|
|
|
@ -1,11 +1,13 @@
|
|
|
|
|
from py_wake.wind_turbines import WindTurbine
|
|
|
|
|
from py_wake.wind_turbines.power_ct_functions import PowerCtTabular
|
|
|
|
|
from py_wake.site._site import UniformSite
|
|
|
|
|
from py_wake.site.xrsite import XRSite
|
|
|
|
|
from py_wake.wind_farm_models import PropagateDownwind
|
|
|
|
|
from py_wake.deficit_models.gaussian import TurboGaussianDeficit
|
|
|
|
|
from py_wake.flow_map import XYGrid
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
import xarray as xr
|
|
|
|
|
|
|
|
|
|
D = 126 #Diametro del wT
|
|
|
|
|
h = 90 #Altura del WT
|
|
|
|
@ -71,9 +73,15 @@ windTurbines = py_wake_Initial_Cong(D, 'NREL_5MW', h, U_ref)
|
|
|
|
|
|
|
|
|
|
def run(initial_position=initial_position, U_ref=U_ref):
|
|
|
|
|
initial_position = np.array(initial_position);
|
|
|
|
|
site = UniformSite(p_wd=[1],
|
|
|
|
|
ws=U_ref,
|
|
|
|
|
initial_position=initial_position*D)
|
|
|
|
|
#site = UniformSite(p_wd=[1],
|
|
|
|
|
# ws=U_ref,
|
|
|
|
|
# initial_position=initial_position*D)
|
|
|
|
|
ds = xr.Dataset(
|
|
|
|
|
data_vars={'P': ('wd', [1])},
|
|
|
|
|
coords={'wd': [0]})
|
|
|
|
|
ds['TI'] = 0.1
|
|
|
|
|
site = XRSite(ds, interp_method='nearest', initial_position=initial_position*D, default_ws=np.atleast_1d(U_ref))
|
|
|
|
|
|
|
|
|
|
wt_x, wt_y = site.initial_position.T/D
|
|
|
|
|
wfm = PropagateDownwind(site, windTurbines, wake_deficitModel=TurboGaussianDeficit())
|
|
|
|
|
grid = XYGrid(x=np.arange(0, 10.01, 0.1)*126, y=np.arange(0, 10.01, 0.1)*126)
|
|
|
|
|