@ -9,7 +9,7 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 2 ,
   "execution_count": 101 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
						
					 
					@ -24,7 +24,7 @@
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
		
		
			
				
					
					    "## Armado del dataset\n",
    "## Armado del dataset\n",
 
			
		
	
		
		
			
				
					
					    "\n",
    "\n",
 
			
		
	
		
		
			
				
					
					    "En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU (TODO) . Con esto buscamos identificar:\n",
    "En este paso parsearemos los archivos para obtener estadísticas sobre el tiempo que tarda cada ejecución de una función, sobre la memoria usada, el uso de CPU. Con esto buscamos identificar:\n",
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					    "- Qué funciones son las que consumen mayor cantidad de memoria\n",
    "- Qué funciones son las que consumen mayor cantidad de memoria\n",
 
			
		
	
		
		
			
				
					
					    "- Qué funciones son las que tienen un mayor tiempo de procesamiento\n",
    "- Qué funciones son las que tienen un mayor tiempo de procesamiento\n",
 
			
		
	
		
		
			
				
					
					    "- Qué funciones son las que son invocadas una mayor cantidad de veces\n",
    "- Qué funciones son las que son invocadas una mayor cantidad de veces\n",
 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
						
					 
					@ -34,7 +34,7 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 3 ,
   "execution_count": 108 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
						
					 
					@ -44,7 +44,7 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 4 ,
   "execution_count": 109 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
						
					 
					@ -58,50 +58,61 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 5,
   "execution_count": 1 58 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
		
		
			
				
					
					    "def get_data(file_name):\n",
    "def get_data(file_name):\n",
 
			
		
	
		
		
			
				
					
					    "    data = []\n",
    "    data = []\n",
 
			
		
	
		
		
			
				
					
					    "    row = {}\n",
 
			
		
	
		
		
			
				
					
					    "\n",
    "\n",
 
			
		
	
		
		
			
				
					
					    "    with open(file_name) as log_file:\n",
    "    with open(file_name) as log_file:\n",
 
			
		
	
		
		
			
				
					
					    "        lines = log_file.readlines()\n",
    "        lines = log_file.readlines()\n",
 
			
		
	
		
		
			
				
					
					    "        for line in lines:\n",
    "        for line in lines:\n",
 
			
		
	
		
		
			
				
					
					    "            row = {}\n",
 
			
		
	
		
		
			
				
					
					    "            split_line = line.split()\n",
    "            split_line = line.split()\n",
 
			
		
	
		
		
			
				
					
					    "            if \"USED\" not in split_line or \"ELAPSED\" not in split_line: continue\n",
    "                \n",
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					    "            if \"USED\" not in split_line and \"ELAPSED\" not in split_line and \"CPU\" not in split_line: continue\n",
 
			
		
	
		
		
			
				
					
					    "    \n",
 
			
		
	
		
		
			
				
					
					    "            if \"CPU\" in split_line:\n",
 
			
		
	
		
		
			
				
					
					    "                idx_cpu = split_line.index(\"CPU\") + 1\n",
 
			
		
	
		
		
			
				
					
					    "                idx_per = idx_cpu + 1\n",
 
			
		
	
		
		
			
				
					
					    "                row[\"CPU_{}\".format(split_line[idx_cpu].rsplit(':')[0])] = float(split_line[idx_per].rsplit(\"%\")[0])\n",
 
			
		
	
		
		
			
				
					
					    "                continue\n",
 
			
		
	
		
		
			
				
					
					    "                \n",
 
			
		
	
		
		
			
				
					
					    "                \n",
 
			
		
	
		
		
			
				
					
					    "            idx_used_mem = split_line.index(\"USED\") + 4\n",
    "            idx_used_mem = split_line.index(\"USED\") + 4\n",
 
			
		
	
		
		
			
				
					
					    "            idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
    "            idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
 
			
		
	
		
		
			
				
					
					    "            \n",
    "            \n",
 
			
		
	
		
		
			
				
					
					    "            function_name = get_function_name(split_line[2])\n",
    "            function_name = get_function_name(split_line[2])\n",
 
			
		
	
		
		
			
				
					
					    "                        \n",
 
			
		
	
		
		
			
				
					
					    "            used_virtual_mem = float(split_line[idx_used_mem])\n",
    "            used_virtual_mem = float(split_line[idx_used_mem])\n",
 
			
		
	
		
		
			
				
					
					    "            elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n",
    "            elapsed = float(split_line[idx_elapsed].rsplit(\",\")[0])\n",
 
			
		
	
		
		
			
				
					
					    "\n",
    "\n",
 
			
		
	
		
		
			
				
					
					    "            # TODO: add CPU\n",
 
			
		
	
		
		
			
				
					
					    "            row[\"function\"] = function_name\n",
    "            row[\"function\"] = function_name\n",
 
			
		
	
		
		
			
				
					
					    "            row[\"memory\"] = used_virtual_mem \n",
    "            row[\"memory\"] = used_virtual_mem \n",
 
			
		
	
		
		
			
				
					
					    "            row[\"time\"] = elapsed\n",
    "            row[\"time\"] = elapsed\n",
 
			
		
	
		
		
			
				
					
					    "            print(row)\n",
 
			
		
	
		
		
			
				
					
					    "            data.append(row)\n",
    "            data.append(row)\n",
 
			
		
	
		
		
			
				
					
					    "            row = {}\n",
 
			
		
	
		
		
			
				
					
					    "            \n",
    "            \n",
 
			
		
	
		
		
			
				
					
					    "    return data"
    "    return data"
 
			
		
	
		
		
			
				
					
					   ]
   ]
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 6,
   "execution_count": 15 6,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
		
		
			
				
					
					    "def create_df(file_name):\n",
    "def create_df(file_name):\n",
 
			
		
	
		
		
			
				
					
					    "    data = get_data(file_name)\n",
    "    data = get_data(file_name)\n",
 
			
		
	
		
		
			
				
					
					    "    df = pd.DataFrame(data)\n",
    "    df = pd.DataFrame(data)\n",
 
			
		
	
		
		
			
				
					
					    "    return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median']})"
    "    return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median'], 'CPU_0': ['mean'], 'CPU_1': ['mean'], 'CPU_2': ['mean'], 'CPU_3': ['mean'], 'CPU_4': ['mean'], 'CPU_5': ['mean'], 'CPU_6': ['mean'], 'CPU_7': ['mean'] })"
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   ]
   ]
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 7 ,
   "execution_count": 150 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
						
					 
					@ -112,7 +123,7 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 8 ,
   "execution_count": 151 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [],
   "outputs": [],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
	
		
		
			
				
					
						
							
								 
						
						
							
								 
						
						
					 
					@ -170,19 +181,159 @@
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {
 
			
		
	
		
		
			
				
					
					   "cell_type": "code",
   "cell_type": "code",
 
			
		
	
		
		
			
				
					
					   "execution_count": 20 ,
   "execution_count": 157 ,
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					   "metadata": {},
   "metadata": {},
 
			
		
	
		
		
			
				
					
					   "outputs": [
   "outputs": [
 
			
		
	
		
		
			
				
					
					    {
    {
 
			
		
	
		
		
			
				
					
					     "name": "stdout",
     "name": "stdout",
 
			
		
	
		
		
			
				
					
					     "output_type": "stream",
     "output_type": "stream",
 
			
		
	
		
		
			
				
					
					     "text": [
     "text": [
 
			
		
	
		
		
			
				
					
					      "1931\n"
      "{'function': 'generate', 'time': 0.011741, 'memory': 0.5, 'CPU_2': 0.1, 'CPU_3': 100.1, 'CPU_0': 44.544444, 'CPU_1': 50.1, 'CPU_6': 0.1, 'CPU_7': 100.1, 'CPU_4': 0.1, 'CPU_5': 0.1}\n",
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					      "{'function': 'Py_kgeneration', 'time': 0.018899, 'memory': 0.5, 'CPU_2': 0.1, 'CPU_3': 50.1, 'CPU_0': 41.276471, 'CPU_1': 33.433333, 'CPU_6': 0.1, 'CPU_7': 100.1, 'CPU_4': 0.1, 'CPU_5': 0.1}\n"
 
			
		
	
		
		
			
				
					
					     ]
     ]
 
			
		
	
		
		
			
				
					
					    },
 
			
		
	
		
		
			
				
					
					    {
 
			
		
	
		
		
			
				
					
					     "data": {
 
			
		
	
		
		
			
				
					
					      "text/html": [
 
			
		
	
		
		
			
				
					
					       "<div>\n",
 
			
		
	
		
		
			
				
					
					       "<style scoped>\n",
 
			
		
	
		
		
			
				
					
					       "    .dataframe tbody tr th:only-of-type {\n",
 
			
		
	
		
		
			
				
					
					       "        vertical-align: middle;\n",
 
			
		
	
		
		
			
				
					
					       "    }\n",
 
			
		
	
		
		
			
				
					
					       "\n",
 
			
		
	
		
		
			
				
					
					       "    .dataframe tbody tr th {\n",
 
			
		
	
		
		
			
				
					
					       "        vertical-align: top;\n",
 
			
		
	
		
		
			
				
					
					       "    }\n",
 
			
		
	
		
		
			
				
					
					       "\n",
 
			
		
	
		
		
			
				
					
					       "    .dataframe thead tr th {\n",
 
			
		
	
		
		
			
				
					
					       "        text-align: left;\n",
 
			
		
	
		
		
			
				
					
					       "    }\n",
 
			
		
	
		
		
			
				
					
					       "\n",
 
			
		
	
		
		
			
				
					
					       "    .dataframe thead tr:last-of-type th {\n",
 
			
		
	
		
		
			
				
					
					       "        text-align: right;\n",
 
			
		
	
		
		
			
				
					
					       "    }\n",
 
			
		
	
		
		
			
				
					
					       "</style>\n",
 
			
		
	
		
		
			
				
					
					       "<table border=\"1\" class=\"dataframe\">\n",
 
			
		
	
		
		
			
				
					
					       "  <thead>\n",
 
			
		
	
		
		
			
				
					
					       "    <tr>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_1</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th colspan=\"5\" halign=\"left\">time</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_2</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_3</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_0</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th colspan=\"3\" halign=\"left\">memory</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_6</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_7</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_4</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>CPU_5</th>\n",
 
			
		
	
		
		
			
				
					
					       "    </tr>\n",
 
			
		
	
		
		
			
				
					
					       "    <tr>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>min</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>max</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>sum</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>count</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>min</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>max</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>median</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>mean</th>\n",
 
			
		
	
		
		
			
				
					
					       "    </tr>\n",
 
			
		
	
		
		
			
				
					
					       "    <tr>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>function</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "      <th></th>\n",
 
			
		
	
		
		
			
				
					
					       "    </tr>\n",
 
			
		
	
		
		
			
				
					
					       "  </thead>\n",
 
			
		
	
		
		
			
				
					
					       "  <tbody>\n",
 
			
		
	
		
		
			
				
					
					       "    <tr>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>Py_kgeneration</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>33.433333</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.018899</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.018899</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.018899</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.018899</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>50.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>41.276471</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>100.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "    </tr>\n",
 
			
		
	
		
		
			
				
					
					       "    <tr>\n",
 
			
		
	
		
		
			
				
					
					       "      <th>generate</th>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>50.100000</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.011741</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.011741</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.011741</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.011741</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>100.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>44.544444</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.5</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>100.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "      <td>0.1</td>\n",
 
			
		
	
		
		
			
				
					
					       "    </tr>\n",
 
			
		
	
		
		
			
				
					
					       "  </tbody>\n",
 
			
		
	
		
		
			
				
					
					       "</table>\n",
 
			
		
	
		
		
			
				
					
					       "</div>"
 
			
		
	
		
		
			
				
					
					      ],
 
			
		
	
		
		
			
				
					
					      "text/plain": [
 
			
		
	
		
		
			
				
					
					       "                    CPU_1      time                                     CPU_2  \\\n",
 
			
		
	
		
		
			
				
					
					       "                     mean       min       max      mean       sum count  mean   \n",
 
			
		
	
		
		
			
				
					
					       "function                                                                        \n",
 
			
		
	
		
		
			
				
					
					       "Py_kgeneration  33.433333  0.018899  0.018899  0.018899  0.018899     1   0.1   \n",
 
			
		
	
		
		
			
				
					
					       "generate        50.100000  0.011741  0.011741  0.011741  0.011741     1   0.1   \n",
 
			
		
	
		
		
			
				
					
					       "\n",
 
			
		
	
		
		
			
				
					
					       "                CPU_3      CPU_0 memory             CPU_6  CPU_7 CPU_4 CPU_5  \n",
 
			
		
	
		
		
			
				
					
					       "                 mean       mean    min  max median  mean   mean  mean  mean  \n",
 
			
		
	
		
		
			
				
					
					       "function                                                                      \n",
 
			
		
	
		
		
			
				
					
					       "Py_kgeneration   50.1  41.276471    0.5  0.5    0.5   0.1  100.1   0.1   0.1  \n",
 
			
		
	
		
		
			
				
					
					       "generate        100.1  44.544444    0.5  0.5    0.5   0.1  100.1   0.1   0.1  "
 
			
		
	
		
		
			
				
					
					      ]
 
			
		
	
		
		
			
				
					
					     },
 
			
		
	
		
		
			
				
					
					     "execution_count": 157,
 
			
		
	
		
		
			
				
					
					     "metadata": {},
 
			
		
	
		
		
			
				
					
					     "output_type": "execute_result"
 
			
		
	
		
		
			
				
					
					    }
    }
 
			
		
	
		
		
			
				
					
					   ],
   ],
 
			
		
	
		
		
			
				
					
					   "source": [
   "source": [
 
			
		
	
		
		
			
				
					
					    "df = analyze('log_8-aa')"
    "df = analyze('log_8-aa')\n",
 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					    "\n",
 
			
		
	
		
		
			
				
					
					    "\n",
 
			
		
	
		
		
			
				
					
					    "df"
 
			
		
	
		
		
			
				
					
					   ]
   ]
 
			
		
	
		
		
			
				
					
					  },
  },
 
			
		
	
		
		
			
				
					
					  {
  {