covar test
							parent
							
								
									44a16ce9b9
								
							
						
					
					
						commit
						e626ff6c93
					
				| @ -0,0 +1,645 @@ | |||||||
|  | #include <math.h> | ||||||
|  | #include <stdio.h> | ||||||
|  | #include <time.h> | ||||||
|  | #include "chunk_array.h" | ||||||
|  | 
 | ||||||
|  | /*fast fourier transform                                                   */ | ||||||
|  | /*     THE COOLEY-TUKEY FAST FOURIER TRANSFORM                             */ | ||||||
|  | /*     EVALUATES COMPLEX FOURIER SERIES FOR COMPLEX OR REAL FUNCTIONS.     */ | ||||||
|  | /*     THAT IS, IT COMPUTES                                                */ | ||||||
|  | /*     FTRAN(J1,J2,...)=SUM(DATA(I1,I2,...)*W1**(I1-1)*(J1-1)              */ | ||||||
|  | /*                                         *W2**(I2-1)*(J2-1)*...),        */ | ||||||
|  | /*     WHERE W1=EXP(-2*PI*SQRT(-1)/NN(1)), W2=EXP(-2*PI*SQRT(-1)/NN(2)),   */ | ||||||
|  | /*     ETC. AND I1 AND J1 RUN FROM 1 TO NN(1), I2 AND J2 RUN FROM 1 TO     */ | ||||||
|  | /*     NN(2), ETC.  THERE IS NO LIMIT ON THE DIMENSIONALITY (NUMBER OF     */ | ||||||
|  | /*     SUBSCRIPTS) OF THE ARRAY OF DATA.  THE PROGRAM WILL PERFORM         */ | ||||||
|  | /*     A THREE-DIMENSIONAL FOURIER TRANSFORM AS EASILY AS A ONE-DIMEN-     */ | ||||||
|  | /*     SIONAL ONE, THO IN A PROPORTIONATELY GREATER TIME.  AN INVERSE      */ | ||||||
|  | /*     TRANSFORM CAN BE PERFORMED, IN WHICH THE SIGN IN THE EXPONENTIALS   */ | ||||||
|  | /*     IS +, INSTEAD OF -.  IF AN INVERSE TRANSFORM IS PERFORMED UPON      */ | ||||||
|  | /*     AN ARRAY OF TRANSFORMED DATA, THE ORIGINAL DATA WILL REAPPEAR,      */ | ||||||
|  | /*     MULTIPLIED BY NN(1)*NN(2)*...  THE ARRAY OF INPUT DATA MAY BE       */ | ||||||
|  | /*     REAL OR COMPLEX, AT THE PROGRAMMERS OPTION, WITH A SAVING OF        */ | ||||||
|  | /*     ABOUT THIRTY PER CENT IN RUNNING TIME FOR REAL OVER COMPLEX.        */ | ||||||
|  | /*     (FOR FASTEST TRANSFORM OF REAL DATA, NN(1) SHOULD BE EVEN.)         */ | ||||||
|  | /*     THE TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE RETURNED IN THE    */ | ||||||
|  | /*     ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA.  THE LENGTH       */ | ||||||
|  | /*     OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER.  THE        */ | ||||||
|  | /*     PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND IS    */ | ||||||
|  | /*     PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO.                */ | ||||||
|  | /*     TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA.  LET NTOT BE THE  */ | ||||||
|  | /*     TOTAL NUMBER OF POINTS (REAL OR COMPLEX) IN THE DATA ARRAY, THAT    */ | ||||||
|  | /*     IS, NTOT=NN(1)*NN(2)*...  DECOMPOSE NTOT INTO ITS PRIME FACTORS,    */ | ||||||
|  | /*     SUCH AS 2**K2 * 3**K3 * 5**K5 * ...  LET SUM2 BE THE SUM OF ALL     */ | ||||||
|  | /*     THE FACTORS OF TWO IN NTOT, THAT IS, SUM2 = 2*K2.  LET SUMF BE      */ | ||||||
|  | /*     THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS, SUMF = 3*K3+5*K5+..  */ | ||||||
|  | /*     THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA   */ | ||||||
|  | /*     IS T = T0 + T1*NTOT + T2*NTOT*SUM2 + T3*NTOT*SUMF.  FOR THE PAR-    */ | ||||||
|  | /*     TICULAR IMPLEMENTATION FORTRAN 32 ON THE CDC 3300 (FLOATING POINT   */ | ||||||
|  | /*     ADD TIME = SIX MICROSECONDS),                                       */ | ||||||
|  | /*     T = 3000 + 600*NTOT + 50*NTOT*SUM2 + 175*NTOT*SUMF MICROSECONDS     */ | ||||||
|  | /*     ON COMPLEX DATA.                                                    */ | ||||||
|  | /*     IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN IN A TIME    */ | ||||||
|  | /*     PROPORTIONAL TO NTOT**2.  FOR HIGHLY COMPOSITE NTOT, THE SAVINGS    */ | ||||||
|  | /*     OFFERED BY COOLEY-TUKEY CAN BE DRAMATIC.  A MATRIX 100 BY 100 WILL  */ | ||||||
|  | /*     BE TRANSFORMED IN TIME PROPORTIONAL TO 10000*(2+2+2+2+5+5+5+5) =    */ | ||||||
|  | /*     280,000 (ASSUMING T2 AND T3 TO BE ROUGHLY COMPARABLE) VERSUS        */ | ||||||
|  | /*     10000**2 = 100,000,000 FOR THE STRAIGHTFORWARD TECHNIQUE.           */ | ||||||
|  | /*     THE COOLEY-TUKEY ALGORITHM PLACES TWO RESTRICTIONS UPON THE         */ | ||||||
|  | /*     NATURE OF THE DATA BEYOND THE USUAL RESTRICTION THAT                */ | ||||||
|  | /*     THE DATA FROM ONE CYCLE OF A PERIODIC FUNCTION.  THEY ARE--         */ | ||||||
|  | /*     1.  THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES     */ | ||||||
|  | /*     MUST BE THE SAME.                                                   */ | ||||||
|  | /*     2. CONSIDERING THE DATA TO BE IN THE TIME DOMAIN,                   */ | ||||||
|  | /*     THEY MUST BE EQUI-SPACED AT INTERVALS OF DT.  FURTHER, THE TRANS-   */ | ||||||
|  | /*     FORM VALUES, CONSIDERED TO BE IN FREQUENCY SPACE, WILL BE EQUI-     */ | ||||||
|  | /*     SPACED FROM 0 TO 2*PI*(NN(I)-1)/(NN(I)*DT) AT INTERVALS OF          */ | ||||||
|  | /*     2*PI/(NN(I)*DT) FOR EACH DIMENSION OF LENGTH NN(I).  OF COURSE,     */ | ||||||
|  | /*     DT NEED NOT BE THE SAME FOR EVERY DIMENSION.                        */ | ||||||
|  | 
 | ||||||
|  | /*     THE CALLING SEQUENCE IS--                                           */ | ||||||
|  | /*     CALL FOURT(DATAR,DATAI,NN,NDIM,IFRWD,ICPLX,WORKR,WORKI)             */ | ||||||
|  | 
 | ||||||
|  | /*     DATAR AND DATAI ARE THE ARRAYS USED TO HOLD THE REAL AND IMAGINARY  */ | ||||||
|  | /*     PARTS OF THE INPUT DATA ON INPUT AND THE TRANSFORM VALUES ON        */ | ||||||
|  | /*     OUTPUT.  THEY ARE FLOATING POINT ARRAYS, MULTIDIMENSIONAL WITH      */ | ||||||
|  | /*     IDENTICAL DIMENSIONALITY AND EXTENT.  THE EXTENT OF EACH DIMENSION  */ | ||||||
|  | /*     IS GIVEN IN THE INTEGER ARRAY NN, OF LENGTH NDIM.  THAT IS,         */ | ||||||
|  | /*     NDIM IS THE DIMENSIONALITY OF THE ARRAYS DATAR AND DATAI.           */ | ||||||
|  | /*     IFRWD IS AN INTEGER USED TO INDICATE THE DIRECTION OF THE FOURIER   */ | ||||||
|  | /*     TRANSFORM.  IT IS NON-ZERO TO INDICATE A FORWARD TRANSFORM          */ | ||||||
|  | /*     (EXPONENTIAL SIGN IS -) AND ZERO TO INDICATE AN INVERSE TRANSFORM   */ | ||||||
|  | /*     (SIGN IS +).  ICPLX IS AN INTEGER TO INDICATE WHETHER THE DATA      */ | ||||||
|  | /*     ARE REAL OR COMPLEX.  IT IS NON-ZERO FOR COMPLEX, ZERO FOR REAL.    */ | ||||||
|  | /*     IF IT IS ZERO (REAL) THE CONTENTS OF ARRAY DATAI WILL BE ASSUMED    */ | ||||||
|  | /*     TO BE ZERO, AND NEED NOT BE EXPLICITLY SET TO ZERO.  AS EXPLAINED   */ | ||||||
|  | /*     ABOVE, THE TRANSFORM RESULTS ARE ALWAYS COMPLEX AND ARE STORED      */ | ||||||
|  | /*     IN DATAR AND DATAI ON RETURN.  WORKR AND WORKI ARE ARRAYS USED      */ | ||||||
|  | /*     FOR WORKING STORAGE.  THEY ARE NOT NECESSARY IF ALL THE DIMENSIONS  */ | ||||||
|  | /*     OF THE DATA ARE POWERS OF TWO.  IN THIS CASE, THE ARRAYS MAY BE     */ | ||||||
|  | /*     REPLACED BY THE NUMBER 0 IN THE CALLING SEQUENCE.  THUS, USE OF     */ | ||||||
|  | /*     POWERS OF TWO CAN FREE A GOOD DEAL OF STORAGE.  IF ANY DIMENSION    */ | ||||||
|  | /*     IS NOT A POWER OF TWO, THESE ARRAYS MUST BE SUPPLIED.  THEY ARE     */ | ||||||
|  | /*     FLOATING POINT, ONE DIMENSIONAL OF LENGTH EQUAL TO THE LARGEST      */ | ||||||
|  | /*     ARRAY DIMENSION, THAT IS, TO THE LARGEST VALUE OF NN(I).            */ | ||||||
|  | /*     WORKR AND WORKI, IF SUPPLIED, MUST NOT BE THE SAME ARRAYS AS DATAR  */ | ||||||
|  | /*     OR DATAI.  ALL SUBSCRIPTS OF ALL ARRAYS BEGIN AT 1.                 */ | ||||||
|  | 
 | ||||||
|  | /*     THERE ARE NO ERROR MESSAGES OR ERROR HALTS IN THIS PROGRAM.  THE    */ | ||||||
|  | /*     PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(I) IS LESS THAN ONE.  */ | ||||||
|  | 
 | ||||||
|  | /*     PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER                       */ | ||||||
|  | /*     10-06-2000, MLR                                                     */ | ||||||
|  | 
 | ||||||
|  | void fourt_covar(chunk_array_t* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) { | ||||||
|  |     int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf; | ||||||
|  |     double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559; | ||||||
|  |     double value1, valuei, valuej, valuei1, valueimin, valuei3, valuej3; | ||||||
|  | 
 | ||||||
|  |     ntot = 1; | ||||||
|  |     for (idim = 0; idim < ndim; idim++) { | ||||||
|  |         ntot *= nn[idim]; | ||||||
|  |     } | ||||||
|  | 
 | ||||||
|  |     chunk_array_read(datar); | ||||||
|  | 
 | ||||||
|  |     /*main loop for each dimension*/ | ||||||
|  |     np1 = 1; | ||||||
|  |     for (idim = 1; idim <= ndim; idim++) { | ||||||
|  |         n = nn[idim - 1]; | ||||||
|  |         np2 = np1 * n; | ||||||
|  | 
 | ||||||
|  |         if (n < 1) { | ||||||
|  |             goto L920; | ||||||
|  |         } else if (n == 1) { | ||||||
|  |             goto L900; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         /*is n a power of 2 and if not, what are its factors*/ | ||||||
|  |         m = n; | ||||||
|  |         ntwo = np1; | ||||||
|  |         iff = 1; | ||||||
|  |         idiv = 2; | ||||||
|  | 
 | ||||||
|  |     L10: | ||||||
|  |         iquot = m / idiv; | ||||||
|  |         irem = m - idiv * iquot; | ||||||
|  |         if (iquot < idiv) | ||||||
|  |             goto L50; | ||||||
|  |         if (irem == 0) { | ||||||
|  |             ntwo *= 2; | ||||||
|  |             ifact[iff] = idiv; | ||||||
|  |             iff++; | ||||||
|  |             m = iquot; | ||||||
|  |             goto L10; | ||||||
|  |         } | ||||||
|  |         idiv = 3; | ||||||
|  |         inon2 = iff; | ||||||
|  | 
 | ||||||
|  |     L30: | ||||||
|  |         iquot = m / idiv; | ||||||
|  |         irem = m - idiv * iquot; | ||||||
|  |         if (iquot < idiv) | ||||||
|  |             goto L60; | ||||||
|  |         if (irem == 0) { | ||||||
|  |             ifact[iff] = idiv; | ||||||
|  |             iff++; | ||||||
|  |             m = iquot; | ||||||
|  |             goto L30; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         idiv += 2; | ||||||
|  |         goto L30; | ||||||
|  | 
 | ||||||
|  |     L50: | ||||||
|  |         inon2 = iff; | ||||||
|  |         if (irem != 0) | ||||||
|  |             goto L60; | ||||||
|  |         ntwo *= 2; | ||||||
|  |         goto L70; | ||||||
|  | 
 | ||||||
|  |     L60: | ||||||
|  |         ifact[iff] = m; | ||||||
|  | 
 | ||||||
|  |     L70: | ||||||
|  |         non2p = np2 / ntwo; | ||||||
|  | 
 | ||||||
|  |         /*SEPARATE FOUR CASES-- 
 | ||||||
|  | 	  1. COMPLEX TRANSFORM  | ||||||
|  | 	  2. REAL TRANSFORM FOR THE 2ND, 3RD, ETC. DIMENSION.  METHOD: TRANSFORM HALF THE DATA, SUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY. | ||||||
|  | 	  3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD.  METHOD: SET THE IMAGINARY PARTS TO ZERO. | ||||||
|  | 	  4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN.  METHOD: TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD-NUMBERED REAL VALUES.  UNSCRAMBLE AND SUPPLY THE SECOND HALF BY CONJUGATE SYMMETRY. */ | ||||||
|  | 
 | ||||||
|  |         icase = 1; | ||||||
|  |         ifmin = 1; | ||||||
|  |         if (icplx != 0) | ||||||
|  |             goto L100; | ||||||
|  |         icase = 2; | ||||||
|  |         if (idim > 1) | ||||||
|  |             goto L100; | ||||||
|  |         icase = 3; | ||||||
|  |         if (ntwo <= np1) | ||||||
|  |             goto L100; | ||||||
|  |         icase = 4; | ||||||
|  |         ifmin = 2; | ||||||
|  |         ntwo /= 2; | ||||||
|  |         n /= 2; | ||||||
|  |         np2 /= 2; | ||||||
|  |         ntot /= 2; | ||||||
|  |         i = 1; | ||||||
|  |         for (j = 1; j <= ntot; j++) { | ||||||
|  |             chunk_array_get(datar, i, &valuei); | ||||||
|  |             chunk_array_get(datar, i, &valuei1); | ||||||
|  |             chunk_array_save(datar, j, valuei); | ||||||
|  | 
 | ||||||
|  |             //datar[j] = datar[i];
 | ||||||
|  |             datai[j] = valuei1; | ||||||
|  |             i += 2; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         /*shuffle data by bit reversal, since n = 2^k. As the shuffling can be done by simple interchange, no working array is needed*/ | ||||||
|  |     L100: | ||||||
|  |         if (non2p > 1) | ||||||
|  |             goto L200; | ||||||
|  |         np2hf = np2 / 2; | ||||||
|  |         j = 1; | ||||||
|  |         for (i2 = 1; i2 <= np2; i2 += np1) { | ||||||
|  |             if (j >= i2) | ||||||
|  |                 goto L130; | ||||||
|  |             i1max = i2 + np1 - 1; | ||||||
|  |             for (i1 = i2; i1 <= i1max; i1++) { | ||||||
|  |                 for (i3 = i1; i3 <= ntot; i3 += np2) { | ||||||
|  |                     j3 = j + i3 - i2; | ||||||
|  |                     //tempr = datar[i3];
 | ||||||
|  |                     tempi = datai[i3]; | ||||||
|  |                     //datar[i3] = datar[j3];
 | ||||||
|  |                     datai[i3] = datai[j3]; | ||||||
|  |                     //datar[j3] = tempr;
 | ||||||
|  |                     datai[j3] = tempi; | ||||||
|  | 
 | ||||||
|  |                     chunk_array_get(datar, i3, &valuei3); | ||||||
|  |                     chunk_array_get(datar, j3, &valuej3); | ||||||
|  |                     chunk_array_save(datar, i3, valuej3); | ||||||
|  |                     chunk_array_save(datar, j3, valuei3); | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  | 
 | ||||||
|  |         L130: | ||||||
|  |             m = np2hf; | ||||||
|  | 
 | ||||||
|  |         L140: | ||||||
|  |             if (j <= m) { | ||||||
|  |                 j += m; | ||||||
|  |             } else { | ||||||
|  |                 j -= m; | ||||||
|  |                 m /= 2; | ||||||
|  |                 if (m >= np1) | ||||||
|  |                     goto L140; | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  |         goto L300; | ||||||
|  | 
 | ||||||
|  |         /*shuffle data by digit reversal for general n*/ | ||||||
|  |     L200: | ||||||
|  |         for (i1 = 1; i1 <= np1; i1++) { | ||||||
|  |             for (i3 = i1; i3 <= ntot; i3 += np2) { | ||||||
|  |                 j = i3; | ||||||
|  |                 for (i = 1; i <= n; i++) { | ||||||
|  |                     if (icase != 3) { | ||||||
|  |                         //workr[i] = datar[j];
 | ||||||
|  |                         chunk_array_get(datar, j, &workr[i]); | ||||||
|  |                         worki[i] = datai[j]; | ||||||
|  |                     } else { | ||||||
|  |                         chunk_array_get(datar, j, &workr[i]); | ||||||
|  |                         //workr[i] = datar[j];
 | ||||||
|  |                         worki[i] = 0.; | ||||||
|  |                     } | ||||||
|  |                     ifp2 = np2; | ||||||
|  |                     iff = ifmin; | ||||||
|  |                 L250: | ||||||
|  |                     ifp1 = ifp2 / ifact[iff]; | ||||||
|  |                     j += ifp1; | ||||||
|  |                     if (j >= i3 + ifp2) { | ||||||
|  |                         j -= ifp2; | ||||||
|  |                         ifp2 = ifp1; | ||||||
|  |                         iff += 1; | ||||||
|  |                         if (ifp2 > np1) | ||||||
|  |                             goto L250; | ||||||
|  |                     } | ||||||
|  |                 } | ||||||
|  |                 i2max = i3 + np2 - np1; | ||||||
|  |                 i = 1; | ||||||
|  |                 for (i2 = i3; i2 <= i2max; i2 += np1) { | ||||||
|  |                     chunk_array_save(datar, i2, workr[i]); | ||||||
|  |                     //datar[i2] = workr[i];
 | ||||||
|  |                     datai[i2] = worki[i]; | ||||||
|  |                     i++; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         /*special case-- W=1*/ | ||||||
|  |     L300: | ||||||
|  |         i1rng = np1; | ||||||
|  |         if (icase == 2) | ||||||
|  |             i1rng = np0 * (1 + nprev / 2); | ||||||
|  |         if (ntwo <= np1) | ||||||
|  |             goto L600; | ||||||
|  |         for (i1 = 1; i1 <= i1rng; i1++) { | ||||||
|  |             imin = np1 + i1; | ||||||
|  |             istep = 2 * np1; | ||||||
|  |             goto L330; | ||||||
|  | 
 | ||||||
|  |         L310: | ||||||
|  |             j = i1; | ||||||
|  |             for (i = imin; i <= ntot; i += istep) { | ||||||
|  |                 //tempr = datar[i];
 | ||||||
|  |                 tempi = datai[i]; | ||||||
|  |                 //datar[i] = datar[j] - tempr;
 | ||||||
|  |                 datai[i] = datai[j] - tempi; | ||||||
|  |                 //datar[j] = datar[j] + tempr;
 | ||||||
|  |                 datai[j] = datai[j] + tempi; | ||||||
|  | 
 | ||||||
|  |                 chunk_array_get(datar, i, &valuei); | ||||||
|  |                 chunk_array_get(datar, j, &valuej); | ||||||
|  | 
 | ||||||
|  |                 chunk_array_save(datar, i, valuej - valuei); | ||||||
|  |                 chunk_array_save(datar, j, valuej + valuei); | ||||||
|  | 
 | ||||||
|  |                 j += istep; | ||||||
|  |             } | ||||||
|  |             imin = 2 * imin - i1; | ||||||
|  |             istep *= 2; | ||||||
|  | 
 | ||||||
|  |         L330: | ||||||
|  |             if (istep <= ntwo) | ||||||
|  |                 goto L310; | ||||||
|  | 
 | ||||||
|  |             /*special case-- W = -sqrt(-1)*/ | ||||||
|  |             imin = 3 * np1 + i1; | ||||||
|  |             istep = 4 * np1; | ||||||
|  |             goto L420; | ||||||
|  | 
 | ||||||
|  |         L400: | ||||||
|  |             j = imin - istep / 2; | ||||||
|  |             for (i = imin; i <= ntot; i += istep) { | ||||||
|  |                 if (ifrwd != 0) { | ||||||
|  |                     tempr = datai[i]; | ||||||
|  |                     //tempi = -datar[i];
 | ||||||
|  |                     chunk_array_get(datar, i, &tempi); | ||||||
|  |                     tempi = -tempi; | ||||||
|  |                 } else { | ||||||
|  |                     tempr = -datai[i]; | ||||||
|  |                     //tempi = datar[i];
 | ||||||
|  |                     chunk_array_get(datar, i, &tempi); | ||||||
|  |                 } | ||||||
|  | 
 | ||||||
|  |                 chunk_array_get(datar, j, &valuej); | ||||||
|  |                 chunk_array_save(datar, i, valuej - tempr); | ||||||
|  |                 chunk_array_save(datar, j, valuej - tempr); | ||||||
|  | 
 | ||||||
|  |                 //datar[i] = datar[j] - tempr;
 | ||||||
|  |                 datai[i] = datai[j] - tempi; | ||||||
|  |                 //datar[j] += tempr;
 | ||||||
|  |                 datai[j] += tempi; | ||||||
|  |                 j += istep; | ||||||
|  |             } | ||||||
|  | 
 | ||||||
|  |             imin = 2 * imin - i1; | ||||||
|  |             istep *= 2; | ||||||
|  | 
 | ||||||
|  |         L420: | ||||||
|  |             if (istep <= ntwo) | ||||||
|  |                 goto L400; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         /*main loop for factors of 2. W=EXP(-2*PI*SQRT(-1)*m/mmax) */ | ||||||
|  |         theta = -TWOPI / 8.; | ||||||
|  |         wstpr = 0.; | ||||||
|  |         wstpi = -1.; | ||||||
|  |         if (ifrwd == 0) { | ||||||
|  |             theta = -theta; | ||||||
|  |             wstpi = 1.; | ||||||
|  |         } | ||||||
|  |         mmax = 8 * np1; | ||||||
|  |         goto L540; | ||||||
|  | 
 | ||||||
|  |     L500: | ||||||
|  |         wminr = cos(theta); | ||||||
|  |         wmini = sin(theta); | ||||||
|  |         wr = wminr; | ||||||
|  |         wi = wmini; | ||||||
|  |         mmin = mmax / 2 + np1; | ||||||
|  |         mstep = np1 * 2; | ||||||
|  |         for (m = mmin; m <= mmax; m += mstep) { | ||||||
|  |             for (i1 = 1; i1 <= i1rng; i1++) { | ||||||
|  |                 istep = mmax; | ||||||
|  |                 imin = m + i1; | ||||||
|  |             L510: | ||||||
|  |                 j = imin - istep / 2; | ||||||
|  |                 for (i = imin; i <= ntot; i += istep) { | ||||||
|  |                     double valuei, valuej; | ||||||
|  |                     chunk_array_get(datar, i, &valuei); | ||||||
|  |                     chunk_array_get(datar, j, &valuej); | ||||||
|  |                     tempr = valuei * wr - datai[i] * wi; | ||||||
|  |                     tempi = valuei * wi + datai[i] * wr; | ||||||
|  |                     chunk_array_save(datar, i, valuej - tempr); | ||||||
|  |                     //datar[i] = valuej - tempr;
 | ||||||
|  |                     datai[i] = datai[j] - tempi; | ||||||
|  |                     chunk_array_save(datar, i, valuej + tempr); | ||||||
|  |                     //datar[j] += tempr;
 | ||||||
|  |                     datai[j] += tempi; | ||||||
|  |                     j += istep; | ||||||
|  |                 } | ||||||
|  |                 imin = 2 * imin - i1; | ||||||
|  |                 istep *= 2; | ||||||
|  |                 if (istep <= ntwo) | ||||||
|  |                     goto L510; | ||||||
|  |             } | ||||||
|  |             wtemp = wr * wstpi; | ||||||
|  |             wr = wr * wstpr - wi * wstpi; | ||||||
|  |             wi = wi * wstpr + wtemp; | ||||||
|  |         } | ||||||
|  |         wstpr = wminr; | ||||||
|  |         wstpi = wmini; | ||||||
|  |         theta /= 2.; | ||||||
|  |         mmax += mmax; | ||||||
|  |     L540: | ||||||
|  |         if (mmax <= ntwo) | ||||||
|  |             goto L500; | ||||||
|  | 
 | ||||||
|  |         /*main loop for factors not equal to 2-- W=EXP(-2*PI*SQRT(-1)*(j2-i3)/ifp2)*/ | ||||||
|  |     L600: | ||||||
|  |         if (non2p <= 1) | ||||||
|  |             goto L700; | ||||||
|  |         ifp1 = ntwo; | ||||||
|  |         iff = inon2; | ||||||
|  |     L610: | ||||||
|  |         ifp2 = ifact[iff] * ifp1; | ||||||
|  |         theta = -TWOPI / (double)ifact[iff]; | ||||||
|  |         if (ifrwd == 0) | ||||||
|  |             theta = -theta; | ||||||
|  |         thetm = theta / (double)(ifp1 / np1); | ||||||
|  |         wstpr = cos(theta); | ||||||
|  |         wstpi = sin(theta); | ||||||
|  |         wmstr = cos(thetm); | ||||||
|  |         wmsti = sin(thetm); | ||||||
|  |         wminr = 1.; | ||||||
|  |         wmini = 0.; | ||||||
|  | 
 | ||||||
|  |         for (j1 = 1; j1 <= ifp1; j1 += np1) { | ||||||
|  |             i1max = j1 + i1rng - 1; | ||||||
|  |             for (i1 = j1; i1 <= i1max; i1++) { | ||||||
|  |                 for (i3 = i1; i3 <= ntot; i3 += np2) { | ||||||
|  |                     i = 1; | ||||||
|  |                     wr = wminr; | ||||||
|  |                     wi = wmini; | ||||||
|  |                     j2max = i3 + ifp2 - ifp1; | ||||||
|  |                     for (j2 = i3; j2 <= j2max; j2 += ifp1) { | ||||||
|  |                         twowr = 2. * wr; | ||||||
|  |                         jmin = i3; | ||||||
|  |                         j3max = j2 + np2 - ifp2; | ||||||
|  |                         for (j3 = j2; j3 <= j3max; j3 += ifp2) { | ||||||
|  |                             j = jmin + ifp2 - ifp1; | ||||||
|  |                             //sr = datar[j];
 | ||||||
|  |                             chunk_array_get(datar, j, &sr); | ||||||
|  |                             si = datai[j]; | ||||||
|  |                             oldsr = 0.; | ||||||
|  |                             oldsi = 0.; | ||||||
|  |                             j -= ifp1; | ||||||
|  |                         L620: | ||||||
|  |                             stmpr = sr; | ||||||
|  |                             stmpi = si; | ||||||
|  |                             chunk_array_get(datar, j, &valuej); | ||||||
|  |                             sr = twowr * sr - oldsr + valuej; | ||||||
|  |                             si = twowr * si - oldsi + datai[j]; | ||||||
|  |                             oldsr = stmpr; | ||||||
|  |                             oldsi = stmpi; | ||||||
|  |                             j -= ifp1; | ||||||
|  |                             if (j > jmin) | ||||||
|  |                                 goto L620; | ||||||
|  |                             workr[i] = wr * sr - wi * si - oldsr + valuej; | ||||||
|  |                             worki[i] = wi * sr + wr * si - oldsi + datai[j]; | ||||||
|  |                             jmin += ifp2; | ||||||
|  |                             i++; | ||||||
|  |                         } | ||||||
|  |                         wtemp = wr * wstpi; | ||||||
|  |                         wr = wr * wstpr - wi * wstpi; | ||||||
|  |                         wi = wi * wstpr + wtemp; | ||||||
|  |                     } | ||||||
|  |                     i = 1; | ||||||
|  |                     for (j2 = i3; j2 <= j2max; j2 += ifp1) { | ||||||
|  |                         j3max = j2 + np2 - ifp2; | ||||||
|  |                         for (j3 = j2; j3 <= j3max; j3 += ifp2) { | ||||||
|  |                             //datar[j3] = workr[i];
 | ||||||
|  |                             chunk_array_save(datar, j3, workr[i]); | ||||||
|  |                             datai[j3] = worki[i]; | ||||||
|  |                             i++; | ||||||
|  |                         } | ||||||
|  |                     } | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |             wtemp = wminr * wmsti; | ||||||
|  |             wminr = wminr * wmstr - wmini * wmsti; | ||||||
|  |             wmini = wmini * wmstr + wtemp; | ||||||
|  |         } | ||||||
|  |         iff++; | ||||||
|  |         ifp1 = ifp2; | ||||||
|  |         if (ifp1 < np2) | ||||||
|  |             goto L610; | ||||||
|  | 
 | ||||||
|  |         /*complete a real transform in the 1st dimension, n even, by conjugate symmetries*/ | ||||||
|  |     L700: | ||||||
|  |         switch (icase) { | ||||||
|  |         case 1: | ||||||
|  |             goto L900; | ||||||
|  |             break; | ||||||
|  |         case 2: | ||||||
|  |             goto L800; | ||||||
|  |             break; | ||||||
|  |         case 3: | ||||||
|  |             goto L900; | ||||||
|  |             break; | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         nhalf = n; | ||||||
|  |         n += n; | ||||||
|  |         theta = -TWOPI / (double)n; | ||||||
|  |         if (ifrwd == 0) | ||||||
|  |             theta = -theta; | ||||||
|  |         wstpr = cos(theta); | ||||||
|  |         wstpi = sin(theta); | ||||||
|  |         wr = wstpr; | ||||||
|  |         wi = wstpi; | ||||||
|  |         imin = 2; | ||||||
|  |         jmin = nhalf; | ||||||
|  |         goto L725; | ||||||
|  |     L710: | ||||||
|  |         j = jmin; | ||||||
|  |         for (i = imin; i <= ntot; i += np2) { | ||||||
|  |             double valuei, valuej; | ||||||
|  |             chunk_array_get(datar, i, &valuei); | ||||||
|  |             chunk_array_get(datar, j, &valuej); | ||||||
|  |             sumr = (valuei + valuej) / 2.; | ||||||
|  |             sumi = (datai[i] + datai[j]) / 2.; | ||||||
|  |             difr = (valuei - valuej) / 2.; | ||||||
|  |             difi = (datai[i] - datai[j]) / 2.; | ||||||
|  |             tempr = wr * sumi + wi * difr; | ||||||
|  |             tempi = wi * sumi - wr * difr; | ||||||
|  |             chunk_array_save(datar, i, sumr + tempr); | ||||||
|  |             //datar[i] = sumr + tempr;
 | ||||||
|  |             datai[i] = difi + tempi; | ||||||
|  |             chunk_array_save(datar, j, sumr - tempr); | ||||||
|  |             //datar[j] = sumr - tempr;
 | ||||||
|  |             datai[j] = tempi - difi; | ||||||
|  |             j += np2; | ||||||
|  |         } | ||||||
|  |         imin++; | ||||||
|  |         jmin--; | ||||||
|  |         wtemp = wr * wstpi; | ||||||
|  |         wr = wr * wstpr - wi * wstpi; | ||||||
|  |         wi = wi * wstpr + wtemp; | ||||||
|  |     L725: | ||||||
|  |         if (imin < jmin) { | ||||||
|  |             goto L710; | ||||||
|  |         } else if (imin > jmin) { | ||||||
|  |             goto L740; | ||||||
|  |         } | ||||||
|  |         if (ifrwd == 0) | ||||||
|  |             goto L740; | ||||||
|  |         for (i = imin; i <= ntot; i += np2) { | ||||||
|  |             datai[i] = -datai[i]; | ||||||
|  |         } | ||||||
|  |     L740: | ||||||
|  |         np2 *= 2; | ||||||
|  |         ntot *= 2; | ||||||
|  |         j = ntot + 1; | ||||||
|  |         imax = ntot / 2 + 1; | ||||||
|  |     L745: | ||||||
|  |         imin = imax - nhalf; | ||||||
|  |         i = imin; | ||||||
|  |         goto L755; | ||||||
|  |     L750: | ||||||
|  |         //datar[j] = datar[i];
 | ||||||
|  |         chunk_array_get(datar, i, &valuei); | ||||||
|  |         chunk_array_save(datar, j, valuei); | ||||||
|  |         datai[j] = -datai[i]; | ||||||
|  |     L755: | ||||||
|  |         i++; | ||||||
|  |         j--; | ||||||
|  |         if (i < imax) | ||||||
|  |             goto L750; | ||||||
|  | 
 | ||||||
|  |         chunk_array_get(datar, imin, &valueimin); | ||||||
|  |         chunk_array_save(datar, j, valueimin - datai[imin]); | ||||||
|  |         //datar[j] = datar[imin] - datai[imin];
 | ||||||
|  |         datai[j] = 0.; | ||||||
|  |         if (i >= j) { | ||||||
|  |             goto L780; | ||||||
|  |         } else { | ||||||
|  |             goto L770; | ||||||
|  |         } | ||||||
|  |     L765: | ||||||
|  |         //datar[j] = datar[i];
 | ||||||
|  |         chunk_array_get(datar, i, &valuei); | ||||||
|  |         chunk_array_save(datar, j, valuei); | ||||||
|  |         datai[j] = datai[i]; | ||||||
|  |     L770: | ||||||
|  |         i--; | ||||||
|  |         j--; | ||||||
|  |         if (i > imin) | ||||||
|  |             goto L765; | ||||||
|  |         //datar[j] = datar[imin] + datai[imin];
 | ||||||
|  |         chunk_array_get(datar, imin, &valueimin); | ||||||
|  |         chunk_array_save(datar, j, valueimin - datai[imin]); | ||||||
|  |         datai[j] = 0.; | ||||||
|  |         imax = imin; | ||||||
|  |         goto L745; | ||||||
|  |     L780: | ||||||
|  |         chunk_array_get(datar, 1, &value1); | ||||||
|  |         chunk_array_save(datar, 1, value1 + datai[1]); | ||||||
|  |         //datar[1] += datai[1];
 | ||||||
|  |         datai[1] = 0.; | ||||||
|  |         goto L900; | ||||||
|  | 
 | ||||||
|  |         /*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/ | ||||||
|  |     L800: | ||||||
|  |         if (nprev <= 2) | ||||||
|  |             goto L900; | ||||||
|  |         for (i3 = 1; i3 <= ntot; i3 += np2) { | ||||||
|  |             i2max = i3 + np2 - np1; | ||||||
|  |             for (i2 = i3; i2 <= i2max; i2 += np1) { | ||||||
|  |                 imax = i2 + np1 - 1; | ||||||
|  |                 imin = i2 + i1rng; | ||||||
|  |                 jmax = 2 * i3 + np1 - imin; | ||||||
|  |                 if (i2 > i3) | ||||||
|  |                     jmax += np2; | ||||||
|  |                 if (idim > 2) { | ||||||
|  |                     j = jmax + np0; | ||||||
|  |                     for (i = imin; i <= imax; i++) { | ||||||
|  |                         //datar[i] = datar[j];
 | ||||||
|  |                         chunk_array_get(datar, j, &valuej); | ||||||
|  |                         chunk_array_save(datar, i, valuej); | ||||||
|  |                         datai[i] = -datai[j]; | ||||||
|  |                         j--; | ||||||
|  |                     } | ||||||
|  |                 } | ||||||
|  |                 j = jmax; | ||||||
|  |                 for (i = imin; i <= imax; i += np0) { | ||||||
|  |                     //datar[i] = datar[j];
 | ||||||
|  |                     chunk_array_get(datar, j, &valuej); | ||||||
|  |                     chunk_array_save(datar, i, valuej); | ||||||
|  |                     datai[i] = -datai[j]; | ||||||
|  |                     j -= np0; | ||||||
|  |                 } | ||||||
|  |             } | ||||||
|  |         } | ||||||
|  | 
 | ||||||
|  |         /*end of loop on each dimension*/ | ||||||
|  |     L900: | ||||||
|  |         np0 = np1; | ||||||
|  |         np1 = np2; | ||||||
|  |         nprev = n; | ||||||
|  |     } | ||||||
|  | L920: return; | ||||||
|  | } | ||||||
					Loading…
					
					
				
		Reference in New Issue