You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
136 lines
2.6 KiB
Python
136 lines
2.6 KiB
Python
import numpy as np
|
|
#import petsc4py
|
|
import math
|
|
import time
|
|
#from mpi4py import MPI
|
|
from tools.postprocessK.kperm.computeFlows import *
|
|
|
|
from petsc4py import PETSc
|
|
#petsc4py.init('-ksp_max_it 9999999999',comm=PETSc.COMM_SELF)
|
|
from tools.postprocessK.flow import getKeff
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def PetscP(datadir,ref,k,saveres):
|
|
|
|
#datadir='./data/'+str(job)+'/'
|
|
|
|
|
|
#comm=MPI.COMM_WORLD
|
|
#rank=comm.Get_rank()
|
|
'''
|
|
size=comm.Get_size()
|
|
print(rank,size)
|
|
pcomm = MPI.COMM_WORLD.Split(color=rank, key=rank)
|
|
#print(new_comm.Get_rank())
|
|
|
|
#pcomm=comm.Create(newgroup)
|
|
print('entro')
|
|
print pcomm.Get_rank()
|
|
|
|
print pcomm.Get_size()
|
|
pcomm=comm
|
|
|
|
|
|
rank=pcomm.rank
|
|
pn=pcomm.size
|
|
#PETSc.COMM_WORLD.PetscSubcommCreate(pcomm,PetscSubcomm *psubcomm)
|
|
print(rank,pn)
|
|
'''
|
|
#Optpetsc = PETSc.Options()
|
|
rank=0
|
|
pn=1
|
|
t0=time.time()
|
|
|
|
#comm=MPI.Comm.Create()
|
|
if k.shape[2]==1:
|
|
refz=1
|
|
else:
|
|
refz=ref
|
|
|
|
nz, ny, nx=k.shape[0]*ref,k.shape[1]*ref,k.shape[2]*refz
|
|
n=nx*ny*nz
|
|
|
|
print('algo')
|
|
|
|
K = PETSc.Mat().create(comm=PETSc.COMM_SELF)
|
|
print('algo2')
|
|
K.setType('seqaij')
|
|
print('algo3')
|
|
K.setSizes(((n,None),(n,None))) # Aca igual que lo que usas arriba
|
|
K.setPreallocationNNZ(nnz=(7,4)) # Idem anterior
|
|
|
|
|
|
#K = PETSc.Mat('seqaij', m=n,n=n,nz=7,comm=PETSc.COMM_WORLD)
|
|
#K = PETSc.Mat('aij', ((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
|
|
#K = PETSc.Mat().createAIJ(((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
|
|
#K = PETSc.Mat().createSeqAIJ(((n,None),(n,None)), nnz=(7,4),comm=PETSc.COMM_WORLD)
|
|
#K.setPreallocationNNZ(nnz=(7,4))
|
|
print('ksetup')
|
|
#K.MatCreateSeqAIJ()
|
|
#K=PETSc.Mat().MatCreate(PETSc.COMM_WORLD)
|
|
|
|
#K = PETSc.Mat().createAIJ(((n,None),(n,None)), nnz=(7,4),comm=pcomm)
|
|
|
|
K.setUp()
|
|
print('entro2')
|
|
R = PETSc.Vec().createSeq((n,None),comm=PETSc.COMM_SELF) #PETSc.COMM_WORLD
|
|
R.setUp()
|
|
print('entro2')
|
|
k2, Nz, nnz2=getKref(k,1,2,ref)
|
|
k, Nz, nnz=getKref(k,0,2,ref)
|
|
|
|
|
|
pbc=float(Nz)
|
|
#print('entro3')
|
|
|
|
K,R = firstL(K,R,k,pbc)
|
|
r=(k.shape[1]-2)*(k.shape[2]-2)*nnz2 #start row
|
|
K,R =lastL(K,R,k2,r)
|
|
|
|
k2=0
|
|
|
|
K.assemble()
|
|
R.assemble()
|
|
|
|
|
|
print('entro3')
|
|
ksp = PETSc.KSP()
|
|
ksp.create(comm=PETSc.COMM_SELF)
|
|
ksp.setFromOptions()
|
|
print('entro4')
|
|
P = R.copy()
|
|
ksp.setType(PETSc.KSP.Type.CG)
|
|
pc = PETSc.PC()
|
|
|
|
pc.create(comm=PETSc.COMM_SELF)
|
|
print('entro4')
|
|
pc.setType(PETSc.PC.Type.JACOBI)
|
|
ksp.setPC(pc)
|
|
ksp.setOperators(K)
|
|
ksp.setUp()
|
|
t1=time.time()
|
|
ksp.solve(R, P)
|
|
t2=time.time()
|
|
p=P.getArray().reshape(nz,ny,nx)
|
|
|
|
|
|
|
|
if rank==0:
|
|
keff,Q=getKeff(p,k[1:-1,1:-1,1:-1],pbc,Nz)
|
|
|
|
return keff
|
|
|
|
|
|
return
|
|
|
|
|
|
|
|
#Ver: A posteriori error estimates and adaptive solvers for porous media flows (Martin Vohralik)
|
|
|
|
|
|
|