|
|
|
@ -56,21 +56,19 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 28,
|
|
|
|
|
"execution_count": 5,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"def analyze(file_name):\n",
|
|
|
|
|
"def get_data(file_name):\n",
|
|
|
|
|
" data = []\n",
|
|
|
|
|
"\n",
|
|
|
|
|
" with open(file_name) as log_file:\n",
|
|
|
|
|
" lines = log_file.readlines()\n",
|
|
|
|
|
" print(len(lines))\n",
|
|
|
|
|
" for line in lines:\n",
|
|
|
|
|
" row = {}\n",
|
|
|
|
|
" split_line = line.split()\n",
|
|
|
|
|
" if \"USED\" not in split_line or \"ELAPSED\" not in split_line:\n",
|
|
|
|
|
" continue\n",
|
|
|
|
|
" if \"USED\" not in split_line or \"ELAPSED\" not in split_line: continue\n",
|
|
|
|
|
" idx_used_mem = split_line.index(\"USED\") + 4\n",
|
|
|
|
|
" idx_elapsed = split_line.index(\"ELAPSED\") + 2\n",
|
|
|
|
|
" \n",
|
|
|
|
@ -84,8 +82,29 @@
|
|
|
|
|
" row[\"time\"] = elapsed\n",
|
|
|
|
|
" data.append(row)\n",
|
|
|
|
|
" \n",
|
|
|
|
|
" return data"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 18,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"def create_df(file_name):\n",
|
|
|
|
|
" data = get_data(file_name)\n",
|
|
|
|
|
" df = pd.DataFrame(data)\n",
|
|
|
|
|
" df_grouped = df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median']})\n",
|
|
|
|
|
" return df.groupby(['function']).agg({'time': ['min', 'max', 'mean', 'sum', 'count'], 'memory': ['min', 'max', 'median']})"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 19,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": [
|
|
|
|
|
"def analyze(file_name):\n",
|
|
|
|
|
" df_grouped = create_df(file_name)\n",
|
|
|
|
|
" return df_grouped.sort_values(by=('time', 'sum'), ascending=False) "
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
@ -98,7 +117,7 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 19,
|
|
|
|
|
"execution_count": 20,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
@ -349,7 +368,7 @@
|
|
|
|
|
"clean_real 1 "
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
"execution_count": 19,
|
|
|
|
|
"execution_count": 20,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"output_type": "execute_result"
|
|
|
|
|
}
|
|
|
|
@ -1450,10 +1469,45 @@
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": null,
|
|
|
|
|
"execution_count": 35,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [
|
|
|
|
|
{
|
|
|
|
|
"name": "stdout",
|
|
|
|
|
"output_type": "stream",
|
|
|
|
|
"text": [
|
|
|
|
|
"0\n",
|
|
|
|
|
"1\n",
|
|
|
|
|
"2\n",
|
|
|
|
|
"3\n",
|
|
|
|
|
"4\n",
|
|
|
|
|
"5\n",
|
|
|
|
|
"6\n",
|
|
|
|
|
"7\n",
|
|
|
|
|
"8\n",
|
|
|
|
|
"9\n"
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"source": [
|
|
|
|
|
"dfs = []\n",
|
|
|
|
|
"for i in range(10):\n",
|
|
|
|
|
" print(i)\n",
|
|
|
|
|
" df = create_df(\"log_256_{}.txt\".format(i+1))\n",
|
|
|
|
|
" dfs.append(df)"
|
|
|
|
|
]
|
|
|
|
|
},
|
|
|
|
|
{
|
|
|
|
|
"cell_type": "code",
|
|
|
|
|
"execution_count": 40,
|
|
|
|
|
"metadata": {},
|
|
|
|
|
"outputs": [],
|
|
|
|
|
"source": []
|
|
|
|
|
"source": [
|
|
|
|
|
"functions = ['Py_kgeneration', 'generate', 'fftma2', 'covariance', 'gasdev', 'fourt', 'cov_value', 'ran2', 'build_real', 'prebuild_gwn', 'clean_real', 'cgrid', 'length', 'maxfactor']\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"\n",
|
|
|
|
|
"#df_final = pd.concat(dfs).sort_values(by=('time', 'sum'), ascending=False) "
|
|
|
|
|
]
|
|
|
|
|
}
|
|
|
|
|
],
|
|
|
|
|
"metadata": {
|
|
|
|
@ -1461,18 +1515,6 @@
|
|
|
|
|
"display_name": "Python 3 (ipykernel)",
|
|
|
|
|
"language": "python",
|
|
|
|
|
"name": "python3"
|
|
|
|
|
},
|
|
|
|
|
"language_info": {
|
|
|
|
|
"codemirror_mode": {
|
|
|
|
|
"name": "ipython",
|
|
|
|
|
"version": 2
|
|
|
|
|
},
|
|
|
|
|
"file_extension": ".py",
|
|
|
|
|
"mimetype": "text/x-python",
|
|
|
|
|
"name": "python",
|
|
|
|
|
"nbconvert_exporter": "python",
|
|
|
|
|
"pygments_lexer": "ipython2",
|
|
|
|
|
"version": "2.7.18"
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
"nbformat": 4,
|
|
|
|
|