Merge pull request #6 from medios-porosos-fiuba/debugging-fourt

Debugging fourt
milestone_5
Cecilia Hortas 3 years ago committed by GitHub
commit f49258f4aa
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -7,7 +7,7 @@
#include <string.h> #include <string.h>
#include <stdbool.h> #include <stdbool.h>
#define MAX_CHUNK_SIZE 512 #define MAX_CHUNK_SIZE 1500
typedef struct chunk_array { typedef struct chunk_array {
size_t init_pos; size_t init_pos;

@ -30,9 +30,7 @@ void Py_kgeneration(long seed, struct grid_mod grid, struct statistic_mod stat,
generate(&seed, N, Z, cores); generate(&seed, N, Z, cores);
/*FFTMA*/ /*FFTMA*/
printf("pre fftma2\n");
FFTMA2(variogram, grid, n, Z, Y, cores, &seed); FFTMA2(variogram, grid, n, Z, Y, cores, &seed);
printf("post fftma2\n");
/* make a log normal realization */ /* make a log normal realization */
if (stat.type == 1 || stat.type == 2) { if (stat.type == 1 || stat.type == 2) {

@ -7,14 +7,20 @@ void chunk_array_free(chunk_array_t* chunk_array) {
free(chunk_array); free(chunk_array);
} }
bool chunk_array_update_read(chunk_array_t* chunk_array) { bool chunk_array_update_read(chunk_array_t* chunk_array, size_t pos) {
int init_pos = pos/chunk_array->chunk_size;
fseek(chunk_array->fp, init_pos * chunk_array->chunk_size * sizeof(double), SEEK_SET);
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen; chunk_array->init_pos += newLen;
} }
/*
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) { bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) { if (pos>((chunk_array->init_pos + chunk_array->chunk_size)-1)) {
chunk_array_update_read(chunk_array); chunk_array_update_read(chunk_array, pos);
} }
*valor=chunk_array->data[pos%chunk_array->chunk_size]; *valor=chunk_array->data[pos%chunk_array->chunk_size];
return true; return true;
@ -27,6 +33,7 @@ bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
chunk_array->data[pos%chunk_array->chunk_size]=valor; chunk_array->data[pos%chunk_array->chunk_size]=valor;
return true; return true;
} }
*/
chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size) { chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chunk_size) {
chunk_array_t* chunk_array = (chunk_array_t*)malloc(sizeof(chunk_array_t)); chunk_array_t* chunk_array = (chunk_array_t*)malloc(sizeof(chunk_array_t));
@ -51,25 +58,35 @@ chunk_array_t* chunk_array_create(char* filename, size_t total_size, size_t chun
} }
void chunk_array_read(chunk_array_t* chunk_array) { void chunk_array_read(chunk_array_t* chunk_array) {
printf("chunk_array 54\n");
rewind(chunk_array->fp); rewind(chunk_array->fp);
chunk_array->init_pos = 0; chunk_array->init_pos = 0;
printf("chunk_array 57\n");
size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fread(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
printf("chunk_array 59\n");
} }
/*
void chunk_array_write(chunk_array_t* chunk_array, char* filename) { void chunk_array_write(chunk_array_t* chunk_array, char* filename) {
chunk_array->fp = fopen(filename, "w"); chunk_array->fp = fopen(filename, "w");
if (chunk_array->fp == NULL) { if (chunk_array->fp == NULL) {
printf("ke");
fclose(chunk_array->fp); fclose(chunk_array->fp);
chunk_array->fp = fopen(filename, "w"); chunk_array->fp = fopen(filename, "w");
} }
chunk_array->init_pos = 0; chunk_array->init_pos = 0;
} }*/
void chunk_array_flush(chunk_array_t* chunk_array) { void chunk_array_flush(chunk_array_t* chunk_array) {
size_t newLen = fwrite(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp); size_t newLen = fwrite(chunk_array->data, sizeof(double), chunk_array->chunk_size, chunk_array->fp);
chunk_array->init_pos += newLen; chunk_array->init_pos += newLen;
} }
bool chunk_array_get(chunk_array_t* chunk_array, size_t pos, double *valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fread(valor, sizeof(double), 1, chunk_array->fp);
return true;
}
bool chunk_array_save(chunk_array_t* chunk_array, size_t pos, double valor) {
fseek(chunk_array->fp, pos * sizeof(double), SEEK_SET);
fwrite(&valor, sizeof(double), 1, chunk_array->fp);
return true;
}

@ -52,9 +52,9 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
nxyz = NXYZ + 1; nxyz = NXYZ + 1;
/*array initialization*/ /*array initialization*/
covar = chunk_array_create("covar.txt", ntot, 512); covar = chunk_array_create("covar.txt", ntot, 1500);
ireal = chunk_array_create("ireal.txt", ntot, 512); ireal = chunk_array_create("ireal.txt", ntot, 1500);
realization = chunk_array_create("realization.txt", ntot, 512); realization = chunk_array_create("realization.txt", ntot, 1500);
workr = (double*)malloc(nmax * sizeof(double)); workr = (double*)malloc(nmax * sizeof(double));
testmemory(workr); testmemory(workr);
@ -62,39 +62,27 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
worki = (double*)malloc(nmax * sizeof(double)); worki = (double*)malloc(nmax * sizeof(double));
testmemory(worki); testmemory(worki);
printf("pre covariance\n");
/*covariance function creation*/ /*covariance function creation*/
covariance(covar, variogram, grid, n, cores); covariance(covar, variogram, grid, n, cores);
printf("post covariance\n");
/*power spectrum*/ /*power spectrum*/
printf("pre fourt1\n");
fourt(covar, ireal, n, NDIM, 1, 0, workr, worki, cores); fourt(covar, ireal, n, NDIM, 1, 0, workr, worki, cores);
printf("post fourt1\n");
/*organization of the input Gaussian white noise*/ /*organization of the input Gaussian white noise*/
printf("pre prebuild_gwn\n");
solver = 0; solver = 0;
prebuild_gwn(grid, n, realin, realization, solver, cores, seed); prebuild_gwn(grid, n, realin, realization, solver, cores, seed);
printf("post prebuild_gwn\n");
printf("pre fourt2\n");
/*forward fourier transform of the GWN*/ /*forward fourier transform of the GWN*/
fourt(realization, ireal, n, NDIM, 1, 0, workr, worki, cores); fourt(realization, ireal, n, NDIM, 1, 0, workr, worki, cores);
printf("post fourt2\n");
printf("pre build_real\n");
/* build realization in spectral domain */ /* build realization in spectral domain */
build_real(n, NTOT, covar, realization, ireal, cores); build_real(n, NTOT, covar, realization, ireal, cores);
printf("post build_real\n");
chunk_array_free(covar); chunk_array_free(covar);
remove("covar.txt"); remove("covar.txt");
printf("pre fourt3\n");
/*backward fourier transform*/ /*backward fourier transform*/
fourt(realization, ireal, n, NDIM, 0, 1, workr, worki, cores); fourt(realization, ireal, n, NDIM, 0, 1, workr, worki, cores);
printf("post fourt3\n");
chunk_array_free(ireal); chunk_array_free(ireal);
remove("ireal.txt"); remove("ireal.txt");
@ -102,8 +90,6 @@ void FFTMA2(struct vario_mod variogram, struct grid_mod grid, int n[3], struct r
free(workr); free(workr);
free(worki); free(worki);
printf("pre clean_real\n");
/*output realization*/ /*output realization*/
clean_real(realin, n, grid, realization, realout, cores); clean_real(realin, n, grid, realization, realout, cores);
printf("post clean_real\n");
} }

@ -101,14 +101,9 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
ntot *= nn[idim]; ntot *= nn[idim];
} }
//printf("104\n");
chunk_array_read(datar); chunk_array_read(datar);
//printf("107\n");
chunk_array_read(datai); chunk_array_read(datai);
//printf("110\n");
/*main loop for each dimension*/ /*main loop for each dimension*/
np1 = 1; np1 = 1;
for (idim = 1; idim <= ndim; idim++) { for (idim = 1; idim <= ndim; idim++) {
@ -194,12 +189,14 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
ntot /= 2; ntot /= 2;
i = 1; i = 1;
for (j = 1; j <= ntot; j++) { for (j = 1; j <= ntot; j++) {
//printf("196\n");
chunk_array_get(datar, i, &valueri); chunk_array_get(datar, i, &valueri);
////printf("[1] datar[%d] = %f\n", i, valueri);
chunk_array_get(datar, i+1, &valueri1); chunk_array_get(datar, i+1, &valueri1);
////printf("[2] datar[%d] = %f\n", i+1, valueri1);
////printf("[48] Saving in datar the value %f in pos %d\n", valueri, j);
////printf("[49] Saving in datai the value %f in pos %d\n", valueri1, j);
chunk_array_save(datar, j, valueri); chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueri1); chunk_array_save(datai, j, valueri1);
//printf("201\n");
i += 2; i += 2;
} }
@ -217,22 +214,28 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (i3 = i1; i3 <= ntot; i3 += np2) { for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2; j3 = j + i3 - i2;
//printf("219\n");
chunk_array_get(datar, i3, &valueri3); chunk_array_get(datar, i3, &valueri3);
chunk_array_get(datai, i3, &valueii3); chunk_array_get(datai, i3, &valueii3);
chunk_array_get(datar, j3, &valuerj3); chunk_array_get(datar, j3, &valuerj3);
chunk_array_get(datai, j3, &valueij3); chunk_array_get(datai, j3, &valueij3);
//printf("224\n");
//printf("[3] datar[%d] = %f\n", i3, valueri3);
//printf("[4] datai[%d] = %f\n", i3, valueii3);
//printf("[5] datar[%d] = %f\n", j3, valuerj3);
//printf("[6] datai[%d] = %f\n", j3, valueij3);
tempr = valueri3; tempr = valueri3;
tempi = valueii3; tempi = valueii3;
//printf("229\n"); //printf("[50] Saving in datar the value %f in pos %d\n", valuerj3, i3);
//printf("[51] Saving in datai the value %f in pos %d\n", valueij3, i3);
//printf("[52] Saving in datar the value %f in pos %d\n", tempr, j3);
//printf("[53] Saving in datai the value %f in pos %d\n", tempi, j3);
chunk_array_save(datar, i3, valuerj3); chunk_array_save(datar, i3, valuerj3);
chunk_array_save(datai, i3, valueij3); chunk_array_save(datai, i3, valueij3);
chunk_array_save(datar, j3, tempr); chunk_array_save(datar, j3, tempr);
chunk_array_save(datai, j3, tempi); chunk_array_save(datai, j3, tempi);
//printf("234\n");
} }
} }
@ -257,10 +260,12 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (i3 = i1; i3 <= ntot; i3 += np2) { for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3; j = i3;
for (i = 1; i <= n; i++) { for (i = 1; i <= n; i++) {
//printf("259\n");
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("262\n");
//printf("[7] datar[%d] = %f\n", j, valuerj);
//printf("[8] datai[%d] = %f\n", j, valueij);
if (icase != 3) { if (icase != 3) {
workr[i] = valuerj; workr[i] = valuerj;
worki[i] = valueij; worki[i] = valueij;
@ -284,10 +289,11 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
i2max = i3 + np2 - np1; i2max = i3 + np2 - np1;
i = 1; i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) { for (i2 = i3; i2 <= i2max; i2 += np1) {
//printf("286\n"); //printf("[54] Saving in datar the value %f in pos %d\n", workr[i], i2);
//printf("[55] Saving in datai the value %f in pos %d\n", worki[i], i2);
chunk_array_save(datar, i2, workr[i]); chunk_array_save(datar, i2, workr[i]);
chunk_array_save(datai, i2, worki[i]); chunk_array_save(datai, i2, worki[i]);
//printf("289\n");
i++; i++;
} }
} }
@ -308,17 +314,26 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L310: L310:
j = i1; j = i1;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
//printf("310\n");
chunk_array_get(datar, i, &tempr); chunk_array_get(datar, i, &tempr);
chunk_array_get(datai, i, &tempi); chunk_array_get(datai, i, &tempi);
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[9] tempr = %f\n", i, tempr);
//printf("[10] tempi = %f\n", i, tempi);
//printf("[11] datar[%d] = %f\n", j, valuerj);
//printf("[12] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr); chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi); chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr); chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi); chunk_array_save(datai, j, valueij + tempi);
//printf("320\n");
//printf("[56] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[57] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[58] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[59] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
imin = 2 * imin - i1; imin = 2 * imin - i1;
@ -337,31 +352,44 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
j = imin - istep / 2; j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) { if (ifrwd != 0) {
//printf("339\n");
chunk_array_get(datai, i, &tempr); chunk_array_get(datai, i, &tempr);
chunk_array_get(datar, i, &tempi); chunk_array_get(datar, i, &tempi);
//printf("342\n");
//printf("[13] datai[%d] = %f\n", i, tempr);
//printf("[14] datar[%d] = %f\n", i, tempi);
tempi = -tempi; tempi = -tempi;
} else { } else {
//printf("345\n");
chunk_array_get(datai, i, &tempr); chunk_array_get(datai, i, &tempr);
//printf("[15] datai[%d] = %f\n", i, tempr);
tempr = -tempr; tempr = -tempr;
chunk_array_get(datar, i, &tempi); chunk_array_get(datar, i, &tempi);
//printf("349\n"); //printf("[16] datar[%d] = %f\n", i, tempi);
} }
//printf("351\n");
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[17] datar[%d] = %f\n", j, valuerj);
//printf("[18] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj - tempr); chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi); chunk_array_save(datai, i, valueij - tempi);
//printf("[60] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[61] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[19] datar[%d] = %f\n", j, valuerj);
//printf("[20] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, j, valuerj + tempr); chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi); chunk_array_save(datai, j, valueij + tempi);
//printf("363\n");
//printf("[62] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[63] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
@ -398,19 +426,29 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L510: L510:
j = imin - istep / 2; j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) { for (i = imin; i <= ntot; i += istep) {
//printf("400\n");
chunk_array_get(datar, i, &valueri); chunk_array_get(datar, i, &valueri);
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, i, &valueii); chunk_array_get(datai, i, &valueii);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[21] datar[%d] = %f\n", i, valueri);
//printf("[22] datar[%d] = %f\n", j, valuerj);
//printf("[23] datai[%d] = %f\n", i, valueii);
//printf("[24] datai[%d] = %f\n", j, valueij);
tempr = valueri * wr - valueii * wi; tempr = valueri * wr - valueii * wi;
tempi = valueri * wi + valueii * wr; tempi = valueri * wi + valueii * wr;
chunk_array_save(datar, i, valuerj - tempr); chunk_array_save(datar, i, valuerj - tempr);
chunk_array_save(datai, i, valueij - tempi); chunk_array_save(datai, i, valueij - tempi);
chunk_array_save(datar, j, valuerj + tempr); chunk_array_save(datar, j, valuerj + tempr);
chunk_array_save(datai, j, valueij + tempi); chunk_array_save(datai, j, valueij + tempi);
//printf("412\n");
//printf("[64] Saving in datar the value %f in pos %d\n", valuerj - tempr, i);
//printf("[65] Saving in datai the value %f in pos %d\n", valueij - tempi, i);
//printf("[66] Saving in datar the value %f in pos %d\n", valuerj + tempr, j);
//printf("[67] Saving in datai the value %f in pos %d\n", valueij + tempi, j);
j += istep; j += istep;
} }
imin = 2 * imin - i1; imin = 2 * imin - i1;
@ -463,20 +501,24 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
j3max = j2 + np2 - ifp2; j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) { for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1; j = jmin + ifp2 - ifp1;
//printf("465\n");
chunk_array_get(datar, j, &sr); chunk_array_get(datar, j, &sr);
chunk_array_get(datai, j, &si); chunk_array_get(datai, j, &si);
//printf("468\n");
//printf("[25] datar[%d] = %f\n", j, sr);
//printf("[26] datai[%d] = %f\n", j, si);
oldsr = 0.; oldsr = 0.;
oldsi = 0.; oldsi = 0.;
j -= ifp1; j -= ifp1;
L620: L620:
stmpr = sr; stmpr = sr;
stmpi = si; stmpi = si;
//printf("475\n");
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("478\n");
//printf("[27] datar[%d] = %f\n", j, valuerj);
//printf("[28] datai[%d] = %f\n", j, valueij);
sr = twowr * sr - oldsr + valuerj; sr = twowr * sr - oldsr + valuerj;
si = twowr * si - oldsi + valueij; si = twowr * si - oldsi + valueij;
@ -485,8 +527,19 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
j -= ifp1; j -= ifp1;
if (j > jmin) if (j > jmin)
goto L620; goto L620;
chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij);
workr[i] = wr * sr - wi * si - oldsr + valuerj; workr[i] = wr * sr - wi * si - oldsr + valuerj;
worki[i] = wi * sr + wr * si - oldsi + valueij; worki[i] = wi * sr + wr * si - oldsi + valueij;
//printf("[85] wr = %f, sr = %f, wi = %f, si = %f, oldsr = %f, datar[j] = %f\n", wr, sr, wi, si, oldsr, valuerj);
//printf("[86] wi = %f, sr = %f, wr = %f, si = %f, oldsi = %f, datai[j] = %f\n", wi, sr, wr, si, oldsi, valueij);
//printf("[83] Saving in workr the value %f in pos %d\n", wr * sr - wi * si - oldsr + valuerj, i);
//printf("[84] Saving in worki the value %f in pos %d\n", wi * sr + wr * si - oldsi + valueij, i);
jmin += ifp2; jmin += ifp2;
i++; i++;
} }
@ -498,10 +551,11 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
for (j2 = i3; j2 <= j2max; j2 += ifp1) { for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2; j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) { for (j3 = j2; j3 <= j3max; j3 += ifp2) {
//printf("500\n"); //printf("[68] Saving in datar the value %f in pos %d, i = %d\n", workr[i], j3, i);
//printf("[69] Saving in datai the value %f in pos %d, i = %d\n", worki[i], j3, i);
chunk_array_save(datar, j3, workr[i]); chunk_array_save(datar, j3, workr[i]);
chunk_array_save(datai, j3, worki[i]); chunk_array_save(datai, j3, worki[i]);
//printf("503\n");
i++; i++;
} }
} }
@ -545,23 +599,33 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
L710: L710:
j = jmin; j = jmin;
for (i = imin; i <= ntot; i += np2) { for (i = imin; i <= ntot; i += np2) {
//printf("547\n");
chunk_array_get(datar, i, &valueri); chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii); chunk_array_get(datai, i, &valueii);
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[29] datar[%d] = %f\n", i, valueri);
//printf("[30] datai[%d] = %f\n", i, valueii);
//printf("[31] datar[%d] = %f\n", j, valuerj);
//printf("[32] datai[%d] = %f\n", j, valueij);
sumr = (valueri + valuerj) / 2.; sumr = (valueri + valuerj) / 2.;
sumi = (valueii + valueij) / 2.; sumi = (valueii + valueij) / 2.;
difr = (valueri - valuerj) / 2.; difr = (valueri - valuerj) / 2.;
difi = (valueii - valueij) / 2.; difi = (valueii - valueij) / 2.;
tempr = wr * sumi + wi * difr; tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr; tempi = wi * sumi - wr * difr;
chunk_array_save(datar, i, sumr + tempr); chunk_array_save(datar, i, sumr + tempr);
chunk_array_save(datai, i, difi + tempi); chunk_array_save(datai, i, difi + tempi);
chunk_array_save(datar, j, sumr - tempr); chunk_array_save(datar, j, sumr - tempr);
chunk_array_save(datai, j, tempi - difi); chunk_array_save(datai, j, tempi - difi);
//printf("563\n");
//printf("[70] Saving in datar the value %f in pos %d\n", sumr + tempr, i);
//printf("[71] Saving in datai the value %f in pos %d\n", difi + tempi, i);
//printf("[72] Saving in datar the value %f in pos %d\n", sumr - tempr, j);
//printf("[73] Saving in datai the value %f in pos %d\n", tempi - difi, j);
j += np2; j += np2;
} }
imin++; imin++;
@ -578,10 +642,10 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
if (ifrwd == 0) if (ifrwd == 0)
goto L740; goto L740;
for (i = imin; i <= ntot; i += np2) { for (i = imin; i <= ntot; i += np2) {
//printf("580\n");
chunk_array_get(datai, i, &valueii); chunk_array_get(datai, i, &valueii);
//printf("[33] datai[%d] = %f\n", i, valueii);
chunk_array_save(datai, i, -valueii); chunk_array_save(datai, i, -valueii);
//printf("583\n"); //printf("[73] Saving in datai the value %f in pos %d\n", -valueii, i);
} }
L740: L740:
np2 *= 2; np2 *= 2;
@ -593,61 +657,86 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
i = imin; i = imin;
goto L755; goto L755;
L750: ; L750: ;
//printf("595\n");
chunk_array_get(datar, i, &valueri); chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii); chunk_array_get(datai, i, &valueii);
//printf("[34] datar[%d] = %f\n", i, valueri);
//printf("[35] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri); chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, -valueii); chunk_array_save(datai, j, -valueii);
//printf("600\n");
//printf("[74] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[75] Saving in datai the value %f in pos %d\n", -valueii, j);
L755: L755:
i++; i++;
j--; j--;
if (i < imax) if (i < imax)
goto L750; goto L750;
//printf("606\n");
chunk_array_get(datar, imin, &valuerimin); chunk_array_get(datar, imin, &valuerimin);
chunk_array_get(datai, imin, &valueiimin); chunk_array_get(datai, imin, &valueiimin);
//printf("[36] datar[%d] = %f\n", imin, valuerimin);
//printf("[37] datai[%d] = %f\n", imin, valueiimin);
chunk_array_save(datar, j, valuerimin - valueiimin); chunk_array_save(datar, j, valuerimin - valueiimin);
chunk_array_save(datai, j, 0.); chunk_array_save(datai, j, 0.);
//printf("612\n");
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin - valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
if (i >= j) { if (i >= j) {
goto L780; goto L780;
} else { } else {
goto L770; goto L770;
} }
L765: L765:
//printf("619\n");
chunk_array_get(datar, i, &valueri); chunk_array_get(datar, i, &valueri);
chunk_array_get(datai, i, &valueii); chunk_array_get(datai, i, &valueii);
//printf("[38] datar[%d] = %f\n", i, valueri);
//printf("[39] datai[%d] = %f\n", i, valueii);
chunk_array_save(datar, j, valueri); chunk_array_save(datar, j, valueri);
chunk_array_save(datai, j, valueii); chunk_array_save(datai, j, valueii);
//printf("625\n");
//printf("[77] Saving in datar the value %f in pos %d\n", valueri, j);
//printf("[78] Saving in datai the value %f in pos %d\n", valueii, j);
L770: L770:
i--; i--;
j--; j--;
if (i > imin) if (i > imin)
goto L765; goto L765;
//printf("632\n");
chunk_array_get(datar, imin, &valuerimin); chunk_array_get(datar, imin, &valuerimin);
chunk_array_get(datai, imin, &valueiimin); chunk_array_get(datai, imin, &valueiimin);
//printf("[40] datar[%d] = %f\n", imin, valuerimin);
//printf("[41] datai[%d] = %f\n", imin, valueiimin);
chunk_array_save(datar, j, valuerimin + valueiimin); chunk_array_save(datar, j, valuerimin + valueiimin);
chunk_array_save(datai, j, 0.); chunk_array_save(datai, j, 0.);
//printf("638\n");
//printf("[75] Saving in datar the value %f in pos %d\n", valuerimin + valueiimin, j);
//printf("[76] Saving in datai the value %f in pos %d\n", 0., j);
imax = imin; imax = imin;
goto L745; goto L745;
L780: ; L780: ;
//printf("643\n");
chunk_array_get(datai, 1, &valuei1); chunk_array_get(datai, 1, &valuei1);
chunk_array_get(datar, 1, &valuer1); chunk_array_get(datar, 1, &valuer1);
//printf("[42] datai[1] = %f\n", valuei1);
//printf("[43] datar[1] = %f\n", valuer1);
chunk_array_save(datar, 1, valuei1 + valuer1); chunk_array_save(datar, 1, valuei1 + valuer1);
chunk_array_save(datai, 1, 0.); chunk_array_save(datai, 1, 0.);
//printf("649\n");
//printf("[77] Saving in datar the value %f in pos %d\n", valuei1 + valuer1, 1);
//printf("[78] Saving in datai the value %f in pos %d\n", 0., 1);
goto L900; goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/ /*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
@ -665,25 +754,34 @@ void fourt(chunk_array_t* datar, chunk_array_t* datai, int nn[3], int ndim, int
if (idim > 2) { if (idim > 2) {
j = jmax + np0; j = jmax + np0;
for (i = imin; i <= imax; i++) { for (i = imin; i <= imax; i++) {
//printf("667\n");
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[44] datar[%d] = %f\n", j, valuerj);
//printf("[45] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj); chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij); chunk_array_save(datai, i, -valueij);
//printf("673\n");
//printf("[79] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[80] Saving in datai the value %f in pos %d\n", -valueij, i);
j--; j--;
} }
} }
j = jmax; j = jmax;
for (i = imin; i <= imax; i += np0) { for (i = imin; i <= imax; i += np0) {
//printf("679\n");
chunk_array_get(datar, j, &valuerj); chunk_array_get(datar, j, &valuerj);
chunk_array_get(datai, j, &valueij); chunk_array_get(datai, j, &valueij);
//printf("[46] datar[%d] = %f\n", j, valuerj);
//printf("[47] datai[%d] = %f\n", j, valueij);
chunk_array_save(datar, i, valuerj); chunk_array_save(datar, i, valuerj);
chunk_array_save(datai, i, -valueij); chunk_array_save(datai, i, -valueij);
//printf("685\n");
//printf("[81] Saving in datar the value %f in pos %d\n", valuerj, i);
//printf("[82] Saving in datai the value %f in pos %d\n", -valueij, i);
j -= np0; j -= np0;
} }

@ -0,0 +1,645 @@
#include <math.h>
#include <stdio.h>
#include <time.h>
#include "chunk_array.h"
/*fast fourier transform */
/* THE COOLEY-TUKEY FAST FOURIER TRANSFORM */
/* EVALUATES COMPLEX FOURIER SERIES FOR COMPLEX OR REAL FUNCTIONS. */
/* THAT IS, IT COMPUTES */
/* FTRAN(J1,J2,...)=SUM(DATA(I1,I2,...)*W1**(I1-1)*(J1-1) */
/* *W2**(I2-1)*(J2-1)*...), */
/* WHERE W1=EXP(-2*PI*SQRT(-1)/NN(1)), W2=EXP(-2*PI*SQRT(-1)/NN(2)), */
/* ETC. AND I1 AND J1 RUN FROM 1 TO NN(1), I2 AND J2 RUN FROM 1 TO */
/* NN(2), ETC. THERE IS NO LIMIT ON THE DIMENSIONALITY (NUMBER OF */
/* SUBSCRIPTS) OF THE ARRAY OF DATA. THE PROGRAM WILL PERFORM */
/* A THREE-DIMENSIONAL FOURIER TRANSFORM AS EASILY AS A ONE-DIMEN- */
/* SIONAL ONE, THO IN A PROPORTIONATELY GREATER TIME. AN INVERSE */
/* TRANSFORM CAN BE PERFORMED, IN WHICH THE SIGN IN THE EXPONENTIALS */
/* IS +, INSTEAD OF -. IF AN INVERSE TRANSFORM IS PERFORMED UPON */
/* AN ARRAY OF TRANSFORMED DATA, THE ORIGINAL DATA WILL REAPPEAR, */
/* MULTIPLIED BY NN(1)*NN(2)*... THE ARRAY OF INPUT DATA MAY BE */
/* REAL OR COMPLEX, AT THE PROGRAMMERS OPTION, WITH A SAVING OF */
/* ABOUT THIRTY PER CENT IN RUNNING TIME FOR REAL OVER COMPLEX. */
/* (FOR FASTEST TRANSFORM OF REAL DATA, NN(1) SHOULD BE EVEN.) */
/* THE TRANSFORM VALUES ARE ALWAYS COMPLEX, AND ARE RETURNED IN THE */
/* ORIGINAL ARRAY OF DATA, REPLACING THE INPUT DATA. THE LENGTH */
/* OF EACH DIMENSION OF THE DATA ARRAY MAY BE ANY INTEGER. THE */
/* PROGRAM RUNS FASTER ON COMPOSITE INTEGERS THAN ON PRIMES, AND IS */
/* PARTICULARLY FAST ON NUMBERS RICH IN FACTORS OF TWO. */
/* TIMING IS IN FACT GIVEN BY THE FOLLOWING FORMULA. LET NTOT BE THE */
/* TOTAL NUMBER OF POINTS (REAL OR COMPLEX) IN THE DATA ARRAY, THAT */
/* IS, NTOT=NN(1)*NN(2)*... DECOMPOSE NTOT INTO ITS PRIME FACTORS, */
/* SUCH AS 2**K2 * 3**K3 * 5**K5 * ... LET SUM2 BE THE SUM OF ALL */
/* THE FACTORS OF TWO IN NTOT, THAT IS, SUM2 = 2*K2. LET SUMF BE */
/* THE SUM OF ALL OTHER FACTORS OF NTOT, THAT IS, SUMF = 3*K3+5*K5+.. */
/* THE TIME TAKEN BY A MULTIDIMENSIONAL TRANSFORM ON THESE NTOT DATA */
/* IS T = T0 + T1*NTOT + T2*NTOT*SUM2 + T3*NTOT*SUMF. FOR THE PAR- */
/* TICULAR IMPLEMENTATION FORTRAN 32 ON THE CDC 3300 (FLOATING POINT */
/* ADD TIME = SIX MICROSECONDS), */
/* T = 3000 + 600*NTOT + 50*NTOT*SUM2 + 175*NTOT*SUMF MICROSECONDS */
/* ON COMPLEX DATA. */
/* IMPLEMENTATION OF THE DEFINITION BY SUMMATION WILL RUN IN A TIME */
/* PROPORTIONAL TO NTOT**2. FOR HIGHLY COMPOSITE NTOT, THE SAVINGS */
/* OFFERED BY COOLEY-TUKEY CAN BE DRAMATIC. A MATRIX 100 BY 100 WILL */
/* BE TRANSFORMED IN TIME PROPORTIONAL TO 10000*(2+2+2+2+5+5+5+5) = */
/* 280,000 (ASSUMING T2 AND T3 TO BE ROUGHLY COMPARABLE) VERSUS */
/* 10000**2 = 100,000,000 FOR THE STRAIGHTFORWARD TECHNIQUE. */
/* THE COOLEY-TUKEY ALGORITHM PLACES TWO RESTRICTIONS UPON THE */
/* NATURE OF THE DATA BEYOND THE USUAL RESTRICTION THAT */
/* THE DATA FROM ONE CYCLE OF A PERIODIC FUNCTION. THEY ARE-- */
/* 1. THE NUMBER OF INPUT DATA AND THE NUMBER OF TRANSFORM VALUES */
/* MUST BE THE SAME. */
/* 2. CONSIDERING THE DATA TO BE IN THE TIME DOMAIN, */
/* THEY MUST BE EQUI-SPACED AT INTERVALS OF DT. FURTHER, THE TRANS- */
/* FORM VALUES, CONSIDERED TO BE IN FREQUENCY SPACE, WILL BE EQUI- */
/* SPACED FROM 0 TO 2*PI*(NN(I)-1)/(NN(I)*DT) AT INTERVALS OF */
/* 2*PI/(NN(I)*DT) FOR EACH DIMENSION OF LENGTH NN(I). OF COURSE, */
/* DT NEED NOT BE THE SAME FOR EVERY DIMENSION. */
/* THE CALLING SEQUENCE IS-- */
/* CALL FOURT(DATAR,DATAI,NN,NDIM,IFRWD,ICPLX,WORKR,WORKI) */
/* DATAR AND DATAI ARE THE ARRAYS USED TO HOLD THE REAL AND IMAGINARY */
/* PARTS OF THE INPUT DATA ON INPUT AND THE TRANSFORM VALUES ON */
/* OUTPUT. THEY ARE FLOATING POINT ARRAYS, MULTIDIMENSIONAL WITH */
/* IDENTICAL DIMENSIONALITY AND EXTENT. THE EXTENT OF EACH DIMENSION */
/* IS GIVEN IN THE INTEGER ARRAY NN, OF LENGTH NDIM. THAT IS, */
/* NDIM IS THE DIMENSIONALITY OF THE ARRAYS DATAR AND DATAI. */
/* IFRWD IS AN INTEGER USED TO INDICATE THE DIRECTION OF THE FOURIER */
/* TRANSFORM. IT IS NON-ZERO TO INDICATE A FORWARD TRANSFORM */
/* (EXPONENTIAL SIGN IS -) AND ZERO TO INDICATE AN INVERSE TRANSFORM */
/* (SIGN IS +). ICPLX IS AN INTEGER TO INDICATE WHETHER THE DATA */
/* ARE REAL OR COMPLEX. IT IS NON-ZERO FOR COMPLEX, ZERO FOR REAL. */
/* IF IT IS ZERO (REAL) THE CONTENTS OF ARRAY DATAI WILL BE ASSUMED */
/* TO BE ZERO, AND NEED NOT BE EXPLICITLY SET TO ZERO. AS EXPLAINED */
/* ABOVE, THE TRANSFORM RESULTS ARE ALWAYS COMPLEX AND ARE STORED */
/* IN DATAR AND DATAI ON RETURN. WORKR AND WORKI ARE ARRAYS USED */
/* FOR WORKING STORAGE. THEY ARE NOT NECESSARY IF ALL THE DIMENSIONS */
/* OF THE DATA ARE POWERS OF TWO. IN THIS CASE, THE ARRAYS MAY BE */
/* REPLACED BY THE NUMBER 0 IN THE CALLING SEQUENCE. THUS, USE OF */
/* POWERS OF TWO CAN FREE A GOOD DEAL OF STORAGE. IF ANY DIMENSION */
/* IS NOT A POWER OF TWO, THESE ARRAYS MUST BE SUPPLIED. THEY ARE */
/* FLOATING POINT, ONE DIMENSIONAL OF LENGTH EQUAL TO THE LARGEST */
/* ARRAY DIMENSION, THAT IS, TO THE LARGEST VALUE OF NN(I). */
/* WORKR AND WORKI, IF SUPPLIED, MUST NOT BE THE SAME ARRAYS AS DATAR */
/* OR DATAI. ALL SUBSCRIPTS OF ALL ARRAYS BEGIN AT 1. */
/* THERE ARE NO ERROR MESSAGES OR ERROR HALTS IN THIS PROGRAM. THE */
/* PROGRAM RETURNS IMMEDIATELY IF NDIM OR ANY NN(I) IS LESS THAN ONE. */
/* PROGRAM MODIFIED FROM A SUBROUTINE OF BRENNER */
/* 10-06-2000, MLR */
void fourt_covar(chunk_array_t* datar, double* datai, int nn[3], int ndim, int ifrwd, int icplx, double* workr, double* worki, int cores) {
int ifact[21], ntot, idim, np1, n, np2, m, ntwo, iff, idiv, iquot, irem, inon2, non2p, np0, nprev, icase, ifmin, i, j, jmax, np2hf, i2, i1max, i3, j3, i1, ifp1, ifp2, i2max, i1rng, istep, imin, imax, mmax, mmin, mstep, j1, j2max, j2, jmin, j3max, nhalf;
double theta, wstpr, wstpi, wminr, wmini, wr, wi, wtemp, thetm, wmstr, wmsti, twowr, sr, si, oldsr, oldsi, stmpr, stmpi, tempr, tempi, difi, difr, sumr, sumi, TWOPI = 6.283185307179586476925286766559;
double value1, valuei, valuej, valuei1, valueimin, valuei3, valuej3;
ntot = 1;
for (idim = 0; idim < ndim; idim++) {
ntot *= nn[idim];
}
chunk_array_read(datar);
/*main loop for each dimension*/
np1 = 1;
for (idim = 1; idim <= ndim; idim++) {
n = nn[idim - 1];
np2 = np1 * n;
if (n < 1) {
goto L920;
} else if (n == 1) {
goto L900;
}
/*is n a power of 2 and if not, what are its factors*/
m = n;
ntwo = np1;
iff = 1;
idiv = 2;
L10:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L50;
if (irem == 0) {
ntwo *= 2;
ifact[iff] = idiv;
iff++;
m = iquot;
goto L10;
}
idiv = 3;
inon2 = iff;
L30:
iquot = m / idiv;
irem = m - idiv * iquot;
if (iquot < idiv)
goto L60;
if (irem == 0) {
ifact[iff] = idiv;
iff++;
m = iquot;
goto L30;
}
idiv += 2;
goto L30;
L50:
inon2 = iff;
if (irem != 0)
goto L60;
ntwo *= 2;
goto L70;
L60:
ifact[iff] = m;
L70:
non2p = np2 / ntwo;
/*SEPARATE FOUR CASES--
1. COMPLEX TRANSFORM
2. REAL TRANSFORM FOR THE 2ND, 3RD, ETC. DIMENSION. METHOD: TRANSFORM HALF THE DATA, SUPPLYING THE OTHER HALF BY CONJUGATE SYMMETRY.
3. REAL TRANSFORM FOR THE 1ST DIMENSION, N ODD. METHOD: SET THE IMAGINARY PARTS TO ZERO.
4. REAL TRANSFORM FOR THE 1ST DIMENSION, N EVEN. METHOD: TRANSFORM A COMPLEX ARRAY OF LENGTH N/2 WHOSE REAL PARTS ARE THE EVEN NUMBERED REAL VALUES AND WHOSE IMAGINARY PARTS ARE THE ODD-NUMBERED REAL VALUES. UNSCRAMBLE AND SUPPLY THE SECOND HALF BY CONJUGATE SYMMETRY. */
icase = 1;
ifmin = 1;
if (icplx != 0)
goto L100;
icase = 2;
if (idim > 1)
goto L100;
icase = 3;
if (ntwo <= np1)
goto L100;
icase = 4;
ifmin = 2;
ntwo /= 2;
n /= 2;
np2 /= 2;
ntot /= 2;
i = 1;
for (j = 1; j <= ntot; j++) {
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, i, &valuei1);
chunk_array_save(datar, j, valuei);
//datar[j] = datar[i];
datai[j] = valuei1;
i += 2;
}
/*shuffle data by bit reversal, since n = 2^k. As the shuffling can be done by simple interchange, no working array is needed*/
L100:
if (non2p > 1)
goto L200;
np2hf = np2 / 2;
j = 1;
for (i2 = 1; i2 <= np2; i2 += np1) {
if (j >= i2)
goto L130;
i1max = i2 + np1 - 1;
for (i1 = i2; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j3 = j + i3 - i2;
//tempr = datar[i3];
tempi = datai[i3];
//datar[i3] = datar[j3];
datai[i3] = datai[j3];
//datar[j3] = tempr;
datai[j3] = tempi;
chunk_array_get(datar, i3, &valuei3);
chunk_array_get(datar, j3, &valuej3);
chunk_array_save(datar, i3, valuej3);
chunk_array_save(datar, j3, valuei3);
}
}
L130:
m = np2hf;
L140:
if (j <= m) {
j += m;
} else {
j -= m;
m /= 2;
if (m >= np1)
goto L140;
}
}
goto L300;
/*shuffle data by digit reversal for general n*/
L200:
for (i1 = 1; i1 <= np1; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
j = i3;
for (i = 1; i <= n; i++) {
if (icase != 3) {
//workr[i] = datar[j];
chunk_array_get(datar, j, &workr[i]);
worki[i] = datai[j];
} else {
chunk_array_get(datar, j, &workr[i]);
//workr[i] = datar[j];
worki[i] = 0.;
}
ifp2 = np2;
iff = ifmin;
L250:
ifp1 = ifp2 / ifact[iff];
j += ifp1;
if (j >= i3 + ifp2) {
j -= ifp2;
ifp2 = ifp1;
iff += 1;
if (ifp2 > np1)
goto L250;
}
}
i2max = i3 + np2 - np1;
i = 1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
chunk_array_save(datar, i2, workr[i]);
//datar[i2] = workr[i];
datai[i2] = worki[i];
i++;
}
}
}
/*special case-- W=1*/
L300:
i1rng = np1;
if (icase == 2)
i1rng = np0 * (1 + nprev / 2);
if (ntwo <= np1)
goto L600;
for (i1 = 1; i1 <= i1rng; i1++) {
imin = np1 + i1;
istep = 2 * np1;
goto L330;
L310:
j = i1;
for (i = imin; i <= ntot; i += istep) {
//tempr = datar[i];
tempi = datai[i];
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] = datar[j] + tempr;
datai[j] = datai[j] + tempi;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - valuei);
chunk_array_save(datar, j, valuej + valuei);
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L330:
if (istep <= ntwo)
goto L310;
/*special case-- W = -sqrt(-1)*/
imin = 3 * np1 + i1;
istep = 4 * np1;
goto L420;
L400:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
if (ifrwd != 0) {
tempr = datai[i];
//tempi = -datar[i];
chunk_array_get(datar, i, &tempi);
tempi = -tempi;
} else {
tempr = -datai[i];
//tempi = datar[i];
chunk_array_get(datar, i, &tempi);
}
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej - tempr);
chunk_array_save(datar, j, valuej - tempr);
//datar[i] = datar[j] - tempr;
datai[i] = datai[j] - tempi;
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
L420:
if (istep <= ntwo)
goto L400;
}
/*main loop for factors of 2. W=EXP(-2*PI*SQRT(-1)*m/mmax) */
theta = -TWOPI / 8.;
wstpr = 0.;
wstpi = -1.;
if (ifrwd == 0) {
theta = -theta;
wstpi = 1.;
}
mmax = 8 * np1;
goto L540;
L500:
wminr = cos(theta);
wmini = sin(theta);
wr = wminr;
wi = wmini;
mmin = mmax / 2 + np1;
mstep = np1 * 2;
for (m = mmin; m <= mmax; m += mstep) {
for (i1 = 1; i1 <= i1rng; i1++) {
istep = mmax;
imin = m + i1;
L510:
j = imin - istep / 2;
for (i = imin; i <= ntot; i += istep) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
tempr = valuei * wr - datai[i] * wi;
tempi = valuei * wi + datai[i] * wr;
chunk_array_save(datar, i, valuej - tempr);
//datar[i] = valuej - tempr;
datai[i] = datai[j] - tempi;
chunk_array_save(datar, i, valuej + tempr);
//datar[j] += tempr;
datai[j] += tempi;
j += istep;
}
imin = 2 * imin - i1;
istep *= 2;
if (istep <= ntwo)
goto L510;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
wstpr = wminr;
wstpi = wmini;
theta /= 2.;
mmax += mmax;
L540:
if (mmax <= ntwo)
goto L500;
/*main loop for factors not equal to 2-- W=EXP(-2*PI*SQRT(-1)*(j2-i3)/ifp2)*/
L600:
if (non2p <= 1)
goto L700;
ifp1 = ntwo;
iff = inon2;
L610:
ifp2 = ifact[iff] * ifp1;
theta = -TWOPI / (double)ifact[iff];
if (ifrwd == 0)
theta = -theta;
thetm = theta / (double)(ifp1 / np1);
wstpr = cos(theta);
wstpi = sin(theta);
wmstr = cos(thetm);
wmsti = sin(thetm);
wminr = 1.;
wmini = 0.;
for (j1 = 1; j1 <= ifp1; j1 += np1) {
i1max = j1 + i1rng - 1;
for (i1 = j1; i1 <= i1max; i1++) {
for (i3 = i1; i3 <= ntot; i3 += np2) {
i = 1;
wr = wminr;
wi = wmini;
j2max = i3 + ifp2 - ifp1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
twowr = 2. * wr;
jmin = i3;
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
j = jmin + ifp2 - ifp1;
//sr = datar[j];
chunk_array_get(datar, j, &sr);
si = datai[j];
oldsr = 0.;
oldsi = 0.;
j -= ifp1;
L620:
stmpr = sr;
stmpi = si;
chunk_array_get(datar, j, &valuej);
sr = twowr * sr - oldsr + valuej;
si = twowr * si - oldsi + datai[j];
oldsr = stmpr;
oldsi = stmpi;
j -= ifp1;
if (j > jmin)
goto L620;
workr[i] = wr * sr - wi * si - oldsr + valuej;
worki[i] = wi * sr + wr * si - oldsi + datai[j];
jmin += ifp2;
i++;
}
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
}
i = 1;
for (j2 = i3; j2 <= j2max; j2 += ifp1) {
j3max = j2 + np2 - ifp2;
for (j3 = j2; j3 <= j3max; j3 += ifp2) {
//datar[j3] = workr[i];
chunk_array_save(datar, j3, workr[i]);
datai[j3] = worki[i];
i++;
}
}
}
}
wtemp = wminr * wmsti;
wminr = wminr * wmstr - wmini * wmsti;
wmini = wmini * wmstr + wtemp;
}
iff++;
ifp1 = ifp2;
if (ifp1 < np2)
goto L610;
/*complete a real transform in the 1st dimension, n even, by conjugate symmetries*/
L700:
switch (icase) {
case 1:
goto L900;
break;
case 2:
goto L800;
break;
case 3:
goto L900;
break;
}
nhalf = n;
n += n;
theta = -TWOPI / (double)n;
if (ifrwd == 0)
theta = -theta;
wstpr = cos(theta);
wstpi = sin(theta);
wr = wstpr;
wi = wstpi;
imin = 2;
jmin = nhalf;
goto L725;
L710:
j = jmin;
for (i = imin; i <= ntot; i += np2) {
double valuei, valuej;
chunk_array_get(datar, i, &valuei);
chunk_array_get(datar, j, &valuej);
sumr = (valuei + valuej) / 2.;
sumi = (datai[i] + datai[j]) / 2.;
difr = (valuei - valuej) / 2.;
difi = (datai[i] - datai[j]) / 2.;
tempr = wr * sumi + wi * difr;
tempi = wi * sumi - wr * difr;
chunk_array_save(datar, i, sumr + tempr);
//datar[i] = sumr + tempr;
datai[i] = difi + tempi;
chunk_array_save(datar, j, sumr - tempr);
//datar[j] = sumr - tempr;
datai[j] = tempi - difi;
j += np2;
}
imin++;
jmin--;
wtemp = wr * wstpi;
wr = wr * wstpr - wi * wstpi;
wi = wi * wstpr + wtemp;
L725:
if (imin < jmin) {
goto L710;
} else if (imin > jmin) {
goto L740;
}
if (ifrwd == 0)
goto L740;
for (i = imin; i <= ntot; i += np2) {
datai[i] = -datai[i];
}
L740:
np2 *= 2;
ntot *= 2;
j = ntot + 1;
imax = ntot / 2 + 1;
L745:
imin = imax - nhalf;
i = imin;
goto L755;
L750:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = -datai[i];
L755:
i++;
j--;
if (i < imax)
goto L750;
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
//datar[j] = datar[imin] - datai[imin];
datai[j] = 0.;
if (i >= j) {
goto L780;
} else {
goto L770;
}
L765:
//datar[j] = datar[i];
chunk_array_get(datar, i, &valuei);
chunk_array_save(datar, j, valuei);
datai[j] = datai[i];
L770:
i--;
j--;
if (i > imin)
goto L765;
//datar[j] = datar[imin] + datai[imin];
chunk_array_get(datar, imin, &valueimin);
chunk_array_save(datar, j, valueimin - datai[imin]);
datai[j] = 0.;
imax = imin;
goto L745;
L780:
chunk_array_get(datar, 1, &value1);
chunk_array_save(datar, 1, value1 + datai[1]);
//datar[1] += datai[1];
datai[1] = 0.;
goto L900;
/*complete a real transform for the 2nd, 3rd, ... dimension by conjugate symmetries*/
L800:
if (nprev <= 2)
goto L900;
for (i3 = 1; i3 <= ntot; i3 += np2) {
i2max = i3 + np2 - np1;
for (i2 = i3; i2 <= i2max; i2 += np1) {
imax = i2 + np1 - 1;
imin = i2 + i1rng;
jmax = 2 * i3 + np1 - imin;
if (i2 > i3)
jmax += np2;
if (idim > 2) {
j = jmax + np0;
for (i = imin; i <= imax; i++) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j--;
}
}
j = jmax;
for (i = imin; i <= imax; i += np0) {
//datar[i] = datar[j];
chunk_array_get(datar, j, &valuej);
chunk_array_save(datar, i, valuej);
datai[i] = -datai[j];
j -= np0;
}
}
}
/*end of loop on each dimension*/
L900:
np0 = np1;
np1 = np2;
nprev = n;
}
L920: return;
}

@ -34,14 +34,10 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
ntot = n[0] * n[1] * n[2]; ntot = n[0] * n[1] * n[2];
chunk_array_save(realization, 0, 0.); chunk_array_save(realization, 0, 0.);
/*printf("Antes de llamar a chunkarray read\n");
chunk_array_read((*realin).vector_2);
printf("Despues de llamar a chunkarray read\n");*/
if (solver == 1) { if (solver == 1) {
for (i = 0; i < ntot; i++) { for (i = 0; i < ntot; i++) {
double value = gasdev(seed, &idum2, &iy, iv, cores); double value = gasdev(seed, &idum2, &iy, iv, cores);
chunk_array_save(realization, i+1, value); chunk_array_save(realization, i+1, value);
//chunk_array_get((*realin).vector_2, i, &realization[i + 1]);
} }
} else { } else {
for (k = 1; k <= n[2]; k++) { for (k = 1; k <= n[2]; k++) {
@ -49,11 +45,8 @@ void prebuild_gwn(struct grid_mod grid, int n[3], struct realization_mod* realin
for (i = 1; i <= n[0]; i++) { for (i = 1; i <= n[0]; i++) {
maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0]; maille1 = i + (j - 1 + (k - 1) * n[1]) * n[0];
if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) { if (i <= grid.NX && j <= grid.NY && k <= grid.NZ) {
//maille0 = i - 1 + (j - 1 + (k - 1) * grid.NY) * grid.NX;
//printf("Maille0 es %d", maille0);
double value = gasdev(seed, &idum2, &iy, iv, cores); double value = gasdev(seed, &idum2, &iy, iv, cores);
chunk_array_save(realization, maille1, value); chunk_array_save(realization, maille1, value);
//chunk_array_get((*realin).vector_2, maille0, &realization[maille1]);
} else { } else {
chunk_array_save(realization, maille1, 0.); chunk_array_save(realization, maille1, 0.);
} }

@ -29,6 +29,9 @@ variance=3.5682389
typ=3 typ=3
k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ, 8) k=gen(nx, ny, nz, dx, dy, dz, seed, variograms, mean, variance, typ, 8)
np.save(f"out_{N}.npy",k) k2 = np.load("out_2_16.npy")
print(k - k2)
del k del k
gc.collect() gc.collect()
Loading…
Cancel
Save