Merge pull request #7 from medios-porosos-fiuba/removing-logs

milestone_5
Cecilia Hortas 3 years ago committed by GitHub
commit 35570fb088
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -7,7 +7,7 @@
#include <string.h> #include <string.h>
#include <stdbool.h> #include <stdbool.h>
#define MAX_CHUNK_SIZE 512 #define MAX_CHUNK_SIZE 1500
typedef struct chunk_array { typedef struct chunk_array {
size_t init_pos; size_t init_pos;

@ -327,7 +327,7 @@ void coordinates(int maille, int i[3], struct grid_mod grid);
/*variogram: structure defined above */ /*variogram: structure defined above */
/*grid: structure defined above */ /*grid: structure defined above */
/*n: number of gridblocks along X,Y and Z*/ /*n: number of gridblocks along X,Y and Z*/
void covariance(double* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores); void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
/*computation of the covariance matrix for the well data*/ /*computation of the covariance matrix for the well data*/
/*well coordinates are given as a number of cells */ /*well coordinates are given as a number of cells */
@ -403,7 +403,7 @@ double exponential(double h);
/*workr: utility real part vector for storage */ /*workr: utility real part vector for storage */
/*worki: utility imaginary part vector for storage */ /*worki: utility imaginary part vector for storage */
/*The transformed data are returned in datar and datai*/ /*The transformed data are returned in datar and datai*/
void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores); void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores);
/*calculates F(x) = (1/a)*exp(-x*x/2)*/ /*calculates F(x) = (1/a)*exp(-x*x/2)*/
double funtrun1(double x); double funtrun1(double x);

@ -1,5 +1,6 @@
#include "genlib.h" #include "genlib.h"
#include "geostat.h" #include "geostat.h"
#include "chunk_array.h"
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
@ -51,7 +52,7 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
/* must be a Gaussian white noise */ /* must be a Gaussian white noise */
/*realization: structure defining a realization*/ /*realization: structure defining a realization*/
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, double* realization, int solver, int cores, long* seed); void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, chunk_array_t* realization, int solver, int cores, long* seed);
/* build_real */ /* build_real */
/* build a realization in the spectral domain */ /* build a realization in the spectral domain */
@ -65,8 +66,8 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
/*realization: vector defining the real part */ /*realization: vector defining the real part */
/*ireal: vector defining the i-part */ /*ireal: vector defining the i-part */
void build_real(int n[3], int NTOT, double* covar, double* realization, double* ireal, int cores); void build_real(int n[3], int NTOT, chunk_array_t* covar, chunk_array_t* realization, chunk_array_t* ireal, int cores);
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, double* vectorresult, struct realization_mod* realout); void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, chunk_array_t* vectorresult, struct realization_mod* realout, int cores);
#endif // define _TOOLSFFTMA_H #endif // define _TOOLSFFTMA_H

@ -1,6 +1,5 @@
#include "Py_py-api.h" #include "Py_py-api.h"
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "geostat.h" #include "geostat.h"
#include "pressure.h" #include "pressure.h"
#include "simpio.h" #include "simpio.h"
@ -44,8 +43,6 @@
int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario_mod* variogram, struct statistic_mod* stat, int* cores) { int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario_mod* variogram, struct statistic_mod* stat, int* cores) {
clock_t t = clock(); clock_t t = clock();
log_info("RESULT = in progress");
int i, varioNargs = 12, j = 0; int i, varioNargs = 12, j = 0;
PyObject* listvario; PyObject* listvario;
PyObject* vgr; PyObject* vgr;
@ -59,7 +56,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
stat->variance = (double*)malloc(stat->nblock_var * sizeof(double)); stat->variance = (double*)malloc(stat->nblock_var * sizeof(double));
if (stat->variance == NULL) { if (stat->variance == NULL) {
free(stat->mean); free(stat->mean);
log_error("RESULT = failed");
return 0; return 0;
} }
@ -80,7 +76,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
cores)) { cores)) {
free(stat->mean); free(stat->mean);
free(stat->variance); free(stat->variance);
log_error("RESULT = failed");
return 0; return 0;
} }
@ -90,7 +85,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
if (variogram->var == NULL) { if (variogram->var == NULL) {
free(stat->mean); free(stat->mean);
free(stat->variance); free(stat->variance);
log_error("RESULT = failed");
return 0; return 0;
} }
variogram->vario = (int*)malloc(variogram->Nvario * sizeof(int)); variogram->vario = (int*)malloc(variogram->Nvario * sizeof(int));
@ -98,7 +92,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
free(stat->mean); free(stat->mean);
free(stat->variance); free(stat->variance);
free(variogram->var); free(variogram->var);
log_error("RESULT = failed");
return 0; return 0;
} }
variogram->alpha = (double*)malloc(variogram->Nvario * sizeof(double)); variogram->alpha = (double*)malloc(variogram->Nvario * sizeof(double));
@ -107,7 +100,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
free(stat->variance); free(stat->variance);
free(variogram->var); free(variogram->var);
free(variogram->vario); free(variogram->vario);
log_error("RESULT = failed");
return 0; return 0;
} }
variogram->scf = (double*)malloc(3 * variogram->Nvario * sizeof(double)); variogram->scf = (double*)malloc(3 * variogram->Nvario * sizeof(double));
@ -117,7 +109,6 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
free(variogram->var); free(variogram->var);
free(variogram->vario); free(variogram->vario);
free(variogram->alpha); free(variogram->alpha);
log_error("RESULT = failed");
return 0; return 0;
} }
variogram->ap = (double*)malloc(9 * variogram->Nvario * sizeof(double)); variogram->ap = (double*)malloc(9 * variogram->Nvario * sizeof(double));
@ -128,13 +119,11 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
free(variogram->vario); free(variogram->vario);
free(variogram->alpha); free(variogram->alpha);
free(variogram->scf); free(variogram->scf);
log_error("RESULT = failed");
return 0; return 0;
} }
for (i = 0; i < variogram->Nvario; i++) { for (i = 0; i < variogram->Nvario; i++) {
vgr = PyList_GetItem(listvario, i); vgr = PyList_GetItem(listvario, i);
if (PyTuple_Size(vgr) != 12) { if (PyTuple_Size(vgr) != 12) {
log_error("RESULT = failed");
return 0; return 0;
} }
(variogram->var)[i] = PyFloat_AsDouble(PyTuple_GetItem(vgr, j++)); (variogram->var)[i] = PyFloat_AsDouble(PyTuple_GetItem(vgr, j++));
@ -154,6 +143,5 @@ int Py_getvalues(PyObject* args, long* seed, struct grid_mod* grid, struct vario
t = clock() - t; t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
log_info("RESULT = success, ELAPSED = %f seconds", time_taken);
return 1; return 1;
} }

@ -4,8 +4,6 @@
#include "simpio.h" #include "simpio.h"
#include "toolsFFTMA.h" #include "toolsFFTMA.h"
#include "toolsIO.h" #include "toolsIO.h"
#include "log.h"
#include "memory.h"
#include <Python.h> #include <Python.h>
#include <numpy/arrayobject.h> #include <numpy/arrayobject.h>
#include <stdarg.h> #include <stdarg.h>
@ -20,11 +18,6 @@
/* Y is the realization with mean and variance wanted */ /* Y is the realization with mean and variance wanted */
void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat, struct vario_mod variogram, struct realization_mod* Z, struct realization_mod* Y, int n[3], int cores) { void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat, struct vario_mod variogram, struct realization_mod* Z, struct realization_mod* Y, int n[3], int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, N; int i, N;
int typelog; int typelog;
@ -34,47 +27,14 @@ void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat,
n[1] = 0; n[1] = 0;
n[2] = 0; n[2] = 0;
log_info("RESULT = in progress, N = %d", N);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
generate(&seed, N, Z, cores); generate(&seed, N, Z, cores);
/*FFTMA*/ /*FFTMA*/
printf("pre fftma2\n");
FFTMA2(variogram, grid, n, Z, Y, cores, &seed); FFTMA2(variogram, grid, n, Z, Y, cores, &seed);
printf("post fftma2\n");
/* make a log normal realization */ /* make a log normal realization */
if (stat.type == 1 || stat.type == 2) { if (stat.type == 1 || stat.type == 2) {
typelog = stat.type + 2; typelog = stat.type + 2;
nor2log(Y, typelog, Y); nor2log(Y, typelog, Y);
} }
printf("termino nor2log\n");
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
printf("termino pykgeneration\n");
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,6 +1,4 @@
#include "geostat.h" #include "geostat.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdarg.h> #include <stdarg.h>
#include <stddef.h> #include <stddef.h>
@ -8,6 +6,7 @@
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
#include <time.h> #include <time.h>
#include "chunk_array.h"
/* build_real */ /* build_real */
/* build a realization in the spectral domain */ /* build a realization in the spectral domain */
@ -21,56 +20,33 @@
/*realization: vector defining the real part */ /*realization: vector defining the real part */
/*ireal: vector defining the i-part */ /*ireal: vector defining the i-part */
void build_real(int n[3], int NTOT, double* covar, double* realization, double* ireal, int cores) { void build_real(int n[3], int NTOT, chunk_array_t* covar, chunk_array_t* realization, chunk_array_t* ireal, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, j, k, maille1; int i, j, k, maille1;
double temp; double temp;
log_info("RESULT = in progress, NTOT = %d, covar = %f, n[0] = %d, n[1] = %d, n[2] = %d", NTOT, *covar, n[0], n[1], n[2]);
struct cpustat initial[cores]; chunk_array_read(realization);
struct cpustat final[cores]; chunk_array_read(ireal);
chunk_array_read(covar);
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
/*decomposition and multiplication in the spectral domain*/ /*decomposition and multiplication in the spectral domain*/
for (k = 1; k <= n[2]; k++) { for (k = 1; k <= n[2]; k++) {
for (j = 1; j <= n[1]; j++) { for (j = 1; j <= n[1]; j++) {
for (i = 1; i <= n[0]; i++) { for (i = 1; i <= n[0]; i++) {
maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0]; maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0];
temp = covar[maille1]; chunk_array_get(covar, maille1, &temp);
if (temp > 0.) { if (temp > 0.) {
temp = sqrt(temp) / (double)NTOT; temp = sqrt(temp) / (double)NTOT;
} else if (temp < 0.) { } else if (temp < 0.) {
temp = sqrt(-temp) / (double)NTOT; temp = sqrt(-temp) / (double)NTOT;
} }
realization[maille1] *= temp; double valuerealizationmaille1, valueirealmaille1;
ireal[maille1] *= temp;
chunk_array_get(realization, maille1, &valuerealizationmaille1);
chunk_array_get(ireal, maille1, &valueirealmaille1);
chunk_array_save(realization, maille1, temp * valuerealizationmaille1);
chunk_array_save(ireal, maille1, temp * valueirealmaille1);
} }
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, realization = %f, ireal = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", *realization, *ireal, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,26 +1,10 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
/*cardsin covariance function*/ /*cardsin covariance function*/
double cardsin(double h, int cores) { double cardsin(double h, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, h = %f", h);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
float delta = 20.371; float delta = 20.371;
double z; double z;
@ -31,24 +15,5 @@ double cardsin(double h, int cores) {
z = 1.; z = 1.;
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, z = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", z, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return z; return z;
} }

@ -1,6 +1,4 @@
#include "geostat.h" #include "geostat.h"
#include "log.h"
#include "memory.h"
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
@ -13,23 +11,9 @@
/* X, Y and Z axes for the underlying grid */ /* X, Y and Z axes for the underlying grid */
/* i = [0 1 2] */ /* i = [0 1 2] */
void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores) { void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, N; int i, N;
double D; double D;
log_info("RESULT = in progress");
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
if (n == NULL || n[0] == 0 || n[1] == 0 || n[2] == 0) { if (n == NULL || n[0] == 0 || n[1] == 0 || n[2] == 0) {
for (i = 0; i < 3; i++) { for (i = 0; i < 3; i++) {
switch (i) { switch (i) {
@ -50,27 +34,7 @@ void cgrid(struct vario_mod variogram, struct grid_mod grid, int n[3], int cores
} }
} else { } else {
if ((n[0] < grid.NX) || (n[1] < grid.NY) || (n[2] < grid.NZ)) { if ((n[0] < grid.NX) || (n[1] < grid.NY) || (n[2] < grid.NZ)) {
log_error("RESULT = failed - Indicated dimensions are inappropriate in cgrid");
exit; exit;
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, n[0] = %d, n[1] = %d, n[2] = %d, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", n[0], n[1], n[2], time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -7,15 +7,20 @@ void chunk_array_free(chunk_array_t* chunk_array) {
free(chunk_array); free(chunk_array);
} }
bool chunk_array_update_read(chunk_array_t* chunk_array) { bool chunk_array_update_read(chunk_array_t* chunk_array, size_t pos) {
printf("Llame a chunk array update\n");
int init_pos = pos/chunk_array->chunk_size;
fseek(chunk_array->fp, init_pos * chunk_array->chunk_size * sizeof(double), SEEK_SET);
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen; chunk_array->init_pos += newLen;
} }
/*
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) { bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) { if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) {
chunk_array_update_read(chunk_array); chunk_array_update_read(chunk_array, pos);
} }
*valor=chunk_array->data[pos%chunk_array->chunk_size]; *valor=chunk_array->data[pos%chunk_array->chunk_size];
return true; return true;
@ -28,6 +33,7 @@ bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
chunk_array->data[pos%chunk_array->chunk_size]=valor; chunk_array->data[pos%chunk_array->chunk_size]=valor;
return true; return true;
} }
*/
chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size) { chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size) {
chunk_array_t* chunk_array = (chunk_array_t*)malloc(sizeof(chunk_array_t)); chunk_array_t* chunk_array = (chunk_array_t*)malloc(sizeof(chunk_array_t));
@ -57,17 +63,30 @@ void chunk_array_read(chunk_array_t* chunk_array) {
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
} }
/*
void chunk_array_write(chunk_array_t* chunk_array, char* filename) { void chunk_array_write(chunk_array_t* chunk_array, char* filename) {
chunk_array->fp = fopen(filename, "w"); chunk_array->fp = fopen(filename, "w");
if (chunk_array->fp == NULL) { if (chunk_array->fp == NULL) {
printf("ke");
fclose(chunk_array->fp); fclose(chunk_array->fp);
chunk_array->fp = fopen(filename, "w"); chunk_array->fp = fopen(filename, "w");
} }
chunk_array->init_pos = 0; chunk_array->init_pos = 0;
} }*/
void chunk_array_flush(chunk_array_t* chunk_array) { void chunk_array_flush(chunk_array_t* chunk_array) {
size_t newLen = fwrite(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fwrite(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen; chunk_array->init_pos += newLen;
} }
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fread(valor, sizeof(double), 1, chunk_array->fp);
return true;
}
bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fwrite(&valor, sizeof(double), 1, chunk_array->fp);
return true;
}

@ -1,6 +1,5 @@
#include "geostat.h" #include "geostat.h"
#include "log.h" #include "chunk_array.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdarg.h> #include <stdarg.h>
#include <stddef.h> #include <stddef.h>
@ -9,12 +8,7 @@
#include <string.h> #include <string.h>
#include <time.h> #include <time.h>
void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, double* vectorresult, struct realization_mod* realout, int cores) { void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid, chunk_array_t* vectorresult, struct realization_mod* realout, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, j, k, maille0, maille1; int i, j, k, maille0, maille1;
double NTOT; double NTOT;
@ -22,19 +16,11 @@ void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid,
/*is the output realization already allocated?*/ /*is the output realization already allocated?*/
/*if not, memory allocation*/ /*if not, memory allocation*/
log_info("RESULT = in progress, NTOT = %f", NTOT); chunk_array_read(vectorresult);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
if (realout->vector == NULL || realout->n != realin->n) { if (realout->vector == NULL || realout->n != realin->n) {
realout->vector = (double*)malloc(realin->n * sizeof(double)); realout->vector = (double*)malloc(realin->n * sizeof(double));
if (realout->vector == NULL) { if (realout->vector == NULL) {
log_error("RESULT = failed - No memory available");
exit; exit;
} }
} }
@ -48,27 +34,10 @@ void clean_real(struct realization_mod* realin, int n[3], struct grid_mod grid,
maille0 = i - 1 + (j - 1 + (k - 1) * grid.NY) * grid.NX; maille0 = i - 1 + (j - 1 + (k - 1) * grid.NY) * grid.NX;
/* Modif du 18 juin 2003 */ /* Modif du 18 juin 2003 */
/*realout->vector[maille0] = vectorresult[maille1]/(double) NTOT;*/ /*realout->vector[maille0] = vectorresult[maille1]/(double) NTOT;*/
realout->vector[maille0] = vectorresult[maille1]; double valuemaille1;
chunk_array_get(vectorresult, maille1, &valuemaille1);
realout->vector[maille0] = valuemaille1;
} }
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
log_info("RESULT = success, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,26 +1,10 @@
#include "genlib.h" #include "genlib.h"
#include "geostat.h" #include "geostat.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <time.h> #include <time.h>
/*selection of model covariance*/ /*selection of model covariance*/
double cov_value(struct vario_mod variogram, double di, double dj, double dk, int cores) { double cov_value(struct vario_mod variogram, double di, double dj, double dk, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, di = %f, dj = %f, dk = %f", di, dj, dk);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
double hx, hy, hz, h; double hx, hy, hz, h;
double cov; double cov;
int k; int k;
@ -64,25 +48,5 @@ double cov_value(struct vario_mod variogram, double di, double dj, double dk, in
break; break;
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, cov = %f, hx = %f, hy = %f, hz = %f, h = %f , ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", cov, hx, hy, hz, h, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return cov; return cov;
} }

@ -1,31 +1,18 @@
#include "geostat.h" #include "geostat.h"
#include "log.h" #include "chunk_array.h"
#include "memory.h"
#include <time.h> #include <time.h>
/*builds the sampled covariance function*/ /*builds the sampled covariance function*/
/*dimensions are even*/ /*dimensions are even*/
void covariance(double* covar, struct vario_mod variogram, struct grid_mod mesh, int n[3], int cores) { void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod mesh, int n[3], int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, j, k, maille, n2[3], symmetric; int i, j, k, maille, n2[3], symmetric;
double di, dj, dk; double di, dj, dk;
log_info("RESULT = in progress");
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
for (i = 0; i < 3; i++) for (i = 0; i < 3; i++)
n2[i] = n[i] / 2; n2[i] = n[i] / 2;
chunk_array_read(covar);
for (i = 0; i <= n2[0]; i++) { for (i = 0; i <= n2[0]; i++) {
for (j = 0; j <= n2[1]; j++) { for (j = 0; j <= n2[1]; j++) {
for (k = 0; k <= n2[2]; k++) { for (k = 0; k <= n2[2]; k++) {
@ -35,12 +22,14 @@ void covariance(double* covar, struct vario_mod variogram, struct grid_mod mesh,
di = (double)i * mesh.DX; di = (double)i * mesh.DX;
dj = (double)j * mesh.DY; dj = (double)j * mesh.DY;
dk = (double)k * mesh.DZ; dk = (double)k * mesh.DZ;
covar[maille] = (double)cov_value(variogram, di, dj, dk, cores); chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
if (k > 0 && k < n2[2] && j > 0 && j < n2[1] && i > 0 && i < n2[0]) { if (k > 0 && k < n2[2] && j > 0 && j < n2[1] && i > 0 && i < n2[0]) {
/*area 2*/ /*area 2*/
symmetric = 1 + n[0] - i + n[0] * (n[1] - j + n[1] * (n[2] - k)); symmetric = 1 + n[0] - i + n[0] * (n[1] - j + n[1] * (n[2] - k));
covar[symmetric] = covar[maille]; double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
} }
if (i > 0 && i < n2[0]) { if (i > 0 && i < n2[0]) {
@ -49,13 +38,15 @@ void covariance(double* covar, struct vario_mod variogram, struct grid_mod mesh,
dj = (double)j * mesh.DY; dj = (double)j * mesh.DY;
dk = (double)k * mesh.DZ; dk = (double)k * mesh.DZ;
maille = 1 + (n[0] - i) + n[0] * (j + n[1] * k); maille = 1 + (n[0] - i) + n[0] * (j + n[1] * k);
covar[maille] = (double)cov_value(variogram, di, dj, dk, cores); chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
} }
if (k > 0 && k < n2[2] && j > 0 && j < n2[1]) { if (k > 0 && k < n2[2] && j > 0 && j < n2[1]) {
/*area 8*/ /*area 8*/
symmetric = 1 + i + n[0] * (n[1] - j + n[1] * (n[2] - k)); symmetric = 1 + i + n[0] * (n[1] - j + n[1] * (n[2] - k));
covar[symmetric] = covar[maille]; double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
} }
if (i > 0 && i < n2[0] && j > 0 && j < n2[1]) { if (i > 0 && i < n2[0] && j > 0 && j < n2[1]) {
@ -64,13 +55,15 @@ void covariance(double* covar, struct vario_mod variogram, struct grid_mod mesh,
dj = -(double)j * mesh.DY; dj = -(double)j * mesh.DY;
dk = (double)k * mesh.DZ; dk = (double)k * mesh.DZ;
maille = 1 + (n[0] - i) + n[0] * (n[1] - j + n[1] * k); maille = 1 + (n[0] - i) + n[0] * (n[1] - j + n[1] * k);
covar[maille] = (double)cov_value(variogram, di, dj, dk, cores); chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
} }
if (k > 0 && k < n2[2]) { if (k > 0 && k < n2[2]) {
/*area 6*/ /*area 6*/
symmetric = 1 + i + n[0] * (j + n[1] * (n[2] - k)); symmetric = 1 + i + n[0] * (j + n[1] * (n[2] - k));
covar[symmetric] = covar[maille]; double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
} }
if (j > 0 && j < n2[1]) { if (j > 0 && j < n2[1]) {
@ -79,34 +72,17 @@ void covariance(double* covar, struct vario_mod variogram, struct grid_mod mesh,
dj = -(double)j * mesh.DY; dj = -(double)j * mesh.DY;
dk = (double)k * mesh.DZ; dk = (double)k * mesh.DZ;
maille = 1 + i + n[0] * (n[1] - j + n[1] * k); maille = 1 + i + n[0] * (n[1] - j + n[1] * k);
covar[maille] = (double)cov_value(variogram, di, dj, dk, cores); chunk_array_save(covar, maille, (double)cov_value(variogram, di, dj, dk, cores));
} }
if (k > 0 && k < n2[2] && i > 0 && i < n2[0]) { if (k > 0 && k < n2[2] && i > 0 && i < n2[0]) {
/*area 7*/ /*area 7*/
symmetric = 1 + n[0] - i + n[0] * (j + n[1] * (n[2] - k)); symmetric = 1 + n[0] - i + n[0] * (j + n[1] * (n[2] - k));
covar[symmetric] = covar[maille]; double value;
chunk_array_get(covar, maille, &value);
chunk_array_save(covar, symmetric, value);
} }
} }
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, di = %f, dj = %f, dk = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", di, dj, dk, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,26 +1,10 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
/*cubic covariance function*/ /*cubic covariance function*/
double cubic(double h, int cores) { double cubic(double h, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, h = %f", h);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
double z; double z;
if (h >= 1.) { if (h >= 1.) {
@ -28,25 +12,6 @@ double cubic(double h, int cores) {
} else { } else {
z = 1. - 7. * (double)(h * h) + (35. / 4.) * (double)(h * h * h) - 3.5 * (double)(h * h * h * h * h) + .75 * (double)(h * h * h * h * h * h * h); z = 1. - 7. * (double)(h * h) + (35. / 4.) * (double)(h * h * h) - 3.5 * (double)(h * h * h * h * h) + .75 * (double)(h * h * h * h * h * h * h);
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, z = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", z, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return z; return z;
} }

@ -1,11 +1,8 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
/*exponential covariance function*/ /*exponential covariance function*/
double exponential(double h) { double exponential(double h) {
log_info("RESULT = in progress, h = %f", h);
return (exp(-3. * (double)h)); return (exp(-3. * (double)h));
} }

@ -1,6 +1,5 @@
#include "geostat.h" #include "geostat.h"
#include "log.h" #include "chunk_array.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdlib.h> #include <stdlib.h>
#include <string.h> #include <string.h>
@ -25,24 +24,11 @@
/*realout: structure defining a realization - */ /*realout: structure defining a realization - */
void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, int cores, long* seed) { void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct realization_mod* realin, struct realization_mod* realout, int cores, long* seed) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress");
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
int NTOT, i, j, k, NMAX, NDIM, ntot, nmax, NXYZ, nxyz; int NTOT, i, j, k, NMAX, NDIM, ntot, nmax, NXYZ, nxyz;
int solver; int solver;
double temp; double temp;
double *ireal, *covar, *workr, *worki, *realization; chunk_array_t *covar, *ireal, *realization;
double *workr, *worki;
/*covariance axis normalization*/ /*covariance axis normalization*/
axes(variogram.ap, variogram.scf, variogram.Nvario); axes(variogram.ap, variogram.scf, variogram.Nvario);
@ -66,14 +52,9 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
nxyz = NXYZ + 1; nxyz = NXYZ + 1;
/*array initialization*/ /*array initialization*/
covar = (double*)malloc(ntot * sizeof(double)); covar = chunk_array_create("covar.txt", ntot, 1500);
testmemory(covar); ireal = chunk_array_create("ireal.txt", ntot, 1500);
realization = chunk_array_create("realization.txt", ntot, 1500);
ireal = (double*)malloc(ntot * sizeof(double));
testmemory(ireal);
realization = (double*)malloc(ntot * sizeof(double));
testmemory(realization);
workr = (double*)malloc(nmax * sizeof(double)); workr = (double*)malloc(nmax * sizeof(double));
testmemory(workr); testmemory(workr);
@ -88,10 +69,8 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
fourt(covar, ireal, n, NDIM, 1, 0, workr, worki, cores); fourt(covar, ireal, n, NDIM, 1, 0, workr, worki, cores);
/*organization of the input Gaussian white noise*/ /*organization of the input Gaussian white noise*/
printf("pre prebuild_gwn\n");
solver = 0; solver = 0;
prebuild_gwn(grid, n, realin, realization, solver, cores, seed); prebuild_gwn(grid, n, realin, realization, solver, cores, seed);
printf("post prebuild_gwn\n");
/*forward fourier transform of the GWN*/ /*forward fourier transform of the GWN*/
fourt(realization, ireal, n, NDIM, 1, 0, workr, worki, cores); fourt(realization, ireal, n, NDIM, 1, 0, workr, worki, cores);
@ -99,34 +78,18 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
/* build realization in spectral domain */ /* build realization in spectral domain */
build_real(n, NTOT, covar, realization, ireal, cores); build_real(n, NTOT, covar, realization, ireal, cores);
double* used_ram_tf = malloc(sizeof(double)); chunk_array_free(covar);
getVirtualMemUsed(used_ram_tf); remove("covar.txt");
free(covar);
/*backward fourier transform*/ /*backward fourier transform*/
fourt(realization, ireal, n, NDIM, 0, 1, workr, worki, cores); fourt(realization, ireal, n, NDIM, 0, 1, workr, worki, cores);
free(ireal); chunk_array_free(ireal);
remove("ireal.txt");
free(workr); free(workr);
free(worki); free(worki);
/*output realization*/ /*output realization*/
clean_real(realin, n, grid, realization, realout, cores); clean_real(realin, n, grid, realization, realout, cores);
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
log_info("RESULT = success, NTOT = %d, NMAX = %d, NDIM = %d, ntot = %d, nmax = %d, NXYZ = %d, nxyz = %d, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", NTOT, NMAX, NDIM, ntot, nmax, NXYZ, nxyz, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,8 +1,7 @@
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
#include "chunk_array.h"
/*fast fourier transform */ /*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */ /* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
@ -92,29 +91,19 @@
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */ /* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */ /* 10-06-2000, MLR */
void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) { void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress");
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf; int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf;
double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559; double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559;
double valueri, valueri1, valueri3, valueii3, valuerj3, valueij3, valuerj, valueij, valueii, valuerimin, valueiimin, valuei1, valuer1;
ntot = 1; ntot = 1;
for (idim = 0; idim < ndim; idim++) { for (idim = 0; idim < ndim; idim++) {
ntot *= nn[idim]; ntot *= nn[idim];
} }
chunk_array_read(datar);
chunk_array_read(datai);
/*main loop for each dimension*/ /*main loop for each dimension*/
np1 = 1; np1 = 1;
for (idim = 1; idim <= ndim; idim++) { for (idim = 1; idim <= ndim; idim++) {
@ -200,8 +189,14 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
ntot /= 2; ntot /= 2;
i = 1; i = 1;
for (j = 1; j <= ntot; j++) { for (j = 1; j <= ntot; j++) {
datar[j] = datar[i]; chunk_array_get(datar, i, &valueri);
datai[j] = datar[i + 1]; ////printf("[1] datar[%d] = %f\n", i, valueri);
chunk_array_get(datar, i+1, &valueri1);
////printf("[2] datar[%d] = %f\n", i+1, valueri1);
////printf("[48] Saving in datar the value %f in pos %d\n", valueri, j);
////printf("[49] Saving in datai the value %f in pos %d\n", valueri1, j);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueri1);
i += 2; i += 2;
} }
@ -218,12 +213,29 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
for (i1 = i2; i1 <= i1max; i1++) { for (i1 = i2; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) { for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2; j3 = j + i3 - i2;
tempr = datar[i3];
tempi = datai[i3]; chunk_array_get(datar, i3, &valueri3);
datar[i3] = datar[j3]; chunk_array_get(datai, i3, &valueii3);
datai[i3] = datai[j3]; chunk_array_get(datar, j3, &valuerj3);
datar[j3] = tempr; chunk_array_get(datai, j3, &valueij3);
datai[j3] = tempi;
//printf("[3] datar[%d] = %f\n", i3, valueri3);
//printf("[4] datai[%d] = %f\n", i3, valueii3);
//printf("[5] datar[%d] = %f\n", j3, valuerj3);
//printf("[6] datai[%d] = %f\n", j3, valueij3);
tempr = valueri3;
tempi = valueii3;
//printf("[50] Saving in datar the value %f in pos %d\n", valuerj3, i3);
//printf("[51] Saving in datai the value %f in pos %d\n", valueij3, i3);
//printf("[52] Saving in datar the value %f in pos %d\n", tempr, j3);
//printf("[53] Saving in datai the value %f in pos %d\n", tempi, j3);
chunk_array_save(datar, i3, valuerj3);
chunk_array_save(datai, i3, valueij3);
chunk_array_save(datar, j3, tempr);
chunk_array_save(datai, j3, tempi);
} }
} }
@ -248,11 +260,17 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
for (i3 = i1; i3 <= ntot; i3 += np2) { for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3; j = i3;
for (i = 1; i <= n; i++) { for (i = 1; i <= n; i++) {
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[7] datar[%d] = %f\n", j, valuerj);
//printf("[8] datai[%d] = %f\n", j, valueij);
if (icase != 3) { if (icase != 3) {
workr[i] = datar[j]; workr[i] = valuerj;
worki[i] = datai[j]; worki[i] = valueij;
} else { } else {
workr[i] = datar[j]; workr[i] = valuerj;
worki[i] = 0.; worki[i] = 0.;
} }
ifp2 = np2; ifp2 = np2;
@ -271,8 +289,11 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
i2max = i3 + np2 - np1; i2max = i3 + np2 - np1;
i = 1; i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) { for (i2 = i3; i2 <= i2max; i2 += np1) {
datar[i2] = workr[i]; //printf("[54] Saving in datar the value %f in pos %d\n", workr[i], i2);
datai[i2] = worki[i]; //printf("[55] Saving in datai the value %f in pos %d\n", worki[i], i2);
chunk_array_save(datar, i2, workr[i]);
chunk_array_save(datai, i2, worki[i]);
i++; i++;
} }
} }
@ -293,12 +314,26 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
L310: L310:
j = i1; j = i1;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
tempr = datar[i]; chunk_array_get(datar, i, &tempr);
tempi = datai[i]; chunk_array_get(datai, i, &tempi);
datar[i] = datar[j] - tempr; chunk_array_get(datar, j, &valuerj);
datai[i] = datai[j] - tempi; chunk_array_get(datai, j, &valueij);
datar[j] = datar[j] + tempr;
datai[j] = datai[j] + tempi; //printf("[9] tempr = %f\n", i, tempr);
//printf("[10] tempi = %f\n", i, tempi);
//printf("[11] datar[%d] = %f\n", j, valuerj);
//printf("[12] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
//printf("[56] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[57] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[58] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[59] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
imin = 2 * imin - i1; imin = 2 * imin - i1;
@ -317,16 +352,44 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
j = imin - istep / 2; j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) { if (ifrwd != 0) {
tempr = datai[i]; chunk_array_get(datai, i, &tempr);
tempi = -datar[i]; chunk_array_get(datar, i, &tempi);
//printf("[13] datai[%d] = %f\n", i, tempr);
//printf("[14] datar[%d] = %f\n", i, tempi);
tempi = -tempi;
} else { } else {
tempr = -datai[i]; chunk_array_get(datai, i, &tempr);
tempi = datar[i]; //printf("[15] datai[%d] = %f\n", i, tempr);
tempr = -tempr;
chunk_array_get(datar, i, &tempi);
//printf("[16] datar[%d] = %f\n", i, tempi);
} }
datar[i] = datar[j] - tempr; chunk_array_get(datar, j, &valuerj);
datai[i] = datai[j] - tempi; chunk_array_get(datai, j, &valueij);
datar[j] += tempr;
datai[j] += tempi; //printf("[17] datar[%d] = %f\n", j, valuerj);
//printf("[18] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
//printf("[60] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[61] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[19] datar[%d] = %f\n", j, valuerj);
//printf("[20] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
//printf("[62] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[63] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
@ -363,12 +426,29 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
L510: L510:
j = imin - istep / 2; j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
tempr = datar[i] * wr - datai[i] * wi; chunk_array_get(datar, i, &valueri);
tempi = datar[i] * wi + datai[i] * wr; chunk_array_get(datar, j, &valuerj);
datar[i] = datar[j] - tempr; chunk_array_get(datai, i, &valueii);
datai[i] = datai[j] - tempi; chunk_array_get(datai, j, &valueij);
datar[j] += tempr;
datai[j] += tempi; //printf("[21] datar[%d] = %f\n", i, valueri);
//printf("[22] datar[%d] = %f\n", j, valuerj);
//printf("[23] datai[%d] = %f\n", i, valueii);
//printf("[24] datai[%d] = %f\n", j, valueij);
tempr = valueri * wr - valueii * wi;
tempi = valueri * wi + valueii * wr;
chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi);
//printf("[64] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[65] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[66] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[67] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
imin = 2 * imin - i1; imin = 2 * imin - i1;
@ -421,23 +501,45 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
j3max = j2 + np2 - ifp2; j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) { for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1; j = jmin + ifp2 - ifp1;
sr = datar[j]; chunk_array_get(datar, j, &sr);
si = datai[j]; chunk_array_get(datai, j, &si);
//printf("[25] datar[%d] = %f\n", j, sr);
//printf("[26] datai[%d] = %f\n", j, si);
oldsr = 0.; oldsr = 0.;
oldsi = 0.; oldsi = 0.;
j -= ifp1; j -= ifp1;
L620: L620:
stmpr = sr; stmpr = sr;
stmpi = si; stmpi = si;
sr = twowr * sr - oldsr + datar[j];
si = twowr * si - oldsi + datai[j]; chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
//printf("[27] datar[%d] = %f\n", j, valuerj);
//printf("[28] datai[%d] = %f\n", j, valueij);
sr = twowr * sr - oldsr + valuerj;
si = twowr * si - oldsi + valueij;
oldsr = stmpr; oldsr = stmpr;
oldsi = stmpi; oldsi = stmpi;
j -= ifp1; j -= ifp1;
if (j > jmin) if (j > jmin)
goto L620; goto L620;
workr[i] = wr * sr - wi * si - oldsr + datar[j];
worki[i] = wi * sr + wr * si - oldsi + datai[j]; chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
workr[i] = wr * sr - wi * si - oldsr + valuerj;
worki[i] = wi * sr + wr * si - oldsi + valueij;
//printf("[85] wr = %f, sr = %f, wi = %f, si = %f, oldsr = %f, datar[j] = %f\n", wr, sr, wi, si, oldsr, valuerj);
//printf("[86] wi = %f, sr = %f, wr = %f, si = %f, oldsi = %f, datai[j] = %f\n", wi, sr, wr, si, oldsi, valueij);
//printf("[83] Saving in workr the value %f in pos %d\n", wr * sr - wi * si - oldsr + valuerj, i);
//printf("[84] Saving in worki the value %f in pos %d\n", wi * sr + wr * si - oldsi + valueij, i);
jmin += ifp2; jmin += ifp2;
i++; i++;
} }
@ -449,8 +551,11 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
for (j2 = i3; j2 <= j2max; j2 += ifp1) { for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2; j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) { for (j3 = j2; j3 <= j3max; j3 += ifp2) {
datar[j3] = workr[i]; //printf("[68] Saving in datar the value %f in pos %d, i = %d\n", workr[i], j3, i);
datai[j3] = worki[i]; //printf("[69] Saving in datai the value %f in pos %d, i = %d\n", worki[i], j3, i);
chunk_array_save(datar, j3, workr[i]);
chunk_array_save(datai, j3, worki[i]);
i++; i++;
} }
} }
@ -494,16 +599,33 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
L710: L710:
j = jmin; j = jmin;
for (i = imin; i <= ntot; i += np2) { for (i = imin; i <= ntot; i += np2) {
sumr = (datar[i] + datar[j]) / 2.; chunk_array_get(datar, i, &valueri);
sumi = (datai[i] + datai[j]) / 2.; chunk_array_get(datai, i, &valueii);
difr = (datar[i] - datar[j]) / 2.; chunk_array_get(datar, j, &valuerj);
difi = (datai[i] - datai[j]) / 2.; chunk_array_get(datai, j, &valueij);
//printf("[29] datar[%d] = %f\n", i, valueri);
//printf("[30] datai[%d] = %f\n", i, valueii);
//printf("[31] datar[%d] = %f\n", j, valuerj);
//printf("[32] datai[%d] = %f\n", j, valueij);
sumr = (valueri + valuerj) / 2.;
sumi = (valueii + valueij) / 2.;
difr = (valueri - valuerj) / 2.;
difi = (valueii - valueij) / 2.;
tempr = wr * sumi + wi * difr; tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr; tempi = wi * sumi - wr * difr;
datar[i] = sumr + tempr;
datai[i] = difi + tempi; chunk_array_save(datar, i, sumr + tempr);
datar[j] = sumr - tempr; chunk_array_save(datai, i, difi + tempi);
datai[j] = tempi - difi; chunk_array_save(datar, j, sumr - tempr);
chunk_array_save(datai, j, tempi - difi);
//printf("[70] Saving in datar the value %f in pos %d\n", sumr + tempr, i);
//printf("[71] Saving in datai the value %f in pos %d\n", difi + tempi, i);
//printf("[72] Saving in datar the value %f in pos %d\n", sumr - tempr, j);
//printf("[73] Saving in datai the value %f in pos %d\n", tempi - difi, j);
j += np2; j += np2;
} }
imin++; imin++;
@ -520,7 +642,10 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
if (ifrwd == 0) if (ifrwd == 0)
goto L740; goto L740;
for (i = imin; i <= ntot; i += np2) { for (i = imin; i <= ntot; i += np2) {
datai[i] = -datai[i]; chunk_array_get(datai, i, &valueii);
//printf("[33] datai[%d] = %f\n", i, valueii);
chunk_array_save(datai, i, -valueii);
//printf("[73] Saving in datai the value %f in pos %d\n", -valueii, i);
} }
L740: L740:
np2 *= 2; np2 *= 2;
@ -531,36 +656,87 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
imin = imax - nhalf; imin = imax - nhalf;
i = imin; i = imin;
goto L755; goto L755;
L750: L750: ;
datar[j] = datar[i]; chunk_array_get(datar, i, &valueri);
datai[j] = -datai[i]; chunk_array_get(datai, i, &valueii);
//printf("[34] datar[%d] = %f\n", i, valueri);
//printf("[35] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, -valueii);
//printf("[74] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[75] Saving in datai the value %f in pos %d\n", -valueii, j);
L755: L755:
i++; i++;
j--; j--;
if (i < imax) if (i < imax)
goto L750; goto L750;
datar[j] = datar[imin] - datai[imin]; chunk_array_get(datar, imin, &valuerimin);
datai[j] = 0.; chunk_array_get(datai, imin, &valueiimin);
//printf("[36] datar[%d] = %f\n", imin, valuerimin);
//printf("[37] datai[%d] = %f\n", imin, valueiimin);
chunk_array_save(datar, j, valuerimin - valueiimin);
chunk_array_save(datai, j, 0.);
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin - valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
if (i >= j) { if (i >= j) {
goto L780; goto L780;
} else { } else {
goto L770; goto L770;
} }
L765: L765:
datar[j] = datar[i]; chunk_array_get(datar, i, &valueri);
datai[j] = datai[i]; chunk_array_get(datai, i, &valueii);
//printf("[38] datar[%d] = %f\n", i, valueri);
//printf("[39] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueii);
//printf("[77] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[78] Saving in datai the value %f in pos %d\n", valueii, j);
L770: L770:
i--; i--;
j--; j--;
if (i > imin) if (i > imin)
goto L765; goto L765;
datar[j] = datar[imin] + datai[imin];
datai[j] = 0.; chunk_array_get(datar, imin, &valuerimin);
chunk_array_get(datai, imin, &valueiimin);
//printf("[40] datar[%d] = %f\n", imin, valuerimin);
//printf("[41] datai[%d] = %f\n", imin, valueiimin);
chunk_array_save(datar, j, valuerimin + valueiimin);
chunk_array_save(datai, j, 0.);
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin + valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
imax = imin; imax = imin;
goto L745; goto L745;
L780: L780: ;
datar[1] += datai[1]; chunk_array_get(datai, 1, &valuei1);
datai[1] = 0.; chunk_array_get(datar, 1, &valuer1);
//printf("[42] datai[1] = %f\n", valuei1);
//printf("[43] datar[1] = %f\n", valuer1);
chunk_array_save(datar, 1, valuei1 + valuer1);
chunk_array_save(datai, 1, 0.);
//printf("[77] Saving in datar the value %f in pos %d\n", valuei1 + valuer1, 1);
//printf("[78] Saving in datai the value %f in pos %d\n", 0., 1);
goto L900; goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/ /*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
@ -578,15 +754,35 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
if (idim > 2) { if (idim > 2) {
j = jmax + np0; j = jmax + np0;
for (i = imin; i <= imax; i++) { for (i = imin; i <= imax; i++) {
datar[i] = datar[j]; chunk_array_get(datar, j, &valuerj);
datai[i] = -datai[j]; chunk_array_get(datai, j, &valueij);
//printf("[44] datar[%d] = %f\n", j, valuerj);
//printf("[45] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij);
//printf("[79] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[80] Saving in datai the value %f in pos %d\n", -valueij, i);
j--; j--;
} }
} }
j = jmax; j = jmax;
for (i = imin; i <= imax; i += np0) { for (i = imin; i <= imax; i += np0) {
datar[i] = datar[j]; chunk_array_get(datar, j, &valuerj);
datai[i] = -datai[j]; chunk_array_get(datai, j, &valueij);
//printf("[46] datar[%d] = %f\n", j, valuerj);
//printf("[47] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij);
//printf("[81] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[82] Saving in datai the value %f in pos %d\n", -valueij, i);
j -= np0; j -= np0;
} }
} }
@ -598,23 +794,5 @@ void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icp
np1 = np2; np1 = np2;
nprev = n; nprev = n;
} }
L920: L920: return;
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
log_info("RESULT = success, ELAPSED = %f, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -0,0 +1,645 @@
#include <math.h>
#include <stdio.h>
#include <time.h>
#include "chunk_array.h"
/*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
/* EVALUATES COMPLEX FOURIER SERIES FOR COMPLEX OR REAL FUNCTIONS. */
/* THAT IS, IT COMPUTES */
/* FTRAN(J1,J2,...)=SUM(DATA(I1,I2,...)*W1**(I1-1)*(J1-1) */
/* *W2**(I2-1)*(J2-1)*...), */
/* WHERE W1=EXP(-2*PI*SQRT(-1)/NN(1)), W2=EXP(-2*PI*SQRT(-1)/NN(2)), */
/* ETC. AND I1 AND J1 RUN FROM 1 TO NN(1), I2 AND J2 RUN FROM 1 TO */
/* NN(2), ETC. THERE IS NO LIMIT ON THE DIMENSIONALITY (NUMBER OF */
/* SUBSCRIPTS) OF THE ARRAY OF DATA. THE PROGRAM WILL PERFORM */
/* A THREE-DIMENSIONAL FOURIER TRANSFORM AS EASILY AS A ONE-DIMEN- */
/* SIONAL ONE, THO IN A PROPORTIONATELY GREATER TIME. AN INVERSE */
/* TRANSFORM CAN BE PERFORMED, IN WHICH THE SIGN IN THE EXPONENTIALS */
/* IS +, INSTEAD OF -. IF AN INVERSE TRANSFORM IS PERFORMED UPON */
/* AN ARRAY OF TRANSFORMED DATA, THE ORIGINAL DATA WILL REAPPEAR, */
/* MULTIPLIED BY NN(1)*NN(2)*... THE ARRAY OF INPUT DATA MAY BE */
/* REAL OR COMPLEX, AT THE PROGRAMMERS OPTION, WITH A SAVING OF */
/* ABOUT THIRTY PER CENT IN RUNNING TIME FOR REAL OVER COMPLEX. */
/* (FOR FASTEST TRANSFORM OF REAL DATA, NN(1) SHOULD BE EVEN.) */
/* THE TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE RETURNED IN THE */
/* ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA. THE LENGTH */
/* OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER. THE */
/* PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND IS */
/* PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO. */
/* TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA. LET NTOT BE THE */
/* TOTAL NUMBER OF POINTS (REAL OR COMPLEX) IN THE DATA ARRAY, THAT */
/* IS, NTOT=NN(1)*NN(2)*... DECOMPOSE NTOT INTO ITS PRIME FACTORS, */
/* SUCH AS 2**K2 * 3**K3 * 5**K5 * ... LET SUM2 BE THE SUM OF ALL */
/* THE FACTORS OF TWO IN NTOT, THAT IS, SUM2 = 2*K2. LET SUMF BE */
/* THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS, SUMF = 3*K3+5*K5+.. */
/* THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA */
/* IS T = T0 + T1*NTOT + T2*NTOT*SUM2 + T3*NTOT*SUMF. FOR THE PAR- */
/* TICULAR IMPLEMENTATION FORTRAN 32 ON THE CDC 3300 (FLOATING POINT */
/* ADD TIME = SIX MICROSECONDS), */
/* T = 3000 + 600*NTOT + 50*NTOT*SUM2 + 175*NTOT*SUMF MICROSECONDS */
/* ON COMPLEX DATA. */
/* IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN IN A TIME */
/* PROPORTIONAL TO NTOT**2. FOR HIGHLY COMPOSITE NTOT, THE SAVINGS */
/* OFFERED BY COOLEY-TUKEY CAN BE DRAMATIC. A MATRIX 100 BY 100 WILL */
/* BE TRANSFORMED IN TIME PROPORTIONAL TO 10000*(2+2+2+2+5+5+5+5) = */
/* 280,000 (ASSUMING T2 AND T3 TO BE ROUGHLY COMPARABLE) VERSUS */
/* 10000**2 = 100,000,000 FOR THE STRAIGHTFORWARD TECHNIQUE. */
/* THE COOLEY-TUKEY ALGORITHM PLACES TWO RESTRICTIONS UPON THE */
/* NATURE OF THE DATA BEYOND THE USUAL RESTRICTION THAT */
/* THE DATA FROM ONE CYCLE OF A PERIODIC FUNCTION. THEY ARE-- */
/* 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES */
/* MUST BE THE SAME. */
/* 2. CONSIDERING THE DATA TO BE IN THE TIME DOMAIN, */
/* THEY MUST BE EQUI-SPACED AT INTERVALS OF DT. FURTHER, THE TRANS- */
/* FORM VALUES, CONSIDERED TO BE IN FREQUENCY SPACE, WILL BE EQUI- */
/* SPACED FROM 0 TO 2*PI*(NN(I)-1)/(NN(I)*DT) AT INTERVALS OF */
/* 2*PI/(NN(I)*DT) FOR EACH DIMENSION OF LENGTH NN(I). OF COURSE, */
/* DT NEED NOT BE THE SAME FOR EVERY DIMENSION. */
/* THE CALLING SEQUENCE IS-- */
/* CALL FOURT(DATAR,DATAI,NN,NDIM,IFRWD,ICPLX,WORKR,WORKI) */
/* DATAR AND DATAI ARE THE ARRAYS USED TO HOLD THE REAL AND IMAGINARY */
/* PARTS OF THE INPUT DATA ON INPUT AND THE TRANSFORM VALUES ON */
/* OUTPUT. THEY ARE FLOATING POINT ARRAYS, MULTIDIMENSIONAL WITH */
/* IDENTICAL DIMENSIONALITY AND EXTENT. THE EXTENT OF EACH DIMENSION */
/* IS GIVEN IN THE INTEGER ARRAY NN, OF LENGTH NDIM. THAT IS, */
/* NDIM IS THE DIMENSIONALITY OF THE ARRAYS DATAR AND DATAI. */
/* IFRWD IS AN INTEGER USED TO INDICATE THE DIRECTION OF THE FOURIER */
/* TRANSFORM. IT IS NON-ZERO TO INDICATE A FORWARD TRANSFORM */
/* (EXPONENTIAL SIGN IS -) AND ZERO TO INDICATE AN INVERSE TRANSFORM */
/* (SIGN IS +). ICPLX IS AN INTEGER TO INDICATE WHETHER THE DATA */
/* ARE REAL OR COMPLEX. IT IS NON-ZERO FOR COMPLEX, ZERO FOR REAL. */
/* IF IT IS ZERO (REAL) THE CONTENTS OF ARRAY DATAI WILL BE ASSUMED */
/* TO BE ZERO, AND NEED NOT BE EXPLICITLY SET TO ZERO. AS EXPLAINED */
/* ABOVE, THE TRANSFORM RESULTS ARE ALWAYS COMPLEX AND ARE STORED */
/* IN DATAR AND DATAI ON RETURN. WORKR AND WORKI ARE ARRAYS USED */
/* FOR WORKING STORAGE. THEY ARE NOT NECESSARY IF ALL THE DIMENSIONS */
/* OF THE DATA ARE POWERS OF TWO. IN THIS CASE, THE ARRAYS MAY BE */
/* REPLACED BY THE NUMBER 0 IN THE CALLING SEQUENCE. THUS, USE OF */
/* POWERS OF TWO CAN FREE A GOOD DEAL OF STORAGE. IF ANY DIMENSION */
/* IS NOT A POWER OF TWO, THESE ARRAYS MUST BE SUPPLIED. THEY ARE */
/* FLOATING POINT, ONE DIMENSIONAL OF LENGTH EQUAL TO THE LARGEST */
/* ARRAY DIMENSION, THAT IS, TO THE LARGEST VALUE OF NN(I). */
/* WORKR AND WORKI, IF SUPPLIED, MUST NOT BE THE SAME ARRAYS AS DATAR */
/* OR DATAI. ALL SUBSCRIPTS OF ALL ARRAYS BEGIN AT 1. */
/* THERE ARE NO ERROR MESSAGES OR ERROR HALTS IN THIS PROGRAM. THE */
/* PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(I) IS LESS THAN ONE. */
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */
void fourt_covar(chunk_array_t* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) {
int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf;
double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559;
double value1, valuei, valuej, valuei1, valueimin, valuei3, valuej3;
ntot = 1;
for (idim = 0; idim < ndim; idim++) {
ntot *= nn[idim];
}
chunk_array_read(datar);
/*main loop for each dimension*/
np1 = 1;
for (idim = 1; idim <= ndim; idim++) {
n = nn[idim - 1];
np2 = np1 * n;
if (n < 1) {
goto L920;
} else if (n == 1) {
goto L900;
}
/*is n a power of 2 and if not, what are its factors*/
m = n;
ntwo = np1;
iff = 1;
idiv = 2;
L10:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L50;
if (irem == 0) {
ntwo *= 2;
ifact[iff] = idiv;
iff++;
m = iquot;
goto L10;
}
idiv = 3;
inon2 = iff;
L30:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L60;
if (irem == 0) {
ifact[iff] = idiv;
iff++;
m = iquot;
goto L30;
}
idiv += 2;
goto L30;
L50:
inon2 = iff;
if (irem != 0)
goto L60;
ntwo *= 2;
goto L70;
L60:
ifact[iff] = m;
L70:
non2p = np2 / ntwo;
/*SEPARATE FOUR CASES--
1. COMPLEX TRANSFORM
2. REAL TRANSFORM FOR THE 2ND, 3RD, ETC. DIMENSION. METHOD: TRANSFORM HALF THE DATA, SUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY.
3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD. METHOD: SET THE IMAGINARY PARTS TO ZERO.
4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN. METHOD: TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD-NUMBERED REAL VALUES. UNSCRAMBLE AND SUPPLY THE SECOND HALF BY CONJUGATE SYMMETRY. */
icase = 1;
ifmin = 1;
if (icplx != 0)
goto L100;
icase = 2;
if (idim > 1)
goto L100;
icase = 3;
if (ntwo <= np1)
goto L100;
icase = 4;
ifmin = 2;
ntwo /= 2;
n /= 2;
np2 /= 2;
ntot /= 2;
i = 1;
for (j = 1; j <= ntot; j++) {
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, i, &valuei1);
chunk_array_save(datar, j, valuei);
//datar[j] = datar[i];
datai[j] = valuei1;
i += 2;
}
/*shuffle data by bit reversal, since n = 2^k. As the shuffling can be done by simple interchange, no working array is needed*/
L100:
if (non2p > 1)
goto L200;
np2hf = np2 / 2;
j = 1;
for (i2 = 1; i2 <= np2; i2 += np1) {
if (j >= i2)
goto L130;
i1max = i2 + np1 - 1;
for (i1 = i2; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2;
//tempr = datar[i3];
tempi = datai[i3];
//datar[i3] = datar[j3];
datai[i3] = datai[j3];
//datar[j3] = tempr;
datai[j3] = tempi;
chunk_array_get(datar, i3, &valuei3);
chunk_array_get(datar, j3, &valuej3);
chunk_array_save(datar, i3, valuej3);
chunk_array_save(datar, j3, valuei3);
}
}
L130:
m = np2hf;
L140:
if (j <= m) {
j += m;
} else {
j -= m;
m /= 2;
if (m >= np1)
goto L140;
}
}
goto L300;
/*shuffle data by digit reversal for general n*/
L200:
for (i1 = 1; i1 <= np1; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3;
for (i = 1; i <= n; i++) {
if (icase != 3) {
//workr[i] = datar[j];
chunk_array_get(datar, j, &workr[i]);
worki[i] = datai[j];
} else {
chunk_array_get(datar, j, &workr[i]);
//workr[i] = datar[j];
worki[i] = 0.;
}
ifp2 = np2;
iff = ifmin;
L250:
ifp1 = ifp2 / ifact[iff];
j += ifp1;
if (j >= i3 + ifp2) {
j -= ifp2;
ifp2 = ifp1;
iff += 1;
if (ifp2 > np1)
goto L250;
}
}
i2max = i3 + np2 - np1;
i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
chunk_array_save(datar, i2, workr[i]);
//datar[i2] = workr[i];
datai[i2] = worki[i];
i++;
}
}
}
/*special case-- W=1*/
L300:
i1rng = np1;
if (icase == 2)
i1rng = np0 * (1 + nprev / 2);
if (ntwo <= np1)
goto L600;
for (i1 = 1; i1 <= i1rng; i1++) {
imin = np1 + i1;
istep = 2 * np1;
goto L330;
L310:
j = i1;
for (i = imin; i <= ntot; i += istep) {
//tempr = datar[i];
tempi = datai[i];
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] = datar[j] + tempr;
datai[j] = datai[j] + tempi;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - valuei);
chunk_array_save(datar, j, valuej + valuei);
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L330:
if (istep <= ntwo)
goto L310;
/*special case-- W = -sqrt(-1)*/
imin = 3 * np1 + i1;
istep = 4 * np1;
goto L420;
L400:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) {
tempr = datai[i];
//tempi = -datar[i];
chunk_array_get(datar, i, &tempi);
tempi = -tempi;
} else {
tempr = -datai[i];
//tempi = datar[i];
chunk_array_get(datar, i, &tempi);
}
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - tempr);
chunk_array_save(datar, j, valuej - tempr);
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L420:
if (istep <= ntwo)
goto L400;
}
/*main loop for factors of 2. W=EXP(-2*PI*SQRT(-1)*m/mmax) */
theta = -TWOPI / 8.;
wstpr = 0.;
wstpi = -1.;
if (ifrwd == 0) {
theta = -theta;
wstpi = 1.;
}
mmax = 8 * np1;
goto L540;
L500:
wminr = cos(theta);
wmini = sin(theta);
wr = wminr;
wi = wmini;
mmin = mmax / 2 + np1;
mstep = np1 * 2;
for (m = mmin; m <= mmax; m += mstep) {
for (i1 = 1; i1 <= i1rng; i1++) {
istep = mmax;
imin = m + i1;
L510:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
tempr = valuei * wr - datai[i] * wi;
tempi = valuei * wi + datai[i] * wr;
chunk_array_save(datar, i, valuej - tempr);
//datar[i] = valuej - tempr;
datai[i] = datai[j] - tempi;
chunk_array_save(datar, i, valuej + tempr);
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
if (istep <= ntwo)
goto L510;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
wstpr = wminr;
wstpi = wmini;
theta /= 2.;
mmax += mmax;
L540:
if (mmax <= ntwo)
goto L500;
/*main loop for factors not equal to 2-- W=EXP(-2*PI*SQRT(-1)*(j2-i3)/ifp2)*/
L600:
if (non2p <= 1)
goto L700;
ifp1 = ntwo;
iff = inon2;
L610:
ifp2 = ifact[iff] * ifp1;
theta = -TWOPI / (double)ifact[iff];
if (ifrwd == 0)
theta = -theta;
thetm = theta / (double)(ifp1 / np1);
wstpr = cos(theta);
wstpi = sin(theta);
wmstr = cos(thetm);
wmsti = sin(thetm);
wminr = 1.;
wmini = 0.;
for (j1 = 1; j1 <= ifp1; j1 += np1) {
i1max = j1 + i1rng - 1;
for (i1 = j1; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
i = 1;
wr = wminr;
wi = wmini;
j2max = i3 + ifp2 - ifp1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
twowr = 2. * wr;
jmin = i3;
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1;
//sr = datar[j];
chunk_array_get(datar, j, &sr);
si = datai[j];
oldsr = 0.;
oldsi = 0.;
j -= ifp1;
L620:
stmpr = sr;
stmpi = si;
chunk_array_get(datar, j, &valuej);
sr = twowr * sr - oldsr + valuej;
si = twowr * si - oldsi + datai[j];
oldsr = stmpr;
oldsi = stmpi;
j -= ifp1;
if (j > jmin)
goto L620;
workr[i] = wr * sr - wi * si - oldsr + valuej;
worki[i] = wi * sr + wr * si - oldsi + datai[j];
jmin += ifp2;
i++;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
i = 1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
//datar[j3] = workr[i];
chunk_array_save(datar, j3, workr[i]);
datai[j3] = worki[i];
i++;
}
}
}
}
wtemp = wminr * wmsti;
wminr = wminr * wmstr - wmini * wmsti;
wmini = wmini * wmstr + wtemp;
}
iff++;
ifp1 = ifp2;
if (ifp1 < np2)
goto L610;
/*complete a real transform in the 1st dimension, n even, by conjugate symmetries*/
L700:
switch (icase) {
case 1:
goto L900;
break;
case 2:
goto L800;
break;
case 3:
goto L900;
break;
}
nhalf = n;
n += n;
theta = -TWOPI / (double)n;
if (ifrwd == 0)
theta = -theta;
wstpr = cos(theta);
wstpi = sin(theta);
wr = wstpr;
wi = wstpi;
imin = 2;
jmin = nhalf;
goto L725;
L710:
j = jmin;
for (i = imin; i <= ntot; i += np2) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
sumr = (valuei + valuej) / 2.;
sumi = (datai[i] + datai[j]) / 2.;
difr = (valuei - valuej) / 2.;
difi = (datai[i] - datai[j]) / 2.;
tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr;
chunk_array_save(datar, i, sumr + tempr);
//datar[i] = sumr + tempr;
datai[i] = difi + tempi;
chunk_array_save(datar, j, sumr - tempr);
//datar[j] = sumr - tempr;
datai[j] = tempi - difi;
j += np2;
}
imin++;
jmin--;
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
L725:
if (imin < jmin) {
goto L710;
} else if (imin > jmin) {
goto L740;
}
if (ifrwd == 0)
goto L740;
for (i = imin; i <= ntot; i += np2) {
datai[i] = -datai[i];
}
L740:
np2 *= 2;
ntot *= 2;
j = ntot + 1;
imax = ntot / 2 + 1;
L745:
imin = imax - nhalf;
i = imin;
goto L755;
L750:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = -datai[i];
L755:
i++;
j--;
if (i < imax)
goto L750;
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
//datar[j] = datar[imin] - datai[imin];
datai[j] = 0.;
if (i >= j) {
goto L780;
} else {
goto L770;
}
L765:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = datai[i];
L770:
i--;
j--;
if (i > imin)
goto L765;
//datar[j] = datar[imin] + datai[imin];
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
datai[j] = 0.;
imax = imin;
goto L745;
L780:
chunk_array_get(datar, 1, &value1);
chunk_array_save(datar, 1, value1 + datai[1]);
//datar[1] += datai[1];
datai[1] = 0.;
goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
L800:
if (nprev <= 2)
goto L900;
for (i3 = 1; i3 <= ntot; i3 += np2) {
i2max = i3 + np2 - np1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
imax = i2 + np1 - 1;
imin = i2 + i1rng;
jmax = 2 * i3 + np1 - imin;
if (i2 > i3)
jmax += np2;
if (idim > 2) {
j = jmax + np0;
for (i = imin; i <= imax; i++) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j--;
}
}
j = jmax;
for (i = imin; i <= imax; i += np0) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j -= np0;
}
}
}
/*end of loop on each dimension*/
L900:
np0 = np1;
np1 = np2;
nprev = n;
}
L920: return;
}

@ -1,50 +1,15 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
#include <time.h> #include <time.h>
/*gamma covariance function*/ /*gamma covariance function*/
double gammf(double h, double alpha, int cores) { double gammf(double h, double alpha, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, h = %f, alpha = %f", h, alpha);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
float delta; float delta;
double z; double z;
delta = pow(20., 1. / alpha) - 1.; delta = pow(20., 1. / alpha) - 1.;
z = 1. / (double)(pow(1. + h * delta, alpha)); z = 1. / (double)(pow(1. + h * delta, alpha));
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
log_info("RESULT = success, delta = %f, z = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", delta, z, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return z; return z;
} }

@ -1,6 +1,4 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <time.h> #include <time.h>
@ -10,20 +8,6 @@ double gasdev(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
/*returns a normally distributed deviate with 0 mean*/ /*returns a normally distributed deviate with 0 mean*/
/*and unit variance, using ran2(idum) as the source */ /*and unit variance, using ran2(idum) as the source */
/*of uniform deviates */ /*of uniform deviates */
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, idum = %f, idum2 = %f, iy = %f", *idum, *idum2, *iy);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores); double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores);
static int iset = 0; static int iset = 0;
static double gset; static double gset;
@ -40,48 +24,9 @@ double gasdev(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
gset = v1 * fac; gset = v1 * fac;
iset = 1; iset = 1;
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, gset = %f, fac = %f, v1 = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", gset, fac, v1, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return (v2 * fac); return (v2 * fac);
} else { } else {
iset = 0; iset = 0;
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, gset = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", gset, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return gset; return gset;
} }
} }

@ -1,10 +1,8 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
/*gaussian covariance function*/ /*gaussian covariance function*/
double gaussian(double h) { double gaussian(double h) {
log_info("RESULT = in progress, h = %f", h);
return (exp(-3. * (double)(h * h))); return (exp(-3. * (double)(h * h)));
} }

@ -2,8 +2,6 @@
#include <math.h> #include <math.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
#include "log.h"
#include "memory.h"
/* GENERATION OF A GAUSSIAN WHITE NOISE VECTOR */ /* GENERATION OF A GAUSSIAN WHITE NOISE VECTOR */
/*input: */ /*input: */
@ -13,20 +11,6 @@
/* realization: structure defining the realization*/ /* realization: structure defining the realization*/
void generate(long* seed, int n, struct realization_mod* realization, int cores) { void generate(long* seed, int n, struct realization_mod* realization, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
log_info("RESULT = in progress, n = %d", n);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
clock_t t = clock();
int i; int i;
long idum2 = 123456789, iy = 0; long idum2 = 123456789, iy = 0;
long* iv; long* iv;
@ -55,24 +39,5 @@ void generate(long* seed, int n, struct realization_mod* realization, int cores)
chunk_array_flush((*realization).vector_2);*/ chunk_array_flush((*realization).vector_2);*/
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
free(iv); free(iv);
log_info("RESULT = success, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -328,7 +328,7 @@ void coordinates(int maille, int i[3], struct grid_mod grid);
/*variogram: structure defined above */ /*variogram: structure defined above */
/*grid: structure defined above */ /*grid: structure defined above */
/*n: number of gridblocks along X,Y and Z*/ /*n: number of gridblocks along X,Y and Z*/
void covariance(double* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores); void covariance(chunk_array_t* covar, struct vario_mod variogram, struct grid_mod grid, int n[3], int cores);
/*computation of the covariance matrix for the well data*/ /*computation of the covariance matrix for the well data*/
/*well coordinates are given as a number of cells */ /*well coordinates are given as a number of cells */
@ -404,7 +404,7 @@ double exponential(double h);
/*workr: utility real part vector for storage */ /*workr: utility real part vector for storage */
/*worki: utility imaginary part vector for storage */ /*worki: utility imaginary part vector for storage */
/*The transformed data are returned in datar and datai*/ /*The transformed data are returned in datar and datai*/
void fourt(double* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores); void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores);
/*calculates F(x) = (1/a)*exp(-x*x/2)*/ /*calculates F(x) = (1/a)*exp(-x*x/2)*/
double funtrun1(double x); double funtrun1(double x);

@ -1,24 +1,8 @@
#include "log.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <time.h> #include <time.h>
/* compute the length for one dimension*/ /* compute the length for one dimension*/
int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores) { int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, N = %d, i = %d, D = %f, Nvari = %d", N, i, D, Nvari);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
int maxfactor(int n, int cores); int maxfactor(int n, int cores);
double temp1, temp2; double temp1, temp2;
int n, j, k, nmax; int n, j, k, nmax;
@ -52,24 +36,5 @@ int length(int N, int i, double* scf, double* ap, double D, int Nvari, int cores
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, n = %d, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", n, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return n; return n;
} }

@ -1,177 +0,0 @@
/*
* Copyright (c) 2020 rxi
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include "log.h"
#include <string.h>
#define MAX_CALLBACKS 32
typedef struct {
log_LogFn fn;
void *udata;
int level;
} Callback;
static struct {
void *udata;
log_LockFn lock;
int level;
bool quiet;
Callback callbacks[MAX_CALLBACKS];
} L;
static const char *level_strings[] = {
"TRACE", "DEBUG", "INFO", "WARN", "ERROR", "FATAL"
};
#ifdef LOG_USE_COLOR
static const char *level_colors[] = {
"\x1b[94m", "\x1b[36m", "\x1b[32m", "\x1b[33m", "\x1b[31m", "\x1b[35m"
};
#endif
static void stdout_callback(log_Event *ev) {
char buf[16];
buf[strftime(buf, sizeof(buf), "%H:%M:%S", ev->time)] = '\0';
#ifdef LOG_USE_COLOR
fprintf(
ev->udata, "%s %s%-5s\x1b[0m \x1b[0m%s:%d:\x1b[0m ",
buf, level_colors[ev->level], level_strings[ev->level],
ev->file, ev->line);
#else
fprintf(
ev->udata, "%s %-5s %s:%d: ",
buf, level_strings[ev->level], ev->file, ev->line);
#endif
vfprintf(ev->udata, ev->fmt, ev->ap);
fprintf(ev->udata, "\n");
fflush(ev->udata);
}
static void file_callback(log_Event *ev) {
char buf[64];
buf[strftime(buf, sizeof(buf), "%Y-%m-%d %H:%M:%S", ev->time)] = '\0';
fprintf(
ev->udata, "%s %-5s %s:%d: ",
buf, level_strings[ev->level], ev->file, ev->line);
vfprintf(ev->udata, ev->fmt, ev->ap);
fprintf(ev->udata, "\n");
fflush(ev->udata);
}
static void lock(void) {
if (L.lock) { L.lock(true, L.udata); }
}
static void unlock(void) {
if (L.lock) { L.lock(false, L.udata); }
}
const char* log_level_string(int level) {
return level_strings[level];
}
void log_set_lock(log_LockFn fn, void *udata) {
L.lock = fn;
L.udata = udata;
}
void log_set_level(int level) {
L.level = level;
}
void log_set_quiet(bool enable) {
L.quiet = enable;
}
int log_add_callback(log_LogFn fn, void *udata, int level) {
for (int i = 0; i < MAX_CALLBACKS; i++) {
if (!L.callbacks[i].fn) {
L.callbacks[i] = (Callback) { fn, udata, level };
return 0;
}
}
return -1;
}
int log_add_fp(FILE *fp, int level) {
return log_add_callback(file_callback, fp, level);
}
static void init_event(log_Event *ev, void *udata) {
if (!ev->time) {
time_t t = time(NULL);
ev->time = localtime(&t);
}
ev->udata = udata;
}
void log_log(int level, const char *file, int line, const char *fmt, ...) {
log_Event ev = {
.fmt = fmt,
.file = file,
.line = line,
.level = level,
};
char* env_var = getenv("ENV");
if (env_var != NULL && strcmp("false", env_var) == 0) return;
char* substr_mem = strstr(fmt, "MEM");
char* substr_cpu = strstr(fmt, "CPU");
if (env_var != NULL && strcmp("analysis", env_var) == 0 && substr_mem == NULL && substr_cpu == NULL) return;
lock();
if (!L.quiet && level >= L.level) {
init_event(&ev, stderr);
va_start(ev.ap, fmt);
stdout_callback(&ev);
va_end(ev.ap);
}
for (int i = 0; i < MAX_CALLBACKS && L.callbacks[i].fn; i++) {
Callback *cb = &L.callbacks[i];
if (level >= cb->level) {
init_event(&ev, cb->udata);
va_start(ev.ap, fmt);
cb->fn(&ev);
va_end(ev.ap);
}
}
unlock();
}

@ -1,49 +0,0 @@
/**
* Copyright (c) 2020 rxi
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the MIT license. See `log.c` for details.
*/
#ifndef LOG_H
#define LOG_H
#include <stdio.h>
#include <stdarg.h>
#include <stdbool.h>
#include <time.h>
#define LOG_VERSION "0.1.0"
typedef struct {
va_list ap;
const char *fmt;
const char *file;
struct tm *time;
void *udata;
int line;
int level;
} log_Event;
typedef void (*log_LogFn)(log_Event *ev);
typedef void (*log_LockFn)(bool lock, void *udata);
enum { LOG_TRACE, LOG_DEBUG, LOG_INFO, LOG_WARN, LOG_ERROR, LOG_FATAL };
#define log_trace(...) log_log(LOG_TRACE, __FILE__, __LINE__, __VA_ARGS__)
#define log_debug(...) log_log(LOG_DEBUG, __FILE__, __LINE__, __VA_ARGS__)
#define log_info(...) log_log(LOG_INFO, __FILE__, __LINE__, __VA_ARGS__)
#define log_warn(...) log_log(LOG_WARN, __FILE__, __LINE__, __VA_ARGS__)
#define log_error(...) log_log(LOG_ERROR, __FILE__, __LINE__, __VA_ARGS__)
#define log_fatal(...) log_log(LOG_FATAL, __FILE__, __LINE__, __VA_ARGS__)
const char* log_level_string(int level);
void log_set_lock(log_LockFn fn, void *udata);
void log_set_level(int level);
void log_set_quiet(bool enable);
int log_add_callback(log_LogFn fn, void *udata, int level);
int log_add_fp(FILE *fp, int level);
void log_log(int level, const char *file, int line, const char *fmt, ...);
#endif

@ -1,23 +1,7 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
/*determines the greatest prime factor of an integer*/ /*determines the greatest prime factor of an integer*/
int maxfactor(int n, int cores) { int maxfactor(int n, int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress, n = %d", n);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
int test_fact(int* pnum, int fact, int* pmaxfac); int test_fact(int* pnum, int fact, int* pmaxfac);
int lnum, fact; int lnum, fact;
int maxfac; int maxfac;
@ -47,24 +31,5 @@ int maxfactor(int n, int cores) {
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, maxfac = %d, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", maxfac, time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
return maxfac; return maxfac;
} }

@ -1,94 +0,0 @@
#include <sys/types.h>
#include <sys/sysinfo.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sys/times.h>
#include <sys/vtimes.h>
#include <unistd.h>
#include "log.h"
#include "memory.h"
static unsigned long long lastTotalUser, lastTotalUserLow, lastTotalSys, lastTotalIdle;
static clock_t lastCPU, lastSysCPU, lastUserCPU;
static int numProcessors;
void getTotalVirtualMem(double* total_ram) {
const double megabyte = 1024 * 1024;
struct sysinfo si;
sysinfo(&si);
*total_ram = si.totalram / megabyte;
}
void getVirtualMemUsed(double* used_ram) {
const double megabyte = 1024 * 1024;
struct sysinfo si;
sysinfo(&si);
*used_ram = (si.totalram - si.freeram) / megabyte;
}
int parseLine(char* line) {
// This assumes that a digit will be found and the line ends in " Kb".
int i = strlen(line);
const char* p = line;
while (*p <'0' || *p > '9') p++;
line[i-3] = '\0';
i = atoi(p);
return i;
}
int getVirtualMemUsedByCurrentProcess() {
FILE* file = fopen("/proc/self/status", "r");
int result = -1;
char line[128];
while (fgets(line, 128, file) != NULL){
if (strncmp(line, "VmSize:", 7) == 0){
result = parseLine(line);
break;
}
}
fclose(file);
return result / 1024;
}
void skip_lines(FILE *fp, int numlines) {
int cnt = 0;
char ch;
while ((cnt < numlines) && ((ch = getc(fp)) != EOF)) {
if (ch == '\n') cnt++;
}
}
void get_stats(struct cpustat *st, int cpunum) {
FILE *fp = fopen("/proc/stat", "r");
int lskip = cpunum+1;
skip_lines(fp, lskip);
char cpun[255];
fscanf(fp, "%s %d %d %d %d %d %d %d", cpun, &(st->t_user), &(st->t_nice),
&(st->t_system), &(st->t_idle), &(st->t_iowait), &(st->t_irq),
&(st->t_softirq));
fclose(fp);
return;
}
double calculate_load(struct cpustat *prev, struct cpustat *cur) {
int idle_prev = (prev->t_idle) + (prev->t_iowait);
int idle_cur = (cur->t_idle) + (cur->t_iowait);
int nidle_prev = (prev->t_user) + (prev->t_nice) + (prev->t_system) + (prev->t_irq) + (prev->t_softirq);
int nidle_cur = (cur->t_user) + (cur->t_nice) + (cur->t_system) + (cur->t_irq) + (cur->t_softirq);
int total_prev = idle_prev + nidle_prev;
int total_cur = idle_cur + nidle_cur;
double totald = (double) total_cur - (double) total_prev;
double idled = (double) idle_cur - (double) idle_prev;
if (totald == 0 && idled == 0) return 0;
double cpu_perc = (1000 * (totald - idled) / totald + 1) / 10;
return cpu_perc;
}

@ -1,24 +0,0 @@
#include "sys/types.h"
#include "sys/sysinfo.h"
#include "stdlib.h"
#include "stdio.h"
#include "string.h"
#include "sys/times.h"
#include "sys/vtimes.h"
void getTotalVirtualMem();
void getVirtualMemUsed();
int getVirtualMemUsedByCurrentProcess();
struct cpustat {
unsigned long t_user;
unsigned long t_nice;
unsigned long t_system;
unsigned long t_idle;
unsigned long t_iowait;
unsigned long t_irq;
unsigned long t_softirq;
};
void get_stats(struct cpustat *st, int cpunum);
double calculate_load(struct cpustat *prev, struct cpustat *cur);

@ -1,5 +1,4 @@
#include "geostat.h" #include "geostat.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdlib.h> #include <stdlib.h>
#include <time.h> #include <time.h>
@ -15,12 +14,6 @@
/* lognormal numbers */ /* lognormal numbers */
void nor2log(struct realization_mod* realin, int typelog, struct realization_mod* realout) { void nor2log(struct realization_mod* realin, int typelog, struct realization_mod* realout) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
log_info("RESULT = in progress");
int i; int i;
double coeff; double coeff;
@ -69,20 +62,8 @@ void nor2log(struct realization_mod* realin, int typelog, struct realization_mod
(*realout).vector[i] = exp((*realin).vector[i] * coeff); (*realout).vector[i] = exp((*realin).vector[i] * coeff);
break; break;
default: default:
log_error("RESULT = failed - Unexpected case in nor2log");
return; return;
break; break;
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,12 +1,9 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
/*nugget covariance function*/ /*nugget covariance function*/
double nugget(double h) { double nugget(double h) {
log_info("RESULT = in progress, h = %f", h);
if (h == 0) { if (h == 0) {
return (1.); return (1.);
} else { } else {

@ -1,10 +1,8 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
/*power covariance function*/ /*power covariance function*/
double power(double h, double alpha) { double power(double h, double alpha) {
log_info("RESULT = in progress, h = %f, alpha = %f", h, alpha);
return pow(h, alpha); return pow(h, alpha);
} }

@ -1,6 +1,5 @@
#include "geostat.h" #include "geostat.h"
#include "log.h" #include "chunk_array.h"
#include "memory.h"
#include <math.h> #include <math.h>
#include <stdarg.h> #include <stdarg.h>
#include <stddef.h> #include <stddef.h>
@ -22,12 +21,7 @@
/* must be a Gaussian white noise */ /* must be a Gaussian white noise */
/*realization: structure defining a realization*/ /*realization: structure defining a realization*/
void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, double* realization, int solver, int cores, long* seed) { void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin, chunk_array_t* realization, int solver, int cores, long* seed) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int i, j, k, maille0, maille1; int i, j, k, maille0, maille1;
int ntot; int ntot;
@ -38,25 +32,12 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
if (*seed > 0.0) if (*seed > 0.0)
*seed = -(*seed); *seed = -(*seed);
log_info("RESULT = in progress, n[0] = %d, n[1] = %d, n[2] = %d, solver = %d", n[0], n[1], n[2], solver);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
ntot = n[0] * n[1] * n[2]; ntot = n[0] * n[1] * n[2];
realization[0] = 0.; chunk_array_save(realization, 0, 0.);
/*printf("Antes de llamar a chunkarray read\n");
chunk_array_read((*realin).vector_2);
printf("Despues de llamar a chunkarray read\n");*/
if (solver == 1) { if (solver == 1) {
for (i = 0; i < ntot; i++) { for (i = 0; i < ntot; i++) {
double value = gasdev(seed, &idum2, &iy, iv, cores); double value = gasdev(seed, &idum2, &iy, iv, cores);
realization[i+1] = value; chunk_array_save(realization, i+1, value);
//chunk_array_get((*realin).vector_2, i, &realization[i + 1]);
} }
} else { } else {
for (k = 1; k <= n[2]; k++) { for (k = 1; k <= n[2]; k++) {
@ -64,35 +45,13 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
for (i = 1; i <= n[0]; i++) { for (i = 1; i <= n[0]; i++) {
maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0]; maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0];
if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) { if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) {
//maille0 = i - 1 + (j - 1 + (k - 1) * grid.NY) * grid.NX;
//printf("Maille0 es %d", maille0);
double value = gasdev(seed, &idum2, &iy, iv, cores); double value = gasdev(seed, &idum2, &iy, iv, cores);
realization[maille1] = value; chunk_array_save(realization, maille1, value);
//chunk_array_get((*realin).vector_2, maille0, &realization[maille1]);
} else { } else {
realization[maille1] = 0.; chunk_array_save(realization, maille1, 0.);
} }
} }
} }
} }
} }
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
log_info("RESULT = success, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", time_taken, *used_ram_tf - *used_ram_t0);
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,7 +1,5 @@
#include <time.h> #include <time.h>
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include "memory.h"
#define IM1 2147483563 #define IM1 2147483563
#define IM2 2147483399 #define IM2 2147483399
@ -19,24 +17,10 @@
#define RNMX (1.0 - EPS) #define RNMX (1.0 - EPS)
double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) { double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
double* used_ram_t0 = malloc(sizeof(double));
getVirtualMemUsed(used_ram_t0);
clock_t t = clock();
int j; int j;
long k; long k;
double temp; double temp;
log_info("RESULT = in progress, idum = %f, idum2 = %f, iy = %f", *idum, *idum2, *iy);
struct cpustat initial[cores];
struct cpustat final[cores];
for (int i = 0; i < cores; i++) {
get_stats(&initial[i], i - 1);
}
if (*idum <= 0) { if (*idum <= 0) {
if (-(*idum) < 1) if (-(*idum) < 1)
*idum = 1; *idum = 1;
@ -68,29 +52,10 @@ double ran2(long* idum, long* idum2, long* iy, long iv[NTAB], int cores) {
if (*iy < 1) if (*iy < 1)
(*iy) += IMM1; (*iy) += IMM1;
t = clock() - t;
double time_taken = ((double)t)/CLOCKS_PER_SEC; // calculate the elapsed time
for (int i = 0; i < cores; i++) {
get_stats(&final[i], i - 1);
}
for (int i = 0; i < cores; i++) {
log_info("CPU %d: %lf%%", i, calculate_load(&initial[i], &final[i]));
}
double* used_ram_tf = malloc(sizeof(double));
getVirtualMemUsed(used_ram_tf);
if ((temp = AM * (*iy)) > RNMX) { if ((temp = AM * (*iy)) > RNMX) {
log_info("RESULT = success, RNMX = %f, ELAPSED = %f, DIF USED VIRTUAL MEM = %5.1f MB", RNMX, time_taken, *used_ram_tf - *used_ram_t0);
return (RNMX); return (RNMX);
} }
else { else {
log_info("RESULT = success, temp = %f, ELAPSED = %f seconds, DIF USED VIRTUAL MEM = %5.1f MB", temp, time_taken, *used_ram_tf - *used_ram_t0);
return temp; return temp;
} }
free(used_ram_t0);
free(used_ram_tf);
} }

@ -1,12 +1,10 @@
#include "genlib.h" #include "genlib.h"
#include "log.h"
#include <math.h> #include <math.h>
#include <stdio.h> #include <stdio.h>
/*spherical covariance function*/ /*spherical covariance function*/
double spherical(double h) { double spherical(double h) {
double z; double z;
log_info("RESULT = in progress, h = %f", h);
if (h >= 1.) { if (h >= 1.) {
z = 0.; z = 0.;
@ -14,7 +12,5 @@ double spherical(double h) {
z = 1. - 1.5 * (double)h + 0.5 * (double)(h * h * h); z = 1. - 1.5 * (double)h + 0.5 * (double)(h * h * h);
} }
log_info("RESULT = success, z = %f", z);
return z; return z;
} }

@ -7,7 +7,6 @@
#include "toolsFFTMA.h" #include "toolsFFTMA.h"
#include "toolsFFTPSIM.h" #include "toolsFFTPSIM.h"
#include "toolsIO.h" #include "toolsIO.h"
#include "lib_src/log.h"
#include "chunk_array.h" #include "chunk_array.h"
#include <Python.h> #include <Python.h>
#include <math.h> #include <math.h>
@ -23,7 +22,7 @@
/* Y is the realization with mean and variance wanted */ /* Y is the realization with mean and variance wanted */
static PyObject* genFunc(PyObject* self, PyObject* args) { static PyObject* genFunc(PyObject* self, PyObject* args) {
log_info("RESULT = in progress"); //log_info("RESULT = in progress");
int n[3]; int n[3];
struct realization_mod Z, Y; struct realization_mod Z, Y;
struct grid_mod grid; struct grid_mod grid;
@ -37,7 +36,6 @@ static PyObject* genFunc(PyObject* self, PyObject* args) {
if (!Py_getvalues(args, &seed, &grid, &variogram, &stat, &cores)) if (!Py_getvalues(args, &seed, &grid, &variogram, &stat, &cores))
return NULL; return NULL;
printf("deberia imprimir\n");
Py_kgeneration(seed, grid, stat, variogram, &Z, &Y, n, cores); Py_kgeneration(seed, grid, stat, variogram, &Z, &Y, n, cores);
out_dims[0] = grid.NZ; out_dims[0] = grid.NZ;
@ -50,34 +48,17 @@ static PyObject* genFunc(PyObject* self, PyObject* args) {
PyArray_ENABLEFLAGS(out_array, NPY_ARRAY_OWNDATA); PyArray_ENABLEFLAGS(out_array, NPY_ARRAY_OWNDATA);
printf("me localizo\n");
free(stat.mean); free(stat.mean);
free(stat.variance); free(stat.variance);
printf("termino stat\n");
free(variogram.var); free(variogram.var);
printf("1\n");
printf("2\n");
free(variogram.alpha); free(variogram.alpha);
printf("3\n");
free(variogram.scf); free(variogram.scf);
printf("4\n");
free(variogram.ap); free(variogram.ap);
free(variogram.vario);
//free(variogram.vario);
printf("Termino variogram\n");
printf("aca no deberia llegar\n");
/*chunk_array_free(Z.vector_2); /*chunk_array_free(Z.vector_2);
remove("realization1.txt");*/ remove("realization1.txt");*/
log_info("RESULT = success");
return out_array; return out_array;
} }

@ -42,8 +42,6 @@ module_FFTMA = Extension(
"./lib_src/clean_real.c", "./lib_src/clean_real.c",
"./lib_src/testmemory.c", "./lib_src/testmemory.c",
"./lib_src/genlib.c", "./lib_src/genlib.c",
"./lib_src/log.c",
"./lib_src/memory.c",
"./lib_src/chunk_array.c" "./lib_src/chunk_array.c"
], ],
) )

@ -29,6 +29,9 @@ variance=3.5682389
typ=3 typ=3
k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ, 8) k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ, 8)
np.save(f"out_{N}.npy",k) k2 = np.load("out_2_16.npy")
print(k - k2)
del k del k
gc.collect() gc.collect()
Loading…
Cancel
Save