You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
simulacion-permeabilidad/tools/postprocessK/comp_PostKeff (copy).py

118 lines
2.6 KiB
Python

import numpy as np
import os
import time
from tools.postprocessK.flow import ComputeVol, comp_Kdiss_Kaverage
import subprocess
#k[x,y,z]
import json
def comp_postKeff(parser,rundir,nr,PetscP):
k=np.load(rundir+'k.npy')
P=np.load(rundir+'P.npy')
ref=P.shape[0]//k.shape[0]
t0=time.time()
k, diss, vx, Px, Py, Pz = ComputeVol(k,P) #refina k
tDissVel=time.time()-t0
P=0
S_min_post = int(parser.get('K-Postprocess','MinBlockSize'))
nimax =2** int(parser.get('K-Postprocess','Max_sample_size'))
compKperm =parser.get('K-Postprocess','kperm')
if compKperm=='yes':
compKperm=True
S_min_post=S_min_post*ref
if S_min_post==0:
sx=k.shape[0]
else:
sx = get_min_nbl(k,nimax,nr,S_min_post)
kdiss,kave=getKpost(k, diss, vx, Px, Py, Pz,sx,rundir,ref)
ttotal=time.time()-t0
summary = np.array([kdiss,kave,ttotal,tDissVel/ttotal]).T
np.savetxt(rundir + 'PosKeffSummary.txt',summary,header='K_diss, K_average,ttotal,tDiss/ttotal')
return
def getKpost(kf, diss, vx, Px, Py, Pz,sx,rundir,ref,compkperm):
ex=int(np.log2(kf.shape[0]))
esx=int(np.log2(sx))
scales=2**np.arange(esx,ex)
datadir=rundir+'KpostProcess/'
try:
os.makedirs(datadir)
except:
nada=0
for l in scales:
nblx, nbly, nblz = kf.shape[0]//l, kf.shape[1]//l, kf.shape[2]//l
sx,sy,sz=l,l,l
if kf.shape[2]==1:
nblz=1
sz=1
Kdiss,Kave=np.zeros((nblx,nbly,nblz)),np.zeros((nblx,nbly,nblz))
if compkperm==True:
Kperm = np.zeros((nblx,nbly,nblz))
for i in range(nblx):
for j in range(nbly):
for k in range(nblz):
Kdiss[i,j,k],Kave[i,j,k]=comp_Kdiss_Kaverage(kf[i*sx:(i+1)*sx,j*sy:(j+1)*sy,k*sz:(k+1)*sz], diss[i*sx:(i+1)*sx,j*sy:(j+1)*sy,k*sz:(k+1)*sz], vx[i*sx:(i+1)*sx,j*sy:(j+1)*sy,k*sz:(k+1)*sz], Px[i*sx:(i+1)*sx+1,j*sy:(j+1)*sy+1,k*sz:(k+1)*sz+1], Py[i*sx:(i+1)*sx+1,j*sy:(j+1)*sy+1,k*sz:(k+1)*sz+1], Pz[i*sx:(i+1)*sx+1,j*sy:(j+1)*sy+1,k*sz:(k+1)*sz+1])
if compkperm==True:
Kperm[i,j,k]=PetscP(datadir,ref,k)(kf[i*sx:(i+1)*sx,j*sy:(j+1)*sy,k*sz:(k+1)*sz])
np.save(datadir+'Kd'+str(l//ref)+'.npy',Kdiss)
np.save(datadir+'Kv'+str(l//ref)+'.npy',Kave)
if compkperm==True:
np.save(datadir+'Kperm'+str(l//ref)+'.npy',Kperm)
Kdiss,Kave = comp_Kdiss_Kaverage(kf, diss, vx, Px, Py, Pz)
np.save(datadir+'Kd'+str(kf.shape[0]//ref)+'.npy',np.array([Kdiss]))
np.save(datadir+'Kv'+str(kf.shape[0]//ref)+'.npy',np.array([Kave]))
return Kdiss, Kave
def get_min_nbl(kc,nimax,nr,smin):
if kc.shape[2]==1:
dim=2.0
else:
dim=3.0
if nr>0:
y=(1/dim)*np.log2(nr*kc.size/(nimax*(smin**dim)))
else:
y=0
y=int(y)
s=int((2**y) * smin)
if s<smin:
s=smin
return s