP4PWNRLXP8NBHAq6ZfnYcAsSdtWelb6qC+xvST75/J70j+l80iHTvYAvgu8DqjuVn838GHgR8ALwFeAyyVNiIhn6oizYgQwHbgJ+BrwfuBI4EHgx314/ZuAy4CfABcCnwF+LWlqRMzM6rwR+CDwa9LhsfHAfwJ/kfTWiHi8ap3fBFYC3wNGZo/fWuc6vg4sIx1i2xz4MukwUCewHnAC8C7gwGx9J0Kf9r1angL+P9I+NCZ7b4C7C/x9dwM+CpwNPE06nNadk4GjgD+Q/oaTsvu1qur1aftL+jzwA9IYkbOy9WwDvBO4JKuzNTAj+8wnkNr+b1Hj+yXpv0k/JH4F/Ax4DenvMFvSdhHxHGnfOQTYO4uv8trRwL7ABRGxuodtYK0sInzzDVJDHcAOPdR5Drgl9/wEst767Plh2Tpe3cM6dsjqHFhj2XXZsv/sZtl1uee7ZnXnA2Nz5ftn5V/JlT1Mauh6W2dPsV0APJx7/v+yuv9dVe/XpH+Cm+XKgvSPLl+2TVZ+aC9/l02qY8piCeCbVXVvAW7uw9/64ez1H86VjQMer/r7jgTaasSzPP/eub/Fg8Coqvr1ruMOoD1Xfkm2Pa+uWscNVX+PXve9HrbHdcCdVWX1/n1XA2/tw3uNJyVKv6sqPz5bzwW5sr5uuyuq46/xvr8jJWwTcmUTSYcyI1e2cVb2jarXb5XF/Y3suUjfvd9U1at8/95T79/Bt9a5+VCI1eNFoKezQ57L7v+f0nHmIlYA59dR/6KIeCH3/DfAQmCvgu/fV3uR/pn8oKr8+6RGd8+q8lkR8WDlSaRBsEtIv0qL+knV8+vrWN/jpH82lXiWABcB20naMCtbEdkYCUkjJL2KtA/cC7ytxjovjKpeogLruCi6jme5ibQ9f15V7ybgDZIqva7PZff92ffy6v37/iUi7urDencn9Rb8qKr8h9UV69h2zwGvl/T2Wm+YHZLYA7giIh7Nrf9uUk9J3odJh8h/JenVlRvwBHA/qQeHiAhSkrWXpDG5138MWAD8tdstYC3PiYXVYwypG787lwF/I3WfLsqOy360zoZ+QdQ3UPP+/JOswXuA9MtuIG0MPF6V1EA6pFJZnvcor/QsqXu/iOUR8VQ/1vdAtq3y7svuN4GXxgIcLul+UsL3NKkrfRtgnRrrfKi6oMA6qrfT89n9YzXK23LrKGPfy6v37/uKz97DeiHtoy+JiMWkv99L6th2p5ISjr9Lul/SOZLyh4BeQzqzqMt3JXNv1fM3kRKn+7P3yt8mkg43VlyWrfcDWbxjSAnZr2vsWzaMOLGwPpH0elJj9kB3dbJfq7uQjvf/gtQAXgbMrGMgVz3jIvqqu0ZuMAeXdXe8Wd2UF11fmb4BnA7MJg3a3QOYDPyT2m1Hrb9dvevo7nP1uP1K2vf6YyD22z5tu6znYQvg46Sego8Af5X0rQLv2Ub6vkzN3qv69tKAz4i4kXRY7aNZ0b6kROOyAu9rLcSDN62v/r/svrrrtIus6/aa7HaEpG8A3yF1oc6i+3/yRb0p/yQbdLc5aRBfxbPAujVeuzHwr9zzemJ7BHi/pLFVv2rfkls+lG0uSVW/LN+c3T+c3e8H/DkiPpt/oaR1Sb+e+6KMdfRJH/a9egzU37fyus3J9XJkhzmqe5v6vO0i4t+kf+iXSVoT+C3w35JOJvU2LKPqu5LZour5g6Rk7aGIuK9G/Wq/Ar4qaRzpMMjDWcJhw5h7LKxXSvNYfJPUEF7cQ731axTfmt1XTg38d3a/bknhHaCus4LuB7yWdGZJxYPAu7IGFwBJ+wBdTkutM7arST0eh1aVH05KUKa94hVDy0bAhypPsn8MBwC3RsQTWfFqqnpUJO1POiuir8pYR6/6uO/VY6D+vteQBkd+saq8+n2gj9suS0pekh1KvCt7bXukszOmAx+UNCH3uomkXpC832bve3yWpOffR9XvRUpmRpJmLJ1KSjRsmHOPhVXbU9JbSPvGeNJpdJNJv7Q+ED1P+nOcpF2Aq7L6GwBfIo0erwzmepA02OxgSS+Q/pnfFBF9PUZdbTGp2/f8LN7DSIdr8qfE/oyUcPxJ0q+AzUhdyw92XVVdsf0B+DPwHUmbALeRTsX9f8CZ+YGaQ9R9wHnZgL9FpGmtx5NOO634I+lvej7pLIytgU/StZenN2Wsoy/6su/VY0D+vhGxSNJZwJGSfg/8iXS66Z6kXoh8D1Jft90MSU+QxpgsIo2FOBS4KtfbcjzpH//1kn5E+n5/mXRYZZtcfA9KOpZ0SuwmStdNeQHYlJSI/pR0OnGl/i2SHiD1DI3Eh0EMfLqpb+nGy6ebVm4rSGdXzCDNuTC2xmtOoOuparuRTn1bkL1+Ael0wTdVve4DpAatg9yplNQ47S/3muuofbrpx0nzaywiTcr0R3Kn1OXqH0H6J7Oc9I9m++p19hLbBeROb8zKxpCOgS8gzdlwH2lOCVXVC+DsGjE9TI3TYKvqbJKPIxfLi739PXpY58PZdppC+oe5nDQocb+qeiNJ/0Qez7btX0lzSHT3t9ivxnv1ax10cxp05bOSnV5KH/e9HvatV+x3/f379vB+I0jzbyzMtsk1pEMsTwM/LrDtvgD8JXv9clJifRowrup9dwFuzrbPg6TxEjX3GdLZIdeTBoW+mO0fZwNvrlH3pGwb3F9Pm+Nb694U4cG7ZsOJ0gyid0bEPo2OxZJs3MSzwLER8Z0Gh2PWLx5jYWY2iCSNqlF8WHZ/3eBFYjYwPMbCzGxwfUzp2i9Xkw4zvBv4D2BGRPytkYGZlcGJhZnZ4LqddGbIUaSp1BeRrvFxbCODMiuLx1iYmZlZaTzGwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMLMzMxK48TCzMzMSuPEwszMzErjxMIKk3SgpJC0SS/1HpZ0weBEZWbNxO1I63FiYWZm1gNJu0v6uaT7JC2V9C9JP5P02kbHNhQpIhodgzUpSSOAdmBF9LAjSXoYuC4iDhyk0MysSTRDOyLpZmB94NfA/cAbgUOBpcC2EfHEYMc0lK3R6ACseUXEamB1o+Mws+bVJO3IEcBfI6KzUiDpT8BfSAnGsY0KbCjyoRArrPrYqJJjJc3Pugv/LGnLGq87QdIrfpnUOtaaHVf9o6RdJd0saZmkOyTtmi3/cPZ8uaS5krYbqM9rZuVrhnYkImbnk4pKGbAYmNj/rdBanFhYmU4Evg3cBvwX8C9gBrB2P9e7OXAJ8Afg68B6wB8kfRI4A/g/4HhgM+BXkrxfmzWvpmhHJI0BxgBP9zOuluNDIVYKSa8BjgKuAvatHCuV9B3gG/1c/RbAThExJ1vnXcB04FzgLRHxaFb+LPC/wC7Adf18TzMbZE3WjhwGrAlc1s+4Wo5/2VlZ3k/6kv2wagDWmSWs+65KY5C5Kbu/ttIYVJW/sYT3NLPB1xTtiKRdSL0bv4qIa0uIraU4sbCybJzd358vjIingGf7ue78l56IeD57+FhVvUr5ev18PzNrjCHfjkh6C/A74E7gc/2MqSU5sbBG6O6UshHdlHc3Yry7ctUXjpk1oUFvRyS9gTTe43lgr4h4occIhyknFlaWR7L7N+ULs2Om1Zn/s9mydavKN8bMhrMh245IehUpqRgJ7BERCwfifVqBEwsryyygA/iypHymf1iNug9m97tUCiStDXx6wKIzs2YwJNuRbL1XA68j9VTc38tLhjWfFWKliIinJH2PdBrXHyVdDWwH7MkrT8eaQTreeZ6k75K6Ig8CngImDF7UZjaUDOF25GLgHcDPgYmS8nNXvBgRV5T8fk3NiYWV6VhgOXAw8D7S6OoppFPHXhIRHZI+BPyIdL76E6RR388C5w9ivGY29AzFdmTb7P6g7Jb3CHBFye/X1HytEDMzMyuNx1iYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaepOLCRNlfTu3PNDJN0q6RJJnkrZzApx22LWGor0WHwXGAcgaWvg+6SJQzYFTi8vNDMbZty2mLWAIvNYbArclT3+CPDHiPiGpLeRGoFhKZslbiPAc8dbI4wFHo/mPn/cbUsNbluswepuW4okFiuB0dnj9wMXZY8Xk/3aGKY2AuY3Oggb1l4PLGh0EP3gtqU2ty3WaHW1LUUSi78Cp0v6G2mK049l5W9meO/8LwA89thjjBvXtQ3s6OhgxowZTJkyhfb29oYEN5R5+/Sup220ZMkS3vCGN0Dz/6J121Jbt20L+PvTG2+fng1E21IksTiUNIXqfsAXI6KSxewJ/KnA+lrKuHHjaiYWo0ePZty4cd6xa/D26d0w2UZuW3pQq22BYbNvFObt07OB2D51JxYR8SiwT43yw0uJyMyGJbctZq2h0EXIJLUBmwMbUHVmSUTMLiEuMxuG3LaYNb+6EwtJ7wIuATYGVLU4gBElxGVmw4zbFrPWUKTH4ifAzcDewELSF96s32677Tba2tp49atfzYQJExodjg0+ty02YG677TY22GADty2DoEhi8SZgv4h4oOxgbHiaPz8N+N9ll11YtmwZa40azb333O0GYPhx22Kly7cvgdy2DIIiM2/eRDoGalaKZ555BoD1p36ZV+1zJMuXLeXpp59ucFTWAG5brHSV9mXcOz7stmWQFOmx+CHwfUkbAncAHfmFEXF7GYHZ8NO+/utYvcq938OY2xYbMCPGvabRIQwbRXosLgcmAj8H/gHcCszL3Rci6RhJIenMXNlaks6R9IykFyVdLml81esmSLpK0lJJT0r6rqQ1qursKukWSSskPSDpwBrvf4ikhyUtl3STpHcU/SxmVsiAtC3g9sVsMBW9VkipJL0d+E+g+hfJGaSBXPsDzwNnA78Fds5eNwK4CngC2Al4LWka4A7gG1mdTbM6PwE+CewO/EzSwoiYntX5GOkiRweTumMPA6ZL2iIiniz785pZTaW3LeD2xWywFZkg65EyA5A0BrgY+DxwbK58HeCzwCci4tqs7DPA3ZLeFRE3AlOAtwLvj4hFwK2SvgmcKumEiFhJ+jI/FBFHZqu+O7s08+HA9KzsCODciDg/e5+DSQ3OQcApZX5eM6ut7LYF3L6YNULRCbI2I2XdE7Oiu4CzIuLBAqs7B7gqImZJOjZXvj3QDsyqFETEPZIeBXYEbszu78i+9BXTgR8DW5K6T3fMryNX58zss6yZvdfJuffplDQre21NkkYCI3NFYyFNj9rR0eXQ8EvPq8st6ezsBGDkGmnqglGjRtHZ2entldPTPtRK26nktgWasH2pp22plOfvratK+7JW+wi3LTUMRNtSZIKsPYDfk457/i0r3hn4p6R9I2JmHev6OPA24O01Fm8IrIyI56rKF2XLKnUW1VhOH+qMkzQKWI808U6tOm/pIfyvA8dXF86YMYPRo0fXqA4zZ/Z50wxLp+6ZnQK276UsWLCABQua+UKdA6PWPrR06dIGRFK+MtuWbH3N2r7U3baA25fenH7Ae+CA97ht6UaZbUuRHotTgDMi4ph8oaRTgFOBPu3dkt4AnAVMjojlBeJotJNJx00rxgLzp0yZUvMiZDNnzmTy5Mm+CE4N8+bNY+HChRw97VFWrAoWXXIMs2fPZtKkSY0ObcjoaR9asmRJg6IqXSltS/aaZm5f+ty2gNuX3lTalyMuup6F037ktqXKQLQtRRKLicBHa5T/nNSF2Vfbk64HcIv00uy9I4BdJB0K7AGsKWndql8V40mDqcjuq0dXj88tq9yPr1FnSUQsk7QaWN1NnSfoRkSsAFZUnlc+Q3t7e7df7p6WDWdtbenkpBWrguWrgmXLltHW1uZtVUOtfaiFtlNZbQs0cftSpG3py/LhqtK+LO9Y7balB2W2LUVON30K2LZG+bZAPSOcrwG2zl5Xud1MGmhVedxBGmUNgKQtgAnAnKxoDrC1pA1y650MLCEdm63U2Z2uJlfWkQ3Amlv1Pm3Z8zmY2WApq20Bty9mDVOkx+Jc4KeS3gjckJXtDBxN1+67HkXEC8Cd+TJJ/waeiYg7s+fnAadLWkz6Mv8QmJON2AaYQfqC/0LSUaTjnScB52RZP6TTwA6VdBrpl89upF9Fe+fe+nTgQkk3A38n/TpaGzi/r5/HzPqtlLYF3L6YNVKRxOLbwAvAkbw80vlx4ATgB+WE9ZLDgU7SxDkjSaOtv1RZGBGrJe1DGqU9B/g3cCFwXK7OQ5L2Jp2z/lVgPvC5yjnmWZ3LJL0GOJHUeNwKTK0aDW5mA2sw2xZw+2I2IIrMYxGkL9EZksZmZS+UEUxE7Fr1fDlwSHbr7jWPAHv1st7rgO16qXM2aYIcM2uAgWxbsnXtWvXc7YvZACg0j0VFmV96M7MKty1mzatPiYWkW4DdI+JZSfOAbq8UFRFvKys4M2ttblvMWk9feyyu5OXTn66khy+/mVkd3LaYtZg+JRYR8a3c4xMGLBozG1bctpi1nrrnsZD0L0mvqlG+rqR/lROWmQ03blvMWkORCbI2Ic1gV20k8Pp+RWNmw9kmuG0xa3p9PitE0gdyT/eQ9Hzu+QjSTHIPlRWYmQ0PblvMWks9p5tekd0HaZKYvA7gYdLENmZm9bgiu3fbYtYC+pxYREQbgKSHgLdHxNMDFpWZDRtuW8xaS5GZNzcdiEDMbHhz22LWGvo6QdZXgJ9GxPLscbciYiDm9DezFuS2xaz19LXH4nDS5YaXZ4+7EwzMxYLMrDW5bTFrMX2dIGvTWo/NzPrDbYtZ6ykyQdZxkkbXKB8l6bharzEz643bFrPWUGSCrOOBMTXKR2fLzMyKcNti1gKKJBai9oWCJgGL+xeOmQ1jblvMWkA9M28+S/rSB3CfpHwDMIL0S+Mn5YZnZq3ObYtZa6lnHovDSL8ofk7qlsxPu7sSeDgi5pQXmpkNE4fhtsWsZdQz8+aF8NLseH+LiFUDFpWZDRtuW8xaS91jLCLiL8DGkk6SdKmkDQAk7Slpy9IjNLNhwW2LWWsocrrpe4E7gHcCH+blUdyTgG+VF5qZDSduW8xaQ5GzQk4Bjo2IyaTjnxXXAu+qZ0WSvijpdklLstscSXvmlq8l6RxJz0h6UdLlksZXrWOCpKskLZX0pKTvSlqjqs6ukm6RtELSA5IOrBHLIZIelrRc0k2S3lHPZzGzfnPbYtYCiiQWWwO/q1H+JPDqOtc1HzgG2B7YgdSAXJnr9jwD2BfYH3gvsBHw28qLJY0ArgLWBHYCPg0cCJyYq7NpVufPwLbAmcDPJO2Rq/Mx4HTSr6K3AbcB0ytdsWY2KNy2mLWAIonFc8Bra5RvByyoZ0UR8YeIuDoi7o+I+yLiv4EXgXdJWgf4LHBERFwbEXOBzwA7Sar8epkCvBX4VETcGhHTgG8Ch0haM6tzMPBQRBwZEXdHxNnAb+h6XYIjgHMj4vyIuCt7zVLgoHo+j5n1y3O4bTFrenVfNh34JXCqpP1J5523SdoZ+B5wUdFAsl8I+wNrA3NIvzTagVmVOhFxj6RHgR2BG7P7OyJiUW5V04EfA1sC87I6s+hqOunXBVkjsT1wcu59OiXNyl7bXbwjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9cQAKNGjaKzs9PbK6enfaiFtpPbFuprWyrl+XvrqtK+rNU+wm1LDQPRthRJLL4BnAM8Rpq85q7s/hLgpHpXJmlr0pd9LdIvig9FxF2StgVWRsRzVS9ZBGyYPd4we169nD7UGSdpFLBeFn+tOm/pIfSvU2Oa4RkzZjB69CsudwDAzJkze1idnbrnhPRg30tZsGABCxbU9SN1WKi1Dy1durQBkQwIty1J3W0LuH3pzekHvAcOeI/blm6U2bbUnVhExErg85K+DWxFGrk9LyLuLxQB3Es6PrkOsB9wYTY6fKg7mXTstGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqMrltuUlfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIj0WAETEo5Ieyx7Xmt+/r+tZCTyQPZ0r6e3AV4HLgDUlrVv1y2I88ET2+AmgeoT1+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXluZS68dvb27v9cve0bDhra0tDfVasCpavCpYtW0ZbW5u3VQ219qFW205uW+pvW/qyfLiqtC/LO1a7belBmW1LkcGbSPqspDuB5cBySXdK+lyhCGrHNBKYC3QAu+fedwtgAql7k+x+66oR1pOBJaRu1Eqd3elqcmUdWeMzt+p92rLnnkbYbBC5bTFrfnX3WEg6kTTS+Ye8/OXYEThD0oSIOK6OdZ0MTAMeJXX3fQLYFdgjIp6XdB5wuqTFpC/0D4E5EXFjtooZpC/5LyQdRTrmeRJwTpb1Q7p40aGSTiNdi2A34KPA3rlQTid1k94M/J107YK1gfP7+lnMrH/ctpi1hiKHQr4IfD4iLs2V/V7S7aQvZ5+//MAGpNHeryVdeOh20he/MorkcKATuJz0S2M68KXKiyNitaR9SCO15wD/Bi7MxxARD0nam3Te+ldJ57d/LiKm5+pcJuk1pHPUNwRuBaZWjQg3s4HltsWsBRRJLNqBm2uUz613fRHx2V6WLwcOyW7d1XkE2KuX9VxHOhe+pzpnA2f3VMfMBpTbFrMWUGSMxS9IvyyqfQG4uH/hmNkw5rbFrAUUPSvks5KmkCaSgXTRoAnARZJeOk0qIo7oZ3xmNry4bTFrckUSi62AW7LHm2X3T2e3rXL1Cp8mZmbDktsWsxZQZIKs9w1EIGY2vLltMWsNheaxAJC0uaQ9sqlrUWUWFzOzfnDbYtbc6k4sJL1K0jXAfcDVvHw1wvMkfb/M4Mxs+HDbYtYaivRYnEGatW4C6fK/FZcBU8sIysyGJbctZi2gyODNKaSJZuZX9VDeD2xcSlRmNhy5bTFrAUV6LNam66+JivXJXTjHzKxOblvMWkCRxOJ64IDc88gurHMU8OdSojKz4chti1kLKHIo5CjgGkk7AGsCpwFbkn5V7FxibGY2vLhtMWsBdfdYRMSdwJuBvwJXkrovfwtsFxEPlhuemQ0XblvMWkNdPRaS2oE/AQdHxHcGJiQzG27ctpi1jrp6LCKiA9hmgGIxs2HKbYtZ6ygyePP/gB4vSWxmVoDbFrMWUGTw5hrAQZLeD8wF/p1f6KsOmllBblvMWkB/r2765qplvuqgmRXltsWsBfjqpmY2JLhtMWsNha9uamZmZlbNiYWZmZmVxomFmZmZlaahiYWkr0v6h6QXJD0p6QpJW1TVWUvSOZKekfSipMslja+qM0HSVZKWZuv5rqQ1qursKukWSSskPSDpwBrxHCLpYUnLJd0k6R0D8sHNbEC5bTFrnD4lFtmXZr3s8XGSRpf0/u8FzgHeBUwG2oEZktbO1TkD2BfYP6u/EWma30psI4CrSNcW2An4NHAgcGKuzqZZnT8D2wJnAj+TtEeuzseA04FvAW8DbgOmS9qgpM9qZlXctpi1nr72WEwkzdsPcDwwpow3j4ipEXFBRPwzIm4jfWknANsDSFqHNGHOERFxbUTMBT4D7CTpXdlqpgBvBT4VEbdGxDTgm8AhktbM6hwMPBQRR0bE3RFxNvAb4PBcOEcA50bE+RFxV/aapcBBZXxWM6vJbYtZi+nr6aa3AudL+isg4GuSXqxVMSJOrFXeR+tk94uz++1JvzRm5dZ/j6RHgR2BG7P7OyJiUW4904Efk66MOC+rM4uuppN+XZA1EtsDJ+fep1PSrOy1ryBpJDAyVzQWoKOjg46Oji51K8+ryy3p7OwEYOQaAmDUqFF0dnZ6e+X0tA81+Xa6FbctXdTTtlTK8/fWVaV9Wat9hNuWGgaibelrYnEgqRtvH9JENXsCq2rUC3LdhPWQ1Eb6Mv4tu8ohwIbAyoh4rqr6omxZpc6iGsvpQ51xkkYB6wEjuqnzlm5C/jrpF1YXM2bMYPTo2r25M2fO7GZVBnDqnhPSg30vZcGCBSxYsKCxAQ1BtfahpUuXNiCS0hyI25Zqdbct4PalN6cf8B444D1uW7pRZtvSp8QiIu4FPg4gqRPYPSKeLPSO3TuHNPPeu0te70A5mXTctGIsMH/KlCmMGzeuS8WOjg5mzpzJ5MmTaW9vH8wYm8K8efNYuHAhR097lBWrgkWXHMPs2bOZNGlSo0MbMnrah5YsWdKgqPrPbUtNfW5bwO1LbyrtyxEXXc/CaT9y21JlINqWIjNvln4miaSzSb9YdomI+blFTwBrSlq36pfF+GxZpU71COvxuWWV+/E16iyJiGWSVgOru6nzBDVExApgRe4zANDe3t7tl7unZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219qFW2U5uW5IibUtflg9XlfZlecdqty09KLNtKfRFlrSZpB9KmpXdfiBpswLrUfbF/xCwW0Q8VFVlLtAB7J57zRakQVhzsqI5wNZVI6wnA0uAu3J1dqeryZV1RMTK7L3y79OWPZ+DmQ0Kty1mza/uxCI7jeouUiZ/e3Z7J/BPSZPrXN05wKeATwAvSNowu40CiIjngfOA0yW9T9L2wPnAnIi4MVvHjCyeX0ialMV3EnBOlvkD/AR4o6TTJL1F0peAj5JON6s4Hfi8pE9LmkgaoLV29n5mNsDctpi1hiJXNz0FOCMijskXSjoFOBWoZwTRF7P766rKPwNckD0+HOgELieNlJ4OfKlSMSJWS9qH9GWdQ7rU8oXAcbk6D0nam/Rl/yowH/hcREzP1blM0mtIA8Q2JI1Wn1o1ItzMBo7bFrMWUCSxmEjKyKv9HDisnhVFhPpQZzlwSHbrrs4jwF69rOc6YLte6pwNnN1bTGY2INy2mLWAImMsniLNMFdtW6Ds0dxmNny4bTFrAUV6LM4FfirpjcANWdnOwNF0PUXKzKweblvMWkCRxOLbwAvAkbw8m9zjwAnAD8oJy8yGIbctZi2gyDwWQRqodIaksVnZC2UHZmbDi9sWs9ZQpMfiJf7Sm9lAcNti1rxKn+nOzMzMhi8nFmZmZlYaJxZmZmZWmroSC0ntkq6R9KaBCsjMhh+3LWato67EIiI6gG0GKBYzG6bctpi1jiKHQv4P+GzZgZjZsOe2xawFFDnddA3gIEnvJ10O+N/5hRFxRBmBmdmw47bFrAUUSSy2Am7JHr+5aln0LxwzG8bctpi1gCIzb75vIAIxs+HNbYtZayh8uqmkzSXtIWlU9rzXyxSbmfXGbYtZc6s7sZD0KknXAPcBVwOvzRadJ+n7ZQZnZsOH2xaz1lCkx+IMoAOYACzNlV8GTC0jKDMblty2mLWAIoM3pwB7RMT8qh7K+4GNS4nKzIYjty1mLaBIj8XadP01UbE+sKJ/4ZjZMOa2xawFFEksrgcOyD0PSW3AUcCfS4nKzIYjty1mLaDIoZCjgGsk7QCsCZwGbEn6VbFzibGZ2fDitsWsBdTdYxERd5Imr/krcCWp+/K3wHYR8WA965K0i6Q/SHpcUkj6YNVySTpR0kJJyyTNqr5IkaT1JV0saYmk5ySdJ2lMVZ1tJF0vabmkxyQdVSOW/SXdk9W5Q9Je9XwWM+sfty1mraHQPBYR8XxEfCciPhoRe0XEsRGxsMCq1gZuAw7pZvlRwFeAg4F3kqb4nS5prVydi0m/aiYD+wC7AD+tLJQ0DpgBPAJsD/wXcIKkL+Tq7ARcCpwHbAdcAVwhaasCn8nMCnLbYtb8ihwKQdJ6pIsFTcyK7gLOj4jF9awnIqYB07J1Vr+HgMOAkyLiyqzsAGAR8EHgl5Imkk5De3tE3JzV+TJwtaSvRcTjwCdJ3aoHRcRK4J+StgWO4OVG4qvAnyLiu9nzb0qaDBxKanjMbBC4bTFrfnUnFpJ2Af4APA/cnBV/BThO0r4RMbuk2DYFNgRmVQoi4nlJNwE7Ar/M7p+rfPEzs4BO0q+Q32V1Zmdf/IrpwNGS1ouIZ7M6p1e9/3RSI1OTpJHAyFzRWICOjg46Ojq61K08ry63pLOzE4CRa6R/AKNGjaKzs9PbK6enfahVtpPblqSetqVSnr+3rirty1rtI9y21DAQbUuRHotzSBPWfDEiVgNIGgH8KFu2daFIXmnD7H5RVfmi3LINgSfzCyNilaTFVXUeqrGOyrJns/ue3qeWrwPHVxfOmDGD0aNH13zBzJkze1idnbrnhPRg30tZsGABCxYsaGxAQ1CtfWjp0lpnaDYlty1J3W0LuH3pzekHvAcOeI/blm6U2bYUSSw2B/arfPEBImK1pNPpeqpYqzuZrr9ExgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYqqdG5bkj63LeD2pTeV9uWIi65n4bQfuW2pMhBtS5HE4hbS8c97q8onkgZLleWJ7H48kB+8NR64NVdng/yLJK1BOj3tiVyd8VXrHp9b1lOdJ+hGRKwgN2lP5Thue3t7t1/unpYNZ21taQzxilXB8lXBsmXLaGtr87aqodY+1ELbyW0LxdqWviwfrirty/KO1W5belBm29Kns0KyU6q2kbQN8APgLElfk/Tu7PY10jz/ZxSKoraHSF++3XNxjCMd35yTFc0B1pW0fe51u5E+1025OrtIym+hycC92THQSp3d6Wpy7n3MbAC4bTFrPX3tsbgVCCA/vPq0GvUuIR0j7ZPsnPDNc0WbZqOqF0fEo5LOBI6VdD+pMfg28DjplC0i4m5JfwLOlXQw0A6cDfwyG7Vdiel40hUSTwW2Io3UPjz3vmcBf5F0JHAV8HFgB+ALmNlAuhW3LWYtpa+JxaYD9P470HWq3spxxQuBA0kNzNqkU7fWJU2cMzUilude80nSF/4a0ojty0kjyYGXRntPIQ3+mgs8DZwYET/N1blB0ieAk4D/IV306IPZhD1mNnDctpi1mD4lFhHxyEC8eURcR9dfKtXLAzguu3VXZzHwiV7e53bgPb3U+TXw657qmFm53LaYtZ6iE2RtBLybNLipyziNiPhBCXGZ2TDktsWs+RWZIOtA4H+BlcAzpOOjFUEagGVmVhe3LWatoUiPxbeBE4GTI6Kz5HjMbPhy22LWAopchGw0aWS0v/hmVia3LWYtoEhicR6wf9mBmNmw57bFrAUUORTydeCPkqYCdwBdrlISEUeUEZiZDTtuW8xaQNHEYg9enna3eoCVmVkRblvMWkCRxOJI4KCIuKDkWMxseHPbYtYCioyxWAH8rexAzGzYc9ti1gKKJBZnAV8uOxAzG/bctpi1gCKHQt4B7CZpH+CfvHKA1YfLCMzMhh23LWYtoEhi8Rzw25LjMDN7DrctZk2v7sQiIj4zEIGY2fDmtsWsNRQZY2FmZmZWU5GLkD1ED+eUR8Qb+xWRmQ1LblvMWkORMRZnVj1vB7YDpgLf7W9AZjZsnVn13G2LWRMqMsbirFrlkg4Bduh3RGY2LLltMWsNZY6xmAZ8pMT1mZmB2xazplJmYrEfsLjE9ZmZgdsWs6ZSZPDmPLoOsBKwIfAa4EslxWVmw4zbFrPWUGTw5hVVzzuBp4DrIuKefkdkZsPVFVXP3baYNaEigze/NRCBDBXZQLH/Iv1Sug34ckT8vbFRmbU+ty1mrcETZOVI+hhwOvAt4G2kL/90SRs0NDAza2puW2w46XNiIalT0upebqsGMthBcARwbkScHxF3AQcDS4GDGhuWWety22LWWuo5FPKhHpbtCHyFJu4BkbQmsD1wcqUsIjolzSJ9vur6I4GRuaKxAIsXL6ajo8tFGeno6GDp0qVcf/31tLW10dbWRmdn50v3wCvKelrWavXvvfdexowZgxY/gjpWs9ZaazF37lxefPHF0uIZ6tugt2WdnZ0sXbqUZ555hvb29i771wsvvFC9ezYbty1d6/e5bYGu7csaa6zR8H11qNW///77GTNmDCNeXNSntqUR8Tdymw1I2xIRhW/AFsDvgFXAhcDG/VlfI2/ARqQR6TtWlZ8G3FSj/glZfd98Gyq31zX6e1Ti99Fti2++DZ1bXW1LkbNCkLQR6Vjhp4HpwLYRcWeRdTWxk0nHTPPWp/b59mOB+cDrgab/eTkAvH1619s2Ggs8PqgRDQC3LUB9bQv4+9Mbb5+eld621JVYSFoH+AbwZeBWYPeIuL6edQxhTwOrgfFV5eOBJ6orR8QKYEVV8ZJaK5ZUefhCRNSsM5x5+/SuD9uoqbeb25aX1dO2gL8/vfH26dlAtC31DN48CvgXsA/wHxGxUwt98YmIlcBcYPdKmaS27PmcRsVl1urctpi1FmXH9HqvKHUCy4BZpOy7poj4cDmhDb7slLALgf8E/g4cBnwUeEtELOrHescBzwPrOGN+JW+f3rXyNnLbUrxtydbdsvtGGbx9ejYQ26eeQyEXkQZxtKyIuEzSa4ATSZPY3ApM7e8Xn9St+S1e2b1pibdP71p5G7lt6Z9W3jfK4O3Ts9K3T597LMzMzMx607TnhpuZmdnQ48TCzMzMSuPEwszMzErjxMLMzMxK48RigEhaX9LFkpZIek7SeZLG9PKa6yRF1e0ngxXzQJJ0iKSHJS2XdJOkd/RSf39J92T175C012DF2ij1bCNJB9bYV5YPZrzWGG5bXsntS88Gu21xYjFwLga2BCaTJv7ZBfhpH153LvDa3O2ogQpwsNR7yWhJOwGXAucB2wFXAFdI2mpQAm6AgpfVXkLXfWXjgY7ThgS3LTluX3rWkLal0RfoacUbMJF0Xv4OubKpQCewUQ+vuw44s9HxD8D2uAk4O/e8DVgAHNNN/cuAP1aV3Qj8pNGfZQhtowOB5xodt2+Dvp+4bXnlZ3P7Uu726Xfb4h6LgbEj6Q9zc65sFunL/85eXvtJSU9LulPSyZJGD1iUgyB3yehZlbKI6Myev+KS0Zkd8/Uz03uo39QKbiOAMZIekfSYpCslbTnAoVrjuW3JcfvSs0a1LYWubmq92hB4Ml8QEaskLc6WdecS4BHSleS2AU4lXT66aacyBl4NjACqZxhcBLylm9ds2E39nrZdMyuyje4FDgJuB9YBvgbcIGnLiJg/UIFaw7lt6crtS88a0rY4saiDpFOAo3upNrHo+iMif5z0DkkLgWskbRYRDxZdr7WeiJhD7gJWkm4A7iZdi+KbjYrLinHbYkNFGW2LE4v6fB+4oJc6/yJdCrnLwBhJawDrU+MyyT24KbvfHGjWL39dl4zOPFFn/WZXZBt1EREdkuaR9hVrPm5binH70rOGtC0eY1GHiHgqIu7p5baSlO2tK2n73Mt3I23vm2quvLZts/uF5XyCwRfFLhk9J18/M7mH+k2t4DbqQtIIYGuaeF8Zzty2FOP2pWcNa1saPWK1VW/ANOAW4B3AzsB9wCW55a8D7gHekT3fjNTNtD2wCfAB0i+JvzT6s5SwLT4GLAc+TerO/V/gWWB8tvwi4ORc/Z2ADuBI0nHAE4CVwFaN/ixDaBsdB0wB3kg6hexS0qXH39roz+LbgO8rblu6bg+3L+Vun363LQ3/0K16I3VNXgK8QLrW/c+BMbnlm5BOG9s1e/4G4C/AM9lOcD9wGjCu0Z+lpO1xKGnw2ArSL6t35pZdB1xQVX9/0iCiFcCdwF6N/gxDaRsBZ+TqPgFcBWzX6M/g26DsJ25bXrlN3L6UtH3KaFt82XQzMzMrjcdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFhYw0l6WNJhjY7DzFqL25bGcGJhZmZmpXFiYWZmZqVxYmH9IukLkh7PLsWbL79S0s8lbZY9XiTpRUn/kPT+Hta3iaSQtG2ubN2sbNdc2VaSpmXrXCTpF5JePQAf0cwawG1L83JiYf31a+BVwPsqBZLWB6YCFwNjgKuB3YHtgD8Bf5A0oegbSloXuBaYB+yQvdd44FdF12lmQ47blia1RqMDsOYWEc9KmgZ8ArgmK94PeBr4c0R0ArflXvJNSR8CPgCcXfBtDwXmRcQ3KgWSDgIek/TmiLiv4HrNbIhw29K83GNhZbgY+IikkdnzTwK/jIhOSWMkfU/S3ZKek/QiMBEo/KsCmAS8L+uqfDFb5z3Zss36sV4zG1rctjQh91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GY2ZLltaUJOLKzfImK5pN+Sfk1sDtwbEbdki3cGLoiI3wFIGgNs0sPqnsruX0s6zgmwbVWdW4CPAA9HxKp+fwAzG5LctjQnHwqxslwM7A0clD2uuB/4sKRtJU0CLqGH/S4ilgE3AsdImijpvcBJVdXOAdYHLpX09mx0+B6Szpc0osTPZGaN57alyTixsLJcCywGtiB9wSuOAJ4FbiB1MU4n/SroyUGk3rS5wJnAsfmFEfE46dfKCGAGcEdW7zle7u40s9bgtqXJKCIaHYOZmZm1CPdYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFiYmZlZaZxYmJmZWWmcWJiZmVlpnFjYoJN0oKSQtEmjYzEzs3I5sTAzM7PSKCIaHYMNM5JGAO3AivAOaGbWUpxYmJmZWWl8KMQGXX6MhaQLJT0tqb1GvRmS7m1EjGZmVowTC2u0XwCvAvbIF0raENgN+L9GBGVmZsU4sbBGuxaYD3yqqvw/SPunEwszsybixMIaKiI6gYuBD0gam1v0SeCGiHioMZGZmVkRTixsKLgIGAV8CEDSFsD2pMMkZmbWRJxYWMNFxF3AXF4+HPIpYCXwq4YFZWZmhTixsKHiImA3Sa8FPgFcFRHPNjgmMzOrkxMLGyouBQI4C3gjHrRpZtaUnFjYkBARTwF/AvYHngOuamhAZmZWiBMLG0ouyu5/FRErGhqJmZkV4sTCBl1EXBARioiHqxatzO59GMTMrEn5WiE2ZEj6IzAR2NwXJzMza05rNDoAM0kfB7YB9ga+6qTCzKx5ucfCGk5SAC8ClwEHR8SqBodkZmYF1Z1YSJoKvBgRf82eHwJ8HrgLOMRzD5iZmQ1fRQZvfhcYByBpa+D7wNXApsDp5YVmZmZmzabIGItNSb0TAB8B/hgR35D0NlKCYWZmZsNUkcRiJTA6e/x+Xp57YDFZT8ZwJEnARsALjY7FhqWxwOMe+GpmjVYksfgrcLqkvwHvAD6Wlb8ZmF9WYE1oI4b357fGez2woNFBmNnwViSxOBT4EbAf8MWIqDRke5KmZB6uXgB47LHHGDeua8dNR0cHM2bMYMqUKbS3tzckuKHM26d3PW2jJUuW8IY3vAHcW2ZmQ0DdiUVEPArsU6P88FIianLjxo2rmViMHj2acePG+R9nDd4+vfM2MrNmUWiCLEltwObABlSdWRIRs0uIy8zMzJpQ3YmFpHcBlwAbA6paHMCIEuIyMzOzJlSkx+InwM2k6ZcXkpIJs3677bbbaGtr49WvfjUTJkxodDhmZlZAkcTiTcB+EfFA2cHY8DR/fjqZZpdddmHZsmWsNWo0995zt5MLM7MmVGTmzZtI4yvMSvHMM88AsP7UL/OqfY5k+bKlPP300w2OyszMiijSY/FD4PuSNgTuADryCyPi9jICs+Gnff3XsXqVj6yZmTWzIj0WlwMTgZ8D/wBuBebl7guRdIykkHRmrmwtSedIekbSi5IulzS+6nUTJF0laamkJyV9V9IaVXV2lXSLpBWSHpB0YI33P0TSw5KWS7pJ0juKfhYzM7Phqui1Qkol6e3AfwLVvR1nkAaJ7g88D5wN/BbYOXvdCOAq4AlgJ+C1pCnGO4BvZHU2zer8BPgksDvwM0kLI2J6VudjpAuoHUw61HMYMF3SFhHxZNmf18zMrFUVmSDrkTIDkDQGuJh06fVjc+XrAJ8FPhER12ZlnwHulvSuiLgRmAK8FXh/RCwCbpX0TeBUSSdExEpSsvBQRByZrfpuSe8GDgemZ2VHAOdGxPnZ+xxMSmgOAk4p8/OamZm1sqITZG1G+lU/MSu6CzgrIh4ssLpzgKsiYpakY3Pl2wPtwKxKQUTcI+lRYEfgxuz+jiypqJgO/BjYknRoZsf8OnJ1zsw+y5rZe52ce59OSbOy19YkaSQwMlc0FtIMiR0dXYadvPS8utySzs5OAEaukaZFGTVqFJ2dnd5eOT3tQ95OZjaUFJkgaw/g96QxFX/LincG/ilp34iYWce6Pg68DXh7jcUbAisj4rmq8kXZskqdRTWW04c64ySNAtYjTepVq85begj/68Dx1YUzZsxg9OjRNarDzJl93jTD0ql7ZqeX7nspCxYsYMECX0+rWq19aOnSpQ2IxMystiI9FqcAZ0TEMflCSacApwJ9+u8p6Q3AWcDkiFheII5GO5k0LqNiLDB/ypQpNa8VMnPmTCZPnuzrPNQwb948Fi5cyNHTHmXFqmDRJccwe/ZsJk2a1OjQhoye9qElS5Y0KCozs1cqklhMBD5ao/znpMMjfbU96Vojt0gvzQw+AthF0qHAHsCaktat6rUYTxqsSXZfffbG+Nyyyv34GnWWRMQySauB1d3UeYJuRMQKYEXleeUztLe3d5s89LRsOGtrSycnrVgVLF8VLFu2jLa2Nm+rGmrtQ95OZjaUFDnd9Clg2xrl2wL1nEFxDbB19rrK7WbSQM7K4w7SWRwASNoCmADMyYrmAFtL2iC33snAEtK4j0qd3elqcmUd2QDPuVXv05Y9n4OZmZn1WZEei3OBn0p6I3BDVrYzcDRdDw30KCJeAO7Ml0n6N/BMRNyZPT8POF3SYlKy8ENgTnZGCMAMUgLxC0lHkcZTnASck/UoQDrN9FBJp5F6VXYj9bjsnXvr04ELJd0M/J3U87I2cH5fP4+ZmZkVSyy+DbwAHMnLZ1I8DpwA/KCcsF5yONBJmpRrJOlsji9VFkbEakn7kM4CmQP8G7gQOC5X5yFJe5PmxPgqMB/4XGUOi6zOZZJeA5xISk5uBaZWnW1iZmZmvSgyj0WQ/kmfIWlsVvZCGcFExK5Vz5cDh2S37l7zCLBXL+u9DtiulzpnkybgMjMzs4IKzWNRUVZCYWZmZq2hT4mFpFuA3SPiWUnzgG6vFBURbysrODMzM2sufe2xuJKXT628kh4SCzMzMxu++pRYRMS3co9PGLBozMzMrKnVPY+FpH9JelWN8nUl/aucsMzMzKwZFZkgaxPSDJnVRgKv71c0ZmZm1tT6fFaIpA/knu4h6fnc8xGkmSofKiswMzMzaz71nG56RXYfpEmo8jqAh0mTZpmZmdkw1efEIiLaACQ9BLw9Ip4esKjMzMysKRWZeXPTgQjEzMzMml9fJ8j6CvDTiFiePe5WRJR9vRAzMzNrEn3tsTicdDnz5dnj7gTlX4jMzMzMmkRfJ8jatNZjMzMzs7wiE2QdJ2l0jfJRko6r9RozMzMbHopMkHU8MKZG+ehsmZmZmQ1TRRILUfsiZJOAxf0Lx8zMzJpZPTNvPktKKAK4T1I+uRhB6sX4SbnhmZmZWTOpZx6Lw0i9FT8nHfLIT+m9Eng4IuaUF5qZmZk1m3pm3rwQXpp5828RsWrAojIzM7OmVPcYi4j4C7CxpJMkXSppAwBJe0rasvQIzczMrGkUOd30vcAdwDuBD/PyGSKTgG+VF5qZmZk1myJnhZwCHBsRk0ljKyquBd5Vz4okfVHS7ZKWZLc5kvbMLV9L0jmSnpH0oqTLJY2vWscESVdJWirpSUnflbRGVZ1dJd0iaYWkByQdWCOWQyQ9LGm5pJskvaOez2JmZmbFEoutgd/VKH8SeHWd65oPHANsD+xASk6uzB1SOQPYF9gfeC+wEfDbyosljQCuAtYEdgI+DRwInJirs2lW58/AtsCZwM8k7ZGr8zHgdFKPy9uA24DplcM8ZmZm1jdFEovngNfWKN8OWFDPiiLiDxFxdUTcHxH3RcR/Ay8C75K0DvBZ4IiIuDYi5gKfAXaSVOkZmQK8FfhURNwaEdOAbwKHSFozq3Mw8FBEHBkRd0fE2cBv6HrNkyOAcyPi/Ii4K3vNUuCgej6PmZnZcFf3ZdOBXwKnStqfNKdFm6Sdge8BFxUNJOt92B9YG5hD6sVoB2ZV6kTEPZIeBXYEbszu74iIRblVTQd+DGwJzMvqzKKr6aSeC7IEZHvg5Nz7dEqalb22u3hHAiNzRWMBOjo66Ojo6FK38ry63JLOzk4ARq4hAEaNGkVnZ6e3V05P+5C3k5kNJUUSi28A5wCPkSbGuiu7vwQ4qd6VSdqalEisReqt+FBE3CVpW2BlRDxX9ZJFwIbZ4w2z59XL6UOdcZJGAetl8deq85YeQv86NaYwnzFjBqNHv+JSKgDMnDmzh9XZqXtOSA/2vZQFCxawYEFdHWDDQq19aOnSpQ2IxMystroTi4hYCXxe0reBrUhnhcyLiPsLxnAvaezDOsB+wIXZmSdD3cmkcRkVY4H5U6ZMYdy4cV0qdnR0MHPmTCZPnkx7e/tgxtgU5s2bx8KFCzl62qOsWBUsuuQYZs+ezaRJkxod2pDR0z60ZMmSBkVlZvZKRXosAIiIRyU9lj2ude2Qvq5nJfBA9nSupLcDXwUuA9aUtG5Vr8V44Ins8RNA9dkb43PLKvfja9RZEhHLJK0GVndT5wm6ERErgBWV51Lqxm9vb+82eehp2XDW1paG+qxYFSxfFSxbtoy2tjZvqxpq7UPeTmY2lBQZvImkz0q6E1gOLJd0p6TPlRjTSGAu0AHsnnvfLYAJpEMnZPdbV529MRlYQjpEU6mzO11NrqwjS2zmVr1PW/bcU5SbmZnVoe4eC0knks6i+CEv/+PdEThD0oSIOK6OdZ0MTAMeJR1K+ASwK7BHRDwv6TzgdEmLScnCD4E5EXFjtooZpATiF5KOIo2nOAk4J+tRgHRhtEMlnUa6zsluwEeBvXOhnE46BHMz8HfSdVHWBs7v62cxMzOzYodCvgh8PiIuzZX9XtLtpH/8fU4sgA1IZ5K8lnRRs9tJSUVlhNrhQCdwOakXYzrwpcqLI2K1pH1IZ4HMAf4NXJiPISIekrQ3aU6Mr5LmzvhcREzP1blM0mtI819sCNwKTK0628TMzMx6USSxaAdurlE+t971RcRne1m+HDgku3VX5xFgr17Wcx1pno2e6pwNnN1THTMzM+tZkTEWvyD1WlT7AnBx/8IxMzOzZlb0rJDPSppCmqQK0gXJJgAXSXrpFMyIOKKf8ZmZmVkTKZJYbAXckj3eLLt/OrttlatX+BRUMzMza05FJsh630AEYmZmZs2v0DwWAJI2l7RHNi02qswQZWZmZsNW3YmFpFdJuga4D7ial690ep6k75cZnJmZmTWXIj0WZ5BmxJxAurR4xWXA1DKCMjMzs+ZUZPDmFNIkVvOrjn7cD2xcSlRmZmbWlIr0WKxN156KivXJXZTLzMzMhp8iicX1wAG555FdtOso4M+lRGVmZmZNqcihkKOAayTtAKwJnAZsSeqx2LnE2MzMzKzJ1N1jERF3Am8G/gpcSTo08ltgu4h4sNzwzMzMrJnU1WMhqR34E3BwRHxnYEIyMzOzZlVXj0VEdADbDFAsZmZm1uSKDN78P6DHy52bmZnZ8FRk8OYawEGS3g/MBf6dX+grmpqZmQ1f/b266ZurlvmKpmZmZsOYr25qZmZmpSl8dVMzMzOzak4szMzMrDROLMzMzKw0DU0sJH1d0j8kvSDpSUlXSNqiqs5aks6R9IykFyVdLml8VZ0Jkq6StDRbz3clrVFVZ1dJt0haIekBSQfWiOcQSQ9LWi7pJknvGJAPbmZm1qL6lFhk/5DXyx4fJ2l0Se//XuAc4F3AZKAdmCFp7VydM4B9gf2z+huRphCvxDYCuIp03ZKdgE8DBwIn5upsmtX5M7AtcCbwM0l75Op8DDgd+BbwNuA2YLqkDUr6rGZmZi2vrz0WE0nXBAE4HhhTxptHxNSIuCAi/hkRt5ESggnA9gCS1iFNxnVERFwbEXOBzwA7SXpXtpopwFuBT0XErRExDfgmcIikNbM6BwMPRcSREXF3RJwN/AY4PBfOEcC5EXF+RNyVvWYpcFAZn9XMzGw46OvpprcC50v6KyDga5JerFUxIk6sVd5H62T3i7P77Um9GLNy679H0qPAjsCN2f0dEbEot57pwI9JV12dl9WZRVfTST0XZAnI9sDJuffplDQre+0rSBoJjMwVjQXo6Oigo6OjS93K8+pySzo7OwEYuYYAGDVqFJ2dnd5eOT3tQ95OZjaU9DWxOJB0iGAf0iRYewKratQLcocg6iGpjfSP/m/ZFVQBNgRWRsRzVdUXZcsqdRbVWE4f6oyTNApYDxjRTZ23dBPy10m9N13MmDGD0aNrHymaOXNmN6sygFP3nJAe7HspCxYsYMGCBY0NaAiqtQ8tXbq0AZGYmdXWp8QiIu4FPg4gqRPYPSKeLDmWc0izer675PUOlJNJYzIqxgLzp0yZwrhx47pU7OjoYObMmUyePJn29vbBjLEpzJs3j4ULF3L0tEdZsSpYdMkxzJ49m0mTJjU6tCGjp31oyZIlDYrKzOyVisy8WfqZJJLOJvWG7BIR83OLngDWlLRuVa/F+GxZpU712Rvjc8sq9+Nr1FkSEcskrQZWd1PnCWqIiBXAitxnAKC9vb3b5KGnZcNZW1vapVasCpavCpYtW0ZbW5u3VQ219iFvJzMbSgolCZI2k/RDSbOy2w8kbVZgPcqSig8Bu0XEQ1VV5gIdwO6512xBGuA5JyuaA2xddfbGZGAJcFeuzu50NbmyjohYmb1X/n3asudzMDMzsz6pO7HITtG8i9RLcHt2eyfwT0mT61zdOcCngE8AL0jaMLuNAoiI54HzgNMlvU/S9sD5wJyIuDFbx4wsnl9ImpTFdxJwTtarAPAT4I2STpP0FklfAj5KOpW14nTg85I+LWkiafDn2tn7mZmZWR8UubrpKcAZEXFMvlDSKcCpQD0jFL+Y3V9XVf4Z4ILs8eFAJ3A56SyM6cCXKhUjYrWkfUiJwBzSZdwvBI7L1XlI0t6kROKrwHzgcxExPVfnMkmvIQ0+3ZB0JszUqrNNzMzMrAdFEouJpF/71X4OHFbPiiJCfaizHDgku3VX5xFgr17Wcx2wXS91zgbO7i0mMzMzq63IGIunSLNXVtsWKPtMETMzM2siRXoszgV+KumNwA1Z2c7A0XQ9/dLMzMyGmSKJxbeBF4AjeXmmyseBE4AflBOWmZmZNaMi81gEaRDkGZLGZmUvlB2YmZmZNZ8iPRYvcUJhZmZmeaXPomlmZmbDlxMLMzMzK40TCzMzMytNXYmFpHZJ10h600AFZGZmZs2rrsQiIjqAbQYoFjMzM2tyRQ6F/B/w2bIDMTMzs+ZX5HTTNYCDJL2fdKnxf+cXRsQRZQRmZmZmzadIYrEVcEv2+M1Vy6J/4ZiZmVkzKzLz5vsGIhAzMzNrfoVPN5W0uaQ9JI3Knvd6CXQzMzNrbXUnFpJeJeka4D7gauC12aLzJH2/zODMzMysuRTpsTgD6AAmAEtz5ZcBU8sIyszMzJpTkcGbU4A9ImJ+1dGP+4GNS4nKzMzMmlKRHou16dpTUbE+sKJ/4ZiZmVkzK5JYXA8ckHsektqAo4A/lxKVmZmZNaUih0KOAq6RtAOwJnAasCWpx2LnEmMzMzOzJlN3j0VE3EmaGOuvwJWkQyO/BbaLiAfrWZekXST9QdLjkkLSB6uWS9KJkhZKWiZpVvUF0CStL+liSUskPSfpPEljqupsI+l6ScslPSbpqBqx7C/pnqzOHZL2quezmJmZWcF5LCLi+Yj4TkR8NCL2iohjI2JhgVWtDdwGHNLN8qOArwAHA+8kTR8+XdJauToXk3pMJgP7ALsAP60slDQOmAE8AmwP/BdwgqQv5OrsBFwKnAdsB1wBXCFpqwKfyczMbNgqcigESeuRLkQ2MSu6Czg/IhbXs56ImAZMy9ZZ/R4CDgNOiogrs7IDgEXAB4FfSppIOsX17RFxc1bny8DVkr4WEY8DnyQdsjkoIlYC/5S0LXAELycgXwX+FBHfzZ5/U9Jk4FBSUmNmZmZ9UGSCrF2Ah0k9Cetlt68AD2XLyrIpsCEwq1IQEc8DNwE7ZkU7As9VkorMLKCT1MNRqTM7SyoqpgNbZAlSpc4supqeex8zMzPrgyI9FueQJsP6YkSsBpA0AvhRtmzrkmLbMLtfVFW+KLdsQ+DJ/MKIWCVpcVWdh2qso7Ls2ey+p/d5BUkjgZG5orEAHR0ddHR0dKlbeV5dbklnZycAI9dIvVajRo2is7PT2yunp33I28nMhpIiicXmwH6VpAIgIlZLOp2up6G2uq8Dx1cXzpgxg9GjR9d8wcyZMwc6pqZ26p4T0oN9L2XBggUsWLCgsQENQbX2oaVLa00rY2bWGEUSi1tIYyvurSqfSBqIWZYnsvvxQH5g6Hjg1lydDfIvkrQG6dTXJ3J1xlete3xuWU91nqB7JwOn556PBeZPmTKFcePGdanY0dHBzJkzmTx5Mu3t7T2scniaN28eCxcu5Ohpj7JiVbDokmOYPXs2kyZNanRoQ0ZP+9CSJUsaFJWZ2Sv1KbGQtE3u6Q+AsyRtDtyYlb2LdGbHMSXG9hDpH/vuZIlEdobHO4EfZ3XmAOtK2j4i5mZlu5HGjtyUq/MdSe0RUekzngzcGxHP5ursDpyZe//JWXlNEbGC3EyjlcGn7e3t3SYPPS0bztra0lCfFauC5auCZcuW0dbW5m1VQ619yNvJzIaSvvZY3AoEkD9147Qa9S4hjb/ok2y+ic1zRZtmZ2wsjohHJZ0JHCvpflKi8W3gcdLpoETE3ZL+BJwr6WCgHTgb+GV2RkglpuNJV189FdiKdBbI4bn3PQv4i6QjgauAjwM7AF/AzMzM+qyvicWmA/T+O9B1GvDKoYULgQNJycvapNNC1yVNyjU1IpbnXvNJUjJxDelskMtJZ6kA6UwSSVNIA0vnAk8DJ0bET3N1bpD0CeAk4H9IF1T7YDYZmJmZmfVRnxKLiHhkIN48Iq6jay9I9fIAjstu3dVZDHyil/e5HXhPL3V+Dfy6pzpmZmbWs6ITZG0EvJs0cLLLXBgR8YMS4jIzM7MmVHdiIelA4H+BlcAzpLEXFUEa3GlmZmbDUJEei28DJwInR0RnyfGYmZlZEytyEbLRpLMunFSYmZlZF0USi/OA/csOxMzMzJpfkUMhXwf+KGkqcAfQ5UIFEXFEGYGZmZlZ8ymaWOzBy1N6Vw/eNDMzs2GqSGJxJHBQRFxQcixmZmbW5IqMsVgB/K3sQMzMzKz5FUkszgK+XHYgZmZm1vyKHAp5B7CbpH2Af/LKwZsfLiMwMzMzaz5FEovngN+WHIeZmZm1gLoTi4j4zEAEYmZmZs2vyBgLMzMzs5qKXITsIXqYryIi3tiviMzMzKxpFRljcWbV83ZgO2Aq8N3+BmRmZmbNq8gYi7NqlUs6BNih3xGZmZlZ0ypzjMU04CMlrs/MzMyaTJmJxX7A4hLXZ2ZmZk2myODNeXQdvClgQ+A1wJdKisvMzMyaUJHBm1dUPe8EngKui4h7+h2RmZmZNa0igze/NRCBmJmZWfPzBFlVJB0i6WFJyyXdJOkdjY7JzMysWfQ5sZDUKWl1L7dVAxnsQJP0MeB04FvA24DbgOmSNmhoYGZmZk2inkMhH+ph2Y7AV2j+HpAjgHMj4nwASQcDewMHAac0MjAzM7Nm0OfEIiKurC6TtAXpH+6+wMXAceWFNrgkrQlsD5xcKYuITkmzSIlTdf2RwMhc0ViAxYsX09HR5UrydHR0sHTpUq6//nra2tpoa2ujs7PzpXvgFWU9LWu1+vfeey9jxoxBix9BHatZa621mDt3Li+++GJp8Qz1bdDbss7OTpYuXcozzzxDe3t7l/3rhRdeqN49zcwapshZIUjaiHS44NPAdGDbiLizzMAa4NXACGBRVfki4C016n8dOL66cNNNNy0/smHoC1/4QqNDaEZjgSWNDsLMhre6EgtJ6wDfAL4M3ArsHhHXD0BczeBk0niMvPWpPUnYWGA+8HrAPy9fydund71to7HA44MakZlZDX1OLCQdBRwNPAH8R61DI03uaWA1ML6qfDzpM3cRESuAFVXFNX8tSqo8fCEi/IuyirdP7/qwjbzdzGxIqKfH4hRgGfAA8GlJn65VKSI+XEZggy0iVkqaC+xONgmYpLbs+dkNDM3MzKxp1JNYXETXqbxb0enAhZJuBv4OHAasDZzfyKDMzMyaRT1nhRw4gHEMCRFxmaTXACeSrn9yKzA1IqoHdNZrBWmwa/WhE0u8fXrnbWRmTUERrd4JYWZmZoOl2Se0MjMzsyHEiYWZmZmVxomFmZmZlcaJhZmZmZXGicUAkbS+pIslLZH0nKTzJI3p5TXXSYqq208GK+aBVO/l6CXtL+merP4dkvYarFgbpZ5tJOnAGvvK8sGM18ysFicWA+diYEtgMrAPsAvw0z687lzgtbnbUQMV4GCp93L0knYCLgXOA7YjTVh2haStBiXgBqh3G2WW0HVf2Xig4zQz641PNx0AkiYCdwFvj4ibs7KpwNXA6yOi5jUdJF0H3BoRhw1SqINC0k3APyLi0Ox5G/AY8MOIeMXl6CVdBqwdEfvkym4kbZuDBynsQVVgGx0InBkR6w5mnGZmvXGPxcDYEXiuklRkZgGdwDt7ee0nJT0t6U5JJ0saPWBRDoLc5ehnVcoiojN7/orL0Wd2zNfPTO+hflMruI0Axkh6RNJjkq6UtOUAh2pm1qtCl023Xm0IPJkviIhVkhZny7pzCfAI6SqV2wCnAlsATXn9lUy9l6OHtI1q1e9p2zWzItvoXuAg4HZgHeBrwA2StoyI+QMVqJlZb5xY1EHSKaQrvPZkYtH1R0R+DMYdkhYC10jaLCIeLLpeaz0RMQeYU3ku6QbgbuA/gW82Ki4zMycW9fk+cEEvdf5Fusx6l0F3ktYA1qfGJdh7cFN2vznQrIlFXZejzzxRZ/1mV2QbdRERHZLmkfYVM7OG8RiLOkTEUxFxTy+3laRfkutK2j738t1I2/ummiuvbdvsfmE5n2DwZdujcjl6oMvl6Od087I5+fqZyT3Ub2oFt1EXkkYAW9PE+4qZtQb3WAyAiLhb0p+AcyUdDLQDZwO/rJwRIul1wDXAARHxd0mbAZ8gnTnyDGmMxRnA7Ii4vRGfo0Q9Xo5e0kXAgoj4elb/LOAvko4ErgI+DuwAfGGQ4x5MdW0jSccBNwIPAOsC/0U63fRngx24mVmeE4uB80lSMnEN6WyQy4Gv5Ja3kwZmVs76WAm8n5f/oTyWveakwQl34PThcvQTSNuoUv8GSZ8gffb/Ae4HPhgRdw5q4IOo3m0ErEea82RD4FlSj8dOEXHXoAVtZlaD57EwMzOz0niMhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYWZmZmVxomFmZmZlcaJhZmZmZXGiYU1nKSHJR3W6DjMzKz/nFiYmZlZaZxYmJmZWWmcWFi/SPqCpMezq3Hmy6+U9HNJm2WPF0l6UdI/JL2/h/VtIikkbZsrWzcr2zVXtpWkadk6F0n6haRXD8BHNDOzOjixsP76NfAq4H2VAknrA1OBi4ExpCu27g5sB/wJ+IOkCUXfUNK6wLXAPNJVT6cC44FfFV2nmZmVw1c3tX6JiGclTSNd8v2arHg/4GngzxHRCdyWe8k3JX0I+ADp6q9FHArMi4hvVAokHQQ8JunNEXFfwfWamVk/ucfCynAx8BFJI7PnnwR+GRGdksZI+p6kuyU9J+lFYCLpMuBFTQLelx0GeTFb5z3Zss36sV4zM+sn91hYGf4ACNhb0j+A9wCHZ8u+B0wGvgY8ACwDfgOs2c26OrN75craq+qMyd7z6BqvX1hv8GZmVh4nFtZvEbFc0m9JPRWbA/dGxC3Z4p2BCyLidwCSxgCb9LC6p7L715LGUABsW1XnFuAjwMMRsarfH8DMzErjQyFWlouBvYGDsscV9wMflrStpEnAJfSw30XEMuBG4BhJEyW9Fzipqto5wPrApZLenp15soek8yWNKPEzmZlZnZxYWFmuBRYDW5CSh4ojgGeBG0iHL6aTehx6chCpN20ucCZwbH5hRDxO6gkZAcwA7sjqPcfLh1LMzKwBFBGNjsHMzMxahHsszMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNE4szMzMrDROLMzMzKw0TizMzMysNP8/ddAmq2tB48YAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhgAAAI2CAYAAAASIvFWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABdnUlEQVR4nO3deZxcVZn/8c+3kybpAAGCExDGAIoiogLiAuKwCEkQcUYUxQn+ZHMGHDcWB1wBcQE3NmF0UMQF4jKiYRQxyDa4IEZ2ZBEkbLKGQBJIJ+nQz++PcyvcVFd3V9263dVV/X2/XvdVVeeee+5zq26deuquigjMzMzMytTV6gDMzMys8zjBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBMDMzs9I5wTAzM7PSOcGwtUg6SdKoXN5V0tWSrs693kNSSDpglOb/XUn3jca8qua7Zbach4z2vMcLSRMlfVnSg5L6Jc1rdUztLvf93KPVsVh7cILRwSQdknUIlWGFpIclzZf0EUnrlzSfzbLEZIcy2ivTWI7NRtRhwH8CPwUOBk5vbThm48/EVgdgo+IEYCHQDWwK7AGcARwj6Z8j4pZc3c8DpzbY/mbAicB9wE0NTDerwfkUMVRs/0Zrkuz7gR6grwXzHi/eDPw9Io5udSBm45UTjPHh0oj4c+71KZLeDPwS+F9J20ZEL0BErAZWj2QwkqZExPKIWDWS8xlORLTkBz7SHQZXtGLezZA0GVgVEf2tjqUO04Gny2pMUhewTkS03edm1ireRTJORcSVwOeALYD3VsprHYMhaaak30l6WtIzku6S9MVs3B7Agqzq+bndMYdk46+WdJuknSRdI2k58MXcuKtrhDdB0hclPSrpWUn/K+lFVTHdJ+m71RPm26wjtgHHYEhaV9LXsn33K7Nl/ZgkVdULSWdLenu2fCsl/UXSPjWWpzrGAcdgZLE8I2lzSfOy509I+qqkCXW0eZ+kX0qaJemmbHfY7ZLeUVVvWtbmrdk8lkq6VNL2VfUq+9vfI+nzkv4OLAemFmjj3ZJOlPR3Scsk/VTSBpImSTpD0uNZO+dLmlTVxqDr3lDvLbAnsF3uM98jG9/o53uQpL8AK4EhP1tJb5H0f9kyLpW0QNKcqjrvknS9pF5JiyRdIGnz3PiPZfPeokb7p0haJWmjoeLI6r42a+fgGuNmZ+P2y15vIem/sveiV9KTkv5H0pZ1zGfY72GubJKkz0q6J3vvH1Q6TmZS9fTWGbwFY3z7AenHfhbwrVoVJG1H2tJxC2lXy0pga2DXrModWfnJwLnAb7PyP+Sa2Ri4FPgRcAHw2DBxfQoI4Eukf6JHAZdL2qGypaVO9cS2RvYj87+kH6fzSLtUZgNfATYHqje3vwl4B/BfwDLgI8BFkmZExJMNxFkxAZgPXAd8DNgbOBb4G/CNOqZ/KfBj4JvA94BDgf+RtE9E/Car82Lg7cD/kHabbQIcAfyfpFdExMNVbX4GWAV8FZiUPX9Fg218Augl7XrbGvgwafdQP7ARcBKwM3BI1t7JUNe6V8sTwP8jrUPrZfMGuKPA5/tm4N3A2cAi0m62mpSSxe8AfwFOIW092ZGUlMzN1TmflPR+gvS+fRTYVdKOEfE08BPgy9l8v1I1m3cDl0XEU0MsPwAR8WdJ92bTfK9q9IHAU6R1DeB1wBtJ38+HgC2BDwBXZ5/n8uHmNxylLUD/S/rOnEv6br6K9J6/jLQ+WaeJCA8dOpA67ABeO0Sdp4Ebcq9PItuKn70+KmvjBUO08dqsziE1xl2djTtikHFX517vkdV9CFg/V/6urPwjubL7gO/W0eZQsX0XuC/3+l+yup+qqvc/pB/Dl+TKgvSDly97dVb+oWE+ly2rY8piCeAzVXVvAP5cx2d9Xzb9O3JlU4GHqz7fSUBXjXhW5Oed+yz+BvRU1W+0jVuB7lz53Oz9/FVVG3+o+jyGXfeGeD+uBm6rKmv0830OeEUd89oAWAr8EZhcNU7ZYzcpsb41Xwd4azavz1a9D3+uaud1Wb3/18B78EVSQrhRrmwdUnJxXq6sp8a0O1fPL/d57lHge/je7P18U1W9I7I239joZ+xh7A/eRWLPAEOdTfJ09vgv2b+QIlaS/rnV6/sRsSz3+qfAI8C+Bedfr31JneBZVeVfAwS8par88oj4W+VFpINll5K2EhT1zarXv22gvYeBn+fiWQp8H9hR0qZZ2crIjqGQNEHSxqR14C7gNTXa/F5UbTUq0Mb3Y+3jXa4jvZ/fqap3HfAiSZUtq09nj82se3mNfr7/FxG319HuTNJ36NSoOkYjIiq7G19L2hr3X/k6EXEJcCcp0aj4MbCTpJfkyg4kfY8uriOefDvdpK1sFbOADbNxlRjWfL6SurPP8x7S+1/r8yziXaStFndKekFlAK7Mxu9Z0nxsDHGCYeuRNu8P5sfA74FvA49J+lG2T72Rdefv0dgBnXfnX2Sd9D2kf8kjaQvg4arkBlLHWBmf90CNNp4ibfYvYkVEPNFEe/fkftAq/po9bglpU7WkoyXdTfrBWkTarfBq0j/xagurCwq0Uf0+LckeH6xR3pVro4x1L6/Rz3fAsg+ikgjcNsy8ISVh1e6smndli8qBsGbX3btIB2svrTMmIuLmrO0Dc8UHkj6vyg87knoknSzpQdb+PDek9udZxEuB7bJ280Nl/Zxe0nxsDPExGOOYpH8kdSD3DFYnInol7Ub6h/FW0j7lA4ErJc2KiOfqmFUjx03Ua7CLgU0g/UsdDYPNR4OUF22vTJ8kHdz7HdLxFYtJP2ZnUPsPR63PrtE2BluuId+/kta9ZozEejusiHhY0m9Jx098kbS7YgZwfIHmfgx8KttasAz4Z+CHkc4Wq/g66XidM4BrSYlekI7JGC6Zq/d72EXaPXTMIPWrk03rAE4wxrf/lz3OH6pStjn8imw4RtIngS+QOv7LGbyTKeql+RfZP7itSQf7VTxF+odVbQvg3tzrRmK7H9hb0vpV/3Jfnhs/lm0tSVVbMV6WPd6XPR4AXBURh+cnlLQh6Z9rPcpooy51rHuNGKnPt7Kb7JUMnqxX2t6G3NaDXFn1vH8M/JekbUhJ1XLgFwVi+zHpOjDvJB0DMpWUOOQdQNoVdmylQOmU5A3raL/e7+HfgO2BK2psZbMO5V0k45TSdTA+Q9oMfOEQ9abVKL4pe6ycXvZs9rhhSeG9T2tfZfQA4IWkM1Eq/gbsLGmdSkF22t1ap7M2GNuvSP+8PlRVfjQpUbl0wBRjy2bA/pUXkqYC7wNuiohHs+LnqNrCIuldpLMo6lVGG8Oqc91rxEh9vpeRtg58IvthXiNLjgH+DDwOHJk/LVPSW4BtgUuq2ryI9D7/K2n3yC8j4lkaFBF3kLYcHJgNjwDXVFUb8HmSzvQZ9vRo6v8e/oS0fvxbdQPZLpp165iXtRlvwRgf3iLp5aTPexPS6XczSf+a/rn6wLQqJ2SbqS/J6k8H/oN0psfvsjp/Ix0QdqSkZaQf9esiot592NUWA7+TdH4W71Gkf4b5U2m/TUo8fi3pJ6T94O/l+X+TFY3E9gvgKuAL2TUAbiYdFPcvwBn5AzrHqL8C50l6Henf6mGk9+/QXJ1fkj7T80lnK7wKOIi1/20Op4w26lHPuteIEfl8I2KppKNJ6+QCSXNJ/+y3B6YAB0dEn6TjSQc7/5+kH/L8aar3UXUp84h4XNJVpF0K65M7KLOAH5NO/V1BOnuk+kJpvwT+n6QlwO3ALqRTpOs51bre7+EPSLt8vilpT9KxNRNIW4/eTTpd+M9YZ2n1aSweRm7g+dNUK8NK0j+Yy0jXbFi/xjQnsfZpqm8G5gF/z6b/O+k0w5dWTffPpGsA9JE7BZMapwvmprma2qepvoe07/kx0qbhXwIzakx/DOnHZgXpB2en6jaHie275E6LzMrWA07LlnMV6Uf7Y2SnG+bqBXB2jZjuo8Zpe1V1tszHkYvlmeE+jyHavC97n2aRfjhXkA5ePKCq3iTSNS0ezt7b35H28Q/2WRxQY15NtcEgp09XlpXstFTqXPeGWLcGrHfNfr7DzPNtpB/O5aTjGK4D3lNV592kU49XkH7ALwA2H6S992dxLKXq9NcG49qa5/uAXWuM35B0PM0TpC0xvybttllrXabGaaoNfg+7geNIB8OuIP2R+DPpGidTiy6fh7E7VM7RNrM2pnRF0tsiYr9Wx2JmBj4Gw8zMzEaAj8EwM2sjknoY/voUi6PFNxM0c4JhZtZeDmT4K+PuSToOwqxlfAyGmVkbkfRC0lUxh3J91HFTNLOR5ATDzMzMSueDPM3MzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjDMzMysdE4wzMzMrHROMMzMzKx0TjCs5SSdJClyr++T9N0WhmRmHcB9S2s5wTAzM7PSTWx1AGY1bAP0tzoIM+s47ltGkRMMG3MiYmWrYzCzzuO+ZXR5F4mNKklvkrRA0gpJf5N0RI063k9qZg1x3zL2eAuGjRpJrwIuA54ATiKtf58FHmthWGbW5ty3jE1OMGw0nQwI+KeIeABA0kXArS2NyszanfuWMci7SGxUSJoAzAbmVToAgIi4A5jfssDMrK25bxm7nGDYaPkHoAe4u8a4u0Y5FjPrHO5bxignGGZmZlY6Jxg2Wp4AeoGX1hi3zSjHYmadw33LGOUEw0ZFRDxH2h/6dkkzKuWStiXtPzUza5j7lrHLCYaNphOzx99KOl7Sp4CrgL+0MCYza3/uW8YgJxg2aiLiFtI/iidIp5UdRuoYft7KuMysvblvGZsUEcPXMjMza3OSHgTmR8T7Wx3LeOAtGGZm1vEkdQMbA4taHct44St5mplZR5M0G3gP6XoZV7Q4nHHDu0jMzKyjSboK2Br4RkR8sdXxjBcN7yKRtI+kN+Vef1DSTZLmStqo3PDMbLxw32IjJSL2jIgXObkYXUWOwfgKMBXW3MHua8CvgK2A08oLzczGGfctZh2kyDEYWwG3Z8/fCfwyIj4p6TWkzsDMrAj3LWYdpEiCsQqYkj3fG/h+9nwx2b+PTiNJwGbAslbHYtaA9YGHo30OtBp3fQu4f7G2NWz/UiTB+B1wmqTfA68HDszKXwY8VKC9drAZnbts1tn+Efh7q4Oo03jsW8D9i7WvIfuXIgnGh4D/Ag4APhARlcbfAvy6QHvtYBnAgw8+yNSpY+OPVF9fH5dddhmzZs2iu7u71eEU0u7LMJbjX7p0KS960Yugvf4Vj8e+BcZY/zKW1+t6tfsyjPX46+1fGk4wIuIBYL8a5Uc32la7mTp16pjoACCtgFOmTGHq1KljcgWsR7svQ7vHP9aM574Fxk7/0gnrdbsvQ7vHX1HoQluSukjnFE+n6kyUiLimhLjMbBxy32LWORpOMCTtDMwFtgBUNTqACSXEZWbjjPsWs85SZAvGN4E/A28FHiF98ce9Bx54gEWL0iXuX/CCFzBjxoyWzL+V84bxt+wAN998M11dXaM2/1a/3yPIfUsNrf68Wzn/sbLs7luKKZJgvBQ4ICLuaWrOHeSBBx5gm5dvy4re5QBM7pnCXXfeMWorZH7+rZw3jK9lf+ihdOD/brvtRm9v76jMv9Xv9whz31Kl1Z93K+c/lpbdfUsxRa7keR1pH6llFi1axIre5Wy837FsvN+xrOhdviYLHM35b7DLgS2b93hc9ieffBKAaft8eNSWvdXv9whz31Kl1Z93K+c/VpbdfUtxRbZgfB34mqRNgVuBvvzIiLilqYjaWPfGL2rp/CdsML1l8x7Xyz5tc55bPbpb81v9fo8Q9y2DaPXn3cr5t3rZ3bcUVyTBuCh7/E6uLEgHZflALDMryn2LWQcpei8SM7OyuW8x6yBFLrR1/0gEYmbjm/sWs85S9EJbLwGOArbNim4HzoyIv5UUl5mNQ+5bzDpHw2eRSJpN+tK/HrglG94A/EXSzHLDM7Pxwn2LWWcpsgXjVOD0iPh4vlDSqcCXgN+UEZiZjTvuW8w6SJHrYGwLnFej/DvAK5oLx8zGMfctZh2kSILxBLBDjfIdgMebCcbMxjX3LWYdpMgukm8B50p6MfCHrGxX4HjgtLICM7Nxx32LWQcpkmB8DlgGHAuckpU9DJwEnFVOWGY2DrlvMesgRa6DEcDpwOmS1s/KlpUdmJmNL+5bzDpLoetgVPjLb2YjwX2LWfurK8GQdAOwV0Q8JelG0n0BaoqI15QVnJl1NvctZp2r3i0YFwMrc89H9/ZuZtap3LeYdai6EoyI+Gzu+UkjFo2ZjSvuW8w6V5FLhd8raeMa5RtKurdoIJI+LikknZErmyzpHElPSnpG0kWSNqmaboakSyQtl/S4pK9ImlhVZw9JN0haKekeSYcUjdPMRsZI9S1ZG+5fzEZZkQttbQlMqFE+CfjHIkFIeh1wBOneA3mnA28D3gXsDmwG/Cw33QTgEmAd4I3AwcAhwMm5Oltlda4iXbDnDODb2X0PzGzs2JKS+xZw/2LWKnWfRSLpn3MvZ0takns9AdgLWNhoAJLWAy4E/g34dK58A+BwYE5EXJmVHQrcIWnniPgjMIt0CeG9I+Ix4CZJnwG+JOmkiFgFHAksjIhjs6bvkPQm4GhgfqPxmlm5Rqpvydp2/2LWIo2cpjovewzge1Xj+oD7SBfIadQ5wCURcbmkT+fKdwK6gcsrBRFxp6QHgF2AP2aPt2Zf/or5wDeA7YAbszqXs7b5pH8aNUmaRPrXVLE+QF9fH319fQPq9/f309PTw+SJAqCnp4f+/v6adctSabuvr+/5+XdPGJV55zWz7PllaHr+LVp2gEmj+LnX+36P1ntQknnZY9l9C7R5/zJm+pZRnH+F+5ax2bdA/e+r0rVt6idpIfC6iFjU0IS123oP8KmsvRWSrgZuioijJM0Bzo+ISVXT/Am4KiKOl3QusEVEzM6NnwI8C+wbEZdK+mvWzim5OvuSNmtOiYjeGnGdBJxYXT537lymTJnS7GKbjbjly5czZ84cgA0iYmmr46lHmX1L1p77F7MRUG//UuRKnls1E1iFpBcBZwIzI2JFGW2W6BTWvvfB+sBDs2bNYurUqQMq33zzzey2225sMudUAB6b+3GuueYatt9++xELsK+vj9/85jfMnDmT22+/nd12242N9j6Cpy7/7xGfd14zy55fhu7u7qbm34plv/HGG3nkkUc4/tIHWLk6RuVzr/f9Xrq0LXKKtZTVt0Dn9C9jpW8ZzflXuG8Zm30L1N+/1HuhrY8A52b/Aj4yVN2IqPeeATsB04EbJFXKJgC7SfoQMBtYR9KGEfF0brpNgEez548Cr69qd5PcuMrjJjXqLK317yJbhpU8f24+lfi6u7trrqxdXV309vayYnXaGtTb20tXV1fhFbsR3d3da+bf0/fcqM4byln2wd7XRubfqmUHWLk6WLE6RmX+9b7fo/UeNGuE+hbokP5lrPQtrZi/+5ax2bdA/f1LvVswjiYdKLUiez6YoP6bEl0BvKqq7HzgTuBLwIOk/a97ARcBSNoGmAFcm9W/FviUpOkRUbmd80xgKXB7rs6+VfOZmWvDzFpnJPoWcP9i1nL1Xmhrq1rPm5Hda+C2fJmkZ4EnI+K27PV5wGmSFpO+1F8Hrs2O8Aa4jPRF/4Gk44BNgc8D52T/EgC+CXxI0peB7wBvBt4NvLWM5TCz4kaib8nacv9i1mJFLrR1QnagU3V5j6QTyglrjaOBX5L+YVxD2hz5jsrIiHgO2A94jvSP4QLg+8AJuToLSV/2mcDNpKPR3x8RPoXMbAwZ5b4F3L+Yjagid1M9kZS1L68qn5KNO3nAFHWKiD2qXq8APpgNg01zPwM3UVbXuRrYsWhcZjYqRqxvAfcvZqOtyJU8Re0bEm0PLG4uHDMbx9y3mHWQRq7k+RTpyx/AXyXlO4IJwHqkfx9mZnVz32LWmRrZRXIU6R/Gd0ibK/OX810F3BcRPnLazBp1FO5bzDpO3QlGRHwP1lxt7/cRsXrEojKzccN9i1lnavgYjIj4P2ALSZ+X9ENJ0wEkvUXSdqVHaGbjgvsWs85S5DTV3YFbgTeQTulaLxu1PfDZ8kIzs/HEfYtZZylyFsmpwKcjYiZp/2jFlcDOpURlZuOR+xazDlIkwXgV8PMa5Y8DL2guHDMbx9y3mHWQIgnG08ALa5TvCPy9qWjMbDx7GvctZh2jSILxI+BLkjYlnbfeJWlX4Kuky+iamRXhvsWsgxRJMD5JuiPhg6SDsG4nXcf/D6QbAZmZFeG+xayDNHwvkohYBfybpM8BryR1BDdGxN1lB2dm44f7FrPOUuRmZwBExAOSHsye17p/gJlZw9y3mHWGIrtIkHS4pNuAFcAKSbdJen+5oZnZeOO+xaxzNLwFQ9LJwDHA14HK/QF2AU6XNCMiTigxPjMbJ9y3mHWWIrtIPgD8W0T8MFf2v5JuIXUM7gTMrAj3LWYdpMgukm7gzzXKr6eJYzrMbNxz32LWQYokGD8g/dOo9u/AhY00JOkDkm6RtDQbrpX0ltz4yZLOkfSkpGckXSRpk6o2Zki6RNJySY9L+oqkiVV19pB0g6SVku6RdEgjcZrZqHDfYtZBiv4rOFzSLOCP2es3ADOA70s6rVIpIo4Zpp2HgI8DdwMCDgYulrRjRPwFOB14K/AuYAlwNvAzYFcASROAS4BHgTeSrgL4faCPdE49krbK6nwTOAjYC/i2pEciYn7B5TezkeG+xaxDFEkwXgnckD1/Sfa4KBtemas37OllEfGLqqJPSfoAsLOkh4DDgTkRcSWApEOBOyTtHBF/BGYBrwD2jojHgJskfYZ0NcCTsvPqjwQWRsSx2TzukPQm4GjAnYDZ2OG+xayDFLnQ1p4jEUj2j+FdwLqkI8h3Iu2TvTw37zslPUA6svyP2eOtWQdQMR/4BrAdcGNW53LWNh84Y4hYJgGTckXrA/T19dHX1zegfn9/Pz09PUyeKAB6enro7++vWbcslbb7+vqen3/3hFGZd14zy55fhqbn36JlB5g0ip97ve/3aL0HZRoPfUsWT939y5jpW0Zx/hXuW8Zm3wL1v68qeh0bSVuT/mVcExG9klTkojiSXkX60k8GniH9q/iVpDnA+RExqar+n4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy9p0+aUiOitEdNJwInV5XPnzmXKlCmNLqLZqFu+fDlz5swB2CAilrY6nkZ0ct+S1TkJ9y/WxurtX4pcB2Nj4CfAnqRNlS8F7gXOk/RUbnNhve4CdgA2AA4Avidp90bjKtkpwGm51+sDD82aNYupU6cOqHzzzTez2267scmcUwF4bO7Hueaaa9h+++1HLMC+vj5+85vfMHPmTG6//XZ22203Ntr7CJ66/L9HfN55zSx7fhm6u7ubmn8rlv3GG2/kkUce4fhLH2Dl6hiVz73e93vp0rbKKYBx07dAA/3LWOlbRnP+Fe5bxmbfAvX3L0WOwTiddKDTDOCOXPmPSV+ahjqBbF/mPdnL6yW9Dvho1t46kjaMiKdzk2xCOvCK7PH1VU1ukhtXedykRp2lg/3DiIiVwMrKayltMuru7q65snZ1ddHb28uK1elPVm9vL11dXYVX7EZ0d3evmX9P33OjOm8oZ9kHe18bmX+rlh1g5epgxeoYlfnX+36P1ntQso7vW7K46u5fxkrf0or5u28Zm30L1N+/FDlNdRZwfEQ8VFV+N7BFgfaqdZH2T15P6mz2qoyQtA2p86lc5e9a4FWSpuemnwksJd2JsVJnL9Y2M9eGmY0N7lvMOkiRLRjrAstrlE8jl5XXQ9IpwKXAA6TNhHOAPYDZEbFE0nnAaZIWk77YXweuzY7yBriM9GX/gaTjgE1Jt3U+J/uXAOkUsg9J+jLwHeDNwLtJp6iZ2djhvsWsgxTZgvFb4H251yGpCzgOuKrBtqaTzi2/C7gCeB2pA/hNNv5o4JfARcA1pE2S71gz44jngP2A50j/Gi7I2jshV2ch6Qs/E7iZtJn1/T5P3WzMcd9i1kGKbME4DrhC0muBdYAvk07bmkZ2kZp6RcThw4xfAXwwGwarcz+w7zDtXA3s2EhsZjbq3LeYdZCGt2BExG3Ay4DfAReTNmv+DNgxIv5WbnhmNl64bzHrLA1twZDUDfwaODIivjAyIZnZeOO+xazzNLQFIyL6gFePUCxmNk65bzHrPEUO8ryAdB1/M7MyuW8x6yBFDvKcCBwmaW/S+eTP5kfWcZdDM7Na3LeYdZBm76b6sqpxxW5sYmbmvsWso4yZu6ma2fjmvsWssxQ5BsPMzMxsSE4wzMzMrHROMMzMzKx0RQ7ytDrccUe62/TKlSuZNGnSmsfhyuqdpr+/H4Cbb76Zu+66a8h5j0Qclef33ntvzWWvp83KLX//9Kc/0dPTUyjOyrK2atnXW2+9Qste9HOvXl4bf+rpW4YbP9Q0le9lrb6lMv+yv0u1xg/Wt9SzbI32LbXGN9u3NPMZDNa3NNNmkb68WXUlGJJuAPaKiKcknQB8NSJq3fVw3HvumadA4r3vfW8qUBdE//OPw5XVOU1PTw8//OEP2W233ejt7U3z7l1We94jEUf18+plr6PNnsmT+OEPf8jMWbPpXf5s8ThbtOyV+Isse9HPvdO4b6lfQ33LcOPrWK/zfcuA+Y9EP1Jv31LHsjXctww2nib6lhI+gyLLXkZfXpZ6d5FsS7ovAMCJwHpD1B3X+lc+AxFsvN+xbPBP74XoZ71XzYToH7askWmmvvFAAKbt8+E0HohVvQPmPRJxDBhftez1tjltnw+nCZuNs1XLvt2ehZe9qTg7i/uWOtXbtzS93mfrdb5vyc9/xPqROvqWepetkb5luO9akb6lrM+gyLKX0ZeXpd5dJDcB50v6HSDgY5KeqVUxIk4uKba21r3xi9Y871pvWl1ljUwzYemE9Hza5kzse27QeY9EHLXG59Xd5rTNS4uzVtlIL7vW3WjA/Mt6P4cr6yA34b6lISOxPtVar2v1LUXbbCbOvLqXrYG+pd7v2kh/p4frW1rRlzer3gTjEOCzwH5AAG8BVteoF4A7ATOr1yG4bzHrSHUlGBFxF/AeAEn9pH2mj49kYGbW+dy3mHWuIlfyrPe4DTOzurlvMesshb7Qkl4i6euSLs+GsyS9pEA7n5C0QNIySY9Lmidpm6o6kyWdI+lJSc9IukjSJlV1Zki6RNLyrJ2vSJpYVWcPSTdIWinpHkmHFFl2Mxs57lvMOkfDCYak2cDtwOuBW7LhDcBfJDV6GOruwDnAzsBMoBu4TNK6uTqnA28D3pXV3wz4WS6eCcAlwDrAG4GDSft1T87V2SqrcxWwA3AG8O1sWcxsDHDfYtZZilxo61Tg9Ij4eL5Q0qnAl4Df1NtQROxT1cYhwOPATsA1kjYADgfmRMSVWZ1DgTsk7RwRfwRmAa8A9o6Ix4CbJH0G+JKkkyJiFXAksDAijs1mdYekNwFHA/MbW3wzGyHuW8w6SJFdJNsC59Uo/w7py9iMDbLHxdnjTqR/HpdXKkTEncADwC5Z0S7ArVkHUDEfmApsl6tzOWubn2vDzFrPfYtZBymyBeMJ0qbAu6vKdyD9QyhEUhdp8+LvI+K2rHhTYFVEPF1V/bFsXKXOYzXGU0edqZJ6IqI3P0LSJGBSrmh9gL6+Pvr6+gbE3t+frqw5eaKY0D1h4PN1JtJXT1mD0wBMmij6SmyzrmlKanPSRAGM+TiHGl/KZ1Awzsp719/fP2C9rLWetoGO71uyeOruXwr1LSWs91C1XrfL97NI3zJGl62Vn0HlvavVt1TW1XooIuqqmPtynEDa/Hcq8IeseFfgeOC0iPhcQw0+3+43SOfAvykiHsrK5gDnR8Skqrp/Aq6KiOMlnQtsERGzc+OnAM8C+0bEpZL+mrVzSq7OvqR9p1NqJBgnka4quJa5c+cyZcqUIotnNqqWL1/OnDlzADaIiKWtjqce46FvycafhPsXa2N19y8R0dBAutre0cBDQH82PAR8lCxhKdDm2cCDwFZV5W8mXWBnw6ry+4Gjs+cnAzdVjd8qm27H7PU1wBlVdQ4FlgwSzyTSZtDKsDkQixYtilWrVg0YFixYED09PbHl4WfG5vsfN+D59N0PqquskWle8u5PxLx582KbI84qrc16pymrzW2OOCvmzZsX06ZNG9NxDjZ+xsyDS/kMisa55eFnRk9PTyxYsGDAOrlo0aLIvgNTi3wnWzGMh76l0f6lSN/S7Hpfa71ul+9nkb5lLC5bqz+DofqWRvqXItfBCNLR16dLWj8rW9ZoOwCSBHwd2B/YIyIWVlW5HugD9gIuyqbZBpgBXJvVuRb4lKTp8fwFemYCS0lHpFfq7FvV9sxcG9XLuBJYmYsTgO7u7jV36cvr6uqit7eXFauDvr7nBjzvXrW6rrJGppmQXcJ35epgRUlt1jtNWW2uXJ22nvX29rLOGI5zsPErVq0u5TMoGmflvevq6hqwXtZaT8e68dC3ZMtUd/9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1aOp27UW//DnnAHOAfwGWSars11wSEb0RsUTSecBpkhaTvthfB66NdJQ3wGWkL/sPJB1H2if6eeCc7IsM8E3gQ5K+TDpg7M3Au4G3Nhm/mY0A9y1m7a/VV877AOno7quBR3LDgbk6RwO/JP3LuAZ4FHhHZWREPEe6j8FzpH8NFwDfB07I1VlI+sLPBG4GjgXeHxE+jcysM7lvMWuxprZgNCsiVEedFcAHs2GwOvczcDNldZ2rgR0bDNHM2pD7FrPWa/UWDDMzM+tADSUYkrolXSHppSMVkJmNP+5bzDpPQwlGRPQBrx6hWMxsnHLfYtZ5iuwiuYB0DX8zszK5bzHrIEUO8pwIHCZpb9K55M/mR0bEMWUEZmbjjvsWsw5SJMF4JXBD9vxlVeMau+64mdnz3LeYdZAiV/LccyQCMbPxzX2LWWcpfJqqpK0lzZbUk70e9rxzM7PhuG8x6wwNJxiSNpZ0BfBX4FfAC7NR50n6WpnBmdn44b7FrLMU2YJxOukmQTOA5bnyHwP7lBGUmY1L7lvMOkiRgzxnAbMj4qGqLZd3A1uUEpWZjUfuW8w6SJEtGOuy9r+LimnkbkFsZtYg9y1mHaRIgvFb4H251yGpCzgOuKqUqMxsPHLfYtZBiuwiOQ64QtJrgXWALwPbkf5l7FpibGY2vrhvMesgDW/BiIjbSBfB+R1wMWmz5s+AHSPib+WGZ2bjhfsWs85SZAsGEbEE+ELJsZjZOOe+xaxzFEowJG1EuinRtlnR7cD5EbG4rMDMbPxx32LWOYpcaGs34D7gI8BG2fARYGE2zsysYe5bzDpLkbNIziFd+GariHhHRLwDeDHwo2xc3STtJukXkh6WFJLeXjVekk6W9IikXkmXS3ppVZ1pki6UtFTS05LOk7ReVZ1XS/qtpBWSHpR0XIHlNrOR5b7FrIMUSTC2Br4WEc9VCrLnp2XjGrEucDPwwUHGH0f6B3Mk8AbS7ZvnS5qcq3Mh6UjzmcB+wG7AuZWRkqYClwH3AzsB/wmcJOnfG4zVzEaW+xazDlLkGIwbSPtH76oq35b0ha5bRFwKXApQfT+j7AZHRwGfj4iLs7L3AY8Bbwd+JGlb0iWEXxcRf87qfBj4laSPRcTDwEGkU94Oi4hVwF8k7QAcQ66zMLOWc99i1kHqSjAkvTr38izgTElbA3/MynYm/VP4eImxbQVsClxeKYiIJZKuA3YhbTbdBXi60gFkLgf6Sf9Kfp7VuSbrACrmA8dL2iginqqesaRJwKRc0foAfX199PX1DQi0v7+fnp4eJk8UE7onDHy+zkT66ilrcBqASRNFX4lt1jVNSW1Ompg6/rEe51DjS/kMCsZZee/6+/sHrJe11tOxaLz1LdBY/1KobylhvYeq9bpdvp9F+pYxumyt/Awq712tvqWyrtZDETF8JakfCGC42yZHREyoa84D5xHA/hExL3v9RuD3wGYR8Uiu3k+y+Rwo6ZPAwRGxTVVbjwMnRsQ3JF0GLIyII3LjXwH8BXhFRNxRI5aTgBOry+fOncuUKVOKLJ7ZqFq+fDlz5swB2CAilrY6nsGMt74lq3MS7l+sjdXdv0TEsAPpRkN1DfW0N8g8Anh77vUbs7IXVtX7CfDj7PkngbtqtPU48IHs+WXAf1eNf0XW9raDxDIJmJobNgdi0aJFsWrVqgHDggULoqenJ7Y8/MzYfP/jBjyfvvtBdZU1Ms1L3v2JmDdvXmxzxFmltVnvNGW1uc0RZ8W8efNi2rRpYzrOwcbPmHlwKZ9B0Ti3PPzM6OnpiQULFgxYJxctWhTZOj616HdyNIbx1rc02r8U6VuaXe9rrdft8v0s0reMxWVr9WcwVN/SSP9S1y6SiLi/nnolezR73AR4JFe+CXBTrs70/ESSJpIuLfxors4mVW1vkhs3QESsJHdzpco+3O7ubrq7uwfU7+rqore3lxWrg76+5wY87161uq6yRqaZ0JeOg1u5OlhRUpv1TlNWmytXp61nvb29rDOG4xxs/IpVq0v5DIrGWXnvurq6BqyXtdbTsWi89S3QWP9SpG9pdr2vtV6P5X6k2b5lLC5bqz+DyntXq2+prKv1KHqhrc2AN5G+gGudiRIRZxVps4aFpC/pXmRf+uyo7TcA38jqXAtsKGmniLg+K3tzFtN1uTpfkNQdEZUdRzNJ/05q7iM1s9Zw32LWORpOMCQdAvw3sAp4krSZpCJIB2rV29Z6rH362VbZUdiLI+IBSWcAn5Z0N6lT+BzwMDAPICLukPRr4FuSjgS6gbOBH0U6yhtgLml/53mSvgS8EvgocHT9S21mI819i1lnKbIF43PAycApEdHf5Pxfy9q3YT4te/wecAjpborrkk752pB0E6R9ImJFbpqDSF/8K0hHeF9EOr8dWHN0+CzShXquBxYBJ0eETyMzG1vct5h1kCIJxhRSFt9sB0BEXM0QR49HOiLqhGwYrM5iYM4w87kF+KdiUZrZKHHfYtZBilzJ8zzgXWUHYmbjnvsWsw5SZAvGJ4BfStoHuBVY64obEXFMGYGZ2bjjvsWsgxRNMGbz/OV8qw/EMjMrwn2LWQcpkmAcS7r2/ndLjsXMxjf3LWYdpMgxGCtJl9k1MyuT+xazDlIkwTgT+HDZgZjZuOe+xayDFNlF8nrgzZL2I93Up/pArHeUEZiZjTvuW8w6SJEE42ngZyXHYWb2NO5bzDpGwwlGRBw6EoGY2fjmvsWssxQ5BsPMzMxsSEVudraQIc5Jj4gXNxWRmY1L7lvMOkuRYzDOqHrdDewI7AN8pdmAzGzcOqPqtfsWszZW5BiMM2uVS/og6Q6GZmYNc99i1lnKPAbjUuCdJbZnZgbuW8zaUpkJxgHA4hLbMzMD9y1mbanIQZ43svaBWAI2Bf4B+I+S4jKzccZ9i1lnKXKQ57yq1/3AE8DVEXFn0xGZ2Xg1r+q1+xazNlbkIM/PjkQgoyE7WOw/Sf+KbgY+HBF/am1UZgbuW8w6zbi50JakA4HTgM8CryF1AvMlTW9pYGbW1ty3mNVWd4IhqV/Sc8MMq0cy2CYdA3wrIs6PiNuBI4HlwGGtDctsfHPfYtaZGtlFsv8Q43YBPsIY3SIiaR1gJ+CUSllE9Eu6nBS7mbWO+xazDlR3ghERF1eXSdoGOBV4G3AhcEJ5oZXqBcAE4LGq8seAl1dXljQJmJQrWh9g8eLF9PX1VVdn6dKlTJ48GT25kK5lTwx43r1icV1lDU2z4imWL1+OFt9P17JHy2mzzmlKa3Px/Sxf/g9jP87BxveW8xkUjRNg8uTJLF26lCeffHKtdXLZsmVNfF1G13jqW6Cx/qVI39L0el9jvW6X72eRvmVMLluLPwMYvG+BBvqXiGh4ADYDvgWsAn4BvLJIO6M1ZPEGsEtV+ZeB62rUPymr78FDuw+bt/r7577F/YuHjh2G7F8aOotE0gbAJ4EPAzcBe0XEbxtpo0UWAc8Bm1SVbwI8WqP+KaSDtvKmMbYu9rM+8BDwj0D7/F1dW7svw1iPf33g4VYHUY9x1LfA2O9fxvp6XY92X4Z2iH/Y/qXuBEPSccDxpC/Nv0aNzZpjVUSsknQ9sBfZufaSurLXZ9eovxJYWVW8dITDbIikytNlETGmYqtXuy9DG8Q/FmMaYDz1Ldk0Y7p/aYP1eljtvgxtEv+wcSnbZDcsSf1AL3A5KWOvKSLeUW90oyk7lex7wBHAn4CjgHcDL4+I6v2nY56kqcASYIMxvAIOqd2Xod3jHyvct4wtnbBet/sytHv8FY3sIvk+aZ9LW4qIH0v6B+Bk0sVwbgL2accOwKzDuG8x60CNnEVyyAjGMSoi4mwG2WzZhlaSLuxTvam1nbT7MrR7/GOC+5YxpxPW63ZfhnaPH2hgF4mZmZlZvcbkxWvMzMysvTnBMDMzs9I5wTAzM7PSOcEwMzOz0jnBaDOStpR0nqSFknol/U3SZ7ObLuXrvVrSbyWtkPRgdjGjMUPSByXdl8V3naTXtzqmWiR9QtICScskPS5pXnafjHydyZLOkfSkpGckXSSp+sqOZmOa+5bR1+n9ixOM9vNy0ud2BLAdcDTp9tBfrFTILtJyGXA/6U6P/wmcJOnfRz3aGrILE51GOg3rNcDNwHxJ01saWG27A+cAOwMzgW7gMknr5uqcTrop17uy+psBPxvlOM2a5b5l9HV2/9LqmwV5KOWGS/8J3Jt7/QHSfQ3WyZWdCtzZ6lizWK4Dzs697gL+Dny81bHVEfs/kC4KtVv2egPSjbkOyNV5eVZn51bH68FDM4P7llGPv6P6F2/B6AwbsPaNknYBromIVbmy+cA2kjYa1ciqZJtbdyJdFhqAiOjPXu/SqrgasEH2WHm/dyL968gvz53AA7TH8pgNxX3L6Oqo/sUJRpuTtDXpDpT/nSveFKi+TPFjuXGt9AJgArXja3VsQ8puYnUG8PuIuC0r3hRYFRFPV1Uf88tjNhT3LaOrE/sXJxhjhKRTJcUww8urptkc+DXwPxHxrdZEPq6cA7wSeE+rAzGrl/uWttFx/UsjNzuzkfU14LvD1Lm38kTSZsBVwB+A6gOsHgWqjzLeJDeulRaR7phZK75WxzYoSWcD+5H2jT6UG/UosI6kDav+ZYzp5bFxxX1L62MbUqf2L04wxoiIeAJ4op662b+Lq4DrgUOz/Yx51wJfkNQdEX1Z2Uzgroh4qqyYi4iIVZKuB/YC5sGaTYN7MQZvFiVJwNeB/YE9ImJhVZXrgT5S/Bdl02wDzCB9DmYt5b5lbPYt0Pn9i2921mayDuBq0mliB5MydgAi4tGszgbAXaTTyb5E2uz2HeDoiDh3lEMeIDuV7Huk0+H+BBwFvBt4eYyxW1xL+i9gDvAvpPe0YklE9GZ1vgHsCxwCLCV1GETEG0c1WLMmuG8ZfR3fv7T6NBYPjQ2klSxqDVX1Xg38FlgBPAQc3+rYq+L7EKkjW0k6tewNrY5pkDhrvtfAIbk6k0n7TxcDz5LOUd+01bF78NDI4L6lJbF2dP/iLRhmZmZWOp9FYmZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmFmZmalc4JhZmZmpXOCYWZmZqVzgmEtI+k+SUe1Og4z6zzuX1rPCYaZmZmVzgmGmZmZlc4JhhUi6d8lPZzdrTBffrGk70h6Sfb8MUnPSFogae8h2ttSUkjaIVe2YVa2R67slZIuzdp8TNIPJL1gBBbRzFrE/UtncIJhRf0PsDGwZ6VA0jRgH+BCYD3gV6TbDO8I/Br4haQZRWcoaUPgSuBG4LXZvDYBflK0TTMbk9y/dICJrQ7A2lNEPCXpUtKthq/Iig8AFgFXRUQ/cHNuks9I2h/4Z+DsgrP9EHBjRHyyUiDpMOBBSS+LiL8WbNfMxhD3L53BWzCsGRcC75Q0KXt9EPCjiOiXtJ6kr0q6Q9LTkp4BtgUK/8MAtgf2zDZfPpO1eWc27iVNtGtmY4/7lzbnLRjWjF8AAt4qaQHwT8DR2bivAjOBjwH3AL3AT4F1BmmrP3tUrqy7qs562TyPrzH9I40Gb2ZjmvuXNucEwwqLiBWSfkb6Z7E1cFdE3JCN3hX4bkT8HEDSesCWQzT3RPb4QtI+UIAdqurcALwTuC8iVje9AGY2Zrl/aX/eRWLNuhB4K3BY9rzibuAdknaQtD0wlyHWt4joBf4IfFzStpJ2Bz5fVe0cYBrwQ0mvy44kny3pfEkTSlwmMxsb3L+0MScY1qwrgcXANqQvecUxwFPAH0ibHeeT/iEM5TDSVrXrgTOAT+dHRsTDpH8uE4DLgFuzek/z/CZQM+sc7l/amCKi1TGYmZlZh/EWDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMMzMzK50TDDMzMyudEwwzMzMrnRMMaxlJJ0mK3OuQdHYrYzIzs3I4wTAzM7PSOcEwMzOz0jnBMDMzs9I5wbBRIelNkhZIWiHpb5KOqHO6T0vql/ThkY7RzMzKM7HVAVjnk/Qq4DLgCeAk0nr3WeCxYab7PPBJ4IiI+NYIh2lmZiVygmGj4WRAwD9FxAMAki4Cbh1sAklfBY4GDo2I741KlGZmVhrvIrERJWkCMBuYV0kuACLiDmB+7Ul0NvBR4L1OLszM2pO3YNhI+wegB7i7xri7gH2ryt4HrAd8ICJ+OMKxmZnZCPEWDBtrfk86NuNDkqa1OhgzMyvGCYaNtCeAXuClNcZtU6PsHmAWsBnwa0nrj2BsZmY2Qpxg2IiKiOdIx1q8XdKMSrmkbUnHZtSa5hbSrpNtgV9I6hmNWM3MrDxOMGw0nJg9/lbS8ZI+BVwF/GWwCSLij8C/ADsDP5XUPfJhmplZWZxg2IjLtkjMJu0uORk4jJR0/HyY6a4E3k3aZfIDSV5fzczahCJi+FpmZmZmDfA/QjMzMyudEwwzMzMrnRMMMzMzK13DCYakfSS9Kff6g5JukjRX0kblhmdmZmbtqMgWjK8AU2HNXTK/BvwK2Ao4rbzQzMzMrF0VuRfJVsDt2fN3Ar+MiE9Keg0p0TAzM7NxrkiCsQqYkj3fG/h+9nwx2ZaNTiNJpEtXL2t1LGYNWB94OHwuupm1QJEE43fAaZJ+D7weODArfxnwUFmBjTGb0bnLZp3tH4G/tzoIMxt/iiQYHwL+CziAdEvtSuf1FuDXZQU2xiwDePDBB5k6deBGmr6+Pi677DJmzZpFd3d7XNHaMY+OVsW8dOlSXvSiF4G3uplZizScYETEA8B+NcqPLiWiMWzq1KmDJhhTpkxh6tSpbfXD55hHXjvGbGZWhiJbMMjuCbE1MJ2qM1Ei4poS4jIzM7M21nCCIWlnYC6wBaCq0QFMKCEuMzMza2NFtmB8E/gz8FbgEVJSYWZmZrZGkQTjpcABEXFP2cG0u5tvvpmuri5WrlzJpEmTAHjBC17AjBkzeOCBB1i0aNGgZUWmqZQBa8prtZMfny+rxNzX11f3NPUuR5FphlvOhx56aE3M06dPb2rZm5mmkWWvFXOzn/tgMZuZjSkR0dAAXAns0+h07TyQru8RS5YsiVruvffemDdvXvT09AQQqCs9QkzumRJ/+MMfYnLPlCHLikwzuWdK3H///XH//fc/X17VTvX4StlaMdc5zVrzGWY5ikwz3LJvNG3jNTE3s+xNT9PAslfHXMbnXivmakuWLKnUmdrq748HDx7G51DkUuFfB74m6RBJO0l6dX4o0F7be/LJJwGYts+H2eCf3gvRz8b7HcvG+x3Lit7l3HvvvazoXT5oWZFpKmWLFi1i0aJFrOhdznqvmjmgnfz4DXY5cE1ZJeb1ttuz7mkqZcMtR5Fp6l32yvvczLI3M02RZc/H3OznXmuaypYNM7OxpMgukouyx+/kyoJ0wOe4Psize9rmTOx7Lj3f+EUDxw9TVmSavK71pg05fsIG0weUad2NGp5muJiKTNPIcnZP23xAWZFlLzJNkWWHgTE3+7kPFrOZ2VhR9F4kZmZmZoMqcqGt+0ciEDMzM+scRS+09RLgKGDbrOh24MyI+FtJcZmZmVkba/ggT0mzSQnF64FbsuENwF8kzSwaiKSPSwpJZ+TKJks6R9KTkp6RdJGkTaqmmyHpEknLJT0u6SuSJlbV2UPSDZJWSrpH0iFF4zQzM7PhFdmCcSpwekR8PF8o6VTgS8BvGm1Q0uuAI0jJSt7ppAt6vQtYApwN/AzYNZtuAnAJ8CjwRuCFpNvH9wGfzOpsldX5JnAQsBfwbUmPRMT8RmM1MzOz4RU5TXVb4Lwa5d8BXtFoY5LWAy4E/g14Kle+AXA4cExEXBkR1wOHAm/MLlcOMCub53sj4qaIuBT4DPBBSetkdY4EFkbEsRFxR0ScDfwU6Pibs5mZmbVKkQTjCWCHGuU7AI8XaO8c4JKIuLyqfCegG1hTHhF3Ag8Au2RFuwC3RsRjuenmky6MtV2uTnXb83NtmJmZWcmK7CL5FnCupBcDf8jKdgWOB05rpCFJ7wFeA7yuxuhNgVUR8XRV+WPZuEqdx2qMp446UyX1RERvjbgmAZNyRetDuvV2X1/fgED7+/sBmDRR9HVPoKenh8kT033genp61jwOVjahwDSV55V59/T0MHmdifQNNT6bT39//5ryyetMHLrN3DR1L0eRaepc9sr73MyyNzVNgWXPx9zs515rmv7+/gHrZa311MxsNCmisXuVSRLpDJJjgc2y4oeBrwBnRZ0NSnoR6aZpMyPilqzsauCmiDhK0hzg/IiYVDXdn4CrIuJ4SecCW0TE7Nz4KcCzwL4Rcamkv2btnJKrsy/puIwpgyQYJwEnVpfPnTuXKVOm1LN4Zi21fPly5syZA7BBRCxtdTxmNg41c51x0j/79QtO+3bSlT9X54YA+rPne2WvN6ya7n7g6Oz5yaSEJD9+q2y6HbPX1wBnVNU5FFgyRGyTSLtZKsPmQCxatChWrVo1YLjuuuti3rx5sc0RZ8Xm+x8XPT09seXhZ8aWh58ZPT09ccEFFwxZVmSaStmCBQtiwYIF0dPTE9N3P2jI8Zu97ag1ZZWYZ8w8uO5pKmXDLUeRaepZ9mnTpq15n5tZ9mamaXTZq2Nu9nOvNc2CBQsGrJOLFi3yvUg8ePDQ0qHQdTByycmyJia/AnhVVdn5wJ2ks1EeJJ0NshfZ5cklbQPMAK7N6l8LfErS9IioHP8xE1hKOpW2UmffqvnMzLUxQESsBFZWXqeNNtDd3U13d/eA+l1d6VCWlauDFX3P0dvby4rVaUNOb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WiqK8GQdAOwV0Q8JelG0j+jmiLiNfW0mSUnt1XN51ngyYi4LXt9HnCapMWkpOHrwLUR8cdskstIicQPJB1HOt7i88A5WZIA6fTUD0n6MulMlzcD7yad/mpmZmYjoN4tGBfz/D/6ixkiwSjZ0aRdJheRdlvMB/6jMjIinpO0H/AN0haJZ4HvASfk6iyU9FbSNTU+CjwEvD98DQwzM7MRU1eCERGfzT0/aaSCiYg9ql6vAD6YDYNNcz8Dd4FU17ka2LH5CM3MzKweRS4Vfq+kjWuUbyjp3nLCMjMzs3ZW5EJbWwITapRPAv6xqWjMzMysI9R9Fomkf869nC1pSe71BNLZHgvLCszMzMzaVyOnqc7LHoN0IGVeH3Af6eJbZmZmNs7VnWBERBeApIXA6yJi0YhFZWZmZm2t4QttRcRWIxGImZmZdY56L7T1EeDciFiRPR9URJxVSmRmZmbWturdgnE0cCGwIns+mACcYJiZmY1z9V5oa6taz83MzMxqKXKhrROyW6JXl/dIOqHWNGZmZja+FLnQ1onAejXKp2TjzMzMbJwrkmCI2jc72x5Y3Fw4ZmZm1gkauZLnU6TEIoC/SsonGRNIWzW+WW54ZmZm1o4auQ7GUaStF98h7QrJXyp8FXBfRFxbXmhmZmbWrhq5kuf3YM2VPH8fEatHLCozMzNraw0fgxER/wdsIenzkn4oaTqApLdI2q70CM3MzKztFDlNdXfgVuANwDt4/oyS7YHPlheamZmZtasiZ5GcCnw6ImaSjr2ouBLYuZSozMzMrK0VSTBeBfy8RvnjwAuaC8fMzMw6QZEE42nghTXKdwT+3lQ0ZmZm1hGKJBg/Ar4kaVPSNTG6JO0KfBX4fiMNSfqApFskLc2GayW9JTd+sqRzJD0p6RlJF0napKqNGZIukbRc0uOSviJpYlWdPSTdIGmlpHskHVJguc3MzKxORRKMTwJ3Ag+SDvC8HbgG+APw+Qbbegj4OLAT8FrScRwX585GOR14G/AuYHdgM+BnlYklTQAuAdYB3ggcDBwCnJyrs1VW5ypgB+AM4NuSZjcYq5mZmdWpkQttARARq4B/k/Q54JWkJOPGiLi7QFu/qCr6lKQPADtLegg4HJgTEVcCSDoUuEPSzhHxR2AW8Apg74h4DLhJ0mdIW1hOymI9ElgYEcdm87hD0ptIt52f32jMZmZmNrwiWzAAiIgHgEuB/ymSXFSTNEHSe4B1gWtJWzW6gctz87wTeADYJSvaBbg1Sy4q5gNTge1ydS5nbfNzbZiZmVnJGt6CASDpcNIWgJdmr+8GzoiIbxdo61WkhGIy8Aywf0TcLmkHYFVEPF01yWPAptnzTbPX1eOpo85UST0R0VsjpknApFzR+gB9fX309fUNWIb+/n4AJk0Ufd0T6OnpYfJEAdDT07PmcbCyCQWmqTyvzLunp4fJ60ykb6jx2Xz6+/vXlE9eZ+LQbeamqXs5ikxT57JX3udmlr2paQosez7mZj/3WtP09/cPWC9rradmZqNJEbVujDrEBNLJwDHA10mJAaStAR8CTo+IExpsbx1gBrABcADwftLxFjsA50fEpKr6fwKuiojjJZ0LbBERs3PjpwDPAvtGxKWS/pq1c0quzr6k4zKmDJJgnESNW8/PnTuXKVOmNLJ4Zi2xfPly5syZA7BBRCxtdTxmNg5FREMD8ATwrzXK/xVY1Gh7Ndq5HPhv4M2ks1Q2rBp/P3B09vxk4Kaq8Vtl0+2Yvb6GtHUlX+dQYMkQMUwi7WapDJsDsWjRoli1atWA4brrrot58+bFNkecFZvvf1z09PTEloefGVsefmb09PTEBRdcMGRZkWkqZQsWLIgFCxZET09PTN/9oCHHb/a2o9aUVWKeMfPguqeplA23HEWmqWfZp02btuZ9bmbZm5mm0WWvjrnZz73WNAsWLBiwTi5atKhy5+OpzX4nPXjw4KHIUGQXSTfw5xrl11Nwl0uVLtIP/PVAH7AXcBGApG1IWzsqW06uJR0YOj0iHs/KZgJLSWe3VOrsWzWPmbk2BoiIlcDKymspbY7u7u6mu7t7YMBd6VCWlauDFX3P0dvby4rVactQb2/vmsfByvoKTFN5Xpl3b28v3atWDzm+J5tPpQxgRYPT1LMcRaapd9kr73Ozy150miLLno+52c+91jRdXV0D1sta66mZ2WgqcpDnD4AP1Cj/d+DCRhqSdIqk3SRtKelVkk4B9gAujIglwHnAaZL2lLQTcD5wbaQzSAAuIyUSP5C0fXbq6eeBc7IkAeCbwIslfVnSyyX9B/Bu0imwZmZmNgKKbnE4XNIsoPJD/wbSloXvSzqtUikijhmmnemki3O9EFgC3ALMjojfZOOPBvpJWzAmkc7++I9c+89J2g/4BmmLxLPA94ATcnUWSnorKaH4KOnaG++PCJ+iamZmNkKKJBivBG7Inr8ke1yUDa/M1Rv26NGIOHyY8SuAD2bDYHXuZ+AukOo6V5MuZW5mZmajoMiFtvYciUDMzMyscxS+0JakrSXNltSTvVZ5YZmZmVk7azjBkLSxpCuAvwK/4vk7q54n6WtlBmdmZmbtqcgWjNNJp4/OAJbnyn8M7FNGUGZmZtbeihzkOYt0psdDVXtF7ga2KCUqMzMza2tFtmCsy9pbLiqmkbs4lZmZmY1fRRKM3wLvy70OSV3AccBVpURlZmZmba3ILpLjgCskvRZYB/gy6dbo04BdS4zNzMzM2lTDWzAi4jbgZcDvgItJu0x+Rrq52N/KDc/MzMzaUUNbMCR1A78GjoyIL4xMSGZmZtbuGtqCERF9wKtHKBYzMzPrEEUO8rwAGPIeImZmZja+FTnIcyJwmKS9getJdzBdo447qJqZmVmHa/Zuqi+rGjfsHVTNzMys8/luqmZmZla6wndTNTMzMxuMEwwzMzMrnRMMMzMzK50TDDMzMytdXQmGpBskbZQ9P0HSlJENy8zMzNpZvVswtiXdcwTgRGC9MmYu6ROSFkhaJulxSfMkbVNVZ7KkcyQ9KekZSRdJ2qSqzgxJl0hanrXzFUkTq+rskSVKKyXdI+mQMpbBzMzMBqr3NNWbgPMl/Q4Q8DFJz9SqGBEnNzD/3YFzgAVZLF8ELpP0ioioXMDrdOCtwLuAJcDZpJur7QogaQJwCfAo8EbghcD3gT7gk1mdrbI63wQOAvYCvi3pkYiY30C8ZmZmVod6E4xDgM8C+5EupvUWYHWNegHUnWBExD7519lWhceBnYBrJG1Auiz5nIi4MqtzKHCHpJ0j4o/ALOAVwN4R8Rhwk6TPAF+SdFJErAKOBBZGxLHZrO6Q9CbgaMAJhpmZWcnqSjAi4i7gPQCS+oG9IuLxEYhng+xxcfa4E9ANXJ6L5U5JDwC7AH/MHm/NkouK+cA3gO2AG7M6l7O2+cAZJcdvZmZmFLuS54iceSKpi/SD//uIuC0r3hRYFRFPV1V/LBtXqfNYjfHUUWeqpJ6I6K2KZRIwKVe0PkBfXx99fX0DYu/v7wdg0kTR1z2Bnp4eJk8UAD09PWseByubUGCayvPKvHt6epi8zkT6hhqfzae/v39N+eR1Jg7dZm6aupejyDR1LnvlfW5m2ZuapsCy52Nu9nOvNU1/f/+A9bLWempmNpoU0fjtQyS9BDiKdPAnwO3AmRHxt8KBSN8g7Xp5U0Q8lJXNAc6PiElVdf8EXBURx0s6F9giImbnxk8h3YRt34i4VNJfs3ZOydXZl3RcxpQaCcZJpINZ1zJ37lymTPEJNDb2LV++nDlz5gBsEBFLWx2PmY1DEdHQAMwGVgLXAadlw3XACmBmo+1lbZ4NPAhsVVX+ZtJxHRtWld8PHJ09Pxm4qWr8Vtl0O2avrwHOqKpzKLBkkHgmAVNzw+ZALFq0KFatWjVguO6662LevHmxzRFnxeb7Hxc9PT2x5eFnxpaHnxk9PT1xwQUXDFlWZJpK2YIFC2LBggXR09MT03c/aMjxm73tqDVllZhnzDy47mkqZcMtR5Fp6ln2adOmrXmfm1n2ZqZpdNmrY272c681zYIFCwask4sWLYrsOzC1yHfSgwcPHpoditxN9VTg9Ij4eL5Q0qnAl4Df1NuQJAFfB/YH9oiIhVVVriedDbIXcFE2zTbADODarM61wKckTY/njwuZCSwlbVmp1Nm3qu2ZuTbWEhErSUlUJU4Auru76e7uHlC/qyvtNVq5OljR9xy9vb2sWJ22DPX29q55HKysr8A0leeVeff29tK9avWQ43uy+VTKAFY0OE09y1FkmnqXvfI+N7vsRacpsuz5mJv93GtN09XVNWC9rLWempmNpiLHU2wLnFej/DukszkacQ7wXmAOsEzSptnQAxARS7J5nSZpT0k7AecD10Y6gwTgMlIi8QNJ20uaDXweOCdLFCCdnvpiSV+W9HJJ/wG8m3QKrJmZmZWsSILxBLBDjfIdSKeYNuIDpDNHrgYeyQ0H5uocDfyStAXjGtL1Lt5RGRkRz5FOn32OtEXiAtJ1ME7I1VlIupbGTOBm4Fjg/eFrYJiZmY2IIrtIvgWcK+nFwB+ysl2B40nHY9QtIlRHnRXAB7NhsDr3M3AXSHWdq4EdG4nPzMzMiimSYHwOWEbaClA5K+Nh4CTgrHLCMjMzs3ZW5DoYQTp24XRJ62dly8oOzMzMzNpXkS0YazixMDMzs1pG5KqcZmZmNr45wTAzM7PSOcEwMzOz0jWUYEjqlnSFpJeOVEBmZmbW/hpKMCKiD3j1CMViZmZmHaLILpILgMPLDsTMzMw6R5HTVCcCh0nam3QzsmfzIyPimDICMzMzs/ZVJMF4JXBD9vxlVeOiuXDMzMysExS5kueeIxGImZmZdY7Cp6lK2lrS7Mqt1SUNe+MyMzMzGx8aTjAkbSzpCuCvwK+AF2ajzpP0tTKDMzMzs/ZUZAvG6UAfMANYniv/MbBPGUGZmZlZeytykOcsYHZEPFS1V+RuYItSojIzM7O2VmQLxrqsveWiYhqwsrlwzMzMrBMUSTB+C7wv9zokdQHHAVeVEpWZmZm1tSK7SI4DrpD0WmAd4MvAdqQtGLuWGJuZmZm1qYa3YETEbaQLbP0OuJi0y+RnwI4R8bdywzMzM7N2VGQLBhGxBPhCybGYmZlZhyh0oS1JG0n6mKTzsuFYSdMKtLObpF9IelhSSHp71XhJOlnSI5J6JV1efat4SdMkXShpqaSns3jWq6rzakm/lbRC0oOSjiuy3GZmZlafIhfa2g24D/gIsFE2fARYmI1rxLrAzcAHBxl/XNb2kcAbSDdWmy9pcq7OhaRjQGYC+wG7Aefm4p0KXAbcD+wE/CdwkqR/bzBWMzMzq1ORXSTnkC6q9YGIeA5A0gTgv7Jxr6q3oYi4FLg0a2Otcdmlx48CPh8RF2dl7wMeA94O/EjStqSLe70uIv6c1fkw8CtJH4uIh4GDSAejHhYRq4C/SNoBOIZcImJmZmblKZJgbA0cUEkuACLiOUmnsfbpq83aCtgUuDw3nyWSrgN2AX6UPT5dSS4ylwP9pC0eP8/qXJMlFxXzgeMlbRQRT1XPWNIkYFKuaH2Avr4++vr6BgTa398PwKSJoq97Aj09PUyemBKmnp6eNY+DlU0oME3leWXePT09TF5nIn1Djc/m09/fv6Z88joTh24zN03dy1FkmjqXvfI+N7PsTU1TYNnzMTf7udeapr+/f8B6WWs9NTMbTYpo7A7rkn4PfCUi5lWVvx34eETsXCgQKYD9K+1KeiPwe2CziHgkV+8nQETEgZI+CRwcEdtUtfU4cGJEfEPSZcDCiDgiN/4VwF+AV0TEHTViOQk4sbp87ty5TJkypcjimY2q5cuXM2fOHIANImJpq+Mxs3EoIoYdgFfnhgNJxzN8DHhTNnwMWAgcWE97g8wjgLfnXr8xK3thVb2fAD/Onn8SuKtGW4+TduFAOv7iv6vGvyJre9tBYpkETM0NmwOxaNGiWLVq1YDhuuuui3nz5sU2R5wVm+9/XPT09MSWh58ZWx5+ZvT09MQFF1wwZFmRaSplCxYsiAULFkRPT09M3/2gIcdv9raj1pRVYp4x8+C6p6mUDbccRaapZ9mnTZu25n1uZtmbmabRZa+OudnPvdY0CxYsGLBOLlq0KLJ1fGrR76QHDx48NDPUu4vkpqyzyh8o8eUa9eaSjs8ow6PZ4ybAI7nyTbJ4KnWm5yeSNJF00a9Hc3U2qWp7k9y4ASJiJbnLnleOD+nu7qa7u3tA/a6udKzsytXBir7n6O3tZcXqtGWot7d3zeNgZX0Fpqk8r8y7t7eX7lWrhxzfk82nUgawosFp6lmOItPUu+yV97nZZS86TZFlz8fc7Odea5qurq4B62Wt9dTMbDTVm2BsNaJR1LaQlADsRZZQZGeEvAH4RlbnWmBDSTtFxPVZ2ZtJZ8dcl6vzBUndEVHZMT2TtOVjwPEXZmZm1ry6EoyIuH8kZp5dr2LrXNFW2RkeiyPiAUlnAJ+WdDcp4fgc8DAwL4vrDkm/Br4l6UigGzgb+FGkM0ggbVU5EThP0peAVwIfBY4eiWUyMzOzglfylLQZ6diL6VRdSyMizmqgqdey9g3STssevwccQtoNsy7pdNINSZcn3yciVuSmOYiUVFxBOnvkItK1MyrxLJE0i3QK7fXAIuDkiPApqmZmZiOk4QRD0iHAfwOrgCdJx2ZUBFB3ghERV7P2cR3V4wM4IRsGq7MYmDPMfG4B/qneuMzMzKw5RbZgfA44GTglIvpLjsfMzMw6QJF7kUwhHePg5MLMzMxqKpJgnAe8q+xAzMzMrHMU2UXyCeCXkvYBbgXWuiZxRBxTRmBmZmbWvoomGLOBu7LX1Qd5mpmZ2ThXJME4lnRn0u+WHIuZmZl1iCLHYKwk3YTMzMzMrKYiCcaZwIfLDsTMzMw6R5FdJK8H3ixpP9Itz6sP8nxHGYGZmZlZ+yqSYDwN/KzkOMzMzKyDNJxgRMShIxGImZmZdY4ix2CYmZmZDanIzc4WMsT1LiLixU1FZGZmZm2vyDEYZ1S97gZ2BPYBvtJsQGZmZtb+ihyDcWatckkfBF7bdERmZmbW9so8BuNS4J0ltmdmZmZtqswE4wBgcYntmZmZWZsqcpDnjax9kKeATYF/AP6jpLjMzMysjRU5yHNe1et+4Ang6oi4s+mIzMzMrO0VOcjzsyMRiJmZmXWOcXWhLUkflHSfpBWSrpP0+lbHZGZm1onqTjAk9Ut6bphh9UgG2wxJBwKnAZ8FXgPcDMyXNL2lgZmZmXWgRnaR7D/EuF2AjzC2t4gcA3wrIs4HkHQk8FbgMODUVgZmZmbWaepOMCLi4uoySduQfpzfBlwInFBeaOWRtA6wE3BKpSwi+iVdTkqOqutPAiblitYHWLx4MX19fdXVWbp0KcuXL0eL76dr2aNMnjwZPbkQgMmTJ3PXXXcNWda17ImGp6mUXX/99Wued69YPOT4CcseW6tsvfXWo7v3qYamqWc5ikxT77JX3udml73oNEWWPR9zs597rWmWLl3Kk08+udY6uWzZsgHrqZnZaFLEoLcVGXwiaTPSroaDgfnAJyLitpJjK00W79+BN0bEtbnyLwO7R8QbquqfBJw4qkGajYx/jIi/tzoIMxt/GjqLRNIGwCeBDwM3AXtFxG9HIK5WO4V0vEbeNAa/kNj6wEPAPwLt8tfRMY+OVsa8PvDwKM/TzAxoIMGQdBxwPPAo8K+1dpmMYYuA54BNqso3IS3PWiJiJbCyqnjpYI1LqjxdFhGD1htLHPPoaHHMbfEemVlnamQLxqlAL3APcLCkg2tVioh3lBFYmSJilaTrgb3ILhQmqSt7fXYLQzMzM+tIjSQY32ftS4S3m9OA70n6M/An4ChgXeD8VgZlZmbWiRo5i+SQEYxjxEXEjyX9A3Ay6d4pNwH7RMRjJTS/knTQa/VulbHMMY+OdozZzKxphc4iMTMzMxvKWL4wlpmZmbUpJxhmZmZWOicYZmZmVjonGGZmZlY6JxglGMu3gZe0m6RfSHpYUkh6e9V4STpZ0iOSeiVdLumlLQoXSZ+QtEDSMkmPS5qX3fMmX2eypHMkPSnpGUkXSaq+iNpoxvwBSbdIWpoN10p6y1iN18xsNDjBaFIb3AZ+XVJMHxxk/HGkO+EeCbwBeJYU/+TRCW+A3YFzgJ2BmUA3cJmkdXN1TifdYO9dWf3NgJ+Ncpx5DwEfJ91Q77XAlcDFkrbLxo+1eM3MRpxPU22SpOuABRHxoex1F/Ag8PWIGFO3gZcUwP4RMS97LdK9Kr4WEV/NyjYAHgMOiYgftSrWiuzaJY+Tbkp3TRbfE8CciPhpVuflwB3ALhHxx9ZF+zxJi4H/BH5KG8RrZlY2b8FoQu428JdXyiKiP3s94DbwY9BWpIuO5eNfAlzH2Il/g+yxcqO5nUhbNfIx3wk8wBiIWdIESe8hbTm6ljEer5nZSGnobqo2wAuACaR//HmPAS8f/XAatmn2WCv+TWmxbGvQGcDvI+K2rHhTYFVEPF1VvaUxS3oVKaGYDDxD2lJ0u6QdGIPxmpmNNCcYNpadA7wSeFOrA6nDXcAOpC0uB5Due7N7SyMyM2sh7yJpTkO3gR+DKjGOufglnQ3sB+wZEQ/lRj0KrCNpw6pJWhpzRKyKiHsi4vqI+ATpwNqPMkbjNTMbaU4wmhARq4DKbeCBtW4Df22r4mrAQtKPXD7+qaSzSVoSf3ba7NnA/sCbI2JhVZXrgT7WjnkbYAZj6z3vAibRPvGamZXKu0iaN6ZvAy9pPWDrXNFW2XEBiyPiAUlnAJ+WdDcp4fgc6cySeaMcasU5wBzgX4BlkirHKSyJiN6IWCLpPOC07EyNpcDXgWtbdUaGpFOAS0kHbq5Pin8PYPZYjNfMbDQ4wWjSCN8GvgyvBa7KvT4te/wecAjwZVJCdC6wIfA7UvwrRi/EtXwge7y6qvxQ4LvZ86OBfuAi0laC+cB/jEJsg5kOfB94IbAEuIWUXPwmGz/W4jUzG3G+DoaZmZmVzsdgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYJiZmVnpnGCYmZlZ6ZxgmJmZWemcYFjLSLpP0lGtjsPMzMrnBMPMzMxK5wTDzMzMSucEwwqR9O+SHs7uHpsvv1jSdyS9JHv+mKRnJC2QtPcQ7W0pKbIbsVXKNszK9siVvVLSpVmbj0n6gaQXjMAimplZE5xgWFH/A2wM7FkpkDQN2Ae4EFgP+BXpNuU7Ar8GfiFpRtEZStoQuBK4kXQTt32ATYCfFG3TzMxGhu+maoVExFOSLiXdmvyKrPgAYBFwVUT0AzfnJvmMpP2BfwbOLjjbDwE3RsQnKwWSDgMelPSyiPhrwXbNzKxk3oJhzbgQeKekSdnrg4AfRUS/pPUkfVXSHZKelvQMsC1QeAsGsD2wZ7Z75JmszTuzcS9pol0zMyuZt2BYM34BCHirpAXAPwFHZ+O+CswEPgbcA/QCPwXWGaSt/uxRubLuqjrrZfM8vsb0jzQavJmZjRwnGFZYRKyQ9DPSloutgbsi4oZs9K7AdyPi5wCS1gO2HKK5J7LHF5KOsQDYoarODcA7gfsiYnXTC2BmZiPGu0isWRcCbwUOy55X3A28Q9IOkrYH5jLE+hYRvcAfgY9L2lbS7sDnq6qdA0wDfijpddmZKrMlnS9pQonLZGZmTXKCYc26ElgMbENKIiqOAZ4C/kDarTGftAViKIeRtqpdD5wBfDo/MiIeJm0ZmQBcBtya1Xua53exmJnZGKCIaHUMZmZm1mG8BcPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzErnBMPMzMxK5wTDzMzMSucEw8zMzEr3/wFHFetcmY/wCgAAAABJRU5ErkJggg==\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAhYAAAI2CAYAAAAM68HlAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuNCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8QVMy6AAAACXBIWXMAAA9hAAAPYQGoP6dpAABJcElEQVR4nO3deZxkVX3//9d7hgHZBkQFNIoiRMUNcMEFQ1QcQEXz1WjMV/NTxJhgRIOYLy5RRDTBFVDBGA0iGFFMNJqIOCyKoCKGVRBEREA22XEGZ6GHPr8/7m2tKap7um7f7p6qej0fj3pU1bmnbn3q9q3Tnzr33HNTSkGSJKkNC+Y7AEmSNDxMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDQnkhyWZE6meU1yVpKzOp4/N0lJ8oo5ev8vJLl2Lt6r630fVX/O/eb6vUdFkg2SfCTJ9UnGk3xjvmOS1jcmFupbkv3qf2ATt1VJbkqyNMlbk2ze0vs8rE5IdmljfW1an2PTrNof+H/AfwKvA46a33Dak+RxddJ0cZLlSW5OckqSp813bBosG8x3ABpohwLXAIuAbYHnAkcDByd5aSnlpx11Pwh8qM/1Pwx4H3AtcHEfr9urz/dpYqrY3sj8JO3XARsDY/Pw3qPi+cCNpZS3zXcgs+CvgTcAXwM+DWwB/C3w4yT7lFLOmM/gNDhMLDQTp5ZSzu94fkSS5wPfAv47yU6llJUApZQ1wJrZDCbJJqWUFaWUe2fzfdallDIv/9hLdUXBVfPx3jOR5AHAvaWU8fmOZRq2Bu5ua2VJFgAbllKm9XdLEuABE9+rln0ZOKyUck/H+30euAI4DDCx0LR4KEStKqV8F/gA8EjgrybKe42xSLIkyQ+S3J3kniRXJvnnetlzgf+tqx7fcdhlv3r5WUkuS/LUJGcnWQH8c8eys3qEtzDJPyf5TZLfJfnvJI/oiunaJF/ofmHnOqcR2/3GWCTZNMnH62Pzq+vP+g/1P4rOeiXJMUn+T/35Vif5WZJ9enye7hjvN8aijuWeJH+U5Bv149uSfCzJwmms89ok30qyV91FvirJ5Ule3lVvq3qdl9bvsSzJqUl27qo3Md7lL5N8MMmNwApgcYN1/EWS9yW5se66/88kWyTZKMnRSW6t13N8ko261jHpvjfVtgWeBzyh42/+3Hp5v3/f1yT5GbAamPRv27H9905yPrCSqheBJK9P8t36c66u/y5vmmIdz0nyk/pv+Kskr+2sV0q5oDOpqMvuAM4BdposRqmbPRaaDV+k+ie/F/C5XhWSPIGqZ+OnVIdUVgM7ArvXVa6oyw8HPkvVuAH8qGM1DwJOBb4C/Dtwyzri+kegAB+m+uV5EHBGkl36/AU4ndh+r/7n8t9U/5SOozp0sjfwUeCPgO5u9ecAL6fqjl4OvBX4WpLt6oa+XwuBpcB5wD8ALwDeDlwN/Ms0Xv/HwMnAZ4ATgNcD/5Gqe/z0us6jgf8D/AfV4bFtqP4Bfj/J40spN3Wt873AvcDHgI3qx4/vcx3vovpH+yGqfectVIeBxoEHUv3KfiawX72+w2Fa+14vtwH/H9U+tFn93gBXNPj7Ph/4C+AY4Haqw2lTeSxVb8K/Un2frqzL3wT8rH7vNcBLgE8nWVBKObZrHTtSjQs5jupvuD/whSQXlFJ+to7337aOU5qeUoo3b33dqBrqAjxtijp3Axd2PD+Mure+fn5QvY4HT7GOp9V19uux7Kx62d9OsuysjufPreveAGzeUf7KuvytHWXXAl+Yxjqniu0LwLUdz/+srvuPXfX+g+qf4A4dZYXqH11n2ZPr8gPX8Xd5VHdMdSwFeG9X3QuB86fxt762fv3LO8oWAzd1/X03Ahb0iGdV53t3/C2uBjbuqt/vOi4FFnWUn1Rvz293reNHXX+Pde57U2yPs4DLusr6/fveBzx+mu83sf337rFs4x5l3wGunmQdf9JR9pB6u35sHe//J/VnOLzfbeVtdG8eCtFsuQeY6uyQu+v7P0t1nLmJ1cDxfdQ/sZSyvOP5fwI3Ay9q+P7T9SKqfyaf7Cr/OBDghV3lZ5RSrp54UqpBsMuoegWa+kzX83P6WN9NwH91xLMMOBHYNcm2ddnqUo+RSLIwyYOo9oErgaf0WOcJpauXqME6Tixrj2c5j2p7fr6r3nnAI5JM9NDeXd/PZN/r1O/f9/ullMv7WP81pZSl3YWd268+BPRg4PvAo5Ns0VX98lLKOR2vvY1qu066DyTZmipZuwb4SB/xasSZWGi2bEbVjT+Zk4EfAv8G3JLkK/Ux8372yRtLfwM1r+p8UkopwC+pfhXPpkcCN3UlNVAdUplY3unXPdZxF1X3fhOr6n8kTdf3y3pbdfpFff8oqAYhJnlbkquoEr7bqQ4fPJnq7IJu13QXNFhH93b6bX1/fY/yBR3raGPf69Tv3/d+n30detZPsnuSM5L8jipZuo16nBH331597VNJNqU6XLQ58Gela+yFNBUTC7UuycOpGrZfTlan/rW1B9Xx/i9S/fM4GTg90xhUWJuNkfGTTeI13ZjacN8k5ZmkvOn62vRu4EjgbKpBu3sDS6jGAPRqZ3r97fpdx2Sfa8rt19K+NxP97rf3q59kB+BM4MHAwcCLqbbVxLwa3dtr2vtUkg2Br1Ntlz8rpVzWZ7wacQ7e1Gz4/+r7+3Xfdqq7vc+sbwcneTfwT1SD4M5g8n/yTf1x55N60N2OVIP4JtwFbNnjtY8EftXxvJ/YrgNekGTzrl+1j+tYvj7bMUm6ei0eU99fW9+/AvheKeUNnS9MsiXTH/jXxjqmZRr7Xj/m4+/7EqoxKS8tpfy+NyLJ82ay0rrX5kRgT+AvSinfn1GUGkn2WKhVqeaxeC9V9+2Xpqi3VY/ii+v7iVMDf1ffb9lSeK/N2rOCvgJ4KNWZJROuBp5Z/2oDIMm+wFqnpfYZ27epejwO7Cp/G1WCcur9XrF+eRjwsoknSRYDrwUuLqX8pi6+j65fv0leSXVWxHS1sY51mua+14/5+PtO9ED8fnvV4ypeP8P1fgp4FfB3pZSvz3BdGlH2WGgmXpjkcVT70TZUp9EtofqF9tIy9aQ/hybZAzilrr818HdUZ278oK5zNdWx4wOSLKf6Z35eKaXfY9QT7gR+kOT4Ot6DqA7XdJ4S+29UCcd3knwV2IGqW/7qtVfVV2z/A3wP+KckjwIuoToV98+AozsHaq6nfgEcl+TpVKf07k+1/Tr/iX2L6m96PNVZGE8CXsPavTzr0sY6pmM6+14/5uPvexrVKbr/k+RfqcY0vRG4lSpZ7luSg6i2w7nAiiR/1VXlv0opv7vfC6UuJhaaicPr+3up/mlfSvXP+vgeA9m6/TfVwL/9qY4T3041ov19pZTfQjWDZZLXAUdQndWwAdU/s6aJxT9THTd+F9WgtDOpfpmtmKhQSlma5O1Ux62PBs4H9qUa4U9HvWnHVkoZT/JSqu31qrretVTXnPh4d/310FVUc0R8lGpOhWuAV3WdqfDPwKbAq6k+44VUx/37mca9jXVMxzr3vX7Mx9+3lHJlqovqfZBqLpDfUM1Jchv3Pytmunap759V37ptzx966qRJ5f6DvSWpkmoG0ctKKfvOdyySBoNjLCRJUmtMLCRJUmtMLCRJUmscYyFJklpjj4UkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUkSWqNiYUaS7JfkpLkUeuod22SL8xNVJIGie3I8DGxkCRpCkn2TPL5JL9IsiLJr5L8W5KHznds66OUUuY7Bg2oJAuBRcDqMsWOlORa4KxSyn5zFJqkATEI7UiS84GtgP8ArgIeDRwIrAB2KaX8Zq5jWp9tMN8BaHCVUu4D7pvvOCQNrgFpRw4GflBKGZ8oSPId4PtUCcZ75iuw9ZGHQtRY97HRVN6T5Ia6u/B7SZ7Q43WHJbnfL5Nex1rr46rfSvLcJOcnWZnk0iTPrZe/vH6+KskFSXadrc8rqX2D0I6UUs7uTComyoA7gZ1mvhWGi4mF2nQ48AHgEuD/Ab8CTgM2neF6dwROAv4HeBfwQOB/krwGOAr4d+B9wA7AV5O4X0uDayDakSSbAZsBt88wrqHjoRC1IslDgEOAU4CXTBwrTfJPwLtnuPrHAs8upZxbr/NyYCnwOeBxpZRf1+V3Af8K7AGcNcP3lDTHBqwdOQjYEDh5hnENHX/ZqS0voPqSfaprANbRLaz78onGoHZeff/dicagq/zRLbynpLk3EO1Ikj2oeje+Wkr5bguxDRUTC7XlkfX9VZ2FpZTbgLtmuO7OLz2llN/WD6/vqjdR/sAZvp+k+bHetyNJHgf8F3AZ8NczjGkomVhoPkx2StnCSconGzE+WXn6C0fSAJrzdiTJI6jGe/wWeFEpZfmUEY4oEwu15br6/o87C+tjpt2Z/131si27yh+JpFG23rYjSR5ElVRsBOxdSrl5Nt5nGJhYqC1nAGPAW5J0ZvoH9ah7dX2/x0RBkk2B181adJIGwXrZjtTr/TbwR1Q9FVet4yUjzbNC1IpSym1JPkZ1Gte3knwb2BV4Ifc/Hes0quOdxyX5KFVX5P7AbcB2cxe1pPXJetyOfAnYDfg8sFOSzrkr7imlfKPl9xtoJhZq03uAVcABwPOoRlfvRXXq2O+VUsaSvAz4NNX56r+hGvV9F3D8HMYraf2zPrYju9T3+9e3TtcB32j5/Qaa1wqRJEmtcYyFJElqjYmFJElqjYmFJElqjYmFJElqTd+JRZJ9kjyn4/mbk1yc5KQkTqUsqRHbFmk4NOmx+CiwGCDJk4CPU00csj1wZHuhSRoxti3SEGgyj8X2wOX14z8HvlVKeXeSp1A1AiOpniXuYYBzx2s+bA7cVAb7/HHblh5sWzTP+m5bmiQW9wKb1I9fAJxYP76T+tfGiHoYcMN8B6GR9nDgxvkOYgZsW3qzbdF866ttaZJY/AA4MskPqaY4fVVd/hhGe+dfDnD99dezePHabeDY2BinnXYae+21F4sWLZqX4NZnbp+prWv7LFu2jEc84hEw+L9obVt6s22ZAbfR1KbaPk3bliaJxYFUU6i+AnhTKWUii3kh8J0G6xsqixcv7vnl32STTVi8eLE7dg9un6mN0PaxbZmCbUszbqOpzcb26TuxKKX8Gti3R/nbWolI0kiybZGGQ6OLkCVZAOwIbE3XmSWllLNbiEvSCLJtkQZf34lFkmcCJwGPBNK1uAALW4hL0oixbZGGQ5Mei88A5wMvBm6m+sJLM3bJJZewYMECHvzgB7PddtvNdziae7YtmjWXXHIJW2+9tW3LHGiSWPwx8IpSyi/bDkaj6YYbqgH/e+yxBytXruQBG2/ClT+/wgZg9Ni2qHWd7Ushti1zoMnMm+dRHQOVWnHHHXcAsNU+b+FB+76dVStXcPvtt89zVJoHti1q3UT7sni3l9u2zJEmPRafAj6eZFvgUmCsc2Ep5adtBKbRs2irP+K+NfZ+jzDbFs2ahYsfMt8hjIwmicXX6vvPd5QVqsFWDrCS1JRtizQEml4rRJLaZtsiDYEmE2RdNxuBSBptti3ScGg6QdYOwEHATnXR5cAnSilXtxSXpBFk2yINvr7PCkmyN9WXfTfgp/XtGcDPkixpNzxJo8K2RRoOTXosPgQcVUp5Z2dhkg8BHwZObyMwSSPHtkUaAk3msdgJOK5H+eeBx88sHEkjzLZFGgJNEovbgF16lO8C3DqTYCSNNNsWaQg0ORTyOeCzSR4N/Kgu2x14B3BkW4FJGjm2LdIQaJJYfABYDrwdOKIuuwk4DPhkO2FJGkG2LdIQaDKPRQGOAo5KsnldtrztwCSNFtsWaTg0msdigl96SbPBtkUaXNNKLJJcCOxZSrkryUVU8/b3VEp5SlvBSRputi3S8Jluj8U3gdUdj70EpaQ22LZIQ2ZaiUUp5f0djw+btWgkjRTbFmn4NJnS+1dJHtSjfMskv2onLEmjxrZFGg5NJsh6FLCwR/lGwMNnFI2kUfYobFukgTfts0KSvLTj6d5JftvxfCGwJ3BNW4FJGg22LdJw6ed002/U9wU4oWvZGHAt1cQ2ktSPb9T3ti3SEJh2YlFKWQCQ5Brg6aWU22ctKkkjw7ZFGi5NZt7cfjYCkTTabFuk4TDdCbLeCny2lLKqfjypUopz+kuaFtsWafhMt8fibcCXgFX148kUvFiQpOmzbZGGzHQnyNq+12NJmgnbFmn4NJkg69Akm/Qo3zjJoe2EJWnU2LZIw6HJBFnvAzbrUb5JvUySmrBtkYZAk8Qi9L5Q0M7AnTMLR9IIs22RhsC0E4skdyW5k+qL/4skd3bcfgucDny1aSBJ3pmkJDm6o+wBSY5NckeSe5J8Lck2Xa/bLskpSVYkuTXJR5Ns0FXnuUkuTLI6yS+T7Nfj/d+c5Nokq5Kcl2S3pp9F0vTZtkjDpZ95LA6i+kXxeapuyc5pd+8Fri2lnNskiCRPB/4W+GnXoqOAFwOvrN/vGODrwO716xYCpwC/AZ4NPBQ4kWq2vnfXdbav63wGeA3V9MD/luTmUsrSus6rgCOBA4Dz6s+6NMljSym3NvlMkqbtIGxbpKHRz8ybJ8DvZ8f7YSllTRsBJNmM6nSzNwLv6SjfAngD8OpSynfrstcDVyR5Zinlx8BewOOBF5RSbgEuTvJe4MNJDiul3Ev1hb6mlDIxJfAVSZ5DdWrb0rrsYOBzpZTj6/c5gKrR2R/4UBufU1Jvti3ScGky8+b3k+xQfxF3AP6+lHJrkhcCvy6l/KzPVR4LnFJKOSPJezrKnwosAs7oeO+fJ/k18Czgx/X9pfUXf8JS4F+AJwAX1XXOYG1LgaMBkmxYv9cRHe8znuSM+rU9JdmI6qqLEzYHGBsbY2xsbK26E8+7y1UZHx8HYKMNAsDGG2/M+Pi426u2rv1nWLaTbUvFtqVdE+3LAxYttG3pYap9qOl26juxSPKnwKnAD4E9gH8EbqUaYPUG4BV9rOsvgacAT++xeFvg3lLK3V3lt9TLJurc0mM506izOMnGwAOprqDYq87jpgj/XfQYqX7aaaexySb3O2MOgNNPP32K1enDL9yuevCSL3PjjTdy4403zm9A65nJ9p8VK1bMcSSzw7bl92xbZsGRr/0TeO2f2LZMotc+1LRt6TuxoOq+e08p5cgkyzvKvwscON2VJHkE8AlgSSllVYM45tsRVMdOJ2wO3LDXXnuxePHitSqOjY1x+umns2TJEhYtWjSXMQ6Eiy66iJtvvpl3nPprVq8p3HLSOzn77LPZeeed5zu09cK69p9ly5bNQ1SzwralYtvSoon25eATz+HmUz9t29Jlqn2oadvSJLF4EvDqHuW3Ag/uYz1PBbYGLkwyUbYQ2CPJgcDewIZJtuz6ZbEN1YAq6vvuEdbbdCybuN+mR51lpZSVSe4D7pukzm+YRCllNbB64vnEZ1i0aNGkX/Cplo2yBQuqk5NWrymsWlNYuXIlCxYscFt1mWz/GaLtZNuCbUvbJtqXVWP32bZModc+1HQ7NZnH4m6qEdLddgX66V86k6oh2aXjdj7VYKuJx2NUI60BSPJYYDtgYoT4ucCTkmzdsd4lwDLg8o46e7K2JRPrqAdhXdD1Pgvq541Goktq5G5sW6SB16TH4itUI6NfSXXe+YIkuwMfozoda1pKKcuByzrLkvwOuKOUcln9/DjgyPoc92XAp4Bz61HbAKdRfcm/mOQQqmOeHwSOrbN+qE4FOzDJR6hOZ3s+8BdUI7MnHAmckOR84CdUp4RtChw/3c8jacZsW6Qh0CSxeDfVaOvrqboXL6/vT6L64rXpbcA48DWqUdJLgb+bWFhKuS/JvlQjtc8FfgecABzaUeeaJC+mOm/974EbgL+eOM+8rnNykocAh1M1IBcD+3SNCJc0u2xbpCHQ5HTTe4E3JvkA8ESquf0vKqVcNdNgSinP7Xq+CnhzfZvsNdcBL1rHes+i6k6dqs4xVJPkSJoHti3ScGjSYwFAKeXXSa6vH/ea31+S+mbbIg22JoM3SfKGJJcBq4BVSS5L8tfthiZp1Ni2SIOvyQRZh1NNU/sp/jCy+VnAUUm2K6UcOumLJWkSti3ScGhyKORNwBtLKV/uKPvvJD+lahD88ktqwrZFGgJNDoUsojoPvNsFzGDMhqSRZ9siDYEmicUXqX5ZdPsbqgloJKkJ2xZpCDT9FfCGJHtRXQUQ4BlUs9admOT3c9yXUg6eYXySRottizTgmiQWTwQurB/vUN/fXt+e2FHP08Qk9cO2RRoCTSbIet5sBCJptNm2SMOh0TwWAEl2TLJ3ko3r51nXayRpXWxbpMHWd2KR5EFJzgR+AXybP1yN8LgkH28zOEmjw7ZFGg5NeiyOorrk8HbAio7yk4F92ghK0kiybZGGQJPBm3sBe5dSbujqobwKeGQrUUkaRbYt0hBo0mOxKWv/mpiwFbB6ZuFIGmG2LdIQaJJYnAO8tuN5SbIAOAT4XitRSRpFti3SEGhyKOQQ4MwkTwM2BD4CPIHqV8XuLcYmabTYtkhDoO8ei1LKZcBjgB8A36Tqvvw6sGsp5ep2w5M0KmxbpOHQV49FkkXAd4ADSin/NDshSRo1ti3S8Oirx6KUMgY8eZZikTSibFuk4dFk8Oa/A29oOxBJI8+2RRoCTQZvbgDsn+QFwAXA7zoXetVBSQ3ZtkhDYKZXN31M1zKvOiipKdsWaQh4dVNJ6wXbFmk4NL66qSRJUjcTC0mS1BoTC0mS1BoTC0mS1JppJRZJLkzywPrxoUk2md2wJI0C2xZp+Ey3x2Inqnn7Ad4HbDY74UgaMbYt0pCZ7ummFwPHJ/kBEOAfktzTq2Ip5fCWYpM0/C7GtkUaKtNNLPYD3g/sSzVRzQuBNT3qFcAvv6Tp2g/bFmmoTCuxKKVcCfwlQJJxYM9Syq2zGZik4WfbIg2fJjNveiaJpNbZtkjDocm1QkiyA3AQ1cArgMuBT5RSrm4pLkkjyLZFGnx9/0JIsjfVl3034Kf17RnAz5IsaTc8SaPCtkUaDk16LD4EHFVKeWdnYZIPAR8GTm8jMEkjx7ZFGgJNjmnuBBzXo/zzwONnFo6kEWbbIg2BJonFbcAuPcp3ARzNLakp2xZpCDQ5FPI54LNJHg38qC7bHXgHcGRbgUkaObYt0hBoklh8AFgOvB04oi67CTgM+GQ7YUkaQbYt0hDo+1BIqRxVSnk4sAWwRSnl4aWUT5RSSj/rSvKuJP+bZHmSW5N8I8lju+o8IMmxSe5Ick+SryXZpqvOdklOSbKiXs9Hk2zQVee59QWPVif5ZZL9esTz5iTXJlmV5Lwku/XzeSQ1Z9siDYcZTUhTSlleSlk+g1X8KXAs8ExgCbAIOC3Jph11jgJeAryyrv8w4OsTC5MsBE4BNgSeDbyOaprgwzvqbF/X+R7V8dqjgX+rT2+bqPMqqu7W9wNPAS4BlibZegafT1IDti3S4Go0QVZbSin7dD6vM/1bgacCZyfZAngD8OpSynfrOq8HrkjyzFLKj4G9qEaMv6CUcgtwcZL3Ah9Oclgp5V7gAOCaUsrb67e6IslzgLcBS+uyg4HPlVKOr9/nAODFwP5Up8FJGhC2LdL8mdfEooct6vs76/unUv3SOGOiQinl50l+DTwL+HF9f2n9xZ+wFPgX4AnARXWdM1jbUqpfFyTZsH6vieO6lFLGk5xRv/Z+kmwEbNRRtDnA2NgYY2Nja9WdeN5drsr4+DgAG20QADbeeGPGx8fdXrV17T9up2mxbRlRE+3LAxYttG3pYap9qOl2Wm8SiyQLqL6MPyylXFYXbwvcW0q5u6v6LfWyiTq39FjONOosTrIx8EBg4SR1HjdJyO8C3tddeNppp7HJJpv0fMHppzu/z1Q+/MLtqgcv+TI33ngjN9544/wGtJ6ZbP9ZsWLFHEcyWGxbBHDka/8EXvsnti2T6LUPNW1b+koskiwCvgMcUEq5qtE7Tu5Y4InAc1pe72w5grVPgdscuGGvvfZi8eLFa1UcGxvj9NNPZ8mSJSxatGguYxwIF110ETfffDPvOPXXrF5TuOWkd3L22Wez8847z3do64V17T/Lli2bh6jaZduyFtuWFk20LwefeA43n/pp25YuU+1DTduWvhKLUspYkic3eqcpJDkG2BfYo5RyQ8ei3wAbJtmy65fFNvWyiTrdI6y36Vg2cb9NjzrLSikrk9wH3DdJnd/QQyllNbC64zMAsGjRokm/4FMtG2ULFlRjiFevKaxaU1i5ciULFixwW3WZbP8Zhu1k2/IHti3tmmhfVo3dZ9syhV77UNPt1OSskH+nGvQ0Y6kcA7wMeH4p5ZquKhcAY8CeHa95LLAdcG5ddC7wpK4R1kuAZVQXNJqosydrWzKxjnoQ1gVd77Ogfn4ukuaCbYs0BJqMsdgA2D/JC6i+ML/rXFhKObiPdR0LvBr4M2B5konjlr8tpawspfw2yXHAkUnupPpCfwo4tx61DXAa1Zf8i0kOoTrm+UHg2DrzB/gMcGCSj1Bdd+D5wF9QjcyecCRwQpLzgZ9QXbp5U+D4Pj6PpOZsW6Qh0CSxeCJwYf34MV3L+prEBnhTfX9WV/nrgS/Uj98GjANfoxopvRT4u9+/YSn3JdmXaqT2uVSN0QnAoR11rknyYqrz1v8euAH461LK0o46Jyd5CNU56tsCFwP7dI0IlzR7bFukIdB3YlFKeV5bb15KyTTqrALeXN8mq3Md8KJ1rOcsYNd11DkGOGZdMUlqn22LNBwaz7yZZMcke9enVJGJEUaSNAO2LdJg6zuxSPKgJGcCvwC+DTy0XnRcko+3GZyk0WHbIg2HJj0WR1GNpt4O6Jw942Rgn56vkKR1s22RhkCTwZt7AXuXUm7o6qG8CnhkK1FJGkW2LdIQaNJjsSlr/5qYsBUdk7pIUp9sW6Qh0CSxOAd4bcfzUk/4cgjVpYMlqQnbFmkINDkUcghwZpKnARsCH6G60t9WwO4txiZptNi2SEOg7x6L+uqAjwF+AHyTqvvy68CupZSr2w1P0qiwbZGGQ6PLppdSfgv8U8uxSBpxti3S4GuUWCR5INXFgnaqiy4Hji+l3NlWYJJGj22LNPiaTJC1B3At8FbggfXtrcA19TJJ6pttizQcmvRYHEs1Yc2bSin3ASRZCHy6Xvak9sKTNEJsW6Qh0OR00x2Bj0988aG6CiDVpYF3bCswSSPHtkUaAk0Siwv5w/HPTjsBl8wsHEkjzLZFGgLTOhSS5MkdTz8JfCLJjsCP67JnUl16+J3thidpmNm2SMNnumMsLgYK0DmB/0d61DuJ6hipJE3Hxdi2SENluonF9rMahaRRZdsiDZlpJRallOtmOxBJo8e2RRo+TSfIehjwHGBrugaAllI+2UJckkaQbYs0+PpOLJLsB/wrcC9wB9Xx0QmFagCWJPXFtkUaDk16LD4AHA4cUUoZbzkeSaPLtkUaAk3msdgE+IpffEkts22RhkCTxOI44JVtByJp5Nm2SEOgyaGQdwHfSrIPcCkw1rmwlHJwG4FJGjm2LdIQaJpY7A1cWT/vHmAlSU3YtkhDoEli8XZg/1LKF1qORdJos22RhkCTMRargR+2HYikkWfbIg2BJonFJ4C3tB2IpJFn2yINgSaHQnYDnp9kX+Bn3H+A1cvbCEzSyLFtkYZAk8TibuDrLcchSXdj2yINvL4Ti1LK62cjEEmjzbZFGg5NxlhIkiT11OQiZNcwxTnlpZRHzygiSSPJtkUaDk3GWBzd9XwRsCuwD/DRmQYkaWQd3fXctkUaQE3GWHyiV3mSNwNPm3FEkkaSbYs0HNocY3Eq8Octrk+SwLZFGihtJhavAO5scX2SBLYt0kBpMnjzItYeYBVgW+AhwN+1FJekEWPbIg2HJoM3v9H1fBy4DTirlPLzGUckaVR9o+u5bYs0gJoM3nz/bASyPqgHif0/ql9JlwBvKaX8ZH6jkkbDMLctYPui0eEEWbUkrwKOBN4PPIXqi780ydbzGpikgWf7olEy7cQiyXiS+9ZxWzObwc6yg4HPlVKOL6VcDhwArAD2n9+wpOE2Am0L2L5ohPRzKORlUyx7FvBWBrQHJMmGwFOBIybKSinjSc6g+my9XrMRsFFH0eYAd955J2Nja12UkbGxMVasWME555zDggULWLBgAePj4/e7B6ZVNtv15/o9r7zySjbbbDNy53Vk7D4e8IAHcMEFF3DPPffM2zZYn+qvWbOGFStWcMcdd7Bo0aL77YvLly/vtYsOkqFtW6D/9qXNtgXW7317LupfddVVbLbZZiy855ZptS2D8JnarD8+Pj5p+9K4bSmlNL4BjwX+C1gDnAA8cibrm68b8DCq0ejP6ir/CHDeJK85rH6NN2/ry+2P5vu71OJ3cijalibtC7Yt3ta/W19tS5OzQkjyMKpjha8DlgK7lFIua7KuAXYE1THTTlvR+3z7zYEbgIcDA//zcha4faY2ne2zOXDTnEU0S2xbANuWtrmNprau7dN329JXYpFkC+DdwFuAi4E9Synn9LOO9dTtwH3ANl3l2wC/6fWCUspqYHVX8bJedZNMPFxeSulZZ5S5faY2ze0z0NttiNsW6LN9sW1pl9toatPYPn1vs34Gbx4C/ArYF/i/pZRnD8sXv5RyL3ABsOdEWZIF9fNz5ysuaRQMc9sCti8aPamP6a27YjIOrATOoMq+eyqlvLyd0OZWfTrYCcDfAj8BDgL+AnhcKeWWGa57MfBbYAsz5vtz+0xt2LfPsLctMHvty7DvG21wG01tNrZPP4dCTqQaxDGUSiknJ3kIcDjVBDYXA/vMNKmoraY6btzdvamK22dqw759hrptgVltX4Z932iD22hqrW+fafdYSJIkrcvAnhsuSZLWPyYWkiSpNSYWkiSpNSYWkiSpNSYWsyTJVkm+lGRZkruTHJdks3W85qwkpev2mbmKeTYleXOSa5OsSnJekt3WUf+VSX5e1780yYvmKtb50M/2SbJfj/1k1VzGq/lj27I225Z1m+v2xcRi9nwJeAKwhGrinz2Az07jdZ8DHtpxO2S2Apwr/V4yOsmzgS8DxwG7At8AvpHkiXMS8BxreEntZay9nzxytuPUesO2pWbbsm7z0r7M9wV6hvEG7ER1Xv7TOsr2AcaBh03xurOAo+c7/lnYHucBx3Q8XwDcCLxzkvonA9/qKvsx8Jn5/izryfbZD7h7vuP2Nvc325b7fS7blva30YzbF3ssZsezqP4w53eUnUH15X/GOl77miS3J7ksyRFJNpm1KOdAxyWjz5goK6WM1897XpK+Lj+jq2zpFPUHVsPtA7BZkuuSXJ/km0meMMuhav1g21KzbVm3+WpfGl3dVOu0LXBrZ0EpZU2SO+tlkzkJuI7qSnJPBj5MdfnogZ3KGHgwsBDonmHwFuBxk7xm20nqT7XtBlWT7XMlsD/wU2AL4B+AHyV5QinlhtkKVOsF25Y/sG1Zt3lpX0ws+pDkQ8A71lFtp6brL6V0Hie9NMnNwJlJdiilXN10vRoupZRz6bh4VZIfAVdQXYfivfMVl5qzbdH6oo32xcSiPx8HvrCOOr+iuhTyWgNjkmwAbMUkl2GfxHn1/Y7AoH75+74kfV3eT/1B1mT7rKWUMpbkIqr9RIPJtqV/ti3rNi/ti2Ms+lBKua2U8vN13O6lyva2TPLUjpc/n2p7n9dz5b3tUt/f3M4nmHul2SWjz+2sX1syRf2B1XD7rCXJQuBJDPB+MupsW/pn27Ju89a+zPeI1WG9AacCFwK7AbsDvwBO6lj+R8DPgd3q5ztQdTM9FXgU8FKqXxLfn+/P0sK2eBWwCngdVXfuvwJ3AdvUy08Ejuio/2xgDHg71XHAw4B7gSfO92dZT7bPocBewKOpTh/7MtVlxx8/35/F25zsL7Ytf/isti3tb6MZty/z/qGH9UbVNXkSsJzqWvefBzbrWP4oqtPGnls/fwTwfeCOeie4CvgIsHi+P0tL2+NAqsFjq6l+WT2jY9lZwBe66r+SahDRauAy4EXz/RnWl+0DHNVR9zfAKcCu8/0ZvM3ZvmLbsvb2sG1pcRu10b542XRJktQax1hIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFhIkqTWmFho3iW5NslB8x2HpOFi2zI/TCwkSVJrTCwkSVJrTCw0I0n+JslN9aV4O8u/meTzSXaoH9+S5J4k/5vkBVOs71FJSpJdOsq2rMue21H2xCSn1uu8JckXkzx4Fj6ipHlg2zK4TCw0U/8BPAh43kRBkq2AfYAvAZsB3wb2BHYFvgP8T5Ltmr5hki2B7wIXAU+r32sb4KtN1ylpvWPbMqA2mO8ANNhKKXclORV4NXBmXfwK4Hbge6WUceCSjpe8N8nLgJcCxzR82wOBi0op754oSLI/cH2Sx5RSftFwvZLWE7Ytg8seC7XhS8CfJ9mofv4a4CullPEkmyX5WJIrktyd5B5gJ6DxrwpgZ+B5dVflPfU6f14v22EG65W0frFtGUD2WKgN/wMEeHGS/wX+BHhbvexjwBLgH4BfAiuB/wQ2nGRd4/V9OsoWddXZrH7Pd/R4/c39Bi9pvWXbMoBMLDRjpZRVSb5O9WtiR+DKUsqF9eLdgS+UUv4LIMlmwKOmWN1t9f1DqY5zAuzSVedC4M+Ba0spa2b8ASStl2xbBpOHQtSWLwEvBvavH0+4Cnh5kl2S7AycxBT7XSllJfBj4J1Jdkryp8AHu6odC2wFfDnJ0+vR4XsnOT7JwhY/k6T5Z9syYEws1JbvAncCj6X6gk84GLgL+BFVF+NSql8FU9mfqjftAuBo4D2dC0spN1H9WlkInAZcWte7mz90d0oaDrYtAyallPmOQZIkDQl7LCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLCRJUmtMLDTnkuyXpCR51HzHIklql4mFJElqTUop8x2DRkyShcAiYHVxB5SkoWJiIUmSWuOhEM25zjEWSU5IcnuSRT3qnZbkyvmIUZLUjImF5tsXgQcBe3cWJtkWeD7w7/MRlCSpGRMLzbfvAjcAf9VV/n+p9k8TC0kaICYWmlellHHgS8BLk2zeseg1wI9KKdfMT2SSpCZMLLQ+OBHYGHgZQJLHAk+lOkwiSRogJhaad6WUy4EL+MPhkL8C7gW+Om9BSZIaMbHQ+uJE4PlJHgq8GjillHLXPMckSeqTiYXWF18GCvAJ4NE4aFOSBpKJhdYLpZTbgO8ArwTuBk6Z14AkSY2YWGh9cmJ9/9VSyup5jUSS1IiJheZcKeULpZSUUq7tWnRvfe9hEEkaUF4rROuNJN8CdgJ29OJkkjSYNpjvAKQkfwk8GXgx8PcmFZI0uOyx0LxLUoB7gJOBA0opa+Y5JElSQ30nFkn2Ae4ppfygfv5m4I3A5cCbnXtAkqTR1WTw5keBxQBJngR8HPg2sD1wZHuhSZKkQdNkjMX2VL0TAH8OfKuU8u4kT6FKMCRJ0ohqkljcC2xSP34Bf5h74E7qnoxRlCTAw4Dl8x2LRtLmwE0OfJU035okFj8AjkzyQ2A34FV1+WOAG9oKbAA9jNH+/Jp/DwdunO8gJI22JonFgcCngVcAbyqlTDRkL6SaknlULQe4/vrrWbx47Y6bsbExTjvtNPbaay8WLVo0L8Gtz9w+U1vX9lm2bBmPeMQjwN4ySeuBvhOLUsqvgX17lL+tlYgG3OLFi3smFptssgmLFy/2H2cPbp+puX0kDZJGE2QlWQDsCGxN15klpZSzW4hLkiQNoL4TiyTPBE4CHgmka3EBFrYQlyRJGkBNeiw+A5xPNf3yzVTJhDRjl1xyCQsWLODBD34w22233XyHI0lqoEli8cfAK0opv2w7GI2mG26oTqbZY489WLlyJQ/YeBOu/PkVJheSNICazLx5HtX4CqkVd9xxBwBb7fMWHrTv21m1cgW33377PEclSWqiSY/Fp4CPJ9kWuBQY61xYSvlpG4Fp9Cza6o+4b41H1iRpkDVJLL5W33++o6xQDeR08KYkSSOs6bVCJEmS7qfJBFnXzUYgkiRp8DWdIGsH4CBgp7rocuATpZSrW4pLkiQNoL7PCkmyN1UisRvw0/r2DOBnSZa0G54kSRokTXosPgQcVUp5Z2dhkg8BHwZObyMwSZI0eJrMY7ETcFyP8s8Dj59ZOJIkaZA1SSxuA3bpUb4LcOtMgpEkSYOtyaGQzwGfTfJo4Ed12e7AO4Aj2wpMkiQNniaJxQeA5cDbgSPqspuAw4BPthOWJEkaRE3msSjAUcBRSTavy5a3HZgkSRo8jeaxmGBCIUmSOk0rsUhyIbBnKeWuJBdRXROkp1LKU9oKTpIkDZbp9lh8E1jd8dhLUEqSpPuZVmJRSnl/x+PDZi0aSZI00JpM6f2rJA/qUb5lkl+1E5YkSRpETSbIehSwsEf5RsDDZxSNJEkaaNM+KyTJSzue7p3ktx3PFwJ7Ate0FZgkSRo8/Zxu+o36vgAndC0bA66lmjRLkiSNqGknFqWUBQBJrgGeXkq5fdaikiRJA6nJzJvbz0YgkiRp8E13gqy3Ap8tpayqH0+qlOL1QiRJGlHT7bF4G/AlYFX9eDIFL0QmSdLImu4EWdv3eixJktSpyQRZhybZpEf5xkkObScsSZI0iJpMkPU+YLMe5ZvUyyRJ0ohqkliE3hch2xm4c2bhSJKkQTbtxCLJXUnupEoqfpHkzo7bb4HTga82DSTJO5OUJEd3lD0gybFJ7khyT5KvJdmm63XbJTklyYoktyb5aJINuuo8N8mFSVYn+WWS/Xq8/5uTXJtkVZLzkuzW9LNIkjSq+pnH4iCq3orPUx3y6JzS+17g2lLKuU2CSPJ04G+Bn3YtOgp4MfDK+v2OAb4O7F6/biFwCvAb4NnAQ4ETqWYCfXddZ/u6zmeA11BNPf5vSW4upSyt67wKOBI4ADiv/qxLkzy2lHJrk88kSdIo6mfmzRPg9zNv/rCUsqaNAJJsRnUq6xuB93SUbwG8AXh1KeW7ddnrgSuSPLOU8mNgL+DxwAtKKbcAFyd5L/DhJIeVUu6lShauKaVMTDd+RZLnUJ02u7QuOxj4XCnl+Pp9DqBKaPYHPtTG55QkaRT0PcailPJ94JFJPpjky0m2BkjywiRPaBDDscAppZQzusqfCiwCfl9eSvk58GvgWXXRs4BL66RiwlJgMfCEjjrd6146sY4kG9bv1fk+4/XzZyFJkqat7ym9k/wpcCrwQ2AP4B+BW6kGb74BeEUf6/pL4CnA03ss3ha4t5Ryd1f5LfWyiTq39FjONOosTrIx8ECqq7P2qvO4KWLfiOpS8RM2BxgbG2NsbGytuhPPu8tVGR8fB2CjDQLAxhtvzPj4uNurtq79x+0kaX3Sd2JBdWjgPaWUI5Ms7yj/LnDgdFeS5BHAJ4AlpZRVDeKYb++ix+m1p512Gptscr9pPgA4/fTTZzumgfbhF25XPXjJl7nxxhu58cYb5zeg9cxk+8+KFSvmOBJJmlyTxOJJwKt7lN8KPLiP9TwV2Bq4MMlE2UJgjyQHAnsDGybZsqvXYhuqwZrU991nb2zTsWzifpsedZaVUlYmuQ+4b5I6v2FyR1AN+JywOXDDXnvtxeLFi9eqODY2xumnn86SJUtYtGjRFKscTRdddBE333wz7zj116xeU7jlpHdy9tlns/POO893aOuFde0/y5Ytm4eoJKm3JonF3VRnX1zTVb4r0M9PzDOpkpROxwM/Bz4MXE91dseewNcAkjwW2A6YOPvkXOAfk2zdcfbGEmAZcHlHnRd1vc+SiXWUUu5NckH9Pt+o32dB/fyYyYIvpawGVk88n0iOFi1aNGnyMNWyUbZgQTXUZ/Wawqo1hZUrV7JgwQK3VZfJ9h+3k6T1SZPE4itUZ128kmpOiwVJdgc+RnWq57SUUpYDl3WWJfkdcEcp5bL6+XHAkfX8GcuATwHn1meEAJxGlUB8MckhVOMpPggcW//jh+o00wOTfITqVNnnA39BddbHhCOBE5KcD/yE6nTTTakSHUmSNE1NEot3U53JcT3VoYvL6/uTqP6pt+ltwDhVj8VGVGdz/N3EwlLKfUn2Bf6Fqgfid8AJwKEdda5J8mKqOTH+HrgB+OuJOSzqOicneQhwOFVycjGwT9fZJpIkaR36TizquSHemOQDwBOprhtyUSnlqpkGU0p5btfzVcCb69tkr7mO+x/q6K5zFtWhmqnqHMMUhz4kSdK6NemxAKCU8usk19ePe107RJIkjZgmFyEjyRuSXAasAlYluSzJX7cbmiRJGjRNJsg6nGoK7E/xh7MzngUclWS7Usqhk75YkiQNtSaHQt4EvLGU8uWOsv9O8lOqZMPEQpKkEdXkUMgi4Pwe5RcwgzEbkiRp8DVJLL5I1WvR7W+orlIqSZJGVNMehjck2QuYmKjqGVQzYp6Y5PfTXJdSDp5hfJIkaYA0SSyeCFxYP96hvr+9vj2xo56noEqSNGKaTJD1vNkIRJIkDb5G81gAJNkxyd5JNq6fZ12vkSRJw63vxCLJg5KcCfwC+DbVlU4Bjkvy8TaDkyRJg6VJj8VRVJcz3w5Y0VF+MrBPG0FJkqTB1GTw5l7A3qWUG7qOflwFPLKVqCRJ0kBq0mOxKWv3VEzYClg9s3AkSdIga5JYnAO8tuN5SbIAOAT4XitRSZKkgdTkUMghwJlJngZsCHwEeAJVj8XuLcYmSZIGTN89FqWUy4DHAD8Avkl1aOTrwK6llKvbDU+SJA2SvnoskiwCvgMcUEr5p9kJSZIkDaq+eixKKWPAk2cpFkmSNOCaDN78d+ANbQciSZIGX5PBmxsA+yd5AXAB8LvOhV7RVJKk0TXTq5s+pmuZVzSVJGmEeXVTSZLUmsZXN5UkSepmYiFJklpjYiFJklpjYiFJklozrcQiyYVJHlg/PjTJJrMbliRJGkTT7bHYieqaIADvAzabnXAkSdIgm+7pphcDxyf5ARDgH5Lc06tiKeXwlmKTJEkDZrqJxX7A+4F9qSbBeiGwpke9AphYSJI0oqaVWJRSrgT+EiDJOLBnKeXW2QxMkiQNniYzb3omiSRJ6qnJtUJIsgNwENWgToDLgU+UUq5uKS5JkjSA+u59SLI3VSKxG/DT+vYM4GdJlrQbniRJGiRNeiw+BBxVSnlnZ2GSDwEfBk5vIzBJkjR4moyX2Ak4rkf554HHzywcSZI0yJokFrcBu/Qo3wXwTBFJkkZYk0MhnwM+m+TRwI/qst2BdwBHthWYJEkaPE0Siw8Ay4G3A0fUZTcBhwGfbCcsSZI0iPo+FFIqR5VSHg5sAWxRSnl4KeUTpZTSz7qSvCvJ/yZZnuTWJN9I8tiuOg9IcmySO5Lck+RrSbbpqrNdklOSrKjX89EkG3TVeW59MbXVSX6ZZL8e8bw5ybVJViU5L8lu/XweSZJG3YwmuyqlLC+lLJ/BKv4UOBZ4JrAEWASclmTTjjpHAS8BXlnXfxjw9YmFSRYCpwAbAs8GXkc1BfnhHXW2r+t8j2osyNHAv9Wnzk7UeRXVoZz3A08BLgGWJtl6Bp9PkqSR0miCrLaUUvbpfF73ItwKPBU4O8kWwBuAV5dSvlvXeT1wRZJnllJ+DOxFdTbKC0optwAXJ3kv8OEkh5VS7gUOAK4ppby9fqsrkjwHeBuwtC47GPhcKeX4+n0OAF4M7E91iq0kSVqHeU0setiivr+zvn8qVS/GGRMVSik/T/Jr4FnAj+v7S+ukYsJS4F+AJwAX1XXOYG1LqXouSLJh/V4TY0YopYwnOaN+7f0k2QjYqKNoc4CxsTHGxsbWqjvxvLtclfHxcQA22iAAbLzxxoyPj7u9auvaf9xOktYn601ikWQB1T/6H5ZSLquLtwXuLaXc3VX9lnrZRJ1beixnGnUWJ9kYeCCwcJI6j5sk5HcB7+suPO2009hkk016vuD00507bCoffuF21YOXfJkbb7yRG2+8cX4DWs9Mtv+sWLFijiORpMn1lVgkWQR8BziglHJVy7EcCzwReE7L650tR7D26bWbAzfstddeLF68eK2KY2NjnH766SxZsoRFixbNZYwD4aKLLuLmm2/mHaf+mtVrCrec9E7OPvtsdt555/kObb2wrv1n2bJl8xCVJPXWV2JRShlL8uS2g0hyDLAvsEcp5YaORb8BNkyyZVevxTb1sok63WdvbNOxbOJ+mx51lpVSVia5D7hvkjq/oYdSympgdcdnAGDRokWTJg9TLRtlCxZUY4hXrymsWlNYuXIlCxYscFt1mWz/cTtJWp80OSvk36kGVM5YKscALwOeX0q5pqvKBcAYsGfHax4LbAecWxedCzyp6+yNJcAyqoulTdTZk7UtmVhHPcDzgq73WVA/PxdJkjQtTcZYbADsn+QFVP+Mf9e5sJRycB/rOhZ4NfBnwPIkE2MifltKWVlK+W2S44Ajk9xJlSx8Cji3PiME4DSqBOKLSQ6hGk/xQeDYulcB4DPAgUk+QnVNk+cDf0F11seEI4ETkpwP/ITqsvCbAsf38XkkSRppTRKLJwIX1o8f07WsrwmygDfV92d1lb8e+EL9+G3AOPA1qrMwlgJ/9/s3LOW+JPtSnQVyLlWicwJwaEeda5K8mGpOjL8HbgD+upSytKPOyUkeQjX/xbbAxcA+XWebSJKkKfSdWJRSntfWm5dSMo06q4A317fJ6lwHvGgd6zkL2HUddY4BjllXTJIkqbfGM28m2THJ3vXpmmRi9KIkSRpZfScWSR6U5EzgF8C3gYfWi45L8vE2g5MkSYOlSY/FUVRnamwHdM7MczKwT89XSJKkkdBk8OZewN6llBu6jn5cBTyylagkSdJAatJjsSlr91RM2IqOCaMkSdLoaZJYnAO8tuN5qSeTOoTqsuSSJGlENTkUcghwZpKnARsCH6G6iuhWwO4txiZJkgZM3z0W9ZVHHwP8APgm1aGRrwO7llKubjc8SZI0SBpdNr2U8lvgn1qORZIkDbhGiUWSB1JdiGynuuhy4PhSyp1tBSZJkgZPkwmy9gCuBd4KPLC+vRW4pl4mSZJGVJMei2OpJsN6UynlPoAkC4FP18ue1F54kiRpkDQ53XRH4OMTSQVUVxiluuz4jm0FJkmSBk+TxOJC/jC2otNOwCUzC0eSJA2yaR0KSfLkjqefBD6RZEfgx3XZM6kua/7OdsOTJEmDZLpjLC4GCtB5cZCP9Kh3EtX4C0mSNIKmm1hsP6tRSJKkoTCtxKKUct1sByJJkgZf0wmyHgY8B9iargGgpZRPthCXJEkaQH0nFkn2A/4VuBe4g2rsxYRCNbhTkiSNoCY9Fh8ADgeOKKWMtxyPJEkaYE3msdgE+IpJhSRJ6tYksTgOeGXbgUiSpMHX5FDIu4BvJdkHuBQY61xYSjm4jcAkSdLgaZpY7A1cWT/vHrwpSZJGVJPE4u3A/qWUL7QciyRJGnBNxlisBn7YdiCSJGnwNUksPgG8pe1AJEnS4GtyKGQ34PlJ9gV+xv0Hb768jcAkSdLgaZJY3A18veU4JEnSEOg7sSilvH42ApEkSYOvyRgLSZKknppchOwappivopTy6BlFJEmSBlaTMRZHdz1fBOwK7AN8dKYBSZKkwdVkjMUnepUneTPwtBlHJEmSBlabYyxOBf68xfVJkqQB02Zi8QrgzhbXJ0mSBkyTwZsXsfbgzQDbAg8B/q6luCRJ0gBqMnjzG13Px4HbgLNKKT+fcUSSJGlgNRm8+f7ZCESSJA0+J8jqkOTNSa5NsirJeUl2m++YJEkaJNNOLJKMJ7lvHbc1sxnsbEryKuBI4P3AU4BLgKVJtp7XwCRJGiD9HAp52RTLngW8lcHuATkY+Fwp5XiAJAcALwb2Bz40n4FJkjQopp1YlFK+2V2W5LFU/3RfAnwJOLS90OZOkg2BpwJHTJSVUsaTnEGVNPV6zUbARh1FmwPceeedjI2tdSV5xsbGWLFiBeeccw4LFixgwYIFjI+P3+8emFbZbNef6/e88sor2Wyzzcid15Gx+3jAAx7ABRdcwD333DNv22B9qr9mzRpWrFjBHXfcwaJFi+63Ly5fvrzXLipJ86LJWSEkeRjVIYPXAUuBXUopl7UZ2Bx7MLAQuKWr/BbgcZO85l3A+7oLt99++3YjG1F/8zd/M98hDKLNgWXzHYSk0dZXYpFkC+DdwFuAi4E9SynnzEJcg+AIqjEZnbai9yRhmwM3AA8H/Hl5f26fqU1n+2wO3DRnEUnSJKadWCQ5BHgH8Bvg//Y6NDLAbgfuA7bpKt+G6vPeTyllNbC6q7jnr8UkEw+Xl1L8RdnF7TO1aW4ft5uk9UI/PRYfAlYCvwRel+R1vSqVUl7eRmBzqZRyb5ILgD2pJwBLsqB+fsw8hiZJ0kDpJ7E4kbWn8h42RwInJDkf+AlwELApcPx8BiVJ0iDp56yQ/WYxjnlXSjk5yUOAw6mufXIxsE8ppXtAZxOrqQa7dh86UcXtMzW3j6SBkVKGuRNCkiTNpUGe0EqSJK1nTCwkSVJrTCwkSVJrTCwkSVJrTCxmSZKtknwpybIkdyc5Lslm63jNWUlK1+0zcxXzbOr3kvRJXpnk53X9S5O8aK5inQ/9bJ8k+/XYT1bNZbySNBkTi9nzJeAJwBJgX2AP4LPTeN3ngId23A6ZrQDnSr+XpE/ybODLwHHArlSTln0jyRPnJOA51u/2qS1j7f3kkbMdpyRNh6ebzoIkOwGXA08vpZxfl+0DfBt4eCml5zUdkpwFXFxKOWiOQp0TSc4D/reUcmD9fAFwPfCpUsr9Lkmf5GRg01LKvh1lP6baNgfMUdhzpsH22Q84upSy5VzGKUnTYY/F7HgWcPdEUlE7AxgHnrGO174mye1JLktyRJJNZi3KOdBxSfozJspKKeP1856XpK/Lz+gqWzpF/YHVcPsAbJbkuiTXJ/lmkifMcqiSNC2NLpuuddoWuLWzoJSyJsmd9bLJnARcR3WVyicDHwYeCwzc9Vc6NLkk/baT1J9q2w2qJtvnSmB/4KfAFsA/AD9K8oRSyg2zFagkTYeJRR+SfIjqCq9T2anp+kspnWMwLk1yM3Bmkh1KKVc3Xa+GSynlXODciedJfgRcAfwt8N75ikuSwMSiXx8HvrCOOr+iutT6WgPvkmwAbMUkl2GfxHn1/Y7AoCYWfV+Svi7vp/4ga7J91lJKGUtyEdV+IknzyjEWfSil3FZK+fk6bvdS/ZrcMslTO17+fKrtfV7Plfe2S31/czufYO7V22PikvTAWpekP3eSl53bWb+2ZIr6A6vh9llLkoXAkxjg/UTS8LDHYhaUUq5I8h3gc0kOABYBxwBfmTgjJMkfAWcCry2l/CTJDsCrqc4cuYNqjMVRwNmllJ/Ox+do0ZSXpE9yInBjKeVddf1PAN9P8nbgFOAvgacBfzPHcc+VvrZPkkOBHwO/BLYE/h/V6ab/NteBS1I3E4vZ8xqqZOJMqrNBvga8tWP5IqqBmRNnfdwLvIA//FO5vn7NB+cm3NkzjUvSb0e1jSbq/yjJq6k++z8DVwH/p5Ry2ZwGPkf63T7AA6nmO9kWuIuqx+PZpZTL5yxoSZqE81hIkqTWOMZCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRCkiS1xsRC8y7JtUkOmu84JEkzZ2IhSZJaY2IhSZJaY2KhGUnyN0luqq/I2Vn+zSSfT7JD/fiWJPck+d8kL5hifY9KUpLs0lG2ZV323I6yJyY5tV7nLUm+mOTBs/ARJUl9MLHQTP0H8CDgeRMFSbYC9gG+BGxGdcXWPYFdge8A/5Nku6ZvmGRL4LvARVRXPd0H2Ab4atN1SpLa4dVNNSOllLuSnEp1yfcz6+JXALcD3yuljAOXdLzkvUleBryU6uqvTRwIXFRKefdEQZL9geuTPKaU8ouG65UkzZA9FmrDl4A/T7JR/fw1wFdKKeNJNkvysSRXJLk7yT3ATlSXAm9qZ+B59WGQe+p1/rxetsMM1itJmiF7LNSG/wECvDjJ/wJ/ArytXvYxYAnwD8AvgZXAfwIbTrKu8fo+HWWLuupsVr/nO3q8/uZ+g5cktcfEQjNWSlmV5OtUPRU7AleWUi6sF+8OfKGU8l8ASTYDHjXF6m6r7x9KNYYCYJeuOhcCfw5cW0pZM+MPIElqjYdC1JYvAS8G9q8fT7gKeHmSXZLsDJzEFPtdKWUl8GPgnUl2SvKnwAe7qh0LbAV8OcnT6zNP9k5yfJKFLX4mSVKfTCzUlu8CdwKPpUoeJhwM3AX8iOrwxVKqHoep7E/Vm3YBcDTwns6FpZSbqHpCFgKnAZfW9e7mD4dSJEnzIKWU+Y5BkiQNCXssJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa0wsJElSa/5/Gcm/YuSzxLYAAAAASUVORK5CYII=\n",
"text/plain": [
"<Figure size 600x600 with 3 Axes>"
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"data = get_repeteated_data(['log_64-aa', 'log_64-ab'])\n",
"plot_reapeated_data_distribution(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# TODO\n",
"\n",
"- Completar analisis de memoria y cpu\n",
"- Investigar mas el tema de llamadas a funciones repetidas (gasdev, cov_value, ran2)\n",
"- Escribir conclusiones (proximos pasos y cosas que no se consideran importantes)\n",
"- Conseguir ayuda en tupac para poder correrlo"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.18"
}
},
"nbformat": 4,
"nbformat_minor": 4
}